Bug Summary

File:tools/clang/lib/Sema/SemaLookup.cpp
Warning:line 5035, column 5
Value stored to 'Def' is never read

Annotated Source Code

1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements name lookup for C, C++, Objective-C, and
11// Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclLookups.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50using namespace clang;
51using namespace sema;
52
53namespace {
54 class UnqualUsingEntry {
55 const DeclContext *Nominated;
56 const DeclContext *CommonAncestor;
57
58 public:
59 UnqualUsingEntry(const DeclContext *Nominated,
60 const DeclContext *CommonAncestor)
61 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
62 }
63
64 const DeclContext *getCommonAncestor() const {
65 return CommonAncestor;
66 }
67
68 const DeclContext *getNominatedNamespace() const {
69 return Nominated;
70 }
71
72 // Sort by the pointer value of the common ancestor.
73 struct Comparator {
74 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
75 return L.getCommonAncestor() < R.getCommonAncestor();
76 }
77
78 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
79 return E.getCommonAncestor() < DC;
80 }
81
82 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
83 return DC < E.getCommonAncestor();
84 }
85 };
86 };
87
88 /// A collection of using directives, as used by C++ unqualified
89 /// lookup.
90 class UnqualUsingDirectiveSet {
91 Sema &SemaRef;
92
93 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94
95 ListTy list;
96 llvm::SmallPtrSet<DeclContext*, 8> visited;
97
98 public:
99 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
100
101 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102 // C++ [namespace.udir]p1:
103 // During unqualified name lookup, the names appear as if they
104 // were declared in the nearest enclosing namespace which contains
105 // both the using-directive and the nominated namespace.
106 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
107 assert(InnermostFileDC && InnermostFileDC->isFileContext())(static_cast <bool> (InnermostFileDC && InnermostFileDC
->isFileContext()) ? void (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 107, __extension__ __PRETTY_FUNCTION__))
;
108
109 for (; S; S = S->getParent()) {
110 // C++ [namespace.udir]p1:
111 // A using-directive shall not appear in class scope, but may
112 // appear in namespace scope or in block scope.
113 DeclContext *Ctx = S->getEntity();
114 if (Ctx && Ctx->isFileContext()) {
115 visit(Ctx, Ctx);
116 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117 for (auto *I : S->using_directives())
118 if (SemaRef.isVisible(I))
119 visit(I, InnermostFileDC);
120 }
121 }
122 }
123
124 // Visits a context and collect all of its using directives
125 // recursively. Treats all using directives as if they were
126 // declared in the context.
127 //
128 // A given context is only every visited once, so it is important
129 // that contexts be visited from the inside out in order to get
130 // the effective DCs right.
131 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
132 if (!visited.insert(DC).second)
133 return;
134
135 addUsingDirectives(DC, EffectiveDC);
136 }
137
138 // Visits a using directive and collects all of its using
139 // directives recursively. Treats all using directives as if they
140 // were declared in the effective DC.
141 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
142 DeclContext *NS = UD->getNominatedNamespace();
143 if (!visited.insert(NS).second)
144 return;
145
146 addUsingDirective(UD, EffectiveDC);
147 addUsingDirectives(NS, EffectiveDC);
148 }
149
150 // Adds all the using directives in a context (and those nominated
151 // by its using directives, transitively) as if they appeared in
152 // the given effective context.
153 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
154 SmallVector<DeclContext*, 4> queue;
155 while (true) {
156 for (auto UD : DC->using_directives()) {
157 DeclContext *NS = UD->getNominatedNamespace();
158 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
159 addUsingDirective(UD, EffectiveDC);
160 queue.push_back(NS);
161 }
162 }
163
164 if (queue.empty())
165 return;
166
167 DC = queue.pop_back_val();
168 }
169 }
170
171 // Add a using directive as if it had been declared in the given
172 // context. This helps implement C++ [namespace.udir]p3:
173 // The using-directive is transitive: if a scope contains a
174 // using-directive that nominates a second namespace that itself
175 // contains using-directives, the effect is as if the
176 // using-directives from the second namespace also appeared in
177 // the first.
178 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
179 // Find the common ancestor between the effective context and
180 // the nominated namespace.
181 DeclContext *Common = UD->getNominatedNamespace();
182 while (!Common->Encloses(EffectiveDC))
183 Common = Common->getParent();
184 Common = Common->getPrimaryContext();
185
186 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
187 }
188
189 void done() {
190 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
191 }
192
193 typedef ListTy::const_iterator const_iterator;
194
195 const_iterator begin() const { return list.begin(); }
196 const_iterator end() const { return list.end(); }
197
198 llvm::iterator_range<const_iterator>
199 getNamespacesFor(DeclContext *DC) const {
200 return llvm::make_range(std::equal_range(begin(), end(),
201 DC->getPrimaryContext(),
202 UnqualUsingEntry::Comparator()));
203 }
204 };
205} // end anonymous namespace
206
207// Retrieve the set of identifier namespaces that correspond to a
208// specific kind of name lookup.
209static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210 bool CPlusPlus,
211 bool Redeclaration) {
212 unsigned IDNS = 0;
213 switch (NameKind) {
214 case Sema::LookupObjCImplicitSelfParam:
215 case Sema::LookupOrdinaryName:
216 case Sema::LookupRedeclarationWithLinkage:
217 case Sema::LookupLocalFriendName:
218 IDNS = Decl::IDNS_Ordinary;
219 if (CPlusPlus) {
220 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
221 if (Redeclaration)
222 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
223 }
224 if (Redeclaration)
225 IDNS |= Decl::IDNS_LocalExtern;
226 break;
227
228 case Sema::LookupOperatorName:
229 // Operator lookup is its own crazy thing; it is not the same
230 // as (e.g.) looking up an operator name for redeclaration.
231 assert(!Redeclaration && "cannot do redeclaration operator lookup")(static_cast <bool> (!Redeclaration && "cannot do redeclaration operator lookup"
) ? void (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 231, __extension__ __PRETTY_FUNCTION__))
;
232 IDNS = Decl::IDNS_NonMemberOperator;
233 break;
234
235 case Sema::LookupTagName:
236 if (CPlusPlus) {
237 IDNS = Decl::IDNS_Type;
238
239 // When looking for a redeclaration of a tag name, we add:
240 // 1) TagFriend to find undeclared friend decls
241 // 2) Namespace because they can't "overload" with tag decls.
242 // 3) Tag because it includes class templates, which can't
243 // "overload" with tag decls.
244 if (Redeclaration)
245 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246 } else {
247 IDNS = Decl::IDNS_Tag;
248 }
249 break;
250
251 case Sema::LookupLabel:
252 IDNS = Decl::IDNS_Label;
253 break;
254
255 case Sema::LookupMemberName:
256 IDNS = Decl::IDNS_Member;
257 if (CPlusPlus)
258 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
259 break;
260
261 case Sema::LookupNestedNameSpecifierName:
262 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
263 break;
264
265 case Sema::LookupNamespaceName:
266 IDNS = Decl::IDNS_Namespace;
267 break;
268
269 case Sema::LookupUsingDeclName:
270 assert(Redeclaration && "should only be used for redecl lookup")(static_cast <bool> (Redeclaration && "should only be used for redecl lookup"
) ? void (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 270, __extension__ __PRETTY_FUNCTION__))
;
271 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
272 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
273 Decl::IDNS_LocalExtern;
274 break;
275
276 case Sema::LookupObjCProtocolName:
277 IDNS = Decl::IDNS_ObjCProtocol;
278 break;
279
280 case Sema::LookupOMPReductionName:
281 IDNS = Decl::IDNS_OMPReduction;
282 break;
283
284 case Sema::LookupAnyName:
285 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
286 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
287 | Decl::IDNS_Type;
288 break;
289 }
290 return IDNS;
291}
292
293void LookupResult::configure() {
294 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
295 isForRedeclaration());
296
297 // If we're looking for one of the allocation or deallocation
298 // operators, make sure that the implicitly-declared new and delete
299 // operators can be found.
300 switch (NameInfo.getName().getCXXOverloadedOperator()) {
301 case OO_New:
302 case OO_Delete:
303 case OO_Array_New:
304 case OO_Array_Delete:
305 getSema().DeclareGlobalNewDelete();
306 break;
307
308 default:
309 break;
310 }
311
312 // Compiler builtins are always visible, regardless of where they end
313 // up being declared.
314 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
315 if (unsigned BuiltinID = Id->getBuiltinID()) {
316 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
317 AllowHidden = true;
318 }
319 }
320}
321
322bool LookupResult::sanity() const {
323 // This function is never called by NDEBUG builds.
324 assert(ResultKind != NotFound || Decls.size() == 0)(static_cast <bool> (ResultKind != NotFound || Decls.size
() == 0) ? void (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 324, __extension__ __PRETTY_FUNCTION__))
;
325 assert(ResultKind != Found || Decls.size() == 1)(static_cast <bool> (ResultKind != Found || Decls.size(
) == 1) ? void (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 325, __extension__ __PRETTY_FUNCTION__))
;
326 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
327 (Decls.size() == 1 &&(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
328 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
;
329 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())(static_cast <bool> (ResultKind != FoundUnresolvedValue
|| sanityCheckUnresolved()) ? void (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __extension__ __PRETTY_FUNCTION__))
;
330 assert(ResultKind != Ambiguous || Decls.size() > 1 ||(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __extension__ __PRETTY_FUNCTION__))
331 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __extension__ __PRETTY_FUNCTION__))
332 Ambiguity == AmbiguousBaseSubobjectTypes)))(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __extension__ __PRETTY_FUNCTION__))
;
333 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 335, __extension__ __PRETTY_FUNCTION__))
334 (Ambiguity == AmbiguousBaseSubobjectTypes ||(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 335, __extension__ __PRETTY_FUNCTION__))
335 Ambiguity == AmbiguousBaseSubobjects)))(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 335, __extension__ __PRETTY_FUNCTION__))
;
336 return true;
337}
338
339// Necessary because CXXBasePaths is not complete in Sema.h
340void LookupResult::deletePaths(CXXBasePaths *Paths) {
341 delete Paths;
342}
343
344/// Get a representative context for a declaration such that two declarations
345/// will have the same context if they were found within the same scope.
346static DeclContext *getContextForScopeMatching(Decl *D) {
347 // For function-local declarations, use that function as the context. This
348 // doesn't account for scopes within the function; the caller must deal with
349 // those.
350 DeclContext *DC = D->getLexicalDeclContext();
351 if (DC->isFunctionOrMethod())
352 return DC;
353
354 // Otherwise, look at the semantic context of the declaration. The
355 // declaration must have been found there.
356 return D->getDeclContext()->getRedeclContext();
357}
358
359/// \brief Determine whether \p D is a better lookup result than \p Existing,
360/// given that they declare the same entity.
361static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
362 NamedDecl *D, NamedDecl *Existing) {
363 // When looking up redeclarations of a using declaration, prefer a using
364 // shadow declaration over any other declaration of the same entity.
365 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
366 !isa<UsingShadowDecl>(Existing))
367 return true;
368
369 auto *DUnderlying = D->getUnderlyingDecl();
370 auto *EUnderlying = Existing->getUnderlyingDecl();
371
372 // If they have different underlying declarations, prefer a typedef over the
373 // original type (this happens when two type declarations denote the same
374 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
375 // might carry additional semantic information, such as an alignment override.
376 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
377 // declaration over a typedef.
378 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
379 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))(static_cast <bool> (isa<TypeDecl>(DUnderlying) &&
isa<TypeDecl>(EUnderlying)) ? void (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 379, __extension__ __PRETTY_FUNCTION__))
;
380 bool HaveTag = isa<TagDecl>(EUnderlying);
381 bool WantTag = Kind == Sema::LookupTagName;
382 return HaveTag != WantTag;
383 }
384
385 // Pick the function with more default arguments.
386 // FIXME: In the presence of ambiguous default arguments, we should keep both,
387 // so we can diagnose the ambiguity if the default argument is needed.
388 // See C++ [over.match.best]p3.
389 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
390 auto *EFD = cast<FunctionDecl>(EUnderlying);
391 unsigned DMin = DFD->getMinRequiredArguments();
392 unsigned EMin = EFD->getMinRequiredArguments();
393 // If D has more default arguments, it is preferred.
394 if (DMin != EMin)
395 return DMin < EMin;
396 // FIXME: When we track visibility for default function arguments, check
397 // that we pick the declaration with more visible default arguments.
398 }
399
400 // Pick the template with more default template arguments.
401 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
402 auto *ETD = cast<TemplateDecl>(EUnderlying);
403 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
404 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
405 // If D has more default arguments, it is preferred. Note that default
406 // arguments (and their visibility) is monotonically increasing across the
407 // redeclaration chain, so this is a quick proxy for "is more recent".
408 if (DMin != EMin)
409 return DMin < EMin;
410 // If D has more *visible* default arguments, it is preferred. Note, an
411 // earlier default argument being visible does not imply that a later
412 // default argument is visible, so we can't just check the first one.
413 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
414 I != N; ++I) {
415 if (!S.hasVisibleDefaultArgument(
416 ETD->getTemplateParameters()->getParam(I)) &&
417 S.hasVisibleDefaultArgument(
418 DTD->getTemplateParameters()->getParam(I)))
419 return true;
420 }
421 }
422
423 // VarDecl can have incomplete array types, prefer the one with more complete
424 // array type.
425 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
426 VarDecl *EVD = cast<VarDecl>(EUnderlying);
427 if (EVD->getType()->isIncompleteType() &&
428 !DVD->getType()->isIncompleteType()) {
429 // Prefer the decl with a more complete type if visible.
430 return S.isVisible(DVD);
431 }
432 return false; // Avoid picking up a newer decl, just because it was newer.
433 }
434
435 // For most kinds of declaration, it doesn't really matter which one we pick.
436 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
437 // If the existing declaration is hidden, prefer the new one. Otherwise,
438 // keep what we've got.
439 return !S.isVisible(Existing);
440 }
441
442 // Pick the newer declaration; it might have a more precise type.
443 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
444 Prev = Prev->getPreviousDecl())
445 if (Prev == EUnderlying)
446 return true;
447 return false;
448}
449
450/// Determine whether \p D can hide a tag declaration.
451static bool canHideTag(NamedDecl *D) {
452 // C++ [basic.scope.declarative]p4:
453 // Given a set of declarations in a single declarative region [...]
454 // exactly one declaration shall declare a class name or enumeration name
455 // that is not a typedef name and the other declarations shall all refer to
456 // the same variable, non-static data member, or enumerator, or all refer
457 // to functions and function templates; in this case the class name or
458 // enumeration name is hidden.
459 // C++ [basic.scope.hiding]p2:
460 // A class name or enumeration name can be hidden by the name of a
461 // variable, data member, function, or enumerator declared in the same
462 // scope.
463 // An UnresolvedUsingValueDecl always instantiates to one of these.
464 D = D->getUnderlyingDecl();
465 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
466 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
467 isa<UnresolvedUsingValueDecl>(D);
468}
469
470/// Resolves the result kind of this lookup.
471void LookupResult::resolveKind() {
472 unsigned N = Decls.size();
473
474 // Fast case: no possible ambiguity.
475 if (N == 0) {
476 assert(ResultKind == NotFound ||(static_cast <bool> (ResultKind == NotFound || ResultKind
== NotFoundInCurrentInstantiation) ? void (0) : __assert_fail
("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 477, __extension__ __PRETTY_FUNCTION__))
477 ResultKind == NotFoundInCurrentInstantiation)(static_cast <bool> (ResultKind == NotFound || ResultKind
== NotFoundInCurrentInstantiation) ? void (0) : __assert_fail
("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 477, __extension__ __PRETTY_FUNCTION__))
;
478 return;
479 }
480
481 // If there's a single decl, we need to examine it to decide what
482 // kind of lookup this is.
483 if (N == 1) {
484 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
485 if (isa<FunctionTemplateDecl>(D))
486 ResultKind = FoundOverloaded;
487 else if (isa<UnresolvedUsingValueDecl>(D))
488 ResultKind = FoundUnresolvedValue;
489 return;
490 }
491
492 // Don't do any extra resolution if we've already resolved as ambiguous.
493 if (ResultKind == Ambiguous) return;
494
495 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
496 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
497
498 bool Ambiguous = false;
499 bool HasTag = false, HasFunction = false;
500 bool HasFunctionTemplate = false, HasUnresolved = false;
501 NamedDecl *HasNonFunction = nullptr;
502
503 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
504
505 unsigned UniqueTagIndex = 0;
506
507 unsigned I = 0;
508 while (I < N) {
509 NamedDecl *D = Decls[I]->getUnderlyingDecl();
510 D = cast<NamedDecl>(D->getCanonicalDecl());
511
512 // Ignore an invalid declaration unless it's the only one left.
513 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
514 Decls[I] = Decls[--N];
515 continue;
516 }
517
518 llvm::Optional<unsigned> ExistingI;
519
520 // Redeclarations of types via typedef can occur both within a scope
521 // and, through using declarations and directives, across scopes. There is
522 // no ambiguity if they all refer to the same type, so unique based on the
523 // canonical type.
524 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
525 QualType T = getSema().Context.getTypeDeclType(TD);
526 auto UniqueResult = UniqueTypes.insert(
527 std::make_pair(getSema().Context.getCanonicalType(T), I));
528 if (!UniqueResult.second) {
529 // The type is not unique.
530 ExistingI = UniqueResult.first->second;
531 }
532 }
533
534 // For non-type declarations, check for a prior lookup result naming this
535 // canonical declaration.
536 if (!ExistingI) {
537 auto UniqueResult = Unique.insert(std::make_pair(D, I));
538 if (!UniqueResult.second) {
539 // We've seen this entity before.
540 ExistingI = UniqueResult.first->second;
541 }
542 }
543
544 if (ExistingI) {
545 // This is not a unique lookup result. Pick one of the results and
546 // discard the other.
547 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
548 Decls[*ExistingI]))
549 Decls[*ExistingI] = Decls[I];
550 Decls[I] = Decls[--N];
551 continue;
552 }
553
554 // Otherwise, do some decl type analysis and then continue.
555
556 if (isa<UnresolvedUsingValueDecl>(D)) {
557 HasUnresolved = true;
558 } else if (isa<TagDecl>(D)) {
559 if (HasTag)
560 Ambiguous = true;
561 UniqueTagIndex = I;
562 HasTag = true;
563 } else if (isa<FunctionTemplateDecl>(D)) {
564 HasFunction = true;
565 HasFunctionTemplate = true;
566 } else if (isa<FunctionDecl>(D)) {
567 HasFunction = true;
568 } else {
569 if (HasNonFunction) {
570 // If we're about to create an ambiguity between two declarations that
571 // are equivalent, but one is an internal linkage declaration from one
572 // module and the other is an internal linkage declaration from another
573 // module, just skip it.
574 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
575 D)) {
576 EquivalentNonFunctions.push_back(D);
577 Decls[I] = Decls[--N];
578 continue;
579 }
580
581 Ambiguous = true;
582 }
583 HasNonFunction = D;
584 }
585 I++;
586 }
587
588 // C++ [basic.scope.hiding]p2:
589 // A class name or enumeration name can be hidden by the name of
590 // an object, function, or enumerator declared in the same
591 // scope. If a class or enumeration name and an object, function,
592 // or enumerator are declared in the same scope (in any order)
593 // with the same name, the class or enumeration name is hidden
594 // wherever the object, function, or enumerator name is visible.
595 // But it's still an error if there are distinct tag types found,
596 // even if they're not visible. (ref?)
597 if (N > 1 && HideTags && HasTag && !Ambiguous &&
598 (HasFunction || HasNonFunction || HasUnresolved)) {
599 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
600 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
601 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
602 getContextForScopeMatching(OtherDecl)) &&
603 canHideTag(OtherDecl))
604 Decls[UniqueTagIndex] = Decls[--N];
605 else
606 Ambiguous = true;
607 }
608
609 // FIXME: This diagnostic should really be delayed until we're done with
610 // the lookup result, in case the ambiguity is resolved by the caller.
611 if (!EquivalentNonFunctions.empty() && !Ambiguous)
612 getSema().diagnoseEquivalentInternalLinkageDeclarations(
613 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
614
615 Decls.set_size(N);
616
617 if (HasNonFunction && (HasFunction || HasUnresolved))
618 Ambiguous = true;
619
620 if (Ambiguous)
621 setAmbiguous(LookupResult::AmbiguousReference);
622 else if (HasUnresolved)
623 ResultKind = LookupResult::FoundUnresolvedValue;
624 else if (N > 1 || HasFunctionTemplate)
625 ResultKind = LookupResult::FoundOverloaded;
626 else
627 ResultKind = LookupResult::Found;
628}
629
630void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
631 CXXBasePaths::const_paths_iterator I, E;
632 for (I = P.begin(), E = P.end(); I != E; ++I)
633 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
634 DE = I->Decls.end(); DI != DE; ++DI)
635 addDecl(*DI);
636}
637
638void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
639 Paths = new CXXBasePaths;
640 Paths->swap(P);
641 addDeclsFromBasePaths(*Paths);
642 resolveKind();
643 setAmbiguous(AmbiguousBaseSubobjects);
644}
645
646void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
647 Paths = new CXXBasePaths;
648 Paths->swap(P);
649 addDeclsFromBasePaths(*Paths);
650 resolveKind();
651 setAmbiguous(AmbiguousBaseSubobjectTypes);
652}
653
654void LookupResult::print(raw_ostream &Out) {
655 Out << Decls.size() << " result(s)";
656 if (isAmbiguous()) Out << ", ambiguous";
657 if (Paths) Out << ", base paths present";
658
659 for (iterator I = begin(), E = end(); I != E; ++I) {
660 Out << "\n";
661 (*I)->print(Out, 2);
662 }
663}
664
665LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
666 llvm::errs() << "lookup results for " << getLookupName().getAsString()
667 << ":\n";
668 for (NamedDecl *D : *this)
669 D->dump();
670}
671
672/// \brief Lookup a builtin function, when name lookup would otherwise
673/// fail.
674static bool LookupBuiltin(Sema &S, LookupResult &R) {
675 Sema::LookupNameKind NameKind = R.getLookupKind();
676
677 // If we didn't find a use of this identifier, and if the identifier
678 // corresponds to a compiler builtin, create the decl object for the builtin
679 // now, injecting it into translation unit scope, and return it.
680 if (NameKind == Sema::LookupOrdinaryName ||
681 NameKind == Sema::LookupRedeclarationWithLinkage) {
682 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
683 if (II) {
684 if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
685 if (II == S.getASTContext().getMakeIntegerSeqName()) {
686 R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
687 return true;
688 } else if (II == S.getASTContext().getTypePackElementName()) {
689 R.addDecl(S.getASTContext().getTypePackElementDecl());
690 return true;
691 }
692 }
693
694 // If this is a builtin on this (or all) targets, create the decl.
695 if (unsigned BuiltinID = II->getBuiltinID()) {
696 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
697 // library functions like 'malloc'. Instead, we'll just error.
698 if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
699 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
700 return false;
701
702 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
703 BuiltinID, S.TUScope,
704 R.isForRedeclaration(),
705 R.getNameLoc())) {
706 R.addDecl(D);
707 return true;
708 }
709 }
710 }
711 }
712
713 return false;
714}
715
716/// \brief Determine whether we can declare a special member function within
717/// the class at this point.
718static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
719 // We need to have a definition for the class.
720 if (!Class->getDefinition() || Class->isDependentContext())
721 return false;
722
723 // We can't be in the middle of defining the class.
724 return !Class->isBeingDefined();
725}
726
727void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
728 if (!CanDeclareSpecialMemberFunction(Class))
729 return;
730
731 // If the default constructor has not yet been declared, do so now.
732 if (Class->needsImplicitDefaultConstructor())
733 DeclareImplicitDefaultConstructor(Class);
734
735 // If the copy constructor has not yet been declared, do so now.
736 if (Class->needsImplicitCopyConstructor())
737 DeclareImplicitCopyConstructor(Class);
738
739 // If the copy assignment operator has not yet been declared, do so now.
740 if (Class->needsImplicitCopyAssignment())
741 DeclareImplicitCopyAssignment(Class);
742
743 if (getLangOpts().CPlusPlus11) {
744 // If the move constructor has not yet been declared, do so now.
745 if (Class->needsImplicitMoveConstructor())
746 DeclareImplicitMoveConstructor(Class);
747
748 // If the move assignment operator has not yet been declared, do so now.
749 if (Class->needsImplicitMoveAssignment())
750 DeclareImplicitMoveAssignment(Class);
751 }
752
753 // If the destructor has not yet been declared, do so now.
754 if (Class->needsImplicitDestructor())
755 DeclareImplicitDestructor(Class);
756}
757
758/// \brief Determine whether this is the name of an implicitly-declared
759/// special member function.
760static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
761 switch (Name.getNameKind()) {
762 case DeclarationName::CXXConstructorName:
763 case DeclarationName::CXXDestructorName:
764 return true;
765
766 case DeclarationName::CXXOperatorName:
767 return Name.getCXXOverloadedOperator() == OO_Equal;
768
769 default:
770 break;
771 }
772
773 return false;
774}
775
776/// \brief If there are any implicit member functions with the given name
777/// that need to be declared in the given declaration context, do so.
778static void DeclareImplicitMemberFunctionsWithName(Sema &S,
779 DeclarationName Name,
780 SourceLocation Loc,
781 const DeclContext *DC) {
782 if (!DC)
783 return;
784
785 switch (Name.getNameKind()) {
786 case DeclarationName::CXXConstructorName:
787 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
788 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
789 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
790 if (Record->needsImplicitDefaultConstructor())
791 S.DeclareImplicitDefaultConstructor(Class);
792 if (Record->needsImplicitCopyConstructor())
793 S.DeclareImplicitCopyConstructor(Class);
794 if (S.getLangOpts().CPlusPlus11 &&
795 Record->needsImplicitMoveConstructor())
796 S.DeclareImplicitMoveConstructor(Class);
797 }
798 break;
799
800 case DeclarationName::CXXDestructorName:
801 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
802 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
803 CanDeclareSpecialMemberFunction(Record))
804 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
805 break;
806
807 case DeclarationName::CXXOperatorName:
808 if (Name.getCXXOverloadedOperator() != OO_Equal)
809 break;
810
811 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
812 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
813 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
814 if (Record->needsImplicitCopyAssignment())
815 S.DeclareImplicitCopyAssignment(Class);
816 if (S.getLangOpts().CPlusPlus11 &&
817 Record->needsImplicitMoveAssignment())
818 S.DeclareImplicitMoveAssignment(Class);
819 }
820 }
821 break;
822
823 case DeclarationName::CXXDeductionGuideName:
824 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
825 break;
826
827 default:
828 break;
829 }
830}
831
832// Adds all qualifying matches for a name within a decl context to the
833// given lookup result. Returns true if any matches were found.
834static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
835 bool Found = false;
836
837 // Lazily declare C++ special member functions.
838 if (S.getLangOpts().CPlusPlus)
839 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
840 DC);
841
842 // Perform lookup into this declaration context.
843 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
844 for (NamedDecl *D : DR) {
845 if ((D = R.getAcceptableDecl(D))) {
846 R.addDecl(D);
847 Found = true;
848 }
849 }
850
851 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
852 return true;
853
854 if (R.getLookupName().getNameKind()
855 != DeclarationName::CXXConversionFunctionName ||
856 R.getLookupName().getCXXNameType()->isDependentType() ||
857 !isa<CXXRecordDecl>(DC))
858 return Found;
859
860 // C++ [temp.mem]p6:
861 // A specialization of a conversion function template is not found by
862 // name lookup. Instead, any conversion function templates visible in the
863 // context of the use are considered. [...]
864 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
865 if (!Record->isCompleteDefinition())
866 return Found;
867
868 // For conversion operators, 'operator auto' should only match
869 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
870 // as a candidate for template substitution.
871 auto *ContainedDeducedType =
872 R.getLookupName().getCXXNameType()->getContainedDeducedType();
873 if (R.getLookupName().getNameKind() ==
874 DeclarationName::CXXConversionFunctionName &&
875 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
876 return Found;
877
878 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
879 UEnd = Record->conversion_end(); U != UEnd; ++U) {
880 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
881 if (!ConvTemplate)
882 continue;
883
884 // When we're performing lookup for the purposes of redeclaration, just
885 // add the conversion function template. When we deduce template
886 // arguments for specializations, we'll end up unifying the return
887 // type of the new declaration with the type of the function template.
888 if (R.isForRedeclaration()) {
889 R.addDecl(ConvTemplate);
890 Found = true;
891 continue;
892 }
893
894 // C++ [temp.mem]p6:
895 // [...] For each such operator, if argument deduction succeeds
896 // (14.9.2.3), the resulting specialization is used as if found by
897 // name lookup.
898 //
899 // When referencing a conversion function for any purpose other than
900 // a redeclaration (such that we'll be building an expression with the
901 // result), perform template argument deduction and place the
902 // specialization into the result set. We do this to avoid forcing all
903 // callers to perform special deduction for conversion functions.
904 TemplateDeductionInfo Info(R.getNameLoc());
905 FunctionDecl *Specialization = nullptr;
906
907 const FunctionProtoType *ConvProto
908 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
909 assert(ConvProto && "Nonsensical conversion function template type")(static_cast <bool> (ConvProto && "Nonsensical conversion function template type"
) ? void (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 909, __extension__ __PRETTY_FUNCTION__))
;
910
911 // Compute the type of the function that we would expect the conversion
912 // function to have, if it were to match the name given.
913 // FIXME: Calling convention!
914 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
915 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
916 EPI.ExceptionSpec = EST_None;
917 QualType ExpectedType
918 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
919 None, EPI);
920
921 // Perform template argument deduction against the type that we would
922 // expect the function to have.
923 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
924 Specialization, Info)
925 == Sema::TDK_Success) {
926 R.addDecl(Specialization);
927 Found = true;
928 }
929 }
930
931 return Found;
932}
933
934// Performs C++ unqualified lookup into the given file context.
935static bool
936CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
937 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
938
939 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")(static_cast <bool> (NS && NS->isFileContext
() && "CppNamespaceLookup() requires namespace!") ? void
(0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 939, __extension__ __PRETTY_FUNCTION__))
;
940
941 // Perform direct name lookup into the LookupCtx.
942 bool Found = LookupDirect(S, R, NS);
943
944 // Perform direct name lookup into the namespaces nominated by the
945 // using directives whose common ancestor is this namespace.
946 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
947 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
948 Found = true;
949
950 R.resolveKind();
951
952 return Found;
953}
954
955static bool isNamespaceOrTranslationUnitScope(Scope *S) {
956 if (DeclContext *Ctx = S->getEntity())
957 return Ctx->isFileContext();
958 return false;
959}
960
961// Find the next outer declaration context from this scope. This
962// routine actually returns the semantic outer context, which may
963// differ from the lexical context (encoded directly in the Scope
964// stack) when we are parsing a member of a class template. In this
965// case, the second element of the pair will be true, to indicate that
966// name lookup should continue searching in this semantic context when
967// it leaves the current template parameter scope.
968static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
969 DeclContext *DC = S->getEntity();
970 DeclContext *Lexical = nullptr;
971 for (Scope *OuterS = S->getParent(); OuterS;
972 OuterS = OuterS->getParent()) {
973 if (OuterS->getEntity()) {
974 Lexical = OuterS->getEntity();
975 break;
976 }
977 }
978
979 // C++ [temp.local]p8:
980 // In the definition of a member of a class template that appears
981 // outside of the namespace containing the class template
982 // definition, the name of a template-parameter hides the name of
983 // a member of this namespace.
984 //
985 // Example:
986 //
987 // namespace N {
988 // class C { };
989 //
990 // template<class T> class B {
991 // void f(T);
992 // };
993 // }
994 //
995 // template<class C> void N::B<C>::f(C) {
996 // C b; // C is the template parameter, not N::C
997 // }
998 //
999 // In this example, the lexical context we return is the
1000 // TranslationUnit, while the semantic context is the namespace N.
1001 if (!Lexical || !DC || !S->getParent() ||
1002 !S->getParent()->isTemplateParamScope())
1003 return std::make_pair(Lexical, false);
1004
1005 // Find the outermost template parameter scope.
1006 // For the example, this is the scope for the template parameters of
1007 // template<class C>.
1008 Scope *OutermostTemplateScope = S->getParent();
1009 while (OutermostTemplateScope->getParent() &&
1010 OutermostTemplateScope->getParent()->isTemplateParamScope())
1011 OutermostTemplateScope = OutermostTemplateScope->getParent();
1012
1013 // Find the namespace context in which the original scope occurs. In
1014 // the example, this is namespace N.
1015 DeclContext *Semantic = DC;
1016 while (!Semantic->isFileContext())
1017 Semantic = Semantic->getParent();
1018
1019 // Find the declaration context just outside of the template
1020 // parameter scope. This is the context in which the template is
1021 // being lexically declaration (a namespace context). In the
1022 // example, this is the global scope.
1023 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1024 Lexical->Encloses(Semantic))
1025 return std::make_pair(Semantic, true);
1026
1027 return std::make_pair(Lexical, false);
1028}
1029
1030namespace {
1031/// An RAII object to specify that we want to find block scope extern
1032/// declarations.
1033struct FindLocalExternScope {
1034 FindLocalExternScope(LookupResult &R)
1035 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1036 Decl::IDNS_LocalExtern) {
1037 R.setFindLocalExtern(R.getIdentifierNamespace() &
1038 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1039 }
1040 void restore() {
1041 R.setFindLocalExtern(OldFindLocalExtern);
1042 }
1043 ~FindLocalExternScope() {
1044 restore();
1045 }
1046 LookupResult &R;
1047 bool OldFindLocalExtern;
1048};
1049} // end anonymous namespace
1050
1051bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1052 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Can perform only C++ lookup") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1052, __extension__ __PRETTY_FUNCTION__))
;
1053
1054 DeclarationName Name = R.getLookupName();
1055 Sema::LookupNameKind NameKind = R.getLookupKind();
1056
1057 // If this is the name of an implicitly-declared special member function,
1058 // go through the scope stack to implicitly declare
1059 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1060 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1061 if (DeclContext *DC = PreS->getEntity())
1062 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1063 }
1064
1065 // Implicitly declare member functions with the name we're looking for, if in
1066 // fact we are in a scope where it matters.
1067
1068 Scope *Initial = S;
1069 IdentifierResolver::iterator
1070 I = IdResolver.begin(Name),
1071 IEnd = IdResolver.end();
1072
1073 // First we lookup local scope.
1074 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1075 // ...During unqualified name lookup (3.4.1), the names appear as if
1076 // they were declared in the nearest enclosing namespace which contains
1077 // both the using-directive and the nominated namespace.
1078 // [Note: in this context, "contains" means "contains directly or
1079 // indirectly".
1080 //
1081 // For example:
1082 // namespace A { int i; }
1083 // void foo() {
1084 // int i;
1085 // {
1086 // using namespace A;
1087 // ++i; // finds local 'i', A::i appears at global scope
1088 // }
1089 // }
1090 //
1091 UnqualUsingDirectiveSet UDirs(*this);
1092 bool VisitedUsingDirectives = false;
1093 bool LeftStartingScope = false;
1094 DeclContext *OutsideOfTemplateParamDC = nullptr;
1095
1096 // When performing a scope lookup, we want to find local extern decls.
1097 FindLocalExternScope FindLocals(R);
1098
1099 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1100 DeclContext *Ctx = S->getEntity();
1101 bool SearchNamespaceScope = true;
1102 // Check whether the IdResolver has anything in this scope.
1103 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1104 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1105 if (NameKind == LookupRedeclarationWithLinkage &&
1106 !(*I)->isTemplateParameter()) {
1107 // If it's a template parameter, we still find it, so we can diagnose
1108 // the invalid redeclaration.
1109
1110 // Determine whether this (or a previous) declaration is
1111 // out-of-scope.
1112 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1113 LeftStartingScope = true;
1114
1115 // If we found something outside of our starting scope that
1116 // does not have linkage, skip it.
1117 if (LeftStartingScope && !((*I)->hasLinkage())) {
1118 R.setShadowed();
1119 continue;
1120 }
1121 } else {
1122 // We found something in this scope, we should not look at the
1123 // namespace scope
1124 SearchNamespaceScope = false;
1125 }
1126 R.addDecl(ND);
1127 }
1128 }
1129 if (!SearchNamespaceScope) {
1130 R.resolveKind();
1131 if (S->isClassScope())
1132 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1133 R.setNamingClass(Record);
1134 return true;
1135 }
1136
1137 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1138 // C++11 [class.friend]p11:
1139 // If a friend declaration appears in a local class and the name
1140 // specified is an unqualified name, a prior declaration is
1141 // looked up without considering scopes that are outside the
1142 // innermost enclosing non-class scope.
1143 return false;
1144 }
1145
1146 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1147 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1148 // We've just searched the last template parameter scope and
1149 // found nothing, so look into the contexts between the
1150 // lexical and semantic declaration contexts returned by
1151 // findOuterContext(). This implements the name lookup behavior
1152 // of C++ [temp.local]p8.
1153 Ctx = OutsideOfTemplateParamDC;
1154 OutsideOfTemplateParamDC = nullptr;
1155 }
1156
1157 if (Ctx) {
1158 DeclContext *OuterCtx;
1159 bool SearchAfterTemplateScope;
1160 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1161 if (SearchAfterTemplateScope)
1162 OutsideOfTemplateParamDC = OuterCtx;
1163
1164 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1165 // We do not directly look into transparent contexts, since
1166 // those entities will be found in the nearest enclosing
1167 // non-transparent context.
1168 if (Ctx->isTransparentContext())
1169 continue;
1170
1171 // We do not look directly into function or method contexts,
1172 // since all of the local variables and parameters of the
1173 // function/method are present within the Scope.
1174 if (Ctx->isFunctionOrMethod()) {
1175 // If we have an Objective-C instance method, look for ivars
1176 // in the corresponding interface.
1177 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1178 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1179 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1180 ObjCInterfaceDecl *ClassDeclared;
1181 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1182 Name.getAsIdentifierInfo(),
1183 ClassDeclared)) {
1184 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1185 R.addDecl(ND);
1186 R.resolveKind();
1187 return true;
1188 }
1189 }
1190 }
1191 }
1192
1193 continue;
1194 }
1195
1196 // If this is a file context, we need to perform unqualified name
1197 // lookup considering using directives.
1198 if (Ctx->isFileContext()) {
1199 // If we haven't handled using directives yet, do so now.
1200 if (!VisitedUsingDirectives) {
1201 // Add using directives from this context up to the top level.
1202 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1203 if (UCtx->isTransparentContext())
1204 continue;
1205
1206 UDirs.visit(UCtx, UCtx);
1207 }
1208
1209 // Find the innermost file scope, so we can add using directives
1210 // from local scopes.
1211 Scope *InnermostFileScope = S;
1212 while (InnermostFileScope &&
1213 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1214 InnermostFileScope = InnermostFileScope->getParent();
1215 UDirs.visitScopeChain(Initial, InnermostFileScope);
1216
1217 UDirs.done();
1218
1219 VisitedUsingDirectives = true;
1220 }
1221
1222 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1223 R.resolveKind();
1224 return true;
1225 }
1226
1227 continue;
1228 }
1229
1230 // Perform qualified name lookup into this context.
1231 // FIXME: In some cases, we know that every name that could be found by
1232 // this qualified name lookup will also be on the identifier chain. For
1233 // example, inside a class without any base classes, we never need to
1234 // perform qualified lookup because all of the members are on top of the
1235 // identifier chain.
1236 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1237 return true;
1238 }
1239 }
1240 }
1241
1242 // Stop if we ran out of scopes.
1243 // FIXME: This really, really shouldn't be happening.
1244 if (!S) return false;
1245
1246 // If we are looking for members, no need to look into global/namespace scope.
1247 if (NameKind == LookupMemberName)
1248 return false;
1249
1250 // Collect UsingDirectiveDecls in all scopes, and recursively all
1251 // nominated namespaces by those using-directives.
1252 //
1253 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1254 // don't build it for each lookup!
1255 if (!VisitedUsingDirectives) {
1256 UDirs.visitScopeChain(Initial, S);
1257 UDirs.done();
1258 }
1259
1260 // If we're not performing redeclaration lookup, do not look for local
1261 // extern declarations outside of a function scope.
1262 if (!R.isForRedeclaration())
1263 FindLocals.restore();
1264
1265 // Lookup namespace scope, and global scope.
1266 // Unqualified name lookup in C++ requires looking into scopes
1267 // that aren't strictly lexical, and therefore we walk through the
1268 // context as well as walking through the scopes.
1269 for (; S; S = S->getParent()) {
1270 // Check whether the IdResolver has anything in this scope.
1271 bool Found = false;
1272 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1273 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1274 // We found something. Look for anything else in our scope
1275 // with this same name and in an acceptable identifier
1276 // namespace, so that we can construct an overload set if we
1277 // need to.
1278 Found = true;
1279 R.addDecl(ND);
1280 }
1281 }
1282
1283 if (Found && S->isTemplateParamScope()) {
1284 R.resolveKind();
1285 return true;
1286 }
1287
1288 DeclContext *Ctx = S->getEntity();
1289 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1290 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1291 // We've just searched the last template parameter scope and
1292 // found nothing, so look into the contexts between the
1293 // lexical and semantic declaration contexts returned by
1294 // findOuterContext(). This implements the name lookup behavior
1295 // of C++ [temp.local]p8.
1296 Ctx = OutsideOfTemplateParamDC;
1297 OutsideOfTemplateParamDC = nullptr;
1298 }
1299
1300 if (Ctx) {
1301 DeclContext *OuterCtx;
1302 bool SearchAfterTemplateScope;
1303 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1304 if (SearchAfterTemplateScope)
1305 OutsideOfTemplateParamDC = OuterCtx;
1306
1307 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1308 // We do not directly look into transparent contexts, since
1309 // those entities will be found in the nearest enclosing
1310 // non-transparent context.
1311 if (Ctx->isTransparentContext())
1312 continue;
1313
1314 // If we have a context, and it's not a context stashed in the
1315 // template parameter scope for an out-of-line definition, also
1316 // look into that context.
1317 if (!(Found && S->isTemplateParamScope())) {
1318 assert(Ctx->isFileContext() &&(static_cast <bool> (Ctx->isFileContext() &&
"We should have been looking only at file context here already."
) ? void (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1319, __extension__ __PRETTY_FUNCTION__))
1319 "We should have been looking only at file context here already.")(static_cast <bool> (Ctx->isFileContext() &&
"We should have been looking only at file context here already."
) ? void (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1319, __extension__ __PRETTY_FUNCTION__))
;
1320
1321 // Look into context considering using-directives.
1322 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1323 Found = true;
1324 }
1325
1326 if (Found) {
1327 R.resolveKind();
1328 return true;
1329 }
1330
1331 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1332 return false;
1333 }
1334 }
1335
1336 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1337 return false;
1338 }
1339
1340 return !R.empty();
1341}
1342
1343void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1344 if (auto *M = getCurrentModule())
1345 Context.mergeDefinitionIntoModule(ND, M);
1346 else
1347 // We're not building a module; just make the definition visible.
1348 ND->setVisibleDespiteOwningModule();
1349
1350 // If ND is a template declaration, make the template parameters
1351 // visible too. They're not (necessarily) within a mergeable DeclContext.
1352 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1353 for (auto *Param : *TD->getTemplateParameters())
1354 makeMergedDefinitionVisible(Param);
1355}
1356
1357/// \brief Find the module in which the given declaration was defined.
1358static Module *getDefiningModule(Sema &S, Decl *Entity) {
1359 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1360 // If this function was instantiated from a template, the defining module is
1361 // the module containing the pattern.
1362 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1363 Entity = Pattern;
1364 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1365 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1366 Entity = Pattern;
1367 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1368 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1369 Entity = Pattern;
1370 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1371 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1372 Entity = Pattern;
1373 }
1374
1375 // Walk up to the containing context. That might also have been instantiated
1376 // from a template.
1377 DeclContext *Context = Entity->getLexicalDeclContext();
1378 if (Context->isFileContext())
1379 return S.getOwningModule(Entity);
1380 return getDefiningModule(S, cast<Decl>(Context));
1381}
1382
1383llvm::DenseSet<Module*> &Sema::getLookupModules() {
1384 unsigned N = CodeSynthesisContexts.size();
1385 for (unsigned I = CodeSynthesisContextLookupModules.size();
1386 I != N; ++I) {
1387 Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1388 if (M && !LookupModulesCache.insert(M).second)
1389 M = nullptr;
1390 CodeSynthesisContextLookupModules.push_back(M);
1391 }
1392 return LookupModulesCache;
1393}
1394
1395bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1396 for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1397 if (isModuleVisible(Merged))
1398 return true;
1399 return false;
1400}
1401
1402bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1403 // FIXME: When not in local visibility mode, we can't tell the difference
1404 // between a declaration being visible because we merged a local copy of
1405 // the same declaration into it, and it being visible because its owning
1406 // module is visible.
1407 if (Def->getModuleOwnershipKind() == Decl::ModuleOwnershipKind::Visible &&
1408 getLangOpts().ModulesLocalVisibility)
1409 return true;
1410 for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1411 if (Merged->getTopLevelModuleName() == getLangOpts().CurrentModule)
1412 return true;
1413 return false;
1414}
1415
1416template<typename ParmDecl>
1417static bool
1418hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1419 llvm::SmallVectorImpl<Module *> *Modules) {
1420 if (!D->hasDefaultArgument())
1421 return false;
1422
1423 while (D) {
1424 auto &DefaultArg = D->getDefaultArgStorage();
1425 if (!DefaultArg.isInherited() && S.isVisible(D))
1426 return true;
1427
1428 if (!DefaultArg.isInherited() && Modules) {
1429 auto *NonConstD = const_cast<ParmDecl*>(D);
1430 Modules->push_back(S.getOwningModule(NonConstD));
1431 const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
1432 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1433 }
1434
1435 // If there was a previous default argument, maybe its parameter is visible.
1436 D = DefaultArg.getInheritedFrom();
1437 }
1438 return false;
1439}
1440
1441bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1442 llvm::SmallVectorImpl<Module *> *Modules) {
1443 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1444 return ::hasVisibleDefaultArgument(*this, P, Modules);
1445 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1446 return ::hasVisibleDefaultArgument(*this, P, Modules);
1447 return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1448 Modules);
1449}
1450
1451template<typename Filter>
1452static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1453 llvm::SmallVectorImpl<Module *> *Modules,
1454 Filter F) {
1455 for (auto *Redecl : D->redecls()) {
1456 auto *R = cast<NamedDecl>(Redecl);
1457 if (!F(R))
1458 continue;
1459
1460 if (S.isVisible(R))
1461 return true;
1462
1463 if (Modules) {
1464 Modules->push_back(R->getOwningModule());
1465 const auto &Merged = S.Context.getModulesWithMergedDefinition(R);
1466 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1467 }
1468 }
1469
1470 return false;
1471}
1472
1473bool Sema::hasVisibleExplicitSpecialization(
1474 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1475 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1476 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1477 return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1478 if (auto *FD = dyn_cast<FunctionDecl>(D))
1479 return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1480 if (auto *VD = dyn_cast<VarDecl>(D))
1481 return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1482 llvm_unreachable("unknown explicit specialization kind")::llvm::llvm_unreachable_internal("unknown explicit specialization kind"
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1482)
;
1483 });
1484}
1485
1486bool Sema::hasVisibleMemberSpecialization(
1487 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1488 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&(static_cast <bool> (isa<CXXRecordDecl>(D->getDeclContext
()) && "not a member specialization") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1489, __extension__ __PRETTY_FUNCTION__))
1489 "not a member specialization")(static_cast <bool> (isa<CXXRecordDecl>(D->getDeclContext
()) && "not a member specialization") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1489, __extension__ __PRETTY_FUNCTION__))
;
1490 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1491 // If the specialization is declared at namespace scope, then it's a member
1492 // specialization declaration. If it's lexically inside the class
1493 // definition then it was instantiated.
1494 //
1495 // FIXME: This is a hack. There should be a better way to determine this.
1496 // FIXME: What about MS-style explicit specializations declared within a
1497 // class definition?
1498 return D->getLexicalDeclContext()->isFileContext();
1499 });
1500
1501 return false;
1502}
1503
1504/// \brief Determine whether a declaration is visible to name lookup.
1505///
1506/// This routine determines whether the declaration D is visible in the current
1507/// lookup context, taking into account the current template instantiation
1508/// stack. During template instantiation, a declaration is visible if it is
1509/// visible from a module containing any entity on the template instantiation
1510/// path (by instantiating a template, you allow it to see the declarations that
1511/// your module can see, including those later on in your module).
1512bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1513 assert(D->isHidden() && "should not call this: not in slow case")(static_cast <bool> (D->isHidden() && "should not call this: not in slow case"
) ? void (0) : __assert_fail ("D->isHidden() && \"should not call this: not in slow case\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1513, __extension__ __PRETTY_FUNCTION__))
;
1514
1515 Module *DeclModule = SemaRef.getOwningModule(D);
1516 if (!DeclModule) {
1517 // A module-private declaration with no owning module means this is in the
1518 // global module in the C++ Modules TS. This is visible within the same
1519 // translation unit only.
1520 // FIXME: Don't assume that "same translation unit" means the same thing
1521 // as "not from an AST file".
1522 assert(D->isModulePrivate() && "hidden decl has no module")(static_cast <bool> (D->isModulePrivate() &&
"hidden decl has no module") ? void (0) : __assert_fail ("D->isModulePrivate() && \"hidden decl has no module\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1522, __extension__ __PRETTY_FUNCTION__))
;
1523 if (!D->isFromASTFile() || SemaRef.hasMergedDefinitionInCurrentModule(D))
1524 return true;
1525 } else {
1526 // If the owning module is visible, and the decl is not module private,
1527 // then the decl is visible too. (Module private is ignored within the same
1528 // top-level module.)
1529 if (D->isModulePrivate()
1530 ? DeclModule->getTopLevelModuleName() ==
1531 SemaRef.getLangOpts().CurrentModule ||
1532 SemaRef.hasMergedDefinitionInCurrentModule(D)
1533 : SemaRef.isModuleVisible(DeclModule) ||
1534 SemaRef.hasVisibleMergedDefinition(D))
1535 return true;
1536 }
1537
1538 // Determine whether a decl context is a file context for the purpose of
1539 // visibility. This looks through some (export and linkage spec) transparent
1540 // contexts, but not others (enums).
1541 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1542 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1543 isa<ExportDecl>(DC);
1544 };
1545
1546 // If this declaration is not at namespace scope
1547 // then it is visible if its lexical parent has a visible definition.
1548 DeclContext *DC = D->getLexicalDeclContext();
1549 if (DC && !IsEffectivelyFileContext(DC)) {
1550 // For a parameter, check whether our current template declaration's
1551 // lexical context is visible, not whether there's some other visible
1552 // definition of it, because parameters aren't "within" the definition.
1553 //
1554 // In C++ we need to check for a visible definition due to ODR merging,
1555 // and in C we must not because each declaration of a function gets its own
1556 // set of declarations for tags in prototype scope.
1557 bool VisibleWithinParent;
1558 if (D->isTemplateParameter() || isa<ParmVarDecl>(D) ||
1559 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1560 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1561 else if (D->isModulePrivate()) {
1562 // A module-private declaration is only visible if an enclosing lexical
1563 // parent was merged with another definition in the current module.
1564 VisibleWithinParent = false;
1565 do {
1566 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1567 VisibleWithinParent = true;
1568 break;
1569 }
1570 DC = DC->getLexicalParent();
1571 } while (!IsEffectivelyFileContext(DC));
1572 } else {
1573 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1574 }
1575
1576 if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1577 // FIXME: Do something better in this case.
1578 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1579 // Cache the fact that this declaration is implicitly visible because
1580 // its parent has a visible definition.
1581 D->setVisibleDespiteOwningModule();
1582 }
1583 return VisibleWithinParent;
1584 }
1585
1586 // FIXME: All uses of DeclModule below this point should also check merged
1587 // modules.
1588 if (!DeclModule)
1589 return false;
1590
1591 // Find the extra places where we need to look.
1592 llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1593 if (LookupModules.empty())
1594 return false;
1595
1596 // If our lookup set contains the decl's module, it's visible.
1597 if (LookupModules.count(DeclModule))
1598 return true;
1599
1600 // If the declaration isn't exported, it's not visible in any other module.
1601 if (D->isModulePrivate())
1602 return false;
1603
1604 // Check whether DeclModule is transitively exported to an import of
1605 // the lookup set.
1606 return std::any_of(LookupModules.begin(), LookupModules.end(),
1607 [&](Module *M) { return M->isModuleVisible(DeclModule); });
1608}
1609
1610bool Sema::isVisibleSlow(const NamedDecl *D) {
1611 return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1612}
1613
1614bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1615 // FIXME: If there are both visible and hidden declarations, we need to take
1616 // into account whether redeclaration is possible. Example:
1617 //
1618 // Non-imported module:
1619 // int f(T); // #1
1620 // Some TU:
1621 // static int f(U); // #2, not a redeclaration of #1
1622 // int f(T); // #3, finds both, should link with #1 if T != U, but
1623 // // with #2 if T == U; neither should be ambiguous.
1624 for (auto *D : R) {
1625 if (isVisible(D))
1626 return true;
1627 assert(D->isExternallyDeclarable() &&(static_cast <bool> (D->isExternallyDeclarable() &&
"should not have hidden, non-externally-declarable result here"
) ? void (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1628, __extension__ __PRETTY_FUNCTION__))
1628 "should not have hidden, non-externally-declarable result here")(static_cast <bool> (D->isExternallyDeclarable() &&
"should not have hidden, non-externally-declarable result here"
) ? void (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1628, __extension__ __PRETTY_FUNCTION__))
;
1629 }
1630
1631 // This function is called once "New" is essentially complete, but before a
1632 // previous declaration is attached. We can't query the linkage of "New" in
1633 // general, because attaching the previous declaration can change the
1634 // linkage of New to match the previous declaration.
1635 //
1636 // However, because we've just determined that there is no *visible* prior
1637 // declaration, we can compute the linkage here. There are two possibilities:
1638 //
1639 // * This is not a redeclaration; it's safe to compute the linkage now.
1640 //
1641 // * This is a redeclaration of a prior declaration that is externally
1642 // redeclarable. In that case, the linkage of the declaration is not
1643 // changed by attaching the prior declaration, because both are externally
1644 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1645 //
1646 // FIXME: This is subtle and fragile.
1647 return New->isExternallyDeclarable();
1648}
1649
1650/// \brief Retrieve the visible declaration corresponding to D, if any.
1651///
1652/// This routine determines whether the declaration D is visible in the current
1653/// module, with the current imports. If not, it checks whether any
1654/// redeclaration of D is visible, and if so, returns that declaration.
1655///
1656/// \returns D, or a visible previous declaration of D, whichever is more recent
1657/// and visible. If no declaration of D is visible, returns null.
1658static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
1659 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")(static_cast <bool> (!LookupResult::isVisible(SemaRef, D
) && "not in slow case") ? void (0) : __assert_fail (
"!LookupResult::isVisible(SemaRef, D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1659, __extension__ __PRETTY_FUNCTION__))
;
1660
1661 for (auto RD : D->redecls()) {
1662 // Don't bother with extra checks if we already know this one isn't visible.
1663 if (RD == D)
1664 continue;
1665
1666 auto ND = cast<NamedDecl>(RD);
1667 // FIXME: This is wrong in the case where the previous declaration is not
1668 // visible in the same scope as D. This needs to be done much more
1669 // carefully.
1670 if (LookupResult::isVisible(SemaRef, ND))
1671 return ND;
1672 }
1673
1674 return nullptr;
1675}
1676
1677bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1678 llvm::SmallVectorImpl<Module *> *Modules) {
1679 assert(!isVisible(D) && "not in slow case")(static_cast <bool> (!isVisible(D) && "not in slow case"
) ? void (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1679, __extension__ __PRETTY_FUNCTION__))
;
1680 return hasVisibleDeclarationImpl(*this, D, Modules,
1681 [](const NamedDecl *) { return true; });
1682}
1683
1684NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1685 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1686 // Namespaces are a bit of a special case: we expect there to be a lot of
1687 // redeclarations of some namespaces, all declarations of a namespace are
1688 // essentially interchangeable, all declarations are found by name lookup
1689 // if any is, and namespaces are never looked up during template
1690 // instantiation. So we benefit from caching the check in this case, and
1691 // it is correct to do so.
1692 auto *Key = ND->getCanonicalDecl();
1693 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1694 return Acceptable;
1695 auto *Acceptable =
1696 isVisible(getSema(), Key) ? Key : findAcceptableDecl(getSema(), Key);
1697 if (Acceptable)
1698 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1699 return Acceptable;
1700 }
1701
1702 return findAcceptableDecl(getSema(), D);
1703}
1704
1705/// @brief Perform unqualified name lookup starting from a given
1706/// scope.
1707///
1708/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1709/// used to find names within the current scope. For example, 'x' in
1710/// @code
1711/// int x;
1712/// int f() {
1713/// return x; // unqualified name look finds 'x' in the global scope
1714/// }
1715/// @endcode
1716///
1717/// Different lookup criteria can find different names. For example, a
1718/// particular scope can have both a struct and a function of the same
1719/// name, and each can be found by certain lookup criteria. For more
1720/// information about lookup criteria, see the documentation for the
1721/// class LookupCriteria.
1722///
1723/// @param S The scope from which unqualified name lookup will
1724/// begin. If the lookup criteria permits, name lookup may also search
1725/// in the parent scopes.
1726///
1727/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1728/// look up and the lookup kind), and is updated with the results of lookup
1729/// including zero or more declarations and possibly additional information
1730/// used to diagnose ambiguities.
1731///
1732/// @returns \c true if lookup succeeded and false otherwise.
1733bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1734 DeclarationName Name = R.getLookupName();
1735 if (!Name) return false;
1736
1737 LookupNameKind NameKind = R.getLookupKind();
1738
1739 if (!getLangOpts().CPlusPlus) {
1740 // Unqualified name lookup in C/Objective-C is purely lexical, so
1741 // search in the declarations attached to the name.
1742 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1743 // Find the nearest non-transparent declaration scope.
1744 while (!(S->getFlags() & Scope::DeclScope) ||
1745 (S->getEntity() && S->getEntity()->isTransparentContext()))
1746 S = S->getParent();
1747 }
1748
1749 // When performing a scope lookup, we want to find local extern decls.
1750 FindLocalExternScope FindLocals(R);
1751
1752 // Scan up the scope chain looking for a decl that matches this
1753 // identifier that is in the appropriate namespace. This search
1754 // should not take long, as shadowing of names is uncommon, and
1755 // deep shadowing is extremely uncommon.
1756 bool LeftStartingScope = false;
1757
1758 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1759 IEnd = IdResolver.end();
1760 I != IEnd; ++I)
1761 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1762 if (NameKind == LookupRedeclarationWithLinkage) {
1763 // Determine whether this (or a previous) declaration is
1764 // out-of-scope.
1765 if (!LeftStartingScope && !S->isDeclScope(*I))
1766 LeftStartingScope = true;
1767
1768 // If we found something outside of our starting scope that
1769 // does not have linkage, skip it.
1770 if (LeftStartingScope && !((*I)->hasLinkage())) {
1771 R.setShadowed();
1772 continue;
1773 }
1774 }
1775 else if (NameKind == LookupObjCImplicitSelfParam &&
1776 !isa<ImplicitParamDecl>(*I))
1777 continue;
1778
1779 R.addDecl(D);
1780
1781 // Check whether there are any other declarations with the same name
1782 // and in the same scope.
1783 if (I != IEnd) {
1784 // Find the scope in which this declaration was declared (if it
1785 // actually exists in a Scope).
1786 while (S && !S->isDeclScope(D))
1787 S = S->getParent();
1788
1789 // If the scope containing the declaration is the translation unit,
1790 // then we'll need to perform our checks based on the matching
1791 // DeclContexts rather than matching scopes.
1792 if (S && isNamespaceOrTranslationUnitScope(S))
1793 S = nullptr;
1794
1795 // Compute the DeclContext, if we need it.
1796 DeclContext *DC = nullptr;
1797 if (!S)
1798 DC = (*I)->getDeclContext()->getRedeclContext();
1799
1800 IdentifierResolver::iterator LastI = I;
1801 for (++LastI; LastI != IEnd; ++LastI) {
1802 if (S) {
1803 // Match based on scope.
1804 if (!S->isDeclScope(*LastI))
1805 break;
1806 } else {
1807 // Match based on DeclContext.
1808 DeclContext *LastDC
1809 = (*LastI)->getDeclContext()->getRedeclContext();
1810 if (!LastDC->Equals(DC))
1811 break;
1812 }
1813
1814 // If the declaration is in the right namespace and visible, add it.
1815 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1816 R.addDecl(LastD);
1817 }
1818
1819 R.resolveKind();
1820 }
1821
1822 return true;
1823 }
1824 } else {
1825 // Perform C++ unqualified name lookup.
1826 if (CppLookupName(R, S))
1827 return true;
1828 }
1829
1830 // If we didn't find a use of this identifier, and if the identifier
1831 // corresponds to a compiler builtin, create the decl object for the builtin
1832 // now, injecting it into translation unit scope, and return it.
1833 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1834 return true;
1835
1836 // If we didn't find a use of this identifier, the ExternalSource
1837 // may be able to handle the situation.
1838 // Note: some lookup failures are expected!
1839 // See e.g. R.isForRedeclaration().
1840 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1841}
1842
1843/// @brief Perform qualified name lookup in the namespaces nominated by
1844/// using directives by the given context.
1845///
1846/// C++98 [namespace.qual]p2:
1847/// Given X::m (where X is a user-declared namespace), or given \::m
1848/// (where X is the global namespace), let S be the set of all
1849/// declarations of m in X and in the transitive closure of all
1850/// namespaces nominated by using-directives in X and its used
1851/// namespaces, except that using-directives are ignored in any
1852/// namespace, including X, directly containing one or more
1853/// declarations of m. No namespace is searched more than once in
1854/// the lookup of a name. If S is the empty set, the program is
1855/// ill-formed. Otherwise, if S has exactly one member, or if the
1856/// context of the reference is a using-declaration
1857/// (namespace.udecl), S is the required set of declarations of
1858/// m. Otherwise if the use of m is not one that allows a unique
1859/// declaration to be chosen from S, the program is ill-formed.
1860///
1861/// C++98 [namespace.qual]p5:
1862/// During the lookup of a qualified namespace member name, if the
1863/// lookup finds more than one declaration of the member, and if one
1864/// declaration introduces a class name or enumeration name and the
1865/// other declarations either introduce the same object, the same
1866/// enumerator or a set of functions, the non-type name hides the
1867/// class or enumeration name if and only if the declarations are
1868/// from the same namespace; otherwise (the declarations are from
1869/// different namespaces), the program is ill-formed.
1870static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1871 DeclContext *StartDC) {
1872 assert(StartDC->isFileContext() && "start context is not a file context")(static_cast <bool> (StartDC->isFileContext() &&
"start context is not a file context") ? void (0) : __assert_fail
("StartDC->isFileContext() && \"start context is not a file context\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1872, __extension__ __PRETTY_FUNCTION__))
;
1873
1874 // We have not yet looked into these namespaces, much less added
1875 // their "using-children" to the queue.
1876 SmallVector<NamespaceDecl*, 8> Queue;
1877
1878 // We have at least added all these contexts to the queue.
1879 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1880 Visited.insert(StartDC);
1881
1882 // We have already looked into the initial namespace; seed the queue
1883 // with its using-children.
1884 for (auto *I : StartDC->using_directives()) {
1885 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1886 if (S.isVisible(I) && Visited.insert(ND).second)
1887 Queue.push_back(ND);
1888 }
1889
1890 // The easiest way to implement the restriction in [namespace.qual]p5
1891 // is to check whether any of the individual results found a tag
1892 // and, if so, to declare an ambiguity if the final result is not
1893 // a tag.
1894 bool FoundTag = false;
1895 bool FoundNonTag = false;
1896
1897 LookupResult LocalR(LookupResult::Temporary, R);
1898
1899 bool Found = false;
1900 while (!Queue.empty()) {
1901 NamespaceDecl *ND = Queue.pop_back_val();
1902
1903 // We go through some convolutions here to avoid copying results
1904 // between LookupResults.
1905 bool UseLocal = !R.empty();
1906 LookupResult &DirectR = UseLocal ? LocalR : R;
1907 bool FoundDirect = LookupDirect(S, DirectR, ND);
1908
1909 if (FoundDirect) {
1910 // First do any local hiding.
1911 DirectR.resolveKind();
1912
1913 // If the local result is a tag, remember that.
1914 if (DirectR.isSingleTagDecl())
1915 FoundTag = true;
1916 else
1917 FoundNonTag = true;
1918
1919 // Append the local results to the total results if necessary.
1920 if (UseLocal) {
1921 R.addAllDecls(LocalR);
1922 LocalR.clear();
1923 }
1924 }
1925
1926 // If we find names in this namespace, ignore its using directives.
1927 if (FoundDirect) {
1928 Found = true;
1929 continue;
1930 }
1931
1932 for (auto I : ND->using_directives()) {
1933 NamespaceDecl *Nom = I->getNominatedNamespace();
1934 if (S.isVisible(I) && Visited.insert(Nom).second)
1935 Queue.push_back(Nom);
1936 }
1937 }
1938
1939 if (Found) {
1940 if (FoundTag && FoundNonTag)
1941 R.setAmbiguousQualifiedTagHiding();
1942 else
1943 R.resolveKind();
1944 }
1945
1946 return Found;
1947}
1948
1949/// \brief Callback that looks for any member of a class with the given name.
1950static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1951 CXXBasePath &Path, DeclarationName Name) {
1952 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1953
1954 Path.Decls = BaseRecord->lookup(Name);
1955 return !Path.Decls.empty();
1956}
1957
1958/// \brief Determine whether the given set of member declarations contains only
1959/// static members, nested types, and enumerators.
1960template<typename InputIterator>
1961static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1962 Decl *D = (*First)->getUnderlyingDecl();
1963 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1964 return true;
1965
1966 if (isa<CXXMethodDecl>(D)) {
1967 // Determine whether all of the methods are static.
1968 bool AllMethodsAreStatic = true;
1969 for(; First != Last; ++First) {
1970 D = (*First)->getUnderlyingDecl();
1971
1972 if (!isa<CXXMethodDecl>(D)) {
1973 assert(isa<TagDecl>(D) && "Non-function must be a tag decl")(static_cast <bool> (isa<TagDecl>(D) && "Non-function must be a tag decl"
) ? void (0) : __assert_fail ("isa<TagDecl>(D) && \"Non-function must be a tag decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 1973, __extension__ __PRETTY_FUNCTION__))
;
1974 break;
1975 }
1976
1977 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1978 AllMethodsAreStatic = false;
1979 break;
1980 }
1981 }
1982
1983 if (AllMethodsAreStatic)
1984 return true;
1985 }
1986
1987 return false;
1988}
1989
1990/// \brief Perform qualified name lookup into a given context.
1991///
1992/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1993/// names when the context of those names is explicit specified, e.g.,
1994/// "std::vector" or "x->member", or as part of unqualified name lookup.
1995///
1996/// Different lookup criteria can find different names. For example, a
1997/// particular scope can have both a struct and a function of the same
1998/// name, and each can be found by certain lookup criteria. For more
1999/// information about lookup criteria, see the documentation for the
2000/// class LookupCriteria.
2001///
2002/// \param R captures both the lookup criteria and any lookup results found.
2003///
2004/// \param LookupCtx The context in which qualified name lookup will
2005/// search. If the lookup criteria permits, name lookup may also search
2006/// in the parent contexts or (for C++ classes) base classes.
2007///
2008/// \param InUnqualifiedLookup true if this is qualified name lookup that
2009/// occurs as part of unqualified name lookup.
2010///
2011/// \returns true if lookup succeeded, false if it failed.
2012bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2013 bool InUnqualifiedLookup) {
2014 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")(static_cast <bool> (LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? void (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2014, __extension__ __PRETTY_FUNCTION__))
;
2015
2016 if (!R.getLookupName())
2017 return false;
2018
2019 // Make sure that the declaration context is complete.
2020 assert((!isa<TagDecl>(LookupCtx) ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2024, __extension__ __PRETTY_FUNCTION__))
2021 LookupCtx->isDependentContext() ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2024, __extension__ __PRETTY_FUNCTION__))
2022 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2024, __extension__ __PRETTY_FUNCTION__))
2023 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2024, __extension__ __PRETTY_FUNCTION__))
2024 "Declaration context must already be complete!")(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2024, __extension__ __PRETTY_FUNCTION__))
;
2025
2026 struct QualifiedLookupInScope {
2027 bool oldVal;
2028 DeclContext *Context;
2029 // Set flag in DeclContext informing debugger that we're looking for qualified name
2030 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2031 oldVal = ctx->setUseQualifiedLookup();
2032 }
2033 ~QualifiedLookupInScope() {
2034 Context->setUseQualifiedLookup(oldVal);
2035 }
2036 } QL(LookupCtx);
2037
2038 if (LookupDirect(*this, R, LookupCtx)) {
2039 R.resolveKind();
2040 if (isa<CXXRecordDecl>(LookupCtx))
2041 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2042 return true;
2043 }
2044
2045 // Don't descend into implied contexts for redeclarations.
2046 // C++98 [namespace.qual]p6:
2047 // In a declaration for a namespace member in which the
2048 // declarator-id is a qualified-id, given that the qualified-id
2049 // for the namespace member has the form
2050 // nested-name-specifier unqualified-id
2051 // the unqualified-id shall name a member of the namespace
2052 // designated by the nested-name-specifier.
2053 // See also [class.mfct]p5 and [class.static.data]p2.
2054 if (R.isForRedeclaration())
2055 return false;
2056
2057 // If this is a namespace, look it up in the implied namespaces.
2058 if (LookupCtx->isFileContext())
2059 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2060
2061 // If this isn't a C++ class, we aren't allowed to look into base
2062 // classes, we're done.
2063 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2064 if (!LookupRec || !LookupRec->getDefinition())
2065 return false;
2066
2067 // If we're performing qualified name lookup into a dependent class,
2068 // then we are actually looking into a current instantiation. If we have any
2069 // dependent base classes, then we either have to delay lookup until
2070 // template instantiation time (at which point all bases will be available)
2071 // or we have to fail.
2072 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2073 LookupRec->hasAnyDependentBases()) {
2074 R.setNotFoundInCurrentInstantiation();
2075 return false;
2076 }
2077
2078 // Perform lookup into our base classes.
2079 CXXBasePaths Paths;
2080 Paths.setOrigin(LookupRec);
2081
2082 // Look for this member in our base classes
2083 bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2084 DeclarationName Name) = nullptr;
2085 switch (R.getLookupKind()) {
2086 case LookupObjCImplicitSelfParam:
2087 case LookupOrdinaryName:
2088 case LookupMemberName:
2089 case LookupRedeclarationWithLinkage:
2090 case LookupLocalFriendName:
2091 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2092 break;
2093
2094 case LookupTagName:
2095 BaseCallback = &CXXRecordDecl::FindTagMember;
2096 break;
2097
2098 case LookupAnyName:
2099 BaseCallback = &LookupAnyMember;
2100 break;
2101
2102 case LookupOMPReductionName:
2103 BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2104 break;
2105
2106 case LookupUsingDeclName:
2107 // This lookup is for redeclarations only.
2108
2109 case LookupOperatorName:
2110 case LookupNamespaceName:
2111 case LookupObjCProtocolName:
2112 case LookupLabel:
2113 // These lookups will never find a member in a C++ class (or base class).
2114 return false;
2115
2116 case LookupNestedNameSpecifierName:
2117 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2118 break;
2119 }
2120
2121 DeclarationName Name = R.getLookupName();
2122 if (!LookupRec->lookupInBases(
2123 [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2124 return BaseCallback(Specifier, Path, Name);
2125 },
2126 Paths))
2127 return false;
2128
2129 R.setNamingClass(LookupRec);
2130
2131 // C++ [class.member.lookup]p2:
2132 // [...] If the resulting set of declarations are not all from
2133 // sub-objects of the same type, or the set has a nonstatic member
2134 // and includes members from distinct sub-objects, there is an
2135 // ambiguity and the program is ill-formed. Otherwise that set is
2136 // the result of the lookup.
2137 QualType SubobjectType;
2138 int SubobjectNumber = 0;
2139 AccessSpecifier SubobjectAccess = AS_none;
2140
2141 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2142 Path != PathEnd; ++Path) {
2143 const CXXBasePathElement &PathElement = Path->back();
2144
2145 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2146 // across all paths.
2147 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2148
2149 // Determine whether we're looking at a distinct sub-object or not.
2150 if (SubobjectType.isNull()) {
2151 // This is the first subobject we've looked at. Record its type.
2152 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2153 SubobjectNumber = PathElement.SubobjectNumber;
2154 continue;
2155 }
2156
2157 if (SubobjectType
2158 != Context.getCanonicalType(PathElement.Base->getType())) {
2159 // We found members of the given name in two subobjects of
2160 // different types. If the declaration sets aren't the same, this
2161 // lookup is ambiguous.
2162 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2163 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2164 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2165 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2166
2167 while (FirstD != FirstPath->Decls.end() &&
2168 CurrentD != Path->Decls.end()) {
2169 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
2170 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
2171 break;
2172
2173 ++FirstD;
2174 ++CurrentD;
2175 }
2176
2177 if (FirstD == FirstPath->Decls.end() &&
2178 CurrentD == Path->Decls.end())
2179 continue;
2180 }
2181
2182 R.setAmbiguousBaseSubobjectTypes(Paths);
2183 return true;
2184 }
2185
2186 if (SubobjectNumber != PathElement.SubobjectNumber) {
2187 // We have a different subobject of the same type.
2188
2189 // C++ [class.member.lookup]p5:
2190 // A static member, a nested type or an enumerator defined in
2191 // a base class T can unambiguously be found even if an object
2192 // has more than one base class subobject of type T.
2193 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2194 continue;
2195
2196 // We have found a nonstatic member name in multiple, distinct
2197 // subobjects. Name lookup is ambiguous.
2198 R.setAmbiguousBaseSubobjects(Paths);
2199 return true;
2200 }
2201 }
2202
2203 // Lookup in a base class succeeded; return these results.
2204
2205 for (auto *D : Paths.front().Decls) {
2206 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2207 D->getAccess());
2208 R.addDecl(D, AS);
2209 }
2210 R.resolveKind();
2211 return true;
2212}
2213
2214/// \brief Performs qualified name lookup or special type of lookup for
2215/// "__super::" scope specifier.
2216///
2217/// This routine is a convenience overload meant to be called from contexts
2218/// that need to perform a qualified name lookup with an optional C++ scope
2219/// specifier that might require special kind of lookup.
2220///
2221/// \param R captures both the lookup criteria and any lookup results found.
2222///
2223/// \param LookupCtx The context in which qualified name lookup will
2224/// search.
2225///
2226/// \param SS An optional C++ scope-specifier.
2227///
2228/// \returns true if lookup succeeded, false if it failed.
2229bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2230 CXXScopeSpec &SS) {
2231 auto *NNS = SS.getScopeRep();
2232 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2233 return LookupInSuper(R, NNS->getAsRecordDecl());
2234 else
2235
2236 return LookupQualifiedName(R, LookupCtx);
2237}
2238
2239/// @brief Performs name lookup for a name that was parsed in the
2240/// source code, and may contain a C++ scope specifier.
2241///
2242/// This routine is a convenience routine meant to be called from
2243/// contexts that receive a name and an optional C++ scope specifier
2244/// (e.g., "N::M::x"). It will then perform either qualified or
2245/// unqualified name lookup (with LookupQualifiedName or LookupName,
2246/// respectively) on the given name and return those results. It will
2247/// perform a special type of lookup for "__super::" scope specifier.
2248///
2249/// @param S The scope from which unqualified name lookup will
2250/// begin.
2251///
2252/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2253///
2254/// @param EnteringContext Indicates whether we are going to enter the
2255/// context of the scope-specifier SS (if present).
2256///
2257/// @returns True if any decls were found (but possibly ambiguous)
2258bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2259 bool AllowBuiltinCreation, bool EnteringContext) {
2260 if (SS && SS->isInvalid()) {
2261 // When the scope specifier is invalid, don't even look for
2262 // anything.
2263 return false;
2264 }
2265
2266 if (SS && SS->isSet()) {
2267 NestedNameSpecifier *NNS = SS->getScopeRep();
2268 if (NNS->getKind() == NestedNameSpecifier::Super)
2269 return LookupInSuper(R, NNS->getAsRecordDecl());
2270
2271 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2272 // We have resolved the scope specifier to a particular declaration
2273 // contex, and will perform name lookup in that context.
2274 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2275 return false;
2276
2277 R.setContextRange(SS->getRange());
2278 return LookupQualifiedName(R, DC);
2279 }
2280
2281 // We could not resolve the scope specified to a specific declaration
2282 // context, which means that SS refers to an unknown specialization.
2283 // Name lookup can't find anything in this case.
2284 R.setNotFoundInCurrentInstantiation();
2285 R.setContextRange(SS->getRange());
2286 return false;
2287 }
2288
2289 // Perform unqualified name lookup starting in the given scope.
2290 return LookupName(R, S, AllowBuiltinCreation);
2291}
2292
2293/// \brief Perform qualified name lookup into all base classes of the given
2294/// class.
2295///
2296/// \param R captures both the lookup criteria and any lookup results found.
2297///
2298/// \param Class The context in which qualified name lookup will
2299/// search. Name lookup will search in all base classes merging the results.
2300///
2301/// @returns True if any decls were found (but possibly ambiguous)
2302bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2303 // The access-control rules we use here are essentially the rules for
2304 // doing a lookup in Class that just magically skipped the direct
2305 // members of Class itself. That is, the naming class is Class, and the
2306 // access includes the access of the base.
2307 for (const auto &BaseSpec : Class->bases()) {
2308 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2309 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2310 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2311 Result.setBaseObjectType(Context.getRecordType(Class));
2312 LookupQualifiedName(Result, RD);
2313
2314 // Copy the lookup results into the target, merging the base's access into
2315 // the path access.
2316 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2317 R.addDecl(I.getDecl(),
2318 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2319 I.getAccess()));
2320 }
2321
2322 Result.suppressDiagnostics();
2323 }
2324
2325 R.resolveKind();
2326 R.setNamingClass(Class);
2327
2328 return !R.empty();
2329}
2330
2331/// \brief Produce a diagnostic describing the ambiguity that resulted
2332/// from name lookup.
2333///
2334/// \param Result The result of the ambiguous lookup to be diagnosed.
2335void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2336 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")(static_cast <bool> (Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? void (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2336, __extension__ __PRETTY_FUNCTION__))
;
2337
2338 DeclarationName Name = Result.getLookupName();
2339 SourceLocation NameLoc = Result.getNameLoc();
2340 SourceRange LookupRange = Result.getContextRange();
2341
2342 switch (Result.getAmbiguityKind()) {
2343 case LookupResult::AmbiguousBaseSubobjects: {
2344 CXXBasePaths *Paths = Result.getBasePaths();
2345 QualType SubobjectType = Paths->front().back().Base->getType();
2346 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2347 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2348 << LookupRange;
2349
2350 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2351 while (isa<CXXMethodDecl>(*Found) &&
2352 cast<CXXMethodDecl>(*Found)->isStatic())
2353 ++Found;
2354
2355 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2356 break;
2357 }
2358
2359 case LookupResult::AmbiguousBaseSubobjectTypes: {
2360 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2361 << Name << LookupRange;
2362
2363 CXXBasePaths *Paths = Result.getBasePaths();
2364 std::set<Decl *> DeclsPrinted;
2365 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2366 PathEnd = Paths->end();
2367 Path != PathEnd; ++Path) {
2368 Decl *D = Path->Decls.front();
2369 if (DeclsPrinted.insert(D).second)
2370 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2371 }
2372 break;
2373 }
2374
2375 case LookupResult::AmbiguousTagHiding: {
2376 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2377
2378 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2379
2380 for (auto *D : Result)
2381 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2382 TagDecls.insert(TD);
2383 Diag(TD->getLocation(), diag::note_hidden_tag);
2384 }
2385
2386 for (auto *D : Result)
2387 if (!isa<TagDecl>(D))
2388 Diag(D->getLocation(), diag::note_hiding_object);
2389
2390 // For recovery purposes, go ahead and implement the hiding.
2391 LookupResult::Filter F = Result.makeFilter();
2392 while (F.hasNext()) {
2393 if (TagDecls.count(F.next()))
2394 F.erase();
2395 }
2396 F.done();
2397 break;
2398 }
2399
2400 case LookupResult::AmbiguousReference: {
2401 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2402
2403 for (auto *D : Result)
2404 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2405 break;
2406 }
2407 }
2408}
2409
2410namespace {
2411 struct AssociatedLookup {
2412 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2413 Sema::AssociatedNamespaceSet &Namespaces,
2414 Sema::AssociatedClassSet &Classes)
2415 : S(S), Namespaces(Namespaces), Classes(Classes),
2416 InstantiationLoc(InstantiationLoc) {
2417 }
2418
2419 Sema &S;
2420 Sema::AssociatedNamespaceSet &Namespaces;
2421 Sema::AssociatedClassSet &Classes;
2422 SourceLocation InstantiationLoc;
2423 };
2424} // end anonymous namespace
2425
2426static void
2427addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2428
2429static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2430 DeclContext *Ctx) {
2431 // Add the associated namespace for this class.
2432
2433 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2434 // be a locally scoped record.
2435
2436 // We skip out of inline namespaces. The innermost non-inline namespace
2437 // contains all names of all its nested inline namespaces anyway, so we can
2438 // replace the entire inline namespace tree with its root.
2439 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2440 Ctx->isInlineNamespace())
2441 Ctx = Ctx->getParent();
2442
2443 if (Ctx->isFileContext())
2444 Namespaces.insert(Ctx->getPrimaryContext());
2445}
2446
2447// \brief Add the associated classes and namespaces for argument-dependent
2448// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2449static void
2450addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2451 const TemplateArgument &Arg) {
2452 // C++ [basic.lookup.koenig]p2, last bullet:
2453 // -- [...] ;
2454 switch (Arg.getKind()) {
2455 case TemplateArgument::Null:
2456 break;
2457
2458 case TemplateArgument::Type:
2459 // [...] the namespaces and classes associated with the types of the
2460 // template arguments provided for template type parameters (excluding
2461 // template template parameters)
2462 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2463 break;
2464
2465 case TemplateArgument::Template:
2466 case TemplateArgument::TemplateExpansion: {
2467 // [...] the namespaces in which any template template arguments are
2468 // defined; and the classes in which any member templates used as
2469 // template template arguments are defined.
2470 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2471 if (ClassTemplateDecl *ClassTemplate
2472 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2473 DeclContext *Ctx = ClassTemplate->getDeclContext();
2474 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2475 Result.Classes.insert(EnclosingClass);
2476 // Add the associated namespace for this class.
2477 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2478 }
2479 break;
2480 }
2481
2482 case TemplateArgument::Declaration:
2483 case TemplateArgument::Integral:
2484 case TemplateArgument::Expression:
2485 case TemplateArgument::NullPtr:
2486 // [Note: non-type template arguments do not contribute to the set of
2487 // associated namespaces. ]
2488 break;
2489
2490 case TemplateArgument::Pack:
2491 for (const auto &P : Arg.pack_elements())
2492 addAssociatedClassesAndNamespaces(Result, P);
2493 break;
2494 }
2495}
2496
2497// \brief Add the associated classes and namespaces for
2498// argument-dependent lookup with an argument of class type
2499// (C++ [basic.lookup.koenig]p2).
2500static void
2501addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2502 CXXRecordDecl *Class) {
2503
2504 // Just silently ignore anything whose name is __va_list_tag.
2505 if (Class->getDeclName() == Result.S.VAListTagName)
2506 return;
2507
2508 // C++ [basic.lookup.koenig]p2:
2509 // [...]
2510 // -- If T is a class type (including unions), its associated
2511 // classes are: the class itself; the class of which it is a
2512 // member, if any; and its direct and indirect base
2513 // classes. Its associated namespaces are the namespaces in
2514 // which its associated classes are defined.
2515
2516 // Add the class of which it is a member, if any.
2517 DeclContext *Ctx = Class->getDeclContext();
2518 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2519 Result.Classes.insert(EnclosingClass);
2520 // Add the associated namespace for this class.
2521 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2522
2523 // Add the class itself. If we've already seen this class, we don't
2524 // need to visit base classes.
2525 //
2526 // FIXME: That's not correct, we may have added this class only because it
2527 // was the enclosing class of another class, and in that case we won't have
2528 // added its base classes yet.
2529 if (!Result.Classes.insert(Class))
2530 return;
2531
2532 // -- If T is a template-id, its associated namespaces and classes are
2533 // the namespace in which the template is defined; for member
2534 // templates, the member template's class; the namespaces and classes
2535 // associated with the types of the template arguments provided for
2536 // template type parameters (excluding template template parameters); the
2537 // namespaces in which any template template arguments are defined; and
2538 // the classes in which any member templates used as template template
2539 // arguments are defined. [Note: non-type template arguments do not
2540 // contribute to the set of associated namespaces. ]
2541 if (ClassTemplateSpecializationDecl *Spec
2542 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2543 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2544 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2545 Result.Classes.insert(EnclosingClass);
2546 // Add the associated namespace for this class.
2547 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2548
2549 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2550 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2551 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2552 }
2553
2554 // Only recurse into base classes for complete types.
2555 if (!Result.S.isCompleteType(Result.InstantiationLoc,
2556 Result.S.Context.getRecordType(Class)))
2557 return;
2558
2559 // Add direct and indirect base classes along with their associated
2560 // namespaces.
2561 SmallVector<CXXRecordDecl *, 32> Bases;
2562 Bases.push_back(Class);
2563 while (!Bases.empty()) {
2564 // Pop this class off the stack.
2565 Class = Bases.pop_back_val();
2566
2567 // Visit the base classes.
2568 for (const auto &Base : Class->bases()) {
2569 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2570 // In dependent contexts, we do ADL twice, and the first time around,
2571 // the base type might be a dependent TemplateSpecializationType, or a
2572 // TemplateTypeParmType. If that happens, simply ignore it.
2573 // FIXME: If we want to support export, we probably need to add the
2574 // namespace of the template in a TemplateSpecializationType, or even
2575 // the classes and namespaces of known non-dependent arguments.
2576 if (!BaseType)
2577 continue;
2578 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2579 if (Result.Classes.insert(BaseDecl)) {
2580 // Find the associated namespace for this base class.
2581 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2582 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2583
2584 // Make sure we visit the bases of this base class.
2585 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2586 Bases.push_back(BaseDecl);
2587 }
2588 }
2589 }
2590}
2591
2592// \brief Add the associated classes and namespaces for
2593// argument-dependent lookup with an argument of type T
2594// (C++ [basic.lookup.koenig]p2).
2595static void
2596addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2597 // C++ [basic.lookup.koenig]p2:
2598 //
2599 // For each argument type T in the function call, there is a set
2600 // of zero or more associated namespaces and a set of zero or more
2601 // associated classes to be considered. The sets of namespaces and
2602 // classes is determined entirely by the types of the function
2603 // arguments (and the namespace of any template template
2604 // argument). Typedef names and using-declarations used to specify
2605 // the types do not contribute to this set. The sets of namespaces
2606 // and classes are determined in the following way:
2607
2608 SmallVector<const Type *, 16> Queue;
2609 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2610
2611 while (true) {
2612 switch (T->getTypeClass()) {
2613
2614#define TYPE(Class, Base)
2615#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2616#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2617#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2618#define ABSTRACT_TYPE(Class, Base)
2619#include "clang/AST/TypeNodes.def"
2620 // T is canonical. We can also ignore dependent types because
2621 // we don't need to do ADL at the definition point, but if we
2622 // wanted to implement template export (or if we find some other
2623 // use for associated classes and namespaces...) this would be
2624 // wrong.
2625 break;
2626
2627 // -- If T is a pointer to U or an array of U, its associated
2628 // namespaces and classes are those associated with U.
2629 case Type::Pointer:
2630 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2631 continue;
2632 case Type::ConstantArray:
2633 case Type::IncompleteArray:
2634 case Type::VariableArray:
2635 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2636 continue;
2637
2638 // -- If T is a fundamental type, its associated sets of
2639 // namespaces and classes are both empty.
2640 case Type::Builtin:
2641 break;
2642
2643 // -- If T is a class type (including unions), its associated
2644 // classes are: the class itself; the class of which it is a
2645 // member, if any; and its direct and indirect base
2646 // classes. Its associated namespaces are the namespaces in
2647 // which its associated classes are defined.
2648 case Type::Record: {
2649 CXXRecordDecl *Class =
2650 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2651 addAssociatedClassesAndNamespaces(Result, Class);
2652 break;
2653 }
2654
2655 // -- If T is an enumeration type, its associated namespace is
2656 // the namespace in which it is defined. If it is class
2657 // member, its associated class is the member's class; else
2658 // it has no associated class.
2659 case Type::Enum: {
2660 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2661
2662 DeclContext *Ctx = Enum->getDeclContext();
2663 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2664 Result.Classes.insert(EnclosingClass);
2665
2666 // Add the associated namespace for this class.
2667 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2668
2669 break;
2670 }
2671
2672 // -- If T is a function type, its associated namespaces and
2673 // classes are those associated with the function parameter
2674 // types and those associated with the return type.
2675 case Type::FunctionProto: {
2676 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2677 for (const auto &Arg : Proto->param_types())
2678 Queue.push_back(Arg.getTypePtr());
2679 // fallthrough
2680 LLVM_FALLTHROUGH[[clang::fallthrough]];
2681 }
2682 case Type::FunctionNoProto: {
2683 const FunctionType *FnType = cast<FunctionType>(T);
2684 T = FnType->getReturnType().getTypePtr();
2685 continue;
2686 }
2687
2688 // -- If T is a pointer to a member function of a class X, its
2689 // associated namespaces and classes are those associated
2690 // with the function parameter types and return type,
2691 // together with those associated with X.
2692 //
2693 // -- If T is a pointer to a data member of class X, its
2694 // associated namespaces and classes are those associated
2695 // with the member type together with those associated with
2696 // X.
2697 case Type::MemberPointer: {
2698 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2699
2700 // Queue up the class type into which this points.
2701 Queue.push_back(MemberPtr->getClass());
2702
2703 // And directly continue with the pointee type.
2704 T = MemberPtr->getPointeeType().getTypePtr();
2705 continue;
2706 }
2707
2708 // As an extension, treat this like a normal pointer.
2709 case Type::BlockPointer:
2710 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2711 continue;
2712
2713 // References aren't covered by the standard, but that's such an
2714 // obvious defect that we cover them anyway.
2715 case Type::LValueReference:
2716 case Type::RValueReference:
2717 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2718 continue;
2719
2720 // These are fundamental types.
2721 case Type::Vector:
2722 case Type::ExtVector:
2723 case Type::Complex:
2724 break;
2725
2726 // Non-deduced auto types only get here for error cases.
2727 case Type::Auto:
2728 case Type::DeducedTemplateSpecialization:
2729 break;
2730
2731 // If T is an Objective-C object or interface type, or a pointer to an
2732 // object or interface type, the associated namespace is the global
2733 // namespace.
2734 case Type::ObjCObject:
2735 case Type::ObjCInterface:
2736 case Type::ObjCObjectPointer:
2737 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2738 break;
2739
2740 // Atomic types are just wrappers; use the associations of the
2741 // contained type.
2742 case Type::Atomic:
2743 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2744 continue;
2745 case Type::Pipe:
2746 T = cast<PipeType>(T)->getElementType().getTypePtr();
2747 continue;
2748 }
2749
2750 if (Queue.empty())
2751 break;
2752 T = Queue.pop_back_val();
2753 }
2754}
2755
2756/// \brief Find the associated classes and namespaces for
2757/// argument-dependent lookup for a call with the given set of
2758/// arguments.
2759///
2760/// This routine computes the sets of associated classes and associated
2761/// namespaces searched by argument-dependent lookup
2762/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2763void Sema::FindAssociatedClassesAndNamespaces(
2764 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2765 AssociatedNamespaceSet &AssociatedNamespaces,
2766 AssociatedClassSet &AssociatedClasses) {
2767 AssociatedNamespaces.clear();
2768 AssociatedClasses.clear();
2769
2770 AssociatedLookup Result(*this, InstantiationLoc,
2771 AssociatedNamespaces, AssociatedClasses);
2772
2773 // C++ [basic.lookup.koenig]p2:
2774 // For each argument type T in the function call, there is a set
2775 // of zero or more associated namespaces and a set of zero or more
2776 // associated classes to be considered. The sets of namespaces and
2777 // classes is determined entirely by the types of the function
2778 // arguments (and the namespace of any template template
2779 // argument).
2780 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2781 Expr *Arg = Args[ArgIdx];
2782
2783 if (Arg->getType() != Context.OverloadTy) {
2784 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2785 continue;
2786 }
2787
2788 // [...] In addition, if the argument is the name or address of a
2789 // set of overloaded functions and/or function templates, its
2790 // associated classes and namespaces are the union of those
2791 // associated with each of the members of the set: the namespace
2792 // in which the function or function template is defined and the
2793 // classes and namespaces associated with its (non-dependent)
2794 // parameter types and return type.
2795 Arg = Arg->IgnoreParens();
2796 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2797 if (unaryOp->getOpcode() == UO_AddrOf)
2798 Arg = unaryOp->getSubExpr();
2799
2800 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2801 if (!ULE) continue;
2802
2803 for (const auto *D : ULE->decls()) {
2804 // Look through any using declarations to find the underlying function.
2805 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2806
2807 // Add the classes and namespaces associated with the parameter
2808 // types and return type of this function.
2809 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2810 }
2811 }
2812}
2813
2814NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2815 SourceLocation Loc,
2816 LookupNameKind NameKind,
2817 RedeclarationKind Redecl) {
2818 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2819 LookupName(R, S);
2820 return R.getAsSingle<NamedDecl>();
2821}
2822
2823/// \brief Find the protocol with the given name, if any.
2824ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2825 SourceLocation IdLoc,
2826 RedeclarationKind Redecl) {
2827 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2828 LookupObjCProtocolName, Redecl);
2829 return cast_or_null<ObjCProtocolDecl>(D);
2830}
2831
2832void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2833 QualType T1, QualType T2,
2834 UnresolvedSetImpl &Functions) {
2835 // C++ [over.match.oper]p3:
2836 // -- The set of non-member candidates is the result of the
2837 // unqualified lookup of operator@ in the context of the
2838 // expression according to the usual rules for name lookup in
2839 // unqualified function calls (3.4.2) except that all member
2840 // functions are ignored.
2841 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2842 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2843 LookupName(Operators, S);
2844
2845 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")(static_cast <bool> (!Operators.isAmbiguous() &&
"Operator lookup cannot be ambiguous") ? void (0) : __assert_fail
("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2845, __extension__ __PRETTY_FUNCTION__))
;
2846 Functions.append(Operators.begin(), Operators.end());
2847}
2848
2849Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
2850 CXXSpecialMember SM,
2851 bool ConstArg,
2852 bool VolatileArg,
2853 bool RValueThis,
2854 bool ConstThis,
2855 bool VolatileThis) {
2856 assert(CanDeclareSpecialMemberFunction(RD) &&(static_cast <bool> (CanDeclareSpecialMemberFunction(RD
) && "doing special member lookup into record that isn't fully complete"
) ? void (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2857, __extension__ __PRETTY_FUNCTION__))
2857 "doing special member lookup into record that isn't fully complete")(static_cast <bool> (CanDeclareSpecialMemberFunction(RD
) && "doing special member lookup into record that isn't fully complete"
) ? void (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2857, __extension__ __PRETTY_FUNCTION__))
;
2858 RD = RD->getDefinition();
2859 if (RValueThis || ConstThis || VolatileThis)
2860 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(static_cast <bool> ((SM == CXXCopyAssignment || SM == CXXMoveAssignment
) && "constructors and destructors always have unqualified lvalue this"
) ? void (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2861, __extension__ __PRETTY_FUNCTION__))
2861 "constructors and destructors always have unqualified lvalue this")(static_cast <bool> ((SM == CXXCopyAssignment || SM == CXXMoveAssignment
) && "constructors and destructors always have unqualified lvalue this"
) ? void (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2861, __extension__ __PRETTY_FUNCTION__))
;
2862 if (ConstArg || VolatileArg)
2863 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(static_cast <bool> ((SM != CXXDefaultConstructor &&
SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"
) ? void (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2864, __extension__ __PRETTY_FUNCTION__))
2864 "parameter-less special members can't have qualified arguments")(static_cast <bool> ((SM != CXXDefaultConstructor &&
SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"
) ? void (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2864, __extension__ __PRETTY_FUNCTION__))
;
2865
2866 // FIXME: Get the caller to pass in a location for the lookup.
2867 SourceLocation LookupLoc = RD->getLocation();
2868
2869 llvm::FoldingSetNodeID ID;
2870 ID.AddPointer(RD);
2871 ID.AddInteger(SM);
2872 ID.AddInteger(ConstArg);
2873 ID.AddInteger(VolatileArg);
2874 ID.AddInteger(RValueThis);
2875 ID.AddInteger(ConstThis);
2876 ID.AddInteger(VolatileThis);
2877
2878 void *InsertPoint;
2879 SpecialMemberOverloadResultEntry *Result =
2880 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2881
2882 // This was already cached
2883 if (Result)
2884 return *Result;
2885
2886 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
2887 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
2888 SpecialMemberCache.InsertNode(Result, InsertPoint);
2889
2890 if (SM == CXXDestructor) {
2891 if (RD->needsImplicitDestructor())
2892 DeclareImplicitDestructor(RD);
2893 CXXDestructorDecl *DD = RD->getDestructor();
2894 assert(DD && "record without a destructor")(static_cast <bool> (DD && "record without a destructor"
) ? void (0) : __assert_fail ("DD && \"record without a destructor\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2894, __extension__ __PRETTY_FUNCTION__))
;
2895 Result->setMethod(DD);
2896 Result->setKind(DD->isDeleted() ?
2897 SpecialMemberOverloadResult::NoMemberOrDeleted :
2898 SpecialMemberOverloadResult::Success);
2899 return *Result;
2900 }
2901
2902 // Prepare for overload resolution. Here we construct a synthetic argument
2903 // if necessary and make sure that implicit functions are declared.
2904 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2905 DeclarationName Name;
2906 Expr *Arg = nullptr;
2907 unsigned NumArgs;
2908
2909 QualType ArgType = CanTy;
2910 ExprValueKind VK = VK_LValue;
2911
2912 if (SM == CXXDefaultConstructor) {
2913 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2914 NumArgs = 0;
2915 if (RD->needsImplicitDefaultConstructor())
2916 DeclareImplicitDefaultConstructor(RD);
2917 } else {
2918 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2919 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2920 if (RD->needsImplicitCopyConstructor())
2921 DeclareImplicitCopyConstructor(RD);
2922 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2923 DeclareImplicitMoveConstructor(RD);
2924 } else {
2925 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2926 if (RD->needsImplicitCopyAssignment())
2927 DeclareImplicitCopyAssignment(RD);
2928 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2929 DeclareImplicitMoveAssignment(RD);
2930 }
2931
2932 if (ConstArg)
2933 ArgType.addConst();
2934 if (VolatileArg)
2935 ArgType.addVolatile();
2936
2937 // This isn't /really/ specified by the standard, but it's implied
2938 // we should be working from an RValue in the case of move to ensure
2939 // that we prefer to bind to rvalue references, and an LValue in the
2940 // case of copy to ensure we don't bind to rvalue references.
2941 // Possibly an XValue is actually correct in the case of move, but
2942 // there is no semantic difference for class types in this restricted
2943 // case.
2944 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2945 VK = VK_LValue;
2946 else
2947 VK = VK_RValue;
2948 }
2949
2950 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
2951
2952 if (SM != CXXDefaultConstructor) {
2953 NumArgs = 1;
2954 Arg = &FakeArg;
2955 }
2956
2957 // Create the object argument
2958 QualType ThisTy = CanTy;
2959 if (ConstThis)
2960 ThisTy.addConst();
2961 if (VolatileThis)
2962 ThisTy.addVolatile();
2963 Expr::Classification Classification =
2964 OpaqueValueExpr(LookupLoc, ThisTy,
2965 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2966
2967 // Now we perform lookup on the name we computed earlier and do overload
2968 // resolution. Lookup is only performed directly into the class since there
2969 // will always be a (possibly implicit) declaration to shadow any others.
2970 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
2971 DeclContext::lookup_result R = RD->lookup(Name);
2972
2973 if (R.empty()) {
2974 // We might have no default constructor because we have a lambda's closure
2975 // type, rather than because there's some other declared constructor.
2976 // Every class has a copy/move constructor, copy/move assignment, and
2977 // destructor.
2978 assert(SM == CXXDefaultConstructor &&(static_cast <bool> (SM == CXXDefaultConstructor &&
"lookup for a constructor or assignment operator was empty")
? void (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2979, __extension__ __PRETTY_FUNCTION__))
2979 "lookup for a constructor or assignment operator was empty")(static_cast <bool> (SM == CXXDefaultConstructor &&
"lookup for a constructor or assignment operator was empty")
? void (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 2979, __extension__ __PRETTY_FUNCTION__))
;
2980 Result->setMethod(nullptr);
2981 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2982 return *Result;
2983 }
2984
2985 // Copy the candidates as our processing of them may load new declarations
2986 // from an external source and invalidate lookup_result.
2987 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2988
2989 for (NamedDecl *CandDecl : Candidates) {
2990 if (CandDecl->isInvalidDecl())
2991 continue;
2992
2993 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
2994 auto CtorInfo = getConstructorInfo(Cand);
2995 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
2996 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2997 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
2998 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2999 else if (CtorInfo)
3000 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3001 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3002 else
3003 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3004 true);
3005 } else if (FunctionTemplateDecl *Tmpl =
3006 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3007 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3008 AddMethodTemplateCandidate(
3009 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3010 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3011 else if (CtorInfo)
3012 AddTemplateOverloadCandidate(
3013 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3014 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3015 else
3016 AddTemplateOverloadCandidate(
3017 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3018 } else {
3019 assert(isa<UsingDecl>(Cand.getDecl()) &&(static_cast <bool> (isa<UsingDecl>(Cand.getDecl(
)) && "illegal Kind of operator = Decl") ? void (0) :
__assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3020, __extension__ __PRETTY_FUNCTION__))
3020 "illegal Kind of operator = Decl")(static_cast <bool> (isa<UsingDecl>(Cand.getDecl(
)) && "illegal Kind of operator = Decl") ? void (0) :
__assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3020, __extension__ __PRETTY_FUNCTION__))
;
3021 }
3022 }
3023
3024 OverloadCandidateSet::iterator Best;
3025 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3026 case OR_Success:
3027 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3028 Result->setKind(SpecialMemberOverloadResult::Success);
3029 break;
3030
3031 case OR_Deleted:
3032 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3033 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3034 break;
3035
3036 case OR_Ambiguous:
3037 Result->setMethod(nullptr);
3038 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3039 break;
3040
3041 case OR_No_Viable_Function:
3042 Result->setMethod(nullptr);
3043 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3044 break;
3045 }
3046
3047 return *Result;
3048}
3049
3050/// \brief Look up the default constructor for the given class.
3051CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3052 SpecialMemberOverloadResult Result =
3053 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3054 false, false);
3055
3056 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3057}
3058
3059/// \brief Look up the copying constructor for the given class.
3060CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3061 unsigned Quals) {
3062 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3063, __extension__ __PRETTY_FUNCTION__))
3063 "non-const, non-volatile qualifiers for copy ctor arg")(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3063, __extension__ __PRETTY_FUNCTION__))
;
3064 SpecialMemberOverloadResult Result =
3065 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3066 Quals & Qualifiers::Volatile, false, false, false);
3067
3068 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3069}
3070
3071/// \brief Look up the moving constructor for the given class.
3072CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3073 unsigned Quals) {
3074 SpecialMemberOverloadResult Result =
3075 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3076 Quals & Qualifiers::Volatile, false, false, false);
3077
3078 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3079}
3080
3081/// \brief Look up the constructors for the given class.
3082DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3083 // If the implicit constructors have not yet been declared, do so now.
3084 if (CanDeclareSpecialMemberFunction(Class)) {
3085 if (Class->needsImplicitDefaultConstructor())
3086 DeclareImplicitDefaultConstructor(Class);
3087 if (Class->needsImplicitCopyConstructor())
3088 DeclareImplicitCopyConstructor(Class);
3089 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3090 DeclareImplicitMoveConstructor(Class);
3091 }
3092
3093 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3094 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3095 return Class->lookup(Name);
3096}
3097
3098/// \brief Look up the copying assignment operator for the given class.
3099CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3100 unsigned Quals, bool RValueThis,
3101 unsigned ThisQuals) {
3102 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3103, __extension__ __PRETTY_FUNCTION__))
3103 "non-const, non-volatile qualifiers for copy assignment arg")(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3103, __extension__ __PRETTY_FUNCTION__))
;
3104 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3105, __extension__ __PRETTY_FUNCTION__))
3105 "non-const, non-volatile qualifiers for copy assignment this")(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3105, __extension__ __PRETTY_FUNCTION__))
;
3106 SpecialMemberOverloadResult Result =
3107 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3108 Quals & Qualifiers::Volatile, RValueThis,
3109 ThisQuals & Qualifiers::Const,
3110 ThisQuals & Qualifiers::Volatile);
3111
3112 return Result.getMethod();
3113}
3114
3115/// \brief Look up the moving assignment operator for the given class.
3116CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3117 unsigned Quals,
3118 bool RValueThis,
3119 unsigned ThisQuals) {
3120 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3121, __extension__ __PRETTY_FUNCTION__))
3121 "non-const, non-volatile qualifiers for copy assignment this")(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3121, __extension__ __PRETTY_FUNCTION__))
;
3122 SpecialMemberOverloadResult Result =
3123 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3124 Quals & Qualifiers::Volatile, RValueThis,
3125 ThisQuals & Qualifiers::Const,
3126 ThisQuals & Qualifiers::Volatile);
3127
3128 return Result.getMethod();
3129}
3130
3131/// \brief Look for the destructor of the given class.
3132///
3133/// During semantic analysis, this routine should be used in lieu of
3134/// CXXRecordDecl::getDestructor().
3135///
3136/// \returns The destructor for this class.
3137CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3138 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3139 false, false, false,
3140 false, false).getMethod());
3141}
3142
3143/// LookupLiteralOperator - Determine which literal operator should be used for
3144/// a user-defined literal, per C++11 [lex.ext].
3145///
3146/// Normal overload resolution is not used to select which literal operator to
3147/// call for a user-defined literal. Look up the provided literal operator name,
3148/// and filter the results to the appropriate set for the given argument types.
3149Sema::LiteralOperatorLookupResult
3150Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3151 ArrayRef<QualType> ArgTys,
3152 bool AllowRaw, bool AllowTemplate,
3153 bool AllowStringTemplate, bool DiagnoseMissing) {
3154 LookupName(R, S);
3155 assert(R.getResultKind() != LookupResult::Ambiguous &&(static_cast <bool> (R.getResultKind() != LookupResult::
Ambiguous && "literal operator lookup can't be ambiguous"
) ? void (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3156, __extension__ __PRETTY_FUNCTION__))
3156 "literal operator lookup can't be ambiguous")(static_cast <bool> (R.getResultKind() != LookupResult::
Ambiguous && "literal operator lookup can't be ambiguous"
) ? void (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3156, __extension__ __PRETTY_FUNCTION__))
;
3157
3158 // Filter the lookup results appropriately.
3159 LookupResult::Filter F = R.makeFilter();
3160
3161 bool FoundRaw = false;
3162 bool FoundTemplate = false;
3163 bool FoundStringTemplate = false;
3164 bool FoundExactMatch = false;
3165
3166 while (F.hasNext()) {
3167 Decl *D = F.next();
3168 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3169 D = USD->getTargetDecl();
3170
3171 // If the declaration we found is invalid, skip it.
3172 if (D->isInvalidDecl()) {
3173 F.erase();
3174 continue;
3175 }
3176
3177 bool IsRaw = false;
3178 bool IsTemplate = false;
3179 bool IsStringTemplate = false;
3180 bool IsExactMatch = false;
3181
3182 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3183 if (FD->getNumParams() == 1 &&
3184 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3185 IsRaw = true;
3186 else if (FD->getNumParams() == ArgTys.size()) {
3187 IsExactMatch = true;
3188 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3189 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3190 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3191 IsExactMatch = false;
3192 break;
3193 }
3194 }
3195 }
3196 }
3197 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3198 TemplateParameterList *Params = FD->getTemplateParameters();
3199 if (Params->size() == 1)
3200 IsTemplate = true;
3201 else
3202 IsStringTemplate = true;
3203 }
3204
3205 if (IsExactMatch) {
3206 FoundExactMatch = true;
3207 AllowRaw = false;
3208 AllowTemplate = false;
3209 AllowStringTemplate = false;
3210 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3211 // Go through again and remove the raw and template decls we've
3212 // already found.
3213 F.restart();
3214 FoundRaw = FoundTemplate = FoundStringTemplate = false;
3215 }
3216 } else if (AllowRaw && IsRaw) {
3217 FoundRaw = true;
3218 } else if (AllowTemplate && IsTemplate) {
3219 FoundTemplate = true;
3220 } else if (AllowStringTemplate && IsStringTemplate) {
3221 FoundStringTemplate = true;
3222 } else {
3223 F.erase();
3224 }
3225 }
3226
3227 F.done();
3228
3229 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3230 // parameter type, that is used in preference to a raw literal operator
3231 // or literal operator template.
3232 if (FoundExactMatch)
3233 return LOLR_Cooked;
3234
3235 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3236 // operator template, but not both.
3237 if (FoundRaw && FoundTemplate) {
3238 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3239 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3240 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3241 return LOLR_Error;
3242 }
3243
3244 if (FoundRaw)
3245 return LOLR_Raw;
3246
3247 if (FoundTemplate)
3248 return LOLR_Template;
3249
3250 if (FoundStringTemplate)
3251 return LOLR_StringTemplate;
3252
3253 // Didn't find anything we could use.
3254 if (DiagnoseMissing) {
3255 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3256 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3257 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3258 << (AllowTemplate || AllowStringTemplate);
3259 return LOLR_Error;
3260 }
3261
3262 return LOLR_ErrorNoDiagnostic;
3263}
3264
3265void ADLResult::insert(NamedDecl *New) {
3266 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3267
3268 // If we haven't yet seen a decl for this key, or the last decl
3269 // was exactly this one, we're done.
3270 if (Old == nullptr || Old == New) {
3271 Old = New;
3272 return;
3273 }
3274
3275 // Otherwise, decide which is a more recent redeclaration.
3276 FunctionDecl *OldFD = Old->getAsFunction();
3277 FunctionDecl *NewFD = New->getAsFunction();
3278
3279 FunctionDecl *Cursor = NewFD;
3280 while (true) {
3281 Cursor = Cursor->getPreviousDecl();
3282
3283 // If we got to the end without finding OldFD, OldFD is the newer
3284 // declaration; leave things as they are.
3285 if (!Cursor) return;
3286
3287 // If we do find OldFD, then NewFD is newer.
3288 if (Cursor == OldFD) break;
3289
3290 // Otherwise, keep looking.
3291 }
3292
3293 Old = New;
3294}
3295
3296void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3297 ArrayRef<Expr *> Args, ADLResult &Result) {
3298 // Find all of the associated namespaces and classes based on the
3299 // arguments we have.
3300 AssociatedNamespaceSet AssociatedNamespaces;
3301 AssociatedClassSet AssociatedClasses;
3302 FindAssociatedClassesAndNamespaces(Loc, Args,
3303 AssociatedNamespaces,
3304 AssociatedClasses);
3305
3306 // C++ [basic.lookup.argdep]p3:
3307 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3308 // and let Y be the lookup set produced by argument dependent
3309 // lookup (defined as follows). If X contains [...] then Y is
3310 // empty. Otherwise Y is the set of declarations found in the
3311 // namespaces associated with the argument types as described
3312 // below. The set of declarations found by the lookup of the name
3313 // is the union of X and Y.
3314 //
3315 // Here, we compute Y and add its members to the overloaded
3316 // candidate set.
3317 for (auto *NS : AssociatedNamespaces) {
3318 // When considering an associated namespace, the lookup is the
3319 // same as the lookup performed when the associated namespace is
3320 // used as a qualifier (3.4.3.2) except that:
3321 //
3322 // -- Any using-directives in the associated namespace are
3323 // ignored.
3324 //
3325 // -- Any namespace-scope friend functions declared in
3326 // associated classes are visible within their respective
3327 // namespaces even if they are not visible during an ordinary
3328 // lookup (11.4).
3329 DeclContext::lookup_result R = NS->lookup(Name);
3330 for (auto *D : R) {
3331 // If the only declaration here is an ordinary friend, consider
3332 // it only if it was declared in an associated classes.
3333 if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
3334 // If it's neither ordinarily visible nor a friend, we can't find it.
3335 if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
3336 continue;
3337
3338 bool DeclaredInAssociatedClass = false;
3339 for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
3340 DeclContext *LexDC = DI->getLexicalDeclContext();
3341 if (isa<CXXRecordDecl>(LexDC) &&
3342 AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
3343 isVisible(cast<NamedDecl>(DI))) {
3344 DeclaredInAssociatedClass = true;
3345 break;
3346 }
3347 }
3348 if (!DeclaredInAssociatedClass)
3349 continue;
3350 }
3351
3352 auto *Underlying = D;
3353 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3354 Underlying = USD->getTargetDecl();
3355
3356 if (!isa<FunctionDecl>(Underlying) &&
3357 !isa<FunctionTemplateDecl>(Underlying))
3358 continue;
3359
3360 if (!isVisible(D)) {
3361 D = findAcceptableDecl(*this, D);
3362 if (!D)
3363 continue;
3364 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3365 Underlying = USD->getTargetDecl();
3366 }
3367
3368 // FIXME: Preserve D as the FoundDecl.
3369 Result.insert(Underlying);
3370 }
3371 }
3372}
3373
3374//----------------------------------------------------------------------------
3375// Search for all visible declarations.
3376//----------------------------------------------------------------------------
3377VisibleDeclConsumer::~VisibleDeclConsumer() { }
3378
3379bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3380
3381namespace {
3382
3383class ShadowContextRAII;
3384
3385class VisibleDeclsRecord {
3386public:
3387 /// \brief An entry in the shadow map, which is optimized to store a
3388 /// single declaration (the common case) but can also store a list
3389 /// of declarations.
3390 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3391
3392private:
3393 /// \brief A mapping from declaration names to the declarations that have
3394 /// this name within a particular scope.
3395 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3396
3397 /// \brief A list of shadow maps, which is used to model name hiding.
3398 std::list<ShadowMap> ShadowMaps;
3399
3400 /// \brief The declaration contexts we have already visited.
3401 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3402
3403 friend class ShadowContextRAII;
3404
3405public:
3406 /// \brief Determine whether we have already visited this context
3407 /// (and, if not, note that we are going to visit that context now).
3408 bool visitedContext(DeclContext *Ctx) {
3409 return !VisitedContexts.insert(Ctx).second;
3410 }
3411
3412 bool alreadyVisitedContext(DeclContext *Ctx) {
3413 return VisitedContexts.count(Ctx);
3414 }
3415
3416 /// \brief Determine whether the given declaration is hidden in the
3417 /// current scope.
3418 ///
3419 /// \returns the declaration that hides the given declaration, or
3420 /// NULL if no such declaration exists.
3421 NamedDecl *checkHidden(NamedDecl *ND);
3422
3423 /// \brief Add a declaration to the current shadow map.
3424 void add(NamedDecl *ND) {
3425 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3426 }
3427};
3428
3429/// \brief RAII object that records when we've entered a shadow context.
3430class ShadowContextRAII {
3431 VisibleDeclsRecord &Visible;
3432
3433 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3434
3435public:
3436 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3437 Visible.ShadowMaps.emplace_back();
3438 }
3439
3440 ~ShadowContextRAII() {
3441 Visible.ShadowMaps.pop_back();
3442 }
3443};
3444
3445} // end anonymous namespace
3446
3447NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3448 unsigned IDNS = ND->getIdentifierNamespace();
3449 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3450 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3451 SM != SMEnd; ++SM) {
3452 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3453 if (Pos == SM->end())
3454 continue;
3455
3456 for (auto *D : Pos->second) {
3457 // A tag declaration does not hide a non-tag declaration.
3458 if (D->hasTagIdentifierNamespace() &&
3459 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3460 Decl::IDNS_ObjCProtocol)))
3461 continue;
3462
3463 // Protocols are in distinct namespaces from everything else.
3464 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3465 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3466 D->getIdentifierNamespace() != IDNS)
3467 continue;
3468
3469 // Functions and function templates in the same scope overload
3470 // rather than hide. FIXME: Look for hiding based on function
3471 // signatures!
3472 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3473 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3474 SM == ShadowMaps.rbegin())
3475 continue;
3476
3477 // A shadow declaration that's created by a resolved using declaration
3478 // is not hidden by the same using declaration.
3479 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3480 cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3481 continue;
3482
3483 // We've found a declaration that hides this one.
3484 return D;
3485 }
3486 }
3487
3488 return nullptr;
3489}
3490
3491static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3492 bool QualifiedNameLookup,
3493 bool InBaseClass,
3494 VisibleDeclConsumer &Consumer,
3495 VisibleDeclsRecord &Visited,
3496 bool IncludeDependentBases = false) {
3497 if (!Ctx)
3498 return;
3499
3500 // Make sure we don't visit the same context twice.
3501 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3502 return;
3503
3504 // Outside C++, lookup results for the TU live on identifiers.
3505 if (isa<TranslationUnitDecl>(Ctx) &&
3506 !Result.getSema().getLangOpts().CPlusPlus) {
3507 auto &S = Result.getSema();
3508 auto &Idents = S.Context.Idents;
3509
3510 // Ensure all external identifiers are in the identifier table.
3511 if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3512 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3513 for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3514 Idents.get(Name);
3515 }
3516
3517 // Walk all lookup results in the TU for each identifier.
3518 for (const auto &Ident : Idents) {
3519 for (auto I = S.IdResolver.begin(Ident.getValue()),
3520 E = S.IdResolver.end();
3521 I != E; ++I) {
3522 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3523 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3524 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3525 Visited.add(ND);
3526 }
3527 }
3528 }
3529 }
3530
3531 return;
3532 }
3533
3534 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3535 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3536
3537 // Enumerate all of the results in this context.
3538 for (DeclContextLookupResult R : Ctx->lookups()) {
3539 for (auto *D : R) {
3540 if (auto *ND = Result.getAcceptableDecl(D)) {
3541 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3542 Visited.add(ND);
3543 }
3544 }
3545 }
3546
3547 // Traverse using directives for qualified name lookup.
3548 if (QualifiedNameLookup) {
3549 ShadowContextRAII Shadow(Visited);
3550 for (auto I : Ctx->using_directives()) {
3551 if (!Result.getSema().isVisible(I))
3552 continue;
3553 LookupVisibleDecls(I->getNominatedNamespace(), Result,
3554 QualifiedNameLookup, InBaseClass, Consumer, Visited,
3555 IncludeDependentBases);
3556 }
3557 }
3558
3559 // Traverse the contexts of inherited C++ classes.
3560 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3561 if (!Record->hasDefinition())
3562 return;
3563
3564 for (const auto &B : Record->bases()) {
3565 QualType BaseType = B.getType();
3566
3567 RecordDecl *RD;
3568 if (BaseType->isDependentType()) {
3569 if (!IncludeDependentBases) {
3570 // Don't look into dependent bases, because name lookup can't look
3571 // there anyway.
3572 continue;
3573 }
3574 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3575 if (!TST)
3576 continue;
3577 TemplateName TN = TST->getTemplateName();
3578 const auto *TD =
3579 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3580 if (!TD)
3581 continue;
3582 RD = TD->getTemplatedDecl();
3583 } else {
3584 const auto *Record = BaseType->getAs<RecordType>();
3585 if (!Record)
3586 continue;
3587 RD = Record->getDecl();
3588 }
3589
3590 // FIXME: It would be nice to be able to determine whether referencing
3591 // a particular member would be ambiguous. For example, given
3592 //
3593 // struct A { int member; };
3594 // struct B { int member; };
3595 // struct C : A, B { };
3596 //
3597 // void f(C *c) { c->### }
3598 //
3599 // accessing 'member' would result in an ambiguity. However, we
3600 // could be smart enough to qualify the member with the base
3601 // class, e.g.,
3602 //
3603 // c->B::member
3604 //
3605 // or
3606 //
3607 // c->A::member
3608
3609 // Find results in this base class (and its bases).
3610 ShadowContextRAII Shadow(Visited);
3611 LookupVisibleDecls(RD, Result, QualifiedNameLookup, true, Consumer,
3612 Visited, IncludeDependentBases);
3613 }
3614 }
3615
3616 // Traverse the contexts of Objective-C classes.
3617 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3618 // Traverse categories.
3619 for (auto *Cat : IFace->visible_categories()) {
3620 ShadowContextRAII Shadow(Visited);
3621 LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3622 Consumer, Visited);
3623 }
3624
3625 // Traverse protocols.
3626 for (auto *I : IFace->all_referenced_protocols()) {
3627 ShadowContextRAII Shadow(Visited);
3628 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3629 Visited);
3630 }
3631
3632 // Traverse the superclass.
3633 if (IFace->getSuperClass()) {
3634 ShadowContextRAII Shadow(Visited);
3635 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3636 true, Consumer, Visited);
3637 }
3638
3639 // If there is an implementation, traverse it. We do this to find
3640 // synthesized ivars.
3641 if (IFace->getImplementation()) {
3642 ShadowContextRAII Shadow(Visited);
3643 LookupVisibleDecls(IFace->getImplementation(), Result,
3644 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3645 }
3646 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3647 for (auto *I : Protocol->protocols()) {
3648 ShadowContextRAII Shadow(Visited);
3649 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3650 Visited);
3651 }
3652 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3653 for (auto *I : Category->protocols()) {
3654 ShadowContextRAII Shadow(Visited);
3655 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3656 Visited);
3657 }
3658
3659 // If there is an implementation, traverse it.
3660 if (Category->getImplementation()) {
3661 ShadowContextRAII Shadow(Visited);
3662 LookupVisibleDecls(Category->getImplementation(), Result,
3663 QualifiedNameLookup, true, Consumer, Visited);
3664 }
3665 }
3666}
3667
3668static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3669 UnqualUsingDirectiveSet &UDirs,
3670 VisibleDeclConsumer &Consumer,
3671 VisibleDeclsRecord &Visited) {
3672 if (!S)
3673 return;
3674
3675 if (!S->getEntity() ||
3676 (!S->getParent() &&
3677 !Visited.alreadyVisitedContext(S->getEntity())) ||
3678 (S->getEntity())->isFunctionOrMethod()) {
3679 FindLocalExternScope FindLocals(Result);
3680 // Walk through the declarations in this Scope. The consumer might add new
3681 // decls to the scope as part of deserialization, so make a copy first.
3682 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3683 for (Decl *D : ScopeDecls) {
3684 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3685 if ((ND = Result.getAcceptableDecl(ND))) {
3686 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3687 Visited.add(ND);
3688 }
3689 }
3690 }
3691
3692 // FIXME: C++ [temp.local]p8
3693 DeclContext *Entity = nullptr;
3694 if (S->getEntity()) {
3695 // Look into this scope's declaration context, along with any of its
3696 // parent lookup contexts (e.g., enclosing classes), up to the point
3697 // where we hit the context stored in the next outer scope.
3698 Entity = S->getEntity();
3699 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3700
3701 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3702 Ctx = Ctx->getLookupParent()) {
3703 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3704 if (Method->isInstanceMethod()) {
3705 // For instance methods, look for ivars in the method's interface.
3706 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3707 Result.getNameLoc(), Sema::LookupMemberName);
3708 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3709 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3710 /*InBaseClass=*/false, Consumer, Visited);
3711 }
3712 }
3713
3714 // We've already performed all of the name lookup that we need
3715 // to for Objective-C methods; the next context will be the
3716 // outer scope.
3717 break;
3718 }
3719
3720 if (Ctx->isFunctionOrMethod())
3721 continue;
3722
3723 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3724 /*InBaseClass=*/false, Consumer, Visited);
3725 }
3726 } else if (!S->getParent()) {
3727 // Look into the translation unit scope. We walk through the translation
3728 // unit's declaration context, because the Scope itself won't have all of
3729 // the declarations if we loaded a precompiled header.
3730 // FIXME: We would like the translation unit's Scope object to point to the
3731 // translation unit, so we don't need this special "if" branch. However,
3732 // doing so would force the normal C++ name-lookup code to look into the
3733 // translation unit decl when the IdentifierInfo chains would suffice.
3734 // Once we fix that problem (which is part of a more general "don't look
3735 // in DeclContexts unless we have to" optimization), we can eliminate this.
3736 Entity = Result.getSema().Context.getTranslationUnitDecl();
3737 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3738 /*InBaseClass=*/false, Consumer, Visited);
3739 }
3740
3741 if (Entity) {
3742 // Lookup visible declarations in any namespaces found by using
3743 // directives.
3744 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3745 LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3746 Result, /*QualifiedNameLookup=*/false,
3747 /*InBaseClass=*/false, Consumer, Visited);
3748 }
3749
3750 // Lookup names in the parent scope.
3751 ShadowContextRAII Shadow(Visited);
3752 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3753}
3754
3755void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3756 VisibleDeclConsumer &Consumer,
3757 bool IncludeGlobalScope) {
3758 // Determine the set of using directives available during
3759 // unqualified name lookup.
3760 Scope *Initial = S;
3761 UnqualUsingDirectiveSet UDirs(*this);
3762 if (getLangOpts().CPlusPlus) {
3763 // Find the first namespace or translation-unit scope.
3764 while (S && !isNamespaceOrTranslationUnitScope(S))
3765 S = S->getParent();
3766
3767 UDirs.visitScopeChain(Initial, S);
3768 }
3769 UDirs.done();
3770
3771 // Look for visible declarations.
3772 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3773 Result.setAllowHidden(Consumer.includeHiddenDecls());
3774 VisibleDeclsRecord Visited;
3775 if (!IncludeGlobalScope)
3776 Visited.visitedContext(Context.getTranslationUnitDecl());
3777 ShadowContextRAII Shadow(Visited);
3778 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3779}
3780
3781void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3782 VisibleDeclConsumer &Consumer,
3783 bool IncludeGlobalScope,
3784 bool IncludeDependentBases) {
3785 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3786 Result.setAllowHidden(Consumer.includeHiddenDecls());
3787 VisibleDeclsRecord Visited;
3788 if (!IncludeGlobalScope)
3789 Visited.visitedContext(Context.getTranslationUnitDecl());
3790 ShadowContextRAII Shadow(Visited);
3791 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3792 /*InBaseClass=*/false, Consumer, Visited,
3793 IncludeDependentBases);
3794}
3795
3796/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3797/// If GnuLabelLoc is a valid source location, then this is a definition
3798/// of an __label__ label name, otherwise it is a normal label definition
3799/// or use.
3800LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3801 SourceLocation GnuLabelLoc) {
3802 // Do a lookup to see if we have a label with this name already.
3803 NamedDecl *Res = nullptr;
3804
3805 if (GnuLabelLoc.isValid()) {
3806 // Local label definitions always shadow existing labels.
3807 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3808 Scope *S = CurScope;
3809 PushOnScopeChains(Res, S, true);
3810 return cast<LabelDecl>(Res);
3811 }
3812
3813 // Not a GNU local label.
3814 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3815 // If we found a label, check to see if it is in the same context as us.
3816 // When in a Block, we don't want to reuse a label in an enclosing function.
3817 if (Res && Res->getDeclContext() != CurContext)
3818 Res = nullptr;
3819 if (!Res) {
3820 // If not forward referenced or defined already, create the backing decl.
3821 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3822 Scope *S = CurScope->getFnParent();
3823 assert(S && "Not in a function?")(static_cast <bool> (S && "Not in a function?")
? void (0) : __assert_fail ("S && \"Not in a function?\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 3823, __extension__ __PRETTY_FUNCTION__))
;
3824 PushOnScopeChains(Res, S, true);
3825 }
3826 return cast<LabelDecl>(Res);
3827}
3828
3829//===----------------------------------------------------------------------===//
3830// Typo correction
3831//===----------------------------------------------------------------------===//
3832
3833static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3834 TypoCorrection &Candidate) {
3835 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3836 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3837}
3838
3839static void LookupPotentialTypoResult(Sema &SemaRef,
3840 LookupResult &Res,
3841 IdentifierInfo *Name,
3842 Scope *S, CXXScopeSpec *SS,
3843 DeclContext *MemberContext,
3844 bool EnteringContext,
3845 bool isObjCIvarLookup,
3846 bool FindHidden);
3847
3848/// \brief Check whether the declarations found for a typo correction are
3849/// visible. Set the correction's RequiresImport flag to true if none of the
3850/// declarations are visible, false otherwise.
3851static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3852 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3853
3854 for (/**/; DI != DE; ++DI)
3855 if (!LookupResult::isVisible(SemaRef, *DI))
3856 break;
3857 // No filtering needed if all decls are visible.
3858 if (DI == DE) {
3859 TC.setRequiresImport(false);
3860 return;
3861 }
3862
3863 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3864 bool AnyVisibleDecls = !NewDecls.empty();
3865
3866 for (/**/; DI != DE; ++DI) {
3867 NamedDecl *VisibleDecl = *DI;
3868 if (!LookupResult::isVisible(SemaRef, *DI))
3869 VisibleDecl = findAcceptableDecl(SemaRef, *DI);
3870
3871 if (VisibleDecl) {
3872 if (!AnyVisibleDecls) {
3873 // Found a visible decl, discard all hidden ones.
3874 AnyVisibleDecls = true;
3875 NewDecls.clear();
3876 }
3877 NewDecls.push_back(VisibleDecl);
3878 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3879 NewDecls.push_back(*DI);
3880 }
3881
3882 if (NewDecls.empty())
3883 TC = TypoCorrection();
3884 else {
3885 TC.setCorrectionDecls(NewDecls);
3886 TC.setRequiresImport(!AnyVisibleDecls);
3887 }
3888}
3889
3890// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3891// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3892// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3893static void getNestedNameSpecifierIdentifiers(
3894 NestedNameSpecifier *NNS,
3895 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3896 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3897 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3898 else
3899 Identifiers.clear();
3900
3901 const IdentifierInfo *II = nullptr;
3902
3903 switch (NNS->getKind()) {
3904 case NestedNameSpecifier::Identifier:
3905 II = NNS->getAsIdentifier();
3906 break;
3907
3908 case NestedNameSpecifier::Namespace:
3909 if (NNS->getAsNamespace()->isAnonymousNamespace())
3910 return;
3911 II = NNS->getAsNamespace()->getIdentifier();
3912 break;
3913
3914 case NestedNameSpecifier::NamespaceAlias:
3915 II = NNS->getAsNamespaceAlias()->getIdentifier();
3916 break;
3917
3918 case NestedNameSpecifier::TypeSpecWithTemplate:
3919 case NestedNameSpecifier::TypeSpec:
3920 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3921 break;
3922
3923 case NestedNameSpecifier::Global:
3924 case NestedNameSpecifier::Super:
3925 return;
3926 }
3927
3928 if (II)
3929 Identifiers.push_back(II);
3930}
3931
3932void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3933 DeclContext *Ctx, bool InBaseClass) {
3934 // Don't consider hidden names for typo correction.
3935 if (Hiding)
3936 return;
3937
3938 // Only consider entities with identifiers for names, ignoring
3939 // special names (constructors, overloaded operators, selectors,
3940 // etc.).
3941 IdentifierInfo *Name = ND->getIdentifier();
3942 if (!Name)
3943 return;
3944
3945 // Only consider visible declarations and declarations from modules with
3946 // names that exactly match.
3947 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3948 !findAcceptableDecl(SemaRef, ND))
3949 return;
3950
3951 FoundName(Name->getName());
3952}
3953
3954void TypoCorrectionConsumer::FoundName(StringRef Name) {
3955 // Compute the edit distance between the typo and the name of this
3956 // entity, and add the identifier to the list of results.
3957 addName(Name, nullptr);
3958}
3959
3960void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3961 // Compute the edit distance between the typo and this keyword,
3962 // and add the keyword to the list of results.
3963 addName(Keyword, nullptr, nullptr, true);
3964}
3965
3966void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3967 NestedNameSpecifier *NNS, bool isKeyword) {
3968 // Use a simple length-based heuristic to determine the minimum possible
3969 // edit distance. If the minimum isn't good enough, bail out early.
3970 StringRef TypoStr = Typo->getName();
3971 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3972 if (MinED && TypoStr.size() / MinED < 3)
3973 return;
3974
3975 // Compute an upper bound on the allowable edit distance, so that the
3976 // edit-distance algorithm can short-circuit.
3977 unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3978 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3979 if (ED >= UpperBound) return;
3980
3981 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3982 if (isKeyword) TC.makeKeyword();
3983 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
3984 addCorrection(TC);
3985}
3986
3987static const unsigned MaxTypoDistanceResultSets = 5;
3988
3989void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3990 StringRef TypoStr = Typo->getName();
3991 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3992
3993 // For very short typos, ignore potential corrections that have a different
3994 // base identifier from the typo or which have a normalized edit distance
3995 // longer than the typo itself.
3996 if (TypoStr.size() < 3 &&
3997 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3998 return;
3999
4000 // If the correction is resolved but is not viable, ignore it.
4001 if (Correction.isResolved()) {
4002 checkCorrectionVisibility(SemaRef, Correction);
4003 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4004 return;
4005 }
4006
4007 TypoResultList &CList =
4008 CorrectionResults[Correction.getEditDistance(false)][Name];
4009
4010 if (!CList.empty() && !CList.back().isResolved())
4011 CList.pop_back();
4012 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4013 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4014 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4015 RI != RIEnd; ++RI) {
4016 // If the Correction refers to a decl already in the result list,
4017 // replace the existing result if the string representation of Correction
4018 // comes before the current result alphabetically, then stop as there is
4019 // nothing more to be done to add Correction to the candidate set.
4020 if (RI->getCorrectionDecl() == NewND) {
4021 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4022 *RI = Correction;
4023 return;
4024 }
4025 }
4026 }
4027 if (CList.empty() || Correction.isResolved())
4028 CList.push_back(Correction);
4029
4030 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4031 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4032}
4033
4034void TypoCorrectionConsumer::addNamespaces(
4035 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4036 SearchNamespaces = true;
4037
4038 for (auto KNPair : KnownNamespaces)
4039 Namespaces.addNameSpecifier(KNPair.first);
4040
4041 bool SSIsTemplate = false;
4042 if (NestedNameSpecifier *NNS =
4043 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4044 if (const Type *T = NNS->getAsType())
4045 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4046 }
4047 // Do not transform this into an iterator-based loop. The loop body can
4048 // trigger the creation of further types (through lazy deserialization) and
4049 // invalide iterators into this list.
4050 auto &Types = SemaRef.getASTContext().getTypes();
4051 for (unsigned I = 0; I != Types.size(); ++I) {
4052 const auto *TI = Types[I];
4053 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4054 CD = CD->getCanonicalDecl();
4055 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4056 !CD->isUnion() && CD->getIdentifier() &&
4057 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4058 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4059 Namespaces.addNameSpecifier(CD);
4060 }
4061 }
4062}
4063
4064const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4065 if (++CurrentTCIndex < ValidatedCorrections.size())
4066 return ValidatedCorrections[CurrentTCIndex];
4067
4068 CurrentTCIndex = ValidatedCorrections.size();
4069 while (!CorrectionResults.empty()) {
4070 auto DI = CorrectionResults.begin();
4071 if (DI->second.empty()) {
4072 CorrectionResults.erase(DI);
4073 continue;
4074 }
4075
4076 auto RI = DI->second.begin();
4077 if (RI->second.empty()) {
4078 DI->second.erase(RI);
4079 performQualifiedLookups();
4080 continue;
4081 }
4082
4083 TypoCorrection TC = RI->second.pop_back_val();
4084 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4085 ValidatedCorrections.push_back(TC);
4086 return ValidatedCorrections[CurrentTCIndex];
4087 }
4088 }
4089 return ValidatedCorrections[0]; // The empty correction.
4090}
4091
4092bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4093 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4094 DeclContext *TempMemberContext = MemberContext;
4095 CXXScopeSpec *TempSS = SS.get();
4096retry_lookup:
4097 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4098 EnteringContext,
4099 CorrectionValidator->IsObjCIvarLookup,
4100 Name == Typo && !Candidate.WillReplaceSpecifier());
4101 switch (Result.getResultKind()) {
4102 case LookupResult::NotFound:
4103 case LookupResult::NotFoundInCurrentInstantiation:
4104 case LookupResult::FoundUnresolvedValue:
4105 if (TempSS) {
4106 // Immediately retry the lookup without the given CXXScopeSpec
4107 TempSS = nullptr;
4108 Candidate.WillReplaceSpecifier(true);
4109 goto retry_lookup;
4110 }
4111 if (TempMemberContext) {
4112 if (SS && !TempSS)
4113 TempSS = SS.get();
4114 TempMemberContext = nullptr;
4115 goto retry_lookup;
4116 }
4117 if (SearchNamespaces)
4118 QualifiedResults.push_back(Candidate);
4119 break;
4120
4121 case LookupResult::Ambiguous:
4122 // We don't deal with ambiguities.
4123 break;
4124
4125 case LookupResult::Found:
4126 case LookupResult::FoundOverloaded:
4127 // Store all of the Decls for overloaded symbols
4128 for (auto *TRD : Result)
4129 Candidate.addCorrectionDecl(TRD);
4130 checkCorrectionVisibility(SemaRef, Candidate);
4131 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4132 if (SearchNamespaces)
4133 QualifiedResults.push_back(Candidate);
4134 break;
4135 }
4136 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4137 return true;
4138 }
4139 return false;
4140}
4141
4142void TypoCorrectionConsumer::performQualifiedLookups() {
4143 unsigned TypoLen = Typo->getName().size();
4144 for (const TypoCorrection &QR : QualifiedResults) {
4145 for (const auto &NSI : Namespaces) {
4146 DeclContext *Ctx = NSI.DeclCtx;
4147 const Type *NSType = NSI.NameSpecifier->getAsType();
4148
4149 // If the current NestedNameSpecifier refers to a class and the
4150 // current correction candidate is the name of that class, then skip
4151 // it as it is unlikely a qualified version of the class' constructor
4152 // is an appropriate correction.
4153 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4154 nullptr) {
4155 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4156 continue;
4157 }
4158
4159 TypoCorrection TC(QR);
4160 TC.ClearCorrectionDecls();
4161 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4162 TC.setQualifierDistance(NSI.EditDistance);
4163 TC.setCallbackDistance(0); // Reset the callback distance
4164
4165 // If the current correction candidate and namespace combination are
4166 // too far away from the original typo based on the normalized edit
4167 // distance, then skip performing a qualified name lookup.
4168 unsigned TmpED = TC.getEditDistance(true);
4169 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4170 TypoLen / TmpED < 3)
4171 continue;
4172
4173 Result.clear();
4174 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4175 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4176 continue;
4177
4178 // Any corrections added below will be validated in subsequent
4179 // iterations of the main while() loop over the Consumer's contents.
4180 switch (Result.getResultKind()) {
4181 case LookupResult::Found:
4182 case LookupResult::FoundOverloaded: {
4183 if (SS && SS->isValid()) {
4184 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4185 std::string OldQualified;
4186 llvm::raw_string_ostream OldOStream(OldQualified);
4187 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4188 OldOStream << Typo->getName();
4189 // If correction candidate would be an identical written qualified
4190 // identifer, then the existing CXXScopeSpec probably included a
4191 // typedef that didn't get accounted for properly.
4192 if (OldOStream.str() == NewQualified)
4193 break;
4194 }
4195 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4196 TRD != TRDEnd; ++TRD) {
4197 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4198 NSType ? NSType->getAsCXXRecordDecl()
4199 : nullptr,
4200 TRD.getPair()) == Sema::AR_accessible)
4201 TC.addCorrectionDecl(*TRD);
4202 }
4203 if (TC.isResolved()) {
4204 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4205 addCorrection(TC);
4206 }
4207 break;
4208 }
4209 case LookupResult::NotFound:
4210 case LookupResult::NotFoundInCurrentInstantiation:
4211 case LookupResult::Ambiguous:
4212 case LookupResult::FoundUnresolvedValue:
4213 break;
4214 }
4215 }
4216 }
4217 QualifiedResults.clear();
4218}
4219
4220TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4221 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4222 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4223 if (NestedNameSpecifier *NNS =
4224 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4225 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4226 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4227
4228 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4229 }
4230 // Build the list of identifiers that would be used for an absolute
4231 // (from the global context) NestedNameSpecifier referring to the current
4232 // context.
4233 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4234 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4235 CurContextIdentifiers.push_back(ND->getIdentifier());
4236 }
4237
4238 // Add the global context as a NestedNameSpecifier
4239 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4240 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4241 DistanceMap[1].push_back(SI);
4242}
4243
4244auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4245 DeclContext *Start) -> DeclContextList {
4246 assert(Start && "Building a context chain from a null context")(static_cast <bool> (Start && "Building a context chain from a null context"
) ? void (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 4246, __extension__ __PRETTY_FUNCTION__))
;
4247 DeclContextList Chain;
4248 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4249 DC = DC->getLookupParent()) {
4250 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4251 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4252 !(ND && ND->isAnonymousNamespace()))
4253 Chain.push_back(DC->getPrimaryContext());
4254 }
4255 return Chain;
4256}
4257
4258unsigned
4259TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4260 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4261 unsigned NumSpecifiers = 0;
4262 for (DeclContext *C : llvm::reverse(DeclChain)) {
4263 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4264 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4265 ++NumSpecifiers;
4266 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4267 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4268 RD->getTypeForDecl());
4269 ++NumSpecifiers;
4270 }
4271 }
4272 return NumSpecifiers;
4273}
4274
4275void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4276 DeclContext *Ctx) {
4277 NestedNameSpecifier *NNS = nullptr;
4278 unsigned NumSpecifiers = 0;
4279 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4280 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4281
4282 // Eliminate common elements from the two DeclContext chains.
4283 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4284 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4285 break;
4286 NamespaceDeclChain.pop_back();
4287 }
4288
4289 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4290 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4291
4292 // Add an explicit leading '::' specifier if needed.
4293 if (NamespaceDeclChain.empty()) {
4294 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4295 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4296 NumSpecifiers =
4297 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4298 } else if (NamedDecl *ND =
4299 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4300 IdentifierInfo *Name = ND->getIdentifier();
4301 bool SameNameSpecifier = false;
4302 if (std::find(CurNameSpecifierIdentifiers.begin(),
4303 CurNameSpecifierIdentifiers.end(),
4304 Name) != CurNameSpecifierIdentifiers.end()) {
4305 std::string NewNameSpecifier;
4306 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4307 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4308 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4309 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4310 SpecifierOStream.flush();
4311 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4312 }
4313 if (SameNameSpecifier ||
4314 std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4315 Name) != CurContextIdentifiers.end()) {
4316 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4317 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4318 NumSpecifiers =
4319 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4320 }
4321 }
4322
4323 // If the built NestedNameSpecifier would be replacing an existing
4324 // NestedNameSpecifier, use the number of component identifiers that
4325 // would need to be changed as the edit distance instead of the number
4326 // of components in the built NestedNameSpecifier.
4327 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4328 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4329 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4330 NumSpecifiers = llvm::ComputeEditDistance(
4331 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4332 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4333 }
4334
4335 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4336 DistanceMap[NumSpecifiers].push_back(SI);
4337}
4338
4339/// \brief Perform name lookup for a possible result for typo correction.
4340static void LookupPotentialTypoResult(Sema &SemaRef,
4341 LookupResult &Res,
4342 IdentifierInfo *Name,
4343 Scope *S, CXXScopeSpec *SS,
4344 DeclContext *MemberContext,
4345 bool EnteringContext,
4346 bool isObjCIvarLookup,
4347 bool FindHidden) {
4348 Res.suppressDiagnostics();
4349 Res.clear();
4350 Res.setLookupName(Name);
4351 Res.setAllowHidden(FindHidden);
4352 if (MemberContext) {
4353 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4354 if (isObjCIvarLookup) {
4355 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4356 Res.addDecl(Ivar);
4357 Res.resolveKind();
4358 return;
4359 }
4360 }
4361
4362 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4363 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4364 Res.addDecl(Prop);
4365 Res.resolveKind();
4366 return;
4367 }
4368 }
4369
4370 SemaRef.LookupQualifiedName(Res, MemberContext);
4371 return;
4372 }
4373
4374 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4375 EnteringContext);
4376
4377 // Fake ivar lookup; this should really be part of
4378 // LookupParsedName.
4379 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4380 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4381 (Res.empty() ||
4382 (Res.isSingleResult() &&
4383 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4384 if (ObjCIvarDecl *IV
4385 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4386 Res.addDecl(IV);
4387 Res.resolveKind();
4388 }
4389 }
4390 }
4391}
4392
4393/// \brief Add keywords to the consumer as possible typo corrections.
4394static void AddKeywordsToConsumer(Sema &SemaRef,
4395 TypoCorrectionConsumer &Consumer,
4396 Scope *S, CorrectionCandidateCallback &CCC,
4397 bool AfterNestedNameSpecifier) {
4398 if (AfterNestedNameSpecifier) {
4399 // For 'X::', we know exactly which keywords can appear next.
4400 Consumer.addKeywordResult("template");
4401 if (CCC.WantExpressionKeywords)
4402 Consumer.addKeywordResult("operator");
4403 return;
4404 }
4405
4406 if (CCC.WantObjCSuper)
4407 Consumer.addKeywordResult("super");
4408
4409 if (CCC.WantTypeSpecifiers) {
4410 // Add type-specifier keywords to the set of results.
4411 static const char *const CTypeSpecs[] = {
4412 "char", "const", "double", "enum", "float", "int", "long", "short",
4413 "signed", "struct", "union", "unsigned", "void", "volatile",
4414 "_Complex", "_Imaginary",
4415 // storage-specifiers as well
4416 "extern", "inline", "static", "typedef"
4417 };
4418
4419 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4420 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4421 Consumer.addKeywordResult(CTypeSpecs[I]);
4422
4423 if (SemaRef.getLangOpts().C99)
4424 Consumer.addKeywordResult("restrict");
4425 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4426 Consumer.addKeywordResult("bool");
4427 else if (SemaRef.getLangOpts().C99)
4428 Consumer.addKeywordResult("_Bool");
4429
4430 if (SemaRef.getLangOpts().CPlusPlus) {
4431 Consumer.addKeywordResult("class");
4432 Consumer.addKeywordResult("typename");
4433 Consumer.addKeywordResult("wchar_t");
4434
4435 if (SemaRef.getLangOpts().CPlusPlus11) {
4436 Consumer.addKeywordResult("char16_t");
4437 Consumer.addKeywordResult("char32_t");
4438 Consumer.addKeywordResult("constexpr");
4439 Consumer.addKeywordResult("decltype");
4440 Consumer.addKeywordResult("thread_local");
4441 }
4442 }
4443
4444 if (SemaRef.getLangOpts().GNUMode)
4445 Consumer.addKeywordResult("typeof");
4446 } else if (CCC.WantFunctionLikeCasts) {
4447 static const char *const CastableTypeSpecs[] = {
4448 "char", "double", "float", "int", "long", "short",
4449 "signed", "unsigned", "void"
4450 };
4451 for (auto *kw : CastableTypeSpecs)
4452 Consumer.addKeywordResult(kw);
4453 }
4454
4455 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4456 Consumer.addKeywordResult("const_cast");
4457 Consumer.addKeywordResult("dynamic_cast");
4458 Consumer.addKeywordResult("reinterpret_cast");
4459 Consumer.addKeywordResult("static_cast");
4460 }
4461
4462 if (CCC.WantExpressionKeywords) {
4463 Consumer.addKeywordResult("sizeof");
4464 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4465 Consumer.addKeywordResult("false");
4466 Consumer.addKeywordResult("true");
4467 }
4468
4469 if (SemaRef.getLangOpts().CPlusPlus) {
4470 static const char *const CXXExprs[] = {
4471 "delete", "new", "operator", "throw", "typeid"
4472 };
4473 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4474 for (unsigned I = 0; I != NumCXXExprs; ++I)
4475 Consumer.addKeywordResult(CXXExprs[I]);
4476
4477 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4478 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4479 Consumer.addKeywordResult("this");
4480
4481 if (SemaRef.getLangOpts().CPlusPlus11) {
4482 Consumer.addKeywordResult("alignof");
4483 Consumer.addKeywordResult("nullptr");
4484 }
4485 }
4486
4487 if (SemaRef.getLangOpts().C11) {
4488 // FIXME: We should not suggest _Alignof if the alignof macro
4489 // is present.
4490 Consumer.addKeywordResult("_Alignof");
4491 }
4492 }
4493
4494 if (CCC.WantRemainingKeywords) {
4495 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4496 // Statements.
4497 static const char *const CStmts[] = {
4498 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4499 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4500 for (unsigned I = 0; I != NumCStmts; ++I)
4501 Consumer.addKeywordResult(CStmts[I]);
4502
4503 if (SemaRef.getLangOpts().CPlusPlus) {
4504 Consumer.addKeywordResult("catch");
4505 Consumer.addKeywordResult("try");
4506 }
4507
4508 if (S && S->getBreakParent())
4509 Consumer.addKeywordResult("break");
4510
4511 if (S && S->getContinueParent())
4512 Consumer.addKeywordResult("continue");
4513
4514 if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4515 Consumer.addKeywordResult("case");
4516 Consumer.addKeywordResult("default");
4517 }
4518 } else {
4519 if (SemaRef.getLangOpts().CPlusPlus) {
4520 Consumer.addKeywordResult("namespace");
4521 Consumer.addKeywordResult("template");
4522 }
4523
4524 if (S && S->isClassScope()) {
4525 Consumer.addKeywordResult("explicit");
4526 Consumer.addKeywordResult("friend");
4527 Consumer.addKeywordResult("mutable");
4528 Consumer.addKeywordResult("private");
4529 Consumer.addKeywordResult("protected");
4530 Consumer.addKeywordResult("public");
4531 Consumer.addKeywordResult("virtual");
4532 }
4533 }
4534
4535 if (SemaRef.getLangOpts().CPlusPlus) {
4536 Consumer.addKeywordResult("using");
4537
4538 if (SemaRef.getLangOpts().CPlusPlus11)
4539 Consumer.addKeywordResult("static_assert");
4540 }
4541 }
4542}
4543
4544std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4545 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4546 Scope *S, CXXScopeSpec *SS,
4547 std::unique_ptr<CorrectionCandidateCallback> CCC,
4548 DeclContext *MemberContext, bool EnteringContext,
4549 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4550
4551 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4552 DisableTypoCorrection)
4553 return nullptr;
4554
4555 // In Microsoft mode, don't perform typo correction in a template member
4556 // function dependent context because it interferes with the "lookup into
4557 // dependent bases of class templates" feature.
4558 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4559 isa<CXXMethodDecl>(CurContext))
4560 return nullptr;
4561
4562 // We only attempt to correct typos for identifiers.
4563 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4564 if (!Typo)
4565 return nullptr;
4566
4567 // If the scope specifier itself was invalid, don't try to correct
4568 // typos.
4569 if (SS && SS->isInvalid())
4570 return nullptr;
4571
4572 // Never try to correct typos during any kind of code synthesis.
4573 if (!CodeSynthesisContexts.empty())
4574 return nullptr;
4575
4576 // Don't try to correct 'super'.
4577 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4578 return nullptr;
4579
4580 // Abort if typo correction already failed for this specific typo.
4581 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4582 if (locs != TypoCorrectionFailures.end() &&
4583 locs->second.count(TypoName.getLoc()))
4584 return nullptr;
4585
4586 // Don't try to correct the identifier "vector" when in AltiVec mode.
4587 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4588 // remove this workaround.
4589 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4590 return nullptr;
4591
4592 // Provide a stop gap for files that are just seriously broken. Trying
4593 // to correct all typos can turn into a HUGE performance penalty, causing
4594 // some files to take minutes to get rejected by the parser.
4595 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4596 if (Limit && TyposCorrected >= Limit)
4597 return nullptr;
4598 ++TyposCorrected;
4599
4600 // If we're handling a missing symbol error, using modules, and the
4601 // special search all modules option is used, look for a missing import.
4602 if (ErrorRecovery && getLangOpts().Modules &&
4603 getLangOpts().ModulesSearchAll) {
4604 // The following has the side effect of loading the missing module.
4605 getModuleLoader().lookupMissingImports(Typo->getName(),
4606 TypoName.getLocStart());
4607 }
4608
4609 CorrectionCandidateCallback &CCCRef = *CCC;
4610 auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4611 *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4612 EnteringContext);
4613
4614 // Perform name lookup to find visible, similarly-named entities.
4615 bool IsUnqualifiedLookup = false;
4616 DeclContext *QualifiedDC = MemberContext;
4617 if (MemberContext) {
4618 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4619
4620 // Look in qualified interfaces.
4621 if (OPT) {
4622 for (auto *I : OPT->quals())
4623 LookupVisibleDecls(I, LookupKind, *Consumer);
4624 }
4625 } else if (SS && SS->isSet()) {
4626 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4627 if (!QualifiedDC)
4628 return nullptr;
4629
4630 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4631 } else {
4632 IsUnqualifiedLookup = true;
4633 }
4634
4635 // Determine whether we are going to search in the various namespaces for
4636 // corrections.
4637 bool SearchNamespaces
4638 = getLangOpts().CPlusPlus &&
4639 (IsUnqualifiedLookup || (SS && SS->isSet()));
4640
4641 if (IsUnqualifiedLookup || SearchNamespaces) {
4642 // For unqualified lookup, look through all of the names that we have
4643 // seen in this translation unit.
4644 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4645 for (const auto &I : Context.Idents)
4646 Consumer->FoundName(I.getKey());
4647
4648 // Walk through identifiers in external identifier sources.
4649 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4650 if (IdentifierInfoLookup *External
4651 = Context.Idents.getExternalIdentifierLookup()) {
4652 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4653 do {
4654 StringRef Name = Iter->Next();
4655 if (Name.empty())
4656 break;
4657
4658 Consumer->FoundName(Name);
4659 } while (true);
4660 }
4661 }
4662
4663 AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4664
4665 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4666 // to search those namespaces.
4667 if (SearchNamespaces) {
4668 // Load any externally-known namespaces.
4669 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4670 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4671 LoadedExternalKnownNamespaces = true;
4672 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4673 for (auto *N : ExternalKnownNamespaces)
4674 KnownNamespaces[N] = true;
4675 }
4676
4677 Consumer->addNamespaces(KnownNamespaces);
4678 }
4679
4680 return Consumer;
4681}
4682
4683/// \brief Try to "correct" a typo in the source code by finding
4684/// visible declarations whose names are similar to the name that was
4685/// present in the source code.
4686///
4687/// \param TypoName the \c DeclarationNameInfo structure that contains
4688/// the name that was present in the source code along with its location.
4689///
4690/// \param LookupKind the name-lookup criteria used to search for the name.
4691///
4692/// \param S the scope in which name lookup occurs.
4693///
4694/// \param SS the nested-name-specifier that precedes the name we're
4695/// looking for, if present.
4696///
4697/// \param CCC A CorrectionCandidateCallback object that provides further
4698/// validation of typo correction candidates. It also provides flags for
4699/// determining the set of keywords permitted.
4700///
4701/// \param MemberContext if non-NULL, the context in which to look for
4702/// a member access expression.
4703///
4704/// \param EnteringContext whether we're entering the context described by
4705/// the nested-name-specifier SS.
4706///
4707/// \param OPT when non-NULL, the search for visible declarations will
4708/// also walk the protocols in the qualified interfaces of \p OPT.
4709///
4710/// \returns a \c TypoCorrection containing the corrected name if the typo
4711/// along with information such as the \c NamedDecl where the corrected name
4712/// was declared, and any additional \c NestedNameSpecifier needed to access
4713/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4714TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4715 Sema::LookupNameKind LookupKind,
4716 Scope *S, CXXScopeSpec *SS,
4717 std::unique_ptr<CorrectionCandidateCallback> CCC,
4718 CorrectTypoKind Mode,
4719 DeclContext *MemberContext,
4720 bool EnteringContext,
4721 const ObjCObjectPointerType *OPT,
4722 bool RecordFailure) {
4723 assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback")(static_cast <bool> (CCC && "CorrectTypo requires a CorrectionCandidateCallback"
) ? void (0) : __assert_fail ("CCC && \"CorrectTypo requires a CorrectionCandidateCallback\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 4723, __extension__ __PRETTY_FUNCTION__))
;
4724
4725 // Always let the ExternalSource have the first chance at correction, even
4726 // if we would otherwise have given up.
4727 if (ExternalSource) {
4728 if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4729 TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4730 return Correction;
4731 }
4732
4733 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4734 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4735 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4736 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4737 bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4738
4739 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4740 auto Consumer = makeTypoCorrectionConsumer(
4741 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4742 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4743
4744 if (!Consumer)
4745 return TypoCorrection();
4746
4747 // If we haven't found anything, we're done.
4748 if (Consumer->empty())
4749 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4750
4751 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4752 // is not more that about a third of the length of the typo's identifier.
4753 unsigned ED = Consumer->getBestEditDistance(true);
4754 unsigned TypoLen = Typo->getName().size();
4755 if (ED > 0 && TypoLen / ED < 3)
4756 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4757
4758 TypoCorrection BestTC = Consumer->getNextCorrection();
4759 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4760 if (!BestTC)
4761 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4762
4763 ED = BestTC.getEditDistance();
4764
4765 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4766 // If this was an unqualified lookup and we believe the callback
4767 // object wouldn't have filtered out possible corrections, note
4768 // that no correction was found.
4769 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4770 }
4771
4772 // If only a single name remains, return that result.
4773 if (!SecondBestTC ||
4774 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4775 const TypoCorrection &Result = BestTC;
4776
4777 // Don't correct to a keyword that's the same as the typo; the keyword
4778 // wasn't actually in scope.
4779 if (ED == 0 && Result.isKeyword())
4780 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4781
4782 TypoCorrection TC = Result;
4783 TC.setCorrectionRange(SS, TypoName);
4784 checkCorrectionVisibility(*this, TC);
4785 return TC;
4786 } else if (SecondBestTC && ObjCMessageReceiver) {
4787 // Prefer 'super' when we're completing in a message-receiver
4788 // context.
4789
4790 if (BestTC.getCorrection().getAsString() != "super") {
4791 if (SecondBestTC.getCorrection().getAsString() == "super")
4792 BestTC = SecondBestTC;
4793 else if ((*Consumer)["super"].front().isKeyword())
4794 BestTC = (*Consumer)["super"].front();
4795 }
4796 // Don't correct to a keyword that's the same as the typo; the keyword
4797 // wasn't actually in scope.
4798 if (BestTC.getEditDistance() == 0 ||
4799 BestTC.getCorrection().getAsString() != "super")
4800 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4801
4802 BestTC.setCorrectionRange(SS, TypoName);
4803 return BestTC;
4804 }
4805
4806 // Record the failure's location if needed and return an empty correction. If
4807 // this was an unqualified lookup and we believe the callback object did not
4808 // filter out possible corrections, also cache the failure for the typo.
4809 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4810}
4811
4812/// \brief Try to "correct" a typo in the source code by finding
4813/// visible declarations whose names are similar to the name that was
4814/// present in the source code.
4815///
4816/// \param TypoName the \c DeclarationNameInfo structure that contains
4817/// the name that was present in the source code along with its location.
4818///
4819/// \param LookupKind the name-lookup criteria used to search for the name.
4820///
4821/// \param S the scope in which name lookup occurs.
4822///
4823/// \param SS the nested-name-specifier that precedes the name we're
4824/// looking for, if present.
4825///
4826/// \param CCC A CorrectionCandidateCallback object that provides further
4827/// validation of typo correction candidates. It also provides flags for
4828/// determining the set of keywords permitted.
4829///
4830/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4831/// diagnostics when the actual typo correction is attempted.
4832///
4833/// \param TRC A TypoRecoveryCallback functor that will be used to build an
4834/// Expr from a typo correction candidate.
4835///
4836/// \param MemberContext if non-NULL, the context in which to look for
4837/// a member access expression.
4838///
4839/// \param EnteringContext whether we're entering the context described by
4840/// the nested-name-specifier SS.
4841///
4842/// \param OPT when non-NULL, the search for visible declarations will
4843/// also walk the protocols in the qualified interfaces of \p OPT.
4844///
4845/// \returns a new \c TypoExpr that will later be replaced in the AST with an
4846/// Expr representing the result of performing typo correction, or nullptr if
4847/// typo correction is not possible. If nullptr is returned, no diagnostics will
4848/// be emitted and it is the responsibility of the caller to emit any that are
4849/// needed.
4850TypoExpr *Sema::CorrectTypoDelayed(
4851 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4852 Scope *S, CXXScopeSpec *SS,
4853 std::unique_ptr<CorrectionCandidateCallback> CCC,
4854 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4855 DeclContext *MemberContext, bool EnteringContext,
4856 const ObjCObjectPointerType *OPT) {
4857 assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback")(static_cast <bool> (CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback"
) ? void (0) : __assert_fail ("CCC && \"CorrectTypoDelayed requires a CorrectionCandidateCallback\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 4857, __extension__ __PRETTY_FUNCTION__))
;
4858
4859 auto Consumer = makeTypoCorrectionConsumer(
4860 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4861 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4862
4863 // Give the external sema source a chance to correct the typo.
4864 TypoCorrection ExternalTypo;
4865 if (ExternalSource && Consumer) {
4866 ExternalTypo = ExternalSource->CorrectTypo(
4867 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
4868 MemberContext, EnteringContext, OPT);
4869 if (ExternalTypo)
4870 Consumer->addCorrection(ExternalTypo);
4871 }
4872
4873 if (!Consumer || Consumer->empty())
4874 return nullptr;
4875
4876 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4877 // is not more that about a third of the length of the typo's identifier.
4878 unsigned ED = Consumer->getBestEditDistance(true);
4879 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4880 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
4881 return nullptr;
4882
4883 ExprEvalContexts.back().NumTypos++;
4884 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4885}
4886
4887void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4888 if (!CDecl) return;
4889
4890 if (isKeyword())
4891 CorrectionDecls.clear();
4892
4893 CorrectionDecls.push_back(CDecl);
4894
4895 if (!CorrectionName)
4896 CorrectionName = CDecl->getDeclName();
4897}
4898
4899std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4900 if (CorrectionNameSpec) {
4901 std::string tmpBuffer;
4902 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4903 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4904 PrefixOStream << CorrectionName;
4905 return PrefixOStream.str();
4906 }
4907
4908 return CorrectionName.getAsString();
4909}
4910
4911bool CorrectionCandidateCallback::ValidateCandidate(
4912 const TypoCorrection &candidate) {
4913 if (!candidate.isResolved())
4914 return true;
4915
4916 if (candidate.isKeyword())
4917 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4918 WantRemainingKeywords || WantObjCSuper;
4919
4920 bool HasNonType = false;
4921 bool HasStaticMethod = false;
4922 bool HasNonStaticMethod = false;
4923 for (Decl *D : candidate) {
4924 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4925 D = FTD->getTemplatedDecl();
4926 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4927 if (Method->isStatic())
4928 HasStaticMethod = true;
4929 else
4930 HasNonStaticMethod = true;
4931 }
4932 if (!isa<TypeDecl>(D))
4933 HasNonType = true;
4934 }
4935
4936 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4937 !candidate.getCorrectionSpecifier())
4938 return false;
4939
4940 return WantTypeSpecifiers || HasNonType;
4941}
4942
4943FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4944 bool HasExplicitTemplateArgs,
4945 MemberExpr *ME)
4946 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4947 CurContext(SemaRef.CurContext), MemberFn(ME) {
4948 WantTypeSpecifiers = false;
4949 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4950 WantRemainingKeywords = false;
4951}
4952
4953bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4954 if (!candidate.getCorrectionDecl())
4955 return candidate.isKeyword();
4956
4957 for (auto *C : candidate) {
4958 FunctionDecl *FD = nullptr;
4959 NamedDecl *ND = C->getUnderlyingDecl();
4960 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4961 FD = FTD->getTemplatedDecl();
4962 if (!HasExplicitTemplateArgs && !FD) {
4963 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4964 // If the Decl is neither a function nor a template function,
4965 // determine if it is a pointer or reference to a function. If so,
4966 // check against the number of arguments expected for the pointee.
4967 QualType ValType = cast<ValueDecl>(ND)->getType();
4968 if (ValType->isAnyPointerType() || ValType->isReferenceType())
4969 ValType = ValType->getPointeeType();
4970 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4971 if (FPT->getNumParams() == NumArgs)
4972 return true;
4973 }
4974 }
4975
4976 // Skip the current candidate if it is not a FunctionDecl or does not accept
4977 // the current number of arguments.
4978 if (!FD || !(FD->getNumParams() >= NumArgs &&
4979 FD->getMinRequiredArguments() <= NumArgs))
4980 continue;
4981
4982 // If the current candidate is a non-static C++ method, skip the candidate
4983 // unless the method being corrected--or the current DeclContext, if the
4984 // function being corrected is not a method--is a method in the same class
4985 // or a descendent class of the candidate's parent class.
4986 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4987 if (MemberFn || !MD->isStatic()) {
4988 CXXMethodDecl *CurMD =
4989 MemberFn
4990 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4991 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4992 CXXRecordDecl *CurRD =
4993 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4994 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4995 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4996 continue;
4997 }
4998 }
4999 return true;
5000 }
5001 return false;
5002}
5003
5004void Sema::diagnoseTypo(const TypoCorrection &Correction,
5005 const PartialDiagnostic &TypoDiag,
5006 bool ErrorRecovery) {
5007 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5008 ErrorRecovery);
5009}
5010
5011/// Find which declaration we should import to provide the definition of
5012/// the given declaration.
5013static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5014 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5015 return VD->getDefinition();
5016 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5017 return FD->getDefinition();
5018 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5019 return TD->getDefinition();
5020 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5021 return ID->getDefinition();
5022 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5023 return PD->getDefinition();
5024 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5025 return getDefinitionToImport(TD->getTemplatedDecl());
5026 return nullptr;
5027}
5028
5029void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5030 MissingImportKind MIK, bool Recover) {
5031 // Suggest importing a module providing the definition of this entity, if
5032 // possible.
5033 NamedDecl *Def = getDefinitionToImport(Decl);
5034 if (!Def)
5035 Def = Decl;
Value stored to 'Def' is never read
5036
5037 Module *Owner = getOwningModule(Decl);
5038 assert(Owner && "definition of hidden declaration is not in a module")(static_cast <bool> (Owner && "definition of hidden declaration is not in a module"
) ? void (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 5038, __extension__ __PRETTY_FUNCTION__))
;
5039
5040 llvm::SmallVector<Module*, 8> OwningModules;
5041 OwningModules.push_back(Owner);
5042 auto Merged = Context.getModulesWithMergedDefinition(Decl);
5043 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5044
5045 diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK,
5046 Recover);
5047}
5048
5049/// \brief Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5050/// suggesting the addition of a #include of the specified file.
5051static std::string getIncludeStringForHeader(Preprocessor &PP,
5052 const FileEntry *E) {
5053 bool IsSystem;
5054 auto Path =
5055 PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(E, &IsSystem);
5056 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5057}
5058
5059void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5060 SourceLocation DeclLoc,
5061 ArrayRef<Module *> Modules,
5062 MissingImportKind MIK, bool Recover) {
5063 assert(!Modules.empty())(static_cast <bool> (!Modules.empty()) ? void (0) : __assert_fail
("!Modules.empty()", "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 5063, __extension__ __PRETTY_FUNCTION__))
;
5064
5065 // Weed out duplicates from module list.
5066 llvm::SmallVector<Module*, 8> UniqueModules;
5067 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5068 for (auto *M : Modules)
5069 if (UniqueModuleSet.insert(M).second)
5070 UniqueModules.push_back(M);
5071 Modules = UniqueModules;
5072
5073 if (Modules.size() > 1) {
5074 std::string ModuleList;
5075 unsigned N = 0;
5076 for (Module *M : Modules) {
5077 ModuleList += "\n ";
5078 if (++N == 5 && N != Modules.size()) {
5079 ModuleList += "[...]";
5080 break;
5081 }
5082 ModuleList += M->getFullModuleName();
5083 }
5084
5085 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5086 << (int)MIK << Decl << ModuleList;
5087 } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5088 UseLoc, Modules[0], DeclLoc)) {
5089 // The right way to make the declaration visible is to include a header;
5090 // suggest doing so.
5091 //
5092 // FIXME: Find a smart place to suggest inserting a #include, and add
5093 // a FixItHint there.
5094 Diag(UseLoc, diag::err_module_unimported_use_header)
5095 << (int)MIK << Decl << Modules[0]->getFullModuleName()
5096 << getIncludeStringForHeader(PP, E);
5097 } else {
5098 // FIXME: Add a FixItHint that imports the corresponding module.
5099 Diag(UseLoc, diag::err_module_unimported_use)
5100 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5101 }
5102
5103 unsigned DiagID;
5104 switch (MIK) {
5105 case MissingImportKind::Declaration:
5106 DiagID = diag::note_previous_declaration;
5107 break;
5108 case MissingImportKind::Definition:
5109 DiagID = diag::note_previous_definition;
5110 break;
5111 case MissingImportKind::DefaultArgument:
5112 DiagID = diag::note_default_argument_declared_here;
5113 break;
5114 case MissingImportKind::ExplicitSpecialization:
5115 DiagID = diag::note_explicit_specialization_declared_here;
5116 break;
5117 case MissingImportKind::PartialSpecialization:
5118 DiagID = diag::note_partial_specialization_declared_here;
5119 break;
5120 }
5121 Diag(DeclLoc, DiagID);
5122
5123 // Try to recover by implicitly importing this module.
5124 if (Recover)
5125 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5126}
5127
5128/// \brief Diagnose a successfully-corrected typo. Separated from the correction
5129/// itself to allow external validation of the result, etc.
5130///
5131/// \param Correction The result of performing typo correction.
5132/// \param TypoDiag The diagnostic to produce. This will have the corrected
5133/// string added to it (and usually also a fixit).
5134/// \param PrevNote A note to use when indicating the location of the entity to
5135/// which we are correcting. Will have the correction string added to it.
5136/// \param ErrorRecovery If \c true (the default), the caller is going to
5137/// recover from the typo as if the corrected string had been typed.
5138/// In this case, \c PDiag must be an error, and we will attach a fixit
5139/// to it.
5140void Sema::diagnoseTypo(const TypoCorrection &Correction,
5141 const PartialDiagnostic &TypoDiag,
5142 const PartialDiagnostic &PrevNote,
5143 bool ErrorRecovery) {
5144 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5145 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5146 FixItHint FixTypo = FixItHint::CreateReplacement(
5147 Correction.getCorrectionRange(), CorrectedStr);
5148
5149 // Maybe we're just missing a module import.
5150 if (Correction.requiresImport()) {
5151 NamedDecl *Decl = Correction.getFoundDecl();
5152 assert(Decl && "import required but no declaration to import")(static_cast <bool> (Decl && "import required but no declaration to import"
) ? void (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 5152, __extension__ __PRETTY_FUNCTION__))
;
5153
5154 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5155 MissingImportKind::Declaration, ErrorRecovery);
5156 return;
5157 }
5158
5159 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5160 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5161
5162 NamedDecl *ChosenDecl =
5163 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5164 if (PrevNote.getDiagID() && ChosenDecl)
5165 Diag(ChosenDecl->getLocation(), PrevNote)
5166 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5167
5168 // Add any extra diagnostics.
5169 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5170 Diag(Correction.getCorrectionRange().getBegin(), PD);
5171}
5172
5173TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5174 TypoDiagnosticGenerator TDG,
5175 TypoRecoveryCallback TRC) {
5176 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")(static_cast <bool> (TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? void (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 5176, __extension__ __PRETTY_FUNCTION__))
;
5177 auto TE = new (Context) TypoExpr(Context.DependentTy);
5178 auto &State = DelayedTypos[TE];
5179 State.Consumer = std::move(TCC);
5180 State.DiagHandler = std::move(TDG);
5181 State.RecoveryHandler = std::move(TRC);
5182 return TE;
5183}
5184
5185const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5186 auto Entry = DelayedTypos.find(TE);
5187 assert(Entry != DelayedTypos.end() &&(static_cast <bool> (Entry != DelayedTypos.end() &&
"Failed to get the state for a TypoExpr!") ? void (0) : __assert_fail
("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 5188, __extension__ __PRETTY_FUNCTION__))
5188 "Failed to get the state for a TypoExpr!")(static_cast <bool> (Entry != DelayedTypos.end() &&
"Failed to get the state for a TypoExpr!") ? void (0) : __assert_fail
("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-6.0~svn320940/tools/clang/lib/Sema/SemaLookup.cpp"
, 5188, __extension__ __PRETTY_FUNCTION__))
;
5189 return Entry->second;
5190}
5191
5192void Sema::clearDelayedTypo(TypoExpr *TE) {
5193 DelayedTypos.erase(TE);
5194}
5195
5196void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5197 DeclarationNameInfo Name(II, IILoc);
5198 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5199 R.suppressDiagnostics();
5200 R.setHideTags(false);
5201 LookupName(R, S);
5202 R.dump();
5203}