Bug Summary

File:tools/clang/lib/Sema/SemaLookup.cpp
Warning:line 5054, column 5
Value stored to 'Def' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaLookup.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp
1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements name lookup for C, C++, Objective-C, and
11// Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclLookups.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50using namespace clang;
51using namespace sema;
52
53namespace {
54 class UnqualUsingEntry {
55 const DeclContext *Nominated;
56 const DeclContext *CommonAncestor;
57
58 public:
59 UnqualUsingEntry(const DeclContext *Nominated,
60 const DeclContext *CommonAncestor)
61 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
62 }
63
64 const DeclContext *getCommonAncestor() const {
65 return CommonAncestor;
66 }
67
68 const DeclContext *getNominatedNamespace() const {
69 return Nominated;
70 }
71
72 // Sort by the pointer value of the common ancestor.
73 struct Comparator {
74 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
75 return L.getCommonAncestor() < R.getCommonAncestor();
76 }
77
78 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
79 return E.getCommonAncestor() < DC;
80 }
81
82 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
83 return DC < E.getCommonAncestor();
84 }
85 };
86 };
87
88 /// A collection of using directives, as used by C++ unqualified
89 /// lookup.
90 class UnqualUsingDirectiveSet {
91 Sema &SemaRef;
92
93 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94
95 ListTy list;
96 llvm::SmallPtrSet<DeclContext*, 8> visited;
97
98 public:
99 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
100
101 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102 // C++ [namespace.udir]p1:
103 // During unqualified name lookup, the names appear as if they
104 // were declared in the nearest enclosing namespace which contains
105 // both the using-directive and the nominated namespace.
106 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
107 assert(InnermostFileDC && InnermostFileDC->isFileContext())(static_cast <bool> (InnermostFileDC && InnermostFileDC
->isFileContext()) ? void (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 107, __extension__ __PRETTY_FUNCTION__))
;
108
109 for (; S; S = S->getParent()) {
110 // C++ [namespace.udir]p1:
111 // A using-directive shall not appear in class scope, but may
112 // appear in namespace scope or in block scope.
113 DeclContext *Ctx = S->getEntity();
114 if (Ctx && Ctx->isFileContext()) {
115 visit(Ctx, Ctx);
116 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117 for (auto *I : S->using_directives())
118 if (SemaRef.isVisible(I))
119 visit(I, InnermostFileDC);
120 }
121 }
122 }
123
124 // Visits a context and collect all of its using directives
125 // recursively. Treats all using directives as if they were
126 // declared in the context.
127 //
128 // A given context is only every visited once, so it is important
129 // that contexts be visited from the inside out in order to get
130 // the effective DCs right.
131 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
132 if (!visited.insert(DC).second)
133 return;
134
135 addUsingDirectives(DC, EffectiveDC);
136 }
137
138 // Visits a using directive and collects all of its using
139 // directives recursively. Treats all using directives as if they
140 // were declared in the effective DC.
141 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
142 DeclContext *NS = UD->getNominatedNamespace();
143 if (!visited.insert(NS).second)
144 return;
145
146 addUsingDirective(UD, EffectiveDC);
147 addUsingDirectives(NS, EffectiveDC);
148 }
149
150 // Adds all the using directives in a context (and those nominated
151 // by its using directives, transitively) as if they appeared in
152 // the given effective context.
153 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
154 SmallVector<DeclContext*, 4> queue;
155 while (true) {
156 for (auto UD : DC->using_directives()) {
157 DeclContext *NS = UD->getNominatedNamespace();
158 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
159 addUsingDirective(UD, EffectiveDC);
160 queue.push_back(NS);
161 }
162 }
163
164 if (queue.empty())
165 return;
166
167 DC = queue.pop_back_val();
168 }
169 }
170
171 // Add a using directive as if it had been declared in the given
172 // context. This helps implement C++ [namespace.udir]p3:
173 // The using-directive is transitive: if a scope contains a
174 // using-directive that nominates a second namespace that itself
175 // contains using-directives, the effect is as if the
176 // using-directives from the second namespace also appeared in
177 // the first.
178 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
179 // Find the common ancestor between the effective context and
180 // the nominated namespace.
181 DeclContext *Common = UD->getNominatedNamespace();
182 while (!Common->Encloses(EffectiveDC))
183 Common = Common->getParent();
184 Common = Common->getPrimaryContext();
185
186 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
187 }
188
189 void done() {
190 llvm::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
191 }
192
193 typedef ListTy::const_iterator const_iterator;
194
195 const_iterator begin() const { return list.begin(); }
196 const_iterator end() const { return list.end(); }
197
198 llvm::iterator_range<const_iterator>
199 getNamespacesFor(DeclContext *DC) const {
200 return llvm::make_range(std::equal_range(begin(), end(),
201 DC->getPrimaryContext(),
202 UnqualUsingEntry::Comparator()));
203 }
204 };
205} // end anonymous namespace
206
207// Retrieve the set of identifier namespaces that correspond to a
208// specific kind of name lookup.
209static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210 bool CPlusPlus,
211 bool Redeclaration) {
212 unsigned IDNS = 0;
213 switch (NameKind) {
214 case Sema::LookupObjCImplicitSelfParam:
215 case Sema::LookupOrdinaryName:
216 case Sema::LookupRedeclarationWithLinkage:
217 case Sema::LookupLocalFriendName:
218 IDNS = Decl::IDNS_Ordinary;
219 if (CPlusPlus) {
220 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
221 if (Redeclaration)
222 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
223 }
224 if (Redeclaration)
225 IDNS |= Decl::IDNS_LocalExtern;
226 break;
227
228 case Sema::LookupOperatorName:
229 // Operator lookup is its own crazy thing; it is not the same
230 // as (e.g.) looking up an operator name for redeclaration.
231 assert(!Redeclaration && "cannot do redeclaration operator lookup")(static_cast <bool> (!Redeclaration && "cannot do redeclaration operator lookup"
) ? void (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 231, __extension__ __PRETTY_FUNCTION__))
;
232 IDNS = Decl::IDNS_NonMemberOperator;
233 break;
234
235 case Sema::LookupTagName:
236 if (CPlusPlus) {
237 IDNS = Decl::IDNS_Type;
238
239 // When looking for a redeclaration of a tag name, we add:
240 // 1) TagFriend to find undeclared friend decls
241 // 2) Namespace because they can't "overload" with tag decls.
242 // 3) Tag because it includes class templates, which can't
243 // "overload" with tag decls.
244 if (Redeclaration)
245 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246 } else {
247 IDNS = Decl::IDNS_Tag;
248 }
249 break;
250
251 case Sema::LookupLabel:
252 IDNS = Decl::IDNS_Label;
253 break;
254
255 case Sema::LookupMemberName:
256 IDNS = Decl::IDNS_Member;
257 if (CPlusPlus)
258 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
259 break;
260
261 case Sema::LookupNestedNameSpecifierName:
262 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
263 break;
264
265 case Sema::LookupNamespaceName:
266 IDNS = Decl::IDNS_Namespace;
267 break;
268
269 case Sema::LookupUsingDeclName:
270 assert(Redeclaration && "should only be used for redecl lookup")(static_cast <bool> (Redeclaration && "should only be used for redecl lookup"
) ? void (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 270, __extension__ __PRETTY_FUNCTION__))
;
271 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
272 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
273 Decl::IDNS_LocalExtern;
274 break;
275
276 case Sema::LookupObjCProtocolName:
277 IDNS = Decl::IDNS_ObjCProtocol;
278 break;
279
280 case Sema::LookupOMPReductionName:
281 IDNS = Decl::IDNS_OMPReduction;
282 break;
283
284 case Sema::LookupAnyName:
285 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
286 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
287 | Decl::IDNS_Type;
288 break;
289 }
290 return IDNS;
291}
292
293void LookupResult::configure() {
294 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
295 isForRedeclaration());
296
297 // If we're looking for one of the allocation or deallocation
298 // operators, make sure that the implicitly-declared new and delete
299 // operators can be found.
300 switch (NameInfo.getName().getCXXOverloadedOperator()) {
301 case OO_New:
302 case OO_Delete:
303 case OO_Array_New:
304 case OO_Array_Delete:
305 getSema().DeclareGlobalNewDelete();
306 break;
307
308 default:
309 break;
310 }
311
312 // Compiler builtins are always visible, regardless of where they end
313 // up being declared.
314 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
315 if (unsigned BuiltinID = Id->getBuiltinID()) {
316 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
317 AllowHidden = true;
318 }
319 }
320}
321
322bool LookupResult::sanity() const {
323 // This function is never called by NDEBUG builds.
324 assert(ResultKind != NotFound || Decls.size() == 0)(static_cast <bool> (ResultKind != NotFound || Decls.size
() == 0) ? void (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 324, __extension__ __PRETTY_FUNCTION__))
;
325 assert(ResultKind != Found || Decls.size() == 1)(static_cast <bool> (ResultKind != Found || Decls.size(
) == 1) ? void (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 325, __extension__ __PRETTY_FUNCTION__))
;
326 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
327 (Decls.size() == 1 &&(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
328 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
;
329 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())(static_cast <bool> (ResultKind != FoundUnresolvedValue
|| sanityCheckUnresolved()) ? void (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __extension__ __PRETTY_FUNCTION__))
;
330 assert(ResultKind != Ambiguous || Decls.size() > 1 ||(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __extension__ __PRETTY_FUNCTION__))
331 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __extension__ __PRETTY_FUNCTION__))
332 Ambiguity == AmbiguousBaseSubobjectTypes)))(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __extension__ __PRETTY_FUNCTION__))
;
333 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 335, __extension__ __PRETTY_FUNCTION__))
334 (Ambiguity == AmbiguousBaseSubobjectTypes ||(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 335, __extension__ __PRETTY_FUNCTION__))
335 Ambiguity == AmbiguousBaseSubobjects)))(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 335, __extension__ __PRETTY_FUNCTION__))
;
336 return true;
337}
338
339// Necessary because CXXBasePaths is not complete in Sema.h
340void LookupResult::deletePaths(CXXBasePaths *Paths) {
341 delete Paths;
342}
343
344/// Get a representative context for a declaration such that two declarations
345/// will have the same context if they were found within the same scope.
346static DeclContext *getContextForScopeMatching(Decl *D) {
347 // For function-local declarations, use that function as the context. This
348 // doesn't account for scopes within the function; the caller must deal with
349 // those.
350 DeclContext *DC = D->getLexicalDeclContext();
351 if (DC->isFunctionOrMethod())
352 return DC;
353
354 // Otherwise, look at the semantic context of the declaration. The
355 // declaration must have been found there.
356 return D->getDeclContext()->getRedeclContext();
357}
358
359/// \brief Determine whether \p D is a better lookup result than \p Existing,
360/// given that they declare the same entity.
361static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
362 NamedDecl *D, NamedDecl *Existing) {
363 // When looking up redeclarations of a using declaration, prefer a using
364 // shadow declaration over any other declaration of the same entity.
365 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
366 !isa<UsingShadowDecl>(Existing))
367 return true;
368
369 auto *DUnderlying = D->getUnderlyingDecl();
370 auto *EUnderlying = Existing->getUnderlyingDecl();
371
372 // If they have different underlying declarations, prefer a typedef over the
373 // original type (this happens when two type declarations denote the same
374 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
375 // might carry additional semantic information, such as an alignment override.
376 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
377 // declaration over a typedef.
378 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
379 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))(static_cast <bool> (isa<TypeDecl>(DUnderlying) &&
isa<TypeDecl>(EUnderlying)) ? void (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 379, __extension__ __PRETTY_FUNCTION__))
;
380 bool HaveTag = isa<TagDecl>(EUnderlying);
381 bool WantTag = Kind == Sema::LookupTagName;
382 return HaveTag != WantTag;
383 }
384
385 // Pick the function with more default arguments.
386 // FIXME: In the presence of ambiguous default arguments, we should keep both,
387 // so we can diagnose the ambiguity if the default argument is needed.
388 // See C++ [over.match.best]p3.
389 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
390 auto *EFD = cast<FunctionDecl>(EUnderlying);
391 unsigned DMin = DFD->getMinRequiredArguments();
392 unsigned EMin = EFD->getMinRequiredArguments();
393 // If D has more default arguments, it is preferred.
394 if (DMin != EMin)
395 return DMin < EMin;
396 // FIXME: When we track visibility for default function arguments, check
397 // that we pick the declaration with more visible default arguments.
398 }
399
400 // Pick the template with more default template arguments.
401 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
402 auto *ETD = cast<TemplateDecl>(EUnderlying);
403 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
404 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
405 // If D has more default arguments, it is preferred. Note that default
406 // arguments (and their visibility) is monotonically increasing across the
407 // redeclaration chain, so this is a quick proxy for "is more recent".
408 if (DMin != EMin)
409 return DMin < EMin;
410 // If D has more *visible* default arguments, it is preferred. Note, an
411 // earlier default argument being visible does not imply that a later
412 // default argument is visible, so we can't just check the first one.
413 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
414 I != N; ++I) {
415 if (!S.hasVisibleDefaultArgument(
416 ETD->getTemplateParameters()->getParam(I)) &&
417 S.hasVisibleDefaultArgument(
418 DTD->getTemplateParameters()->getParam(I)))
419 return true;
420 }
421 }
422
423 // VarDecl can have incomplete array types, prefer the one with more complete
424 // array type.
425 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
426 VarDecl *EVD = cast<VarDecl>(EUnderlying);
427 if (EVD->getType()->isIncompleteType() &&
428 !DVD->getType()->isIncompleteType()) {
429 // Prefer the decl with a more complete type if visible.
430 return S.isVisible(DVD);
431 }
432 return false; // Avoid picking up a newer decl, just because it was newer.
433 }
434
435 // For most kinds of declaration, it doesn't really matter which one we pick.
436 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
437 // If the existing declaration is hidden, prefer the new one. Otherwise,
438 // keep what we've got.
439 return !S.isVisible(Existing);
440 }
441
442 // Pick the newer declaration; it might have a more precise type.
443 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
444 Prev = Prev->getPreviousDecl())
445 if (Prev == EUnderlying)
446 return true;
447 return false;
448}
449
450/// Determine whether \p D can hide a tag declaration.
451static bool canHideTag(NamedDecl *D) {
452 // C++ [basic.scope.declarative]p4:
453 // Given a set of declarations in a single declarative region [...]
454 // exactly one declaration shall declare a class name or enumeration name
455 // that is not a typedef name and the other declarations shall all refer to
456 // the same variable, non-static data member, or enumerator, or all refer
457 // to functions and function templates; in this case the class name or
458 // enumeration name is hidden.
459 // C++ [basic.scope.hiding]p2:
460 // A class name or enumeration name can be hidden by the name of a
461 // variable, data member, function, or enumerator declared in the same
462 // scope.
463 // An UnresolvedUsingValueDecl always instantiates to one of these.
464 D = D->getUnderlyingDecl();
465 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
466 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
467 isa<UnresolvedUsingValueDecl>(D);
468}
469
470/// Resolves the result kind of this lookup.
471void LookupResult::resolveKind() {
472 unsigned N = Decls.size();
473
474 // Fast case: no possible ambiguity.
475 if (N == 0) {
476 assert(ResultKind == NotFound ||(static_cast <bool> (ResultKind == NotFound || ResultKind
== NotFoundInCurrentInstantiation) ? void (0) : __assert_fail
("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 477, __extension__ __PRETTY_FUNCTION__))
477 ResultKind == NotFoundInCurrentInstantiation)(static_cast <bool> (ResultKind == NotFound || ResultKind
== NotFoundInCurrentInstantiation) ? void (0) : __assert_fail
("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 477, __extension__ __PRETTY_FUNCTION__))
;
478 return;
479 }
480
481 // If there's a single decl, we need to examine it to decide what
482 // kind of lookup this is.
483 if (N == 1) {
484 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
485 if (isa<FunctionTemplateDecl>(D))
486 ResultKind = FoundOverloaded;
487 else if (isa<UnresolvedUsingValueDecl>(D))
488 ResultKind = FoundUnresolvedValue;
489 return;
490 }
491
492 // Don't do any extra resolution if we've already resolved as ambiguous.
493 if (ResultKind == Ambiguous) return;
494
495 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
496 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
497
498 bool Ambiguous = false;
499 bool HasTag = false, HasFunction = false;
500 bool HasFunctionTemplate = false, HasUnresolved = false;
501 NamedDecl *HasNonFunction = nullptr;
502
503 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
504
505 unsigned UniqueTagIndex = 0;
506
507 unsigned I = 0;
508 while (I < N) {
509 NamedDecl *D = Decls[I]->getUnderlyingDecl();
510 D = cast<NamedDecl>(D->getCanonicalDecl());
511
512 // Ignore an invalid declaration unless it's the only one left.
513 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
514 Decls[I] = Decls[--N];
515 continue;
516 }
517
518 llvm::Optional<unsigned> ExistingI;
519
520 // Redeclarations of types via typedef can occur both within a scope
521 // and, through using declarations and directives, across scopes. There is
522 // no ambiguity if they all refer to the same type, so unique based on the
523 // canonical type.
524 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
525 QualType T = getSema().Context.getTypeDeclType(TD);
526 auto UniqueResult = UniqueTypes.insert(
527 std::make_pair(getSema().Context.getCanonicalType(T), I));
528 if (!UniqueResult.second) {
529 // The type is not unique.
530 ExistingI = UniqueResult.first->second;
531 }
532 }
533
534 // For non-type declarations, check for a prior lookup result naming this
535 // canonical declaration.
536 if (!ExistingI) {
537 auto UniqueResult = Unique.insert(std::make_pair(D, I));
538 if (!UniqueResult.second) {
539 // We've seen this entity before.
540 ExistingI = UniqueResult.first->second;
541 }
542 }
543
544 if (ExistingI) {
545 // This is not a unique lookup result. Pick one of the results and
546 // discard the other.
547 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
548 Decls[*ExistingI]))
549 Decls[*ExistingI] = Decls[I];
550 Decls[I] = Decls[--N];
551 continue;
552 }
553
554 // Otherwise, do some decl type analysis and then continue.
555
556 if (isa<UnresolvedUsingValueDecl>(D)) {
557 HasUnresolved = true;
558 } else if (isa<TagDecl>(D)) {
559 if (HasTag)
560 Ambiguous = true;
561 UniqueTagIndex = I;
562 HasTag = true;
563 } else if (isa<FunctionTemplateDecl>(D)) {
564 HasFunction = true;
565 HasFunctionTemplate = true;
566 } else if (isa<FunctionDecl>(D)) {
567 HasFunction = true;
568 } else {
569 if (HasNonFunction) {
570 // If we're about to create an ambiguity between two declarations that
571 // are equivalent, but one is an internal linkage declaration from one
572 // module and the other is an internal linkage declaration from another
573 // module, just skip it.
574 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
575 D)) {
576 EquivalentNonFunctions.push_back(D);
577 Decls[I] = Decls[--N];
578 continue;
579 }
580
581 Ambiguous = true;
582 }
583 HasNonFunction = D;
584 }
585 I++;
586 }
587
588 // C++ [basic.scope.hiding]p2:
589 // A class name or enumeration name can be hidden by the name of
590 // an object, function, or enumerator declared in the same
591 // scope. If a class or enumeration name and an object, function,
592 // or enumerator are declared in the same scope (in any order)
593 // with the same name, the class or enumeration name is hidden
594 // wherever the object, function, or enumerator name is visible.
595 // But it's still an error if there are distinct tag types found,
596 // even if they're not visible. (ref?)
597 if (N > 1 && HideTags && HasTag && !Ambiguous &&
598 (HasFunction || HasNonFunction || HasUnresolved)) {
599 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
600 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
601 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
602 getContextForScopeMatching(OtherDecl)) &&
603 canHideTag(OtherDecl))
604 Decls[UniqueTagIndex] = Decls[--N];
605 else
606 Ambiguous = true;
607 }
608
609 // FIXME: This diagnostic should really be delayed until we're done with
610 // the lookup result, in case the ambiguity is resolved by the caller.
611 if (!EquivalentNonFunctions.empty() && !Ambiguous)
612 getSema().diagnoseEquivalentInternalLinkageDeclarations(
613 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
614
615 Decls.set_size(N);
616
617 if (HasNonFunction && (HasFunction || HasUnresolved))
618 Ambiguous = true;
619
620 if (Ambiguous)
621 setAmbiguous(LookupResult::AmbiguousReference);
622 else if (HasUnresolved)
623 ResultKind = LookupResult::FoundUnresolvedValue;
624 else if (N > 1 || HasFunctionTemplate)
625 ResultKind = LookupResult::FoundOverloaded;
626 else
627 ResultKind = LookupResult::Found;
628}
629
630void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
631 CXXBasePaths::const_paths_iterator I, E;
632 for (I = P.begin(), E = P.end(); I != E; ++I)
633 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
634 DE = I->Decls.end(); DI != DE; ++DI)
635 addDecl(*DI);
636}
637
638void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
639 Paths = new CXXBasePaths;
640 Paths->swap(P);
641 addDeclsFromBasePaths(*Paths);
642 resolveKind();
643 setAmbiguous(AmbiguousBaseSubobjects);
644}
645
646void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
647 Paths = new CXXBasePaths;
648 Paths->swap(P);
649 addDeclsFromBasePaths(*Paths);
650 resolveKind();
651 setAmbiguous(AmbiguousBaseSubobjectTypes);
652}
653
654void LookupResult::print(raw_ostream &Out) {
655 Out << Decls.size() << " result(s)";
656 if (isAmbiguous()) Out << ", ambiguous";
657 if (Paths) Out << ", base paths present";
658
659 for (iterator I = begin(), E = end(); I != E; ++I) {
660 Out << "\n";
661 (*I)->print(Out, 2);
662 }
663}
664
665LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
666 llvm::errs() << "lookup results for " << getLookupName().getAsString()
667 << ":\n";
668 for (NamedDecl *D : *this)
669 D->dump();
670}
671
672/// \brief Lookup a builtin function, when name lookup would otherwise
673/// fail.
674static bool LookupBuiltin(Sema &S, LookupResult &R) {
675 Sema::LookupNameKind NameKind = R.getLookupKind();
676
677 // If we didn't find a use of this identifier, and if the identifier
678 // corresponds to a compiler builtin, create the decl object for the builtin
679 // now, injecting it into translation unit scope, and return it.
680 if (NameKind == Sema::LookupOrdinaryName ||
681 NameKind == Sema::LookupRedeclarationWithLinkage) {
682 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
683 if (II) {
684 if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
685 if (II == S.getASTContext().getMakeIntegerSeqName()) {
686 R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
687 return true;
688 } else if (II == S.getASTContext().getTypePackElementName()) {
689 R.addDecl(S.getASTContext().getTypePackElementDecl());
690 return true;
691 }
692 }
693
694 // If this is a builtin on this (or all) targets, create the decl.
695 if (unsigned BuiltinID = II->getBuiltinID()) {
696 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
697 // library functions like 'malloc'. Instead, we'll just error.
698 if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
699 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
700 return false;
701
702 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
703 BuiltinID, S.TUScope,
704 R.isForRedeclaration(),
705 R.getNameLoc())) {
706 R.addDecl(D);
707 return true;
708 }
709 }
710 }
711 }
712
713 return false;
714}
715
716/// \brief Determine whether we can declare a special member function within
717/// the class at this point.
718static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
719 // We need to have a definition for the class.
720 if (!Class->getDefinition() || Class->isDependentContext())
721 return false;
722
723 // We can't be in the middle of defining the class.
724 return !Class->isBeingDefined();
725}
726
727void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
728 if (!CanDeclareSpecialMemberFunction(Class))
729 return;
730
731 // If the default constructor has not yet been declared, do so now.
732 if (Class->needsImplicitDefaultConstructor())
733 DeclareImplicitDefaultConstructor(Class);
734
735 // If the copy constructor has not yet been declared, do so now.
736 if (Class->needsImplicitCopyConstructor())
737 DeclareImplicitCopyConstructor(Class);
738
739 // If the copy assignment operator has not yet been declared, do so now.
740 if (Class->needsImplicitCopyAssignment())
741 DeclareImplicitCopyAssignment(Class);
742
743 if (getLangOpts().CPlusPlus11) {
744 // If the move constructor has not yet been declared, do so now.
745 if (Class->needsImplicitMoveConstructor())
746 DeclareImplicitMoveConstructor(Class);
747
748 // If the move assignment operator has not yet been declared, do so now.
749 if (Class->needsImplicitMoveAssignment())
750 DeclareImplicitMoveAssignment(Class);
751 }
752
753 // If the destructor has not yet been declared, do so now.
754 if (Class->needsImplicitDestructor())
755 DeclareImplicitDestructor(Class);
756}
757
758/// \brief Determine whether this is the name of an implicitly-declared
759/// special member function.
760static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
761 switch (Name.getNameKind()) {
762 case DeclarationName::CXXConstructorName:
763 case DeclarationName::CXXDestructorName:
764 return true;
765
766 case DeclarationName::CXXOperatorName:
767 return Name.getCXXOverloadedOperator() == OO_Equal;
768
769 default:
770 break;
771 }
772
773 return false;
774}
775
776/// \brief If there are any implicit member functions with the given name
777/// that need to be declared in the given declaration context, do so.
778static void DeclareImplicitMemberFunctionsWithName(Sema &S,
779 DeclarationName Name,
780 SourceLocation Loc,
781 const DeclContext *DC) {
782 if (!DC)
783 return;
784
785 switch (Name.getNameKind()) {
786 case DeclarationName::CXXConstructorName:
787 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
788 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
789 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
790 if (Record->needsImplicitDefaultConstructor())
791 S.DeclareImplicitDefaultConstructor(Class);
792 if (Record->needsImplicitCopyConstructor())
793 S.DeclareImplicitCopyConstructor(Class);
794 if (S.getLangOpts().CPlusPlus11 &&
795 Record->needsImplicitMoveConstructor())
796 S.DeclareImplicitMoveConstructor(Class);
797 }
798 break;
799
800 case DeclarationName::CXXDestructorName:
801 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
802 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
803 CanDeclareSpecialMemberFunction(Record))
804 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
805 break;
806
807 case DeclarationName::CXXOperatorName:
808 if (Name.getCXXOverloadedOperator() != OO_Equal)
809 break;
810
811 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
812 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
813 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
814 if (Record->needsImplicitCopyAssignment())
815 S.DeclareImplicitCopyAssignment(Class);
816 if (S.getLangOpts().CPlusPlus11 &&
817 Record->needsImplicitMoveAssignment())
818 S.DeclareImplicitMoveAssignment(Class);
819 }
820 }
821 break;
822
823 case DeclarationName::CXXDeductionGuideName:
824 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
825 break;
826
827 default:
828 break;
829 }
830}
831
832// Adds all qualifying matches for a name within a decl context to the
833// given lookup result. Returns true if any matches were found.
834static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
835 bool Found = false;
836
837 // Lazily declare C++ special member functions.
838 if (S.getLangOpts().CPlusPlus)
839 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
840 DC);
841
842 // Perform lookup into this declaration context.
843 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
844 for (NamedDecl *D : DR) {
845 if ((D = R.getAcceptableDecl(D))) {
846 R.addDecl(D);
847 Found = true;
848 }
849 }
850
851 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
852 return true;
853
854 if (R.getLookupName().getNameKind()
855 != DeclarationName::CXXConversionFunctionName ||
856 R.getLookupName().getCXXNameType()->isDependentType() ||
857 !isa<CXXRecordDecl>(DC))
858 return Found;
859
860 // C++ [temp.mem]p6:
861 // A specialization of a conversion function template is not found by
862 // name lookup. Instead, any conversion function templates visible in the
863 // context of the use are considered. [...]
864 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
865 if (!Record->isCompleteDefinition())
866 return Found;
867
868 // For conversion operators, 'operator auto' should only match
869 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
870 // as a candidate for template substitution.
871 auto *ContainedDeducedType =
872 R.getLookupName().getCXXNameType()->getContainedDeducedType();
873 if (R.getLookupName().getNameKind() ==
874 DeclarationName::CXXConversionFunctionName &&
875 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
876 return Found;
877
878 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
879 UEnd = Record->conversion_end(); U != UEnd; ++U) {
880 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
881 if (!ConvTemplate)
882 continue;
883
884 // When we're performing lookup for the purposes of redeclaration, just
885 // add the conversion function template. When we deduce template
886 // arguments for specializations, we'll end up unifying the return
887 // type of the new declaration with the type of the function template.
888 if (R.isForRedeclaration()) {
889 R.addDecl(ConvTemplate);
890 Found = true;
891 continue;
892 }
893
894 // C++ [temp.mem]p6:
895 // [...] For each such operator, if argument deduction succeeds
896 // (14.9.2.3), the resulting specialization is used as if found by
897 // name lookup.
898 //
899 // When referencing a conversion function for any purpose other than
900 // a redeclaration (such that we'll be building an expression with the
901 // result), perform template argument deduction and place the
902 // specialization into the result set. We do this to avoid forcing all
903 // callers to perform special deduction for conversion functions.
904 TemplateDeductionInfo Info(R.getNameLoc());
905 FunctionDecl *Specialization = nullptr;
906
907 const FunctionProtoType *ConvProto
908 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
909 assert(ConvProto && "Nonsensical conversion function template type")(static_cast <bool> (ConvProto && "Nonsensical conversion function template type"
) ? void (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 909, __extension__ __PRETTY_FUNCTION__))
;
910
911 // Compute the type of the function that we would expect the conversion
912 // function to have, if it were to match the name given.
913 // FIXME: Calling convention!
914 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
915 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
916 EPI.ExceptionSpec = EST_None;
917 QualType ExpectedType
918 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
919 None, EPI);
920
921 // Perform template argument deduction against the type that we would
922 // expect the function to have.
923 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
924 Specialization, Info)
925 == Sema::TDK_Success) {
926 R.addDecl(Specialization);
927 Found = true;
928 }
929 }
930
931 return Found;
932}
933
934// Performs C++ unqualified lookup into the given file context.
935static bool
936CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
937 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
938
939 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")(static_cast <bool> (NS && NS->isFileContext
() && "CppNamespaceLookup() requires namespace!") ? void
(0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 939, __extension__ __PRETTY_FUNCTION__))
;
940
941 // Perform direct name lookup into the LookupCtx.
942 bool Found = LookupDirect(S, R, NS);
943
944 // Perform direct name lookup into the namespaces nominated by the
945 // using directives whose common ancestor is this namespace.
946 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
947 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
948 Found = true;
949
950 R.resolveKind();
951
952 return Found;
953}
954
955static bool isNamespaceOrTranslationUnitScope(Scope *S) {
956 if (DeclContext *Ctx = S->getEntity())
957 return Ctx->isFileContext();
958 return false;
959}
960
961// Find the next outer declaration context from this scope. This
962// routine actually returns the semantic outer context, which may
963// differ from the lexical context (encoded directly in the Scope
964// stack) when we are parsing a member of a class template. In this
965// case, the second element of the pair will be true, to indicate that
966// name lookup should continue searching in this semantic context when
967// it leaves the current template parameter scope.
968static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
969 DeclContext *DC = S->getEntity();
970 DeclContext *Lexical = nullptr;
971 for (Scope *OuterS = S->getParent(); OuterS;
972 OuterS = OuterS->getParent()) {
973 if (OuterS->getEntity()) {
974 Lexical = OuterS->getEntity();
975 break;
976 }
977 }
978
979 // C++ [temp.local]p8:
980 // In the definition of a member of a class template that appears
981 // outside of the namespace containing the class template
982 // definition, the name of a template-parameter hides the name of
983 // a member of this namespace.
984 //
985 // Example:
986 //
987 // namespace N {
988 // class C { };
989 //
990 // template<class T> class B {
991 // void f(T);
992 // };
993 // }
994 //
995 // template<class C> void N::B<C>::f(C) {
996 // C b; // C is the template parameter, not N::C
997 // }
998 //
999 // In this example, the lexical context we return is the
1000 // TranslationUnit, while the semantic context is the namespace N.
1001 if (!Lexical || !DC || !S->getParent() ||
1002 !S->getParent()->isTemplateParamScope())
1003 return std::make_pair(Lexical, false);
1004
1005 // Find the outermost template parameter scope.
1006 // For the example, this is the scope for the template parameters of
1007 // template<class C>.
1008 Scope *OutermostTemplateScope = S->getParent();
1009 while (OutermostTemplateScope->getParent() &&
1010 OutermostTemplateScope->getParent()->isTemplateParamScope())
1011 OutermostTemplateScope = OutermostTemplateScope->getParent();
1012
1013 // Find the namespace context in which the original scope occurs. In
1014 // the example, this is namespace N.
1015 DeclContext *Semantic = DC;
1016 while (!Semantic->isFileContext())
1017 Semantic = Semantic->getParent();
1018
1019 // Find the declaration context just outside of the template
1020 // parameter scope. This is the context in which the template is
1021 // being lexically declaration (a namespace context). In the
1022 // example, this is the global scope.
1023 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1024 Lexical->Encloses(Semantic))
1025 return std::make_pair(Semantic, true);
1026
1027 return std::make_pair(Lexical, false);
1028}
1029
1030namespace {
1031/// An RAII object to specify that we want to find block scope extern
1032/// declarations.
1033struct FindLocalExternScope {
1034 FindLocalExternScope(LookupResult &R)
1035 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1036 Decl::IDNS_LocalExtern) {
1037 R.setFindLocalExtern(R.getIdentifierNamespace() &
1038 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1039 }
1040 void restore() {
1041 R.setFindLocalExtern(OldFindLocalExtern);
1042 }
1043 ~FindLocalExternScope() {
1044 restore();
1045 }
1046 LookupResult &R;
1047 bool OldFindLocalExtern;
1048};
1049} // end anonymous namespace
1050
1051bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1052 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Can perform only C++ lookup") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1052, __extension__ __PRETTY_FUNCTION__))
;
1053
1054 DeclarationName Name = R.getLookupName();
1055 Sema::LookupNameKind NameKind = R.getLookupKind();
1056
1057 // If this is the name of an implicitly-declared special member function,
1058 // go through the scope stack to implicitly declare
1059 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1060 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1061 if (DeclContext *DC = PreS->getEntity())
1062 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1063 }
1064
1065 // Implicitly declare member functions with the name we're looking for, if in
1066 // fact we are in a scope where it matters.
1067
1068 Scope *Initial = S;
1069 IdentifierResolver::iterator
1070 I = IdResolver.begin(Name),
1071 IEnd = IdResolver.end();
1072
1073 // First we lookup local scope.
1074 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1075 // ...During unqualified name lookup (3.4.1), the names appear as if
1076 // they were declared in the nearest enclosing namespace which contains
1077 // both the using-directive and the nominated namespace.
1078 // [Note: in this context, "contains" means "contains directly or
1079 // indirectly".
1080 //
1081 // For example:
1082 // namespace A { int i; }
1083 // void foo() {
1084 // int i;
1085 // {
1086 // using namespace A;
1087 // ++i; // finds local 'i', A::i appears at global scope
1088 // }
1089 // }
1090 //
1091 UnqualUsingDirectiveSet UDirs(*this);
1092 bool VisitedUsingDirectives = false;
1093 bool LeftStartingScope = false;
1094 DeclContext *OutsideOfTemplateParamDC = nullptr;
1095
1096 // When performing a scope lookup, we want to find local extern decls.
1097 FindLocalExternScope FindLocals(R);
1098
1099 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1100 DeclContext *Ctx = S->getEntity();
1101 bool SearchNamespaceScope = true;
1102 // Check whether the IdResolver has anything in this scope.
1103 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1104 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1105 if (NameKind == LookupRedeclarationWithLinkage &&
1106 !(*I)->isTemplateParameter()) {
1107 // If it's a template parameter, we still find it, so we can diagnose
1108 // the invalid redeclaration.
1109
1110 // Determine whether this (or a previous) declaration is
1111 // out-of-scope.
1112 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1113 LeftStartingScope = true;
1114
1115 // If we found something outside of our starting scope that
1116 // does not have linkage, skip it.
1117 if (LeftStartingScope && !((*I)->hasLinkage())) {
1118 R.setShadowed();
1119 continue;
1120 }
1121 } else {
1122 // We found something in this scope, we should not look at the
1123 // namespace scope
1124 SearchNamespaceScope = false;
1125 }
1126 R.addDecl(ND);
1127 }
1128 }
1129 if (!SearchNamespaceScope) {
1130 R.resolveKind();
1131 if (S->isClassScope())
1132 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1133 R.setNamingClass(Record);
1134 return true;
1135 }
1136
1137 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1138 // C++11 [class.friend]p11:
1139 // If a friend declaration appears in a local class and the name
1140 // specified is an unqualified name, a prior declaration is
1141 // looked up without considering scopes that are outside the
1142 // innermost enclosing non-class scope.
1143 return false;
1144 }
1145
1146 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1147 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1148 // We've just searched the last template parameter scope and
1149 // found nothing, so look into the contexts between the
1150 // lexical and semantic declaration contexts returned by
1151 // findOuterContext(). This implements the name lookup behavior
1152 // of C++ [temp.local]p8.
1153 Ctx = OutsideOfTemplateParamDC;
1154 OutsideOfTemplateParamDC = nullptr;
1155 }
1156
1157 if (Ctx) {
1158 DeclContext *OuterCtx;
1159 bool SearchAfterTemplateScope;
1160 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1161 if (SearchAfterTemplateScope)
1162 OutsideOfTemplateParamDC = OuterCtx;
1163
1164 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1165 // We do not directly look into transparent contexts, since
1166 // those entities will be found in the nearest enclosing
1167 // non-transparent context.
1168 if (Ctx->isTransparentContext())
1169 continue;
1170
1171 // We do not look directly into function or method contexts,
1172 // since all of the local variables and parameters of the
1173 // function/method are present within the Scope.
1174 if (Ctx->isFunctionOrMethod()) {
1175 // If we have an Objective-C instance method, look for ivars
1176 // in the corresponding interface.
1177 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1178 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1179 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1180 ObjCInterfaceDecl *ClassDeclared;
1181 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1182 Name.getAsIdentifierInfo(),
1183 ClassDeclared)) {
1184 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1185 R.addDecl(ND);
1186 R.resolveKind();
1187 return true;
1188 }
1189 }
1190 }
1191 }
1192
1193 continue;
1194 }
1195
1196 // If this is a file context, we need to perform unqualified name
1197 // lookup considering using directives.
1198 if (Ctx->isFileContext()) {
1199 // If we haven't handled using directives yet, do so now.
1200 if (!VisitedUsingDirectives) {
1201 // Add using directives from this context up to the top level.
1202 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1203 if (UCtx->isTransparentContext())
1204 continue;
1205
1206 UDirs.visit(UCtx, UCtx);
1207 }
1208
1209 // Find the innermost file scope, so we can add using directives
1210 // from local scopes.
1211 Scope *InnermostFileScope = S;
1212 while (InnermostFileScope &&
1213 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1214 InnermostFileScope = InnermostFileScope->getParent();
1215 UDirs.visitScopeChain(Initial, InnermostFileScope);
1216
1217 UDirs.done();
1218
1219 VisitedUsingDirectives = true;
1220 }
1221
1222 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1223 R.resolveKind();
1224 return true;
1225 }
1226
1227 continue;
1228 }
1229
1230 // Perform qualified name lookup into this context.
1231 // FIXME: In some cases, we know that every name that could be found by
1232 // this qualified name lookup will also be on the identifier chain. For
1233 // example, inside a class without any base classes, we never need to
1234 // perform qualified lookup because all of the members are on top of the
1235 // identifier chain.
1236 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1237 return true;
1238 }
1239 }
1240 }
1241
1242 // Stop if we ran out of scopes.
1243 // FIXME: This really, really shouldn't be happening.
1244 if (!S) return false;
1245
1246 // If we are looking for members, no need to look into global/namespace scope.
1247 if (NameKind == LookupMemberName)
1248 return false;
1249
1250 // Collect UsingDirectiveDecls in all scopes, and recursively all
1251 // nominated namespaces by those using-directives.
1252 //
1253 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1254 // don't build it for each lookup!
1255 if (!VisitedUsingDirectives) {
1256 UDirs.visitScopeChain(Initial, S);
1257 UDirs.done();
1258 }
1259
1260 // If we're not performing redeclaration lookup, do not look for local
1261 // extern declarations outside of a function scope.
1262 if (!R.isForRedeclaration())
1263 FindLocals.restore();
1264
1265 // Lookup namespace scope, and global scope.
1266 // Unqualified name lookup in C++ requires looking into scopes
1267 // that aren't strictly lexical, and therefore we walk through the
1268 // context as well as walking through the scopes.
1269 for (; S; S = S->getParent()) {
1270 // Check whether the IdResolver has anything in this scope.
1271 bool Found = false;
1272 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1273 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1274 // We found something. Look for anything else in our scope
1275 // with this same name and in an acceptable identifier
1276 // namespace, so that we can construct an overload set if we
1277 // need to.
1278 Found = true;
1279 R.addDecl(ND);
1280 }
1281 }
1282
1283 if (Found && S->isTemplateParamScope()) {
1284 R.resolveKind();
1285 return true;
1286 }
1287
1288 DeclContext *Ctx = S->getEntity();
1289 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1290 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1291 // We've just searched the last template parameter scope and
1292 // found nothing, so look into the contexts between the
1293 // lexical and semantic declaration contexts returned by
1294 // findOuterContext(). This implements the name lookup behavior
1295 // of C++ [temp.local]p8.
1296 Ctx = OutsideOfTemplateParamDC;
1297 OutsideOfTemplateParamDC = nullptr;
1298 }
1299
1300 if (Ctx) {
1301 DeclContext *OuterCtx;
1302 bool SearchAfterTemplateScope;
1303 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1304 if (SearchAfterTemplateScope)
1305 OutsideOfTemplateParamDC = OuterCtx;
1306
1307 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1308 // We do not directly look into transparent contexts, since
1309 // those entities will be found in the nearest enclosing
1310 // non-transparent context.
1311 if (Ctx->isTransparentContext())
1312 continue;
1313
1314 // If we have a context, and it's not a context stashed in the
1315 // template parameter scope for an out-of-line definition, also
1316 // look into that context.
1317 if (!(Found && S->isTemplateParamScope())) {
1318 assert(Ctx->isFileContext() &&(static_cast <bool> (Ctx->isFileContext() &&
"We should have been looking only at file context here already."
) ? void (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1319, __extension__ __PRETTY_FUNCTION__))
1319 "We should have been looking only at file context here already.")(static_cast <bool> (Ctx->isFileContext() &&
"We should have been looking only at file context here already."
) ? void (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1319, __extension__ __PRETTY_FUNCTION__))
;
1320
1321 // Look into context considering using-directives.
1322 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1323 Found = true;
1324 }
1325
1326 if (Found) {
1327 R.resolveKind();
1328 return true;
1329 }
1330
1331 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1332 return false;
1333 }
1334 }
1335
1336 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1337 return false;
1338 }
1339
1340 return !R.empty();
1341}
1342
1343void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1344 if (auto *M = getCurrentModule())
1345 Context.mergeDefinitionIntoModule(ND, M);
1346 else
1347 // We're not building a module; just make the definition visible.
1348 ND->setVisibleDespiteOwningModule();
1349
1350 // If ND is a template declaration, make the template parameters
1351 // visible too. They're not (necessarily) within a mergeable DeclContext.
1352 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1353 for (auto *Param : *TD->getTemplateParameters())
1354 makeMergedDefinitionVisible(Param);
1355}
1356
1357/// \brief Find the module in which the given declaration was defined.
1358static Module *getDefiningModule(Sema &S, Decl *Entity) {
1359 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1360 // If this function was instantiated from a template, the defining module is
1361 // the module containing the pattern.
1362 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1363 Entity = Pattern;
1364 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1365 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1366 Entity = Pattern;
1367 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1368 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1369 Entity = Pattern;
1370 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1371 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1372 Entity = Pattern;
1373 }
1374
1375 // Walk up to the containing context. That might also have been instantiated
1376 // from a template.
1377 DeclContext *Context = Entity->getLexicalDeclContext();
1378 if (Context->isFileContext())
1379 return S.getOwningModule(Entity);
1380 return getDefiningModule(S, cast<Decl>(Context));
1381}
1382
1383llvm::DenseSet<Module*> &Sema::getLookupModules() {
1384 unsigned N = CodeSynthesisContexts.size();
1385 for (unsigned I = CodeSynthesisContextLookupModules.size();
1386 I != N; ++I) {
1387 Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1388 if (M && !LookupModulesCache.insert(M).second)
1389 M = nullptr;
1390 CodeSynthesisContextLookupModules.push_back(M);
1391 }
1392 return LookupModulesCache;
1393}
1394
1395bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1396 for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1397 if (isModuleVisible(Merged))
1398 return true;
1399 return false;
1400}
1401
1402bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1403 // FIXME: When not in local visibility mode, we can't tell the difference
1404 // between a declaration being visible because we merged a local copy of
1405 // the same declaration into it, and it being visible because its owning
1406 // module is visible.
1407 if (Def->getModuleOwnershipKind() == Decl::ModuleOwnershipKind::Visible &&
1408 getLangOpts().ModulesLocalVisibility)
1409 return true;
1410 for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1411 if (Merged->getTopLevelModuleName() == getLangOpts().CurrentModule)
1412 return true;
1413 return false;
1414}
1415
1416template<typename ParmDecl>
1417static bool
1418hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1419 llvm::SmallVectorImpl<Module *> *Modules) {
1420 if (!D->hasDefaultArgument())
1421 return false;
1422
1423 while (D) {
1424 auto &DefaultArg = D->getDefaultArgStorage();
1425 if (!DefaultArg.isInherited() && S.isVisible(D))
1426 return true;
1427
1428 if (!DefaultArg.isInherited() && Modules) {
1429 auto *NonConstD = const_cast<ParmDecl*>(D);
1430 Modules->push_back(S.getOwningModule(NonConstD));
1431 const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
1432 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1433 }
1434
1435 // If there was a previous default argument, maybe its parameter is visible.
1436 D = DefaultArg.getInheritedFrom();
1437 }
1438 return false;
1439}
1440
1441bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1442 llvm::SmallVectorImpl<Module *> *Modules) {
1443 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1444 return ::hasVisibleDefaultArgument(*this, P, Modules);
1445 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1446 return ::hasVisibleDefaultArgument(*this, P, Modules);
1447 return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1448 Modules);
1449}
1450
1451template<typename Filter>
1452static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1453 llvm::SmallVectorImpl<Module *> *Modules,
1454 Filter F) {
1455 for (auto *Redecl : D->redecls()) {
1456 auto *R = cast<NamedDecl>(Redecl);
1457 if (!F(R))
1458 continue;
1459
1460 if (S.isVisible(R))
1461 return true;
1462
1463 if (Modules) {
1464 Modules->push_back(R->getOwningModule());
1465 const auto &Merged = S.Context.getModulesWithMergedDefinition(R);
1466 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1467 }
1468 }
1469
1470 return false;
1471}
1472
1473bool Sema::hasVisibleExplicitSpecialization(
1474 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1475 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1476 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1477 return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1478 if (auto *FD = dyn_cast<FunctionDecl>(D))
1479 return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1480 if (auto *VD = dyn_cast<VarDecl>(D))
1481 return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1482 llvm_unreachable("unknown explicit specialization kind")::llvm::llvm_unreachable_internal("unknown explicit specialization kind"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1482)
;
1483 });
1484}
1485
1486bool Sema::hasVisibleMemberSpecialization(
1487 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1488 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&(static_cast <bool> (isa<CXXRecordDecl>(D->getDeclContext
()) && "not a member specialization") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1489, __extension__ __PRETTY_FUNCTION__))
1489 "not a member specialization")(static_cast <bool> (isa<CXXRecordDecl>(D->getDeclContext
()) && "not a member specialization") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1489, __extension__ __PRETTY_FUNCTION__))
;
1490 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1491 // If the specialization is declared at namespace scope, then it's a member
1492 // specialization declaration. If it's lexically inside the class
1493 // definition then it was instantiated.
1494 //
1495 // FIXME: This is a hack. There should be a better way to determine this.
1496 // FIXME: What about MS-style explicit specializations declared within a
1497 // class definition?
1498 return D->getLexicalDeclContext()->isFileContext();
1499 });
1500
1501 return false;
1502}
1503
1504/// \brief Determine whether a declaration is visible to name lookup.
1505///
1506/// This routine determines whether the declaration D is visible in the current
1507/// lookup context, taking into account the current template instantiation
1508/// stack. During template instantiation, a declaration is visible if it is
1509/// visible from a module containing any entity on the template instantiation
1510/// path (by instantiating a template, you allow it to see the declarations that
1511/// your module can see, including those later on in your module).
1512bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1513 assert(D->isHidden() && "should not call this: not in slow case")(static_cast <bool> (D->isHidden() && "should not call this: not in slow case"
) ? void (0) : __assert_fail ("D->isHidden() && \"should not call this: not in slow case\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1513, __extension__ __PRETTY_FUNCTION__))
;
1514
1515 Module *DeclModule = SemaRef.getOwningModule(D);
1516 if (!DeclModule) {
1517 // A module-private declaration with no owning module means this is in the
1518 // global module in the C++ Modules TS. This is visible within the same
1519 // translation unit only.
1520 // FIXME: Don't assume that "same translation unit" means the same thing
1521 // as "not from an AST file".
1522 assert(D->isModulePrivate() && "hidden decl has no module")(static_cast <bool> (D->isModulePrivate() &&
"hidden decl has no module") ? void (0) : __assert_fail ("D->isModulePrivate() && \"hidden decl has no module\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1522, __extension__ __PRETTY_FUNCTION__))
;
1523 if (!D->isFromASTFile() || SemaRef.hasMergedDefinitionInCurrentModule(D))
1524 return true;
1525 } else {
1526 // If the owning module is visible, and the decl is not module private,
1527 // then the decl is visible too. (Module private is ignored within the same
1528 // top-level module.)
1529 if (D->isModulePrivate()
1530 ? DeclModule->getTopLevelModuleName() ==
1531 SemaRef.getLangOpts().CurrentModule ||
1532 SemaRef.hasMergedDefinitionInCurrentModule(D)
1533 : SemaRef.isModuleVisible(DeclModule) ||
1534 SemaRef.hasVisibleMergedDefinition(D))
1535 return true;
1536 }
1537
1538 // Determine whether a decl context is a file context for the purpose of
1539 // visibility. This looks through some (export and linkage spec) transparent
1540 // contexts, but not others (enums).
1541 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1542 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1543 isa<ExportDecl>(DC);
1544 };
1545
1546 // If this declaration is not at namespace scope
1547 // then it is visible if its lexical parent has a visible definition.
1548 DeclContext *DC = D->getLexicalDeclContext();
1549 if (DC && !IsEffectivelyFileContext(DC)) {
1550 // For a parameter, check whether our current template declaration's
1551 // lexical context is visible, not whether there's some other visible
1552 // definition of it, because parameters aren't "within" the definition.
1553 //
1554 // In C++ we need to check for a visible definition due to ODR merging,
1555 // and in C we must not because each declaration of a function gets its own
1556 // set of declarations for tags in prototype scope.
1557 bool VisibleWithinParent;
1558 if (D->isTemplateParameter() || isa<ParmVarDecl>(D) ||
1559 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1560 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1561 else if (D->isModulePrivate()) {
1562 // A module-private declaration is only visible if an enclosing lexical
1563 // parent was merged with another definition in the current module.
1564 VisibleWithinParent = false;
1565 do {
1566 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1567 VisibleWithinParent = true;
1568 break;
1569 }
1570 DC = DC->getLexicalParent();
1571 } while (!IsEffectivelyFileContext(DC));
1572 } else {
1573 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1574 }
1575
1576 if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1577 // FIXME: Do something better in this case.
1578 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1579 // Cache the fact that this declaration is implicitly visible because
1580 // its parent has a visible definition.
1581 D->setVisibleDespiteOwningModule();
1582 }
1583 return VisibleWithinParent;
1584 }
1585
1586 // FIXME: All uses of DeclModule below this point should also check merged
1587 // modules.
1588 if (!DeclModule)
1589 return false;
1590
1591 // Find the extra places where we need to look.
1592 const auto &LookupModules = SemaRef.getLookupModules();
1593 if (LookupModules.empty())
1594 return false;
1595
1596 // If our lookup set contains the decl's module, it's visible.
1597 if (LookupModules.count(DeclModule))
1598 return true;
1599
1600 // If the declaration isn't exported, it's not visible in any other module.
1601 if (D->isModulePrivate())
1602 return false;
1603
1604 // Check whether DeclModule is transitively exported to an import of
1605 // the lookup set.
1606 return std::any_of(LookupModules.begin(), LookupModules.end(),
1607 [&](const Module *M) {
1608 return M->isModuleVisible(DeclModule); });
1609}
1610
1611bool Sema::isVisibleSlow(const NamedDecl *D) {
1612 return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1613}
1614
1615bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1616 // FIXME: If there are both visible and hidden declarations, we need to take
1617 // into account whether redeclaration is possible. Example:
1618 //
1619 // Non-imported module:
1620 // int f(T); // #1
1621 // Some TU:
1622 // static int f(U); // #2, not a redeclaration of #1
1623 // int f(T); // #3, finds both, should link with #1 if T != U, but
1624 // // with #2 if T == U; neither should be ambiguous.
1625 for (auto *D : R) {
1626 if (isVisible(D))
1627 return true;
1628 assert(D->isExternallyDeclarable() &&(static_cast <bool> (D->isExternallyDeclarable() &&
"should not have hidden, non-externally-declarable result here"
) ? void (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1629, __extension__ __PRETTY_FUNCTION__))
1629 "should not have hidden, non-externally-declarable result here")(static_cast <bool> (D->isExternallyDeclarable() &&
"should not have hidden, non-externally-declarable result here"
) ? void (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1629, __extension__ __PRETTY_FUNCTION__))
;
1630 }
1631
1632 // This function is called once "New" is essentially complete, but before a
1633 // previous declaration is attached. We can't query the linkage of "New" in
1634 // general, because attaching the previous declaration can change the
1635 // linkage of New to match the previous declaration.
1636 //
1637 // However, because we've just determined that there is no *visible* prior
1638 // declaration, we can compute the linkage here. There are two possibilities:
1639 //
1640 // * This is not a redeclaration; it's safe to compute the linkage now.
1641 //
1642 // * This is a redeclaration of a prior declaration that is externally
1643 // redeclarable. In that case, the linkage of the declaration is not
1644 // changed by attaching the prior declaration, because both are externally
1645 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1646 //
1647 // FIXME: This is subtle and fragile.
1648 return New->isExternallyDeclarable();
1649}
1650
1651/// \brief Retrieve the visible declaration corresponding to D, if any.
1652///
1653/// This routine determines whether the declaration D is visible in the current
1654/// module, with the current imports. If not, it checks whether any
1655/// redeclaration of D is visible, and if so, returns that declaration.
1656///
1657/// \returns D, or a visible previous declaration of D, whichever is more recent
1658/// and visible. If no declaration of D is visible, returns null.
1659static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1660 unsigned IDNS) {
1661 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")(static_cast <bool> (!LookupResult::isVisible(SemaRef, D
) && "not in slow case") ? void (0) : __assert_fail (
"!LookupResult::isVisible(SemaRef, D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1661, __extension__ __PRETTY_FUNCTION__))
;
1662
1663 for (auto RD : D->redecls()) {
1664 // Don't bother with extra checks if we already know this one isn't visible.
1665 if (RD == D)
1666 continue;
1667
1668 auto ND = cast<NamedDecl>(RD);
1669 // FIXME: This is wrong in the case where the previous declaration is not
1670 // visible in the same scope as D. This needs to be done much more
1671 // carefully.
1672 if (ND->isInIdentifierNamespace(IDNS) &&
1673 LookupResult::isVisible(SemaRef, ND))
1674 return ND;
1675 }
1676
1677 return nullptr;
1678}
1679
1680bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1681 llvm::SmallVectorImpl<Module *> *Modules) {
1682 assert(!isVisible(D) && "not in slow case")(static_cast <bool> (!isVisible(D) && "not in slow case"
) ? void (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1682, __extension__ __PRETTY_FUNCTION__))
;
1683 return hasVisibleDeclarationImpl(*this, D, Modules,
1684 [](const NamedDecl *) { return true; });
1685}
1686
1687NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1688 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1689 // Namespaces are a bit of a special case: we expect there to be a lot of
1690 // redeclarations of some namespaces, all declarations of a namespace are
1691 // essentially interchangeable, all declarations are found by name lookup
1692 // if any is, and namespaces are never looked up during template
1693 // instantiation. So we benefit from caching the check in this case, and
1694 // it is correct to do so.
1695 auto *Key = ND->getCanonicalDecl();
1696 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1697 return Acceptable;
1698 auto *Acceptable = isVisible(getSema(), Key)
1699 ? Key
1700 : findAcceptableDecl(getSema(), Key, IDNS);
1701 if (Acceptable)
1702 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1703 return Acceptable;
1704 }
1705
1706 return findAcceptableDecl(getSema(), D, IDNS);
1707}
1708
1709/// @brief Perform unqualified name lookup starting from a given
1710/// scope.
1711///
1712/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1713/// used to find names within the current scope. For example, 'x' in
1714/// @code
1715/// int x;
1716/// int f() {
1717/// return x; // unqualified name look finds 'x' in the global scope
1718/// }
1719/// @endcode
1720///
1721/// Different lookup criteria can find different names. For example, a
1722/// particular scope can have both a struct and a function of the same
1723/// name, and each can be found by certain lookup criteria. For more
1724/// information about lookup criteria, see the documentation for the
1725/// class LookupCriteria.
1726///
1727/// @param S The scope from which unqualified name lookup will
1728/// begin. If the lookup criteria permits, name lookup may also search
1729/// in the parent scopes.
1730///
1731/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1732/// look up and the lookup kind), and is updated with the results of lookup
1733/// including zero or more declarations and possibly additional information
1734/// used to diagnose ambiguities.
1735///
1736/// @returns \c true if lookup succeeded and false otherwise.
1737bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1738 DeclarationName Name = R.getLookupName();
1739 if (!Name) return false;
1740
1741 LookupNameKind NameKind = R.getLookupKind();
1742
1743 if (!getLangOpts().CPlusPlus) {
1744 // Unqualified name lookup in C/Objective-C is purely lexical, so
1745 // search in the declarations attached to the name.
1746 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1747 // Find the nearest non-transparent declaration scope.
1748 while (!(S->getFlags() & Scope::DeclScope) ||
1749 (S->getEntity() && S->getEntity()->isTransparentContext()))
1750 S = S->getParent();
1751 }
1752
1753 // When performing a scope lookup, we want to find local extern decls.
1754 FindLocalExternScope FindLocals(R);
1755
1756 // Scan up the scope chain looking for a decl that matches this
1757 // identifier that is in the appropriate namespace. This search
1758 // should not take long, as shadowing of names is uncommon, and
1759 // deep shadowing is extremely uncommon.
1760 bool LeftStartingScope = false;
1761
1762 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1763 IEnd = IdResolver.end();
1764 I != IEnd; ++I)
1765 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1766 if (NameKind == LookupRedeclarationWithLinkage) {
1767 // Determine whether this (or a previous) declaration is
1768 // out-of-scope.
1769 if (!LeftStartingScope && !S->isDeclScope(*I))
1770 LeftStartingScope = true;
1771
1772 // If we found something outside of our starting scope that
1773 // does not have linkage, skip it.
1774 if (LeftStartingScope && !((*I)->hasLinkage())) {
1775 R.setShadowed();
1776 continue;
1777 }
1778 }
1779 else if (NameKind == LookupObjCImplicitSelfParam &&
1780 !isa<ImplicitParamDecl>(*I))
1781 continue;
1782
1783 R.addDecl(D);
1784
1785 // Check whether there are any other declarations with the same name
1786 // and in the same scope.
1787 if (I != IEnd) {
1788 // Find the scope in which this declaration was declared (if it
1789 // actually exists in a Scope).
1790 while (S && !S->isDeclScope(D))
1791 S = S->getParent();
1792
1793 // If the scope containing the declaration is the translation unit,
1794 // then we'll need to perform our checks based on the matching
1795 // DeclContexts rather than matching scopes.
1796 if (S && isNamespaceOrTranslationUnitScope(S))
1797 S = nullptr;
1798
1799 // Compute the DeclContext, if we need it.
1800 DeclContext *DC = nullptr;
1801 if (!S)
1802 DC = (*I)->getDeclContext()->getRedeclContext();
1803
1804 IdentifierResolver::iterator LastI = I;
1805 for (++LastI; LastI != IEnd; ++LastI) {
1806 if (S) {
1807 // Match based on scope.
1808 if (!S->isDeclScope(*LastI))
1809 break;
1810 } else {
1811 // Match based on DeclContext.
1812 DeclContext *LastDC
1813 = (*LastI)->getDeclContext()->getRedeclContext();
1814 if (!LastDC->Equals(DC))
1815 break;
1816 }
1817
1818 // If the declaration is in the right namespace and visible, add it.
1819 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1820 R.addDecl(LastD);
1821 }
1822
1823 R.resolveKind();
1824 }
1825
1826 return true;
1827 }
1828 } else {
1829 // Perform C++ unqualified name lookup.
1830 if (CppLookupName(R, S))
1831 return true;
1832 }
1833
1834 // If we didn't find a use of this identifier, and if the identifier
1835 // corresponds to a compiler builtin, create the decl object for the builtin
1836 // now, injecting it into translation unit scope, and return it.
1837 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1838 return true;
1839
1840 // If we didn't find a use of this identifier, the ExternalSource
1841 // may be able to handle the situation.
1842 // Note: some lookup failures are expected!
1843 // See e.g. R.isForRedeclaration().
1844 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1845}
1846
1847/// @brief Perform qualified name lookup in the namespaces nominated by
1848/// using directives by the given context.
1849///
1850/// C++98 [namespace.qual]p2:
1851/// Given X::m (where X is a user-declared namespace), or given \::m
1852/// (where X is the global namespace), let S be the set of all
1853/// declarations of m in X and in the transitive closure of all
1854/// namespaces nominated by using-directives in X and its used
1855/// namespaces, except that using-directives are ignored in any
1856/// namespace, including X, directly containing one or more
1857/// declarations of m. No namespace is searched more than once in
1858/// the lookup of a name. If S is the empty set, the program is
1859/// ill-formed. Otherwise, if S has exactly one member, or if the
1860/// context of the reference is a using-declaration
1861/// (namespace.udecl), S is the required set of declarations of
1862/// m. Otherwise if the use of m is not one that allows a unique
1863/// declaration to be chosen from S, the program is ill-formed.
1864///
1865/// C++98 [namespace.qual]p5:
1866/// During the lookup of a qualified namespace member name, if the
1867/// lookup finds more than one declaration of the member, and if one
1868/// declaration introduces a class name or enumeration name and the
1869/// other declarations either introduce the same object, the same
1870/// enumerator or a set of functions, the non-type name hides the
1871/// class or enumeration name if and only if the declarations are
1872/// from the same namespace; otherwise (the declarations are from
1873/// different namespaces), the program is ill-formed.
1874static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1875 DeclContext *StartDC) {
1876 assert(StartDC->isFileContext() && "start context is not a file context")(static_cast <bool> (StartDC->isFileContext() &&
"start context is not a file context") ? void (0) : __assert_fail
("StartDC->isFileContext() && \"start context is not a file context\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1876, __extension__ __PRETTY_FUNCTION__))
;
1877
1878 // We have not yet looked into these namespaces, much less added
1879 // their "using-children" to the queue.
1880 SmallVector<NamespaceDecl*, 8> Queue;
1881
1882 // We have at least added all these contexts to the queue.
1883 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1884 Visited.insert(StartDC);
1885
1886 // We have already looked into the initial namespace; seed the queue
1887 // with its using-children.
1888 for (auto *I : StartDC->using_directives()) {
1889 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1890 if (S.isVisible(I) && Visited.insert(ND).second)
1891 Queue.push_back(ND);
1892 }
1893
1894 // The easiest way to implement the restriction in [namespace.qual]p5
1895 // is to check whether any of the individual results found a tag
1896 // and, if so, to declare an ambiguity if the final result is not
1897 // a tag.
1898 bool FoundTag = false;
1899 bool FoundNonTag = false;
1900
1901 LookupResult LocalR(LookupResult::Temporary, R);
1902
1903 bool Found = false;
1904 while (!Queue.empty()) {
1905 NamespaceDecl *ND = Queue.pop_back_val();
1906
1907 // We go through some convolutions here to avoid copying results
1908 // between LookupResults.
1909 bool UseLocal = !R.empty();
1910 LookupResult &DirectR = UseLocal ? LocalR : R;
1911 bool FoundDirect = LookupDirect(S, DirectR, ND);
1912
1913 if (FoundDirect) {
1914 // First do any local hiding.
1915 DirectR.resolveKind();
1916
1917 // If the local result is a tag, remember that.
1918 if (DirectR.isSingleTagDecl())
1919 FoundTag = true;
1920 else
1921 FoundNonTag = true;
1922
1923 // Append the local results to the total results if necessary.
1924 if (UseLocal) {
1925 R.addAllDecls(LocalR);
1926 LocalR.clear();
1927 }
1928 }
1929
1930 // If we find names in this namespace, ignore its using directives.
1931 if (FoundDirect) {
1932 Found = true;
1933 continue;
1934 }
1935
1936 for (auto I : ND->using_directives()) {
1937 NamespaceDecl *Nom = I->getNominatedNamespace();
1938 if (S.isVisible(I) && Visited.insert(Nom).second)
1939 Queue.push_back(Nom);
1940 }
1941 }
1942
1943 if (Found) {
1944 if (FoundTag && FoundNonTag)
1945 R.setAmbiguousQualifiedTagHiding();
1946 else
1947 R.resolveKind();
1948 }
1949
1950 return Found;
1951}
1952
1953/// \brief Callback that looks for any member of a class with the given name.
1954static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1955 CXXBasePath &Path, DeclarationName Name) {
1956 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1957
1958 Path.Decls = BaseRecord->lookup(Name);
1959 return !Path.Decls.empty();
1960}
1961
1962/// \brief Determine whether the given set of member declarations contains only
1963/// static members, nested types, and enumerators.
1964template<typename InputIterator>
1965static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1966 Decl *D = (*First)->getUnderlyingDecl();
1967 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1968 return true;
1969
1970 if (isa<CXXMethodDecl>(D)) {
1971 // Determine whether all of the methods are static.
1972 bool AllMethodsAreStatic = true;
1973 for(; First != Last; ++First) {
1974 D = (*First)->getUnderlyingDecl();
1975
1976 if (!isa<CXXMethodDecl>(D)) {
1977 assert(isa<TagDecl>(D) && "Non-function must be a tag decl")(static_cast <bool> (isa<TagDecl>(D) && "Non-function must be a tag decl"
) ? void (0) : __assert_fail ("isa<TagDecl>(D) && \"Non-function must be a tag decl\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 1977, __extension__ __PRETTY_FUNCTION__))
;
1978 break;
1979 }
1980
1981 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1982 AllMethodsAreStatic = false;
1983 break;
1984 }
1985 }
1986
1987 if (AllMethodsAreStatic)
1988 return true;
1989 }
1990
1991 return false;
1992}
1993
1994/// \brief Perform qualified name lookup into a given context.
1995///
1996/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1997/// names when the context of those names is explicit specified, e.g.,
1998/// "std::vector" or "x->member", or as part of unqualified name lookup.
1999///
2000/// Different lookup criteria can find different names. For example, a
2001/// particular scope can have both a struct and a function of the same
2002/// name, and each can be found by certain lookup criteria. For more
2003/// information about lookup criteria, see the documentation for the
2004/// class LookupCriteria.
2005///
2006/// \param R captures both the lookup criteria and any lookup results found.
2007///
2008/// \param LookupCtx The context in which qualified name lookup will
2009/// search. If the lookup criteria permits, name lookup may also search
2010/// in the parent contexts or (for C++ classes) base classes.
2011///
2012/// \param InUnqualifiedLookup true if this is qualified name lookup that
2013/// occurs as part of unqualified name lookup.
2014///
2015/// \returns true if lookup succeeded, false if it failed.
2016bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2017 bool InUnqualifiedLookup) {
2018 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")(static_cast <bool> (LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? void (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2018, __extension__ __PRETTY_FUNCTION__))
;
2019
2020 if (!R.getLookupName())
2021 return false;
2022
2023 // Make sure that the declaration context is complete.
2024 assert((!isa<TagDecl>(LookupCtx) ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2028, __extension__ __PRETTY_FUNCTION__))
2025 LookupCtx->isDependentContext() ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2028, __extension__ __PRETTY_FUNCTION__))
2026 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2028, __extension__ __PRETTY_FUNCTION__))
2027 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2028, __extension__ __PRETTY_FUNCTION__))
2028 "Declaration context must already be complete!")(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2028, __extension__ __PRETTY_FUNCTION__))
;
2029
2030 struct QualifiedLookupInScope {
2031 bool oldVal;
2032 DeclContext *Context;
2033 // Set flag in DeclContext informing debugger that we're looking for qualified name
2034 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2035 oldVal = ctx->setUseQualifiedLookup();
2036 }
2037 ~QualifiedLookupInScope() {
2038 Context->setUseQualifiedLookup(oldVal);
2039 }
2040 } QL(LookupCtx);
2041
2042 if (LookupDirect(*this, R, LookupCtx)) {
2043 R.resolveKind();
2044 if (isa<CXXRecordDecl>(LookupCtx))
2045 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2046 return true;
2047 }
2048
2049 // Don't descend into implied contexts for redeclarations.
2050 // C++98 [namespace.qual]p6:
2051 // In a declaration for a namespace member in which the
2052 // declarator-id is a qualified-id, given that the qualified-id
2053 // for the namespace member has the form
2054 // nested-name-specifier unqualified-id
2055 // the unqualified-id shall name a member of the namespace
2056 // designated by the nested-name-specifier.
2057 // See also [class.mfct]p5 and [class.static.data]p2.
2058 if (R.isForRedeclaration())
2059 return false;
2060
2061 // If this is a namespace, look it up in the implied namespaces.
2062 if (LookupCtx->isFileContext())
2063 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2064
2065 // If this isn't a C++ class, we aren't allowed to look into base
2066 // classes, we're done.
2067 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2068 if (!LookupRec || !LookupRec->getDefinition())
2069 return false;
2070
2071 // If we're performing qualified name lookup into a dependent class,
2072 // then we are actually looking into a current instantiation. If we have any
2073 // dependent base classes, then we either have to delay lookup until
2074 // template instantiation time (at which point all bases will be available)
2075 // or we have to fail.
2076 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2077 LookupRec->hasAnyDependentBases()) {
2078 R.setNotFoundInCurrentInstantiation();
2079 return false;
2080 }
2081
2082 // Perform lookup into our base classes.
2083 CXXBasePaths Paths;
2084 Paths.setOrigin(LookupRec);
2085
2086 // Look for this member in our base classes
2087 bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2088 DeclarationName Name) = nullptr;
2089 switch (R.getLookupKind()) {
2090 case LookupObjCImplicitSelfParam:
2091 case LookupOrdinaryName:
2092 case LookupMemberName:
2093 case LookupRedeclarationWithLinkage:
2094 case LookupLocalFriendName:
2095 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2096 break;
2097
2098 case LookupTagName:
2099 BaseCallback = &CXXRecordDecl::FindTagMember;
2100 break;
2101
2102 case LookupAnyName:
2103 BaseCallback = &LookupAnyMember;
2104 break;
2105
2106 case LookupOMPReductionName:
2107 BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2108 break;
2109
2110 case LookupUsingDeclName:
2111 // This lookup is for redeclarations only.
2112
2113 case LookupOperatorName:
2114 case LookupNamespaceName:
2115 case LookupObjCProtocolName:
2116 case LookupLabel:
2117 // These lookups will never find a member in a C++ class (or base class).
2118 return false;
2119
2120 case LookupNestedNameSpecifierName:
2121 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2122 break;
2123 }
2124
2125 DeclarationName Name = R.getLookupName();
2126 if (!LookupRec->lookupInBases(
2127 [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2128 return BaseCallback(Specifier, Path, Name);
2129 },
2130 Paths))
2131 return false;
2132
2133 R.setNamingClass(LookupRec);
2134
2135 // C++ [class.member.lookup]p2:
2136 // [...] If the resulting set of declarations are not all from
2137 // sub-objects of the same type, or the set has a nonstatic member
2138 // and includes members from distinct sub-objects, there is an
2139 // ambiguity and the program is ill-formed. Otherwise that set is
2140 // the result of the lookup.
2141 QualType SubobjectType;
2142 int SubobjectNumber = 0;
2143 AccessSpecifier SubobjectAccess = AS_none;
2144
2145 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2146 Path != PathEnd; ++Path) {
2147 const CXXBasePathElement &PathElement = Path->back();
2148
2149 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2150 // across all paths.
2151 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2152
2153 // Determine whether we're looking at a distinct sub-object or not.
2154 if (SubobjectType.isNull()) {
2155 // This is the first subobject we've looked at. Record its type.
2156 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2157 SubobjectNumber = PathElement.SubobjectNumber;
2158 continue;
2159 }
2160
2161 if (SubobjectType
2162 != Context.getCanonicalType(PathElement.Base->getType())) {
2163 // We found members of the given name in two subobjects of
2164 // different types. If the declaration sets aren't the same, this
2165 // lookup is ambiguous.
2166 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2167 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2168 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2169 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2170
2171 while (FirstD != FirstPath->Decls.end() &&
2172 CurrentD != Path->Decls.end()) {
2173 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
2174 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
2175 break;
2176
2177 ++FirstD;
2178 ++CurrentD;
2179 }
2180
2181 if (FirstD == FirstPath->Decls.end() &&
2182 CurrentD == Path->Decls.end())
2183 continue;
2184 }
2185
2186 R.setAmbiguousBaseSubobjectTypes(Paths);
2187 return true;
2188 }
2189
2190 if (SubobjectNumber != PathElement.SubobjectNumber) {
2191 // We have a different subobject of the same type.
2192
2193 // C++ [class.member.lookup]p5:
2194 // A static member, a nested type or an enumerator defined in
2195 // a base class T can unambiguously be found even if an object
2196 // has more than one base class subobject of type T.
2197 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2198 continue;
2199
2200 // We have found a nonstatic member name in multiple, distinct
2201 // subobjects. Name lookup is ambiguous.
2202 R.setAmbiguousBaseSubobjects(Paths);
2203 return true;
2204 }
2205 }
2206
2207 // Lookup in a base class succeeded; return these results.
2208
2209 for (auto *D : Paths.front().Decls) {
2210 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2211 D->getAccess());
2212 R.addDecl(D, AS);
2213 }
2214 R.resolveKind();
2215 return true;
2216}
2217
2218/// \brief Performs qualified name lookup or special type of lookup for
2219/// "__super::" scope specifier.
2220///
2221/// This routine is a convenience overload meant to be called from contexts
2222/// that need to perform a qualified name lookup with an optional C++ scope
2223/// specifier that might require special kind of lookup.
2224///
2225/// \param R captures both the lookup criteria and any lookup results found.
2226///
2227/// \param LookupCtx The context in which qualified name lookup will
2228/// search.
2229///
2230/// \param SS An optional C++ scope-specifier.
2231///
2232/// \returns true if lookup succeeded, false if it failed.
2233bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2234 CXXScopeSpec &SS) {
2235 auto *NNS = SS.getScopeRep();
2236 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2237 return LookupInSuper(R, NNS->getAsRecordDecl());
2238 else
2239
2240 return LookupQualifiedName(R, LookupCtx);
2241}
2242
2243/// @brief Performs name lookup for a name that was parsed in the
2244/// source code, and may contain a C++ scope specifier.
2245///
2246/// This routine is a convenience routine meant to be called from
2247/// contexts that receive a name and an optional C++ scope specifier
2248/// (e.g., "N::M::x"). It will then perform either qualified or
2249/// unqualified name lookup (with LookupQualifiedName or LookupName,
2250/// respectively) on the given name and return those results. It will
2251/// perform a special type of lookup for "__super::" scope specifier.
2252///
2253/// @param S The scope from which unqualified name lookup will
2254/// begin.
2255///
2256/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2257///
2258/// @param EnteringContext Indicates whether we are going to enter the
2259/// context of the scope-specifier SS (if present).
2260///
2261/// @returns True if any decls were found (but possibly ambiguous)
2262bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2263 bool AllowBuiltinCreation, bool EnteringContext) {
2264 if (SS && SS->isInvalid()) {
2265 // When the scope specifier is invalid, don't even look for
2266 // anything.
2267 return false;
2268 }
2269
2270 if (SS && SS->isSet()) {
2271 NestedNameSpecifier *NNS = SS->getScopeRep();
2272 if (NNS->getKind() == NestedNameSpecifier::Super)
2273 return LookupInSuper(R, NNS->getAsRecordDecl());
2274
2275 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2276 // We have resolved the scope specifier to a particular declaration
2277 // contex, and will perform name lookup in that context.
2278 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2279 return false;
2280
2281 R.setContextRange(SS->getRange());
2282 return LookupQualifiedName(R, DC);
2283 }
2284
2285 // We could not resolve the scope specified to a specific declaration
2286 // context, which means that SS refers to an unknown specialization.
2287 // Name lookup can't find anything in this case.
2288 R.setNotFoundInCurrentInstantiation();
2289 R.setContextRange(SS->getRange());
2290 return false;
2291 }
2292
2293 // Perform unqualified name lookup starting in the given scope.
2294 return LookupName(R, S, AllowBuiltinCreation);
2295}
2296
2297/// \brief Perform qualified name lookup into all base classes of the given
2298/// class.
2299///
2300/// \param R captures both the lookup criteria and any lookup results found.
2301///
2302/// \param Class The context in which qualified name lookup will
2303/// search. Name lookup will search in all base classes merging the results.
2304///
2305/// @returns True if any decls were found (but possibly ambiguous)
2306bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2307 // The access-control rules we use here are essentially the rules for
2308 // doing a lookup in Class that just magically skipped the direct
2309 // members of Class itself. That is, the naming class is Class, and the
2310 // access includes the access of the base.
2311 for (const auto &BaseSpec : Class->bases()) {
2312 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2313 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2314 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2315 Result.setBaseObjectType(Context.getRecordType(Class));
2316 LookupQualifiedName(Result, RD);
2317
2318 // Copy the lookup results into the target, merging the base's access into
2319 // the path access.
2320 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2321 R.addDecl(I.getDecl(),
2322 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2323 I.getAccess()));
2324 }
2325
2326 Result.suppressDiagnostics();
2327 }
2328
2329 R.resolveKind();
2330 R.setNamingClass(Class);
2331
2332 return !R.empty();
2333}
2334
2335/// \brief Produce a diagnostic describing the ambiguity that resulted
2336/// from name lookup.
2337///
2338/// \param Result The result of the ambiguous lookup to be diagnosed.
2339void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2340 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")(static_cast <bool> (Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? void (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2340, __extension__ __PRETTY_FUNCTION__))
;
2341
2342 DeclarationName Name = Result.getLookupName();
2343 SourceLocation NameLoc = Result.getNameLoc();
2344 SourceRange LookupRange = Result.getContextRange();
2345
2346 switch (Result.getAmbiguityKind()) {
2347 case LookupResult::AmbiguousBaseSubobjects: {
2348 CXXBasePaths *Paths = Result.getBasePaths();
2349 QualType SubobjectType = Paths->front().back().Base->getType();
2350 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2351 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2352 << LookupRange;
2353
2354 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2355 while (isa<CXXMethodDecl>(*Found) &&
2356 cast<CXXMethodDecl>(*Found)->isStatic())
2357 ++Found;
2358
2359 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2360 break;
2361 }
2362
2363 case LookupResult::AmbiguousBaseSubobjectTypes: {
2364 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2365 << Name << LookupRange;
2366
2367 CXXBasePaths *Paths = Result.getBasePaths();
2368 std::set<Decl *> DeclsPrinted;
2369 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2370 PathEnd = Paths->end();
2371 Path != PathEnd; ++Path) {
2372 Decl *D = Path->Decls.front();
2373 if (DeclsPrinted.insert(D).second)
2374 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2375 }
2376 break;
2377 }
2378
2379 case LookupResult::AmbiguousTagHiding: {
2380 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2381
2382 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2383
2384 for (auto *D : Result)
2385 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2386 TagDecls.insert(TD);
2387 Diag(TD->getLocation(), diag::note_hidden_tag);
2388 }
2389
2390 for (auto *D : Result)
2391 if (!isa<TagDecl>(D))
2392 Diag(D->getLocation(), diag::note_hiding_object);
2393
2394 // For recovery purposes, go ahead and implement the hiding.
2395 LookupResult::Filter F = Result.makeFilter();
2396 while (F.hasNext()) {
2397 if (TagDecls.count(F.next()))
2398 F.erase();
2399 }
2400 F.done();
2401 break;
2402 }
2403
2404 case LookupResult::AmbiguousReference: {
2405 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2406
2407 for (auto *D : Result)
2408 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2409 break;
2410 }
2411 }
2412}
2413
2414namespace {
2415 struct AssociatedLookup {
2416 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2417 Sema::AssociatedNamespaceSet &Namespaces,
2418 Sema::AssociatedClassSet &Classes)
2419 : S(S), Namespaces(Namespaces), Classes(Classes),
2420 InstantiationLoc(InstantiationLoc) {
2421 }
2422
2423 Sema &S;
2424 Sema::AssociatedNamespaceSet &Namespaces;
2425 Sema::AssociatedClassSet &Classes;
2426 SourceLocation InstantiationLoc;
2427 };
2428} // end anonymous namespace
2429
2430static void
2431addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2432
2433static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2434 DeclContext *Ctx) {
2435 // Add the associated namespace for this class.
2436
2437 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2438 // be a locally scoped record.
2439
2440 // We skip out of inline namespaces. The innermost non-inline namespace
2441 // contains all names of all its nested inline namespaces anyway, so we can
2442 // replace the entire inline namespace tree with its root.
2443 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2444 Ctx->isInlineNamespace())
2445 Ctx = Ctx->getParent();
2446
2447 if (Ctx->isFileContext())
2448 Namespaces.insert(Ctx->getPrimaryContext());
2449}
2450
2451// \brief Add the associated classes and namespaces for argument-dependent
2452// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2453static void
2454addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2455 const TemplateArgument &Arg) {
2456 // C++ [basic.lookup.koenig]p2, last bullet:
2457 // -- [...] ;
2458 switch (Arg.getKind()) {
2459 case TemplateArgument::Null:
2460 break;
2461
2462 case TemplateArgument::Type:
2463 // [...] the namespaces and classes associated with the types of the
2464 // template arguments provided for template type parameters (excluding
2465 // template template parameters)
2466 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2467 break;
2468
2469 case TemplateArgument::Template:
2470 case TemplateArgument::TemplateExpansion: {
2471 // [...] the namespaces in which any template template arguments are
2472 // defined; and the classes in which any member templates used as
2473 // template template arguments are defined.
2474 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2475 if (ClassTemplateDecl *ClassTemplate
2476 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2477 DeclContext *Ctx = ClassTemplate->getDeclContext();
2478 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2479 Result.Classes.insert(EnclosingClass);
2480 // Add the associated namespace for this class.
2481 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2482 }
2483 break;
2484 }
2485
2486 case TemplateArgument::Declaration:
2487 case TemplateArgument::Integral:
2488 case TemplateArgument::Expression:
2489 case TemplateArgument::NullPtr:
2490 // [Note: non-type template arguments do not contribute to the set of
2491 // associated namespaces. ]
2492 break;
2493
2494 case TemplateArgument::Pack:
2495 for (const auto &P : Arg.pack_elements())
2496 addAssociatedClassesAndNamespaces(Result, P);
2497 break;
2498 }
2499}
2500
2501// \brief Add the associated classes and namespaces for
2502// argument-dependent lookup with an argument of class type
2503// (C++ [basic.lookup.koenig]p2).
2504static void
2505addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2506 CXXRecordDecl *Class) {
2507
2508 // Just silently ignore anything whose name is __va_list_tag.
2509 if (Class->getDeclName() == Result.S.VAListTagName)
2510 return;
2511
2512 // C++ [basic.lookup.koenig]p2:
2513 // [...]
2514 // -- If T is a class type (including unions), its associated
2515 // classes are: the class itself; the class of which it is a
2516 // member, if any; and its direct and indirect base
2517 // classes. Its associated namespaces are the namespaces in
2518 // which its associated classes are defined.
2519
2520 // Add the class of which it is a member, if any.
2521 DeclContext *Ctx = Class->getDeclContext();
2522 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2523 Result.Classes.insert(EnclosingClass);
2524 // Add the associated namespace for this class.
2525 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2526
2527 // Add the class itself. If we've already seen this class, we don't
2528 // need to visit base classes.
2529 //
2530 // FIXME: That's not correct, we may have added this class only because it
2531 // was the enclosing class of another class, and in that case we won't have
2532 // added its base classes yet.
2533 if (!Result.Classes.insert(Class))
2534 return;
2535
2536 // -- If T is a template-id, its associated namespaces and classes are
2537 // the namespace in which the template is defined; for member
2538 // templates, the member template's class; the namespaces and classes
2539 // associated with the types of the template arguments provided for
2540 // template type parameters (excluding template template parameters); the
2541 // namespaces in which any template template arguments are defined; and
2542 // the classes in which any member templates used as template template
2543 // arguments are defined. [Note: non-type template arguments do not
2544 // contribute to the set of associated namespaces. ]
2545 if (ClassTemplateSpecializationDecl *Spec
2546 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2547 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2548 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2549 Result.Classes.insert(EnclosingClass);
2550 // Add the associated namespace for this class.
2551 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2552
2553 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2554 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2555 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2556 }
2557
2558 // Only recurse into base classes for complete types.
2559 if (!Result.S.isCompleteType(Result.InstantiationLoc,
2560 Result.S.Context.getRecordType(Class)))
2561 return;
2562
2563 // Add direct and indirect base classes along with their associated
2564 // namespaces.
2565 SmallVector<CXXRecordDecl *, 32> Bases;
2566 Bases.push_back(Class);
2567 while (!Bases.empty()) {
2568 // Pop this class off the stack.
2569 Class = Bases.pop_back_val();
2570
2571 // Visit the base classes.
2572 for (const auto &Base : Class->bases()) {
2573 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2574 // In dependent contexts, we do ADL twice, and the first time around,
2575 // the base type might be a dependent TemplateSpecializationType, or a
2576 // TemplateTypeParmType. If that happens, simply ignore it.
2577 // FIXME: If we want to support export, we probably need to add the
2578 // namespace of the template in a TemplateSpecializationType, or even
2579 // the classes and namespaces of known non-dependent arguments.
2580 if (!BaseType)
2581 continue;
2582 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2583 if (Result.Classes.insert(BaseDecl)) {
2584 // Find the associated namespace for this base class.
2585 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2586 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2587
2588 // Make sure we visit the bases of this base class.
2589 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2590 Bases.push_back(BaseDecl);
2591 }
2592 }
2593 }
2594}
2595
2596// \brief Add the associated classes and namespaces for
2597// argument-dependent lookup with an argument of type T
2598// (C++ [basic.lookup.koenig]p2).
2599static void
2600addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2601 // C++ [basic.lookup.koenig]p2:
2602 //
2603 // For each argument type T in the function call, there is a set
2604 // of zero or more associated namespaces and a set of zero or more
2605 // associated classes to be considered. The sets of namespaces and
2606 // classes is determined entirely by the types of the function
2607 // arguments (and the namespace of any template template
2608 // argument). Typedef names and using-declarations used to specify
2609 // the types do not contribute to this set. The sets of namespaces
2610 // and classes are determined in the following way:
2611
2612 SmallVector<const Type *, 16> Queue;
2613 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2614
2615 while (true) {
2616 switch (T->getTypeClass()) {
2617
2618#define TYPE(Class, Base)
2619#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2620#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2621#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2622#define ABSTRACT_TYPE(Class, Base)
2623#include "clang/AST/TypeNodes.def"
2624 // T is canonical. We can also ignore dependent types because
2625 // we don't need to do ADL at the definition point, but if we
2626 // wanted to implement template export (or if we find some other
2627 // use for associated classes and namespaces...) this would be
2628 // wrong.
2629 break;
2630
2631 // -- If T is a pointer to U or an array of U, its associated
2632 // namespaces and classes are those associated with U.
2633 case Type::Pointer:
2634 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2635 continue;
2636 case Type::ConstantArray:
2637 case Type::IncompleteArray:
2638 case Type::VariableArray:
2639 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2640 continue;
2641
2642 // -- If T is a fundamental type, its associated sets of
2643 // namespaces and classes are both empty.
2644 case Type::Builtin:
2645 break;
2646
2647 // -- If T is a class type (including unions), its associated
2648 // classes are: the class itself; the class of which it is a
2649 // member, if any; and its direct and indirect base
2650 // classes. Its associated namespaces are the namespaces in
2651 // which its associated classes are defined.
2652 case Type::Record: {
2653 CXXRecordDecl *Class =
2654 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2655 addAssociatedClassesAndNamespaces(Result, Class);
2656 break;
2657 }
2658
2659 // -- If T is an enumeration type, its associated namespace is
2660 // the namespace in which it is defined. If it is class
2661 // member, its associated class is the member's class; else
2662 // it has no associated class.
2663 case Type::Enum: {
2664 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2665
2666 DeclContext *Ctx = Enum->getDeclContext();
2667 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2668 Result.Classes.insert(EnclosingClass);
2669
2670 // Add the associated namespace for this class.
2671 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2672
2673 break;
2674 }
2675
2676 // -- If T is a function type, its associated namespaces and
2677 // classes are those associated with the function parameter
2678 // types and those associated with the return type.
2679 case Type::FunctionProto: {
2680 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2681 for (const auto &Arg : Proto->param_types())
2682 Queue.push_back(Arg.getTypePtr());
2683 // fallthrough
2684 LLVM_FALLTHROUGH[[clang::fallthrough]];
2685 }
2686 case Type::FunctionNoProto: {
2687 const FunctionType *FnType = cast<FunctionType>(T);
2688 T = FnType->getReturnType().getTypePtr();
2689 continue;
2690 }
2691
2692 // -- If T is a pointer to a member function of a class X, its
2693 // associated namespaces and classes are those associated
2694 // with the function parameter types and return type,
2695 // together with those associated with X.
2696 //
2697 // -- If T is a pointer to a data member of class X, its
2698 // associated namespaces and classes are those associated
2699 // with the member type together with those associated with
2700 // X.
2701 case Type::MemberPointer: {
2702 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2703
2704 // Queue up the class type into which this points.
2705 Queue.push_back(MemberPtr->getClass());
2706
2707 // And directly continue with the pointee type.
2708 T = MemberPtr->getPointeeType().getTypePtr();
2709 continue;
2710 }
2711
2712 // As an extension, treat this like a normal pointer.
2713 case Type::BlockPointer:
2714 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2715 continue;
2716
2717 // References aren't covered by the standard, but that's such an
2718 // obvious defect that we cover them anyway.
2719 case Type::LValueReference:
2720 case Type::RValueReference:
2721 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2722 continue;
2723
2724 // These are fundamental types.
2725 case Type::Vector:
2726 case Type::ExtVector:
2727 case Type::Complex:
2728 break;
2729
2730 // Non-deduced auto types only get here for error cases.
2731 case Type::Auto:
2732 case Type::DeducedTemplateSpecialization:
2733 break;
2734
2735 // If T is an Objective-C object or interface type, or a pointer to an
2736 // object or interface type, the associated namespace is the global
2737 // namespace.
2738 case Type::ObjCObject:
2739 case Type::ObjCInterface:
2740 case Type::ObjCObjectPointer:
2741 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2742 break;
2743
2744 // Atomic types are just wrappers; use the associations of the
2745 // contained type.
2746 case Type::Atomic:
2747 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2748 continue;
2749 case Type::Pipe:
2750 T = cast<PipeType>(T)->getElementType().getTypePtr();
2751 continue;
2752 }
2753
2754 if (Queue.empty())
2755 break;
2756 T = Queue.pop_back_val();
2757 }
2758}
2759
2760/// \brief Find the associated classes and namespaces for
2761/// argument-dependent lookup for a call with the given set of
2762/// arguments.
2763///
2764/// This routine computes the sets of associated classes and associated
2765/// namespaces searched by argument-dependent lookup
2766/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2767void Sema::FindAssociatedClassesAndNamespaces(
2768 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2769 AssociatedNamespaceSet &AssociatedNamespaces,
2770 AssociatedClassSet &AssociatedClasses) {
2771 AssociatedNamespaces.clear();
2772 AssociatedClasses.clear();
2773
2774 AssociatedLookup Result(*this, InstantiationLoc,
2775 AssociatedNamespaces, AssociatedClasses);
2776
2777 // C++ [basic.lookup.koenig]p2:
2778 // For each argument type T in the function call, there is a set
2779 // of zero or more associated namespaces and a set of zero or more
2780 // associated classes to be considered. The sets of namespaces and
2781 // classes is determined entirely by the types of the function
2782 // arguments (and the namespace of any template template
2783 // argument).
2784 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2785 Expr *Arg = Args[ArgIdx];
2786
2787 if (Arg->getType() != Context.OverloadTy) {
2788 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2789 continue;
2790 }
2791
2792 // [...] In addition, if the argument is the name or address of a
2793 // set of overloaded functions and/or function templates, its
2794 // associated classes and namespaces are the union of those
2795 // associated with each of the members of the set: the namespace
2796 // in which the function or function template is defined and the
2797 // classes and namespaces associated with its (non-dependent)
2798 // parameter types and return type.
2799 Arg = Arg->IgnoreParens();
2800 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2801 if (unaryOp->getOpcode() == UO_AddrOf)
2802 Arg = unaryOp->getSubExpr();
2803
2804 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2805 if (!ULE) continue;
2806
2807 for (const auto *D : ULE->decls()) {
2808 // Look through any using declarations to find the underlying function.
2809 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2810
2811 // Add the classes and namespaces associated with the parameter
2812 // types and return type of this function.
2813 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2814 }
2815 }
2816}
2817
2818NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2819 SourceLocation Loc,
2820 LookupNameKind NameKind,
2821 RedeclarationKind Redecl) {
2822 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2823 LookupName(R, S);
2824 return R.getAsSingle<NamedDecl>();
2825}
2826
2827/// \brief Find the protocol with the given name, if any.
2828ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2829 SourceLocation IdLoc,
2830 RedeclarationKind Redecl) {
2831 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2832 LookupObjCProtocolName, Redecl);
2833 return cast_or_null<ObjCProtocolDecl>(D);
2834}
2835
2836void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2837 QualType T1, QualType T2,
2838 UnresolvedSetImpl &Functions) {
2839 // C++ [over.match.oper]p3:
2840 // -- The set of non-member candidates is the result of the
2841 // unqualified lookup of operator@ in the context of the
2842 // expression according to the usual rules for name lookup in
2843 // unqualified function calls (3.4.2) except that all member
2844 // functions are ignored.
2845 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2846 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2847 LookupName(Operators, S);
2848
2849 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")(static_cast <bool> (!Operators.isAmbiguous() &&
"Operator lookup cannot be ambiguous") ? void (0) : __assert_fail
("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2849, __extension__ __PRETTY_FUNCTION__))
;
2850 Functions.append(Operators.begin(), Operators.end());
2851}
2852
2853Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
2854 CXXSpecialMember SM,
2855 bool ConstArg,
2856 bool VolatileArg,
2857 bool RValueThis,
2858 bool ConstThis,
2859 bool VolatileThis) {
2860 assert(CanDeclareSpecialMemberFunction(RD) &&(static_cast <bool> (CanDeclareSpecialMemberFunction(RD
) && "doing special member lookup into record that isn't fully complete"
) ? void (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2861, __extension__ __PRETTY_FUNCTION__))
2861 "doing special member lookup into record that isn't fully complete")(static_cast <bool> (CanDeclareSpecialMemberFunction(RD
) && "doing special member lookup into record that isn't fully complete"
) ? void (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2861, __extension__ __PRETTY_FUNCTION__))
;
2862 RD = RD->getDefinition();
2863 if (RValueThis || ConstThis || VolatileThis)
2864 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(static_cast <bool> ((SM == CXXCopyAssignment || SM == CXXMoveAssignment
) && "constructors and destructors always have unqualified lvalue this"
) ? void (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2865, __extension__ __PRETTY_FUNCTION__))
2865 "constructors and destructors always have unqualified lvalue this")(static_cast <bool> ((SM == CXXCopyAssignment || SM == CXXMoveAssignment
) && "constructors and destructors always have unqualified lvalue this"
) ? void (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2865, __extension__ __PRETTY_FUNCTION__))
;
2866 if (ConstArg || VolatileArg)
2867 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(static_cast <bool> ((SM != CXXDefaultConstructor &&
SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"
) ? void (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2868, __extension__ __PRETTY_FUNCTION__))
2868 "parameter-less special members can't have qualified arguments")(static_cast <bool> ((SM != CXXDefaultConstructor &&
SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"
) ? void (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2868, __extension__ __PRETTY_FUNCTION__))
;
2869
2870 // FIXME: Get the caller to pass in a location for the lookup.
2871 SourceLocation LookupLoc = RD->getLocation();
2872
2873 llvm::FoldingSetNodeID ID;
2874 ID.AddPointer(RD);
2875 ID.AddInteger(SM);
2876 ID.AddInteger(ConstArg);
2877 ID.AddInteger(VolatileArg);
2878 ID.AddInteger(RValueThis);
2879 ID.AddInteger(ConstThis);
2880 ID.AddInteger(VolatileThis);
2881
2882 void *InsertPoint;
2883 SpecialMemberOverloadResultEntry *Result =
2884 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2885
2886 // This was already cached
2887 if (Result)
2888 return *Result;
2889
2890 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
2891 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
2892 SpecialMemberCache.InsertNode(Result, InsertPoint);
2893
2894 if (SM == CXXDestructor) {
2895 if (RD->needsImplicitDestructor())
2896 DeclareImplicitDestructor(RD);
2897 CXXDestructorDecl *DD = RD->getDestructor();
2898 assert(DD && "record without a destructor")(static_cast <bool> (DD && "record without a destructor"
) ? void (0) : __assert_fail ("DD && \"record without a destructor\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2898, __extension__ __PRETTY_FUNCTION__))
;
2899 Result->setMethod(DD);
2900 Result->setKind(DD->isDeleted() ?
2901 SpecialMemberOverloadResult::NoMemberOrDeleted :
2902 SpecialMemberOverloadResult::Success);
2903 return *Result;
2904 }
2905
2906 // Prepare for overload resolution. Here we construct a synthetic argument
2907 // if necessary and make sure that implicit functions are declared.
2908 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2909 DeclarationName Name;
2910 Expr *Arg = nullptr;
2911 unsigned NumArgs;
2912
2913 QualType ArgType = CanTy;
2914 ExprValueKind VK = VK_LValue;
2915
2916 if (SM == CXXDefaultConstructor) {
2917 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2918 NumArgs = 0;
2919 if (RD->needsImplicitDefaultConstructor())
2920 DeclareImplicitDefaultConstructor(RD);
2921 } else {
2922 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2923 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2924 if (RD->needsImplicitCopyConstructor())
2925 DeclareImplicitCopyConstructor(RD);
2926 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2927 DeclareImplicitMoveConstructor(RD);
2928 } else {
2929 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2930 if (RD->needsImplicitCopyAssignment())
2931 DeclareImplicitCopyAssignment(RD);
2932 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2933 DeclareImplicitMoveAssignment(RD);
2934 }
2935
2936 if (ConstArg)
2937 ArgType.addConst();
2938 if (VolatileArg)
2939 ArgType.addVolatile();
2940
2941 // This isn't /really/ specified by the standard, but it's implied
2942 // we should be working from an RValue in the case of move to ensure
2943 // that we prefer to bind to rvalue references, and an LValue in the
2944 // case of copy to ensure we don't bind to rvalue references.
2945 // Possibly an XValue is actually correct in the case of move, but
2946 // there is no semantic difference for class types in this restricted
2947 // case.
2948 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2949 VK = VK_LValue;
2950 else
2951 VK = VK_RValue;
2952 }
2953
2954 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
2955
2956 if (SM != CXXDefaultConstructor) {
2957 NumArgs = 1;
2958 Arg = &FakeArg;
2959 }
2960
2961 // Create the object argument
2962 QualType ThisTy = CanTy;
2963 if (ConstThis)
2964 ThisTy.addConst();
2965 if (VolatileThis)
2966 ThisTy.addVolatile();
2967 Expr::Classification Classification =
2968 OpaqueValueExpr(LookupLoc, ThisTy,
2969 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2970
2971 // Now we perform lookup on the name we computed earlier and do overload
2972 // resolution. Lookup is only performed directly into the class since there
2973 // will always be a (possibly implicit) declaration to shadow any others.
2974 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
2975 DeclContext::lookup_result R = RD->lookup(Name);
2976
2977 if (R.empty()) {
2978 // We might have no default constructor because we have a lambda's closure
2979 // type, rather than because there's some other declared constructor.
2980 // Every class has a copy/move constructor, copy/move assignment, and
2981 // destructor.
2982 assert(SM == CXXDefaultConstructor &&(static_cast <bool> (SM == CXXDefaultConstructor &&
"lookup for a constructor or assignment operator was empty")
? void (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2983, __extension__ __PRETTY_FUNCTION__))
2983 "lookup for a constructor or assignment operator was empty")(static_cast <bool> (SM == CXXDefaultConstructor &&
"lookup for a constructor or assignment operator was empty")
? void (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 2983, __extension__ __PRETTY_FUNCTION__))
;
2984 Result->setMethod(nullptr);
2985 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2986 return *Result;
2987 }
2988
2989 // Copy the candidates as our processing of them may load new declarations
2990 // from an external source and invalidate lookup_result.
2991 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2992
2993 for (NamedDecl *CandDecl : Candidates) {
2994 if (CandDecl->isInvalidDecl())
2995 continue;
2996
2997 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
2998 auto CtorInfo = getConstructorInfo(Cand);
2999 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3000 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3001 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3002 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3003 else if (CtorInfo)
3004 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3005 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3006 else
3007 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3008 true);
3009 } else if (FunctionTemplateDecl *Tmpl =
3010 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3011 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3012 AddMethodTemplateCandidate(
3013 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3014 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3015 else if (CtorInfo)
3016 AddTemplateOverloadCandidate(
3017 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3018 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3019 else
3020 AddTemplateOverloadCandidate(
3021 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3022 } else {
3023 assert(isa<UsingDecl>(Cand.getDecl()) &&(static_cast <bool> (isa<UsingDecl>(Cand.getDecl(
)) && "illegal Kind of operator = Decl") ? void (0) :
__assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3024, __extension__ __PRETTY_FUNCTION__))
3024 "illegal Kind of operator = Decl")(static_cast <bool> (isa<UsingDecl>(Cand.getDecl(
)) && "illegal Kind of operator = Decl") ? void (0) :
__assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3024, __extension__ __PRETTY_FUNCTION__))
;
3025 }
3026 }
3027
3028 OverloadCandidateSet::iterator Best;
3029 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3030 case OR_Success:
3031 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3032 Result->setKind(SpecialMemberOverloadResult::Success);
3033 break;
3034
3035 case OR_Deleted:
3036 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3037 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3038 break;
3039
3040 case OR_Ambiguous:
3041 Result->setMethod(nullptr);
3042 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3043 break;
3044
3045 case OR_No_Viable_Function:
3046 Result->setMethod(nullptr);
3047 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3048 break;
3049 }
3050
3051 return *Result;
3052}
3053
3054/// \brief Look up the default constructor for the given class.
3055CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3056 SpecialMemberOverloadResult Result =
3057 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3058 false, false);
3059
3060 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3061}
3062
3063/// \brief Look up the copying constructor for the given class.
3064CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3065 unsigned Quals) {
3066 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3067, __extension__ __PRETTY_FUNCTION__))
3067 "non-const, non-volatile qualifiers for copy ctor arg")(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3067, __extension__ __PRETTY_FUNCTION__))
;
3068 SpecialMemberOverloadResult Result =
3069 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3070 Quals & Qualifiers::Volatile, false, false, false);
3071
3072 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3073}
3074
3075/// \brief Look up the moving constructor for the given class.
3076CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3077 unsigned Quals) {
3078 SpecialMemberOverloadResult Result =
3079 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3080 Quals & Qualifiers::Volatile, false, false, false);
3081
3082 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3083}
3084
3085/// \brief Look up the constructors for the given class.
3086DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3087 // If the implicit constructors have not yet been declared, do so now.
3088 if (CanDeclareSpecialMemberFunction(Class)) {
3089 if (Class->needsImplicitDefaultConstructor())
3090 DeclareImplicitDefaultConstructor(Class);
3091 if (Class->needsImplicitCopyConstructor())
3092 DeclareImplicitCopyConstructor(Class);
3093 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3094 DeclareImplicitMoveConstructor(Class);
3095 }
3096
3097 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3098 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3099 return Class->lookup(Name);
3100}
3101
3102/// \brief Look up the copying assignment operator for the given class.
3103CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3104 unsigned Quals, bool RValueThis,
3105 unsigned ThisQuals) {
3106 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3107, __extension__ __PRETTY_FUNCTION__))
3107 "non-const, non-volatile qualifiers for copy assignment arg")(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3107, __extension__ __PRETTY_FUNCTION__))
;
3108 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3109, __extension__ __PRETTY_FUNCTION__))
3109 "non-const, non-volatile qualifiers for copy assignment this")(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3109, __extension__ __PRETTY_FUNCTION__))
;
3110 SpecialMemberOverloadResult Result =
3111 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3112 Quals & Qualifiers::Volatile, RValueThis,
3113 ThisQuals & Qualifiers::Const,
3114 ThisQuals & Qualifiers::Volatile);
3115
3116 return Result.getMethod();
3117}
3118
3119/// \brief Look up the moving assignment operator for the given class.
3120CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3121 unsigned Quals,
3122 bool RValueThis,
3123 unsigned ThisQuals) {
3124 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3125, __extension__ __PRETTY_FUNCTION__))
3125 "non-const, non-volatile qualifiers for copy assignment this")(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3125, __extension__ __PRETTY_FUNCTION__))
;
3126 SpecialMemberOverloadResult Result =
3127 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3128 Quals & Qualifiers::Volatile, RValueThis,
3129 ThisQuals & Qualifiers::Const,
3130 ThisQuals & Qualifiers::Volatile);
3131
3132 return Result.getMethod();
3133}
3134
3135/// \brief Look for the destructor of the given class.
3136///
3137/// During semantic analysis, this routine should be used in lieu of
3138/// CXXRecordDecl::getDestructor().
3139///
3140/// \returns The destructor for this class.
3141CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3142 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3143 false, false, false,
3144 false, false).getMethod());
3145}
3146
3147/// LookupLiteralOperator - Determine which literal operator should be used for
3148/// a user-defined literal, per C++11 [lex.ext].
3149///
3150/// Normal overload resolution is not used to select which literal operator to
3151/// call for a user-defined literal. Look up the provided literal operator name,
3152/// and filter the results to the appropriate set for the given argument types.
3153Sema::LiteralOperatorLookupResult
3154Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3155 ArrayRef<QualType> ArgTys,
3156 bool AllowRaw, bool AllowTemplate,
3157 bool AllowStringTemplate, bool DiagnoseMissing) {
3158 LookupName(R, S);
3159 assert(R.getResultKind() != LookupResult::Ambiguous &&(static_cast <bool> (R.getResultKind() != LookupResult::
Ambiguous && "literal operator lookup can't be ambiguous"
) ? void (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3160, __extension__ __PRETTY_FUNCTION__))
3160 "literal operator lookup can't be ambiguous")(static_cast <bool> (R.getResultKind() != LookupResult::
Ambiguous && "literal operator lookup can't be ambiguous"
) ? void (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3160, __extension__ __PRETTY_FUNCTION__))
;
3161
3162 // Filter the lookup results appropriately.
3163 LookupResult::Filter F = R.makeFilter();
3164
3165 bool FoundRaw = false;
3166 bool FoundTemplate = false;
3167 bool FoundStringTemplate = false;
3168 bool FoundExactMatch = false;
3169
3170 while (F.hasNext()) {
3171 Decl *D = F.next();
3172 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3173 D = USD->getTargetDecl();
3174
3175 // If the declaration we found is invalid, skip it.
3176 if (D->isInvalidDecl()) {
3177 F.erase();
3178 continue;
3179 }
3180
3181 bool IsRaw = false;
3182 bool IsTemplate = false;
3183 bool IsStringTemplate = false;
3184 bool IsExactMatch = false;
3185
3186 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3187 if (FD->getNumParams() == 1 &&
3188 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3189 IsRaw = true;
3190 else if (FD->getNumParams() == ArgTys.size()) {
3191 IsExactMatch = true;
3192 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3193 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3194 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3195 IsExactMatch = false;
3196 break;
3197 }
3198 }
3199 }
3200 }
3201 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3202 TemplateParameterList *Params = FD->getTemplateParameters();
3203 if (Params->size() == 1)
3204 IsTemplate = true;
3205 else
3206 IsStringTemplate = true;
3207 }
3208
3209 if (IsExactMatch) {
3210 FoundExactMatch = true;
3211 AllowRaw = false;
3212 AllowTemplate = false;
3213 AllowStringTemplate = false;
3214 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3215 // Go through again and remove the raw and template decls we've
3216 // already found.
3217 F.restart();
3218 FoundRaw = FoundTemplate = FoundStringTemplate = false;
3219 }
3220 } else if (AllowRaw && IsRaw) {
3221 FoundRaw = true;
3222 } else if (AllowTemplate && IsTemplate) {
3223 FoundTemplate = true;
3224 } else if (AllowStringTemplate && IsStringTemplate) {
3225 FoundStringTemplate = true;
3226 } else {
3227 F.erase();
3228 }
3229 }
3230
3231 F.done();
3232
3233 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3234 // parameter type, that is used in preference to a raw literal operator
3235 // or literal operator template.
3236 if (FoundExactMatch)
3237 return LOLR_Cooked;
3238
3239 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3240 // operator template, but not both.
3241 if (FoundRaw && FoundTemplate) {
3242 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3243 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3244 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3245 return LOLR_Error;
3246 }
3247
3248 if (FoundRaw)
3249 return LOLR_Raw;
3250
3251 if (FoundTemplate)
3252 return LOLR_Template;
3253
3254 if (FoundStringTemplate)
3255 return LOLR_StringTemplate;
3256
3257 // Didn't find anything we could use.
3258 if (DiagnoseMissing) {
3259 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3260 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3261 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3262 << (AllowTemplate || AllowStringTemplate);
3263 return LOLR_Error;
3264 }
3265
3266 return LOLR_ErrorNoDiagnostic;
3267}
3268
3269void ADLResult::insert(NamedDecl *New) {
3270 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3271
3272 // If we haven't yet seen a decl for this key, or the last decl
3273 // was exactly this one, we're done.
3274 if (Old == nullptr || Old == New) {
3275 Old = New;
3276 return;
3277 }
3278
3279 // Otherwise, decide which is a more recent redeclaration.
3280 FunctionDecl *OldFD = Old->getAsFunction();
3281 FunctionDecl *NewFD = New->getAsFunction();
3282
3283 FunctionDecl *Cursor = NewFD;
3284 while (true) {
3285 Cursor = Cursor->getPreviousDecl();
3286
3287 // If we got to the end without finding OldFD, OldFD is the newer
3288 // declaration; leave things as they are.
3289 if (!Cursor) return;
3290
3291 // If we do find OldFD, then NewFD is newer.
3292 if (Cursor == OldFD) break;
3293
3294 // Otherwise, keep looking.
3295 }
3296
3297 Old = New;
3298}
3299
3300void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3301 ArrayRef<Expr *> Args, ADLResult &Result) {
3302 // Find all of the associated namespaces and classes based on the
3303 // arguments we have.
3304 AssociatedNamespaceSet AssociatedNamespaces;
3305 AssociatedClassSet AssociatedClasses;
3306 FindAssociatedClassesAndNamespaces(Loc, Args,
3307 AssociatedNamespaces,
3308 AssociatedClasses);
3309
3310 // C++ [basic.lookup.argdep]p3:
3311 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3312 // and let Y be the lookup set produced by argument dependent
3313 // lookup (defined as follows). If X contains [...] then Y is
3314 // empty. Otherwise Y is the set of declarations found in the
3315 // namespaces associated with the argument types as described
3316 // below. The set of declarations found by the lookup of the name
3317 // is the union of X and Y.
3318 //
3319 // Here, we compute Y and add its members to the overloaded
3320 // candidate set.
3321 for (auto *NS : AssociatedNamespaces) {
3322 // When considering an associated namespace, the lookup is the
3323 // same as the lookup performed when the associated namespace is
3324 // used as a qualifier (3.4.3.2) except that:
3325 //
3326 // -- Any using-directives in the associated namespace are
3327 // ignored.
3328 //
3329 // -- Any namespace-scope friend functions declared in
3330 // associated classes are visible within their respective
3331 // namespaces even if they are not visible during an ordinary
3332 // lookup (11.4).
3333 DeclContext::lookup_result R = NS->lookup(Name);
3334 for (auto *D : R) {
3335 auto *Underlying = D;
3336 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3337 Underlying = USD->getTargetDecl();
3338
3339 if (!isa<FunctionDecl>(Underlying) &&
3340 !isa<FunctionTemplateDecl>(Underlying))
3341 continue;
3342
3343 if (!isVisible(D)) {
3344 D = findAcceptableDecl(
3345 *this, D, (Decl::IDNS_Ordinary | Decl::IDNS_OrdinaryFriend));
3346 if (!D)
3347 continue;
3348 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3349 Underlying = USD->getTargetDecl();
3350 }
3351
3352 // If the only declaration here is an ordinary friend, consider
3353 // it only if it was declared in an associated classes.
3354 if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
3355 // If it's neither ordinarily visible nor a friend, we can't find it.
3356 if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
3357 continue;
3358
3359 bool DeclaredInAssociatedClass = false;
3360 for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
3361 DeclContext *LexDC = DI->getLexicalDeclContext();
3362 if (isa<CXXRecordDecl>(LexDC) &&
3363 AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
3364 isVisible(cast<NamedDecl>(DI))) {
3365 DeclaredInAssociatedClass = true;
3366 break;
3367 }
3368 }
3369 if (!DeclaredInAssociatedClass)
3370 continue;
3371 }
3372
3373 // FIXME: Preserve D as the FoundDecl.
3374 Result.insert(Underlying);
3375 }
3376 }
3377}
3378
3379//----------------------------------------------------------------------------
3380// Search for all visible declarations.
3381//----------------------------------------------------------------------------
3382VisibleDeclConsumer::~VisibleDeclConsumer() { }
3383
3384bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3385
3386namespace {
3387
3388class ShadowContextRAII;
3389
3390class VisibleDeclsRecord {
3391public:
3392 /// \brief An entry in the shadow map, which is optimized to store a
3393 /// single declaration (the common case) but can also store a list
3394 /// of declarations.
3395 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3396
3397private:
3398 /// \brief A mapping from declaration names to the declarations that have
3399 /// this name within a particular scope.
3400 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3401
3402 /// \brief A list of shadow maps, which is used to model name hiding.
3403 std::list<ShadowMap> ShadowMaps;
3404
3405 /// \brief The declaration contexts we have already visited.
3406 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3407
3408 friend class ShadowContextRAII;
3409
3410public:
3411 /// \brief Determine whether we have already visited this context
3412 /// (and, if not, note that we are going to visit that context now).
3413 bool visitedContext(DeclContext *Ctx) {
3414 return !VisitedContexts.insert(Ctx).second;
3415 }
3416
3417 bool alreadyVisitedContext(DeclContext *Ctx) {
3418 return VisitedContexts.count(Ctx);
3419 }
3420
3421 /// \brief Determine whether the given declaration is hidden in the
3422 /// current scope.
3423 ///
3424 /// \returns the declaration that hides the given declaration, or
3425 /// NULL if no such declaration exists.
3426 NamedDecl *checkHidden(NamedDecl *ND);
3427
3428 /// \brief Add a declaration to the current shadow map.
3429 void add(NamedDecl *ND) {
3430 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3431 }
3432};
3433
3434/// \brief RAII object that records when we've entered a shadow context.
3435class ShadowContextRAII {
3436 VisibleDeclsRecord &Visible;
3437
3438 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3439
3440public:
3441 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3442 Visible.ShadowMaps.emplace_back();
3443 }
3444
3445 ~ShadowContextRAII() {
3446 Visible.ShadowMaps.pop_back();
3447 }
3448};
3449
3450} // end anonymous namespace
3451
3452NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3453 unsigned IDNS = ND->getIdentifierNamespace();
3454 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3455 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3456 SM != SMEnd; ++SM) {
3457 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3458 if (Pos == SM->end())
3459 continue;
3460
3461 for (auto *D : Pos->second) {
3462 // A tag declaration does not hide a non-tag declaration.
3463 if (D->hasTagIdentifierNamespace() &&
3464 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3465 Decl::IDNS_ObjCProtocol)))
3466 continue;
3467
3468 // Protocols are in distinct namespaces from everything else.
3469 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3470 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3471 D->getIdentifierNamespace() != IDNS)
3472 continue;
3473
3474 // Functions and function templates in the same scope overload
3475 // rather than hide. FIXME: Look for hiding based on function
3476 // signatures!
3477 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3478 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3479 SM == ShadowMaps.rbegin())
3480 continue;
3481
3482 // A shadow declaration that's created by a resolved using declaration
3483 // is not hidden by the same using declaration.
3484 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3485 cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3486 continue;
3487
3488 // We've found a declaration that hides this one.
3489 return D;
3490 }
3491 }
3492
3493 return nullptr;
3494}
3495
3496static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3497 bool QualifiedNameLookup,
3498 bool InBaseClass,
3499 VisibleDeclConsumer &Consumer,
3500 VisibleDeclsRecord &Visited,
3501 bool IncludeDependentBases,
3502 bool LoadExternal) {
3503 if (!Ctx)
3504 return;
3505
3506 // Make sure we don't visit the same context twice.
3507 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3508 return;
3509
3510 Consumer.EnteredContext(Ctx);
3511
3512 // Outside C++, lookup results for the TU live on identifiers.
3513 if (isa<TranslationUnitDecl>(Ctx) &&
3514 !Result.getSema().getLangOpts().CPlusPlus) {
3515 auto &S = Result.getSema();
3516 auto &Idents = S.Context.Idents;
3517
3518 // Ensure all external identifiers are in the identifier table.
3519 if (LoadExternal)
3520 if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3521 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3522 for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3523 Idents.get(Name);
3524 }
3525
3526 // Walk all lookup results in the TU for each identifier.
3527 for (const auto &Ident : Idents) {
3528 for (auto I = S.IdResolver.begin(Ident.getValue()),
3529 E = S.IdResolver.end();
3530 I != E; ++I) {
3531 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3532 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3533 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3534 Visited.add(ND);
3535 }
3536 }
3537 }
3538 }
3539
3540 return;
3541 }
3542
3543 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3544 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3545
3546 // We sometimes skip loading namespace-level results (they tend to be huge).
3547 bool Load = LoadExternal ||
3548 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3549 // Enumerate all of the results in this context.
3550 for (DeclContextLookupResult R :
3551 Load ? Ctx->lookups()
3552 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3553 for (auto *D : R) {
3554 if (auto *ND = Result.getAcceptableDecl(D)) {
3555 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3556 Visited.add(ND);
3557 }
3558 }
3559 }
3560
3561 // Traverse using directives for qualified name lookup.
3562 if (QualifiedNameLookup) {
3563 ShadowContextRAII Shadow(Visited);
3564 for (auto I : Ctx->using_directives()) {
3565 if (!Result.getSema().isVisible(I))
3566 continue;
3567 LookupVisibleDecls(I->getNominatedNamespace(), Result,
3568 QualifiedNameLookup, InBaseClass, Consumer, Visited,
3569 IncludeDependentBases, LoadExternal);
3570 }
3571 }
3572
3573 // Traverse the contexts of inherited C++ classes.
3574 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3575 if (!Record->hasDefinition())
3576 return;
3577
3578 for (const auto &B : Record->bases()) {
3579 QualType BaseType = B.getType();
3580
3581 RecordDecl *RD;
3582 if (BaseType->isDependentType()) {
3583 if (!IncludeDependentBases) {
3584 // Don't look into dependent bases, because name lookup can't look
3585 // there anyway.
3586 continue;
3587 }
3588 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3589 if (!TST)
3590 continue;
3591 TemplateName TN = TST->getTemplateName();
3592 const auto *TD =
3593 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3594 if (!TD)
3595 continue;
3596 RD = TD->getTemplatedDecl();
3597 } else {
3598 const auto *Record = BaseType->getAs<RecordType>();
3599 if (!Record)
3600 continue;
3601 RD = Record->getDecl();
3602 }
3603
3604 // FIXME: It would be nice to be able to determine whether referencing
3605 // a particular member would be ambiguous. For example, given
3606 //
3607 // struct A { int member; };
3608 // struct B { int member; };
3609 // struct C : A, B { };
3610 //
3611 // void f(C *c) { c->### }
3612 //
3613 // accessing 'member' would result in an ambiguity. However, we
3614 // could be smart enough to qualify the member with the base
3615 // class, e.g.,
3616 //
3617 // c->B::member
3618 //
3619 // or
3620 //
3621 // c->A::member
3622
3623 // Find results in this base class (and its bases).
3624 ShadowContextRAII Shadow(Visited);
3625 LookupVisibleDecls(RD, Result, QualifiedNameLookup, true, Consumer,
3626 Visited, IncludeDependentBases, LoadExternal);
3627 }
3628 }
3629
3630 // Traverse the contexts of Objective-C classes.
3631 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3632 // Traverse categories.
3633 for (auto *Cat : IFace->visible_categories()) {
3634 ShadowContextRAII Shadow(Visited);
3635 LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false, Consumer,
3636 Visited, IncludeDependentBases, LoadExternal);
3637 }
3638
3639 // Traverse protocols.
3640 for (auto *I : IFace->all_referenced_protocols()) {
3641 ShadowContextRAII Shadow(Visited);
3642 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3643 Visited, IncludeDependentBases, LoadExternal);
3644 }
3645
3646 // Traverse the superclass.
3647 if (IFace->getSuperClass()) {
3648 ShadowContextRAII Shadow(Visited);
3649 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3650 true, Consumer, Visited, IncludeDependentBases,
3651 LoadExternal);
3652 }
3653
3654 // If there is an implementation, traverse it. We do this to find
3655 // synthesized ivars.
3656 if (IFace->getImplementation()) {
3657 ShadowContextRAII Shadow(Visited);
3658 LookupVisibleDecls(IFace->getImplementation(), Result,
3659 QualifiedNameLookup, InBaseClass, Consumer, Visited,
3660 IncludeDependentBases, LoadExternal);
3661 }
3662 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3663 for (auto *I : Protocol->protocols()) {
3664 ShadowContextRAII Shadow(Visited);
3665 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3666 Visited, IncludeDependentBases, LoadExternal);
3667 }
3668 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3669 for (auto *I : Category->protocols()) {
3670 ShadowContextRAII Shadow(Visited);
3671 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3672 Visited, IncludeDependentBases, LoadExternal);
3673 }
3674
3675 // If there is an implementation, traverse it.
3676 if (Category->getImplementation()) {
3677 ShadowContextRAII Shadow(Visited);
3678 LookupVisibleDecls(Category->getImplementation(), Result,
3679 QualifiedNameLookup, true, Consumer, Visited,
3680 IncludeDependentBases, LoadExternal);
3681 }
3682 }
3683}
3684
3685static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3686 UnqualUsingDirectiveSet &UDirs,
3687 VisibleDeclConsumer &Consumer,
3688 VisibleDeclsRecord &Visited,
3689 bool LoadExternal) {
3690 if (!S)
3691 return;
3692
3693 if (!S->getEntity() ||
3694 (!S->getParent() &&
3695 !Visited.alreadyVisitedContext(S->getEntity())) ||
3696 (S->getEntity())->isFunctionOrMethod()) {
3697 FindLocalExternScope FindLocals(Result);
3698 // Walk through the declarations in this Scope. The consumer might add new
3699 // decls to the scope as part of deserialization, so make a copy first.
3700 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3701 for (Decl *D : ScopeDecls) {
3702 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3703 if ((ND = Result.getAcceptableDecl(ND))) {
3704 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3705 Visited.add(ND);
3706 }
3707 }
3708 }
3709
3710 // FIXME: C++ [temp.local]p8
3711 DeclContext *Entity = nullptr;
3712 if (S->getEntity()) {
3713 // Look into this scope's declaration context, along with any of its
3714 // parent lookup contexts (e.g., enclosing classes), up to the point
3715 // where we hit the context stored in the next outer scope.
3716 Entity = S->getEntity();
3717 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3718
3719 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3720 Ctx = Ctx->getLookupParent()) {
3721 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3722 if (Method->isInstanceMethod()) {
3723 // For instance methods, look for ivars in the method's interface.
3724 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3725 Result.getNameLoc(), Sema::LookupMemberName);
3726 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3727 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3728 /*InBaseClass=*/false, Consumer, Visited,
3729 /*IncludeDependentBases=*/false, LoadExternal);
3730 }
3731 }
3732
3733 // We've already performed all of the name lookup that we need
3734 // to for Objective-C methods; the next context will be the
3735 // outer scope.
3736 break;
3737 }
3738
3739 if (Ctx->isFunctionOrMethod())
3740 continue;
3741
3742 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3743 /*InBaseClass=*/false, Consumer, Visited,
3744 /*IncludeDependentBases=*/false, LoadExternal);
3745 }
3746 } else if (!S->getParent()) {
3747 // Look into the translation unit scope. We walk through the translation
3748 // unit's declaration context, because the Scope itself won't have all of
3749 // the declarations if we loaded a precompiled header.
3750 // FIXME: We would like the translation unit's Scope object to point to the
3751 // translation unit, so we don't need this special "if" branch. However,
3752 // doing so would force the normal C++ name-lookup code to look into the
3753 // translation unit decl when the IdentifierInfo chains would suffice.
3754 // Once we fix that problem (which is part of a more general "don't look
3755 // in DeclContexts unless we have to" optimization), we can eliminate this.
3756 Entity = Result.getSema().Context.getTranslationUnitDecl();
3757 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3758 /*InBaseClass=*/false, Consumer, Visited,
3759 /*IncludeDependentBases=*/false, LoadExternal);
3760 }
3761
3762 if (Entity) {
3763 // Lookup visible declarations in any namespaces found by using
3764 // directives.
3765 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3766 LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3767 Result, /*QualifiedNameLookup=*/false,
3768 /*InBaseClass=*/false, Consumer, Visited,
3769 /*IncludeDependentBases=*/false, LoadExternal);
3770 }
3771
3772 // Lookup names in the parent scope.
3773 ShadowContextRAII Shadow(Visited);
3774 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited,
3775 LoadExternal);
3776}
3777
3778void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3779 VisibleDeclConsumer &Consumer,
3780 bool IncludeGlobalScope, bool LoadExternal) {
3781 // Determine the set of using directives available during
3782 // unqualified name lookup.
3783 Scope *Initial = S;
3784 UnqualUsingDirectiveSet UDirs(*this);
3785 if (getLangOpts().CPlusPlus) {
3786 // Find the first namespace or translation-unit scope.
3787 while (S && !isNamespaceOrTranslationUnitScope(S))
3788 S = S->getParent();
3789
3790 UDirs.visitScopeChain(Initial, S);
3791 }
3792 UDirs.done();
3793
3794 // Look for visible declarations.
3795 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3796 Result.setAllowHidden(Consumer.includeHiddenDecls());
3797 VisibleDeclsRecord Visited;
3798 if (!IncludeGlobalScope)
3799 Visited.visitedContext(Context.getTranslationUnitDecl());
3800 ShadowContextRAII Shadow(Visited);
3801 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited, LoadExternal);
3802}
3803
3804void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3805 VisibleDeclConsumer &Consumer,
3806 bool IncludeGlobalScope,
3807 bool IncludeDependentBases, bool LoadExternal) {
3808 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3809 Result.setAllowHidden(Consumer.includeHiddenDecls());
3810 VisibleDeclsRecord Visited;
3811 if (!IncludeGlobalScope)
3812 Visited.visitedContext(Context.getTranslationUnitDecl());
3813 ShadowContextRAII Shadow(Visited);
3814 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3815 /*InBaseClass=*/false, Consumer, Visited,
3816 IncludeDependentBases, LoadExternal);
3817}
3818
3819/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3820/// If GnuLabelLoc is a valid source location, then this is a definition
3821/// of an __label__ label name, otherwise it is a normal label definition
3822/// or use.
3823LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3824 SourceLocation GnuLabelLoc) {
3825 // Do a lookup to see if we have a label with this name already.
3826 NamedDecl *Res = nullptr;
3827
3828 if (GnuLabelLoc.isValid()) {
3829 // Local label definitions always shadow existing labels.
3830 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3831 Scope *S = CurScope;
3832 PushOnScopeChains(Res, S, true);
3833 return cast<LabelDecl>(Res);
3834 }
3835
3836 // Not a GNU local label.
3837 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3838 // If we found a label, check to see if it is in the same context as us.
3839 // When in a Block, we don't want to reuse a label in an enclosing function.
3840 if (Res && Res->getDeclContext() != CurContext)
3841 Res = nullptr;
3842 if (!Res) {
3843 // If not forward referenced or defined already, create the backing decl.
3844 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3845 Scope *S = CurScope->getFnParent();
3846 assert(S && "Not in a function?")(static_cast <bool> (S && "Not in a function?")
? void (0) : __assert_fail ("S && \"Not in a function?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 3846, __extension__ __PRETTY_FUNCTION__))
;
3847 PushOnScopeChains(Res, S, true);
3848 }
3849 return cast<LabelDecl>(Res);
3850}
3851
3852//===----------------------------------------------------------------------===//
3853// Typo correction
3854//===----------------------------------------------------------------------===//
3855
3856static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3857 TypoCorrection &Candidate) {
3858 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3859 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3860}
3861
3862static void LookupPotentialTypoResult(Sema &SemaRef,
3863 LookupResult &Res,
3864 IdentifierInfo *Name,
3865 Scope *S, CXXScopeSpec *SS,
3866 DeclContext *MemberContext,
3867 bool EnteringContext,
3868 bool isObjCIvarLookup,
3869 bool FindHidden);
3870
3871/// \brief Check whether the declarations found for a typo correction are
3872/// visible. Set the correction's RequiresImport flag to true if none of the
3873/// declarations are visible, false otherwise.
3874static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3875 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3876
3877 for (/**/; DI != DE; ++DI)
3878 if (!LookupResult::isVisible(SemaRef, *DI))
3879 break;
3880 // No filtering needed if all decls are visible.
3881 if (DI == DE) {
3882 TC.setRequiresImport(false);
3883 return;
3884 }
3885
3886 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3887 bool AnyVisibleDecls = !NewDecls.empty();
3888
3889 for (/**/; DI != DE; ++DI) {
3890 if (LookupResult::isVisible(SemaRef, *DI)) {
3891 if (!AnyVisibleDecls) {
3892 // Found a visible decl, discard all hidden ones.
3893 AnyVisibleDecls = true;
3894 NewDecls.clear();
3895 }
3896 NewDecls.push_back(*DI);
3897 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3898 NewDecls.push_back(*DI);
3899 }
3900
3901 if (NewDecls.empty())
3902 TC = TypoCorrection();
3903 else {
3904 TC.setCorrectionDecls(NewDecls);
3905 TC.setRequiresImport(!AnyVisibleDecls);
3906 }
3907}
3908
3909// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3910// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3911// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3912static void getNestedNameSpecifierIdentifiers(
3913 NestedNameSpecifier *NNS,
3914 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3915 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3916 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3917 else
3918 Identifiers.clear();
3919
3920 const IdentifierInfo *II = nullptr;
3921
3922 switch (NNS->getKind()) {
3923 case NestedNameSpecifier::Identifier:
3924 II = NNS->getAsIdentifier();
3925 break;
3926
3927 case NestedNameSpecifier::Namespace:
3928 if (NNS->getAsNamespace()->isAnonymousNamespace())
3929 return;
3930 II = NNS->getAsNamespace()->getIdentifier();
3931 break;
3932
3933 case NestedNameSpecifier::NamespaceAlias:
3934 II = NNS->getAsNamespaceAlias()->getIdentifier();
3935 break;
3936
3937 case NestedNameSpecifier::TypeSpecWithTemplate:
3938 case NestedNameSpecifier::TypeSpec:
3939 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3940 break;
3941
3942 case NestedNameSpecifier::Global:
3943 case NestedNameSpecifier::Super:
3944 return;
3945 }
3946
3947 if (II)
3948 Identifiers.push_back(II);
3949}
3950
3951void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3952 DeclContext *Ctx, bool InBaseClass) {
3953 // Don't consider hidden names for typo correction.
3954 if (Hiding)
3955 return;
3956
3957 // Only consider entities with identifiers for names, ignoring
3958 // special names (constructors, overloaded operators, selectors,
3959 // etc.).
3960 IdentifierInfo *Name = ND->getIdentifier();
3961 if (!Name)
3962 return;
3963
3964 // Only consider visible declarations and declarations from modules with
3965 // names that exactly match.
3966 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
3967 return;
3968
3969 FoundName(Name->getName());
3970}
3971
3972void TypoCorrectionConsumer::FoundName(StringRef Name) {
3973 // Compute the edit distance between the typo and the name of this
3974 // entity, and add the identifier to the list of results.
3975 addName(Name, nullptr);
3976}
3977
3978void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3979 // Compute the edit distance between the typo and this keyword,
3980 // and add the keyword to the list of results.
3981 addName(Keyword, nullptr, nullptr, true);
3982}
3983
3984void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3985 NestedNameSpecifier *NNS, bool isKeyword) {
3986 // Use a simple length-based heuristic to determine the minimum possible
3987 // edit distance. If the minimum isn't good enough, bail out early.
3988 StringRef TypoStr = Typo->getName();
3989 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3990 if (MinED && TypoStr.size() / MinED < 3)
3991 return;
3992
3993 // Compute an upper bound on the allowable edit distance, so that the
3994 // edit-distance algorithm can short-circuit.
3995 unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3996 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3997 if (ED >= UpperBound) return;
3998
3999 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4000 if (isKeyword) TC.makeKeyword();
4001 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4002 addCorrection(TC);
4003}
4004
4005static const unsigned MaxTypoDistanceResultSets = 5;
4006
4007void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4008 StringRef TypoStr = Typo->getName();
4009 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4010
4011 // For very short typos, ignore potential corrections that have a different
4012 // base identifier from the typo or which have a normalized edit distance
4013 // longer than the typo itself.
4014 if (TypoStr.size() < 3 &&
4015 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4016 return;
4017
4018 // If the correction is resolved but is not viable, ignore it.
4019 if (Correction.isResolved()) {
4020 checkCorrectionVisibility(SemaRef, Correction);
4021 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4022 return;
4023 }
4024
4025 TypoResultList &CList =
4026 CorrectionResults[Correction.getEditDistance(false)][Name];
4027
4028 if (!CList.empty() && !CList.back().isResolved())
4029 CList.pop_back();
4030 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4031 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4032 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4033 RI != RIEnd; ++RI) {
4034 // If the Correction refers to a decl already in the result list,
4035 // replace the existing result if the string representation of Correction
4036 // comes before the current result alphabetically, then stop as there is
4037 // nothing more to be done to add Correction to the candidate set.
4038 if (RI->getCorrectionDecl() == NewND) {
4039 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4040 *RI = Correction;
4041 return;
4042 }
4043 }
4044 }
4045 if (CList.empty() || Correction.isResolved())
4046 CList.push_back(Correction);
4047
4048 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4049 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4050}
4051
4052void TypoCorrectionConsumer::addNamespaces(
4053 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4054 SearchNamespaces = true;
4055
4056 for (auto KNPair : KnownNamespaces)
4057 Namespaces.addNameSpecifier(KNPair.first);
4058
4059 bool SSIsTemplate = false;
4060 if (NestedNameSpecifier *NNS =
4061 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4062 if (const Type *T = NNS->getAsType())
4063 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4064 }
4065 // Do not transform this into an iterator-based loop. The loop body can
4066 // trigger the creation of further types (through lazy deserialization) and
4067 // invalide iterators into this list.
4068 auto &Types = SemaRef.getASTContext().getTypes();
4069 for (unsigned I = 0; I != Types.size(); ++I) {
4070 const auto *TI = Types[I];
4071 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4072 CD = CD->getCanonicalDecl();
4073 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4074 !CD->isUnion() && CD->getIdentifier() &&
4075 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4076 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4077 Namespaces.addNameSpecifier(CD);
4078 }
4079 }
4080}
4081
4082const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4083 if (++CurrentTCIndex < ValidatedCorrections.size())
4084 return ValidatedCorrections[CurrentTCIndex];
4085
4086 CurrentTCIndex = ValidatedCorrections.size();
4087 while (!CorrectionResults.empty()) {
4088 auto DI = CorrectionResults.begin();
4089 if (DI->second.empty()) {
4090 CorrectionResults.erase(DI);
4091 continue;
4092 }
4093
4094 auto RI = DI->second.begin();
4095 if (RI->second.empty()) {
4096 DI->second.erase(RI);
4097 performQualifiedLookups();
4098 continue;
4099 }
4100
4101 TypoCorrection TC = RI->second.pop_back_val();
4102 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4103 ValidatedCorrections.push_back(TC);
4104 return ValidatedCorrections[CurrentTCIndex];
4105 }
4106 }
4107 return ValidatedCorrections[0]; // The empty correction.
4108}
4109
4110bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4111 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4112 DeclContext *TempMemberContext = MemberContext;
4113 CXXScopeSpec *TempSS = SS.get();
4114retry_lookup:
4115 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4116 EnteringContext,
4117 CorrectionValidator->IsObjCIvarLookup,
4118 Name == Typo && !Candidate.WillReplaceSpecifier());
4119 switch (Result.getResultKind()) {
4120 case LookupResult::NotFound:
4121 case LookupResult::NotFoundInCurrentInstantiation:
4122 case LookupResult::FoundUnresolvedValue:
4123 if (TempSS) {
4124 // Immediately retry the lookup without the given CXXScopeSpec
4125 TempSS = nullptr;
4126 Candidate.WillReplaceSpecifier(true);
4127 goto retry_lookup;
4128 }
4129 if (TempMemberContext) {
4130 if (SS && !TempSS)
4131 TempSS = SS.get();
4132 TempMemberContext = nullptr;
4133 goto retry_lookup;
4134 }
4135 if (SearchNamespaces)
4136 QualifiedResults.push_back(Candidate);
4137 break;
4138
4139 case LookupResult::Ambiguous:
4140 // We don't deal with ambiguities.
4141 break;
4142
4143 case LookupResult::Found:
4144 case LookupResult::FoundOverloaded:
4145 // Store all of the Decls for overloaded symbols
4146 for (auto *TRD : Result)
4147 Candidate.addCorrectionDecl(TRD);
4148 checkCorrectionVisibility(SemaRef, Candidate);
4149 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4150 if (SearchNamespaces)
4151 QualifiedResults.push_back(Candidate);
4152 break;
4153 }
4154 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4155 return true;
4156 }
4157 return false;
4158}
4159
4160void TypoCorrectionConsumer::performQualifiedLookups() {
4161 unsigned TypoLen = Typo->getName().size();
4162 for (const TypoCorrection &QR : QualifiedResults) {
4163 for (const auto &NSI : Namespaces) {
4164 DeclContext *Ctx = NSI.DeclCtx;
4165 const Type *NSType = NSI.NameSpecifier->getAsType();
4166
4167 // If the current NestedNameSpecifier refers to a class and the
4168 // current correction candidate is the name of that class, then skip
4169 // it as it is unlikely a qualified version of the class' constructor
4170 // is an appropriate correction.
4171 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4172 nullptr) {
4173 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4174 continue;
4175 }
4176
4177 TypoCorrection TC(QR);
4178 TC.ClearCorrectionDecls();
4179 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4180 TC.setQualifierDistance(NSI.EditDistance);
4181 TC.setCallbackDistance(0); // Reset the callback distance
4182
4183 // If the current correction candidate and namespace combination are
4184 // too far away from the original typo based on the normalized edit
4185 // distance, then skip performing a qualified name lookup.
4186 unsigned TmpED = TC.getEditDistance(true);
4187 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4188 TypoLen / TmpED < 3)
4189 continue;
4190
4191 Result.clear();
4192 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4193 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4194 continue;
4195
4196 // Any corrections added below will be validated in subsequent
4197 // iterations of the main while() loop over the Consumer's contents.
4198 switch (Result.getResultKind()) {
4199 case LookupResult::Found:
4200 case LookupResult::FoundOverloaded: {
4201 if (SS && SS->isValid()) {
4202 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4203 std::string OldQualified;
4204 llvm::raw_string_ostream OldOStream(OldQualified);
4205 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4206 OldOStream << Typo->getName();
4207 // If correction candidate would be an identical written qualified
4208 // identifer, then the existing CXXScopeSpec probably included a
4209 // typedef that didn't get accounted for properly.
4210 if (OldOStream.str() == NewQualified)
4211 break;
4212 }
4213 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4214 TRD != TRDEnd; ++TRD) {
4215 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4216 NSType ? NSType->getAsCXXRecordDecl()
4217 : nullptr,
4218 TRD.getPair()) == Sema::AR_accessible)
4219 TC.addCorrectionDecl(*TRD);
4220 }
4221 if (TC.isResolved()) {
4222 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4223 addCorrection(TC);
4224 }
4225 break;
4226 }
4227 case LookupResult::NotFound:
4228 case LookupResult::NotFoundInCurrentInstantiation:
4229 case LookupResult::Ambiguous:
4230 case LookupResult::FoundUnresolvedValue:
4231 break;
4232 }
4233 }
4234 }
4235 QualifiedResults.clear();
4236}
4237
4238TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4239 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4240 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4241 if (NestedNameSpecifier *NNS =
4242 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4243 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4244 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4245
4246 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4247 }
4248 // Build the list of identifiers that would be used for an absolute
4249 // (from the global context) NestedNameSpecifier referring to the current
4250 // context.
4251 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4252 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4253 CurContextIdentifiers.push_back(ND->getIdentifier());
4254 }
4255
4256 // Add the global context as a NestedNameSpecifier
4257 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4258 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4259 DistanceMap[1].push_back(SI);
4260}
4261
4262auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4263 DeclContext *Start) -> DeclContextList {
4264 assert(Start && "Building a context chain from a null context")(static_cast <bool> (Start && "Building a context chain from a null context"
) ? void (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 4264, __extension__ __PRETTY_FUNCTION__))
;
4265 DeclContextList Chain;
4266 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4267 DC = DC->getLookupParent()) {
4268 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4269 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4270 !(ND && ND->isAnonymousNamespace()))
4271 Chain.push_back(DC->getPrimaryContext());
4272 }
4273 return Chain;
4274}
4275
4276unsigned
4277TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4278 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4279 unsigned NumSpecifiers = 0;
4280 for (DeclContext *C : llvm::reverse(DeclChain)) {
4281 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4282 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4283 ++NumSpecifiers;
4284 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4285 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4286 RD->getTypeForDecl());
4287 ++NumSpecifiers;
4288 }
4289 }
4290 return NumSpecifiers;
4291}
4292
4293void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4294 DeclContext *Ctx) {
4295 NestedNameSpecifier *NNS = nullptr;
4296 unsigned NumSpecifiers = 0;
4297 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4298 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4299
4300 // Eliminate common elements from the two DeclContext chains.
4301 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4302 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4303 break;
4304 NamespaceDeclChain.pop_back();
4305 }
4306
4307 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4308 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4309
4310 // Add an explicit leading '::' specifier if needed.
4311 if (NamespaceDeclChain.empty()) {
4312 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4313 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4314 NumSpecifiers =
4315 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4316 } else if (NamedDecl *ND =
4317 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4318 IdentifierInfo *Name = ND->getIdentifier();
4319 bool SameNameSpecifier = false;
4320 if (std::find(CurNameSpecifierIdentifiers.begin(),
4321 CurNameSpecifierIdentifiers.end(),
4322 Name) != CurNameSpecifierIdentifiers.end()) {
4323 std::string NewNameSpecifier;
4324 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4325 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4326 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4327 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4328 SpecifierOStream.flush();
4329 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4330 }
4331 if (SameNameSpecifier ||
4332 std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4333 Name) != CurContextIdentifiers.end()) {
4334 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4335 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4336 NumSpecifiers =
4337 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4338 }
4339 }
4340
4341 // If the built NestedNameSpecifier would be replacing an existing
4342 // NestedNameSpecifier, use the number of component identifiers that
4343 // would need to be changed as the edit distance instead of the number
4344 // of components in the built NestedNameSpecifier.
4345 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4346 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4347 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4348 NumSpecifiers = llvm::ComputeEditDistance(
4349 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4350 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4351 }
4352
4353 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4354 DistanceMap[NumSpecifiers].push_back(SI);
4355}
4356
4357/// \brief Perform name lookup for a possible result for typo correction.
4358static void LookupPotentialTypoResult(Sema &SemaRef,
4359 LookupResult &Res,
4360 IdentifierInfo *Name,
4361 Scope *S, CXXScopeSpec *SS,
4362 DeclContext *MemberContext,
4363 bool EnteringContext,
4364 bool isObjCIvarLookup,
4365 bool FindHidden) {
4366 Res.suppressDiagnostics();
4367 Res.clear();
4368 Res.setLookupName(Name);
4369 Res.setAllowHidden(FindHidden);
4370 if (MemberContext) {
4371 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4372 if (isObjCIvarLookup) {
4373 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4374 Res.addDecl(Ivar);
4375 Res.resolveKind();
4376 return;
4377 }
4378 }
4379
4380 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4381 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4382 Res.addDecl(Prop);
4383 Res.resolveKind();
4384 return;
4385 }
4386 }
4387
4388 SemaRef.LookupQualifiedName(Res, MemberContext);
4389 return;
4390 }
4391
4392 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4393 EnteringContext);
4394
4395 // Fake ivar lookup; this should really be part of
4396 // LookupParsedName.
4397 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4398 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4399 (Res.empty() ||
4400 (Res.isSingleResult() &&
4401 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4402 if (ObjCIvarDecl *IV
4403 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4404 Res.addDecl(IV);
4405 Res.resolveKind();
4406 }
4407 }
4408 }
4409}
4410
4411/// \brief Add keywords to the consumer as possible typo corrections.
4412static void AddKeywordsToConsumer(Sema &SemaRef,
4413 TypoCorrectionConsumer &Consumer,
4414 Scope *S, CorrectionCandidateCallback &CCC,
4415 bool AfterNestedNameSpecifier) {
4416 if (AfterNestedNameSpecifier) {
4417 // For 'X::', we know exactly which keywords can appear next.
4418 Consumer.addKeywordResult("template");
4419 if (CCC.WantExpressionKeywords)
4420 Consumer.addKeywordResult("operator");
4421 return;
4422 }
4423
4424 if (CCC.WantObjCSuper)
4425 Consumer.addKeywordResult("super");
4426
4427 if (CCC.WantTypeSpecifiers) {
4428 // Add type-specifier keywords to the set of results.
4429 static const char *const CTypeSpecs[] = {
4430 "char", "const", "double", "enum", "float", "int", "long", "short",
4431 "signed", "struct", "union", "unsigned", "void", "volatile",
4432 "_Complex", "_Imaginary",
4433 // storage-specifiers as well
4434 "extern", "inline", "static", "typedef"
4435 };
4436
4437 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4438 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4439 Consumer.addKeywordResult(CTypeSpecs[I]);
4440
4441 if (SemaRef.getLangOpts().C99)
4442 Consumer.addKeywordResult("restrict");
4443 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4444 Consumer.addKeywordResult("bool");
4445 else if (SemaRef.getLangOpts().C99)
4446 Consumer.addKeywordResult("_Bool");
4447
4448 if (SemaRef.getLangOpts().CPlusPlus) {
4449 Consumer.addKeywordResult("class");
4450 Consumer.addKeywordResult("typename");
4451 Consumer.addKeywordResult("wchar_t");
4452
4453 if (SemaRef.getLangOpts().CPlusPlus11) {
4454 Consumer.addKeywordResult("char16_t");
4455 Consumer.addKeywordResult("char32_t");
4456 Consumer.addKeywordResult("constexpr");
4457 Consumer.addKeywordResult("decltype");
4458 Consumer.addKeywordResult("thread_local");
4459 }
4460 }
4461
4462 if (SemaRef.getLangOpts().GNUMode)
4463 Consumer.addKeywordResult("typeof");
4464 } else if (CCC.WantFunctionLikeCasts) {
4465 static const char *const CastableTypeSpecs[] = {
4466 "char", "double", "float", "int", "long", "short",
4467 "signed", "unsigned", "void"
4468 };
4469 for (auto *kw : CastableTypeSpecs)
4470 Consumer.addKeywordResult(kw);
4471 }
4472
4473 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4474 Consumer.addKeywordResult("const_cast");
4475 Consumer.addKeywordResult("dynamic_cast");
4476 Consumer.addKeywordResult("reinterpret_cast");
4477 Consumer.addKeywordResult("static_cast");
4478 }
4479
4480 if (CCC.WantExpressionKeywords) {
4481 Consumer.addKeywordResult("sizeof");
4482 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4483 Consumer.addKeywordResult("false");
4484 Consumer.addKeywordResult("true");
4485 }
4486
4487 if (SemaRef.getLangOpts().CPlusPlus) {
4488 static const char *const CXXExprs[] = {
4489 "delete", "new", "operator", "throw", "typeid"
4490 };
4491 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4492 for (unsigned I = 0; I != NumCXXExprs; ++I)
4493 Consumer.addKeywordResult(CXXExprs[I]);
4494
4495 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4496 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4497 Consumer.addKeywordResult("this");
4498
4499 if (SemaRef.getLangOpts().CPlusPlus11) {
4500 Consumer.addKeywordResult("alignof");
4501 Consumer.addKeywordResult("nullptr");
4502 }
4503 }
4504
4505 if (SemaRef.getLangOpts().C11) {
4506 // FIXME: We should not suggest _Alignof if the alignof macro
4507 // is present.
4508 Consumer.addKeywordResult("_Alignof");
4509 }
4510 }
4511
4512 if (CCC.WantRemainingKeywords) {
4513 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4514 // Statements.
4515 static const char *const CStmts[] = {
4516 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4517 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4518 for (unsigned I = 0; I != NumCStmts; ++I)
4519 Consumer.addKeywordResult(CStmts[I]);
4520
4521 if (SemaRef.getLangOpts().CPlusPlus) {
4522 Consumer.addKeywordResult("catch");
4523 Consumer.addKeywordResult("try");
4524 }
4525
4526 if (S && S->getBreakParent())
4527 Consumer.addKeywordResult("break");
4528
4529 if (S && S->getContinueParent())
4530 Consumer.addKeywordResult("continue");
4531
4532 if (SemaRef.getCurFunction() &&
4533 !SemaRef.getCurFunction()->SwitchStack.empty()) {
4534 Consumer.addKeywordResult("case");
4535 Consumer.addKeywordResult("default");
4536 }
4537 } else {
4538 if (SemaRef.getLangOpts().CPlusPlus) {
4539 Consumer.addKeywordResult("namespace");
4540 Consumer.addKeywordResult("template");
4541 }
4542
4543 if (S && S->isClassScope()) {
4544 Consumer.addKeywordResult("explicit");
4545 Consumer.addKeywordResult("friend");
4546 Consumer.addKeywordResult("mutable");
4547 Consumer.addKeywordResult("private");
4548 Consumer.addKeywordResult("protected");
4549 Consumer.addKeywordResult("public");
4550 Consumer.addKeywordResult("virtual");
4551 }
4552 }
4553
4554 if (SemaRef.getLangOpts().CPlusPlus) {
4555 Consumer.addKeywordResult("using");
4556
4557 if (SemaRef.getLangOpts().CPlusPlus11)
4558 Consumer.addKeywordResult("static_assert");
4559 }
4560 }
4561}
4562
4563std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4564 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4565 Scope *S, CXXScopeSpec *SS,
4566 std::unique_ptr<CorrectionCandidateCallback> CCC,
4567 DeclContext *MemberContext, bool EnteringContext,
4568 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4569
4570 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4571 DisableTypoCorrection)
4572 return nullptr;
4573
4574 // In Microsoft mode, don't perform typo correction in a template member
4575 // function dependent context because it interferes with the "lookup into
4576 // dependent bases of class templates" feature.
4577 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4578 isa<CXXMethodDecl>(CurContext))
4579 return nullptr;
4580
4581 // We only attempt to correct typos for identifiers.
4582 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4583 if (!Typo)
4584 return nullptr;
4585
4586 // If the scope specifier itself was invalid, don't try to correct
4587 // typos.
4588 if (SS && SS->isInvalid())
4589 return nullptr;
4590
4591 // Never try to correct typos during any kind of code synthesis.
4592 if (!CodeSynthesisContexts.empty())
4593 return nullptr;
4594
4595 // Don't try to correct 'super'.
4596 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4597 return nullptr;
4598
4599 // Abort if typo correction already failed for this specific typo.
4600 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4601 if (locs != TypoCorrectionFailures.end() &&
4602 locs->second.count(TypoName.getLoc()))
4603 return nullptr;
4604
4605 // Don't try to correct the identifier "vector" when in AltiVec mode.
4606 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4607 // remove this workaround.
4608 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4609 return nullptr;
4610
4611 // Provide a stop gap for files that are just seriously broken. Trying
4612 // to correct all typos can turn into a HUGE performance penalty, causing
4613 // some files to take minutes to get rejected by the parser.
4614 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4615 if (Limit && TyposCorrected >= Limit)
4616 return nullptr;
4617 ++TyposCorrected;
4618
4619 // If we're handling a missing symbol error, using modules, and the
4620 // special search all modules option is used, look for a missing import.
4621 if (ErrorRecovery && getLangOpts().Modules &&
4622 getLangOpts().ModulesSearchAll) {
4623 // The following has the side effect of loading the missing module.
4624 getModuleLoader().lookupMissingImports(Typo->getName(),
4625 TypoName.getLocStart());
4626 }
4627
4628 CorrectionCandidateCallback &CCCRef = *CCC;
4629 auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4630 *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4631 EnteringContext);
4632
4633 // Perform name lookup to find visible, similarly-named entities.
4634 bool IsUnqualifiedLookup = false;
4635 DeclContext *QualifiedDC = MemberContext;
4636 if (MemberContext) {
4637 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4638
4639 // Look in qualified interfaces.
4640 if (OPT) {
4641 for (auto *I : OPT->quals())
4642 LookupVisibleDecls(I, LookupKind, *Consumer);
4643 }
4644 } else if (SS && SS->isSet()) {
4645 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4646 if (!QualifiedDC)
4647 return nullptr;
4648
4649 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4650 } else {
4651 IsUnqualifiedLookup = true;
4652 }
4653
4654 // Determine whether we are going to search in the various namespaces for
4655 // corrections.
4656 bool SearchNamespaces
4657 = getLangOpts().CPlusPlus &&
4658 (IsUnqualifiedLookup || (SS && SS->isSet()));
4659
4660 if (IsUnqualifiedLookup || SearchNamespaces) {
4661 // For unqualified lookup, look through all of the names that we have
4662 // seen in this translation unit.
4663 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4664 for (const auto &I : Context.Idents)
4665 Consumer->FoundName(I.getKey());
4666
4667 // Walk through identifiers in external identifier sources.
4668 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4669 if (IdentifierInfoLookup *External
4670 = Context.Idents.getExternalIdentifierLookup()) {
4671 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4672 do {
4673 StringRef Name = Iter->Next();
4674 if (Name.empty())
4675 break;
4676
4677 Consumer->FoundName(Name);
4678 } while (true);
4679 }
4680 }
4681
4682 AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4683
4684 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4685 // to search those namespaces.
4686 if (SearchNamespaces) {
4687 // Load any externally-known namespaces.
4688 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4689 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4690 LoadedExternalKnownNamespaces = true;
4691 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4692 for (auto *N : ExternalKnownNamespaces)
4693 KnownNamespaces[N] = true;
4694 }
4695
4696 Consumer->addNamespaces(KnownNamespaces);
4697 }
4698
4699 return Consumer;
4700}
4701
4702/// \brief Try to "correct" a typo in the source code by finding
4703/// visible declarations whose names are similar to the name that was
4704/// present in the source code.
4705///
4706/// \param TypoName the \c DeclarationNameInfo structure that contains
4707/// the name that was present in the source code along with its location.
4708///
4709/// \param LookupKind the name-lookup criteria used to search for the name.
4710///
4711/// \param S the scope in which name lookup occurs.
4712///
4713/// \param SS the nested-name-specifier that precedes the name we're
4714/// looking for, if present.
4715///
4716/// \param CCC A CorrectionCandidateCallback object that provides further
4717/// validation of typo correction candidates. It also provides flags for
4718/// determining the set of keywords permitted.
4719///
4720/// \param MemberContext if non-NULL, the context in which to look for
4721/// a member access expression.
4722///
4723/// \param EnteringContext whether we're entering the context described by
4724/// the nested-name-specifier SS.
4725///
4726/// \param OPT when non-NULL, the search for visible declarations will
4727/// also walk the protocols in the qualified interfaces of \p OPT.
4728///
4729/// \returns a \c TypoCorrection containing the corrected name if the typo
4730/// along with information such as the \c NamedDecl where the corrected name
4731/// was declared, and any additional \c NestedNameSpecifier needed to access
4732/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4733TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4734 Sema::LookupNameKind LookupKind,
4735 Scope *S, CXXScopeSpec *SS,
4736 std::unique_ptr<CorrectionCandidateCallback> CCC,
4737 CorrectTypoKind Mode,
4738 DeclContext *MemberContext,
4739 bool EnteringContext,
4740 const ObjCObjectPointerType *OPT,
4741 bool RecordFailure) {
4742 assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback")(static_cast <bool> (CCC && "CorrectTypo requires a CorrectionCandidateCallback"
) ? void (0) : __assert_fail ("CCC && \"CorrectTypo requires a CorrectionCandidateCallback\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 4742, __extension__ __PRETTY_FUNCTION__))
;
4743
4744 // Always let the ExternalSource have the first chance at correction, even
4745 // if we would otherwise have given up.
4746 if (ExternalSource) {
4747 if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4748 TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4749 return Correction;
4750 }
4751
4752 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4753 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4754 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4755 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4756 bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4757
4758 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4759 auto Consumer = makeTypoCorrectionConsumer(
4760 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4761 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4762
4763 if (!Consumer)
4764 return TypoCorrection();
4765
4766 // If we haven't found anything, we're done.
4767 if (Consumer->empty())
4768 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4769
4770 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4771 // is not more that about a third of the length of the typo's identifier.
4772 unsigned ED = Consumer->getBestEditDistance(true);
4773 unsigned TypoLen = Typo->getName().size();
4774 if (ED > 0 && TypoLen / ED < 3)
4775 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4776
4777 TypoCorrection BestTC = Consumer->getNextCorrection();
4778 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4779 if (!BestTC)
4780 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4781
4782 ED = BestTC.getEditDistance();
4783
4784 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4785 // If this was an unqualified lookup and we believe the callback
4786 // object wouldn't have filtered out possible corrections, note
4787 // that no correction was found.
4788 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4789 }
4790
4791 // If only a single name remains, return that result.
4792 if (!SecondBestTC ||
4793 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4794 const TypoCorrection &Result = BestTC;
4795
4796 // Don't correct to a keyword that's the same as the typo; the keyword
4797 // wasn't actually in scope.
4798 if (ED == 0 && Result.isKeyword())
4799 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4800
4801 TypoCorrection TC = Result;
4802 TC.setCorrectionRange(SS, TypoName);
4803 checkCorrectionVisibility(*this, TC);
4804 return TC;
4805 } else if (SecondBestTC && ObjCMessageReceiver) {
4806 // Prefer 'super' when we're completing in a message-receiver
4807 // context.
4808
4809 if (BestTC.getCorrection().getAsString() != "super") {
4810 if (SecondBestTC.getCorrection().getAsString() == "super")
4811 BestTC = SecondBestTC;
4812 else if ((*Consumer)["super"].front().isKeyword())
4813 BestTC = (*Consumer)["super"].front();
4814 }
4815 // Don't correct to a keyword that's the same as the typo; the keyword
4816 // wasn't actually in scope.
4817 if (BestTC.getEditDistance() == 0 ||
4818 BestTC.getCorrection().getAsString() != "super")
4819 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4820
4821 BestTC.setCorrectionRange(SS, TypoName);
4822 return BestTC;
4823 }
4824
4825 // Record the failure's location if needed and return an empty correction. If
4826 // this was an unqualified lookup and we believe the callback object did not
4827 // filter out possible corrections, also cache the failure for the typo.
4828 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4829}
4830
4831/// \brief Try to "correct" a typo in the source code by finding
4832/// visible declarations whose names are similar to the name that was
4833/// present in the source code.
4834///
4835/// \param TypoName the \c DeclarationNameInfo structure that contains
4836/// the name that was present in the source code along with its location.
4837///
4838/// \param LookupKind the name-lookup criteria used to search for the name.
4839///
4840/// \param S the scope in which name lookup occurs.
4841///
4842/// \param SS the nested-name-specifier that precedes the name we're
4843/// looking for, if present.
4844///
4845/// \param CCC A CorrectionCandidateCallback object that provides further
4846/// validation of typo correction candidates. It also provides flags for
4847/// determining the set of keywords permitted.
4848///
4849/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4850/// diagnostics when the actual typo correction is attempted.
4851///
4852/// \param TRC A TypoRecoveryCallback functor that will be used to build an
4853/// Expr from a typo correction candidate.
4854///
4855/// \param MemberContext if non-NULL, the context in which to look for
4856/// a member access expression.
4857///
4858/// \param EnteringContext whether we're entering the context described by
4859/// the nested-name-specifier SS.
4860///
4861/// \param OPT when non-NULL, the search for visible declarations will
4862/// also walk the protocols in the qualified interfaces of \p OPT.
4863///
4864/// \returns a new \c TypoExpr that will later be replaced in the AST with an
4865/// Expr representing the result of performing typo correction, or nullptr if
4866/// typo correction is not possible. If nullptr is returned, no diagnostics will
4867/// be emitted and it is the responsibility of the caller to emit any that are
4868/// needed.
4869TypoExpr *Sema::CorrectTypoDelayed(
4870 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4871 Scope *S, CXXScopeSpec *SS,
4872 std::unique_ptr<CorrectionCandidateCallback> CCC,
4873 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4874 DeclContext *MemberContext, bool EnteringContext,
4875 const ObjCObjectPointerType *OPT) {
4876 assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback")(static_cast <bool> (CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback"
) ? void (0) : __assert_fail ("CCC && \"CorrectTypoDelayed requires a CorrectionCandidateCallback\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 4876, __extension__ __PRETTY_FUNCTION__))
;
4877
4878 auto Consumer = makeTypoCorrectionConsumer(
4879 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4880 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4881
4882 // Give the external sema source a chance to correct the typo.
4883 TypoCorrection ExternalTypo;
4884 if (ExternalSource && Consumer) {
4885 ExternalTypo = ExternalSource->CorrectTypo(
4886 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
4887 MemberContext, EnteringContext, OPT);
4888 if (ExternalTypo)
4889 Consumer->addCorrection(ExternalTypo);
4890 }
4891
4892 if (!Consumer || Consumer->empty())
4893 return nullptr;
4894
4895 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4896 // is not more that about a third of the length of the typo's identifier.
4897 unsigned ED = Consumer->getBestEditDistance(true);
4898 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4899 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
4900 return nullptr;
4901
4902 ExprEvalContexts.back().NumTypos++;
4903 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4904}
4905
4906void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4907 if (!CDecl) return;
4908
4909 if (isKeyword())
4910 CorrectionDecls.clear();
4911
4912 CorrectionDecls.push_back(CDecl);
4913
4914 if (!CorrectionName)
4915 CorrectionName = CDecl->getDeclName();
4916}
4917
4918std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4919 if (CorrectionNameSpec) {
4920 std::string tmpBuffer;
4921 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4922 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4923 PrefixOStream << CorrectionName;
4924 return PrefixOStream.str();
4925 }
4926
4927 return CorrectionName.getAsString();
4928}
4929
4930bool CorrectionCandidateCallback::ValidateCandidate(
4931 const TypoCorrection &candidate) {
4932 if (!candidate.isResolved())
4933 return true;
4934
4935 if (candidate.isKeyword())
4936 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4937 WantRemainingKeywords || WantObjCSuper;
4938
4939 bool HasNonType = false;
4940 bool HasStaticMethod = false;
4941 bool HasNonStaticMethod = false;
4942 for (Decl *D : candidate) {
4943 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4944 D = FTD->getTemplatedDecl();
4945 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4946 if (Method->isStatic())
4947 HasStaticMethod = true;
4948 else
4949 HasNonStaticMethod = true;
4950 }
4951 if (!isa<TypeDecl>(D))
4952 HasNonType = true;
4953 }
4954
4955 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4956 !candidate.getCorrectionSpecifier())
4957 return false;
4958
4959 return WantTypeSpecifiers || HasNonType;
4960}
4961
4962FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4963 bool HasExplicitTemplateArgs,
4964 MemberExpr *ME)
4965 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4966 CurContext(SemaRef.CurContext), MemberFn(ME) {
4967 WantTypeSpecifiers = false;
4968 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4969 WantRemainingKeywords = false;
4970}
4971
4972bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4973 if (!candidate.getCorrectionDecl())
4974 return candidate.isKeyword();
4975
4976 for (auto *C : candidate) {
4977 FunctionDecl *FD = nullptr;
4978 NamedDecl *ND = C->getUnderlyingDecl();
4979 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4980 FD = FTD->getTemplatedDecl();
4981 if (!HasExplicitTemplateArgs && !FD) {
4982 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4983 // If the Decl is neither a function nor a template function,
4984 // determine if it is a pointer or reference to a function. If so,
4985 // check against the number of arguments expected for the pointee.
4986 QualType ValType = cast<ValueDecl>(ND)->getType();
4987 if (ValType->isAnyPointerType() || ValType->isReferenceType())
4988 ValType = ValType->getPointeeType();
4989 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4990 if (FPT->getNumParams() == NumArgs)
4991 return true;
4992 }
4993 }
4994
4995 // Skip the current candidate if it is not a FunctionDecl or does not accept
4996 // the current number of arguments.
4997 if (!FD || !(FD->getNumParams() >= NumArgs &&
4998 FD->getMinRequiredArguments() <= NumArgs))
4999 continue;
5000
5001 // If the current candidate is a non-static C++ method, skip the candidate
5002 // unless the method being corrected--or the current DeclContext, if the
5003 // function being corrected is not a method--is a method in the same class
5004 // or a descendent class of the candidate's parent class.
5005 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5006 if (MemberFn || !MD->isStatic()) {
5007 CXXMethodDecl *CurMD =
5008 MemberFn
5009 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5010 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5011 CXXRecordDecl *CurRD =
5012 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5013 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5014 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5015 continue;
5016 }
5017 }
5018 return true;
5019 }
5020 return false;
5021}
5022
5023void Sema::diagnoseTypo(const TypoCorrection &Correction,
5024 const PartialDiagnostic &TypoDiag,
5025 bool ErrorRecovery) {
5026 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5027 ErrorRecovery);
5028}
5029
5030/// Find which declaration we should import to provide the definition of
5031/// the given declaration.
5032static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5033 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5034 return VD->getDefinition();
5035 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5036 return FD->getDefinition();
5037 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5038 return TD->getDefinition();
5039 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5040 return ID->getDefinition();
5041 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5042 return PD->getDefinition();
5043 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5044 return getDefinitionToImport(TD->getTemplatedDecl());
5045 return nullptr;
5046}
5047
5048void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5049 MissingImportKind MIK, bool Recover) {
5050 // Suggest importing a module providing the definition of this entity, if
5051 // possible.
5052 NamedDecl *Def = getDefinitionToImport(Decl);
5053 if (!Def)
5054 Def = Decl;
Value stored to 'Def' is never read
5055
5056 Module *Owner = getOwningModule(Decl);
5057 assert(Owner && "definition of hidden declaration is not in a module")(static_cast <bool> (Owner && "definition of hidden declaration is not in a module"
) ? void (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 5057, __extension__ __PRETTY_FUNCTION__))
;
5058
5059 llvm::SmallVector<Module*, 8> OwningModules;
5060 OwningModules.push_back(Owner);
5061 auto Merged = Context.getModulesWithMergedDefinition(Decl);
5062 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5063
5064 diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK,
5065 Recover);
5066}
5067
5068/// \brief Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5069/// suggesting the addition of a #include of the specified file.
5070static std::string getIncludeStringForHeader(Preprocessor &PP,
5071 const FileEntry *E) {
5072 bool IsSystem;
5073 auto Path =
5074 PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(E, &IsSystem);
5075 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5076}
5077
5078void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5079 SourceLocation DeclLoc,
5080 ArrayRef<Module *> Modules,
5081 MissingImportKind MIK, bool Recover) {
5082 assert(!Modules.empty())(static_cast <bool> (!Modules.empty()) ? void (0) : __assert_fail
("!Modules.empty()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 5082, __extension__ __PRETTY_FUNCTION__))
;
5083
5084 // Weed out duplicates from module list.
5085 llvm::SmallVector<Module*, 8> UniqueModules;
5086 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5087 for (auto *M : Modules)
5088 if (UniqueModuleSet.insert(M).second)
5089 UniqueModules.push_back(M);
5090 Modules = UniqueModules;
5091
5092 if (Modules.size() > 1) {
5093 std::string ModuleList;
5094 unsigned N = 0;
5095 for (Module *M : Modules) {
5096 ModuleList += "\n ";
5097 if (++N == 5 && N != Modules.size()) {
5098 ModuleList += "[...]";
5099 break;
5100 }
5101 ModuleList += M->getFullModuleName();
5102 }
5103
5104 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5105 << (int)MIK << Decl << ModuleList;
5106 } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5107 UseLoc, Modules[0], DeclLoc)) {
5108 // The right way to make the declaration visible is to include a header;
5109 // suggest doing so.
5110 //
5111 // FIXME: Find a smart place to suggest inserting a #include, and add
5112 // a FixItHint there.
5113 Diag(UseLoc, diag::err_module_unimported_use_header)
5114 << (int)MIK << Decl << Modules[0]->getFullModuleName()
5115 << getIncludeStringForHeader(PP, E);
5116 } else {
5117 // FIXME: Add a FixItHint that imports the corresponding module.
5118 Diag(UseLoc, diag::err_module_unimported_use)
5119 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5120 }
5121
5122 unsigned DiagID;
5123 switch (MIK) {
5124 case MissingImportKind::Declaration:
5125 DiagID = diag::note_previous_declaration;
5126 break;
5127 case MissingImportKind::Definition:
5128 DiagID = diag::note_previous_definition;
5129 break;
5130 case MissingImportKind::DefaultArgument:
5131 DiagID = diag::note_default_argument_declared_here;
5132 break;
5133 case MissingImportKind::ExplicitSpecialization:
5134 DiagID = diag::note_explicit_specialization_declared_here;
5135 break;
5136 case MissingImportKind::PartialSpecialization:
5137 DiagID = diag::note_partial_specialization_declared_here;
5138 break;
5139 }
5140 Diag(DeclLoc, DiagID);
5141
5142 // Try to recover by implicitly importing this module.
5143 if (Recover)
5144 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5145}
5146
5147/// \brief Diagnose a successfully-corrected typo. Separated from the correction
5148/// itself to allow external validation of the result, etc.
5149///
5150/// \param Correction The result of performing typo correction.
5151/// \param TypoDiag The diagnostic to produce. This will have the corrected
5152/// string added to it (and usually also a fixit).
5153/// \param PrevNote A note to use when indicating the location of the entity to
5154/// which we are correcting. Will have the correction string added to it.
5155/// \param ErrorRecovery If \c true (the default), the caller is going to
5156/// recover from the typo as if the corrected string had been typed.
5157/// In this case, \c PDiag must be an error, and we will attach a fixit
5158/// to it.
5159void Sema::diagnoseTypo(const TypoCorrection &Correction,
5160 const PartialDiagnostic &TypoDiag,
5161 const PartialDiagnostic &PrevNote,
5162 bool ErrorRecovery) {
5163 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5164 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5165 FixItHint FixTypo = FixItHint::CreateReplacement(
5166 Correction.getCorrectionRange(), CorrectedStr);
5167
5168 // Maybe we're just missing a module import.
5169 if (Correction.requiresImport()) {
5170 NamedDecl *Decl = Correction.getFoundDecl();
5171 assert(Decl && "import required but no declaration to import")(static_cast <bool> (Decl && "import required but no declaration to import"
) ? void (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 5171, __extension__ __PRETTY_FUNCTION__))
;
5172
5173 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5174 MissingImportKind::Declaration, ErrorRecovery);
5175 return;
5176 }
5177
5178 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5179 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5180
5181 NamedDecl *ChosenDecl =
5182 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5183 if (PrevNote.getDiagID() && ChosenDecl)
5184 Diag(ChosenDecl->getLocation(), PrevNote)
5185 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5186
5187 // Add any extra diagnostics.
5188 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5189 Diag(Correction.getCorrectionRange().getBegin(), PD);
5190}
5191
5192TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5193 TypoDiagnosticGenerator TDG,
5194 TypoRecoveryCallback TRC) {
5195 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")(static_cast <bool> (TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? void (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 5195, __extension__ __PRETTY_FUNCTION__))
;
5196 auto TE = new (Context) TypoExpr(Context.DependentTy);
5197 auto &State = DelayedTypos[TE];
5198 State.Consumer = std::move(TCC);
5199 State.DiagHandler = std::move(TDG);
5200 State.RecoveryHandler = std::move(TRC);
5201 return TE;
5202}
5203
5204const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5205 auto Entry = DelayedTypos.find(TE);
5206 assert(Entry != DelayedTypos.end() &&(static_cast <bool> (Entry != DelayedTypos.end() &&
"Failed to get the state for a TypoExpr!") ? void (0) : __assert_fail
("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 5207, __extension__ __PRETTY_FUNCTION__))
5207 "Failed to get the state for a TypoExpr!")(static_cast <bool> (Entry != DelayedTypos.end() &&
"Failed to get the state for a TypoExpr!") ? void (0) : __assert_fail
("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaLookup.cpp"
, 5207, __extension__ __PRETTY_FUNCTION__))
;
5208 return Entry->second;
5209}
5210
5211void Sema::clearDelayedTypo(TypoExpr *TE) {
5212 DelayedTypos.erase(TE);
5213}
5214
5215void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5216 DeclarationNameInfo Name(II, IILoc);
5217 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5218 R.suppressDiagnostics();
5219 R.setHideTags(false);
5220 LookupName(R, S);
5221 R.dump();
5222}