Bug Summary

File:tools/clang/lib/Sema/SemaLookup.cpp
Warning:line 4946, column 5
Value stored to 'Def' is never read

Annotated Source Code

1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements name lookup for C, C++, Objective-C, and
11// Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclLookups.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50using namespace clang;
51using namespace sema;
52
53namespace {
54 class UnqualUsingEntry {
55 const DeclContext *Nominated;
56 const DeclContext *CommonAncestor;
57
58 public:
59 UnqualUsingEntry(const DeclContext *Nominated,
60 const DeclContext *CommonAncestor)
61 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
62 }
63
64 const DeclContext *getCommonAncestor() const {
65 return CommonAncestor;
66 }
67
68 const DeclContext *getNominatedNamespace() const {
69 return Nominated;
70 }
71
72 // Sort by the pointer value of the common ancestor.
73 struct Comparator {
74 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
75 return L.getCommonAncestor() < R.getCommonAncestor();
76 }
77
78 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
79 return E.getCommonAncestor() < DC;
80 }
81
82 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
83 return DC < E.getCommonAncestor();
84 }
85 };
86 };
87
88 /// A collection of using directives, as used by C++ unqualified
89 /// lookup.
90 class UnqualUsingDirectiveSet {
91 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
92
93 ListTy list;
94 llvm::SmallPtrSet<DeclContext*, 8> visited;
95
96 public:
97 UnqualUsingDirectiveSet() {}
98
99 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
100 // C++ [namespace.udir]p1:
101 // During unqualified name lookup, the names appear as if they
102 // were declared in the nearest enclosing namespace which contains
103 // both the using-directive and the nominated namespace.
104 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
105 assert(InnermostFileDC && InnermostFileDC->isFileContext())((InnermostFileDC && InnermostFileDC->isFileContext
()) ? static_cast<void> (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 105, __PRETTY_FUNCTION__))
;
106
107 for (; S; S = S->getParent()) {
108 // C++ [namespace.udir]p1:
109 // A using-directive shall not appear in class scope, but may
110 // appear in namespace scope or in block scope.
111 DeclContext *Ctx = S->getEntity();
112 if (Ctx && Ctx->isFileContext()) {
113 visit(Ctx, Ctx);
114 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
115 for (auto *I : S->using_directives())
116 visit(I, InnermostFileDC);
117 }
118 }
119 }
120
121 // Visits a context and collect all of its using directives
122 // recursively. Treats all using directives as if they were
123 // declared in the context.
124 //
125 // A given context is only every visited once, so it is important
126 // that contexts be visited from the inside out in order to get
127 // the effective DCs right.
128 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
129 if (!visited.insert(DC).second)
130 return;
131
132 addUsingDirectives(DC, EffectiveDC);
133 }
134
135 // Visits a using directive and collects all of its using
136 // directives recursively. Treats all using directives as if they
137 // were declared in the effective DC.
138 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
139 DeclContext *NS = UD->getNominatedNamespace();
140 if (!visited.insert(NS).second)
141 return;
142
143 addUsingDirective(UD, EffectiveDC);
144 addUsingDirectives(NS, EffectiveDC);
145 }
146
147 // Adds all the using directives in a context (and those nominated
148 // by its using directives, transitively) as if they appeared in
149 // the given effective context.
150 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
151 SmallVector<DeclContext*, 4> queue;
152 while (true) {
153 for (auto UD : DC->using_directives()) {
154 DeclContext *NS = UD->getNominatedNamespace();
155 if (visited.insert(NS).second) {
156 addUsingDirective(UD, EffectiveDC);
157 queue.push_back(NS);
158 }
159 }
160
161 if (queue.empty())
162 return;
163
164 DC = queue.pop_back_val();
165 }
166 }
167
168 // Add a using directive as if it had been declared in the given
169 // context. This helps implement C++ [namespace.udir]p3:
170 // The using-directive is transitive: if a scope contains a
171 // using-directive that nominates a second namespace that itself
172 // contains using-directives, the effect is as if the
173 // using-directives from the second namespace also appeared in
174 // the first.
175 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
176 // Find the common ancestor between the effective context and
177 // the nominated namespace.
178 DeclContext *Common = UD->getNominatedNamespace();
179 while (!Common->Encloses(EffectiveDC))
180 Common = Common->getParent();
181 Common = Common->getPrimaryContext();
182
183 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
184 }
185
186 void done() {
187 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
188 }
189
190 typedef ListTy::const_iterator const_iterator;
191
192 const_iterator begin() const { return list.begin(); }
193 const_iterator end() const { return list.end(); }
194
195 llvm::iterator_range<const_iterator>
196 getNamespacesFor(DeclContext *DC) const {
197 return llvm::make_range(std::equal_range(begin(), end(),
198 DC->getPrimaryContext(),
199 UnqualUsingEntry::Comparator()));
200 }
201 };
202} // end anonymous namespace
203
204// Retrieve the set of identifier namespaces that correspond to a
205// specific kind of name lookup.
206static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
207 bool CPlusPlus,
208 bool Redeclaration) {
209 unsigned IDNS = 0;
210 switch (NameKind) {
211 case Sema::LookupObjCImplicitSelfParam:
212 case Sema::LookupOrdinaryName:
213 case Sema::LookupRedeclarationWithLinkage:
214 case Sema::LookupLocalFriendName:
215 IDNS = Decl::IDNS_Ordinary;
216 if (CPlusPlus) {
217 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
218 if (Redeclaration)
219 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
220 }
221 if (Redeclaration)
222 IDNS |= Decl::IDNS_LocalExtern;
223 break;
224
225 case Sema::LookupOperatorName:
226 // Operator lookup is its own crazy thing; it is not the same
227 // as (e.g.) looking up an operator name for redeclaration.
228 assert(!Redeclaration && "cannot do redeclaration operator lookup")((!Redeclaration && "cannot do redeclaration operator lookup"
) ? static_cast<void> (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 228, __PRETTY_FUNCTION__))
;
229 IDNS = Decl::IDNS_NonMemberOperator;
230 break;
231
232 case Sema::LookupTagName:
233 if (CPlusPlus) {
234 IDNS = Decl::IDNS_Type;
235
236 // When looking for a redeclaration of a tag name, we add:
237 // 1) TagFriend to find undeclared friend decls
238 // 2) Namespace because they can't "overload" with tag decls.
239 // 3) Tag because it includes class templates, which can't
240 // "overload" with tag decls.
241 if (Redeclaration)
242 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
243 } else {
244 IDNS = Decl::IDNS_Tag;
245 }
246 break;
247
248 case Sema::LookupLabel:
249 IDNS = Decl::IDNS_Label;
250 break;
251
252 case Sema::LookupMemberName:
253 IDNS = Decl::IDNS_Member;
254 if (CPlusPlus)
255 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
256 break;
257
258 case Sema::LookupNestedNameSpecifierName:
259 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
260 break;
261
262 case Sema::LookupNamespaceName:
263 IDNS = Decl::IDNS_Namespace;
264 break;
265
266 case Sema::LookupUsingDeclName:
267 assert(Redeclaration && "should only be used for redecl lookup")((Redeclaration && "should only be used for redecl lookup"
) ? static_cast<void> (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 267, __PRETTY_FUNCTION__))
;
268 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
269 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
270 Decl::IDNS_LocalExtern;
271 break;
272
273 case Sema::LookupObjCProtocolName:
274 IDNS = Decl::IDNS_ObjCProtocol;
275 break;
276
277 case Sema::LookupOMPReductionName:
278 IDNS = Decl::IDNS_OMPReduction;
279 break;
280
281 case Sema::LookupAnyName:
282 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
283 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
284 | Decl::IDNS_Type;
285 break;
286 }
287 return IDNS;
288}
289
290void LookupResult::configure() {
291 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
292 isForRedeclaration());
293
294 // If we're looking for one of the allocation or deallocation
295 // operators, make sure that the implicitly-declared new and delete
296 // operators can be found.
297 switch (NameInfo.getName().getCXXOverloadedOperator()) {
298 case OO_New:
299 case OO_Delete:
300 case OO_Array_New:
301 case OO_Array_Delete:
302 getSema().DeclareGlobalNewDelete();
303 break;
304
305 default:
306 break;
307 }
308
309 // Compiler builtins are always visible, regardless of where they end
310 // up being declared.
311 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
312 if (unsigned BuiltinID = Id->getBuiltinID()) {
313 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
314 AllowHidden = true;
315 }
316 }
317}
318
319bool LookupResult::sanity() const {
320 // This function is never called by NDEBUG builds.
321 assert(ResultKind != NotFound || Decls.size() == 0)((ResultKind != NotFound || Decls.size() == 0) ? static_cast<
void> (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 321, __PRETTY_FUNCTION__))
;
322 assert(ResultKind != Found || Decls.size() == 1)((ResultKind != Found || Decls.size() == 1) ? static_cast<
void> (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 322, __PRETTY_FUNCTION__))
;
323 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 325, __PRETTY_FUNCTION__))
324 (Decls.size() == 1 &&((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 325, __PRETTY_FUNCTION__))
325 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 325, __PRETTY_FUNCTION__))
;
326 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())((ResultKind != FoundUnresolvedValue || sanityCheckUnresolved
()) ? static_cast<void> (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 326, __PRETTY_FUNCTION__))
;
327 assert(ResultKind != Ambiguous || Decls.size() > 1 ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
328 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
329 Ambiguity == AmbiguousBaseSubobjectTypes)))((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
;
330 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __PRETTY_FUNCTION__))
331 (Ambiguity == AmbiguousBaseSubobjectTypes ||(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __PRETTY_FUNCTION__))
332 Ambiguity == AmbiguousBaseSubobjects)))(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __PRETTY_FUNCTION__))
;
333 return true;
334}
335
336// Necessary because CXXBasePaths is not complete in Sema.h
337void LookupResult::deletePaths(CXXBasePaths *Paths) {
338 delete Paths;
339}
340
341/// Get a representative context for a declaration such that two declarations
342/// will have the same context if they were found within the same scope.
343static DeclContext *getContextForScopeMatching(Decl *D) {
344 // For function-local declarations, use that function as the context. This
345 // doesn't account for scopes within the function; the caller must deal with
346 // those.
347 DeclContext *DC = D->getLexicalDeclContext();
348 if (DC->isFunctionOrMethod())
349 return DC;
350
351 // Otherwise, look at the semantic context of the declaration. The
352 // declaration must have been found there.
353 return D->getDeclContext()->getRedeclContext();
354}
355
356/// \brief Determine whether \p D is a better lookup result than \p Existing,
357/// given that they declare the same entity.
358static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
359 NamedDecl *D, NamedDecl *Existing) {
360 // When looking up redeclarations of a using declaration, prefer a using
361 // shadow declaration over any other declaration of the same entity.
362 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
363 !isa<UsingShadowDecl>(Existing))
364 return true;
365
366 auto *DUnderlying = D->getUnderlyingDecl();
367 auto *EUnderlying = Existing->getUnderlyingDecl();
368
369 // If they have different underlying declarations, prefer a typedef over the
370 // original type (this happens when two type declarations denote the same
371 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
372 // might carry additional semantic information, such as an alignment override.
373 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
374 // declaration over a typedef.
375 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
376 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))((isa<TypeDecl>(DUnderlying) && isa<TypeDecl
>(EUnderlying)) ? static_cast<void> (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 376, __PRETTY_FUNCTION__))
;
377 bool HaveTag = isa<TagDecl>(EUnderlying);
378 bool WantTag = Kind == Sema::LookupTagName;
379 return HaveTag != WantTag;
380 }
381
382 // Pick the function with more default arguments.
383 // FIXME: In the presence of ambiguous default arguments, we should keep both,
384 // so we can diagnose the ambiguity if the default argument is needed.
385 // See C++ [over.match.best]p3.
386 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
387 auto *EFD = cast<FunctionDecl>(EUnderlying);
388 unsigned DMin = DFD->getMinRequiredArguments();
389 unsigned EMin = EFD->getMinRequiredArguments();
390 // If D has more default arguments, it is preferred.
391 if (DMin != EMin)
392 return DMin < EMin;
393 // FIXME: When we track visibility for default function arguments, check
394 // that we pick the declaration with more visible default arguments.
395 }
396
397 // Pick the template with more default template arguments.
398 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
399 auto *ETD = cast<TemplateDecl>(EUnderlying);
400 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
401 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
402 // If D has more default arguments, it is preferred. Note that default
403 // arguments (and their visibility) is monotonically increasing across the
404 // redeclaration chain, so this is a quick proxy for "is more recent".
405 if (DMin != EMin)
406 return DMin < EMin;
407 // If D has more *visible* default arguments, it is preferred. Note, an
408 // earlier default argument being visible does not imply that a later
409 // default argument is visible, so we can't just check the first one.
410 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
411 I != N; ++I) {
412 if (!S.hasVisibleDefaultArgument(
413 ETD->getTemplateParameters()->getParam(I)) &&
414 S.hasVisibleDefaultArgument(
415 DTD->getTemplateParameters()->getParam(I)))
416 return true;
417 }
418 }
419
420 // VarDecl can have incomplete array types, prefer the one with more complete
421 // array type.
422 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
423 VarDecl *EVD = cast<VarDecl>(EUnderlying);
424 if (EVD->getType()->isIncompleteType() &&
425 !DVD->getType()->isIncompleteType()) {
426 // Prefer the decl with a more complete type if visible.
427 return S.isVisible(DVD);
428 }
429 return false; // Avoid picking up a newer decl, just because it was newer.
430 }
431
432 // For most kinds of declaration, it doesn't really matter which one we pick.
433 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
434 // If the existing declaration is hidden, prefer the new one. Otherwise,
435 // keep what we've got.
436 return !S.isVisible(Existing);
437 }
438
439 // Pick the newer declaration; it might have a more precise type.
440 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
441 Prev = Prev->getPreviousDecl())
442 if (Prev == EUnderlying)
443 return true;
444 return false;
445}
446
447/// Determine whether \p D can hide a tag declaration.
448static bool canHideTag(NamedDecl *D) {
449 // C++ [basic.scope.declarative]p4:
450 // Given a set of declarations in a single declarative region [...]
451 // exactly one declaration shall declare a class name or enumeration name
452 // that is not a typedef name and the other declarations shall all refer to
453 // the same variable, non-static data member, or enumerator, or all refer
454 // to functions and function templates; in this case the class name or
455 // enumeration name is hidden.
456 // C++ [basic.scope.hiding]p2:
457 // A class name or enumeration name can be hidden by the name of a
458 // variable, data member, function, or enumerator declared in the same
459 // scope.
460 // An UnresolvedUsingValueDecl always instantiates to one of these.
461 D = D->getUnderlyingDecl();
462 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
463 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
464 isa<UnresolvedUsingValueDecl>(D);
465}
466
467/// Resolves the result kind of this lookup.
468void LookupResult::resolveKind() {
469 unsigned N = Decls.size();
470
471 // Fast case: no possible ambiguity.
472 if (N == 0) {
473 assert(ResultKind == NotFound ||((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 474, __PRETTY_FUNCTION__))
474 ResultKind == NotFoundInCurrentInstantiation)((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 474, __PRETTY_FUNCTION__))
;
475 return;
476 }
477
478 // If there's a single decl, we need to examine it to decide what
479 // kind of lookup this is.
480 if (N == 1) {
481 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
482 if (isa<FunctionTemplateDecl>(D))
483 ResultKind = FoundOverloaded;
484 else if (isa<UnresolvedUsingValueDecl>(D))
485 ResultKind = FoundUnresolvedValue;
486 return;
487 }
488
489 // Don't do any extra resolution if we've already resolved as ambiguous.
490 if (ResultKind == Ambiguous) return;
491
492 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
493 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
494
495 bool Ambiguous = false;
496 bool HasTag = false, HasFunction = false;
497 bool HasFunctionTemplate = false, HasUnresolved = false;
498 NamedDecl *HasNonFunction = nullptr;
499
500 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
501
502 unsigned UniqueTagIndex = 0;
503
504 unsigned I = 0;
505 while (I < N) {
506 NamedDecl *D = Decls[I]->getUnderlyingDecl();
507 D = cast<NamedDecl>(D->getCanonicalDecl());
508
509 // Ignore an invalid declaration unless it's the only one left.
510 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
511 Decls[I] = Decls[--N];
512 continue;
513 }
514
515 llvm::Optional<unsigned> ExistingI;
516
517 // Redeclarations of types via typedef can occur both within a scope
518 // and, through using declarations and directives, across scopes. There is
519 // no ambiguity if they all refer to the same type, so unique based on the
520 // canonical type.
521 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
522 QualType T = getSema().Context.getTypeDeclType(TD);
523 auto UniqueResult = UniqueTypes.insert(
524 std::make_pair(getSema().Context.getCanonicalType(T), I));
525 if (!UniqueResult.second) {
526 // The type is not unique.
527 ExistingI = UniqueResult.first->second;
528 }
529 }
530
531 // For non-type declarations, check for a prior lookup result naming this
532 // canonical declaration.
533 if (!ExistingI) {
534 auto UniqueResult = Unique.insert(std::make_pair(D, I));
535 if (!UniqueResult.second) {
536 // We've seen this entity before.
537 ExistingI = UniqueResult.first->second;
538 }
539 }
540
541 if (ExistingI) {
542 // This is not a unique lookup result. Pick one of the results and
543 // discard the other.
544 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
545 Decls[*ExistingI]))
546 Decls[*ExistingI] = Decls[I];
547 Decls[I] = Decls[--N];
548 continue;
549 }
550
551 // Otherwise, do some decl type analysis and then continue.
552
553 if (isa<UnresolvedUsingValueDecl>(D)) {
554 HasUnresolved = true;
555 } else if (isa<TagDecl>(D)) {
556 if (HasTag)
557 Ambiguous = true;
558 UniqueTagIndex = I;
559 HasTag = true;
560 } else if (isa<FunctionTemplateDecl>(D)) {
561 HasFunction = true;
562 HasFunctionTemplate = true;
563 } else if (isa<FunctionDecl>(D)) {
564 HasFunction = true;
565 } else {
566 if (HasNonFunction) {
567 // If we're about to create an ambiguity between two declarations that
568 // are equivalent, but one is an internal linkage declaration from one
569 // module and the other is an internal linkage declaration from another
570 // module, just skip it.
571 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
572 D)) {
573 EquivalentNonFunctions.push_back(D);
574 Decls[I] = Decls[--N];
575 continue;
576 }
577
578 Ambiguous = true;
579 }
580 HasNonFunction = D;
581 }
582 I++;
583 }
584
585 // C++ [basic.scope.hiding]p2:
586 // A class name or enumeration name can be hidden by the name of
587 // an object, function, or enumerator declared in the same
588 // scope. If a class or enumeration name and an object, function,
589 // or enumerator are declared in the same scope (in any order)
590 // with the same name, the class or enumeration name is hidden
591 // wherever the object, function, or enumerator name is visible.
592 // But it's still an error if there are distinct tag types found,
593 // even if they're not visible. (ref?)
594 if (N > 1 && HideTags && HasTag && !Ambiguous &&
595 (HasFunction || HasNonFunction || HasUnresolved)) {
596 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
597 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
598 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
599 getContextForScopeMatching(OtherDecl)) &&
600 canHideTag(OtherDecl))
601 Decls[UniqueTagIndex] = Decls[--N];
602 else
603 Ambiguous = true;
604 }
605
606 // FIXME: This diagnostic should really be delayed until we're done with
607 // the lookup result, in case the ambiguity is resolved by the caller.
608 if (!EquivalentNonFunctions.empty() && !Ambiguous)
609 getSema().diagnoseEquivalentInternalLinkageDeclarations(
610 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
611
612 Decls.set_size(N);
613
614 if (HasNonFunction && (HasFunction || HasUnresolved))
615 Ambiguous = true;
616
617 if (Ambiguous)
618 setAmbiguous(LookupResult::AmbiguousReference);
619 else if (HasUnresolved)
620 ResultKind = LookupResult::FoundUnresolvedValue;
621 else if (N > 1 || HasFunctionTemplate)
622 ResultKind = LookupResult::FoundOverloaded;
623 else
624 ResultKind = LookupResult::Found;
625}
626
627void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
628 CXXBasePaths::const_paths_iterator I, E;
629 for (I = P.begin(), E = P.end(); I != E; ++I)
630 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
631 DE = I->Decls.end(); DI != DE; ++DI)
632 addDecl(*DI);
633}
634
635void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
636 Paths = new CXXBasePaths;
637 Paths->swap(P);
638 addDeclsFromBasePaths(*Paths);
639 resolveKind();
640 setAmbiguous(AmbiguousBaseSubobjects);
641}
642
643void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
644 Paths = new CXXBasePaths;
645 Paths->swap(P);
646 addDeclsFromBasePaths(*Paths);
647 resolveKind();
648 setAmbiguous(AmbiguousBaseSubobjectTypes);
649}
650
651void LookupResult::print(raw_ostream &Out) {
652 Out << Decls.size() << " result(s)";
653 if (isAmbiguous()) Out << ", ambiguous";
654 if (Paths) Out << ", base paths present";
655
656 for (iterator I = begin(), E = end(); I != E; ++I) {
657 Out << "\n";
658 (*I)->print(Out, 2);
659 }
660}
661
662LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
663 llvm::errs() << "lookup results for " << getLookupName().getAsString()
664 << ":\n";
665 for (NamedDecl *D : *this)
666 D->dump();
667}
668
669/// \brief Lookup a builtin function, when name lookup would otherwise
670/// fail.
671static bool LookupBuiltin(Sema &S, LookupResult &R) {
672 Sema::LookupNameKind NameKind = R.getLookupKind();
673
674 // If we didn't find a use of this identifier, and if the identifier
675 // corresponds to a compiler builtin, create the decl object for the builtin
676 // now, injecting it into translation unit scope, and return it.
677 if (NameKind == Sema::LookupOrdinaryName ||
678 NameKind == Sema::LookupRedeclarationWithLinkage) {
679 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
680 if (II) {
681 if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
682 if (II == S.getASTContext().getMakeIntegerSeqName()) {
683 R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
684 return true;
685 } else if (II == S.getASTContext().getTypePackElementName()) {
686 R.addDecl(S.getASTContext().getTypePackElementDecl());
687 return true;
688 }
689 }
690
691 // If this is a builtin on this (or all) targets, create the decl.
692 if (unsigned BuiltinID = II->getBuiltinID()) {
693 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
694 // library functions like 'malloc'. Instead, we'll just error.
695 if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
696 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
697 return false;
698
699 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
700 BuiltinID, S.TUScope,
701 R.isForRedeclaration(),
702 R.getNameLoc())) {
703 R.addDecl(D);
704 return true;
705 }
706 }
707 }
708 }
709
710 return false;
711}
712
713/// \brief Determine whether we can declare a special member function within
714/// the class at this point.
715static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
716 // We need to have a definition for the class.
717 if (!Class->getDefinition() || Class->isDependentContext())
718 return false;
719
720 // We can't be in the middle of defining the class.
721 return !Class->isBeingDefined();
722}
723
724void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
725 if (!CanDeclareSpecialMemberFunction(Class))
726 return;
727
728 // If the default constructor has not yet been declared, do so now.
729 if (Class->needsImplicitDefaultConstructor())
730 DeclareImplicitDefaultConstructor(Class);
731
732 // If the copy constructor has not yet been declared, do so now.
733 if (Class->needsImplicitCopyConstructor())
734 DeclareImplicitCopyConstructor(Class);
735
736 // If the copy assignment operator has not yet been declared, do so now.
737 if (Class->needsImplicitCopyAssignment())
738 DeclareImplicitCopyAssignment(Class);
739
740 if (getLangOpts().CPlusPlus11) {
741 // If the move constructor has not yet been declared, do so now.
742 if (Class->needsImplicitMoveConstructor())
743 DeclareImplicitMoveConstructor(Class);
744
745 // If the move assignment operator has not yet been declared, do so now.
746 if (Class->needsImplicitMoveAssignment())
747 DeclareImplicitMoveAssignment(Class);
748 }
749
750 // If the destructor has not yet been declared, do so now.
751 if (Class->needsImplicitDestructor())
752 DeclareImplicitDestructor(Class);
753}
754
755/// \brief Determine whether this is the name of an implicitly-declared
756/// special member function.
757static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
758 switch (Name.getNameKind()) {
759 case DeclarationName::CXXConstructorName:
760 case DeclarationName::CXXDestructorName:
761 return true;
762
763 case DeclarationName::CXXOperatorName:
764 return Name.getCXXOverloadedOperator() == OO_Equal;
765
766 default:
767 break;
768 }
769
770 return false;
771}
772
773/// \brief If there are any implicit member functions with the given name
774/// that need to be declared in the given declaration context, do so.
775static void DeclareImplicitMemberFunctionsWithName(Sema &S,
776 DeclarationName Name,
777 SourceLocation Loc,
778 const DeclContext *DC) {
779 if (!DC)
780 return;
781
782 switch (Name.getNameKind()) {
783 case DeclarationName::CXXConstructorName:
784 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
785 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
786 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
787 if (Record->needsImplicitDefaultConstructor())
788 S.DeclareImplicitDefaultConstructor(Class);
789 if (Record->needsImplicitCopyConstructor())
790 S.DeclareImplicitCopyConstructor(Class);
791 if (S.getLangOpts().CPlusPlus11 &&
792 Record->needsImplicitMoveConstructor())
793 S.DeclareImplicitMoveConstructor(Class);
794 }
795 break;
796
797 case DeclarationName::CXXDestructorName:
798 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
799 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
800 CanDeclareSpecialMemberFunction(Record))
801 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
802 break;
803
804 case DeclarationName::CXXOperatorName:
805 if (Name.getCXXOverloadedOperator() != OO_Equal)
806 break;
807
808 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
809 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
810 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
811 if (Record->needsImplicitCopyAssignment())
812 S.DeclareImplicitCopyAssignment(Class);
813 if (S.getLangOpts().CPlusPlus11 &&
814 Record->needsImplicitMoveAssignment())
815 S.DeclareImplicitMoveAssignment(Class);
816 }
817 }
818 break;
819
820 case DeclarationName::CXXDeductionGuideName:
821 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
822 break;
823
824 default:
825 break;
826 }
827}
828
829// Adds all qualifying matches for a name within a decl context to the
830// given lookup result. Returns true if any matches were found.
831static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
832 bool Found = false;
833
834 // Lazily declare C++ special member functions.
835 if (S.getLangOpts().CPlusPlus)
836 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
837 DC);
838
839 // Perform lookup into this declaration context.
840 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
841 for (NamedDecl *D : DR) {
842 if ((D = R.getAcceptableDecl(D))) {
843 R.addDecl(D);
844 Found = true;
845 }
846 }
847
848 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
849 return true;
850
851 if (R.getLookupName().getNameKind()
852 != DeclarationName::CXXConversionFunctionName ||
853 R.getLookupName().getCXXNameType()->isDependentType() ||
854 !isa<CXXRecordDecl>(DC))
855 return Found;
856
857 // C++ [temp.mem]p6:
858 // A specialization of a conversion function template is not found by
859 // name lookup. Instead, any conversion function templates visible in the
860 // context of the use are considered. [...]
861 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
862 if (!Record->isCompleteDefinition())
863 return Found;
864
865 // For conversion operators, 'operator auto' should only match
866 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
867 // as a candidate for template substitution.
868 auto *ContainedDeducedType =
869 R.getLookupName().getCXXNameType()->getContainedDeducedType();
870 if (R.getLookupName().getNameKind() ==
871 DeclarationName::CXXConversionFunctionName &&
872 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
873 return Found;
874
875 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
876 UEnd = Record->conversion_end(); U != UEnd; ++U) {
877 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
878 if (!ConvTemplate)
879 continue;
880
881 // When we're performing lookup for the purposes of redeclaration, just
882 // add the conversion function template. When we deduce template
883 // arguments for specializations, we'll end up unifying the return
884 // type of the new declaration with the type of the function template.
885 if (R.isForRedeclaration()) {
886 R.addDecl(ConvTemplate);
887 Found = true;
888 continue;
889 }
890
891 // C++ [temp.mem]p6:
892 // [...] For each such operator, if argument deduction succeeds
893 // (14.9.2.3), the resulting specialization is used as if found by
894 // name lookup.
895 //
896 // When referencing a conversion function for any purpose other than
897 // a redeclaration (such that we'll be building an expression with the
898 // result), perform template argument deduction and place the
899 // specialization into the result set. We do this to avoid forcing all
900 // callers to perform special deduction for conversion functions.
901 TemplateDeductionInfo Info(R.getNameLoc());
902 FunctionDecl *Specialization = nullptr;
903
904 const FunctionProtoType *ConvProto
905 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
906 assert(ConvProto && "Nonsensical conversion function template type")((ConvProto && "Nonsensical conversion function template type"
) ? static_cast<void> (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 906, __PRETTY_FUNCTION__))
;
907
908 // Compute the type of the function that we would expect the conversion
909 // function to have, if it were to match the name given.
910 // FIXME: Calling convention!
911 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
912 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
913 EPI.ExceptionSpec = EST_None;
914 QualType ExpectedType
915 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
916 None, EPI);
917
918 // Perform template argument deduction against the type that we would
919 // expect the function to have.
920 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
921 Specialization, Info)
922 == Sema::TDK_Success) {
923 R.addDecl(Specialization);
924 Found = true;
925 }
926 }
927
928 return Found;
929}
930
931// Performs C++ unqualified lookup into the given file context.
932static bool
933CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
934 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
935
936 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")((NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"
) ? static_cast<void> (0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 936, __PRETTY_FUNCTION__))
;
937
938 // Perform direct name lookup into the LookupCtx.
939 bool Found = LookupDirect(S, R, NS);
940
941 // Perform direct name lookup into the namespaces nominated by the
942 // using directives whose common ancestor is this namespace.
943 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
944 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
945 Found = true;
946
947 R.resolveKind();
948
949 return Found;
950}
951
952static bool isNamespaceOrTranslationUnitScope(Scope *S) {
953 if (DeclContext *Ctx = S->getEntity())
954 return Ctx->isFileContext();
955 return false;
956}
957
958// Find the next outer declaration context from this scope. This
959// routine actually returns the semantic outer context, which may
960// differ from the lexical context (encoded directly in the Scope
961// stack) when we are parsing a member of a class template. In this
962// case, the second element of the pair will be true, to indicate that
963// name lookup should continue searching in this semantic context when
964// it leaves the current template parameter scope.
965static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
966 DeclContext *DC = S->getEntity();
967 DeclContext *Lexical = nullptr;
968 for (Scope *OuterS = S->getParent(); OuterS;
969 OuterS = OuterS->getParent()) {
970 if (OuterS->getEntity()) {
971 Lexical = OuterS->getEntity();
972 break;
973 }
974 }
975
976 // C++ [temp.local]p8:
977 // In the definition of a member of a class template that appears
978 // outside of the namespace containing the class template
979 // definition, the name of a template-parameter hides the name of
980 // a member of this namespace.
981 //
982 // Example:
983 //
984 // namespace N {
985 // class C { };
986 //
987 // template<class T> class B {
988 // void f(T);
989 // };
990 // }
991 //
992 // template<class C> void N::B<C>::f(C) {
993 // C b; // C is the template parameter, not N::C
994 // }
995 //
996 // In this example, the lexical context we return is the
997 // TranslationUnit, while the semantic context is the namespace N.
998 if (!Lexical || !DC || !S->getParent() ||
999 !S->getParent()->isTemplateParamScope())
1000 return std::make_pair(Lexical, false);
1001
1002 // Find the outermost template parameter scope.
1003 // For the example, this is the scope for the template parameters of
1004 // template<class C>.
1005 Scope *OutermostTemplateScope = S->getParent();
1006 while (OutermostTemplateScope->getParent() &&
1007 OutermostTemplateScope->getParent()->isTemplateParamScope())
1008 OutermostTemplateScope = OutermostTemplateScope->getParent();
1009
1010 // Find the namespace context in which the original scope occurs. In
1011 // the example, this is namespace N.
1012 DeclContext *Semantic = DC;
1013 while (!Semantic->isFileContext())
1014 Semantic = Semantic->getParent();
1015
1016 // Find the declaration context just outside of the template
1017 // parameter scope. This is the context in which the template is
1018 // being lexically declaration (a namespace context). In the
1019 // example, this is the global scope.
1020 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1021 Lexical->Encloses(Semantic))
1022 return std::make_pair(Semantic, true);
1023
1024 return std::make_pair(Lexical, false);
1025}
1026
1027namespace {
1028/// An RAII object to specify that we want to find block scope extern
1029/// declarations.
1030struct FindLocalExternScope {
1031 FindLocalExternScope(LookupResult &R)
1032 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1033 Decl::IDNS_LocalExtern) {
1034 R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
1035 }
1036 void restore() {
1037 R.setFindLocalExtern(OldFindLocalExtern);
1038 }
1039 ~FindLocalExternScope() {
1040 restore();
1041 }
1042 LookupResult &R;
1043 bool OldFindLocalExtern;
1044};
1045} // end anonymous namespace
1046
1047bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1048 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")((getLangOpts().CPlusPlus && "Can perform only C++ lookup"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1048, __PRETTY_FUNCTION__))
;
1049
1050 DeclarationName Name = R.getLookupName();
1051 Sema::LookupNameKind NameKind = R.getLookupKind();
1052
1053 // If this is the name of an implicitly-declared special member function,
1054 // go through the scope stack to implicitly declare
1055 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1056 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1057 if (DeclContext *DC = PreS->getEntity())
1058 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1059 }
1060
1061 // Implicitly declare member functions with the name we're looking for, if in
1062 // fact we are in a scope where it matters.
1063
1064 Scope *Initial = S;
1065 IdentifierResolver::iterator
1066 I = IdResolver.begin(Name),
1067 IEnd = IdResolver.end();
1068
1069 // First we lookup local scope.
1070 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1071 // ...During unqualified name lookup (3.4.1), the names appear as if
1072 // they were declared in the nearest enclosing namespace which contains
1073 // both the using-directive and the nominated namespace.
1074 // [Note: in this context, "contains" means "contains directly or
1075 // indirectly".
1076 //
1077 // For example:
1078 // namespace A { int i; }
1079 // void foo() {
1080 // int i;
1081 // {
1082 // using namespace A;
1083 // ++i; // finds local 'i', A::i appears at global scope
1084 // }
1085 // }
1086 //
1087 UnqualUsingDirectiveSet UDirs;
1088 bool VisitedUsingDirectives = false;
1089 bool LeftStartingScope = false;
1090 DeclContext *OutsideOfTemplateParamDC = nullptr;
1091
1092 // When performing a scope lookup, we want to find local extern decls.
1093 FindLocalExternScope FindLocals(R);
1094
1095 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1096 DeclContext *Ctx = S->getEntity();
1097 bool SearchNamespaceScope = true;
1098 // Check whether the IdResolver has anything in this scope.
1099 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1100 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1101 if (NameKind == LookupRedeclarationWithLinkage &&
1102 !(*I)->isTemplateParameter()) {
1103 // If it's a template parameter, we still find it, so we can diagnose
1104 // the invalid redeclaration.
1105
1106 // Determine whether this (or a previous) declaration is
1107 // out-of-scope.
1108 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1109 LeftStartingScope = true;
1110
1111 // If we found something outside of our starting scope that
1112 // does not have linkage, skip it.
1113 if (LeftStartingScope && !((*I)->hasLinkage())) {
1114 R.setShadowed();
1115 continue;
1116 }
1117 } else {
1118 // We found something in this scope, we should not look at the
1119 // namespace scope
1120 SearchNamespaceScope = false;
1121 }
1122 R.addDecl(ND);
1123 }
1124 }
1125 if (!SearchNamespaceScope) {
1126 R.resolveKind();
1127 if (S->isClassScope())
1128 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1129 R.setNamingClass(Record);
1130 return true;
1131 }
1132
1133 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1134 // C++11 [class.friend]p11:
1135 // If a friend declaration appears in a local class and the name
1136 // specified is an unqualified name, a prior declaration is
1137 // looked up without considering scopes that are outside the
1138 // innermost enclosing non-class scope.
1139 return false;
1140 }
1141
1142 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1143 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1144 // We've just searched the last template parameter scope and
1145 // found nothing, so look into the contexts between the
1146 // lexical and semantic declaration contexts returned by
1147 // findOuterContext(). This implements the name lookup behavior
1148 // of C++ [temp.local]p8.
1149 Ctx = OutsideOfTemplateParamDC;
1150 OutsideOfTemplateParamDC = nullptr;
1151 }
1152
1153 if (Ctx) {
1154 DeclContext *OuterCtx;
1155 bool SearchAfterTemplateScope;
1156 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1157 if (SearchAfterTemplateScope)
1158 OutsideOfTemplateParamDC = OuterCtx;
1159
1160 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1161 // We do not directly look into transparent contexts, since
1162 // those entities will be found in the nearest enclosing
1163 // non-transparent context.
1164 if (Ctx->isTransparentContext())
1165 continue;
1166
1167 // We do not look directly into function or method contexts,
1168 // since all of the local variables and parameters of the
1169 // function/method are present within the Scope.
1170 if (Ctx->isFunctionOrMethod()) {
1171 // If we have an Objective-C instance method, look for ivars
1172 // in the corresponding interface.
1173 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1174 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1175 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1176 ObjCInterfaceDecl *ClassDeclared;
1177 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1178 Name.getAsIdentifierInfo(),
1179 ClassDeclared)) {
1180 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1181 R.addDecl(ND);
1182 R.resolveKind();
1183 return true;
1184 }
1185 }
1186 }
1187 }
1188
1189 continue;
1190 }
1191
1192 // If this is a file context, we need to perform unqualified name
1193 // lookup considering using directives.
1194 if (Ctx->isFileContext()) {
1195 // If we haven't handled using directives yet, do so now.
1196 if (!VisitedUsingDirectives) {
1197 // Add using directives from this context up to the top level.
1198 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1199 if (UCtx->isTransparentContext())
1200 continue;
1201
1202 UDirs.visit(UCtx, UCtx);
1203 }
1204
1205 // Find the innermost file scope, so we can add using directives
1206 // from local scopes.
1207 Scope *InnermostFileScope = S;
1208 while (InnermostFileScope &&
1209 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1210 InnermostFileScope = InnermostFileScope->getParent();
1211 UDirs.visitScopeChain(Initial, InnermostFileScope);
1212
1213 UDirs.done();
1214
1215 VisitedUsingDirectives = true;
1216 }
1217
1218 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1219 R.resolveKind();
1220 return true;
1221 }
1222
1223 continue;
1224 }
1225
1226 // Perform qualified name lookup into this context.
1227 // FIXME: In some cases, we know that every name that could be found by
1228 // this qualified name lookup will also be on the identifier chain. For
1229 // example, inside a class without any base classes, we never need to
1230 // perform qualified lookup because all of the members are on top of the
1231 // identifier chain.
1232 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1233 return true;
1234 }
1235 }
1236 }
1237
1238 // Stop if we ran out of scopes.
1239 // FIXME: This really, really shouldn't be happening.
1240 if (!S) return false;
1241
1242 // If we are looking for members, no need to look into global/namespace scope.
1243 if (NameKind == LookupMemberName)
1244 return false;
1245
1246 // Collect UsingDirectiveDecls in all scopes, and recursively all
1247 // nominated namespaces by those using-directives.
1248 //
1249 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1250 // don't build it for each lookup!
1251 if (!VisitedUsingDirectives) {
1252 UDirs.visitScopeChain(Initial, S);
1253 UDirs.done();
1254 }
1255
1256 // If we're not performing redeclaration lookup, do not look for local
1257 // extern declarations outside of a function scope.
1258 if (!R.isForRedeclaration())
1259 FindLocals.restore();
1260
1261 // Lookup namespace scope, and global scope.
1262 // Unqualified name lookup in C++ requires looking into scopes
1263 // that aren't strictly lexical, and therefore we walk through the
1264 // context as well as walking through the scopes.
1265 for (; S; S = S->getParent()) {
1266 // Check whether the IdResolver has anything in this scope.
1267 bool Found = false;
1268 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1269 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1270 // We found something. Look for anything else in our scope
1271 // with this same name and in an acceptable identifier
1272 // namespace, so that we can construct an overload set if we
1273 // need to.
1274 Found = true;
1275 R.addDecl(ND);
1276 }
1277 }
1278
1279 if (Found && S->isTemplateParamScope()) {
1280 R.resolveKind();
1281 return true;
1282 }
1283
1284 DeclContext *Ctx = S->getEntity();
1285 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1286 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1287 // We've just searched the last template parameter scope and
1288 // found nothing, so look into the contexts between the
1289 // lexical and semantic declaration contexts returned by
1290 // findOuterContext(). This implements the name lookup behavior
1291 // of C++ [temp.local]p8.
1292 Ctx = OutsideOfTemplateParamDC;
1293 OutsideOfTemplateParamDC = nullptr;
1294 }
1295
1296 if (Ctx) {
1297 DeclContext *OuterCtx;
1298 bool SearchAfterTemplateScope;
1299 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1300 if (SearchAfterTemplateScope)
1301 OutsideOfTemplateParamDC = OuterCtx;
1302
1303 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1304 // We do not directly look into transparent contexts, since
1305 // those entities will be found in the nearest enclosing
1306 // non-transparent context.
1307 if (Ctx->isTransparentContext())
1308 continue;
1309
1310 // If we have a context, and it's not a context stashed in the
1311 // template parameter scope for an out-of-line definition, also
1312 // look into that context.
1313 if (!(Found && S->isTemplateParamScope())) {
1314 assert(Ctx->isFileContext() &&((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1315, __PRETTY_FUNCTION__))
1315 "We should have been looking only at file context here already.")((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1315, __PRETTY_FUNCTION__))
;
1316
1317 // Look into context considering using-directives.
1318 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1319 Found = true;
1320 }
1321
1322 if (Found) {
1323 R.resolveKind();
1324 return true;
1325 }
1326
1327 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1328 return false;
1329 }
1330 }
1331
1332 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1333 return false;
1334 }
1335
1336 return !R.empty();
1337}
1338
1339void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1340 if (auto *M = getCurrentModule())
1341 Context.mergeDefinitionIntoModule(ND, M);
1342 else
1343 // We're not building a module; just make the definition visible.
1344 ND->setVisibleDespiteOwningModule();
1345
1346 // If ND is a template declaration, make the template parameters
1347 // visible too. They're not (necessarily) within a mergeable DeclContext.
1348 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1349 for (auto *Param : *TD->getTemplateParameters())
1350 makeMergedDefinitionVisible(Param);
1351}
1352
1353/// \brief Find the module in which the given declaration was defined.
1354static Module *getDefiningModule(Sema &S, Decl *Entity) {
1355 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1356 // If this function was instantiated from a template, the defining module is
1357 // the module containing the pattern.
1358 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1359 Entity = Pattern;
1360 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1361 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1362 Entity = Pattern;
1363 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1364 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1365 Entity = Pattern;
1366 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1367 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1368 Entity = Pattern;
1369 }
1370
1371 // Walk up to the containing context. That might also have been instantiated
1372 // from a template.
1373 DeclContext *Context = Entity->getDeclContext();
1374 if (Context->isFileContext())
1375 return S.getOwningModule(Entity);
1376 return getDefiningModule(S, cast<Decl>(Context));
1377}
1378
1379llvm::DenseSet<Module*> &Sema::getLookupModules() {
1380 unsigned N = CodeSynthesisContexts.size();
1381 for (unsigned I = CodeSynthesisContextLookupModules.size();
1382 I != N; ++I) {
1383 Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1384 if (M && !LookupModulesCache.insert(M).second)
1385 M = nullptr;
1386 CodeSynthesisContextLookupModules.push_back(M);
1387 }
1388 return LookupModulesCache;
1389}
1390
1391bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1392 for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1393 if (isModuleVisible(Merged))
1394 return true;
1395 return false;
1396}
1397
1398template<typename ParmDecl>
1399static bool
1400hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1401 llvm::SmallVectorImpl<Module *> *Modules) {
1402 if (!D->hasDefaultArgument())
1403 return false;
1404
1405 while (D) {
1406 auto &DefaultArg = D->getDefaultArgStorage();
1407 if (!DefaultArg.isInherited() && S.isVisible(D))
1408 return true;
1409
1410 if (!DefaultArg.isInherited() && Modules) {
1411 auto *NonConstD = const_cast<ParmDecl*>(D);
1412 Modules->push_back(S.getOwningModule(NonConstD));
1413 const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
1414 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1415 }
1416
1417 // If there was a previous default argument, maybe its parameter is visible.
1418 D = DefaultArg.getInheritedFrom();
1419 }
1420 return false;
1421}
1422
1423bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1424 llvm::SmallVectorImpl<Module *> *Modules) {
1425 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1426 return ::hasVisibleDefaultArgument(*this, P, Modules);
1427 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1428 return ::hasVisibleDefaultArgument(*this, P, Modules);
1429 return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1430 Modules);
1431}
1432
1433template<typename Filter>
1434static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1435 llvm::SmallVectorImpl<Module *> *Modules,
1436 Filter F) {
1437 for (auto *Redecl : D->redecls()) {
1438 auto *R = cast<NamedDecl>(Redecl);
1439 if (!F(R))
1440 continue;
1441
1442 if (S.isVisible(R))
1443 return true;
1444
1445 if (Modules) {
1446 Modules->push_back(R->getOwningModule());
1447 const auto &Merged = S.Context.getModulesWithMergedDefinition(R);
1448 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1449 }
1450 }
1451
1452 return false;
1453}
1454
1455bool Sema::hasVisibleExplicitSpecialization(
1456 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1457 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1458 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1459 return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1460 if (auto *FD = dyn_cast<FunctionDecl>(D))
1461 return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1462 if (auto *VD = dyn_cast<VarDecl>(D))
1463 return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1464 llvm_unreachable("unknown explicit specialization kind")::llvm::llvm_unreachable_internal("unknown explicit specialization kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1464)
;
1465 });
1466}
1467
1468bool Sema::hasVisibleMemberSpecialization(
1469 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1470 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1471, __PRETTY_FUNCTION__))
1471 "not a member specialization")((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1471, __PRETTY_FUNCTION__))
;
1472 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1473 // If the specialization is declared at namespace scope, then it's a member
1474 // specialization declaration. If it's lexically inside the class
1475 // definition then it was instantiated.
1476 //
1477 // FIXME: This is a hack. There should be a better way to determine this.
1478 // FIXME: What about MS-style explicit specializations declared within a
1479 // class definition?
1480 return D->getLexicalDeclContext()->isFileContext();
1481 });
1482
1483 return false;
1484}
1485
1486/// \brief Determine whether a declaration is visible to name lookup.
1487///
1488/// This routine determines whether the declaration D is visible in the current
1489/// lookup context, taking into account the current template instantiation
1490/// stack. During template instantiation, a declaration is visible if it is
1491/// visible from a module containing any entity on the template instantiation
1492/// path (by instantiating a template, you allow it to see the declarations that
1493/// your module can see, including those later on in your module).
1494bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1495 assert(D->isHidden() && "should not call this: not in slow case")((D->isHidden() && "should not call this: not in slow case"
) ? static_cast<void> (0) : __assert_fail ("D->isHidden() && \"should not call this: not in slow case\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1495, __PRETTY_FUNCTION__))
;
1496
1497 Module *DeclModule = SemaRef.getOwningModule(D);
1498 assert(DeclModule && "hidden decl not from a module")((DeclModule && "hidden decl not from a module") ? static_cast
<void> (0) : __assert_fail ("DeclModule && \"hidden decl not from a module\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1498, __PRETTY_FUNCTION__))
;
1499
1500 // If the owning module is visible, and the decl is not module private,
1501 // then the decl is visible too. (Module private is ignored within the same
1502 // top-level module.)
1503 // FIXME: Check the owning module for module-private declarations rather than
1504 // assuming "same AST file" is the same thing as "same module".
1505 if ((!D->isFromASTFile() || !D->isModulePrivate()) &&
1506 (SemaRef.isModuleVisible(DeclModule) ||
1507 SemaRef.hasVisibleMergedDefinition(D)))
1508 return true;
1509
1510 // If this declaration is not at namespace scope nor module-private,
1511 // then it is visible if its lexical parent has a visible definition.
1512 DeclContext *DC = D->getLexicalDeclContext();
1513 if (!D->isModulePrivate() && DC && !DC->isFileContext() &&
1514 !isa<LinkageSpecDecl>(DC) && !isa<ExportDecl>(DC)) {
1515 // For a parameter, check whether our current template declaration's
1516 // lexical context is visible, not whether there's some other visible
1517 // definition of it, because parameters aren't "within" the definition.
1518 //
1519 // In C++ we need to check for a visible definition due to ODR merging,
1520 // and in C we must not because each declaration of a function gets its own
1521 // set of declarations for tags in prototype scope.
1522 if ((D->isTemplateParameter() || isa<ParmVarDecl>(D)
1523 || (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1524 ? isVisible(SemaRef, cast<NamedDecl>(DC))
1525 : SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
1526 if (SemaRef.CodeSynthesisContexts.empty() &&
1527 // FIXME: Do something better in this case.
1528 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1529 // Cache the fact that this declaration is implicitly visible because
1530 // its parent has a visible definition.
1531 D->setVisibleDespiteOwningModule();
1532 }
1533 return true;
1534 }
1535 return false;
1536 }
1537
1538 // Find the extra places where we need to look.
1539 llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1540 if (LookupModules.empty())
1541 return false;
1542
1543 if (!DeclModule) {
1544 DeclModule = SemaRef.getOwningModule(D);
1545 assert(DeclModule && "hidden decl not from a module")((DeclModule && "hidden decl not from a module") ? static_cast
<void> (0) : __assert_fail ("DeclModule && \"hidden decl not from a module\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1545, __PRETTY_FUNCTION__))
;
1546 }
1547
1548 // If our lookup set contains the decl's module, it's visible.
1549 if (LookupModules.count(DeclModule))
1550 return true;
1551
1552 // If the declaration isn't exported, it's not visible in any other module.
1553 if (D->isModulePrivate())
1554 return false;
1555
1556 // Check whether DeclModule is transitively exported to an import of
1557 // the lookup set.
1558 return std::any_of(LookupModules.begin(), LookupModules.end(),
1559 [&](Module *M) { return M->isModuleVisible(DeclModule); });
1560}
1561
1562bool Sema::isVisibleSlow(const NamedDecl *D) {
1563 return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1564}
1565
1566bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1567 for (auto *D : R) {
1568 if (isVisible(D))
1569 return true;
1570 }
1571 return New->isExternallyVisible();
1572}
1573
1574/// \brief Retrieve the visible declaration corresponding to D, if any.
1575///
1576/// This routine determines whether the declaration D is visible in the current
1577/// module, with the current imports. If not, it checks whether any
1578/// redeclaration of D is visible, and if so, returns that declaration.
1579///
1580/// \returns D, or a visible previous declaration of D, whichever is more recent
1581/// and visible. If no declaration of D is visible, returns null.
1582static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
1583 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")((!LookupResult::isVisible(SemaRef, D) && "not in slow case"
) ? static_cast<void> (0) : __assert_fail ("!LookupResult::isVisible(SemaRef, D) && \"not in slow case\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1583, __PRETTY_FUNCTION__))
;
1584
1585 for (auto RD : D->redecls()) {
1586 // Don't bother with extra checks if we already know this one isn't visible.
1587 if (RD == D)
1588 continue;
1589
1590 auto ND = cast<NamedDecl>(RD);
1591 // FIXME: This is wrong in the case where the previous declaration is not
1592 // visible in the same scope as D. This needs to be done much more
1593 // carefully.
1594 if (LookupResult::isVisible(SemaRef, ND))
1595 return ND;
1596 }
1597
1598 return nullptr;
1599}
1600
1601bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1602 llvm::SmallVectorImpl<Module *> *Modules) {
1603 assert(!isVisible(D) && "not in slow case")((!isVisible(D) && "not in slow case") ? static_cast<
void> (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1603, __PRETTY_FUNCTION__))
;
1604 return hasVisibleDeclarationImpl(*this, D, Modules,
1605 [](const NamedDecl *) { return true; });
1606}
1607
1608NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1609 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1610 // Namespaces are a bit of a special case: we expect there to be a lot of
1611 // redeclarations of some namespaces, all declarations of a namespace are
1612 // essentially interchangeable, all declarations are found by name lookup
1613 // if any is, and namespaces are never looked up during template
1614 // instantiation. So we benefit from caching the check in this case, and
1615 // it is correct to do so.
1616 auto *Key = ND->getCanonicalDecl();
1617 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1618 return Acceptable;
1619 auto *Acceptable =
1620 isVisible(getSema(), Key) ? Key : findAcceptableDecl(getSema(), Key);
1621 if (Acceptable)
1622 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1623 return Acceptable;
1624 }
1625
1626 return findAcceptableDecl(getSema(), D);
1627}
1628
1629/// @brief Perform unqualified name lookup starting from a given
1630/// scope.
1631///
1632/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1633/// used to find names within the current scope. For example, 'x' in
1634/// @code
1635/// int x;
1636/// int f() {
1637/// return x; // unqualified name look finds 'x' in the global scope
1638/// }
1639/// @endcode
1640///
1641/// Different lookup criteria can find different names. For example, a
1642/// particular scope can have both a struct and a function of the same
1643/// name, and each can be found by certain lookup criteria. For more
1644/// information about lookup criteria, see the documentation for the
1645/// class LookupCriteria.
1646///
1647/// @param S The scope from which unqualified name lookup will
1648/// begin. If the lookup criteria permits, name lookup may also search
1649/// in the parent scopes.
1650///
1651/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1652/// look up and the lookup kind), and is updated with the results of lookup
1653/// including zero or more declarations and possibly additional information
1654/// used to diagnose ambiguities.
1655///
1656/// @returns \c true if lookup succeeded and false otherwise.
1657bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1658 DeclarationName Name = R.getLookupName();
1659 if (!Name) return false;
1660
1661 LookupNameKind NameKind = R.getLookupKind();
1662
1663 if (!getLangOpts().CPlusPlus) {
1664 // Unqualified name lookup in C/Objective-C is purely lexical, so
1665 // search in the declarations attached to the name.
1666 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1667 // Find the nearest non-transparent declaration scope.
1668 while (!(S->getFlags() & Scope::DeclScope) ||
1669 (S->getEntity() && S->getEntity()->isTransparentContext()))
1670 S = S->getParent();
1671 }
1672
1673 // When performing a scope lookup, we want to find local extern decls.
1674 FindLocalExternScope FindLocals(R);
1675
1676 // Scan up the scope chain looking for a decl that matches this
1677 // identifier that is in the appropriate namespace. This search
1678 // should not take long, as shadowing of names is uncommon, and
1679 // deep shadowing is extremely uncommon.
1680 bool LeftStartingScope = false;
1681
1682 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1683 IEnd = IdResolver.end();
1684 I != IEnd; ++I)
1685 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1686 if (NameKind == LookupRedeclarationWithLinkage) {
1687 // Determine whether this (or a previous) declaration is
1688 // out-of-scope.
1689 if (!LeftStartingScope && !S->isDeclScope(*I))
1690 LeftStartingScope = true;
1691
1692 // If we found something outside of our starting scope that
1693 // does not have linkage, skip it.
1694 if (LeftStartingScope && !((*I)->hasLinkage())) {
1695 R.setShadowed();
1696 continue;
1697 }
1698 }
1699 else if (NameKind == LookupObjCImplicitSelfParam &&
1700 !isa<ImplicitParamDecl>(*I))
1701 continue;
1702
1703 R.addDecl(D);
1704
1705 // Check whether there are any other declarations with the same name
1706 // and in the same scope.
1707 if (I != IEnd) {
1708 // Find the scope in which this declaration was declared (if it
1709 // actually exists in a Scope).
1710 while (S && !S->isDeclScope(D))
1711 S = S->getParent();
1712
1713 // If the scope containing the declaration is the translation unit,
1714 // then we'll need to perform our checks based on the matching
1715 // DeclContexts rather than matching scopes.
1716 if (S && isNamespaceOrTranslationUnitScope(S))
1717 S = nullptr;
1718
1719 // Compute the DeclContext, if we need it.
1720 DeclContext *DC = nullptr;
1721 if (!S)
1722 DC = (*I)->getDeclContext()->getRedeclContext();
1723
1724 IdentifierResolver::iterator LastI = I;
1725 for (++LastI; LastI != IEnd; ++LastI) {
1726 if (S) {
1727 // Match based on scope.
1728 if (!S->isDeclScope(*LastI))
1729 break;
1730 } else {
1731 // Match based on DeclContext.
1732 DeclContext *LastDC
1733 = (*LastI)->getDeclContext()->getRedeclContext();
1734 if (!LastDC->Equals(DC))
1735 break;
1736 }
1737
1738 // If the declaration is in the right namespace and visible, add it.
1739 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1740 R.addDecl(LastD);
1741 }
1742
1743 R.resolveKind();
1744 }
1745
1746 return true;
1747 }
1748 } else {
1749 // Perform C++ unqualified name lookup.
1750 if (CppLookupName(R, S))
1751 return true;
1752 }
1753
1754 // If we didn't find a use of this identifier, and if the identifier
1755 // corresponds to a compiler builtin, create the decl object for the builtin
1756 // now, injecting it into translation unit scope, and return it.
1757 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1758 return true;
1759
1760 // If we didn't find a use of this identifier, the ExternalSource
1761 // may be able to handle the situation.
1762 // Note: some lookup failures are expected!
1763 // See e.g. R.isForRedeclaration().
1764 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1765}
1766
1767/// @brief Perform qualified name lookup in the namespaces nominated by
1768/// using directives by the given context.
1769///
1770/// C++98 [namespace.qual]p2:
1771/// Given X::m (where X is a user-declared namespace), or given \::m
1772/// (where X is the global namespace), let S be the set of all
1773/// declarations of m in X and in the transitive closure of all
1774/// namespaces nominated by using-directives in X and its used
1775/// namespaces, except that using-directives are ignored in any
1776/// namespace, including X, directly containing one or more
1777/// declarations of m. No namespace is searched more than once in
1778/// the lookup of a name. If S is the empty set, the program is
1779/// ill-formed. Otherwise, if S has exactly one member, or if the
1780/// context of the reference is a using-declaration
1781/// (namespace.udecl), S is the required set of declarations of
1782/// m. Otherwise if the use of m is not one that allows a unique
1783/// declaration to be chosen from S, the program is ill-formed.
1784///
1785/// C++98 [namespace.qual]p5:
1786/// During the lookup of a qualified namespace member name, if the
1787/// lookup finds more than one declaration of the member, and if one
1788/// declaration introduces a class name or enumeration name and the
1789/// other declarations either introduce the same object, the same
1790/// enumerator or a set of functions, the non-type name hides the
1791/// class or enumeration name if and only if the declarations are
1792/// from the same namespace; otherwise (the declarations are from
1793/// different namespaces), the program is ill-formed.
1794static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1795 DeclContext *StartDC) {
1796 assert(StartDC->isFileContext() && "start context is not a file context")((StartDC->isFileContext() && "start context is not a file context"
) ? static_cast<void> (0) : __assert_fail ("StartDC->isFileContext() && \"start context is not a file context\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1796, __PRETTY_FUNCTION__))
;
1797
1798 DeclContext::udir_range UsingDirectives = StartDC->using_directives();
1799 if (UsingDirectives.begin() == UsingDirectives.end()) return false;
1800
1801 // We have at least added all these contexts to the queue.
1802 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1803 Visited.insert(StartDC);
1804
1805 // We have not yet looked into these namespaces, much less added
1806 // their "using-children" to the queue.
1807 SmallVector<NamespaceDecl*, 8> Queue;
1808
1809 // We have already looked into the initial namespace; seed the queue
1810 // with its using-children.
1811 for (auto *I : UsingDirectives) {
1812 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1813 if (Visited.insert(ND).second)
1814 Queue.push_back(ND);
1815 }
1816
1817 // The easiest way to implement the restriction in [namespace.qual]p5
1818 // is to check whether any of the individual results found a tag
1819 // and, if so, to declare an ambiguity if the final result is not
1820 // a tag.
1821 bool FoundTag = false;
1822 bool FoundNonTag = false;
1823
1824 LookupResult LocalR(LookupResult::Temporary, R);
1825
1826 bool Found = false;
1827 while (!Queue.empty()) {
1828 NamespaceDecl *ND = Queue.pop_back_val();
1829
1830 // We go through some convolutions here to avoid copying results
1831 // between LookupResults.
1832 bool UseLocal = !R.empty();
1833 LookupResult &DirectR = UseLocal ? LocalR : R;
1834 bool FoundDirect = LookupDirect(S, DirectR, ND);
1835
1836 if (FoundDirect) {
1837 // First do any local hiding.
1838 DirectR.resolveKind();
1839
1840 // If the local result is a tag, remember that.
1841 if (DirectR.isSingleTagDecl())
1842 FoundTag = true;
1843 else
1844 FoundNonTag = true;
1845
1846 // Append the local results to the total results if necessary.
1847 if (UseLocal) {
1848 R.addAllDecls(LocalR);
1849 LocalR.clear();
1850 }
1851 }
1852
1853 // If we find names in this namespace, ignore its using directives.
1854 if (FoundDirect) {
1855 Found = true;
1856 continue;
1857 }
1858
1859 for (auto I : ND->using_directives()) {
1860 NamespaceDecl *Nom = I->getNominatedNamespace();
1861 if (Visited.insert(Nom).second)
1862 Queue.push_back(Nom);
1863 }
1864 }
1865
1866 if (Found) {
1867 if (FoundTag && FoundNonTag)
1868 R.setAmbiguousQualifiedTagHiding();
1869 else
1870 R.resolveKind();
1871 }
1872
1873 return Found;
1874}
1875
1876/// \brief Callback that looks for any member of a class with the given name.
1877static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1878 CXXBasePath &Path, DeclarationName Name) {
1879 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1880
1881 Path.Decls = BaseRecord->lookup(Name);
1882 return !Path.Decls.empty();
1883}
1884
1885/// \brief Determine whether the given set of member declarations contains only
1886/// static members, nested types, and enumerators.
1887template<typename InputIterator>
1888static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1889 Decl *D = (*First)->getUnderlyingDecl();
1890 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1891 return true;
1892
1893 if (isa<CXXMethodDecl>(D)) {
1894 // Determine whether all of the methods are static.
1895 bool AllMethodsAreStatic = true;
1896 for(; First != Last; ++First) {
1897 D = (*First)->getUnderlyingDecl();
1898
1899 if (!isa<CXXMethodDecl>(D)) {
1900 assert(isa<TagDecl>(D) && "Non-function must be a tag decl")((isa<TagDecl>(D) && "Non-function must be a tag decl"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(D) && \"Non-function must be a tag decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1900, __PRETTY_FUNCTION__))
;
1901 break;
1902 }
1903
1904 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1905 AllMethodsAreStatic = false;
1906 break;
1907 }
1908 }
1909
1910 if (AllMethodsAreStatic)
1911 return true;
1912 }
1913
1914 return false;
1915}
1916
1917/// \brief Perform qualified name lookup into a given context.
1918///
1919/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1920/// names when the context of those names is explicit specified, e.g.,
1921/// "std::vector" or "x->member", or as part of unqualified name lookup.
1922///
1923/// Different lookup criteria can find different names. For example, a
1924/// particular scope can have both a struct and a function of the same
1925/// name, and each can be found by certain lookup criteria. For more
1926/// information about lookup criteria, see the documentation for the
1927/// class LookupCriteria.
1928///
1929/// \param R captures both the lookup criteria and any lookup results found.
1930///
1931/// \param LookupCtx The context in which qualified name lookup will
1932/// search. If the lookup criteria permits, name lookup may also search
1933/// in the parent contexts or (for C++ classes) base classes.
1934///
1935/// \param InUnqualifiedLookup true if this is qualified name lookup that
1936/// occurs as part of unqualified name lookup.
1937///
1938/// \returns true if lookup succeeded, false if it failed.
1939bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1940 bool InUnqualifiedLookup) {
1941 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")((LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? static_cast<void> (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1941, __PRETTY_FUNCTION__))
;
1942
1943 if (!R.getLookupName())
1944 return false;
1945
1946 // Make sure that the declaration context is complete.
1947 assert((!isa<TagDecl>(LookupCtx) ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1951, __PRETTY_FUNCTION__))
1948 LookupCtx->isDependentContext() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1951, __PRETTY_FUNCTION__))
1949 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1951, __PRETTY_FUNCTION__))
1950 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1951, __PRETTY_FUNCTION__))
1951 "Declaration context must already be complete!")(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 1951, __PRETTY_FUNCTION__))
;
1952
1953 struct QualifiedLookupInScope {
1954 bool oldVal;
1955 DeclContext *Context;
1956 // Set flag in DeclContext informing debugger that we're looking for qualified name
1957 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
1958 oldVal = ctx->setUseQualifiedLookup();
1959 }
1960 ~QualifiedLookupInScope() {
1961 Context->setUseQualifiedLookup(oldVal);
1962 }
1963 } QL(LookupCtx);
1964
1965 if (LookupDirect(*this, R, LookupCtx)) {
1966 R.resolveKind();
1967 if (isa<CXXRecordDecl>(LookupCtx))
1968 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1969 return true;
1970 }
1971
1972 // Don't descend into implied contexts for redeclarations.
1973 // C++98 [namespace.qual]p6:
1974 // In a declaration for a namespace member in which the
1975 // declarator-id is a qualified-id, given that the qualified-id
1976 // for the namespace member has the form
1977 // nested-name-specifier unqualified-id
1978 // the unqualified-id shall name a member of the namespace
1979 // designated by the nested-name-specifier.
1980 // See also [class.mfct]p5 and [class.static.data]p2.
1981 if (R.isForRedeclaration())
1982 return false;
1983
1984 // If this is a namespace, look it up in the implied namespaces.
1985 if (LookupCtx->isFileContext())
1986 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1987
1988 // If this isn't a C++ class, we aren't allowed to look into base
1989 // classes, we're done.
1990 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1991 if (!LookupRec || !LookupRec->getDefinition())
1992 return false;
1993
1994 // If we're performing qualified name lookup into a dependent class,
1995 // then we are actually looking into a current instantiation. If we have any
1996 // dependent base classes, then we either have to delay lookup until
1997 // template instantiation time (at which point all bases will be available)
1998 // or we have to fail.
1999 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2000 LookupRec->hasAnyDependentBases()) {
2001 R.setNotFoundInCurrentInstantiation();
2002 return false;
2003 }
2004
2005 // Perform lookup into our base classes.
2006 CXXBasePaths Paths;
2007 Paths.setOrigin(LookupRec);
2008
2009 // Look for this member in our base classes
2010 bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2011 DeclarationName Name) = nullptr;
2012 switch (R.getLookupKind()) {
2013 case LookupObjCImplicitSelfParam:
2014 case LookupOrdinaryName:
2015 case LookupMemberName:
2016 case LookupRedeclarationWithLinkage:
2017 case LookupLocalFriendName:
2018 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2019 break;
2020
2021 case LookupTagName:
2022 BaseCallback = &CXXRecordDecl::FindTagMember;
2023 break;
2024
2025 case LookupAnyName:
2026 BaseCallback = &LookupAnyMember;
2027 break;
2028
2029 case LookupOMPReductionName:
2030 BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2031 break;
2032
2033 case LookupUsingDeclName:
2034 // This lookup is for redeclarations only.
2035
2036 case LookupOperatorName:
2037 case LookupNamespaceName:
2038 case LookupObjCProtocolName:
2039 case LookupLabel:
2040 // These lookups will never find a member in a C++ class (or base class).
2041 return false;
2042
2043 case LookupNestedNameSpecifierName:
2044 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2045 break;
2046 }
2047
2048 DeclarationName Name = R.getLookupName();
2049 if (!LookupRec->lookupInBases(
2050 [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2051 return BaseCallback(Specifier, Path, Name);
2052 },
2053 Paths))
2054 return false;
2055
2056 R.setNamingClass(LookupRec);
2057
2058 // C++ [class.member.lookup]p2:
2059 // [...] If the resulting set of declarations are not all from
2060 // sub-objects of the same type, or the set has a nonstatic member
2061 // and includes members from distinct sub-objects, there is an
2062 // ambiguity and the program is ill-formed. Otherwise that set is
2063 // the result of the lookup.
2064 QualType SubobjectType;
2065 int SubobjectNumber = 0;
2066 AccessSpecifier SubobjectAccess = AS_none;
2067
2068 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2069 Path != PathEnd; ++Path) {
2070 const CXXBasePathElement &PathElement = Path->back();
2071
2072 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2073 // across all paths.
2074 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2075
2076 // Determine whether we're looking at a distinct sub-object or not.
2077 if (SubobjectType.isNull()) {
2078 // This is the first subobject we've looked at. Record its type.
2079 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2080 SubobjectNumber = PathElement.SubobjectNumber;
2081 continue;
2082 }
2083
2084 if (SubobjectType
2085 != Context.getCanonicalType(PathElement.Base->getType())) {
2086 // We found members of the given name in two subobjects of
2087 // different types. If the declaration sets aren't the same, this
2088 // lookup is ambiguous.
2089 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2090 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2091 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2092 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2093
2094 while (FirstD != FirstPath->Decls.end() &&
2095 CurrentD != Path->Decls.end()) {
2096 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
2097 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
2098 break;
2099
2100 ++FirstD;
2101 ++CurrentD;
2102 }
2103
2104 if (FirstD == FirstPath->Decls.end() &&
2105 CurrentD == Path->Decls.end())
2106 continue;
2107 }
2108
2109 R.setAmbiguousBaseSubobjectTypes(Paths);
2110 return true;
2111 }
2112
2113 if (SubobjectNumber != PathElement.SubobjectNumber) {
2114 // We have a different subobject of the same type.
2115
2116 // C++ [class.member.lookup]p5:
2117 // A static member, a nested type or an enumerator defined in
2118 // a base class T can unambiguously be found even if an object
2119 // has more than one base class subobject of type T.
2120 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2121 continue;
2122
2123 // We have found a nonstatic member name in multiple, distinct
2124 // subobjects. Name lookup is ambiguous.
2125 R.setAmbiguousBaseSubobjects(Paths);
2126 return true;
2127 }
2128 }
2129
2130 // Lookup in a base class succeeded; return these results.
2131
2132 for (auto *D : Paths.front().Decls) {
2133 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2134 D->getAccess());
2135 R.addDecl(D, AS);
2136 }
2137 R.resolveKind();
2138 return true;
2139}
2140
2141/// \brief Performs qualified name lookup or special type of lookup for
2142/// "__super::" scope specifier.
2143///
2144/// This routine is a convenience overload meant to be called from contexts
2145/// that need to perform a qualified name lookup with an optional C++ scope
2146/// specifier that might require special kind of lookup.
2147///
2148/// \param R captures both the lookup criteria and any lookup results found.
2149///
2150/// \param LookupCtx The context in which qualified name lookup will
2151/// search.
2152///
2153/// \param SS An optional C++ scope-specifier.
2154///
2155/// \returns true if lookup succeeded, false if it failed.
2156bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2157 CXXScopeSpec &SS) {
2158 auto *NNS = SS.getScopeRep();
2159 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2160 return LookupInSuper(R, NNS->getAsRecordDecl());
2161 else
2162
2163 return LookupQualifiedName(R, LookupCtx);
2164}
2165
2166/// @brief Performs name lookup for a name that was parsed in the
2167/// source code, and may contain a C++ scope specifier.
2168///
2169/// This routine is a convenience routine meant to be called from
2170/// contexts that receive a name and an optional C++ scope specifier
2171/// (e.g., "N::M::x"). It will then perform either qualified or
2172/// unqualified name lookup (with LookupQualifiedName or LookupName,
2173/// respectively) on the given name and return those results. It will
2174/// perform a special type of lookup for "__super::" scope specifier.
2175///
2176/// @param S The scope from which unqualified name lookup will
2177/// begin.
2178///
2179/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2180///
2181/// @param EnteringContext Indicates whether we are going to enter the
2182/// context of the scope-specifier SS (if present).
2183///
2184/// @returns True if any decls were found (but possibly ambiguous)
2185bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2186 bool AllowBuiltinCreation, bool EnteringContext) {
2187 if (SS && SS->isInvalid()) {
2188 // When the scope specifier is invalid, don't even look for
2189 // anything.
2190 return false;
2191 }
2192
2193 if (SS && SS->isSet()) {
2194 NestedNameSpecifier *NNS = SS->getScopeRep();
2195 if (NNS->getKind() == NestedNameSpecifier::Super)
2196 return LookupInSuper(R, NNS->getAsRecordDecl());
2197
2198 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2199 // We have resolved the scope specifier to a particular declaration
2200 // contex, and will perform name lookup in that context.
2201 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2202 return false;
2203
2204 R.setContextRange(SS->getRange());
2205 return LookupQualifiedName(R, DC);
2206 }
2207
2208 // We could not resolve the scope specified to a specific declaration
2209 // context, which means that SS refers to an unknown specialization.
2210 // Name lookup can't find anything in this case.
2211 R.setNotFoundInCurrentInstantiation();
2212 R.setContextRange(SS->getRange());
2213 return false;
2214 }
2215
2216 // Perform unqualified name lookup starting in the given scope.
2217 return LookupName(R, S, AllowBuiltinCreation);
2218}
2219
2220/// \brief Perform qualified name lookup into all base classes of the given
2221/// class.
2222///
2223/// \param R captures both the lookup criteria and any lookup results found.
2224///
2225/// \param Class The context in which qualified name lookup will
2226/// search. Name lookup will search in all base classes merging the results.
2227///
2228/// @returns True if any decls were found (but possibly ambiguous)
2229bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2230 // The access-control rules we use here are essentially the rules for
2231 // doing a lookup in Class that just magically skipped the direct
2232 // members of Class itself. That is, the naming class is Class, and the
2233 // access includes the access of the base.
2234 for (const auto &BaseSpec : Class->bases()) {
2235 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2236 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2237 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2238 Result.setBaseObjectType(Context.getRecordType(Class));
2239 LookupQualifiedName(Result, RD);
2240
2241 // Copy the lookup results into the target, merging the base's access into
2242 // the path access.
2243 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2244 R.addDecl(I.getDecl(),
2245 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2246 I.getAccess()));
2247 }
2248
2249 Result.suppressDiagnostics();
2250 }
2251
2252 R.resolveKind();
2253 R.setNamingClass(Class);
2254
2255 return !R.empty();
2256}
2257
2258/// \brief Produce a diagnostic describing the ambiguity that resulted
2259/// from name lookup.
2260///
2261/// \param Result The result of the ambiguous lookup to be diagnosed.
2262void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2263 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")((Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2263, __PRETTY_FUNCTION__))
;
2264
2265 DeclarationName Name = Result.getLookupName();
2266 SourceLocation NameLoc = Result.getNameLoc();
2267 SourceRange LookupRange = Result.getContextRange();
2268
2269 switch (Result.getAmbiguityKind()) {
2270 case LookupResult::AmbiguousBaseSubobjects: {
2271 CXXBasePaths *Paths = Result.getBasePaths();
2272 QualType SubobjectType = Paths->front().back().Base->getType();
2273 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2274 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2275 << LookupRange;
2276
2277 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2278 while (isa<CXXMethodDecl>(*Found) &&
2279 cast<CXXMethodDecl>(*Found)->isStatic())
2280 ++Found;
2281
2282 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2283 break;
2284 }
2285
2286 case LookupResult::AmbiguousBaseSubobjectTypes: {
2287 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2288 << Name << LookupRange;
2289
2290 CXXBasePaths *Paths = Result.getBasePaths();
2291 std::set<Decl *> DeclsPrinted;
2292 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2293 PathEnd = Paths->end();
2294 Path != PathEnd; ++Path) {
2295 Decl *D = Path->Decls.front();
2296 if (DeclsPrinted.insert(D).second)
2297 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2298 }
2299 break;
2300 }
2301
2302 case LookupResult::AmbiguousTagHiding: {
2303 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2304
2305 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2306
2307 for (auto *D : Result)
2308 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2309 TagDecls.insert(TD);
2310 Diag(TD->getLocation(), diag::note_hidden_tag);
2311 }
2312
2313 for (auto *D : Result)
2314 if (!isa<TagDecl>(D))
2315 Diag(D->getLocation(), diag::note_hiding_object);
2316
2317 // For recovery purposes, go ahead and implement the hiding.
2318 LookupResult::Filter F = Result.makeFilter();
2319 while (F.hasNext()) {
2320 if (TagDecls.count(F.next()))
2321 F.erase();
2322 }
2323 F.done();
2324 break;
2325 }
2326
2327 case LookupResult::AmbiguousReference: {
2328 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2329
2330 for (auto *D : Result)
2331 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2332 break;
2333 }
2334 }
2335}
2336
2337namespace {
2338 struct AssociatedLookup {
2339 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2340 Sema::AssociatedNamespaceSet &Namespaces,
2341 Sema::AssociatedClassSet &Classes)
2342 : S(S), Namespaces(Namespaces), Classes(Classes),
2343 InstantiationLoc(InstantiationLoc) {
2344 }
2345
2346 Sema &S;
2347 Sema::AssociatedNamespaceSet &Namespaces;
2348 Sema::AssociatedClassSet &Classes;
2349 SourceLocation InstantiationLoc;
2350 };
2351} // end anonymous namespace
2352
2353static void
2354addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2355
2356static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2357 DeclContext *Ctx) {
2358 // Add the associated namespace for this class.
2359
2360 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2361 // be a locally scoped record.
2362
2363 // We skip out of inline namespaces. The innermost non-inline namespace
2364 // contains all names of all its nested inline namespaces anyway, so we can
2365 // replace the entire inline namespace tree with its root.
2366 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2367 Ctx->isInlineNamespace())
2368 Ctx = Ctx->getParent();
2369
2370 if (Ctx->isFileContext())
2371 Namespaces.insert(Ctx->getPrimaryContext());
2372}
2373
2374// \brief Add the associated classes and namespaces for argument-dependent
2375// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2376static void
2377addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2378 const TemplateArgument &Arg) {
2379 // C++ [basic.lookup.koenig]p2, last bullet:
2380 // -- [...] ;
2381 switch (Arg.getKind()) {
2382 case TemplateArgument::Null:
2383 break;
2384
2385 case TemplateArgument::Type:
2386 // [...] the namespaces and classes associated with the types of the
2387 // template arguments provided for template type parameters (excluding
2388 // template template parameters)
2389 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2390 break;
2391
2392 case TemplateArgument::Template:
2393 case TemplateArgument::TemplateExpansion: {
2394 // [...] the namespaces in which any template template arguments are
2395 // defined; and the classes in which any member templates used as
2396 // template template arguments are defined.
2397 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2398 if (ClassTemplateDecl *ClassTemplate
2399 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2400 DeclContext *Ctx = ClassTemplate->getDeclContext();
2401 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2402 Result.Classes.insert(EnclosingClass);
2403 // Add the associated namespace for this class.
2404 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2405 }
2406 break;
2407 }
2408
2409 case TemplateArgument::Declaration:
2410 case TemplateArgument::Integral:
2411 case TemplateArgument::Expression:
2412 case TemplateArgument::NullPtr:
2413 // [Note: non-type template arguments do not contribute to the set of
2414 // associated namespaces. ]
2415 break;
2416
2417 case TemplateArgument::Pack:
2418 for (const auto &P : Arg.pack_elements())
2419 addAssociatedClassesAndNamespaces(Result, P);
2420 break;
2421 }
2422}
2423
2424// \brief Add the associated classes and namespaces for
2425// argument-dependent lookup with an argument of class type
2426// (C++ [basic.lookup.koenig]p2).
2427static void
2428addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2429 CXXRecordDecl *Class) {
2430
2431 // Just silently ignore anything whose name is __va_list_tag.
2432 if (Class->getDeclName() == Result.S.VAListTagName)
2433 return;
2434
2435 // C++ [basic.lookup.koenig]p2:
2436 // [...]
2437 // -- If T is a class type (including unions), its associated
2438 // classes are: the class itself; the class of which it is a
2439 // member, if any; and its direct and indirect base
2440 // classes. Its associated namespaces are the namespaces in
2441 // which its associated classes are defined.
2442
2443 // Add the class of which it is a member, if any.
2444 DeclContext *Ctx = Class->getDeclContext();
2445 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2446 Result.Classes.insert(EnclosingClass);
2447 // Add the associated namespace for this class.
2448 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2449
2450 // Add the class itself. If we've already seen this class, we don't
2451 // need to visit base classes.
2452 //
2453 // FIXME: That's not correct, we may have added this class only because it
2454 // was the enclosing class of another class, and in that case we won't have
2455 // added its base classes yet.
2456 if (!Result.Classes.insert(Class))
2457 return;
2458
2459 // -- If T is a template-id, its associated namespaces and classes are
2460 // the namespace in which the template is defined; for member
2461 // templates, the member template's class; the namespaces and classes
2462 // associated with the types of the template arguments provided for
2463 // template type parameters (excluding template template parameters); the
2464 // namespaces in which any template template arguments are defined; and
2465 // the classes in which any member templates used as template template
2466 // arguments are defined. [Note: non-type template arguments do not
2467 // contribute to the set of associated namespaces. ]
2468 if (ClassTemplateSpecializationDecl *Spec
2469 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2470 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2471 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2472 Result.Classes.insert(EnclosingClass);
2473 // Add the associated namespace for this class.
2474 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2475
2476 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2477 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2478 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2479 }
2480
2481 // Only recurse into base classes for complete types.
2482 if (!Result.S.isCompleteType(Result.InstantiationLoc,
2483 Result.S.Context.getRecordType(Class)))
2484 return;
2485
2486 // Add direct and indirect base classes along with their associated
2487 // namespaces.
2488 SmallVector<CXXRecordDecl *, 32> Bases;
2489 Bases.push_back(Class);
2490 while (!Bases.empty()) {
2491 // Pop this class off the stack.
2492 Class = Bases.pop_back_val();
2493
2494 // Visit the base classes.
2495 for (const auto &Base : Class->bases()) {
2496 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2497 // In dependent contexts, we do ADL twice, and the first time around,
2498 // the base type might be a dependent TemplateSpecializationType, or a
2499 // TemplateTypeParmType. If that happens, simply ignore it.
2500 // FIXME: If we want to support export, we probably need to add the
2501 // namespace of the template in a TemplateSpecializationType, or even
2502 // the classes and namespaces of known non-dependent arguments.
2503 if (!BaseType)
2504 continue;
2505 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2506 if (Result.Classes.insert(BaseDecl)) {
2507 // Find the associated namespace for this base class.
2508 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2509 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2510
2511 // Make sure we visit the bases of this base class.
2512 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2513 Bases.push_back(BaseDecl);
2514 }
2515 }
2516 }
2517}
2518
2519// \brief Add the associated classes and namespaces for
2520// argument-dependent lookup with an argument of type T
2521// (C++ [basic.lookup.koenig]p2).
2522static void
2523addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2524 // C++ [basic.lookup.koenig]p2:
2525 //
2526 // For each argument type T in the function call, there is a set
2527 // of zero or more associated namespaces and a set of zero or more
2528 // associated classes to be considered. The sets of namespaces and
2529 // classes is determined entirely by the types of the function
2530 // arguments (and the namespace of any template template
2531 // argument). Typedef names and using-declarations used to specify
2532 // the types do not contribute to this set. The sets of namespaces
2533 // and classes are determined in the following way:
2534
2535 SmallVector<const Type *, 16> Queue;
2536 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2537
2538 while (true) {
2539 switch (T->getTypeClass()) {
2540
2541#define TYPE(Class, Base)
2542#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2543#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2544#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2545#define ABSTRACT_TYPE(Class, Base)
2546#include "clang/AST/TypeNodes.def"
2547 // T is canonical. We can also ignore dependent types because
2548 // we don't need to do ADL at the definition point, but if we
2549 // wanted to implement template export (or if we find some other
2550 // use for associated classes and namespaces...) this would be
2551 // wrong.
2552 break;
2553
2554 // -- If T is a pointer to U or an array of U, its associated
2555 // namespaces and classes are those associated with U.
2556 case Type::Pointer:
2557 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2558 continue;
2559 case Type::ConstantArray:
2560 case Type::IncompleteArray:
2561 case Type::VariableArray:
2562 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2563 continue;
2564
2565 // -- If T is a fundamental type, its associated sets of
2566 // namespaces and classes are both empty.
2567 case Type::Builtin:
2568 break;
2569
2570 // -- If T is a class type (including unions), its associated
2571 // classes are: the class itself; the class of which it is a
2572 // member, if any; and its direct and indirect base
2573 // classes. Its associated namespaces are the namespaces in
2574 // which its associated classes are defined.
2575 case Type::Record: {
2576 CXXRecordDecl *Class =
2577 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2578 addAssociatedClassesAndNamespaces(Result, Class);
2579 break;
2580 }
2581
2582 // -- If T is an enumeration type, its associated namespace is
2583 // the namespace in which it is defined. If it is class
2584 // member, its associated class is the member's class; else
2585 // it has no associated class.
2586 case Type::Enum: {
2587 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2588
2589 DeclContext *Ctx = Enum->getDeclContext();
2590 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2591 Result.Classes.insert(EnclosingClass);
2592
2593 // Add the associated namespace for this class.
2594 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2595
2596 break;
2597 }
2598
2599 // -- If T is a function type, its associated namespaces and
2600 // classes are those associated with the function parameter
2601 // types and those associated with the return type.
2602 case Type::FunctionProto: {
2603 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2604 for (const auto &Arg : Proto->param_types())
2605 Queue.push_back(Arg.getTypePtr());
2606 // fallthrough
2607 LLVM_FALLTHROUGH[[clang::fallthrough]];
2608 }
2609 case Type::FunctionNoProto: {
2610 const FunctionType *FnType = cast<FunctionType>(T);
2611 T = FnType->getReturnType().getTypePtr();
2612 continue;
2613 }
2614
2615 // -- If T is a pointer to a member function of a class X, its
2616 // associated namespaces and classes are those associated
2617 // with the function parameter types and return type,
2618 // together with those associated with X.
2619 //
2620 // -- If T is a pointer to a data member of class X, its
2621 // associated namespaces and classes are those associated
2622 // with the member type together with those associated with
2623 // X.
2624 case Type::MemberPointer: {
2625 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2626
2627 // Queue up the class type into which this points.
2628 Queue.push_back(MemberPtr->getClass());
2629
2630 // And directly continue with the pointee type.
2631 T = MemberPtr->getPointeeType().getTypePtr();
2632 continue;
2633 }
2634
2635 // As an extension, treat this like a normal pointer.
2636 case Type::BlockPointer:
2637 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2638 continue;
2639
2640 // References aren't covered by the standard, but that's such an
2641 // obvious defect that we cover them anyway.
2642 case Type::LValueReference:
2643 case Type::RValueReference:
2644 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2645 continue;
2646
2647 // These are fundamental types.
2648 case Type::Vector:
2649 case Type::ExtVector:
2650 case Type::Complex:
2651 break;
2652
2653 // Non-deduced auto types only get here for error cases.
2654 case Type::Auto:
2655 case Type::DeducedTemplateSpecialization:
2656 break;
2657
2658 // If T is an Objective-C object or interface type, or a pointer to an
2659 // object or interface type, the associated namespace is the global
2660 // namespace.
2661 case Type::ObjCObject:
2662 case Type::ObjCInterface:
2663 case Type::ObjCObjectPointer:
2664 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2665 break;
2666
2667 // Atomic types are just wrappers; use the associations of the
2668 // contained type.
2669 case Type::Atomic:
2670 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2671 continue;
2672 case Type::Pipe:
2673 T = cast<PipeType>(T)->getElementType().getTypePtr();
2674 continue;
2675 }
2676
2677 if (Queue.empty())
2678 break;
2679 T = Queue.pop_back_val();
2680 }
2681}
2682
2683/// \brief Find the associated classes and namespaces for
2684/// argument-dependent lookup for a call with the given set of
2685/// arguments.
2686///
2687/// This routine computes the sets of associated classes and associated
2688/// namespaces searched by argument-dependent lookup
2689/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2690void Sema::FindAssociatedClassesAndNamespaces(
2691 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2692 AssociatedNamespaceSet &AssociatedNamespaces,
2693 AssociatedClassSet &AssociatedClasses) {
2694 AssociatedNamespaces.clear();
2695 AssociatedClasses.clear();
2696
2697 AssociatedLookup Result(*this, InstantiationLoc,
2698 AssociatedNamespaces, AssociatedClasses);
2699
2700 // C++ [basic.lookup.koenig]p2:
2701 // For each argument type T in the function call, there is a set
2702 // of zero or more associated namespaces and a set of zero or more
2703 // associated classes to be considered. The sets of namespaces and
2704 // classes is determined entirely by the types of the function
2705 // arguments (and the namespace of any template template
2706 // argument).
2707 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2708 Expr *Arg = Args[ArgIdx];
2709
2710 if (Arg->getType() != Context.OverloadTy) {
2711 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2712 continue;
2713 }
2714
2715 // [...] In addition, if the argument is the name or address of a
2716 // set of overloaded functions and/or function templates, its
2717 // associated classes and namespaces are the union of those
2718 // associated with each of the members of the set: the namespace
2719 // in which the function or function template is defined and the
2720 // classes and namespaces associated with its (non-dependent)
2721 // parameter types and return type.
2722 Arg = Arg->IgnoreParens();
2723 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2724 if (unaryOp->getOpcode() == UO_AddrOf)
2725 Arg = unaryOp->getSubExpr();
2726
2727 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2728 if (!ULE) continue;
2729
2730 for (const auto *D : ULE->decls()) {
2731 // Look through any using declarations to find the underlying function.
2732 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2733
2734 // Add the classes and namespaces associated with the parameter
2735 // types and return type of this function.
2736 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2737 }
2738 }
2739}
2740
2741NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2742 SourceLocation Loc,
2743 LookupNameKind NameKind,
2744 RedeclarationKind Redecl) {
2745 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2746 LookupName(R, S);
2747 return R.getAsSingle<NamedDecl>();
2748}
2749
2750/// \brief Find the protocol with the given name, if any.
2751ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2752 SourceLocation IdLoc,
2753 RedeclarationKind Redecl) {
2754 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2755 LookupObjCProtocolName, Redecl);
2756 return cast_or_null<ObjCProtocolDecl>(D);
2757}
2758
2759void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2760 QualType T1, QualType T2,
2761 UnresolvedSetImpl &Functions) {
2762 // C++ [over.match.oper]p3:
2763 // -- The set of non-member candidates is the result of the
2764 // unqualified lookup of operator@ in the context of the
2765 // expression according to the usual rules for name lookup in
2766 // unqualified function calls (3.4.2) except that all member
2767 // functions are ignored.
2768 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2769 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2770 LookupName(Operators, S);
2771
2772 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")((!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2772, __PRETTY_FUNCTION__))
;
2773 Functions.append(Operators.begin(), Operators.end());
2774}
2775
2776Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
2777 CXXSpecialMember SM,
2778 bool ConstArg,
2779 bool VolatileArg,
2780 bool RValueThis,
2781 bool ConstThis,
2782 bool VolatileThis) {
2783 assert(CanDeclareSpecialMemberFunction(RD) &&((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2784, __PRETTY_FUNCTION__))
2784 "doing special member lookup into record that isn't fully complete")((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2784, __PRETTY_FUNCTION__))
;
2785 RD = RD->getDefinition();
2786 if (RValueThis || ConstThis || VolatileThis)
2787 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2788, __PRETTY_FUNCTION__))
2788 "constructors and destructors always have unqualified lvalue this")(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2788, __PRETTY_FUNCTION__))
;
2789 if (ConstArg || VolatileArg)
2790 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2791, __PRETTY_FUNCTION__))
2791 "parameter-less special members can't have qualified arguments")(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2791, __PRETTY_FUNCTION__))
;
2792
2793 // FIXME: Get the caller to pass in a location for the lookup.
2794 SourceLocation LookupLoc = RD->getLocation();
2795
2796 llvm::FoldingSetNodeID ID;
2797 ID.AddPointer(RD);
2798 ID.AddInteger(SM);
2799 ID.AddInteger(ConstArg);
2800 ID.AddInteger(VolatileArg);
2801 ID.AddInteger(RValueThis);
2802 ID.AddInteger(ConstThis);
2803 ID.AddInteger(VolatileThis);
2804
2805 void *InsertPoint;
2806 SpecialMemberOverloadResultEntry *Result =
2807 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2808
2809 // This was already cached
2810 if (Result)
2811 return *Result;
2812
2813 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
2814 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
2815 SpecialMemberCache.InsertNode(Result, InsertPoint);
2816
2817 if (SM == CXXDestructor) {
2818 if (RD->needsImplicitDestructor())
2819 DeclareImplicitDestructor(RD);
2820 CXXDestructorDecl *DD = RD->getDestructor();
2821 assert(DD && "record without a destructor")((DD && "record without a destructor") ? static_cast<
void> (0) : __assert_fail ("DD && \"record without a destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2821, __PRETTY_FUNCTION__))
;
2822 Result->setMethod(DD);
2823 Result->setKind(DD->isDeleted() ?
2824 SpecialMemberOverloadResult::NoMemberOrDeleted :
2825 SpecialMemberOverloadResult::Success);
2826 return *Result;
2827 }
2828
2829 // Prepare for overload resolution. Here we construct a synthetic argument
2830 // if necessary and make sure that implicit functions are declared.
2831 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2832 DeclarationName Name;
2833 Expr *Arg = nullptr;
2834 unsigned NumArgs;
2835
2836 QualType ArgType = CanTy;
2837 ExprValueKind VK = VK_LValue;
2838
2839 if (SM == CXXDefaultConstructor) {
2840 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2841 NumArgs = 0;
2842 if (RD->needsImplicitDefaultConstructor())
2843 DeclareImplicitDefaultConstructor(RD);
2844 } else {
2845 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2846 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2847 if (RD->needsImplicitCopyConstructor())
2848 DeclareImplicitCopyConstructor(RD);
2849 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2850 DeclareImplicitMoveConstructor(RD);
2851 } else {
2852 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2853 if (RD->needsImplicitCopyAssignment())
2854 DeclareImplicitCopyAssignment(RD);
2855 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2856 DeclareImplicitMoveAssignment(RD);
2857 }
2858
2859 if (ConstArg)
2860 ArgType.addConst();
2861 if (VolatileArg)
2862 ArgType.addVolatile();
2863
2864 // This isn't /really/ specified by the standard, but it's implied
2865 // we should be working from an RValue in the case of move to ensure
2866 // that we prefer to bind to rvalue references, and an LValue in the
2867 // case of copy to ensure we don't bind to rvalue references.
2868 // Possibly an XValue is actually correct in the case of move, but
2869 // there is no semantic difference for class types in this restricted
2870 // case.
2871 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2872 VK = VK_LValue;
2873 else
2874 VK = VK_RValue;
2875 }
2876
2877 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
2878
2879 if (SM != CXXDefaultConstructor) {
2880 NumArgs = 1;
2881 Arg = &FakeArg;
2882 }
2883
2884 // Create the object argument
2885 QualType ThisTy = CanTy;
2886 if (ConstThis)
2887 ThisTy.addConst();
2888 if (VolatileThis)
2889 ThisTy.addVolatile();
2890 Expr::Classification Classification =
2891 OpaqueValueExpr(LookupLoc, ThisTy,
2892 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2893
2894 // Now we perform lookup on the name we computed earlier and do overload
2895 // resolution. Lookup is only performed directly into the class since there
2896 // will always be a (possibly implicit) declaration to shadow any others.
2897 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
2898 DeclContext::lookup_result R = RD->lookup(Name);
2899
2900 if (R.empty()) {
2901 // We might have no default constructor because we have a lambda's closure
2902 // type, rather than because there's some other declared constructor.
2903 // Every class has a copy/move constructor, copy/move assignment, and
2904 // destructor.
2905 assert(SM == CXXDefaultConstructor &&((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2906, __PRETTY_FUNCTION__))
2906 "lookup for a constructor or assignment operator was empty")((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2906, __PRETTY_FUNCTION__))
;
2907 Result->setMethod(nullptr);
2908 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2909 return *Result;
2910 }
2911
2912 // Copy the candidates as our processing of them may load new declarations
2913 // from an external source and invalidate lookup_result.
2914 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2915
2916 for (NamedDecl *CandDecl : Candidates) {
2917 if (CandDecl->isInvalidDecl())
2918 continue;
2919
2920 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
2921 auto CtorInfo = getConstructorInfo(Cand);
2922 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
2923 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2924 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
2925 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2926 else if (CtorInfo)
2927 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
2928 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2929 else
2930 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
2931 true);
2932 } else if (FunctionTemplateDecl *Tmpl =
2933 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
2934 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2935 AddMethodTemplateCandidate(
2936 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
2937 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2938 else if (CtorInfo)
2939 AddTemplateOverloadCandidate(
2940 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
2941 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2942 else
2943 AddTemplateOverloadCandidate(
2944 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2945 } else {
2946 assert(isa<UsingDecl>(Cand.getDecl()) &&((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2947, __PRETTY_FUNCTION__))
2947 "illegal Kind of operator = Decl")((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2947, __PRETTY_FUNCTION__))
;
2948 }
2949 }
2950
2951 OverloadCandidateSet::iterator Best;
2952 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
2953 case OR_Success:
2954 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2955 Result->setKind(SpecialMemberOverloadResult::Success);
2956 break;
2957
2958 case OR_Deleted:
2959 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2960 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2961 break;
2962
2963 case OR_Ambiguous:
2964 Result->setMethod(nullptr);
2965 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2966 break;
2967
2968 case OR_No_Viable_Function:
2969 Result->setMethod(nullptr);
2970 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2971 break;
2972 }
2973
2974 return *Result;
2975}
2976
2977/// \brief Look up the default constructor for the given class.
2978CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2979 SpecialMemberOverloadResult Result =
2980 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2981 false, false);
2982
2983 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
2984}
2985
2986/// \brief Look up the copying constructor for the given class.
2987CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2988 unsigned Quals) {
2989 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2990, __PRETTY_FUNCTION__))
2990 "non-const, non-volatile qualifiers for copy ctor arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 2990, __PRETTY_FUNCTION__))
;
2991 SpecialMemberOverloadResult Result =
2992 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2993 Quals & Qualifiers::Volatile, false, false, false);
2994
2995 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
2996}
2997
2998/// \brief Look up the moving constructor for the given class.
2999CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3000 unsigned Quals) {
3001 SpecialMemberOverloadResult Result =
3002 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3003 Quals & Qualifiers::Volatile, false, false, false);
3004
3005 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3006}
3007
3008/// \brief Look up the constructors for the given class.
3009DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3010 // If the implicit constructors have not yet been declared, do so now.
3011 if (CanDeclareSpecialMemberFunction(Class)) {
3012 if (Class->needsImplicitDefaultConstructor())
3013 DeclareImplicitDefaultConstructor(Class);
3014 if (Class->needsImplicitCopyConstructor())
3015 DeclareImplicitCopyConstructor(Class);
3016 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3017 DeclareImplicitMoveConstructor(Class);
3018 }
3019
3020 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3021 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3022 return Class->lookup(Name);
3023}
3024
3025/// \brief Look up the copying assignment operator for the given class.
3026CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3027 unsigned Quals, bool RValueThis,
3028 unsigned ThisQuals) {
3029 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 3030, __PRETTY_FUNCTION__))
3030 "non-const, non-volatile qualifiers for copy assignment arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 3030, __PRETTY_FUNCTION__))
;
3031 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 3032, __PRETTY_FUNCTION__))
3032 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 3032, __PRETTY_FUNCTION__))
;
3033 SpecialMemberOverloadResult Result =
3034 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3035 Quals & Qualifiers::Volatile, RValueThis,
3036 ThisQuals & Qualifiers::Const,
3037 ThisQuals & Qualifiers::Volatile);
3038
3039 return Result.getMethod();
3040}
3041
3042/// \brief Look up the moving assignment operator for the given class.
3043CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3044 unsigned Quals,
3045 bool RValueThis,
3046 unsigned ThisQuals) {
3047 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 3048, __PRETTY_FUNCTION__))
3048 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 3048, __PRETTY_FUNCTION__))
;
3049 SpecialMemberOverloadResult Result =
3050 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3051 Quals & Qualifiers::Volatile, RValueThis,
3052 ThisQuals & Qualifiers::Const,
3053 ThisQuals & Qualifiers::Volatile);
3054
3055 return Result.getMethod();
3056}
3057
3058/// \brief Look for the destructor of the given class.
3059///
3060/// During semantic analysis, this routine should be used in lieu of
3061/// CXXRecordDecl::getDestructor().
3062///
3063/// \returns The destructor for this class.
3064CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3065 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3066 false, false, false,
3067 false, false).getMethod());
3068}
3069
3070/// LookupLiteralOperator - Determine which literal operator should be used for
3071/// a user-defined literal, per C++11 [lex.ext].
3072///
3073/// Normal overload resolution is not used to select which literal operator to
3074/// call for a user-defined literal. Look up the provided literal operator name,
3075/// and filter the results to the appropriate set for the given argument types.
3076Sema::LiteralOperatorLookupResult
3077Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3078 ArrayRef<QualType> ArgTys,
3079 bool AllowRaw, bool AllowTemplate,
3080 bool AllowStringTemplate) {
3081 LookupName(R, S);
3082 assert(R.getResultKind() != LookupResult::Ambiguous &&((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 3083, __PRETTY_FUNCTION__))
3083 "literal operator lookup can't be ambiguous")((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 3083, __PRETTY_FUNCTION__))
;
3084
3085 // Filter the lookup results appropriately.
3086 LookupResult::Filter F = R.makeFilter();
3087
3088 bool FoundRaw = false;
3089 bool FoundTemplate = false;
3090 bool FoundStringTemplate = false;
3091 bool FoundExactMatch = false;
3092
3093 while (F.hasNext()) {
3094 Decl *D = F.next();
3095 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3096 D = USD->getTargetDecl();
3097
3098 // If the declaration we found is invalid, skip it.
3099 if (D->isInvalidDecl()) {
3100 F.erase();
3101 continue;
3102 }
3103
3104 bool IsRaw = false;
3105 bool IsTemplate = false;
3106 bool IsStringTemplate = false;
3107 bool IsExactMatch = false;
3108
3109 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3110 if (FD->getNumParams() == 1 &&
3111 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3112 IsRaw = true;
3113 else if (FD->getNumParams() == ArgTys.size()) {
3114 IsExactMatch = true;
3115 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3116 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3117 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3118 IsExactMatch = false;
3119 break;
3120 }
3121 }
3122 }
3123 }
3124 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3125 TemplateParameterList *Params = FD->getTemplateParameters();
3126 if (Params->size() == 1)
3127 IsTemplate = true;
3128 else
3129 IsStringTemplate = true;
3130 }
3131
3132 if (IsExactMatch) {
3133 FoundExactMatch = true;
3134 AllowRaw = false;
3135 AllowTemplate = false;
3136 AllowStringTemplate = false;
3137 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3138 // Go through again and remove the raw and template decls we've
3139 // already found.
3140 F.restart();
3141 FoundRaw = FoundTemplate = FoundStringTemplate = false;
3142 }
3143 } else if (AllowRaw && IsRaw) {
3144 FoundRaw = true;
3145 } else if (AllowTemplate && IsTemplate) {
3146 FoundTemplate = true;
3147 } else if (AllowStringTemplate && IsStringTemplate) {
3148 FoundStringTemplate = true;
3149 } else {
3150 F.erase();
3151 }
3152 }
3153
3154 F.done();
3155
3156 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3157 // parameter type, that is used in preference to a raw literal operator
3158 // or literal operator template.
3159 if (FoundExactMatch)
3160 return LOLR_Cooked;
3161
3162 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3163 // operator template, but not both.
3164 if (FoundRaw && FoundTemplate) {
3165 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3166 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3167 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3168 return LOLR_Error;
3169 }
3170
3171 if (FoundRaw)
3172 return LOLR_Raw;
3173
3174 if (FoundTemplate)
3175 return LOLR_Template;
3176
3177 if (FoundStringTemplate)
3178 return LOLR_StringTemplate;
3179
3180 // Didn't find anything we could use.
3181 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3182 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3183 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3184 << (AllowTemplate || AllowStringTemplate);
3185 return LOLR_Error;
3186}
3187
3188void ADLResult::insert(NamedDecl *New) {
3189 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3190
3191 // If we haven't yet seen a decl for this key, or the last decl
3192 // was exactly this one, we're done.
3193 if (Old == nullptr || Old == New) {
3194 Old = New;
3195 return;
3196 }
3197
3198 // Otherwise, decide which is a more recent redeclaration.
3199 FunctionDecl *OldFD = Old->getAsFunction();
3200 FunctionDecl *NewFD = New->getAsFunction();
3201
3202 FunctionDecl *Cursor = NewFD;
3203 while (true) {
3204 Cursor = Cursor->getPreviousDecl();
3205
3206 // If we got to the end without finding OldFD, OldFD is the newer
3207 // declaration; leave things as they are.
3208 if (!Cursor) return;
3209
3210 // If we do find OldFD, then NewFD is newer.
3211 if (Cursor == OldFD) break;
3212
3213 // Otherwise, keep looking.
3214 }
3215
3216 Old = New;
3217}
3218
3219void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3220 ArrayRef<Expr *> Args, ADLResult &Result) {
3221 // Find all of the associated namespaces and classes based on the
3222 // arguments we have.
3223 AssociatedNamespaceSet AssociatedNamespaces;
3224 AssociatedClassSet AssociatedClasses;
3225 FindAssociatedClassesAndNamespaces(Loc, Args,
3226 AssociatedNamespaces,
3227 AssociatedClasses);
3228
3229 // C++ [basic.lookup.argdep]p3:
3230 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3231 // and let Y be the lookup set produced by argument dependent
3232 // lookup (defined as follows). If X contains [...] then Y is
3233 // empty. Otherwise Y is the set of declarations found in the
3234 // namespaces associated with the argument types as described
3235 // below. The set of declarations found by the lookup of the name
3236 // is the union of X and Y.
3237 //
3238 // Here, we compute Y and add its members to the overloaded
3239 // candidate set.
3240 for (auto *NS : AssociatedNamespaces) {
3241 // When considering an associated namespace, the lookup is the
3242 // same as the lookup performed when the associated namespace is
3243 // used as a qualifier (3.4.3.2) except that:
3244 //
3245 // -- Any using-directives in the associated namespace are
3246 // ignored.
3247 //
3248 // -- Any namespace-scope friend functions declared in
3249 // associated classes are visible within their respective
3250 // namespaces even if they are not visible during an ordinary
3251 // lookup (11.4).
3252 DeclContext::lookup_result R = NS->lookup(Name);
3253 for (auto *D : R) {
3254 // If the only declaration here is an ordinary friend, consider
3255 // it only if it was declared in an associated classes.
3256 if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
3257 // If it's neither ordinarily visible nor a friend, we can't find it.
3258 if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
3259 continue;
3260
3261 bool DeclaredInAssociatedClass = false;
3262 for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
3263 DeclContext *LexDC = DI->getLexicalDeclContext();
3264 if (isa<CXXRecordDecl>(LexDC) &&
3265 AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
3266 isVisible(cast<NamedDecl>(DI))) {
3267 DeclaredInAssociatedClass = true;
3268 break;
3269 }
3270 }
3271 if (!DeclaredInAssociatedClass)
3272 continue;
3273 }
3274
3275 if (isa<UsingShadowDecl>(D))
3276 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3277
3278 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
3279 continue;
3280
3281 if (!isVisible(D) && !(D = findAcceptableDecl(*this, D)))
3282 continue;
3283
3284 Result.insert(D);
3285 }
3286 }
3287}
3288
3289//----------------------------------------------------------------------------
3290// Search for all visible declarations.
3291//----------------------------------------------------------------------------
3292VisibleDeclConsumer::~VisibleDeclConsumer() { }
3293
3294bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3295
3296namespace {
3297
3298class ShadowContextRAII;
3299
3300class VisibleDeclsRecord {
3301public:
3302 /// \brief An entry in the shadow map, which is optimized to store a
3303 /// single declaration (the common case) but can also store a list
3304 /// of declarations.
3305 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3306
3307private:
3308 /// \brief A mapping from declaration names to the declarations that have
3309 /// this name within a particular scope.
3310 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3311
3312 /// \brief A list of shadow maps, which is used to model name hiding.
3313 std::list<ShadowMap> ShadowMaps;
3314
3315 /// \brief The declaration contexts we have already visited.
3316 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3317
3318 friend class ShadowContextRAII;
3319
3320public:
3321 /// \brief Determine whether we have already visited this context
3322 /// (and, if not, note that we are going to visit that context now).
3323 bool visitedContext(DeclContext *Ctx) {
3324 return !VisitedContexts.insert(Ctx).second;
3325 }
3326
3327 bool alreadyVisitedContext(DeclContext *Ctx) {
3328 return VisitedContexts.count(Ctx);
3329 }
3330
3331 /// \brief Determine whether the given declaration is hidden in the
3332 /// current scope.
3333 ///
3334 /// \returns the declaration that hides the given declaration, or
3335 /// NULL if no such declaration exists.
3336 NamedDecl *checkHidden(NamedDecl *ND);
3337
3338 /// \brief Add a declaration to the current shadow map.
3339 void add(NamedDecl *ND) {
3340 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3341 }
3342};
3343
3344/// \brief RAII object that records when we've entered a shadow context.
3345class ShadowContextRAII {
3346 VisibleDeclsRecord &Visible;
3347
3348 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3349
3350public:
3351 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3352 Visible.ShadowMaps.emplace_back();
3353 }
3354
3355 ~ShadowContextRAII() {
3356 Visible.ShadowMaps.pop_back();
3357 }
3358};
3359
3360} // end anonymous namespace
3361
3362NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3363 unsigned IDNS = ND->getIdentifierNamespace();
3364 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3365 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3366 SM != SMEnd; ++SM) {
3367 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3368 if (Pos == SM->end())
3369 continue;
3370
3371 for (auto *D : Pos->second) {
3372 // A tag declaration does not hide a non-tag declaration.
3373 if (D->hasTagIdentifierNamespace() &&
3374 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3375 Decl::IDNS_ObjCProtocol)))
3376 continue;
3377
3378 // Protocols are in distinct namespaces from everything else.
3379 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3380 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3381 D->getIdentifierNamespace() != IDNS)
3382 continue;
3383
3384 // Functions and function templates in the same scope overload
3385 // rather than hide. FIXME: Look for hiding based on function
3386 // signatures!
3387 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3388 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3389 SM == ShadowMaps.rbegin())
3390 continue;
3391
3392 // A shadow declaration that's created by a resolved using declaration
3393 // is not hidden by the same using declaration.
3394 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3395 cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3396 continue;
3397
3398 // We've found a declaration that hides this one.
3399 return D;
3400 }
3401 }
3402
3403 return nullptr;
3404}
3405
3406static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3407 bool QualifiedNameLookup,
3408 bool InBaseClass,
3409 VisibleDeclConsumer &Consumer,
3410 VisibleDeclsRecord &Visited,
3411 bool IncludeDependentBases = false) {
3412 if (!Ctx)
3413 return;
3414
3415 // Make sure we don't visit the same context twice.
3416 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3417 return;
3418
3419 // Outside C++, lookup results for the TU live on identifiers.
3420 if (isa<TranslationUnitDecl>(Ctx) &&
3421 !Result.getSema().getLangOpts().CPlusPlus) {
3422 auto &S = Result.getSema();
3423 auto &Idents = S.Context.Idents;
3424
3425 // Ensure all external identifiers are in the identifier table.
3426 if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3427 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3428 for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3429 Idents.get(Name);
3430 }
3431
3432 // Walk all lookup results in the TU for each identifier.
3433 for (const auto &Ident : Idents) {
3434 for (auto I = S.IdResolver.begin(Ident.getValue()),
3435 E = S.IdResolver.end();
3436 I != E; ++I) {
3437 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3438 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3439 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3440 Visited.add(ND);
3441 }
3442 }
3443 }
3444 }
3445
3446 return;
3447 }
3448
3449 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3450 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3451
3452 // Enumerate all of the results in this context.
3453 for (DeclContextLookupResult R : Ctx->lookups()) {
3454 for (auto *D : R) {
3455 if (auto *ND = Result.getAcceptableDecl(D)) {
3456 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3457 Visited.add(ND);
3458 }
3459 }
3460 }
3461
3462 // Traverse using directives for qualified name lookup.
3463 if (QualifiedNameLookup) {
3464 ShadowContextRAII Shadow(Visited);
3465 for (auto I : Ctx->using_directives()) {
3466 LookupVisibleDecls(I->getNominatedNamespace(), Result,
3467 QualifiedNameLookup, InBaseClass, Consumer, Visited,
3468 IncludeDependentBases);
3469 }
3470 }
3471
3472 // Traverse the contexts of inherited C++ classes.
3473 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3474 if (!Record->hasDefinition())
3475 return;
3476
3477 for (const auto &B : Record->bases()) {
3478 QualType BaseType = B.getType();
3479
3480 RecordDecl *RD;
3481 if (BaseType->isDependentType()) {
3482 if (!IncludeDependentBases) {
3483 // Don't look into dependent bases, because name lookup can't look
3484 // there anyway.
3485 continue;
3486 }
3487 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3488 if (!TST)
3489 continue;
3490 TemplateName TN = TST->getTemplateName();
3491 const auto *TD =
3492 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3493 if (!TD)
3494 continue;
3495 RD = TD->getTemplatedDecl();
3496 } else {
3497 const auto *Record = BaseType->getAs<RecordType>();
3498 if (!Record)
3499 continue;
3500 RD = Record->getDecl();
3501 }
3502
3503 // FIXME: It would be nice to be able to determine whether referencing
3504 // a particular member would be ambiguous. For example, given
3505 //
3506 // struct A { int member; };
3507 // struct B { int member; };
3508 // struct C : A, B { };
3509 //
3510 // void f(C *c) { c->### }
3511 //
3512 // accessing 'member' would result in an ambiguity. However, we
3513 // could be smart enough to qualify the member with the base
3514 // class, e.g.,
3515 //
3516 // c->B::member
3517 //
3518 // or
3519 //
3520 // c->A::member
3521
3522 // Find results in this base class (and its bases).
3523 ShadowContextRAII Shadow(Visited);
3524 LookupVisibleDecls(RD, Result, QualifiedNameLookup, true, Consumer,
3525 Visited, IncludeDependentBases);
3526 }
3527 }
3528
3529 // Traverse the contexts of Objective-C classes.
3530 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3531 // Traverse categories.
3532 for (auto *Cat : IFace->visible_categories()) {
3533 ShadowContextRAII Shadow(Visited);
3534 LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3535 Consumer, Visited);
3536 }
3537
3538 // Traverse protocols.
3539 for (auto *I : IFace->all_referenced_protocols()) {
3540 ShadowContextRAII Shadow(Visited);
3541 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3542 Visited);
3543 }
3544
3545 // Traverse the superclass.
3546 if (IFace->getSuperClass()) {
3547 ShadowContextRAII Shadow(Visited);
3548 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3549 true, Consumer, Visited);
3550 }
3551
3552 // If there is an implementation, traverse it. We do this to find
3553 // synthesized ivars.
3554 if (IFace->getImplementation()) {
3555 ShadowContextRAII Shadow(Visited);
3556 LookupVisibleDecls(IFace->getImplementation(), Result,
3557 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3558 }
3559 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3560 for (auto *I : Protocol->protocols()) {
3561 ShadowContextRAII Shadow(Visited);
3562 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3563 Visited);
3564 }
3565 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3566 for (auto *I : Category->protocols()) {
3567 ShadowContextRAII Shadow(Visited);
3568 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3569 Visited);
3570 }
3571
3572 // If there is an implementation, traverse it.
3573 if (Category->getImplementation()) {
3574 ShadowContextRAII Shadow(Visited);
3575 LookupVisibleDecls(Category->getImplementation(), Result,
3576 QualifiedNameLookup, true, Consumer, Visited);
3577 }
3578 }
3579}
3580
3581static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3582 UnqualUsingDirectiveSet &UDirs,
3583 VisibleDeclConsumer &Consumer,
3584 VisibleDeclsRecord &Visited) {
3585 if (!S)
3586 return;
3587
3588 if (!S->getEntity() ||
3589 (!S->getParent() &&
3590 !Visited.alreadyVisitedContext(S->getEntity())) ||
3591 (S->getEntity())->isFunctionOrMethod()) {
3592 FindLocalExternScope FindLocals(Result);
3593 // Walk through the declarations in this Scope.
3594 for (auto *D : S->decls()) {
3595 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3596 if ((ND = Result.getAcceptableDecl(ND))) {
3597 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3598 Visited.add(ND);
3599 }
3600 }
3601 }
3602
3603 // FIXME: C++ [temp.local]p8
3604 DeclContext *Entity = nullptr;
3605 if (S->getEntity()) {
3606 // Look into this scope's declaration context, along with any of its
3607 // parent lookup contexts (e.g., enclosing classes), up to the point
3608 // where we hit the context stored in the next outer scope.
3609 Entity = S->getEntity();
3610 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3611
3612 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3613 Ctx = Ctx->getLookupParent()) {
3614 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3615 if (Method->isInstanceMethod()) {
3616 // For instance methods, look for ivars in the method's interface.
3617 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3618 Result.getNameLoc(), Sema::LookupMemberName);
3619 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3620 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3621 /*InBaseClass=*/false, Consumer, Visited);
3622 }
3623 }
3624
3625 // We've already performed all of the name lookup that we need
3626 // to for Objective-C methods; the next context will be the
3627 // outer scope.
3628 break;
3629 }
3630
3631 if (Ctx->isFunctionOrMethod())
3632 continue;
3633
3634 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3635 /*InBaseClass=*/false, Consumer, Visited);
3636 }
3637 } else if (!S->getParent()) {
3638 // Look into the translation unit scope. We walk through the translation
3639 // unit's declaration context, because the Scope itself won't have all of
3640 // the declarations if we loaded a precompiled header.
3641 // FIXME: We would like the translation unit's Scope object to point to the
3642 // translation unit, so we don't need this special "if" branch. However,
3643 // doing so would force the normal C++ name-lookup code to look into the
3644 // translation unit decl when the IdentifierInfo chains would suffice.
3645 // Once we fix that problem (which is part of a more general "don't look
3646 // in DeclContexts unless we have to" optimization), we can eliminate this.
3647 Entity = Result.getSema().Context.getTranslationUnitDecl();
3648 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3649 /*InBaseClass=*/false, Consumer, Visited);
3650 }
3651
3652 if (Entity) {
3653 // Lookup visible declarations in any namespaces found by using
3654 // directives.
3655 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3656 LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3657 Result, /*QualifiedNameLookup=*/false,
3658 /*InBaseClass=*/false, Consumer, Visited);
3659 }
3660
3661 // Lookup names in the parent scope.
3662 ShadowContextRAII Shadow(Visited);
3663 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3664}
3665
3666void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3667 VisibleDeclConsumer &Consumer,
3668 bool IncludeGlobalScope) {
3669 // Determine the set of using directives available during
3670 // unqualified name lookup.
3671 Scope *Initial = S;
3672 UnqualUsingDirectiveSet UDirs;
3673 if (getLangOpts().CPlusPlus) {
3674 // Find the first namespace or translation-unit scope.
3675 while (S && !isNamespaceOrTranslationUnitScope(S))
3676 S = S->getParent();
3677
3678 UDirs.visitScopeChain(Initial, S);
3679 }
3680 UDirs.done();
3681
3682 // Look for visible declarations.
3683 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3684 Result.setAllowHidden(Consumer.includeHiddenDecls());
3685 VisibleDeclsRecord Visited;
3686 if (!IncludeGlobalScope)
3687 Visited.visitedContext(Context.getTranslationUnitDecl());
3688 ShadowContextRAII Shadow(Visited);
3689 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3690}
3691
3692void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3693 VisibleDeclConsumer &Consumer,
3694 bool IncludeGlobalScope,
3695 bool IncludeDependentBases) {
3696 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3697 Result.setAllowHidden(Consumer.includeHiddenDecls());
3698 VisibleDeclsRecord Visited;
3699 if (!IncludeGlobalScope)
3700 Visited.visitedContext(Context.getTranslationUnitDecl());
3701 ShadowContextRAII Shadow(Visited);
3702 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3703 /*InBaseClass=*/false, Consumer, Visited,
3704 IncludeDependentBases);
3705}
3706
3707/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3708/// If GnuLabelLoc is a valid source location, then this is a definition
3709/// of an __label__ label name, otherwise it is a normal label definition
3710/// or use.
3711LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3712 SourceLocation GnuLabelLoc) {
3713 // Do a lookup to see if we have a label with this name already.
3714 NamedDecl *Res = nullptr;
3715
3716 if (GnuLabelLoc.isValid()) {
3717 // Local label definitions always shadow existing labels.
3718 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3719 Scope *S = CurScope;
3720 PushOnScopeChains(Res, S, true);
3721 return cast<LabelDecl>(Res);
3722 }
3723
3724 // Not a GNU local label.
3725 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3726 // If we found a label, check to see if it is in the same context as us.
3727 // When in a Block, we don't want to reuse a label in an enclosing function.
3728 if (Res && Res->getDeclContext() != CurContext)
3729 Res = nullptr;
3730 if (!Res) {
3731 // If not forward referenced or defined already, create the backing decl.
3732 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3733 Scope *S = CurScope->getFnParent();
3734 assert(S && "Not in a function?")((S && "Not in a function?") ? static_cast<void>
(0) : __assert_fail ("S && \"Not in a function?\"", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 3734, __PRETTY_FUNCTION__))
;
3735 PushOnScopeChains(Res, S, true);
3736 }
3737 return cast<LabelDecl>(Res);
3738}
3739
3740//===----------------------------------------------------------------------===//
3741// Typo correction
3742//===----------------------------------------------------------------------===//
3743
3744static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3745 TypoCorrection &Candidate) {
3746 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3747 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3748}
3749
3750static void LookupPotentialTypoResult(Sema &SemaRef,
3751 LookupResult &Res,
3752 IdentifierInfo *Name,
3753 Scope *S, CXXScopeSpec *SS,
3754 DeclContext *MemberContext,
3755 bool EnteringContext,
3756 bool isObjCIvarLookup,
3757 bool FindHidden);
3758
3759/// \brief Check whether the declarations found for a typo correction are
3760/// visible. Set the correction's RequiresImport flag to true if none of the
3761/// declarations are visible, false otherwise.
3762static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3763 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3764
3765 for (/**/; DI != DE; ++DI)
3766 if (!LookupResult::isVisible(SemaRef, *DI))
3767 break;
3768 // No filtering needed if all decls are visible.
3769 if (DI == DE) {
3770 TC.setRequiresImport(false);
3771 return;
3772 }
3773
3774 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3775 bool AnyVisibleDecls = !NewDecls.empty();
3776
3777 for (/**/; DI != DE; ++DI) {
3778 NamedDecl *VisibleDecl = *DI;
3779 if (!LookupResult::isVisible(SemaRef, *DI))
3780 VisibleDecl = findAcceptableDecl(SemaRef, *DI);
3781
3782 if (VisibleDecl) {
3783 if (!AnyVisibleDecls) {
3784 // Found a visible decl, discard all hidden ones.
3785 AnyVisibleDecls = true;
3786 NewDecls.clear();
3787 }
3788 NewDecls.push_back(VisibleDecl);
3789 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3790 NewDecls.push_back(*DI);
3791 }
3792
3793 if (NewDecls.empty())
3794 TC = TypoCorrection();
3795 else {
3796 TC.setCorrectionDecls(NewDecls);
3797 TC.setRequiresImport(!AnyVisibleDecls);
3798 }
3799}
3800
3801// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3802// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3803// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3804static void getNestedNameSpecifierIdentifiers(
3805 NestedNameSpecifier *NNS,
3806 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3807 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3808 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3809 else
3810 Identifiers.clear();
3811
3812 const IdentifierInfo *II = nullptr;
3813
3814 switch (NNS->getKind()) {
3815 case NestedNameSpecifier::Identifier:
3816 II = NNS->getAsIdentifier();
3817 break;
3818
3819 case NestedNameSpecifier::Namespace:
3820 if (NNS->getAsNamespace()->isAnonymousNamespace())
3821 return;
3822 II = NNS->getAsNamespace()->getIdentifier();
3823 break;
3824
3825 case NestedNameSpecifier::NamespaceAlias:
3826 II = NNS->getAsNamespaceAlias()->getIdentifier();
3827 break;
3828
3829 case NestedNameSpecifier::TypeSpecWithTemplate:
3830 case NestedNameSpecifier::TypeSpec:
3831 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3832 break;
3833
3834 case NestedNameSpecifier::Global:
3835 case NestedNameSpecifier::Super:
3836 return;
3837 }
3838
3839 if (II)
3840 Identifiers.push_back(II);
3841}
3842
3843void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3844 DeclContext *Ctx, bool InBaseClass) {
3845 // Don't consider hidden names for typo correction.
3846 if (Hiding)
3847 return;
3848
3849 // Only consider entities with identifiers for names, ignoring
3850 // special names (constructors, overloaded operators, selectors,
3851 // etc.).
3852 IdentifierInfo *Name = ND->getIdentifier();
3853 if (!Name)
3854 return;
3855
3856 // Only consider visible declarations and declarations from modules with
3857 // names that exactly match.
3858 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3859 !findAcceptableDecl(SemaRef, ND))
3860 return;
3861
3862 FoundName(Name->getName());
3863}
3864
3865void TypoCorrectionConsumer::FoundName(StringRef Name) {
3866 // Compute the edit distance between the typo and the name of this
3867 // entity, and add the identifier to the list of results.
3868 addName(Name, nullptr);
3869}
3870
3871void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3872 // Compute the edit distance between the typo and this keyword,
3873 // and add the keyword to the list of results.
3874 addName(Keyword, nullptr, nullptr, true);
3875}
3876
3877void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3878 NestedNameSpecifier *NNS, bool isKeyword) {
3879 // Use a simple length-based heuristic to determine the minimum possible
3880 // edit distance. If the minimum isn't good enough, bail out early.
3881 StringRef TypoStr = Typo->getName();
3882 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3883 if (MinED && TypoStr.size() / MinED < 3)
3884 return;
3885
3886 // Compute an upper bound on the allowable edit distance, so that the
3887 // edit-distance algorithm can short-circuit.
3888 unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3889 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3890 if (ED >= UpperBound) return;
3891
3892 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3893 if (isKeyword) TC.makeKeyword();
3894 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
3895 addCorrection(TC);
3896}
3897
3898static const unsigned MaxTypoDistanceResultSets = 5;
3899
3900void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3901 StringRef TypoStr = Typo->getName();
3902 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3903
3904 // For very short typos, ignore potential corrections that have a different
3905 // base identifier from the typo or which have a normalized edit distance
3906 // longer than the typo itself.
3907 if (TypoStr.size() < 3 &&
3908 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3909 return;
3910
3911 // If the correction is resolved but is not viable, ignore it.
3912 if (Correction.isResolved()) {
3913 checkCorrectionVisibility(SemaRef, Correction);
3914 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
3915 return;
3916 }
3917
3918 TypoResultList &CList =
3919 CorrectionResults[Correction.getEditDistance(false)][Name];
3920
3921 if (!CList.empty() && !CList.back().isResolved())
3922 CList.pop_back();
3923 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3924 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3925 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3926 RI != RIEnd; ++RI) {
3927 // If the Correction refers to a decl already in the result list,
3928 // replace the existing result if the string representation of Correction
3929 // comes before the current result alphabetically, then stop as there is
3930 // nothing more to be done to add Correction to the candidate set.
3931 if (RI->getCorrectionDecl() == NewND) {
3932 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3933 *RI = Correction;
3934 return;
3935 }
3936 }
3937 }
3938 if (CList.empty() || Correction.isResolved())
3939 CList.push_back(Correction);
3940
3941 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3942 CorrectionResults.erase(std::prev(CorrectionResults.end()));
3943}
3944
3945void TypoCorrectionConsumer::addNamespaces(
3946 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
3947 SearchNamespaces = true;
3948
3949 for (auto KNPair : KnownNamespaces)
3950 Namespaces.addNameSpecifier(KNPair.first);
3951
3952 bool SSIsTemplate = false;
3953 if (NestedNameSpecifier *NNS =
3954 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
3955 if (const Type *T = NNS->getAsType())
3956 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
3957 }
3958 // Do not transform this into an iterator-based loop. The loop body can
3959 // trigger the creation of further types (through lazy deserialization) and
3960 // invalide iterators into this list.
3961 auto &Types = SemaRef.getASTContext().getTypes();
3962 for (unsigned I = 0; I != Types.size(); ++I) {
3963 const auto *TI = Types[I];
3964 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
3965 CD = CD->getCanonicalDecl();
3966 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
3967 !CD->isUnion() && CD->getIdentifier() &&
3968 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
3969 (CD->isBeingDefined() || CD->isCompleteDefinition()))
3970 Namespaces.addNameSpecifier(CD);
3971 }
3972 }
3973}
3974
3975const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
3976 if (++CurrentTCIndex < ValidatedCorrections.size())
3977 return ValidatedCorrections[CurrentTCIndex];
3978
3979 CurrentTCIndex = ValidatedCorrections.size();
3980 while (!CorrectionResults.empty()) {
3981 auto DI = CorrectionResults.begin();
3982 if (DI->second.empty()) {
3983 CorrectionResults.erase(DI);
3984 continue;
3985 }
3986
3987 auto RI = DI->second.begin();
3988 if (RI->second.empty()) {
3989 DI->second.erase(RI);
3990 performQualifiedLookups();
3991 continue;
3992 }
3993
3994 TypoCorrection TC = RI->second.pop_back_val();
3995 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
3996 ValidatedCorrections.push_back(TC);
3997 return ValidatedCorrections[CurrentTCIndex];
3998 }
3999 }
4000 return ValidatedCorrections[0]; // The empty correction.
4001}
4002
4003bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4004 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4005 DeclContext *TempMemberContext = MemberContext;
4006 CXXScopeSpec *TempSS = SS.get();
4007retry_lookup:
4008 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4009 EnteringContext,
4010 CorrectionValidator->IsObjCIvarLookup,
4011 Name == Typo && !Candidate.WillReplaceSpecifier());
4012 switch (Result.getResultKind()) {
4013 case LookupResult::NotFound:
4014 case LookupResult::NotFoundInCurrentInstantiation:
4015 case LookupResult::FoundUnresolvedValue:
4016 if (TempSS) {
4017 // Immediately retry the lookup without the given CXXScopeSpec
4018 TempSS = nullptr;
4019 Candidate.WillReplaceSpecifier(true);
4020 goto retry_lookup;
4021 }
4022 if (TempMemberContext) {
4023 if (SS && !TempSS)
4024 TempSS = SS.get();
4025 TempMemberContext = nullptr;
4026 goto retry_lookup;
4027 }
4028 if (SearchNamespaces)
4029 QualifiedResults.push_back(Candidate);
4030 break;
4031
4032 case LookupResult::Ambiguous:
4033 // We don't deal with ambiguities.
4034 break;
4035
4036 case LookupResult::Found:
4037 case LookupResult::FoundOverloaded:
4038 // Store all of the Decls for overloaded symbols
4039 for (auto *TRD : Result)
4040 Candidate.addCorrectionDecl(TRD);
4041 checkCorrectionVisibility(SemaRef, Candidate);
4042 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4043 if (SearchNamespaces)
4044 QualifiedResults.push_back(Candidate);
4045 break;
4046 }
4047 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4048 return true;
4049 }
4050 return false;
4051}
4052
4053void TypoCorrectionConsumer::performQualifiedLookups() {
4054 unsigned TypoLen = Typo->getName().size();
4055 for (const TypoCorrection &QR : QualifiedResults) {
4056 for (const auto &NSI : Namespaces) {
4057 DeclContext *Ctx = NSI.DeclCtx;
4058 const Type *NSType = NSI.NameSpecifier->getAsType();
4059
4060 // If the current NestedNameSpecifier refers to a class and the
4061 // current correction candidate is the name of that class, then skip
4062 // it as it is unlikely a qualified version of the class' constructor
4063 // is an appropriate correction.
4064 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4065 nullptr) {
4066 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4067 continue;
4068 }
4069
4070 TypoCorrection TC(QR);
4071 TC.ClearCorrectionDecls();
4072 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4073 TC.setQualifierDistance(NSI.EditDistance);
4074 TC.setCallbackDistance(0); // Reset the callback distance
4075
4076 // If the current correction candidate and namespace combination are
4077 // too far away from the original typo based on the normalized edit
4078 // distance, then skip performing a qualified name lookup.
4079 unsigned TmpED = TC.getEditDistance(true);
4080 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4081 TypoLen / TmpED < 3)
4082 continue;
4083
4084 Result.clear();
4085 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4086 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4087 continue;
4088
4089 // Any corrections added below will be validated in subsequent
4090 // iterations of the main while() loop over the Consumer's contents.
4091 switch (Result.getResultKind()) {
4092 case LookupResult::Found:
4093 case LookupResult::FoundOverloaded: {
4094 if (SS && SS->isValid()) {
4095 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4096 std::string OldQualified;
4097 llvm::raw_string_ostream OldOStream(OldQualified);
4098 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4099 OldOStream << Typo->getName();
4100 // If correction candidate would be an identical written qualified
4101 // identifer, then the existing CXXScopeSpec probably included a
4102 // typedef that didn't get accounted for properly.
4103 if (OldOStream.str() == NewQualified)
4104 break;
4105 }
4106 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4107 TRD != TRDEnd; ++TRD) {
4108 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4109 NSType ? NSType->getAsCXXRecordDecl()
4110 : nullptr,
4111 TRD.getPair()) == Sema::AR_accessible)
4112 TC.addCorrectionDecl(*TRD);
4113 }
4114 if (TC.isResolved()) {
4115 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4116 addCorrection(TC);
4117 }
4118 break;
4119 }
4120 case LookupResult::NotFound:
4121 case LookupResult::NotFoundInCurrentInstantiation:
4122 case LookupResult::Ambiguous:
4123 case LookupResult::FoundUnresolvedValue:
4124 break;
4125 }
4126 }
4127 }
4128 QualifiedResults.clear();
4129}
4130
4131TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4132 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4133 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4134 if (NestedNameSpecifier *NNS =
4135 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4136 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4137 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4138
4139 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4140 }
4141 // Build the list of identifiers that would be used for an absolute
4142 // (from the global context) NestedNameSpecifier referring to the current
4143 // context.
4144 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4145 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4146 CurContextIdentifiers.push_back(ND->getIdentifier());
4147 }
4148
4149 // Add the global context as a NestedNameSpecifier
4150 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4151 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4152 DistanceMap[1].push_back(SI);
4153}
4154
4155auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4156 DeclContext *Start) -> DeclContextList {
4157 assert(Start && "Building a context chain from a null context")((Start && "Building a context chain from a null context"
) ? static_cast<void> (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 4157, __PRETTY_FUNCTION__))
;
4158 DeclContextList Chain;
4159 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4160 DC = DC->getLookupParent()) {
4161 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4162 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4163 !(ND && ND->isAnonymousNamespace()))
4164 Chain.push_back(DC->getPrimaryContext());
4165 }
4166 return Chain;
4167}
4168
4169unsigned
4170TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4171 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4172 unsigned NumSpecifiers = 0;
4173 for (DeclContext *C : llvm::reverse(DeclChain)) {
4174 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4175 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4176 ++NumSpecifiers;
4177 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4178 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4179 RD->getTypeForDecl());
4180 ++NumSpecifiers;
4181 }
4182 }
4183 return NumSpecifiers;
4184}
4185
4186void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4187 DeclContext *Ctx) {
4188 NestedNameSpecifier *NNS = nullptr;
4189 unsigned NumSpecifiers = 0;
4190 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4191 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4192
4193 // Eliminate common elements from the two DeclContext chains.
4194 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4195 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4196 break;
4197 NamespaceDeclChain.pop_back();
4198 }
4199
4200 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4201 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4202
4203 // Add an explicit leading '::' specifier if needed.
4204 if (NamespaceDeclChain.empty()) {
4205 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4206 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4207 NumSpecifiers =
4208 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4209 } else if (NamedDecl *ND =
4210 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4211 IdentifierInfo *Name = ND->getIdentifier();
4212 bool SameNameSpecifier = false;
4213 if (std::find(CurNameSpecifierIdentifiers.begin(),
4214 CurNameSpecifierIdentifiers.end(),
4215 Name) != CurNameSpecifierIdentifiers.end()) {
4216 std::string NewNameSpecifier;
4217 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4218 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4219 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4220 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4221 SpecifierOStream.flush();
4222 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4223 }
4224 if (SameNameSpecifier ||
4225 std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4226 Name) != CurContextIdentifiers.end()) {
4227 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4228 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4229 NumSpecifiers =
4230 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4231 }
4232 }
4233
4234 // If the built NestedNameSpecifier would be replacing an existing
4235 // NestedNameSpecifier, use the number of component identifiers that
4236 // would need to be changed as the edit distance instead of the number
4237 // of components in the built NestedNameSpecifier.
4238 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4239 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4240 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4241 NumSpecifiers = llvm::ComputeEditDistance(
4242 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4243 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4244 }
4245
4246 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4247 DistanceMap[NumSpecifiers].push_back(SI);
4248}
4249
4250/// \brief Perform name lookup for a possible result for typo correction.
4251static void LookupPotentialTypoResult(Sema &SemaRef,
4252 LookupResult &Res,
4253 IdentifierInfo *Name,
4254 Scope *S, CXXScopeSpec *SS,
4255 DeclContext *MemberContext,
4256 bool EnteringContext,
4257 bool isObjCIvarLookup,
4258 bool FindHidden) {
4259 Res.suppressDiagnostics();
4260 Res.clear();
4261 Res.setLookupName(Name);
4262 Res.setAllowHidden(FindHidden);
4263 if (MemberContext) {
4264 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4265 if (isObjCIvarLookup) {
4266 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4267 Res.addDecl(Ivar);
4268 Res.resolveKind();
4269 return;
4270 }
4271 }
4272
4273 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4274 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4275 Res.addDecl(Prop);
4276 Res.resolveKind();
4277 return;
4278 }
4279 }
4280
4281 SemaRef.LookupQualifiedName(Res, MemberContext);
4282 return;
4283 }
4284
4285 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4286 EnteringContext);
4287
4288 // Fake ivar lookup; this should really be part of
4289 // LookupParsedName.
4290 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4291 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4292 (Res.empty() ||
4293 (Res.isSingleResult() &&
4294 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4295 if (ObjCIvarDecl *IV
4296 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4297 Res.addDecl(IV);
4298 Res.resolveKind();
4299 }
4300 }
4301 }
4302}
4303
4304/// \brief Add keywords to the consumer as possible typo corrections.
4305static void AddKeywordsToConsumer(Sema &SemaRef,
4306 TypoCorrectionConsumer &Consumer,
4307 Scope *S, CorrectionCandidateCallback &CCC,
4308 bool AfterNestedNameSpecifier) {
4309 if (AfterNestedNameSpecifier) {
4310 // For 'X::', we know exactly which keywords can appear next.
4311 Consumer.addKeywordResult("template");
4312 if (CCC.WantExpressionKeywords)
4313 Consumer.addKeywordResult("operator");
4314 return;
4315 }
4316
4317 if (CCC.WantObjCSuper)
4318 Consumer.addKeywordResult("super");
4319
4320 if (CCC.WantTypeSpecifiers) {
4321 // Add type-specifier keywords to the set of results.
4322 static const char *const CTypeSpecs[] = {
4323 "char", "const", "double", "enum", "float", "int", "long", "short",
4324 "signed", "struct", "union", "unsigned", "void", "volatile",
4325 "_Complex", "_Imaginary",
4326 // storage-specifiers as well
4327 "extern", "inline", "static", "typedef"
4328 };
4329
4330 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4331 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4332 Consumer.addKeywordResult(CTypeSpecs[I]);
4333
4334 if (SemaRef.getLangOpts().C99)
4335 Consumer.addKeywordResult("restrict");
4336 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4337 Consumer.addKeywordResult("bool");
4338 else if (SemaRef.getLangOpts().C99)
4339 Consumer.addKeywordResult("_Bool");
4340
4341 if (SemaRef.getLangOpts().CPlusPlus) {
4342 Consumer.addKeywordResult("class");
4343 Consumer.addKeywordResult("typename");
4344 Consumer.addKeywordResult("wchar_t");
4345
4346 if (SemaRef.getLangOpts().CPlusPlus11) {
4347 Consumer.addKeywordResult("char16_t");
4348 Consumer.addKeywordResult("char32_t");
4349 Consumer.addKeywordResult("constexpr");
4350 Consumer.addKeywordResult("decltype");
4351 Consumer.addKeywordResult("thread_local");
4352 }
4353 }
4354
4355 if (SemaRef.getLangOpts().GNUMode)
4356 Consumer.addKeywordResult("typeof");
4357 } else if (CCC.WantFunctionLikeCasts) {
4358 static const char *const CastableTypeSpecs[] = {
4359 "char", "double", "float", "int", "long", "short",
4360 "signed", "unsigned", "void"
4361 };
4362 for (auto *kw : CastableTypeSpecs)
4363 Consumer.addKeywordResult(kw);
4364 }
4365
4366 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4367 Consumer.addKeywordResult("const_cast");
4368 Consumer.addKeywordResult("dynamic_cast");
4369 Consumer.addKeywordResult("reinterpret_cast");
4370 Consumer.addKeywordResult("static_cast");
4371 }
4372
4373 if (CCC.WantExpressionKeywords) {
4374 Consumer.addKeywordResult("sizeof");
4375 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4376 Consumer.addKeywordResult("false");
4377 Consumer.addKeywordResult("true");
4378 }
4379
4380 if (SemaRef.getLangOpts().CPlusPlus) {
4381 static const char *const CXXExprs[] = {
4382 "delete", "new", "operator", "throw", "typeid"
4383 };
4384 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4385 for (unsigned I = 0; I != NumCXXExprs; ++I)
4386 Consumer.addKeywordResult(CXXExprs[I]);
4387
4388 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4389 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4390 Consumer.addKeywordResult("this");
4391
4392 if (SemaRef.getLangOpts().CPlusPlus11) {
4393 Consumer.addKeywordResult("alignof");
4394 Consumer.addKeywordResult("nullptr");
4395 }
4396 }
4397
4398 if (SemaRef.getLangOpts().C11) {
4399 // FIXME: We should not suggest _Alignof if the alignof macro
4400 // is present.
4401 Consumer.addKeywordResult("_Alignof");
4402 }
4403 }
4404
4405 if (CCC.WantRemainingKeywords) {
4406 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4407 // Statements.
4408 static const char *const CStmts[] = {
4409 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4410 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4411 for (unsigned I = 0; I != NumCStmts; ++I)
4412 Consumer.addKeywordResult(CStmts[I]);
4413
4414 if (SemaRef.getLangOpts().CPlusPlus) {
4415 Consumer.addKeywordResult("catch");
4416 Consumer.addKeywordResult("try");
4417 }
4418
4419 if (S && S->getBreakParent())
4420 Consumer.addKeywordResult("break");
4421
4422 if (S && S->getContinueParent())
4423 Consumer.addKeywordResult("continue");
4424
4425 if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4426 Consumer.addKeywordResult("case");
4427 Consumer.addKeywordResult("default");
4428 }
4429 } else {
4430 if (SemaRef.getLangOpts().CPlusPlus) {
4431 Consumer.addKeywordResult("namespace");
4432 Consumer.addKeywordResult("template");
4433 }
4434
4435 if (S && S->isClassScope()) {
4436 Consumer.addKeywordResult("explicit");
4437 Consumer.addKeywordResult("friend");
4438 Consumer.addKeywordResult("mutable");
4439 Consumer.addKeywordResult("private");
4440 Consumer.addKeywordResult("protected");
4441 Consumer.addKeywordResult("public");
4442 Consumer.addKeywordResult("virtual");
4443 }
4444 }
4445
4446 if (SemaRef.getLangOpts().CPlusPlus) {
4447 Consumer.addKeywordResult("using");
4448
4449 if (SemaRef.getLangOpts().CPlusPlus11)
4450 Consumer.addKeywordResult("static_assert");
4451 }
4452 }
4453}
4454
4455std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4456 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4457 Scope *S, CXXScopeSpec *SS,
4458 std::unique_ptr<CorrectionCandidateCallback> CCC,
4459 DeclContext *MemberContext, bool EnteringContext,
4460 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4461
4462 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4463 DisableTypoCorrection)
4464 return nullptr;
4465
4466 // In Microsoft mode, don't perform typo correction in a template member
4467 // function dependent context because it interferes with the "lookup into
4468 // dependent bases of class templates" feature.
4469 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4470 isa<CXXMethodDecl>(CurContext))
4471 return nullptr;
4472
4473 // We only attempt to correct typos for identifiers.
4474 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4475 if (!Typo)
4476 return nullptr;
4477
4478 // If the scope specifier itself was invalid, don't try to correct
4479 // typos.
4480 if (SS && SS->isInvalid())
4481 return nullptr;
4482
4483 // Never try to correct typos during any kind of code synthesis.
4484 if (!CodeSynthesisContexts.empty())
4485 return nullptr;
4486
4487 // Don't try to correct 'super'.
4488 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4489 return nullptr;
4490
4491 // Abort if typo correction already failed for this specific typo.
4492 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4493 if (locs != TypoCorrectionFailures.end() &&
4494 locs->second.count(TypoName.getLoc()))
4495 return nullptr;
4496
4497 // Don't try to correct the identifier "vector" when in AltiVec mode.
4498 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4499 // remove this workaround.
4500 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4501 return nullptr;
4502
4503 // Provide a stop gap for files that are just seriously broken. Trying
4504 // to correct all typos can turn into a HUGE performance penalty, causing
4505 // some files to take minutes to get rejected by the parser.
4506 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4507 if (Limit && TyposCorrected >= Limit)
4508 return nullptr;
4509 ++TyposCorrected;
4510
4511 // If we're handling a missing symbol error, using modules, and the
4512 // special search all modules option is used, look for a missing import.
4513 if (ErrorRecovery && getLangOpts().Modules &&
4514 getLangOpts().ModulesSearchAll) {
4515 // The following has the side effect of loading the missing module.
4516 getModuleLoader().lookupMissingImports(Typo->getName(),
4517 TypoName.getLocStart());
4518 }
4519
4520 CorrectionCandidateCallback &CCCRef = *CCC;
4521 auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4522 *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4523 EnteringContext);
4524
4525 // Perform name lookup to find visible, similarly-named entities.
4526 bool IsUnqualifiedLookup = false;
4527 DeclContext *QualifiedDC = MemberContext;
4528 if (MemberContext) {
4529 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4530
4531 // Look in qualified interfaces.
4532 if (OPT) {
4533 for (auto *I : OPT->quals())
4534 LookupVisibleDecls(I, LookupKind, *Consumer);
4535 }
4536 } else if (SS && SS->isSet()) {
4537 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4538 if (!QualifiedDC)
4539 return nullptr;
4540
4541 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4542 } else {
4543 IsUnqualifiedLookup = true;
4544 }
4545
4546 // Determine whether we are going to search in the various namespaces for
4547 // corrections.
4548 bool SearchNamespaces
4549 = getLangOpts().CPlusPlus &&
4550 (IsUnqualifiedLookup || (SS && SS->isSet()));
4551
4552 if (IsUnqualifiedLookup || SearchNamespaces) {
4553 // For unqualified lookup, look through all of the names that we have
4554 // seen in this translation unit.
4555 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4556 for (const auto &I : Context.Idents)
4557 Consumer->FoundName(I.getKey());
4558
4559 // Walk through identifiers in external identifier sources.
4560 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4561 if (IdentifierInfoLookup *External
4562 = Context.Idents.getExternalIdentifierLookup()) {
4563 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4564 do {
4565 StringRef Name = Iter->Next();
4566 if (Name.empty())
4567 break;
4568
4569 Consumer->FoundName(Name);
4570 } while (true);
4571 }
4572 }
4573
4574 AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4575
4576 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4577 // to search those namespaces.
4578 if (SearchNamespaces) {
4579 // Load any externally-known namespaces.
4580 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4581 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4582 LoadedExternalKnownNamespaces = true;
4583 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4584 for (auto *N : ExternalKnownNamespaces)
4585 KnownNamespaces[N] = true;
4586 }
4587
4588 Consumer->addNamespaces(KnownNamespaces);
4589 }
4590
4591 return Consumer;
4592}
4593
4594/// \brief Try to "correct" a typo in the source code by finding
4595/// visible declarations whose names are similar to the name that was
4596/// present in the source code.
4597///
4598/// \param TypoName the \c DeclarationNameInfo structure that contains
4599/// the name that was present in the source code along with its location.
4600///
4601/// \param LookupKind the name-lookup criteria used to search for the name.
4602///
4603/// \param S the scope in which name lookup occurs.
4604///
4605/// \param SS the nested-name-specifier that precedes the name we're
4606/// looking for, if present.
4607///
4608/// \param CCC A CorrectionCandidateCallback object that provides further
4609/// validation of typo correction candidates. It also provides flags for
4610/// determining the set of keywords permitted.
4611///
4612/// \param MemberContext if non-NULL, the context in which to look for
4613/// a member access expression.
4614///
4615/// \param EnteringContext whether we're entering the context described by
4616/// the nested-name-specifier SS.
4617///
4618/// \param OPT when non-NULL, the search for visible declarations will
4619/// also walk the protocols in the qualified interfaces of \p OPT.
4620///
4621/// \returns a \c TypoCorrection containing the corrected name if the typo
4622/// along with information such as the \c NamedDecl where the corrected name
4623/// was declared, and any additional \c NestedNameSpecifier needed to access
4624/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4625TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4626 Sema::LookupNameKind LookupKind,
4627 Scope *S, CXXScopeSpec *SS,
4628 std::unique_ptr<CorrectionCandidateCallback> CCC,
4629 CorrectTypoKind Mode,
4630 DeclContext *MemberContext,
4631 bool EnteringContext,
4632 const ObjCObjectPointerType *OPT,
4633 bool RecordFailure) {
4634 assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback")((CCC && "CorrectTypo requires a CorrectionCandidateCallback"
) ? static_cast<void> (0) : __assert_fail ("CCC && \"CorrectTypo requires a CorrectionCandidateCallback\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 4634, __PRETTY_FUNCTION__))
;
4635
4636 // Always let the ExternalSource have the first chance at correction, even
4637 // if we would otherwise have given up.
4638 if (ExternalSource) {
4639 if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4640 TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4641 return Correction;
4642 }
4643
4644 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4645 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4646 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4647 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4648 bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4649
4650 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4651 auto Consumer = makeTypoCorrectionConsumer(
4652 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4653 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4654
4655 if (!Consumer)
4656 return TypoCorrection();
4657
4658 // If we haven't found anything, we're done.
4659 if (Consumer->empty())
4660 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4661
4662 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4663 // is not more that about a third of the length of the typo's identifier.
4664 unsigned ED = Consumer->getBestEditDistance(true);
4665 unsigned TypoLen = Typo->getName().size();
4666 if (ED > 0 && TypoLen / ED < 3)
4667 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4668
4669 TypoCorrection BestTC = Consumer->getNextCorrection();
4670 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4671 if (!BestTC)
4672 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4673
4674 ED = BestTC.getEditDistance();
4675
4676 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4677 // If this was an unqualified lookup and we believe the callback
4678 // object wouldn't have filtered out possible corrections, note
4679 // that no correction was found.
4680 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4681 }
4682
4683 // If only a single name remains, return that result.
4684 if (!SecondBestTC ||
4685 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4686 const TypoCorrection &Result = BestTC;
4687
4688 // Don't correct to a keyword that's the same as the typo; the keyword
4689 // wasn't actually in scope.
4690 if (ED == 0 && Result.isKeyword())
4691 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4692
4693 TypoCorrection TC = Result;
4694 TC.setCorrectionRange(SS, TypoName);
4695 checkCorrectionVisibility(*this, TC);
4696 return TC;
4697 } else if (SecondBestTC && ObjCMessageReceiver) {
4698 // Prefer 'super' when we're completing in a message-receiver
4699 // context.
4700
4701 if (BestTC.getCorrection().getAsString() != "super") {
4702 if (SecondBestTC.getCorrection().getAsString() == "super")
4703 BestTC = SecondBestTC;
4704 else if ((*Consumer)["super"].front().isKeyword())
4705 BestTC = (*Consumer)["super"].front();
4706 }
4707 // Don't correct to a keyword that's the same as the typo; the keyword
4708 // wasn't actually in scope.
4709 if (BestTC.getEditDistance() == 0 ||
4710 BestTC.getCorrection().getAsString() != "super")
4711 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4712
4713 BestTC.setCorrectionRange(SS, TypoName);
4714 return BestTC;
4715 }
4716
4717 // Record the failure's location if needed and return an empty correction. If
4718 // this was an unqualified lookup and we believe the callback object did not
4719 // filter out possible corrections, also cache the failure for the typo.
4720 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4721}
4722
4723/// \brief Try to "correct" a typo in the source code by finding
4724/// visible declarations whose names are similar to the name that was
4725/// present in the source code.
4726///
4727/// \param TypoName the \c DeclarationNameInfo structure that contains
4728/// the name that was present in the source code along with its location.
4729///
4730/// \param LookupKind the name-lookup criteria used to search for the name.
4731///
4732/// \param S the scope in which name lookup occurs.
4733///
4734/// \param SS the nested-name-specifier that precedes the name we're
4735/// looking for, if present.
4736///
4737/// \param CCC A CorrectionCandidateCallback object that provides further
4738/// validation of typo correction candidates. It also provides flags for
4739/// determining the set of keywords permitted.
4740///
4741/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4742/// diagnostics when the actual typo correction is attempted.
4743///
4744/// \param TRC A TypoRecoveryCallback functor that will be used to build an
4745/// Expr from a typo correction candidate.
4746///
4747/// \param MemberContext if non-NULL, the context in which to look for
4748/// a member access expression.
4749///
4750/// \param EnteringContext whether we're entering the context described by
4751/// the nested-name-specifier SS.
4752///
4753/// \param OPT when non-NULL, the search for visible declarations will
4754/// also walk the protocols in the qualified interfaces of \p OPT.
4755///
4756/// \returns a new \c TypoExpr that will later be replaced in the AST with an
4757/// Expr representing the result of performing typo correction, or nullptr if
4758/// typo correction is not possible. If nullptr is returned, no diagnostics will
4759/// be emitted and it is the responsibility of the caller to emit any that are
4760/// needed.
4761TypoExpr *Sema::CorrectTypoDelayed(
4762 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4763 Scope *S, CXXScopeSpec *SS,
4764 std::unique_ptr<CorrectionCandidateCallback> CCC,
4765 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4766 DeclContext *MemberContext, bool EnteringContext,
4767 const ObjCObjectPointerType *OPT) {
4768 assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback")((CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback"
) ? static_cast<void> (0) : __assert_fail ("CCC && \"CorrectTypoDelayed requires a CorrectionCandidateCallback\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 4768, __PRETTY_FUNCTION__))
;
4769
4770 auto Consumer = makeTypoCorrectionConsumer(
4771 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4772 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4773
4774 // Give the external sema source a chance to correct the typo.
4775 TypoCorrection ExternalTypo;
4776 if (ExternalSource && Consumer) {
4777 ExternalTypo = ExternalSource->CorrectTypo(
4778 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
4779 MemberContext, EnteringContext, OPT);
4780 if (ExternalTypo)
4781 Consumer->addCorrection(ExternalTypo);
4782 }
4783
4784 if (!Consumer || Consumer->empty())
4785 return nullptr;
4786
4787 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4788 // is not more that about a third of the length of the typo's identifier.
4789 unsigned ED = Consumer->getBestEditDistance(true);
4790 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4791 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
4792 return nullptr;
4793
4794 ExprEvalContexts.back().NumTypos++;
4795 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4796}
4797
4798void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4799 if (!CDecl) return;
4800
4801 if (isKeyword())
4802 CorrectionDecls.clear();
4803
4804 CorrectionDecls.push_back(CDecl);
4805
4806 if (!CorrectionName)
4807 CorrectionName = CDecl->getDeclName();
4808}
4809
4810std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4811 if (CorrectionNameSpec) {
4812 std::string tmpBuffer;
4813 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4814 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4815 PrefixOStream << CorrectionName;
4816 return PrefixOStream.str();
4817 }
4818
4819 return CorrectionName.getAsString();
4820}
4821
4822bool CorrectionCandidateCallback::ValidateCandidate(
4823 const TypoCorrection &candidate) {
4824 if (!candidate.isResolved())
4825 return true;
4826
4827 if (candidate.isKeyword())
4828 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4829 WantRemainingKeywords || WantObjCSuper;
4830
4831 bool HasNonType = false;
4832 bool HasStaticMethod = false;
4833 bool HasNonStaticMethod = false;
4834 for (Decl *D : candidate) {
4835 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4836 D = FTD->getTemplatedDecl();
4837 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4838 if (Method->isStatic())
4839 HasStaticMethod = true;
4840 else
4841 HasNonStaticMethod = true;
4842 }
4843 if (!isa<TypeDecl>(D))
4844 HasNonType = true;
4845 }
4846
4847 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4848 !candidate.getCorrectionSpecifier())
4849 return false;
4850
4851 return WantTypeSpecifiers || HasNonType;
4852}
4853
4854FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4855 bool HasExplicitTemplateArgs,
4856 MemberExpr *ME)
4857 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4858 CurContext(SemaRef.CurContext), MemberFn(ME) {
4859 WantTypeSpecifiers = false;
4860 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4861 WantRemainingKeywords = false;
4862}
4863
4864bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4865 if (!candidate.getCorrectionDecl())
4866 return candidate.isKeyword();
4867
4868 for (auto *C : candidate) {
4869 FunctionDecl *FD = nullptr;
4870 NamedDecl *ND = C->getUnderlyingDecl();
4871 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4872 FD = FTD->getTemplatedDecl();
4873 if (!HasExplicitTemplateArgs && !FD) {
4874 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4875 // If the Decl is neither a function nor a template function,
4876 // determine if it is a pointer or reference to a function. If so,
4877 // check against the number of arguments expected for the pointee.
4878 QualType ValType = cast<ValueDecl>(ND)->getType();
4879 if (ValType->isAnyPointerType() || ValType->isReferenceType())
4880 ValType = ValType->getPointeeType();
4881 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4882 if (FPT->getNumParams() == NumArgs)
4883 return true;
4884 }
4885 }
4886
4887 // Skip the current candidate if it is not a FunctionDecl or does not accept
4888 // the current number of arguments.
4889 if (!FD || !(FD->getNumParams() >= NumArgs &&
4890 FD->getMinRequiredArguments() <= NumArgs))
4891 continue;
4892
4893 // If the current candidate is a non-static C++ method, skip the candidate
4894 // unless the method being corrected--or the current DeclContext, if the
4895 // function being corrected is not a method--is a method in the same class
4896 // or a descendent class of the candidate's parent class.
4897 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4898 if (MemberFn || !MD->isStatic()) {
4899 CXXMethodDecl *CurMD =
4900 MemberFn
4901 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4902 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4903 CXXRecordDecl *CurRD =
4904 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4905 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4906 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4907 continue;
4908 }
4909 }
4910 return true;
4911 }
4912 return false;
4913}
4914
4915void Sema::diagnoseTypo(const TypoCorrection &Correction,
4916 const PartialDiagnostic &TypoDiag,
4917 bool ErrorRecovery) {
4918 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
4919 ErrorRecovery);
4920}
4921
4922/// Find which declaration we should import to provide the definition of
4923/// the given declaration.
4924static NamedDecl *getDefinitionToImport(NamedDecl *D) {
4925 if (VarDecl *VD = dyn_cast<VarDecl>(D))
4926 return VD->getDefinition();
4927 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4928 return FD->getDefinition();
4929 if (TagDecl *TD = dyn_cast<TagDecl>(D))
4930 return TD->getDefinition();
4931 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
4932 return ID->getDefinition();
4933 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
4934 return PD->getDefinition();
4935 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
4936 return getDefinitionToImport(TD->getTemplatedDecl());
4937 return nullptr;
4938}
4939
4940void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
4941 MissingImportKind MIK, bool Recover) {
4942 // Suggest importing a module providing the definition of this entity, if
4943 // possible.
4944 NamedDecl *Def = getDefinitionToImport(Decl);
4945 if (!Def)
4946 Def = Decl;
Value stored to 'Def' is never read
4947
4948 Module *Owner = getOwningModule(Decl);
4949 assert(Owner && "definition of hidden declaration is not in a module")((Owner && "definition of hidden declaration is not in a module"
) ? static_cast<void> (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 4949, __PRETTY_FUNCTION__))
;
4950
4951 llvm::SmallVector<Module*, 8> OwningModules;
4952 OwningModules.push_back(Owner);
4953 auto Merged = Context.getModulesWithMergedDefinition(Decl);
4954 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
4955
4956 diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK,
4957 Recover);
4958}
4959
4960/// \brief Get a "quoted.h" or <angled.h> include path to use in a diagnostic
4961/// suggesting the addition of a #include of the specified file.
4962static std::string getIncludeStringForHeader(Preprocessor &PP,
4963 const FileEntry *E) {
4964 bool IsSystem;
4965 auto Path =
4966 PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(E, &IsSystem);
4967 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
4968}
4969
4970void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
4971 SourceLocation DeclLoc,
4972 ArrayRef<Module *> Modules,
4973 MissingImportKind MIK, bool Recover) {
4974 assert(!Modules.empty())((!Modules.empty()) ? static_cast<void> (0) : __assert_fail
("!Modules.empty()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 4974, __PRETTY_FUNCTION__))
;
4975
4976 // Weed out duplicates from module list.
4977 llvm::SmallVector<Module*, 8> UniqueModules;
4978 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
4979 for (auto *M : Modules)
4980 if (UniqueModuleSet.insert(M).second)
4981 UniqueModules.push_back(M);
4982 Modules = UniqueModules;
4983
4984 if (Modules.size() > 1) {
4985 std::string ModuleList;
4986 unsigned N = 0;
4987 for (Module *M : Modules) {
4988 ModuleList += "\n ";
4989 if (++N == 5 && N != Modules.size()) {
4990 ModuleList += "[...]";
4991 break;
4992 }
4993 ModuleList += M->getFullModuleName();
4994 }
4995
4996 Diag(UseLoc, diag::err_module_unimported_use_multiple)
4997 << (int)MIK << Decl << ModuleList;
4998 } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
4999 UseLoc, Modules[0], DeclLoc)) {
5000 // The right way to make the declaration visible is to include a header;
5001 // suggest doing so.
5002 //
5003 // FIXME: Find a smart place to suggest inserting a #include, and add
5004 // a FixItHint there.
5005 Diag(UseLoc, diag::err_module_unimported_use_header)
5006 << (int)MIK << Decl << Modules[0]->getFullModuleName()
5007 << getIncludeStringForHeader(PP, E);
5008 } else {
5009 // FIXME: Add a FixItHint that imports the corresponding module.
5010 Diag(UseLoc, diag::err_module_unimported_use)
5011 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5012 }
5013
5014 unsigned DiagID;
5015 switch (MIK) {
5016 case MissingImportKind::Declaration:
5017 DiagID = diag::note_previous_declaration;
5018 break;
5019 case MissingImportKind::Definition:
5020 DiagID = diag::note_previous_definition;
5021 break;
5022 case MissingImportKind::DefaultArgument:
5023 DiagID = diag::note_default_argument_declared_here;
5024 break;
5025 case MissingImportKind::ExplicitSpecialization:
5026 DiagID = diag::note_explicit_specialization_declared_here;
5027 break;
5028 case MissingImportKind::PartialSpecialization:
5029 DiagID = diag::note_partial_specialization_declared_here;
5030 break;
5031 }
5032 Diag(DeclLoc, DiagID);
5033
5034 // Try to recover by implicitly importing this module.
5035 if (Recover)
5036 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5037}
5038
5039/// \brief Diagnose a successfully-corrected typo. Separated from the correction
5040/// itself to allow external validation of the result, etc.
5041///
5042/// \param Correction The result of performing typo correction.
5043/// \param TypoDiag The diagnostic to produce. This will have the corrected
5044/// string added to it (and usually also a fixit).
5045/// \param PrevNote A note to use when indicating the location of the entity to
5046/// which we are correcting. Will have the correction string added to it.
5047/// \param ErrorRecovery If \c true (the default), the caller is going to
5048/// recover from the typo as if the corrected string had been typed.
5049/// In this case, \c PDiag must be an error, and we will attach a fixit
5050/// to it.
5051void Sema::diagnoseTypo(const TypoCorrection &Correction,
5052 const PartialDiagnostic &TypoDiag,
5053 const PartialDiagnostic &PrevNote,
5054 bool ErrorRecovery) {
5055 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5056 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5057 FixItHint FixTypo = FixItHint::CreateReplacement(
5058 Correction.getCorrectionRange(), CorrectedStr);
5059
5060 // Maybe we're just missing a module import.
5061 if (Correction.requiresImport()) {
5062 NamedDecl *Decl = Correction.getFoundDecl();
5063 assert(Decl && "import required but no declaration to import")((Decl && "import required but no declaration to import"
) ? static_cast<void> (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 5063, __PRETTY_FUNCTION__))
;
5064
5065 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5066 MissingImportKind::Declaration, ErrorRecovery);
5067 return;
5068 }
5069
5070 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5071 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5072
5073 NamedDecl *ChosenDecl =
5074 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5075 if (PrevNote.getDiagID() && ChosenDecl)
5076 Diag(ChosenDecl->getLocation(), PrevNote)
5077 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5078
5079 // Add any extra diagnostics.
5080 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5081 Diag(Correction.getCorrectionRange().getBegin(), PD);
5082}
5083
5084TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5085 TypoDiagnosticGenerator TDG,
5086 TypoRecoveryCallback TRC) {
5087 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")((TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? static_cast<void> (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 5087, __PRETTY_FUNCTION__))
;
5088 auto TE = new (Context) TypoExpr(Context.DependentTy);
5089 auto &State = DelayedTypos[TE];
5090 State.Consumer = std::move(TCC);
5091 State.DiagHandler = std::move(TDG);
5092 State.RecoveryHandler = std::move(TRC);
5093 return TE;
5094}
5095
5096const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5097 auto Entry = DelayedTypos.find(TE);
5098 assert(Entry != DelayedTypos.end() &&((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 5099, __PRETTY_FUNCTION__))
5099 "Failed to get the state for a TypoExpr!")((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaLookup.cpp"
, 5099, __PRETTY_FUNCTION__))
;
5100 return Entry->second;
5101}
5102
5103void Sema::clearDelayedTypo(TypoExpr *TE) {
5104 DelayedTypos.erase(TE);
5105}
5106
5107void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5108 DeclarationNameInfo Name(II, IILoc);
5109 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5110 R.suppressDiagnostics();
5111 R.setHideTags(false);
5112 LookupName(R, S);
5113 R.dump();
5114}