Bug Summary

File:tools/clang/lib/Sema/SemaLookup.cpp
Warning:line 4688, column 3
Use of memory after it is freed

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaLookup.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp -faddrsig

/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp

1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements name lookup for C, C++, Objective-C, and
11// Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclLookups.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50using namespace clang;
51using namespace sema;
52
53namespace {
54 class UnqualUsingEntry {
55 const DeclContext *Nominated;
56 const DeclContext *CommonAncestor;
57
58 public:
59 UnqualUsingEntry(const DeclContext *Nominated,
60 const DeclContext *CommonAncestor)
61 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
62 }
63
64 const DeclContext *getCommonAncestor() const {
65 return CommonAncestor;
66 }
67
68 const DeclContext *getNominatedNamespace() const {
69 return Nominated;
70 }
71
72 // Sort by the pointer value of the common ancestor.
73 struct Comparator {
74 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
75 return L.getCommonAncestor() < R.getCommonAncestor();
76 }
77
78 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
79 return E.getCommonAncestor() < DC;
80 }
81
82 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
83 return DC < E.getCommonAncestor();
84 }
85 };
86 };
87
88 /// A collection of using directives, as used by C++ unqualified
89 /// lookup.
90 class UnqualUsingDirectiveSet {
91 Sema &SemaRef;
92
93 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94
95 ListTy list;
96 llvm::SmallPtrSet<DeclContext*, 8> visited;
97
98 public:
99 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
100
101 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102 // C++ [namespace.udir]p1:
103 // During unqualified name lookup, the names appear as if they
104 // were declared in the nearest enclosing namespace which contains
105 // both the using-directive and the nominated namespace.
106 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
107 assert(InnermostFileDC && InnermostFileDC->isFileContext())(static_cast <bool> (InnermostFileDC && InnermostFileDC
->isFileContext()) ? void (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 107, __extension__ __PRETTY_FUNCTION__))
;
108
109 for (; S; S = S->getParent()) {
110 // C++ [namespace.udir]p1:
111 // A using-directive shall not appear in class scope, but may
112 // appear in namespace scope or in block scope.
113 DeclContext *Ctx = S->getEntity();
114 if (Ctx && Ctx->isFileContext()) {
115 visit(Ctx, Ctx);
116 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117 for (auto *I : S->using_directives())
118 if (SemaRef.isVisible(I))
119 visit(I, InnermostFileDC);
120 }
121 }
122 }
123
124 // Visits a context and collect all of its using directives
125 // recursively. Treats all using directives as if they were
126 // declared in the context.
127 //
128 // A given context is only every visited once, so it is important
129 // that contexts be visited from the inside out in order to get
130 // the effective DCs right.
131 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
132 if (!visited.insert(DC).second)
133 return;
134
135 addUsingDirectives(DC, EffectiveDC);
136 }
137
138 // Visits a using directive and collects all of its using
139 // directives recursively. Treats all using directives as if they
140 // were declared in the effective DC.
141 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
142 DeclContext *NS = UD->getNominatedNamespace();
143 if (!visited.insert(NS).second)
144 return;
145
146 addUsingDirective(UD, EffectiveDC);
147 addUsingDirectives(NS, EffectiveDC);
148 }
149
150 // Adds all the using directives in a context (and those nominated
151 // by its using directives, transitively) as if they appeared in
152 // the given effective context.
153 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
154 SmallVector<DeclContext*, 4> queue;
155 while (true) {
156 for (auto UD : DC->using_directives()) {
157 DeclContext *NS = UD->getNominatedNamespace();
158 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
159 addUsingDirective(UD, EffectiveDC);
160 queue.push_back(NS);
161 }
162 }
163
164 if (queue.empty())
165 return;
166
167 DC = queue.pop_back_val();
168 }
169 }
170
171 // Add a using directive as if it had been declared in the given
172 // context. This helps implement C++ [namespace.udir]p3:
173 // The using-directive is transitive: if a scope contains a
174 // using-directive that nominates a second namespace that itself
175 // contains using-directives, the effect is as if the
176 // using-directives from the second namespace also appeared in
177 // the first.
178 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
179 // Find the common ancestor between the effective context and
180 // the nominated namespace.
181 DeclContext *Common = UD->getNominatedNamespace();
182 while (!Common->Encloses(EffectiveDC))
183 Common = Common->getParent();
184 Common = Common->getPrimaryContext();
185
186 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
187 }
188
189 void done() {
190 llvm::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
191 }
192
193 typedef ListTy::const_iterator const_iterator;
194
195 const_iterator begin() const { return list.begin(); }
196 const_iterator end() const { return list.end(); }
197
198 llvm::iterator_range<const_iterator>
199 getNamespacesFor(DeclContext *DC) const {
200 return llvm::make_range(std::equal_range(begin(), end(),
201 DC->getPrimaryContext(),
202 UnqualUsingEntry::Comparator()));
203 }
204 };
205} // end anonymous namespace
206
207// Retrieve the set of identifier namespaces that correspond to a
208// specific kind of name lookup.
209static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210 bool CPlusPlus,
211 bool Redeclaration) {
212 unsigned IDNS = 0;
213 switch (NameKind) {
214 case Sema::LookupObjCImplicitSelfParam:
215 case Sema::LookupOrdinaryName:
216 case Sema::LookupRedeclarationWithLinkage:
217 case Sema::LookupLocalFriendName:
218 IDNS = Decl::IDNS_Ordinary;
219 if (CPlusPlus) {
220 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
221 if (Redeclaration)
222 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
223 }
224 if (Redeclaration)
225 IDNS |= Decl::IDNS_LocalExtern;
226 break;
227
228 case Sema::LookupOperatorName:
229 // Operator lookup is its own crazy thing; it is not the same
230 // as (e.g.) looking up an operator name for redeclaration.
231 assert(!Redeclaration && "cannot do redeclaration operator lookup")(static_cast <bool> (!Redeclaration && "cannot do redeclaration operator lookup"
) ? void (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 231, __extension__ __PRETTY_FUNCTION__))
;
232 IDNS = Decl::IDNS_NonMemberOperator;
233 break;
234
235 case Sema::LookupTagName:
236 if (CPlusPlus) {
237 IDNS = Decl::IDNS_Type;
238
239 // When looking for a redeclaration of a tag name, we add:
240 // 1) TagFriend to find undeclared friend decls
241 // 2) Namespace because they can't "overload" with tag decls.
242 // 3) Tag because it includes class templates, which can't
243 // "overload" with tag decls.
244 if (Redeclaration)
245 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246 } else {
247 IDNS = Decl::IDNS_Tag;
248 }
249 break;
250
251 case Sema::LookupLabel:
252 IDNS = Decl::IDNS_Label;
253 break;
254
255 case Sema::LookupMemberName:
256 IDNS = Decl::IDNS_Member;
257 if (CPlusPlus)
258 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
259 break;
260
261 case Sema::LookupNestedNameSpecifierName:
262 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
263 break;
264
265 case Sema::LookupNamespaceName:
266 IDNS = Decl::IDNS_Namespace;
267 break;
268
269 case Sema::LookupUsingDeclName:
270 assert(Redeclaration && "should only be used for redecl lookup")(static_cast <bool> (Redeclaration && "should only be used for redecl lookup"
) ? void (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 270, __extension__ __PRETTY_FUNCTION__))
;
271 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
272 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
273 Decl::IDNS_LocalExtern;
274 break;
275
276 case Sema::LookupObjCProtocolName:
277 IDNS = Decl::IDNS_ObjCProtocol;
278 break;
279
280 case Sema::LookupOMPReductionName:
281 IDNS = Decl::IDNS_OMPReduction;
282 break;
283
284 case Sema::LookupAnyName:
285 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
286 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
287 | Decl::IDNS_Type;
288 break;
289 }
290 return IDNS;
291}
292
293void LookupResult::configure() {
294 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
295 isForRedeclaration());
296
297 // If we're looking for one of the allocation or deallocation
298 // operators, make sure that the implicitly-declared new and delete
299 // operators can be found.
300 switch (NameInfo.getName().getCXXOverloadedOperator()) {
301 case OO_New:
302 case OO_Delete:
303 case OO_Array_New:
304 case OO_Array_Delete:
305 getSema().DeclareGlobalNewDelete();
306 break;
307
308 default:
309 break;
310 }
311
312 // Compiler builtins are always visible, regardless of where they end
313 // up being declared.
314 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
315 if (unsigned BuiltinID = Id->getBuiltinID()) {
316 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
317 AllowHidden = true;
318 }
319 }
320}
321
322bool LookupResult::sanity() const {
323 // This function is never called by NDEBUG builds.
324 assert(ResultKind != NotFound || Decls.size() == 0)(static_cast <bool> (ResultKind != NotFound || Decls.size
() == 0) ? void (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 324, __extension__ __PRETTY_FUNCTION__))
;
325 assert(ResultKind != Found || Decls.size() == 1)(static_cast <bool> (ResultKind != Found || Decls.size(
) == 1) ? void (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 325, __extension__ __PRETTY_FUNCTION__))
;
326 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
327 (Decls.size() == 1 &&(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
328 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))(static_cast <bool> (ResultKind != FoundOverloaded || Decls
.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl()))) ? void (0) : __assert_fail
("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
;
329 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())(static_cast <bool> (ResultKind != FoundUnresolvedValue
|| sanityCheckUnresolved()) ? void (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __extension__ __PRETTY_FUNCTION__))
;
330 assert(ResultKind != Ambiguous || Decls.size() > 1 ||(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __extension__ __PRETTY_FUNCTION__))
331 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __extension__ __PRETTY_FUNCTION__))
332 Ambiguity == AmbiguousBaseSubobjectTypes)))(static_cast <bool> (ResultKind != Ambiguous || Decls.size
() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects
|| Ambiguity == AmbiguousBaseSubobjectTypes))) ? void (0) : __assert_fail
("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __extension__ __PRETTY_FUNCTION__))
;
333 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 335, __extension__ __PRETTY_FUNCTION__))
334 (Ambiguity == AmbiguousBaseSubobjectTypes ||(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 335, __extension__ __PRETTY_FUNCTION__))
335 Ambiguity == AmbiguousBaseSubobjects)))(static_cast <bool> ((Paths != nullptr) == (ResultKind ==
Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes
|| Ambiguity == AmbiguousBaseSubobjects))) ? void (0) : __assert_fail
("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 335, __extension__ __PRETTY_FUNCTION__))
;
336 return true;
337}
338
339// Necessary because CXXBasePaths is not complete in Sema.h
340void LookupResult::deletePaths(CXXBasePaths *Paths) {
341 delete Paths;
342}
343
344/// Get a representative context for a declaration such that two declarations
345/// will have the same context if they were found within the same scope.
346static DeclContext *getContextForScopeMatching(Decl *D) {
347 // For function-local declarations, use that function as the context. This
348 // doesn't account for scopes within the function; the caller must deal with
349 // those.
350 DeclContext *DC = D->getLexicalDeclContext();
351 if (DC->isFunctionOrMethod())
352 return DC;
353
354 // Otherwise, look at the semantic context of the declaration. The
355 // declaration must have been found there.
356 return D->getDeclContext()->getRedeclContext();
357}
358
359/// Determine whether \p D is a better lookup result than \p Existing,
360/// given that they declare the same entity.
361static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
362 NamedDecl *D, NamedDecl *Existing) {
363 // When looking up redeclarations of a using declaration, prefer a using
364 // shadow declaration over any other declaration of the same entity.
365 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
366 !isa<UsingShadowDecl>(Existing))
367 return true;
368
369 auto *DUnderlying = D->getUnderlyingDecl();
370 auto *EUnderlying = Existing->getUnderlyingDecl();
371
372 // If they have different underlying declarations, prefer a typedef over the
373 // original type (this happens when two type declarations denote the same
374 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
375 // might carry additional semantic information, such as an alignment override.
376 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
377 // declaration over a typedef.
378 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
379 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))(static_cast <bool> (isa<TypeDecl>(DUnderlying) &&
isa<TypeDecl>(EUnderlying)) ? void (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 379, __extension__ __PRETTY_FUNCTION__))
;
380 bool HaveTag = isa<TagDecl>(EUnderlying);
381 bool WantTag = Kind == Sema::LookupTagName;
382 return HaveTag != WantTag;
383 }
384
385 // Pick the function with more default arguments.
386 // FIXME: In the presence of ambiguous default arguments, we should keep both,
387 // so we can diagnose the ambiguity if the default argument is needed.
388 // See C++ [over.match.best]p3.
389 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
390 auto *EFD = cast<FunctionDecl>(EUnderlying);
391 unsigned DMin = DFD->getMinRequiredArguments();
392 unsigned EMin = EFD->getMinRequiredArguments();
393 // If D has more default arguments, it is preferred.
394 if (DMin != EMin)
395 return DMin < EMin;
396 // FIXME: When we track visibility for default function arguments, check
397 // that we pick the declaration with more visible default arguments.
398 }
399
400 // Pick the template with more default template arguments.
401 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
402 auto *ETD = cast<TemplateDecl>(EUnderlying);
403 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
404 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
405 // If D has more default arguments, it is preferred. Note that default
406 // arguments (and their visibility) is monotonically increasing across the
407 // redeclaration chain, so this is a quick proxy for "is more recent".
408 if (DMin != EMin)
409 return DMin < EMin;
410 // If D has more *visible* default arguments, it is preferred. Note, an
411 // earlier default argument being visible does not imply that a later
412 // default argument is visible, so we can't just check the first one.
413 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
414 I != N; ++I) {
415 if (!S.hasVisibleDefaultArgument(
416 ETD->getTemplateParameters()->getParam(I)) &&
417 S.hasVisibleDefaultArgument(
418 DTD->getTemplateParameters()->getParam(I)))
419 return true;
420 }
421 }
422
423 // VarDecl can have incomplete array types, prefer the one with more complete
424 // array type.
425 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
426 VarDecl *EVD = cast<VarDecl>(EUnderlying);
427 if (EVD->getType()->isIncompleteType() &&
428 !DVD->getType()->isIncompleteType()) {
429 // Prefer the decl with a more complete type if visible.
430 return S.isVisible(DVD);
431 }
432 return false; // Avoid picking up a newer decl, just because it was newer.
433 }
434
435 // For most kinds of declaration, it doesn't really matter which one we pick.
436 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
437 // If the existing declaration is hidden, prefer the new one. Otherwise,
438 // keep what we've got.
439 return !S.isVisible(Existing);
440 }
441
442 // Pick the newer declaration; it might have a more precise type.
443 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
444 Prev = Prev->getPreviousDecl())
445 if (Prev == EUnderlying)
446 return true;
447 return false;
448}
449
450/// Determine whether \p D can hide a tag declaration.
451static bool canHideTag(NamedDecl *D) {
452 // C++ [basic.scope.declarative]p4:
453 // Given a set of declarations in a single declarative region [...]
454 // exactly one declaration shall declare a class name or enumeration name
455 // that is not a typedef name and the other declarations shall all refer to
456 // the same variable, non-static data member, or enumerator, or all refer
457 // to functions and function templates; in this case the class name or
458 // enumeration name is hidden.
459 // C++ [basic.scope.hiding]p2:
460 // A class name or enumeration name can be hidden by the name of a
461 // variable, data member, function, or enumerator declared in the same
462 // scope.
463 // An UnresolvedUsingValueDecl always instantiates to one of these.
464 D = D->getUnderlyingDecl();
465 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
466 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
467 isa<UnresolvedUsingValueDecl>(D);
468}
469
470/// Resolves the result kind of this lookup.
471void LookupResult::resolveKind() {
472 unsigned N = Decls.size();
473
474 // Fast case: no possible ambiguity.
475 if (N == 0) {
476 assert(ResultKind == NotFound ||(static_cast <bool> (ResultKind == NotFound || ResultKind
== NotFoundInCurrentInstantiation) ? void (0) : __assert_fail
("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 477, __extension__ __PRETTY_FUNCTION__))
477 ResultKind == NotFoundInCurrentInstantiation)(static_cast <bool> (ResultKind == NotFound || ResultKind
== NotFoundInCurrentInstantiation) ? void (0) : __assert_fail
("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 477, __extension__ __PRETTY_FUNCTION__))
;
478 return;
479 }
480
481 // If there's a single decl, we need to examine it to decide what
482 // kind of lookup this is.
483 if (N == 1) {
484 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
485 if (isa<FunctionTemplateDecl>(D))
486 ResultKind = FoundOverloaded;
487 else if (isa<UnresolvedUsingValueDecl>(D))
488 ResultKind = FoundUnresolvedValue;
489 return;
490 }
491
492 // Don't do any extra resolution if we've already resolved as ambiguous.
493 if (ResultKind == Ambiguous) return;
494
495 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
496 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
497
498 bool Ambiguous = false;
499 bool HasTag = false, HasFunction = false;
500 bool HasFunctionTemplate = false, HasUnresolved = false;
501 NamedDecl *HasNonFunction = nullptr;
502
503 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
504
505 unsigned UniqueTagIndex = 0;
506
507 unsigned I = 0;
508 while (I < N) {
509 NamedDecl *D = Decls[I]->getUnderlyingDecl();
510 D = cast<NamedDecl>(D->getCanonicalDecl());
511
512 // Ignore an invalid declaration unless it's the only one left.
513 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
514 Decls[I] = Decls[--N];
515 continue;
516 }
517
518 llvm::Optional<unsigned> ExistingI;
519
520 // Redeclarations of types via typedef can occur both within a scope
521 // and, through using declarations and directives, across scopes. There is
522 // no ambiguity if they all refer to the same type, so unique based on the
523 // canonical type.
524 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
525 QualType T = getSema().Context.getTypeDeclType(TD);
526 auto UniqueResult = UniqueTypes.insert(
527 std::make_pair(getSema().Context.getCanonicalType(T), I));
528 if (!UniqueResult.second) {
529 // The type is not unique.
530 ExistingI = UniqueResult.first->second;
531 }
532 }
533
534 // For non-type declarations, check for a prior lookup result naming this
535 // canonical declaration.
536 if (!ExistingI) {
537 auto UniqueResult = Unique.insert(std::make_pair(D, I));
538 if (!UniqueResult.second) {
539 // We've seen this entity before.
540 ExistingI = UniqueResult.first->second;
541 }
542 }
543
544 if (ExistingI) {
545 // This is not a unique lookup result. Pick one of the results and
546 // discard the other.
547 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
548 Decls[*ExistingI]))
549 Decls[*ExistingI] = Decls[I];
550 Decls[I] = Decls[--N];
551 continue;
552 }
553
554 // Otherwise, do some decl type analysis and then continue.
555
556 if (isa<UnresolvedUsingValueDecl>(D)) {
557 HasUnresolved = true;
558 } else if (isa<TagDecl>(D)) {
559 if (HasTag)
560 Ambiguous = true;
561 UniqueTagIndex = I;
562 HasTag = true;
563 } else if (isa<FunctionTemplateDecl>(D)) {
564 HasFunction = true;
565 HasFunctionTemplate = true;
566 } else if (isa<FunctionDecl>(D)) {
567 HasFunction = true;
568 } else {
569 if (HasNonFunction) {
570 // If we're about to create an ambiguity between two declarations that
571 // are equivalent, but one is an internal linkage declaration from one
572 // module and the other is an internal linkage declaration from another
573 // module, just skip it.
574 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
575 D)) {
576 EquivalentNonFunctions.push_back(D);
577 Decls[I] = Decls[--N];
578 continue;
579 }
580
581 Ambiguous = true;
582 }
583 HasNonFunction = D;
584 }
585 I++;
586 }
587
588 // C++ [basic.scope.hiding]p2:
589 // A class name or enumeration name can be hidden by the name of
590 // an object, function, or enumerator declared in the same
591 // scope. If a class or enumeration name and an object, function,
592 // or enumerator are declared in the same scope (in any order)
593 // with the same name, the class or enumeration name is hidden
594 // wherever the object, function, or enumerator name is visible.
595 // But it's still an error if there are distinct tag types found,
596 // even if they're not visible. (ref?)
597 if (N > 1 && HideTags && HasTag && !Ambiguous &&
598 (HasFunction || HasNonFunction || HasUnresolved)) {
599 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
600 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
601 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
602 getContextForScopeMatching(OtherDecl)) &&
603 canHideTag(OtherDecl))
604 Decls[UniqueTagIndex] = Decls[--N];
605 else
606 Ambiguous = true;
607 }
608
609 // FIXME: This diagnostic should really be delayed until we're done with
610 // the lookup result, in case the ambiguity is resolved by the caller.
611 if (!EquivalentNonFunctions.empty() && !Ambiguous)
612 getSema().diagnoseEquivalentInternalLinkageDeclarations(
613 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
614
615 Decls.set_size(N);
616
617 if (HasNonFunction && (HasFunction || HasUnresolved))
618 Ambiguous = true;
619
620 if (Ambiguous)
621 setAmbiguous(LookupResult::AmbiguousReference);
622 else if (HasUnresolved)
623 ResultKind = LookupResult::FoundUnresolvedValue;
624 else if (N > 1 || HasFunctionTemplate)
625 ResultKind = LookupResult::FoundOverloaded;
626 else
627 ResultKind = LookupResult::Found;
628}
629
630void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
631 CXXBasePaths::const_paths_iterator I, E;
632 for (I = P.begin(), E = P.end(); I != E; ++I)
633 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
634 DE = I->Decls.end(); DI != DE; ++DI)
635 addDecl(*DI);
636}
637
638void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
639 Paths = new CXXBasePaths;
640 Paths->swap(P);
641 addDeclsFromBasePaths(*Paths);
642 resolveKind();
643 setAmbiguous(AmbiguousBaseSubobjects);
644}
645
646void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
647 Paths = new CXXBasePaths;
648 Paths->swap(P);
649 addDeclsFromBasePaths(*Paths);
650 resolveKind();
651 setAmbiguous(AmbiguousBaseSubobjectTypes);
652}
653
654void LookupResult::print(raw_ostream &Out) {
655 Out << Decls.size() << " result(s)";
656 if (isAmbiguous()) Out << ", ambiguous";
657 if (Paths) Out << ", base paths present";
658
659 for (iterator I = begin(), E = end(); I != E; ++I) {
660 Out << "\n";
661 (*I)->print(Out, 2);
662 }
663}
664
665LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
666 llvm::errs() << "lookup results for " << getLookupName().getAsString()
667 << ":\n";
668 for (NamedDecl *D : *this)
669 D->dump();
670}
671
672/// Lookup a builtin function, when name lookup would otherwise
673/// fail.
674static bool LookupBuiltin(Sema &S, LookupResult &R) {
675 Sema::LookupNameKind NameKind = R.getLookupKind();
676
677 // If we didn't find a use of this identifier, and if the identifier
678 // corresponds to a compiler builtin, create the decl object for the builtin
679 // now, injecting it into translation unit scope, and return it.
680 if (NameKind == Sema::LookupOrdinaryName ||
681 NameKind == Sema::LookupRedeclarationWithLinkage) {
682 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
683 if (II) {
684 if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
685 if (II == S.getASTContext().getMakeIntegerSeqName()) {
686 R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
687 return true;
688 } else if (II == S.getASTContext().getTypePackElementName()) {
689 R.addDecl(S.getASTContext().getTypePackElementDecl());
690 return true;
691 }
692 }
693
694 // If this is a builtin on this (or all) targets, create the decl.
695 if (unsigned BuiltinID = II->getBuiltinID()) {
696 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
697 // library functions like 'malloc'. Instead, we'll just error.
698 if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
699 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
700 return false;
701
702 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
703 BuiltinID, S.TUScope,
704 R.isForRedeclaration(),
705 R.getNameLoc())) {
706 R.addDecl(D);
707 return true;
708 }
709 }
710 }
711 }
712
713 return false;
714}
715
716/// Determine whether we can declare a special member function within
717/// the class at this point.
718static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
719 // We need to have a definition for the class.
720 if (!Class->getDefinition() || Class->isDependentContext())
721 return false;
722
723 // We can't be in the middle of defining the class.
724 return !Class->isBeingDefined();
725}
726
727void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
728 if (!CanDeclareSpecialMemberFunction(Class))
729 return;
730
731 // If the default constructor has not yet been declared, do so now.
732 if (Class->needsImplicitDefaultConstructor())
733 DeclareImplicitDefaultConstructor(Class);
734
735 // If the copy constructor has not yet been declared, do so now.
736 if (Class->needsImplicitCopyConstructor())
737 DeclareImplicitCopyConstructor(Class);
738
739 // If the copy assignment operator has not yet been declared, do so now.
740 if (Class->needsImplicitCopyAssignment())
741 DeclareImplicitCopyAssignment(Class);
742
743 if (getLangOpts().CPlusPlus11) {
744 // If the move constructor has not yet been declared, do so now.
745 if (Class->needsImplicitMoveConstructor())
746 DeclareImplicitMoveConstructor(Class);
747
748 // If the move assignment operator has not yet been declared, do so now.
749 if (Class->needsImplicitMoveAssignment())
750 DeclareImplicitMoveAssignment(Class);
751 }
752
753 // If the destructor has not yet been declared, do so now.
754 if (Class->needsImplicitDestructor())
755 DeclareImplicitDestructor(Class);
756}
757
758/// Determine whether this is the name of an implicitly-declared
759/// special member function.
760static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
761 switch (Name.getNameKind()) {
762 case DeclarationName::CXXConstructorName:
763 case DeclarationName::CXXDestructorName:
764 return true;
765
766 case DeclarationName::CXXOperatorName:
767 return Name.getCXXOverloadedOperator() == OO_Equal;
768
769 default:
770 break;
771 }
772
773 return false;
774}
775
776/// If there are any implicit member functions with the given name
777/// that need to be declared in the given declaration context, do so.
778static void DeclareImplicitMemberFunctionsWithName(Sema &S,
779 DeclarationName Name,
780 SourceLocation Loc,
781 const DeclContext *DC) {
782 if (!DC)
783 return;
784
785 switch (Name.getNameKind()) {
786 case DeclarationName::CXXConstructorName:
787 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
788 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
789 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
790 if (Record->needsImplicitDefaultConstructor())
791 S.DeclareImplicitDefaultConstructor(Class);
792 if (Record->needsImplicitCopyConstructor())
793 S.DeclareImplicitCopyConstructor(Class);
794 if (S.getLangOpts().CPlusPlus11 &&
795 Record->needsImplicitMoveConstructor())
796 S.DeclareImplicitMoveConstructor(Class);
797 }
798 break;
799
800 case DeclarationName::CXXDestructorName:
801 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
802 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
803 CanDeclareSpecialMemberFunction(Record))
804 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
805 break;
806
807 case DeclarationName::CXXOperatorName:
808 if (Name.getCXXOverloadedOperator() != OO_Equal)
809 break;
810
811 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
812 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
813 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
814 if (Record->needsImplicitCopyAssignment())
815 S.DeclareImplicitCopyAssignment(Class);
816 if (S.getLangOpts().CPlusPlus11 &&
817 Record->needsImplicitMoveAssignment())
818 S.DeclareImplicitMoveAssignment(Class);
819 }
820 }
821 break;
822
823 case DeclarationName::CXXDeductionGuideName:
824 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
825 break;
826
827 default:
828 break;
829 }
830}
831
832// Adds all qualifying matches for a name within a decl context to the
833// given lookup result. Returns true if any matches were found.
834static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
835 bool Found = false;
836
837 // Lazily declare C++ special member functions.
838 if (S.getLangOpts().CPlusPlus)
839 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
840 DC);
841
842 // Perform lookup into this declaration context.
843 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
844 for (NamedDecl *D : DR) {
845 if ((D = R.getAcceptableDecl(D))) {
846 R.addDecl(D);
847 Found = true;
848 }
849 }
850
851 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
852 return true;
853
854 if (R.getLookupName().getNameKind()
855 != DeclarationName::CXXConversionFunctionName ||
856 R.getLookupName().getCXXNameType()->isDependentType() ||
857 !isa<CXXRecordDecl>(DC))
858 return Found;
859
860 // C++ [temp.mem]p6:
861 // A specialization of a conversion function template is not found by
862 // name lookup. Instead, any conversion function templates visible in the
863 // context of the use are considered. [...]
864 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
865 if (!Record->isCompleteDefinition())
866 return Found;
867
868 // For conversion operators, 'operator auto' should only match
869 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
870 // as a candidate for template substitution.
871 auto *ContainedDeducedType =
872 R.getLookupName().getCXXNameType()->getContainedDeducedType();
873 if (R.getLookupName().getNameKind() ==
874 DeclarationName::CXXConversionFunctionName &&
875 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
876 return Found;
877
878 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
879 UEnd = Record->conversion_end(); U != UEnd; ++U) {
880 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
881 if (!ConvTemplate)
882 continue;
883
884 // When we're performing lookup for the purposes of redeclaration, just
885 // add the conversion function template. When we deduce template
886 // arguments for specializations, we'll end up unifying the return
887 // type of the new declaration with the type of the function template.
888 if (R.isForRedeclaration()) {
889 R.addDecl(ConvTemplate);
890 Found = true;
891 continue;
892 }
893
894 // C++ [temp.mem]p6:
895 // [...] For each such operator, if argument deduction succeeds
896 // (14.9.2.3), the resulting specialization is used as if found by
897 // name lookup.
898 //
899 // When referencing a conversion function for any purpose other than
900 // a redeclaration (such that we'll be building an expression with the
901 // result), perform template argument deduction and place the
902 // specialization into the result set. We do this to avoid forcing all
903 // callers to perform special deduction for conversion functions.
904 TemplateDeductionInfo Info(R.getNameLoc());
905 FunctionDecl *Specialization = nullptr;
906
907 const FunctionProtoType *ConvProto
908 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
909 assert(ConvProto && "Nonsensical conversion function template type")(static_cast <bool> (ConvProto && "Nonsensical conversion function template type"
) ? void (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 909, __extension__ __PRETTY_FUNCTION__))
;
910
911 // Compute the type of the function that we would expect the conversion
912 // function to have, if it were to match the name given.
913 // FIXME: Calling convention!
914 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
915 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
916 EPI.ExceptionSpec = EST_None;
917 QualType ExpectedType
918 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
919 None, EPI);
920
921 // Perform template argument deduction against the type that we would
922 // expect the function to have.
923 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
924 Specialization, Info)
925 == Sema::TDK_Success) {
926 R.addDecl(Specialization);
927 Found = true;
928 }
929 }
930
931 return Found;
932}
933
934// Performs C++ unqualified lookup into the given file context.
935static bool
936CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
937 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
938
939 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")(static_cast <bool> (NS && NS->isFileContext
() && "CppNamespaceLookup() requires namespace!") ? void
(0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 939, __extension__ __PRETTY_FUNCTION__))
;
940
941 // Perform direct name lookup into the LookupCtx.
942 bool Found = LookupDirect(S, R, NS);
943
944 // Perform direct name lookup into the namespaces nominated by the
945 // using directives whose common ancestor is this namespace.
946 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
947 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
948 Found = true;
949
950 R.resolveKind();
951
952 return Found;
953}
954
955static bool isNamespaceOrTranslationUnitScope(Scope *S) {
956 if (DeclContext *Ctx = S->getEntity())
957 return Ctx->isFileContext();
958 return false;
959}
960
961// Find the next outer declaration context from this scope. This
962// routine actually returns the semantic outer context, which may
963// differ from the lexical context (encoded directly in the Scope
964// stack) when we are parsing a member of a class template. In this
965// case, the second element of the pair will be true, to indicate that
966// name lookup should continue searching in this semantic context when
967// it leaves the current template parameter scope.
968static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
969 DeclContext *DC = S->getEntity();
970 DeclContext *Lexical = nullptr;
971 for (Scope *OuterS = S->getParent(); OuterS;
972 OuterS = OuterS->getParent()) {
973 if (OuterS->getEntity()) {
974 Lexical = OuterS->getEntity();
975 break;
976 }
977 }
978
979 // C++ [temp.local]p8:
980 // In the definition of a member of a class template that appears
981 // outside of the namespace containing the class template
982 // definition, the name of a template-parameter hides the name of
983 // a member of this namespace.
984 //
985 // Example:
986 //
987 // namespace N {
988 // class C { };
989 //
990 // template<class T> class B {
991 // void f(T);
992 // };
993 // }
994 //
995 // template<class C> void N::B<C>::f(C) {
996 // C b; // C is the template parameter, not N::C
997 // }
998 //
999 // In this example, the lexical context we return is the
1000 // TranslationUnit, while the semantic context is the namespace N.
1001 if (!Lexical || !DC || !S->getParent() ||
1002 !S->getParent()->isTemplateParamScope())
1003 return std::make_pair(Lexical, false);
1004
1005 // Find the outermost template parameter scope.
1006 // For the example, this is the scope for the template parameters of
1007 // template<class C>.
1008 Scope *OutermostTemplateScope = S->getParent();
1009 while (OutermostTemplateScope->getParent() &&
1010 OutermostTemplateScope->getParent()->isTemplateParamScope())
1011 OutermostTemplateScope = OutermostTemplateScope->getParent();
1012
1013 // Find the namespace context in which the original scope occurs. In
1014 // the example, this is namespace N.
1015 DeclContext *Semantic = DC;
1016 while (!Semantic->isFileContext())
1017 Semantic = Semantic->getParent();
1018
1019 // Find the declaration context just outside of the template
1020 // parameter scope. This is the context in which the template is
1021 // being lexically declaration (a namespace context). In the
1022 // example, this is the global scope.
1023 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1024 Lexical->Encloses(Semantic))
1025 return std::make_pair(Semantic, true);
1026
1027 return std::make_pair(Lexical, false);
1028}
1029
1030namespace {
1031/// An RAII object to specify that we want to find block scope extern
1032/// declarations.
1033struct FindLocalExternScope {
1034 FindLocalExternScope(LookupResult &R)
1035 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1036 Decl::IDNS_LocalExtern) {
1037 R.setFindLocalExtern(R.getIdentifierNamespace() &
1038 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1039 }
1040 void restore() {
1041 R.setFindLocalExtern(OldFindLocalExtern);
1042 }
1043 ~FindLocalExternScope() {
1044 restore();
1045 }
1046 LookupResult &R;
1047 bool OldFindLocalExtern;
1048};
1049} // end anonymous namespace
1050
1051bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1052 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Can perform only C++ lookup") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1052, __extension__ __PRETTY_FUNCTION__))
;
1053
1054 DeclarationName Name = R.getLookupName();
1055 Sema::LookupNameKind NameKind = R.getLookupKind();
1056
1057 // If this is the name of an implicitly-declared special member function,
1058 // go through the scope stack to implicitly declare
1059 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1060 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1061 if (DeclContext *DC = PreS->getEntity())
1062 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1063 }
1064
1065 // Implicitly declare member functions with the name we're looking for, if in
1066 // fact we are in a scope where it matters.
1067
1068 Scope *Initial = S;
1069 IdentifierResolver::iterator
1070 I = IdResolver.begin(Name),
1071 IEnd = IdResolver.end();
1072
1073 // First we lookup local scope.
1074 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1075 // ...During unqualified name lookup (3.4.1), the names appear as if
1076 // they were declared in the nearest enclosing namespace which contains
1077 // both the using-directive and the nominated namespace.
1078 // [Note: in this context, "contains" means "contains directly or
1079 // indirectly".
1080 //
1081 // For example:
1082 // namespace A { int i; }
1083 // void foo() {
1084 // int i;
1085 // {
1086 // using namespace A;
1087 // ++i; // finds local 'i', A::i appears at global scope
1088 // }
1089 // }
1090 //
1091 UnqualUsingDirectiveSet UDirs(*this);
1092 bool VisitedUsingDirectives = false;
1093 bool LeftStartingScope = false;
1094 DeclContext *OutsideOfTemplateParamDC = nullptr;
1095
1096 // When performing a scope lookup, we want to find local extern decls.
1097 FindLocalExternScope FindLocals(R);
1098
1099 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1100 DeclContext *Ctx = S->getEntity();
1101 bool SearchNamespaceScope = true;
1102 // Check whether the IdResolver has anything in this scope.
1103 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1104 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1105 if (NameKind == LookupRedeclarationWithLinkage &&
1106 !(*I)->isTemplateParameter()) {
1107 // If it's a template parameter, we still find it, so we can diagnose
1108 // the invalid redeclaration.
1109
1110 // Determine whether this (or a previous) declaration is
1111 // out-of-scope.
1112 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1113 LeftStartingScope = true;
1114
1115 // If we found something outside of our starting scope that
1116 // does not have linkage, skip it.
1117 if (LeftStartingScope && !((*I)->hasLinkage())) {
1118 R.setShadowed();
1119 continue;
1120 }
1121 } else {
1122 // We found something in this scope, we should not look at the
1123 // namespace scope
1124 SearchNamespaceScope = false;
1125 }
1126 R.addDecl(ND);
1127 }
1128 }
1129 if (!SearchNamespaceScope) {
1130 R.resolveKind();
1131 if (S->isClassScope())
1132 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1133 R.setNamingClass(Record);
1134 return true;
1135 }
1136
1137 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1138 // C++11 [class.friend]p11:
1139 // If a friend declaration appears in a local class and the name
1140 // specified is an unqualified name, a prior declaration is
1141 // looked up without considering scopes that are outside the
1142 // innermost enclosing non-class scope.
1143 return false;
1144 }
1145
1146 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1147 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1148 // We've just searched the last template parameter scope and
1149 // found nothing, so look into the contexts between the
1150 // lexical and semantic declaration contexts returned by
1151 // findOuterContext(). This implements the name lookup behavior
1152 // of C++ [temp.local]p8.
1153 Ctx = OutsideOfTemplateParamDC;
1154 OutsideOfTemplateParamDC = nullptr;
1155 }
1156
1157 if (Ctx) {
1158 DeclContext *OuterCtx;
1159 bool SearchAfterTemplateScope;
1160 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1161 if (SearchAfterTemplateScope)
1162 OutsideOfTemplateParamDC = OuterCtx;
1163
1164 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1165 // We do not directly look into transparent contexts, since
1166 // those entities will be found in the nearest enclosing
1167 // non-transparent context.
1168 if (Ctx->isTransparentContext())
1169 continue;
1170
1171 // We do not look directly into function or method contexts,
1172 // since all of the local variables and parameters of the
1173 // function/method are present within the Scope.
1174 if (Ctx->isFunctionOrMethod()) {
1175 // If we have an Objective-C instance method, look for ivars
1176 // in the corresponding interface.
1177 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1178 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1179 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1180 ObjCInterfaceDecl *ClassDeclared;
1181 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1182 Name.getAsIdentifierInfo(),
1183 ClassDeclared)) {
1184 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1185 R.addDecl(ND);
1186 R.resolveKind();
1187 return true;
1188 }
1189 }
1190 }
1191 }
1192
1193 continue;
1194 }
1195
1196 // If this is a file context, we need to perform unqualified name
1197 // lookup considering using directives.
1198 if (Ctx->isFileContext()) {
1199 // If we haven't handled using directives yet, do so now.
1200 if (!VisitedUsingDirectives) {
1201 // Add using directives from this context up to the top level.
1202 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1203 if (UCtx->isTransparentContext())
1204 continue;
1205
1206 UDirs.visit(UCtx, UCtx);
1207 }
1208
1209 // Find the innermost file scope, so we can add using directives
1210 // from local scopes.
1211 Scope *InnermostFileScope = S;
1212 while (InnermostFileScope &&
1213 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1214 InnermostFileScope = InnermostFileScope->getParent();
1215 UDirs.visitScopeChain(Initial, InnermostFileScope);
1216
1217 UDirs.done();
1218
1219 VisitedUsingDirectives = true;
1220 }
1221
1222 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1223 R.resolveKind();
1224 return true;
1225 }
1226
1227 continue;
1228 }
1229
1230 // Perform qualified name lookup into this context.
1231 // FIXME: In some cases, we know that every name that could be found by
1232 // this qualified name lookup will also be on the identifier chain. For
1233 // example, inside a class without any base classes, we never need to
1234 // perform qualified lookup because all of the members are on top of the
1235 // identifier chain.
1236 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1237 return true;
1238 }
1239 }
1240 }
1241
1242 // Stop if we ran out of scopes.
1243 // FIXME: This really, really shouldn't be happening.
1244 if (!S) return false;
1245
1246 // If we are looking for members, no need to look into global/namespace scope.
1247 if (NameKind == LookupMemberName)
1248 return false;
1249
1250 // Collect UsingDirectiveDecls in all scopes, and recursively all
1251 // nominated namespaces by those using-directives.
1252 //
1253 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1254 // don't build it for each lookup!
1255 if (!VisitedUsingDirectives) {
1256 UDirs.visitScopeChain(Initial, S);
1257 UDirs.done();
1258 }
1259
1260 // If we're not performing redeclaration lookup, do not look for local
1261 // extern declarations outside of a function scope.
1262 if (!R.isForRedeclaration())
1263 FindLocals.restore();
1264
1265 // Lookup namespace scope, and global scope.
1266 // Unqualified name lookup in C++ requires looking into scopes
1267 // that aren't strictly lexical, and therefore we walk through the
1268 // context as well as walking through the scopes.
1269 for (; S; S = S->getParent()) {
1270 // Check whether the IdResolver has anything in this scope.
1271 bool Found = false;
1272 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1273 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1274 // We found something. Look for anything else in our scope
1275 // with this same name and in an acceptable identifier
1276 // namespace, so that we can construct an overload set if we
1277 // need to.
1278 Found = true;
1279 R.addDecl(ND);
1280 }
1281 }
1282
1283 if (Found && S->isTemplateParamScope()) {
1284 R.resolveKind();
1285 return true;
1286 }
1287
1288 DeclContext *Ctx = S->getEntity();
1289 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1290 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1291 // We've just searched the last template parameter scope and
1292 // found nothing, so look into the contexts between the
1293 // lexical and semantic declaration contexts returned by
1294 // findOuterContext(). This implements the name lookup behavior
1295 // of C++ [temp.local]p8.
1296 Ctx = OutsideOfTemplateParamDC;
1297 OutsideOfTemplateParamDC = nullptr;
1298 }
1299
1300 if (Ctx) {
1301 DeclContext *OuterCtx;
1302 bool SearchAfterTemplateScope;
1303 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1304 if (SearchAfterTemplateScope)
1305 OutsideOfTemplateParamDC = OuterCtx;
1306
1307 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1308 // We do not directly look into transparent contexts, since
1309 // those entities will be found in the nearest enclosing
1310 // non-transparent context.
1311 if (Ctx->isTransparentContext())
1312 continue;
1313
1314 // If we have a context, and it's not a context stashed in the
1315 // template parameter scope for an out-of-line definition, also
1316 // look into that context.
1317 if (!(Found && S->isTemplateParamScope())) {
1318 assert(Ctx->isFileContext() &&(static_cast <bool> (Ctx->isFileContext() &&
"We should have been looking only at file context here already."
) ? void (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1319, __extension__ __PRETTY_FUNCTION__))
1319 "We should have been looking only at file context here already.")(static_cast <bool> (Ctx->isFileContext() &&
"We should have been looking only at file context here already."
) ? void (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1319, __extension__ __PRETTY_FUNCTION__))
;
1320
1321 // Look into context considering using-directives.
1322 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1323 Found = true;
1324 }
1325
1326 if (Found) {
1327 R.resolveKind();
1328 return true;
1329 }
1330
1331 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1332 return false;
1333 }
1334 }
1335
1336 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1337 return false;
1338 }
1339
1340 return !R.empty();
1341}
1342
1343void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1344 if (auto *M = getCurrentModule())
1345 Context.mergeDefinitionIntoModule(ND, M);
1346 else
1347 // We're not building a module; just make the definition visible.
1348 ND->setVisibleDespiteOwningModule();
1349
1350 // If ND is a template declaration, make the template parameters
1351 // visible too. They're not (necessarily) within a mergeable DeclContext.
1352 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1353 for (auto *Param : *TD->getTemplateParameters())
1354 makeMergedDefinitionVisible(Param);
1355}
1356
1357/// Find the module in which the given declaration was defined.
1358static Module *getDefiningModule(Sema &S, Decl *Entity) {
1359 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1360 // If this function was instantiated from a template, the defining module is
1361 // the module containing the pattern.
1362 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1363 Entity = Pattern;
1364 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1365 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1366 Entity = Pattern;
1367 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1368 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1369 Entity = Pattern;
1370 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1371 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1372 Entity = Pattern;
1373 }
1374
1375 // Walk up to the containing context. That might also have been instantiated
1376 // from a template.
1377 DeclContext *Context = Entity->getLexicalDeclContext();
1378 if (Context->isFileContext())
1379 return S.getOwningModule(Entity);
1380 return getDefiningModule(S, cast<Decl>(Context));
1381}
1382
1383llvm::DenseSet<Module*> &Sema::getLookupModules() {
1384 unsigned N = CodeSynthesisContexts.size();
1385 for (unsigned I = CodeSynthesisContextLookupModules.size();
1386 I != N; ++I) {
1387 Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1388 if (M && !LookupModulesCache.insert(M).second)
1389 M = nullptr;
1390 CodeSynthesisContextLookupModules.push_back(M);
1391 }
1392 return LookupModulesCache;
1393}
1394
1395bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1396 for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1397 if (isModuleVisible(Merged))
1398 return true;
1399 return false;
1400}
1401
1402bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1403 // FIXME: When not in local visibility mode, we can't tell the difference
1404 // between a declaration being visible because we merged a local copy of
1405 // the same declaration into it, and it being visible because its owning
1406 // module is visible.
1407 if (Def->getModuleOwnershipKind() == Decl::ModuleOwnershipKind::Visible &&
1408 getLangOpts().ModulesLocalVisibility)
1409 return true;
1410 for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1411 if (Merged->getTopLevelModuleName() == getLangOpts().CurrentModule)
1412 return true;
1413 return false;
1414}
1415
1416template<typename ParmDecl>
1417static bool
1418hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1419 llvm::SmallVectorImpl<Module *> *Modules) {
1420 if (!D->hasDefaultArgument())
1421 return false;
1422
1423 while (D) {
1424 auto &DefaultArg = D->getDefaultArgStorage();
1425 if (!DefaultArg.isInherited() && S.isVisible(D))
1426 return true;
1427
1428 if (!DefaultArg.isInherited() && Modules) {
1429 auto *NonConstD = const_cast<ParmDecl*>(D);
1430 Modules->push_back(S.getOwningModule(NonConstD));
1431 const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
1432 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1433 }
1434
1435 // If there was a previous default argument, maybe its parameter is visible.
1436 D = DefaultArg.getInheritedFrom();
1437 }
1438 return false;
1439}
1440
1441bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1442 llvm::SmallVectorImpl<Module *> *Modules) {
1443 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1444 return ::hasVisibleDefaultArgument(*this, P, Modules);
1445 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1446 return ::hasVisibleDefaultArgument(*this, P, Modules);
1447 return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1448 Modules);
1449}
1450
1451template<typename Filter>
1452static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1453 llvm::SmallVectorImpl<Module *> *Modules,
1454 Filter F) {
1455 bool HasFilteredRedecls = false;
1456
1457 for (auto *Redecl : D->redecls()) {
1458 auto *R = cast<NamedDecl>(Redecl);
1459 if (!F(R))
1460 continue;
1461
1462 if (S.isVisible(R))
1463 return true;
1464
1465 HasFilteredRedecls = true;
1466
1467 if (Modules) {
1468 Modules->push_back(R->getOwningModule());
1469 const auto &Merged = S.Context.getModulesWithMergedDefinition(R);
1470 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1471 }
1472 }
1473
1474 // Only return false if there is at least one redecl that is not filtered out.
1475 if (HasFilteredRedecls)
1476 return false;
1477
1478 return true;
1479}
1480
1481bool Sema::hasVisibleExplicitSpecialization(
1482 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1483 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1484 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1485 return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1486 if (auto *FD = dyn_cast<FunctionDecl>(D))
1487 return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1488 if (auto *VD = dyn_cast<VarDecl>(D))
1489 return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1490 llvm_unreachable("unknown explicit specialization kind")::llvm::llvm_unreachable_internal("unknown explicit specialization kind"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1490)
;
1491 });
1492}
1493
1494bool Sema::hasVisibleMemberSpecialization(
1495 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1496 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&(static_cast <bool> (isa<CXXRecordDecl>(D->getDeclContext
()) && "not a member specialization") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1497, __extension__ __PRETTY_FUNCTION__))
1497 "not a member specialization")(static_cast <bool> (isa<CXXRecordDecl>(D->getDeclContext
()) && "not a member specialization") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1497, __extension__ __PRETTY_FUNCTION__))
;
1498 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1499 // If the specialization is declared at namespace scope, then it's a member
1500 // specialization declaration. If it's lexically inside the class
1501 // definition then it was instantiated.
1502 //
1503 // FIXME: This is a hack. There should be a better way to determine this.
1504 // FIXME: What about MS-style explicit specializations declared within a
1505 // class definition?
1506 return D->getLexicalDeclContext()->isFileContext();
1507 });
1508}
1509
1510/// Determine whether a declaration is visible to name lookup.
1511///
1512/// This routine determines whether the declaration D is visible in the current
1513/// lookup context, taking into account the current template instantiation
1514/// stack. During template instantiation, a declaration is visible if it is
1515/// visible from a module containing any entity on the template instantiation
1516/// path (by instantiating a template, you allow it to see the declarations that
1517/// your module can see, including those later on in your module).
1518bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1519 assert(D->isHidden() && "should not call this: not in slow case")(static_cast <bool> (D->isHidden() && "should not call this: not in slow case"
) ? void (0) : __assert_fail ("D->isHidden() && \"should not call this: not in slow case\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1519, __extension__ __PRETTY_FUNCTION__))
;
1520
1521 Module *DeclModule = SemaRef.getOwningModule(D);
1522 if (!DeclModule) {
1523 // A module-private declaration with no owning module means this is in the
1524 // global module in the C++ Modules TS. This is visible within the same
1525 // translation unit only.
1526 // FIXME: Don't assume that "same translation unit" means the same thing
1527 // as "not from an AST file".
1528 assert(D->isModulePrivate() && "hidden decl has no module")(static_cast <bool> (D->isModulePrivate() &&
"hidden decl has no module") ? void (0) : __assert_fail ("D->isModulePrivate() && \"hidden decl has no module\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1528, __extension__ __PRETTY_FUNCTION__))
;
1529 if (!D->isFromASTFile() || SemaRef.hasMergedDefinitionInCurrentModule(D))
1530 return true;
1531 } else {
1532 // If the owning module is visible, and the decl is not module private,
1533 // then the decl is visible too. (Module private is ignored within the same
1534 // top-level module.)
1535 if (D->isModulePrivate()
1536 ? DeclModule->getTopLevelModuleName() ==
1537 SemaRef.getLangOpts().CurrentModule ||
1538 SemaRef.hasMergedDefinitionInCurrentModule(D)
1539 : SemaRef.isModuleVisible(DeclModule) ||
1540 SemaRef.hasVisibleMergedDefinition(D))
1541 return true;
1542 }
1543
1544 // Determine whether a decl context is a file context for the purpose of
1545 // visibility. This looks through some (export and linkage spec) transparent
1546 // contexts, but not others (enums).
1547 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1548 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1549 isa<ExportDecl>(DC);
1550 };
1551
1552 // If this declaration is not at namespace scope
1553 // then it is visible if its lexical parent has a visible definition.
1554 DeclContext *DC = D->getLexicalDeclContext();
1555 if (DC && !IsEffectivelyFileContext(DC)) {
1556 // For a parameter, check whether our current template declaration's
1557 // lexical context is visible, not whether there's some other visible
1558 // definition of it, because parameters aren't "within" the definition.
1559 //
1560 // In C++ we need to check for a visible definition due to ODR merging,
1561 // and in C we must not because each declaration of a function gets its own
1562 // set of declarations for tags in prototype scope.
1563 bool VisibleWithinParent;
1564 if (D->isTemplateParameter() || isa<ParmVarDecl>(D) ||
1565 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1566 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1567 else if (D->isModulePrivate()) {
1568 // A module-private declaration is only visible if an enclosing lexical
1569 // parent was merged with another definition in the current module.
1570 VisibleWithinParent = false;
1571 do {
1572 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1573 VisibleWithinParent = true;
1574 break;
1575 }
1576 DC = DC->getLexicalParent();
1577 } while (!IsEffectivelyFileContext(DC));
1578 } else {
1579 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1580 }
1581
1582 if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1583 // FIXME: Do something better in this case.
1584 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1585 // Cache the fact that this declaration is implicitly visible because
1586 // its parent has a visible definition.
1587 D->setVisibleDespiteOwningModule();
1588 }
1589 return VisibleWithinParent;
1590 }
1591
1592 // FIXME: All uses of DeclModule below this point should also check merged
1593 // modules.
1594 if (!DeclModule)
1595 return false;
1596
1597 // Find the extra places where we need to look.
1598 const auto &LookupModules = SemaRef.getLookupModules();
1599 if (LookupModules.empty())
1600 return false;
1601
1602 // If our lookup set contains the decl's module, it's visible.
1603 if (LookupModules.count(DeclModule))
1604 return true;
1605
1606 // If the declaration isn't exported, it's not visible in any other module.
1607 if (D->isModulePrivate())
1608 return false;
1609
1610 // Check whether DeclModule is transitively exported to an import of
1611 // the lookup set.
1612 return std::any_of(LookupModules.begin(), LookupModules.end(),
1613 [&](const Module *M) {
1614 return M->isModuleVisible(DeclModule); });
1615}
1616
1617bool Sema::isVisibleSlow(const NamedDecl *D) {
1618 return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1619}
1620
1621bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1622 // FIXME: If there are both visible and hidden declarations, we need to take
1623 // into account whether redeclaration is possible. Example:
1624 //
1625 // Non-imported module:
1626 // int f(T); // #1
1627 // Some TU:
1628 // static int f(U); // #2, not a redeclaration of #1
1629 // int f(T); // #3, finds both, should link with #1 if T != U, but
1630 // // with #2 if T == U; neither should be ambiguous.
1631 for (auto *D : R) {
1632 if (isVisible(D))
1633 return true;
1634 assert(D->isExternallyDeclarable() &&(static_cast <bool> (D->isExternallyDeclarable() &&
"should not have hidden, non-externally-declarable result here"
) ? void (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1635, __extension__ __PRETTY_FUNCTION__))
1635 "should not have hidden, non-externally-declarable result here")(static_cast <bool> (D->isExternallyDeclarable() &&
"should not have hidden, non-externally-declarable result here"
) ? void (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1635, __extension__ __PRETTY_FUNCTION__))
;
1636 }
1637
1638 // This function is called once "New" is essentially complete, but before a
1639 // previous declaration is attached. We can't query the linkage of "New" in
1640 // general, because attaching the previous declaration can change the
1641 // linkage of New to match the previous declaration.
1642 //
1643 // However, because we've just determined that there is no *visible* prior
1644 // declaration, we can compute the linkage here. There are two possibilities:
1645 //
1646 // * This is not a redeclaration; it's safe to compute the linkage now.
1647 //
1648 // * This is a redeclaration of a prior declaration that is externally
1649 // redeclarable. In that case, the linkage of the declaration is not
1650 // changed by attaching the prior declaration, because both are externally
1651 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1652 //
1653 // FIXME: This is subtle and fragile.
1654 return New->isExternallyDeclarable();
1655}
1656
1657/// Retrieve the visible declaration corresponding to D, if any.
1658///
1659/// This routine determines whether the declaration D is visible in the current
1660/// module, with the current imports. If not, it checks whether any
1661/// redeclaration of D is visible, and if so, returns that declaration.
1662///
1663/// \returns D, or a visible previous declaration of D, whichever is more recent
1664/// and visible. If no declaration of D is visible, returns null.
1665static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1666 unsigned IDNS) {
1667 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")(static_cast <bool> (!LookupResult::isVisible(SemaRef, D
) && "not in slow case") ? void (0) : __assert_fail (
"!LookupResult::isVisible(SemaRef, D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1667, __extension__ __PRETTY_FUNCTION__))
;
1668
1669 for (auto RD : D->redecls()) {
1670 // Don't bother with extra checks if we already know this one isn't visible.
1671 if (RD == D)
1672 continue;
1673
1674 auto ND = cast<NamedDecl>(RD);
1675 // FIXME: This is wrong in the case where the previous declaration is not
1676 // visible in the same scope as D. This needs to be done much more
1677 // carefully.
1678 if (ND->isInIdentifierNamespace(IDNS) &&
1679 LookupResult::isVisible(SemaRef, ND))
1680 return ND;
1681 }
1682
1683 return nullptr;
1684}
1685
1686bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1687 llvm::SmallVectorImpl<Module *> *Modules) {
1688 assert(!isVisible(D) && "not in slow case")(static_cast <bool> (!isVisible(D) && "not in slow case"
) ? void (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1688, __extension__ __PRETTY_FUNCTION__))
;
1689 return hasVisibleDeclarationImpl(*this, D, Modules,
1690 [](const NamedDecl *) { return true; });
1691}
1692
1693NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1694 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1695 // Namespaces are a bit of a special case: we expect there to be a lot of
1696 // redeclarations of some namespaces, all declarations of a namespace are
1697 // essentially interchangeable, all declarations are found by name lookup
1698 // if any is, and namespaces are never looked up during template
1699 // instantiation. So we benefit from caching the check in this case, and
1700 // it is correct to do so.
1701 auto *Key = ND->getCanonicalDecl();
1702 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1703 return Acceptable;
1704 auto *Acceptable = isVisible(getSema(), Key)
1705 ? Key
1706 : findAcceptableDecl(getSema(), Key, IDNS);
1707 if (Acceptable)
1708 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1709 return Acceptable;
1710 }
1711
1712 return findAcceptableDecl(getSema(), D, IDNS);
1713}
1714
1715/// Perform unqualified name lookup starting from a given
1716/// scope.
1717///
1718/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1719/// used to find names within the current scope. For example, 'x' in
1720/// @code
1721/// int x;
1722/// int f() {
1723/// return x; // unqualified name look finds 'x' in the global scope
1724/// }
1725/// @endcode
1726///
1727/// Different lookup criteria can find different names. For example, a
1728/// particular scope can have both a struct and a function of the same
1729/// name, and each can be found by certain lookup criteria. For more
1730/// information about lookup criteria, see the documentation for the
1731/// class LookupCriteria.
1732///
1733/// @param S The scope from which unqualified name lookup will
1734/// begin. If the lookup criteria permits, name lookup may also search
1735/// in the parent scopes.
1736///
1737/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1738/// look up and the lookup kind), and is updated with the results of lookup
1739/// including zero or more declarations and possibly additional information
1740/// used to diagnose ambiguities.
1741///
1742/// @returns \c true if lookup succeeded and false otherwise.
1743bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1744 DeclarationName Name = R.getLookupName();
1745 if (!Name) return false;
1746
1747 LookupNameKind NameKind = R.getLookupKind();
1748
1749 if (!getLangOpts().CPlusPlus) {
1750 // Unqualified name lookup in C/Objective-C is purely lexical, so
1751 // search in the declarations attached to the name.
1752 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1753 // Find the nearest non-transparent declaration scope.
1754 while (!(S->getFlags() & Scope::DeclScope) ||
1755 (S->getEntity() && S->getEntity()->isTransparentContext()))
1756 S = S->getParent();
1757 }
1758
1759 // When performing a scope lookup, we want to find local extern decls.
1760 FindLocalExternScope FindLocals(R);
1761
1762 // Scan up the scope chain looking for a decl that matches this
1763 // identifier that is in the appropriate namespace. This search
1764 // should not take long, as shadowing of names is uncommon, and
1765 // deep shadowing is extremely uncommon.
1766 bool LeftStartingScope = false;
1767
1768 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1769 IEnd = IdResolver.end();
1770 I != IEnd; ++I)
1771 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1772 if (NameKind == LookupRedeclarationWithLinkage) {
1773 // Determine whether this (or a previous) declaration is
1774 // out-of-scope.
1775 if (!LeftStartingScope && !S->isDeclScope(*I))
1776 LeftStartingScope = true;
1777
1778 // If we found something outside of our starting scope that
1779 // does not have linkage, skip it.
1780 if (LeftStartingScope && !((*I)->hasLinkage())) {
1781 R.setShadowed();
1782 continue;
1783 }
1784 }
1785 else if (NameKind == LookupObjCImplicitSelfParam &&
1786 !isa<ImplicitParamDecl>(*I))
1787 continue;
1788
1789 R.addDecl(D);
1790
1791 // Check whether there are any other declarations with the same name
1792 // and in the same scope.
1793 if (I != IEnd) {
1794 // Find the scope in which this declaration was declared (if it
1795 // actually exists in a Scope).
1796 while (S && !S->isDeclScope(D))
1797 S = S->getParent();
1798
1799 // If the scope containing the declaration is the translation unit,
1800 // then we'll need to perform our checks based on the matching
1801 // DeclContexts rather than matching scopes.
1802 if (S && isNamespaceOrTranslationUnitScope(S))
1803 S = nullptr;
1804
1805 // Compute the DeclContext, if we need it.
1806 DeclContext *DC = nullptr;
1807 if (!S)
1808 DC = (*I)->getDeclContext()->getRedeclContext();
1809
1810 IdentifierResolver::iterator LastI = I;
1811 for (++LastI; LastI != IEnd; ++LastI) {
1812 if (S) {
1813 // Match based on scope.
1814 if (!S->isDeclScope(*LastI))
1815 break;
1816 } else {
1817 // Match based on DeclContext.
1818 DeclContext *LastDC
1819 = (*LastI)->getDeclContext()->getRedeclContext();
1820 if (!LastDC->Equals(DC))
1821 break;
1822 }
1823
1824 // If the declaration is in the right namespace and visible, add it.
1825 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1826 R.addDecl(LastD);
1827 }
1828
1829 R.resolveKind();
1830 }
1831
1832 return true;
1833 }
1834 } else {
1835 // Perform C++ unqualified name lookup.
1836 if (CppLookupName(R, S))
1837 return true;
1838 }
1839
1840 // If we didn't find a use of this identifier, and if the identifier
1841 // corresponds to a compiler builtin, create the decl object for the builtin
1842 // now, injecting it into translation unit scope, and return it.
1843 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1844 return true;
1845
1846 // If we didn't find a use of this identifier, the ExternalSource
1847 // may be able to handle the situation.
1848 // Note: some lookup failures are expected!
1849 // See e.g. R.isForRedeclaration().
1850 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1851}
1852
1853/// Perform qualified name lookup in the namespaces nominated by
1854/// using directives by the given context.
1855///
1856/// C++98 [namespace.qual]p2:
1857/// Given X::m (where X is a user-declared namespace), or given \::m
1858/// (where X is the global namespace), let S be the set of all
1859/// declarations of m in X and in the transitive closure of all
1860/// namespaces nominated by using-directives in X and its used
1861/// namespaces, except that using-directives are ignored in any
1862/// namespace, including X, directly containing one or more
1863/// declarations of m. No namespace is searched more than once in
1864/// the lookup of a name. If S is the empty set, the program is
1865/// ill-formed. Otherwise, if S has exactly one member, or if the
1866/// context of the reference is a using-declaration
1867/// (namespace.udecl), S is the required set of declarations of
1868/// m. Otherwise if the use of m is not one that allows a unique
1869/// declaration to be chosen from S, the program is ill-formed.
1870///
1871/// C++98 [namespace.qual]p5:
1872/// During the lookup of a qualified namespace member name, if the
1873/// lookup finds more than one declaration of the member, and if one
1874/// declaration introduces a class name or enumeration name and the
1875/// other declarations either introduce the same object, the same
1876/// enumerator or a set of functions, the non-type name hides the
1877/// class or enumeration name if and only if the declarations are
1878/// from the same namespace; otherwise (the declarations are from
1879/// different namespaces), the program is ill-formed.
1880static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1881 DeclContext *StartDC) {
1882 assert(StartDC->isFileContext() && "start context is not a file context")(static_cast <bool> (StartDC->isFileContext() &&
"start context is not a file context") ? void (0) : __assert_fail
("StartDC->isFileContext() && \"start context is not a file context\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1882, __extension__ __PRETTY_FUNCTION__))
;
1883
1884 // We have not yet looked into these namespaces, much less added
1885 // their "using-children" to the queue.
1886 SmallVector<NamespaceDecl*, 8> Queue;
1887
1888 // We have at least added all these contexts to the queue.
1889 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1890 Visited.insert(StartDC);
1891
1892 // We have already looked into the initial namespace; seed the queue
1893 // with its using-children.
1894 for (auto *I : StartDC->using_directives()) {
1895 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1896 if (S.isVisible(I) && Visited.insert(ND).second)
1897 Queue.push_back(ND);
1898 }
1899
1900 // The easiest way to implement the restriction in [namespace.qual]p5
1901 // is to check whether any of the individual results found a tag
1902 // and, if so, to declare an ambiguity if the final result is not
1903 // a tag.
1904 bool FoundTag = false;
1905 bool FoundNonTag = false;
1906
1907 LookupResult LocalR(LookupResult::Temporary, R);
1908
1909 bool Found = false;
1910 while (!Queue.empty()) {
1911 NamespaceDecl *ND = Queue.pop_back_val();
1912
1913 // We go through some convolutions here to avoid copying results
1914 // between LookupResults.
1915 bool UseLocal = !R.empty();
1916 LookupResult &DirectR = UseLocal ? LocalR : R;
1917 bool FoundDirect = LookupDirect(S, DirectR, ND);
1918
1919 if (FoundDirect) {
1920 // First do any local hiding.
1921 DirectR.resolveKind();
1922
1923 // If the local result is a tag, remember that.
1924 if (DirectR.isSingleTagDecl())
1925 FoundTag = true;
1926 else
1927 FoundNonTag = true;
1928
1929 // Append the local results to the total results if necessary.
1930 if (UseLocal) {
1931 R.addAllDecls(LocalR);
1932 LocalR.clear();
1933 }
1934 }
1935
1936 // If we find names in this namespace, ignore its using directives.
1937 if (FoundDirect) {
1938 Found = true;
1939 continue;
1940 }
1941
1942 for (auto I : ND->using_directives()) {
1943 NamespaceDecl *Nom = I->getNominatedNamespace();
1944 if (S.isVisible(I) && Visited.insert(Nom).second)
1945 Queue.push_back(Nom);
1946 }
1947 }
1948
1949 if (Found) {
1950 if (FoundTag && FoundNonTag)
1951 R.setAmbiguousQualifiedTagHiding();
1952 else
1953 R.resolveKind();
1954 }
1955
1956 return Found;
1957}
1958
1959/// Callback that looks for any member of a class with the given name.
1960static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1961 CXXBasePath &Path, DeclarationName Name) {
1962 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1963
1964 Path.Decls = BaseRecord->lookup(Name);
1965 return !Path.Decls.empty();
1966}
1967
1968/// Determine whether the given set of member declarations contains only
1969/// static members, nested types, and enumerators.
1970template<typename InputIterator>
1971static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1972 Decl *D = (*First)->getUnderlyingDecl();
1973 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1974 return true;
1975
1976 if (isa<CXXMethodDecl>(D)) {
1977 // Determine whether all of the methods are static.
1978 bool AllMethodsAreStatic = true;
1979 for(; First != Last; ++First) {
1980 D = (*First)->getUnderlyingDecl();
1981
1982 if (!isa<CXXMethodDecl>(D)) {
1983 assert(isa<TagDecl>(D) && "Non-function must be a tag decl")(static_cast <bool> (isa<TagDecl>(D) && "Non-function must be a tag decl"
) ? void (0) : __assert_fail ("isa<TagDecl>(D) && \"Non-function must be a tag decl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 1983, __extension__ __PRETTY_FUNCTION__))
;
1984 break;
1985 }
1986
1987 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1988 AllMethodsAreStatic = false;
1989 break;
1990 }
1991 }
1992
1993 if (AllMethodsAreStatic)
1994 return true;
1995 }
1996
1997 return false;
1998}
1999
2000/// Perform qualified name lookup into a given context.
2001///
2002/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2003/// names when the context of those names is explicit specified, e.g.,
2004/// "std::vector" or "x->member", or as part of unqualified name lookup.
2005///
2006/// Different lookup criteria can find different names. For example, a
2007/// particular scope can have both a struct and a function of the same
2008/// name, and each can be found by certain lookup criteria. For more
2009/// information about lookup criteria, see the documentation for the
2010/// class LookupCriteria.
2011///
2012/// \param R captures both the lookup criteria and any lookup results found.
2013///
2014/// \param LookupCtx The context in which qualified name lookup will
2015/// search. If the lookup criteria permits, name lookup may also search
2016/// in the parent contexts or (for C++ classes) base classes.
2017///
2018/// \param InUnqualifiedLookup true if this is qualified name lookup that
2019/// occurs as part of unqualified name lookup.
2020///
2021/// \returns true if lookup succeeded, false if it failed.
2022bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2023 bool InUnqualifiedLookup) {
2024 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")(static_cast <bool> (LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? void (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2024, __extension__ __PRETTY_FUNCTION__))
;
2025
2026 if (!R.getLookupName())
2027 return false;
2028
2029 // Make sure that the declaration context is complete.
2030 assert((!isa<TagDecl>(LookupCtx) ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2034, __extension__ __PRETTY_FUNCTION__))
2031 LookupCtx->isDependentContext() ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2034, __extension__ __PRETTY_FUNCTION__))
2032 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2034, __extension__ __PRETTY_FUNCTION__))
2033 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2034, __extension__ __PRETTY_FUNCTION__))
2034 "Declaration context must already be complete!")(static_cast <bool> ((!isa<TagDecl>(LookupCtx) ||
LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx
)->isCompleteDefinition() || cast<TagDecl>(LookupCtx
)->isBeingDefined()) && "Declaration context must already be complete!"
) ? void (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2034, __extension__ __PRETTY_FUNCTION__))
;
2035
2036 struct QualifiedLookupInScope {
2037 bool oldVal;
2038 DeclContext *Context;
2039 // Set flag in DeclContext informing debugger that we're looking for qualified name
2040 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2041 oldVal = ctx->setUseQualifiedLookup();
2042 }
2043 ~QualifiedLookupInScope() {
2044 Context->setUseQualifiedLookup(oldVal);
2045 }
2046 } QL(LookupCtx);
2047
2048 if (LookupDirect(*this, R, LookupCtx)) {
2049 R.resolveKind();
2050 if (isa<CXXRecordDecl>(LookupCtx))
2051 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2052 return true;
2053 }
2054
2055 // Don't descend into implied contexts for redeclarations.
2056 // C++98 [namespace.qual]p6:
2057 // In a declaration for a namespace member in which the
2058 // declarator-id is a qualified-id, given that the qualified-id
2059 // for the namespace member has the form
2060 // nested-name-specifier unqualified-id
2061 // the unqualified-id shall name a member of the namespace
2062 // designated by the nested-name-specifier.
2063 // See also [class.mfct]p5 and [class.static.data]p2.
2064 if (R.isForRedeclaration())
2065 return false;
2066
2067 // If this is a namespace, look it up in the implied namespaces.
2068 if (LookupCtx->isFileContext())
2069 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2070
2071 // If this isn't a C++ class, we aren't allowed to look into base
2072 // classes, we're done.
2073 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2074 if (!LookupRec || !LookupRec->getDefinition())
2075 return false;
2076
2077 // If we're performing qualified name lookup into a dependent class,
2078 // then we are actually looking into a current instantiation. If we have any
2079 // dependent base classes, then we either have to delay lookup until
2080 // template instantiation time (at which point all bases will be available)
2081 // or we have to fail.
2082 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2083 LookupRec->hasAnyDependentBases()) {
2084 R.setNotFoundInCurrentInstantiation();
2085 return false;
2086 }
2087
2088 // Perform lookup into our base classes.
2089 CXXBasePaths Paths;
2090 Paths.setOrigin(LookupRec);
2091
2092 // Look for this member in our base classes
2093 bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2094 DeclarationName Name) = nullptr;
2095 switch (R.getLookupKind()) {
2096 case LookupObjCImplicitSelfParam:
2097 case LookupOrdinaryName:
2098 case LookupMemberName:
2099 case LookupRedeclarationWithLinkage:
2100 case LookupLocalFriendName:
2101 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2102 break;
2103
2104 case LookupTagName:
2105 BaseCallback = &CXXRecordDecl::FindTagMember;
2106 break;
2107
2108 case LookupAnyName:
2109 BaseCallback = &LookupAnyMember;
2110 break;
2111
2112 case LookupOMPReductionName:
2113 BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2114 break;
2115
2116 case LookupUsingDeclName:
2117 // This lookup is for redeclarations only.
2118
2119 case LookupOperatorName:
2120 case LookupNamespaceName:
2121 case LookupObjCProtocolName:
2122 case LookupLabel:
2123 // These lookups will never find a member in a C++ class (or base class).
2124 return false;
2125
2126 case LookupNestedNameSpecifierName:
2127 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2128 break;
2129 }
2130
2131 DeclarationName Name = R.getLookupName();
2132 if (!LookupRec->lookupInBases(
2133 [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2134 return BaseCallback(Specifier, Path, Name);
2135 },
2136 Paths))
2137 return false;
2138
2139 R.setNamingClass(LookupRec);
2140
2141 // C++ [class.member.lookup]p2:
2142 // [...] If the resulting set of declarations are not all from
2143 // sub-objects of the same type, or the set has a nonstatic member
2144 // and includes members from distinct sub-objects, there is an
2145 // ambiguity and the program is ill-formed. Otherwise that set is
2146 // the result of the lookup.
2147 QualType SubobjectType;
2148 int SubobjectNumber = 0;
2149 AccessSpecifier SubobjectAccess = AS_none;
2150
2151 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2152 Path != PathEnd; ++Path) {
2153 const CXXBasePathElement &PathElement = Path->back();
2154
2155 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2156 // across all paths.
2157 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2158
2159 // Determine whether we're looking at a distinct sub-object or not.
2160 if (SubobjectType.isNull()) {
2161 // This is the first subobject we've looked at. Record its type.
2162 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2163 SubobjectNumber = PathElement.SubobjectNumber;
2164 continue;
2165 }
2166
2167 if (SubobjectType
2168 != Context.getCanonicalType(PathElement.Base->getType())) {
2169 // We found members of the given name in two subobjects of
2170 // different types. If the declaration sets aren't the same, this
2171 // lookup is ambiguous.
2172 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2173 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2174 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2175 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2176
2177 while (FirstD != FirstPath->Decls.end() &&
2178 CurrentD != Path->Decls.end()) {
2179 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
2180 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
2181 break;
2182
2183 ++FirstD;
2184 ++CurrentD;
2185 }
2186
2187 if (FirstD == FirstPath->Decls.end() &&
2188 CurrentD == Path->Decls.end())
2189 continue;
2190 }
2191
2192 R.setAmbiguousBaseSubobjectTypes(Paths);
2193 return true;
2194 }
2195
2196 if (SubobjectNumber != PathElement.SubobjectNumber) {
2197 // We have a different subobject of the same type.
2198
2199 // C++ [class.member.lookup]p5:
2200 // A static member, a nested type or an enumerator defined in
2201 // a base class T can unambiguously be found even if an object
2202 // has more than one base class subobject of type T.
2203 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2204 continue;
2205
2206 // We have found a nonstatic member name in multiple, distinct
2207 // subobjects. Name lookup is ambiguous.
2208 R.setAmbiguousBaseSubobjects(Paths);
2209 return true;
2210 }
2211 }
2212
2213 // Lookup in a base class succeeded; return these results.
2214
2215 for (auto *D : Paths.front().Decls) {
2216 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2217 D->getAccess());
2218 R.addDecl(D, AS);
2219 }
2220 R.resolveKind();
2221 return true;
2222}
2223
2224/// Performs qualified name lookup or special type of lookup for
2225/// "__super::" scope specifier.
2226///
2227/// This routine is a convenience overload meant to be called from contexts
2228/// that need to perform a qualified name lookup with an optional C++ scope
2229/// specifier that might require special kind of lookup.
2230///
2231/// \param R captures both the lookup criteria and any lookup results found.
2232///
2233/// \param LookupCtx The context in which qualified name lookup will
2234/// search.
2235///
2236/// \param SS An optional C++ scope-specifier.
2237///
2238/// \returns true if lookup succeeded, false if it failed.
2239bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2240 CXXScopeSpec &SS) {
2241 auto *NNS = SS.getScopeRep();
2242 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2243 return LookupInSuper(R, NNS->getAsRecordDecl());
2244 else
2245
2246 return LookupQualifiedName(R, LookupCtx);
2247}
2248
2249/// Performs name lookup for a name that was parsed in the
2250/// source code, and may contain a C++ scope specifier.
2251///
2252/// This routine is a convenience routine meant to be called from
2253/// contexts that receive a name and an optional C++ scope specifier
2254/// (e.g., "N::M::x"). It will then perform either qualified or
2255/// unqualified name lookup (with LookupQualifiedName or LookupName,
2256/// respectively) on the given name and return those results. It will
2257/// perform a special type of lookup for "__super::" scope specifier.
2258///
2259/// @param S The scope from which unqualified name lookup will
2260/// begin.
2261///
2262/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2263///
2264/// @param EnteringContext Indicates whether we are going to enter the
2265/// context of the scope-specifier SS (if present).
2266///
2267/// @returns True if any decls were found (but possibly ambiguous)
2268bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2269 bool AllowBuiltinCreation, bool EnteringContext) {
2270 if (SS && SS->isInvalid()) {
2271 // When the scope specifier is invalid, don't even look for
2272 // anything.
2273 return false;
2274 }
2275
2276 if (SS && SS->isSet()) {
2277 NestedNameSpecifier *NNS = SS->getScopeRep();
2278 if (NNS->getKind() == NestedNameSpecifier::Super)
2279 return LookupInSuper(R, NNS->getAsRecordDecl());
2280
2281 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2282 // We have resolved the scope specifier to a particular declaration
2283 // contex, and will perform name lookup in that context.
2284 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2285 return false;
2286
2287 R.setContextRange(SS->getRange());
2288 return LookupQualifiedName(R, DC);
2289 }
2290
2291 // We could not resolve the scope specified to a specific declaration
2292 // context, which means that SS refers to an unknown specialization.
2293 // Name lookup can't find anything in this case.
2294 R.setNotFoundInCurrentInstantiation();
2295 R.setContextRange(SS->getRange());
2296 return false;
2297 }
2298
2299 // Perform unqualified name lookup starting in the given scope.
2300 return LookupName(R, S, AllowBuiltinCreation);
2301}
2302
2303/// Perform qualified name lookup into all base classes of the given
2304/// class.
2305///
2306/// \param R captures both the lookup criteria and any lookup results found.
2307///
2308/// \param Class The context in which qualified name lookup will
2309/// search. Name lookup will search in all base classes merging the results.
2310///
2311/// @returns True if any decls were found (but possibly ambiguous)
2312bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2313 // The access-control rules we use here are essentially the rules for
2314 // doing a lookup in Class that just magically skipped the direct
2315 // members of Class itself. That is, the naming class is Class, and the
2316 // access includes the access of the base.
2317 for (const auto &BaseSpec : Class->bases()) {
2318 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2319 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2320 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2321 Result.setBaseObjectType(Context.getRecordType(Class));
2322 LookupQualifiedName(Result, RD);
2323
2324 // Copy the lookup results into the target, merging the base's access into
2325 // the path access.
2326 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2327 R.addDecl(I.getDecl(),
2328 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2329 I.getAccess()));
2330 }
2331
2332 Result.suppressDiagnostics();
2333 }
2334
2335 R.resolveKind();
2336 R.setNamingClass(Class);
2337
2338 return !R.empty();
2339}
2340
2341/// Produce a diagnostic describing the ambiguity that resulted
2342/// from name lookup.
2343///
2344/// \param Result The result of the ambiguous lookup to be diagnosed.
2345void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2346 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")(static_cast <bool> (Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? void (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2346, __extension__ __PRETTY_FUNCTION__))
;
2347
2348 DeclarationName Name = Result.getLookupName();
2349 SourceLocation NameLoc = Result.getNameLoc();
2350 SourceRange LookupRange = Result.getContextRange();
2351
2352 switch (Result.getAmbiguityKind()) {
2353 case LookupResult::AmbiguousBaseSubobjects: {
2354 CXXBasePaths *Paths = Result.getBasePaths();
2355 QualType SubobjectType = Paths->front().back().Base->getType();
2356 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2357 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2358 << LookupRange;
2359
2360 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2361 while (isa<CXXMethodDecl>(*Found) &&
2362 cast<CXXMethodDecl>(*Found)->isStatic())
2363 ++Found;
2364
2365 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2366 break;
2367 }
2368
2369 case LookupResult::AmbiguousBaseSubobjectTypes: {
2370 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2371 << Name << LookupRange;
2372
2373 CXXBasePaths *Paths = Result.getBasePaths();
2374 std::set<Decl *> DeclsPrinted;
2375 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2376 PathEnd = Paths->end();
2377 Path != PathEnd; ++Path) {
2378 Decl *D = Path->Decls.front();
2379 if (DeclsPrinted.insert(D).second)
2380 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2381 }
2382 break;
2383 }
2384
2385 case LookupResult::AmbiguousTagHiding: {
2386 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2387
2388 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2389
2390 for (auto *D : Result)
2391 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2392 TagDecls.insert(TD);
2393 Diag(TD->getLocation(), diag::note_hidden_tag);
2394 }
2395
2396 for (auto *D : Result)
2397 if (!isa<TagDecl>(D))
2398 Diag(D->getLocation(), diag::note_hiding_object);
2399
2400 // For recovery purposes, go ahead and implement the hiding.
2401 LookupResult::Filter F = Result.makeFilter();
2402 while (F.hasNext()) {
2403 if (TagDecls.count(F.next()))
2404 F.erase();
2405 }
2406 F.done();
2407 break;
2408 }
2409
2410 case LookupResult::AmbiguousReference: {
2411 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2412
2413 for (auto *D : Result)
2414 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2415 break;
2416 }
2417 }
2418}
2419
2420namespace {
2421 struct AssociatedLookup {
2422 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2423 Sema::AssociatedNamespaceSet &Namespaces,
2424 Sema::AssociatedClassSet &Classes)
2425 : S(S), Namespaces(Namespaces), Classes(Classes),
2426 InstantiationLoc(InstantiationLoc) {
2427 }
2428
2429 Sema &S;
2430 Sema::AssociatedNamespaceSet &Namespaces;
2431 Sema::AssociatedClassSet &Classes;
2432 SourceLocation InstantiationLoc;
2433 };
2434} // end anonymous namespace
2435
2436static void
2437addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2438
2439static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2440 DeclContext *Ctx) {
2441 // Add the associated namespace for this class.
2442
2443 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2444 // be a locally scoped record.
2445
2446 // We skip out of inline namespaces. The innermost non-inline namespace
2447 // contains all names of all its nested inline namespaces anyway, so we can
2448 // replace the entire inline namespace tree with its root.
2449 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2450 Ctx->isInlineNamespace())
2451 Ctx = Ctx->getParent();
2452
2453 if (Ctx->isFileContext())
2454 Namespaces.insert(Ctx->getPrimaryContext());
2455}
2456
2457// Add the associated classes and namespaces for argument-dependent
2458// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2459static void
2460addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2461 const TemplateArgument &Arg) {
2462 // C++ [basic.lookup.koenig]p2, last bullet:
2463 // -- [...] ;
2464 switch (Arg.getKind()) {
2465 case TemplateArgument::Null:
2466 break;
2467
2468 case TemplateArgument::Type:
2469 // [...] the namespaces and classes associated with the types of the
2470 // template arguments provided for template type parameters (excluding
2471 // template template parameters)
2472 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2473 break;
2474
2475 case TemplateArgument::Template:
2476 case TemplateArgument::TemplateExpansion: {
2477 // [...] the namespaces in which any template template arguments are
2478 // defined; and the classes in which any member templates used as
2479 // template template arguments are defined.
2480 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2481 if (ClassTemplateDecl *ClassTemplate
2482 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2483 DeclContext *Ctx = ClassTemplate->getDeclContext();
2484 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2485 Result.Classes.insert(EnclosingClass);
2486 // Add the associated namespace for this class.
2487 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2488 }
2489 break;
2490 }
2491
2492 case TemplateArgument::Declaration:
2493 case TemplateArgument::Integral:
2494 case TemplateArgument::Expression:
2495 case TemplateArgument::NullPtr:
2496 // [Note: non-type template arguments do not contribute to the set of
2497 // associated namespaces. ]
2498 break;
2499
2500 case TemplateArgument::Pack:
2501 for (const auto &P : Arg.pack_elements())
2502 addAssociatedClassesAndNamespaces(Result, P);
2503 break;
2504 }
2505}
2506
2507// Add the associated classes and namespaces for
2508// argument-dependent lookup with an argument of class type
2509// (C++ [basic.lookup.koenig]p2).
2510static void
2511addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2512 CXXRecordDecl *Class) {
2513
2514 // Just silently ignore anything whose name is __va_list_tag.
2515 if (Class->getDeclName() == Result.S.VAListTagName)
2516 return;
2517
2518 // C++ [basic.lookup.koenig]p2:
2519 // [...]
2520 // -- If T is a class type (including unions), its associated
2521 // classes are: the class itself; the class of which it is a
2522 // member, if any; and its direct and indirect base
2523 // classes. Its associated namespaces are the namespaces in
2524 // which its associated classes are defined.
2525
2526 // Add the class of which it is a member, if any.
2527 DeclContext *Ctx = Class->getDeclContext();
2528 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2529 Result.Classes.insert(EnclosingClass);
2530 // Add the associated namespace for this class.
2531 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2532
2533 // Add the class itself. If we've already seen this class, we don't
2534 // need to visit base classes.
2535 //
2536 // FIXME: That's not correct, we may have added this class only because it
2537 // was the enclosing class of another class, and in that case we won't have
2538 // added its base classes yet.
2539 if (!Result.Classes.insert(Class))
2540 return;
2541
2542 // -- If T is a template-id, its associated namespaces and classes are
2543 // the namespace in which the template is defined; for member
2544 // templates, the member template's class; the namespaces and classes
2545 // associated with the types of the template arguments provided for
2546 // template type parameters (excluding template template parameters); the
2547 // namespaces in which any template template arguments are defined; and
2548 // the classes in which any member templates used as template template
2549 // arguments are defined. [Note: non-type template arguments do not
2550 // contribute to the set of associated namespaces. ]
2551 if (ClassTemplateSpecializationDecl *Spec
2552 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2553 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2554 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2555 Result.Classes.insert(EnclosingClass);
2556 // Add the associated namespace for this class.
2557 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2558
2559 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2560 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2561 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2562 }
2563
2564 // Only recurse into base classes for complete types.
2565 if (!Result.S.isCompleteType(Result.InstantiationLoc,
2566 Result.S.Context.getRecordType(Class)))
2567 return;
2568
2569 // Add direct and indirect base classes along with their associated
2570 // namespaces.
2571 SmallVector<CXXRecordDecl *, 32> Bases;
2572 Bases.push_back(Class);
2573 while (!Bases.empty()) {
2574 // Pop this class off the stack.
2575 Class = Bases.pop_back_val();
2576
2577 // Visit the base classes.
2578 for (const auto &Base : Class->bases()) {
2579 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2580 // In dependent contexts, we do ADL twice, and the first time around,
2581 // the base type might be a dependent TemplateSpecializationType, or a
2582 // TemplateTypeParmType. If that happens, simply ignore it.
2583 // FIXME: If we want to support export, we probably need to add the
2584 // namespace of the template in a TemplateSpecializationType, or even
2585 // the classes and namespaces of known non-dependent arguments.
2586 if (!BaseType)
2587 continue;
2588 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2589 if (Result.Classes.insert(BaseDecl)) {
2590 // Find the associated namespace for this base class.
2591 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2592 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2593
2594 // Make sure we visit the bases of this base class.
2595 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2596 Bases.push_back(BaseDecl);
2597 }
2598 }
2599 }
2600}
2601
2602// Add the associated classes and namespaces for
2603// argument-dependent lookup with an argument of type T
2604// (C++ [basic.lookup.koenig]p2).
2605static void
2606addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2607 // C++ [basic.lookup.koenig]p2:
2608 //
2609 // For each argument type T in the function call, there is a set
2610 // of zero or more associated namespaces and a set of zero or more
2611 // associated classes to be considered. The sets of namespaces and
2612 // classes is determined entirely by the types of the function
2613 // arguments (and the namespace of any template template
2614 // argument). Typedef names and using-declarations used to specify
2615 // the types do not contribute to this set. The sets of namespaces
2616 // and classes are determined in the following way:
2617
2618 SmallVector<const Type *, 16> Queue;
2619 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2620
2621 while (true) {
2622 switch (T->getTypeClass()) {
2623
2624#define TYPE(Class, Base)
2625#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2626#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2627#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2628#define ABSTRACT_TYPE(Class, Base)
2629#include "clang/AST/TypeNodes.def"
2630 // T is canonical. We can also ignore dependent types because
2631 // we don't need to do ADL at the definition point, but if we
2632 // wanted to implement template export (or if we find some other
2633 // use for associated classes and namespaces...) this would be
2634 // wrong.
2635 break;
2636
2637 // -- If T is a pointer to U or an array of U, its associated
2638 // namespaces and classes are those associated with U.
2639 case Type::Pointer:
2640 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2641 continue;
2642 case Type::ConstantArray:
2643 case Type::IncompleteArray:
2644 case Type::VariableArray:
2645 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2646 continue;
2647
2648 // -- If T is a fundamental type, its associated sets of
2649 // namespaces and classes are both empty.
2650 case Type::Builtin:
2651 break;
2652
2653 // -- If T is a class type (including unions), its associated
2654 // classes are: the class itself; the class of which it is a
2655 // member, if any; and its direct and indirect base
2656 // classes. Its associated namespaces are the namespaces in
2657 // which its associated classes are defined.
2658 case Type::Record: {
2659 CXXRecordDecl *Class =
2660 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2661 addAssociatedClassesAndNamespaces(Result, Class);
2662 break;
2663 }
2664
2665 // -- If T is an enumeration type, its associated namespace is
2666 // the namespace in which it is defined. If it is class
2667 // member, its associated class is the member's class; else
2668 // it has no associated class.
2669 case Type::Enum: {
2670 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2671
2672 DeclContext *Ctx = Enum->getDeclContext();
2673 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2674 Result.Classes.insert(EnclosingClass);
2675
2676 // Add the associated namespace for this class.
2677 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2678
2679 break;
2680 }
2681
2682 // -- If T is a function type, its associated namespaces and
2683 // classes are those associated with the function parameter
2684 // types and those associated with the return type.
2685 case Type::FunctionProto: {
2686 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2687 for (const auto &Arg : Proto->param_types())
2688 Queue.push_back(Arg.getTypePtr());
2689 // fallthrough
2690 LLVM_FALLTHROUGH[[clang::fallthrough]];
2691 }
2692 case Type::FunctionNoProto: {
2693 const FunctionType *FnType = cast<FunctionType>(T);
2694 T = FnType->getReturnType().getTypePtr();
2695 continue;
2696 }
2697
2698 // -- If T is a pointer to a member function of a class X, its
2699 // associated namespaces and classes are those associated
2700 // with the function parameter types and return type,
2701 // together with those associated with X.
2702 //
2703 // -- If T is a pointer to a data member of class X, its
2704 // associated namespaces and classes are those associated
2705 // with the member type together with those associated with
2706 // X.
2707 case Type::MemberPointer: {
2708 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2709
2710 // Queue up the class type into which this points.
2711 Queue.push_back(MemberPtr->getClass());
2712
2713 // And directly continue with the pointee type.
2714 T = MemberPtr->getPointeeType().getTypePtr();
2715 continue;
2716 }
2717
2718 // As an extension, treat this like a normal pointer.
2719 case Type::BlockPointer:
2720 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2721 continue;
2722
2723 // References aren't covered by the standard, but that's such an
2724 // obvious defect that we cover them anyway.
2725 case Type::LValueReference:
2726 case Type::RValueReference:
2727 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2728 continue;
2729
2730 // These are fundamental types.
2731 case Type::Vector:
2732 case Type::ExtVector:
2733 case Type::Complex:
2734 break;
2735
2736 // Non-deduced auto types only get here for error cases.
2737 case Type::Auto:
2738 case Type::DeducedTemplateSpecialization:
2739 break;
2740
2741 // If T is an Objective-C object or interface type, or a pointer to an
2742 // object or interface type, the associated namespace is the global
2743 // namespace.
2744 case Type::ObjCObject:
2745 case Type::ObjCInterface:
2746 case Type::ObjCObjectPointer:
2747 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2748 break;
2749
2750 // Atomic types are just wrappers; use the associations of the
2751 // contained type.
2752 case Type::Atomic:
2753 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2754 continue;
2755 case Type::Pipe:
2756 T = cast<PipeType>(T)->getElementType().getTypePtr();
2757 continue;
2758 }
2759
2760 if (Queue.empty())
2761 break;
2762 T = Queue.pop_back_val();
2763 }
2764}
2765
2766/// Find the associated classes and namespaces for
2767/// argument-dependent lookup for a call with the given set of
2768/// arguments.
2769///
2770/// This routine computes the sets of associated classes and associated
2771/// namespaces searched by argument-dependent lookup
2772/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2773void Sema::FindAssociatedClassesAndNamespaces(
2774 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2775 AssociatedNamespaceSet &AssociatedNamespaces,
2776 AssociatedClassSet &AssociatedClasses) {
2777 AssociatedNamespaces.clear();
2778 AssociatedClasses.clear();
2779
2780 AssociatedLookup Result(*this, InstantiationLoc,
2781 AssociatedNamespaces, AssociatedClasses);
2782
2783 // C++ [basic.lookup.koenig]p2:
2784 // For each argument type T in the function call, there is a set
2785 // of zero or more associated namespaces and a set of zero or more
2786 // associated classes to be considered. The sets of namespaces and
2787 // classes is determined entirely by the types of the function
2788 // arguments (and the namespace of any template template
2789 // argument).
2790 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2791 Expr *Arg = Args[ArgIdx];
2792
2793 if (Arg->getType() != Context.OverloadTy) {
2794 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2795 continue;
2796 }
2797
2798 // [...] In addition, if the argument is the name or address of a
2799 // set of overloaded functions and/or function templates, its
2800 // associated classes and namespaces are the union of those
2801 // associated with each of the members of the set: the namespace
2802 // in which the function or function template is defined and the
2803 // classes and namespaces associated with its (non-dependent)
2804 // parameter types and return type.
2805 Arg = Arg->IgnoreParens();
2806 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2807 if (unaryOp->getOpcode() == UO_AddrOf)
2808 Arg = unaryOp->getSubExpr();
2809
2810 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2811 if (!ULE) continue;
2812
2813 for (const auto *D : ULE->decls()) {
2814 // Look through any using declarations to find the underlying function.
2815 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2816
2817 // Add the classes and namespaces associated with the parameter
2818 // types and return type of this function.
2819 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2820 }
2821 }
2822}
2823
2824NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2825 SourceLocation Loc,
2826 LookupNameKind NameKind,
2827 RedeclarationKind Redecl) {
2828 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2829 LookupName(R, S);
2830 return R.getAsSingle<NamedDecl>();
2831}
2832
2833/// Find the protocol with the given name, if any.
2834ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2835 SourceLocation IdLoc,
2836 RedeclarationKind Redecl) {
2837 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2838 LookupObjCProtocolName, Redecl);
2839 return cast_or_null<ObjCProtocolDecl>(D);
2840}
2841
2842void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2843 QualType T1, QualType T2,
2844 UnresolvedSetImpl &Functions) {
2845 // C++ [over.match.oper]p3:
2846 // -- The set of non-member candidates is the result of the
2847 // unqualified lookup of operator@ in the context of the
2848 // expression according to the usual rules for name lookup in
2849 // unqualified function calls (3.4.2) except that all member
2850 // functions are ignored.
2851 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2852 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2853 LookupName(Operators, S);
2854
2855 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")(static_cast <bool> (!Operators.isAmbiguous() &&
"Operator lookup cannot be ambiguous") ? void (0) : __assert_fail
("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2855, __extension__ __PRETTY_FUNCTION__))
;
2856 Functions.append(Operators.begin(), Operators.end());
2857}
2858
2859Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
2860 CXXSpecialMember SM,
2861 bool ConstArg,
2862 bool VolatileArg,
2863 bool RValueThis,
2864 bool ConstThis,
2865 bool VolatileThis) {
2866 assert(CanDeclareSpecialMemberFunction(RD) &&(static_cast <bool> (CanDeclareSpecialMemberFunction(RD
) && "doing special member lookup into record that isn't fully complete"
) ? void (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2867, __extension__ __PRETTY_FUNCTION__))
2867 "doing special member lookup into record that isn't fully complete")(static_cast <bool> (CanDeclareSpecialMemberFunction(RD
) && "doing special member lookup into record that isn't fully complete"
) ? void (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2867, __extension__ __PRETTY_FUNCTION__))
;
2868 RD = RD->getDefinition();
2869 if (RValueThis || ConstThis || VolatileThis)
2870 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(static_cast <bool> ((SM == CXXCopyAssignment || SM == CXXMoveAssignment
) && "constructors and destructors always have unqualified lvalue this"
) ? void (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2871, __extension__ __PRETTY_FUNCTION__))
2871 "constructors and destructors always have unqualified lvalue this")(static_cast <bool> ((SM == CXXCopyAssignment || SM == CXXMoveAssignment
) && "constructors and destructors always have unqualified lvalue this"
) ? void (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2871, __extension__ __PRETTY_FUNCTION__))
;
2872 if (ConstArg || VolatileArg)
2873 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(static_cast <bool> ((SM != CXXDefaultConstructor &&
SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"
) ? void (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2874, __extension__ __PRETTY_FUNCTION__))
2874 "parameter-less special members can't have qualified arguments")(static_cast <bool> ((SM != CXXDefaultConstructor &&
SM != CXXDestructor) && "parameter-less special members can't have qualified arguments"
) ? void (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2874, __extension__ __PRETTY_FUNCTION__))
;
2875
2876 // FIXME: Get the caller to pass in a location for the lookup.
2877 SourceLocation LookupLoc = RD->getLocation();
2878
2879 llvm::FoldingSetNodeID ID;
2880 ID.AddPointer(RD);
2881 ID.AddInteger(SM);
2882 ID.AddInteger(ConstArg);
2883 ID.AddInteger(VolatileArg);
2884 ID.AddInteger(RValueThis);
2885 ID.AddInteger(ConstThis);
2886 ID.AddInteger(VolatileThis);
2887
2888 void *InsertPoint;
2889 SpecialMemberOverloadResultEntry *Result =
2890 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2891
2892 // This was already cached
2893 if (Result)
2894 return *Result;
2895
2896 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
2897 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
2898 SpecialMemberCache.InsertNode(Result, InsertPoint);
2899
2900 if (SM == CXXDestructor) {
2901 if (RD->needsImplicitDestructor())
2902 DeclareImplicitDestructor(RD);
2903 CXXDestructorDecl *DD = RD->getDestructor();
2904 assert(DD && "record without a destructor")(static_cast <bool> (DD && "record without a destructor"
) ? void (0) : __assert_fail ("DD && \"record without a destructor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2904, __extension__ __PRETTY_FUNCTION__))
;
2905 Result->setMethod(DD);
2906 Result->setKind(DD->isDeleted() ?
2907 SpecialMemberOverloadResult::NoMemberOrDeleted :
2908 SpecialMemberOverloadResult::Success);
2909 return *Result;
2910 }
2911
2912 // Prepare for overload resolution. Here we construct a synthetic argument
2913 // if necessary and make sure that implicit functions are declared.
2914 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2915 DeclarationName Name;
2916 Expr *Arg = nullptr;
2917 unsigned NumArgs;
2918
2919 QualType ArgType = CanTy;
2920 ExprValueKind VK = VK_LValue;
2921
2922 if (SM == CXXDefaultConstructor) {
2923 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2924 NumArgs = 0;
2925 if (RD->needsImplicitDefaultConstructor())
2926 DeclareImplicitDefaultConstructor(RD);
2927 } else {
2928 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2929 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2930 if (RD->needsImplicitCopyConstructor())
2931 DeclareImplicitCopyConstructor(RD);
2932 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2933 DeclareImplicitMoveConstructor(RD);
2934 } else {
2935 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2936 if (RD->needsImplicitCopyAssignment())
2937 DeclareImplicitCopyAssignment(RD);
2938 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2939 DeclareImplicitMoveAssignment(RD);
2940 }
2941
2942 if (ConstArg)
2943 ArgType.addConst();
2944 if (VolatileArg)
2945 ArgType.addVolatile();
2946
2947 // This isn't /really/ specified by the standard, but it's implied
2948 // we should be working from an RValue in the case of move to ensure
2949 // that we prefer to bind to rvalue references, and an LValue in the
2950 // case of copy to ensure we don't bind to rvalue references.
2951 // Possibly an XValue is actually correct in the case of move, but
2952 // there is no semantic difference for class types in this restricted
2953 // case.
2954 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2955 VK = VK_LValue;
2956 else
2957 VK = VK_RValue;
2958 }
2959
2960 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
2961
2962 if (SM != CXXDefaultConstructor) {
2963 NumArgs = 1;
2964 Arg = &FakeArg;
2965 }
2966
2967 // Create the object argument
2968 QualType ThisTy = CanTy;
2969 if (ConstThis)
2970 ThisTy.addConst();
2971 if (VolatileThis)
2972 ThisTy.addVolatile();
2973 Expr::Classification Classification =
2974 OpaqueValueExpr(LookupLoc, ThisTy,
2975 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2976
2977 // Now we perform lookup on the name we computed earlier and do overload
2978 // resolution. Lookup is only performed directly into the class since there
2979 // will always be a (possibly implicit) declaration to shadow any others.
2980 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
2981 DeclContext::lookup_result R = RD->lookup(Name);
2982
2983 if (R.empty()) {
2984 // We might have no default constructor because we have a lambda's closure
2985 // type, rather than because there's some other declared constructor.
2986 // Every class has a copy/move constructor, copy/move assignment, and
2987 // destructor.
2988 assert(SM == CXXDefaultConstructor &&(static_cast <bool> (SM == CXXDefaultConstructor &&
"lookup for a constructor or assignment operator was empty")
? void (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2989, __extension__ __PRETTY_FUNCTION__))
2989 "lookup for a constructor or assignment operator was empty")(static_cast <bool> (SM == CXXDefaultConstructor &&
"lookup for a constructor or assignment operator was empty")
? void (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 2989, __extension__ __PRETTY_FUNCTION__))
;
2990 Result->setMethod(nullptr);
2991 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2992 return *Result;
2993 }
2994
2995 // Copy the candidates as our processing of them may load new declarations
2996 // from an external source and invalidate lookup_result.
2997 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2998
2999 for (NamedDecl *CandDecl : Candidates) {
3000 if (CandDecl->isInvalidDecl())
3001 continue;
3002
3003 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3004 auto CtorInfo = getConstructorInfo(Cand);
3005 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3006 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3007 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3008 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3009 else if (CtorInfo)
3010 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3011 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3012 else
3013 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3014 true);
3015 } else if (FunctionTemplateDecl *Tmpl =
3016 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3017 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3018 AddMethodTemplateCandidate(
3019 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3020 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3021 else if (CtorInfo)
3022 AddTemplateOverloadCandidate(
3023 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3024 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3025 else
3026 AddTemplateOverloadCandidate(
3027 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3028 } else {
3029 assert(isa<UsingDecl>(Cand.getDecl()) &&(static_cast <bool> (isa<UsingDecl>(Cand.getDecl(
)) && "illegal Kind of operator = Decl") ? void (0) :
__assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3030, __extension__ __PRETTY_FUNCTION__))
3030 "illegal Kind of operator = Decl")(static_cast <bool> (isa<UsingDecl>(Cand.getDecl(
)) && "illegal Kind of operator = Decl") ? void (0) :
__assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3030, __extension__ __PRETTY_FUNCTION__))
;
3031 }
3032 }
3033
3034 OverloadCandidateSet::iterator Best;
3035 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3036 case OR_Success:
3037 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3038 Result->setKind(SpecialMemberOverloadResult::Success);
3039 break;
3040
3041 case OR_Deleted:
3042 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3043 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3044 break;
3045
3046 case OR_Ambiguous:
3047 Result->setMethod(nullptr);
3048 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3049 break;
3050
3051 case OR_No_Viable_Function:
3052 Result->setMethod(nullptr);
3053 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3054 break;
3055 }
3056
3057 return *Result;
3058}
3059
3060/// Look up the default constructor for the given class.
3061CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3062 SpecialMemberOverloadResult Result =
3063 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3064 false, false);
3065
3066 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3067}
3068
3069/// Look up the copying constructor for the given class.
3070CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3071 unsigned Quals) {
3072 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3073, __extension__ __PRETTY_FUNCTION__))
3073 "non-const, non-volatile qualifiers for copy ctor arg")(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy ctor arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3073, __extension__ __PRETTY_FUNCTION__))
;
3074 SpecialMemberOverloadResult Result =
3075 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3076 Quals & Qualifiers::Volatile, false, false, false);
3077
3078 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3079}
3080
3081/// Look up the moving constructor for the given class.
3082CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3083 unsigned Quals) {
3084 SpecialMemberOverloadResult Result =
3085 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3086 Quals & Qualifiers::Volatile, false, false, false);
3087
3088 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3089}
3090
3091/// Look up the constructors for the given class.
3092DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3093 // If the implicit constructors have not yet been declared, do so now.
3094 if (CanDeclareSpecialMemberFunction(Class)) {
3095 if (Class->needsImplicitDefaultConstructor())
3096 DeclareImplicitDefaultConstructor(Class);
3097 if (Class->needsImplicitCopyConstructor())
3098 DeclareImplicitCopyConstructor(Class);
3099 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3100 DeclareImplicitMoveConstructor(Class);
3101 }
3102
3103 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3104 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3105 return Class->lookup(Name);
3106}
3107
3108/// Look up the copying assignment operator for the given class.
3109CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3110 unsigned Quals, bool RValueThis,
3111 unsigned ThisQuals) {
3112 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3113, __extension__ __PRETTY_FUNCTION__))
3113 "non-const, non-volatile qualifiers for copy assignment arg")(static_cast <bool> (!(Quals & ~(Qualifiers::Const |
Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment arg"
) ? void (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3113, __extension__ __PRETTY_FUNCTION__))
;
3114 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3115, __extension__ __PRETTY_FUNCTION__))
3115 "non-const, non-volatile qualifiers for copy assignment this")(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3115, __extension__ __PRETTY_FUNCTION__))
;
3116 SpecialMemberOverloadResult Result =
3117 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3118 Quals & Qualifiers::Volatile, RValueThis,
3119 ThisQuals & Qualifiers::Const,
3120 ThisQuals & Qualifiers::Volatile);
3121
3122 return Result.getMethod();
3123}
3124
3125/// Look up the moving assignment operator for the given class.
3126CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3127 unsigned Quals,
3128 bool RValueThis,
3129 unsigned ThisQuals) {
3130 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3131, __extension__ __PRETTY_FUNCTION__))
3131 "non-const, non-volatile qualifiers for copy assignment this")(static_cast <bool> (!(ThisQuals & ~(Qualifiers::Const
| Qualifiers::Volatile)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? void (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3131, __extension__ __PRETTY_FUNCTION__))
;
3132 SpecialMemberOverloadResult Result =
3133 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3134 Quals & Qualifiers::Volatile, RValueThis,
3135 ThisQuals & Qualifiers::Const,
3136 ThisQuals & Qualifiers::Volatile);
3137
3138 return Result.getMethod();
3139}
3140
3141/// Look for the destructor of the given class.
3142///
3143/// During semantic analysis, this routine should be used in lieu of
3144/// CXXRecordDecl::getDestructor().
3145///
3146/// \returns The destructor for this class.
3147CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3148 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3149 false, false, false,
3150 false, false).getMethod());
3151}
3152
3153/// LookupLiteralOperator - Determine which literal operator should be used for
3154/// a user-defined literal, per C++11 [lex.ext].
3155///
3156/// Normal overload resolution is not used to select which literal operator to
3157/// call for a user-defined literal. Look up the provided literal operator name,
3158/// and filter the results to the appropriate set for the given argument types.
3159Sema::LiteralOperatorLookupResult
3160Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3161 ArrayRef<QualType> ArgTys,
3162 bool AllowRaw, bool AllowTemplate,
3163 bool AllowStringTemplate, bool DiagnoseMissing) {
3164 LookupName(R, S);
3165 assert(R.getResultKind() != LookupResult::Ambiguous &&(static_cast <bool> (R.getResultKind() != LookupResult::
Ambiguous && "literal operator lookup can't be ambiguous"
) ? void (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3166, __extension__ __PRETTY_FUNCTION__))
3166 "literal operator lookup can't be ambiguous")(static_cast <bool> (R.getResultKind() != LookupResult::
Ambiguous && "literal operator lookup can't be ambiguous"
) ? void (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3166, __extension__ __PRETTY_FUNCTION__))
;
3167
3168 // Filter the lookup results appropriately.
3169 LookupResult::Filter F = R.makeFilter();
3170
3171 bool FoundRaw = false;
3172 bool FoundTemplate = false;
3173 bool FoundStringTemplate = false;
3174 bool FoundExactMatch = false;
3175
3176 while (F.hasNext()) {
3177 Decl *D = F.next();
3178 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3179 D = USD->getTargetDecl();
3180
3181 // If the declaration we found is invalid, skip it.
3182 if (D->isInvalidDecl()) {
3183 F.erase();
3184 continue;
3185 }
3186
3187 bool IsRaw = false;
3188 bool IsTemplate = false;
3189 bool IsStringTemplate = false;
3190 bool IsExactMatch = false;
3191
3192 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3193 if (FD->getNumParams() == 1 &&
3194 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3195 IsRaw = true;
3196 else if (FD->getNumParams() == ArgTys.size()) {
3197 IsExactMatch = true;
3198 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3199 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3200 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3201 IsExactMatch = false;
3202 break;
3203 }
3204 }
3205 }
3206 }
3207 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3208 TemplateParameterList *Params = FD->getTemplateParameters();
3209 if (Params->size() == 1)
3210 IsTemplate = true;
3211 else
3212 IsStringTemplate = true;
3213 }
3214
3215 if (IsExactMatch) {
3216 FoundExactMatch = true;
3217 AllowRaw = false;
3218 AllowTemplate = false;
3219 AllowStringTemplate = false;
3220 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3221 // Go through again and remove the raw and template decls we've
3222 // already found.
3223 F.restart();
3224 FoundRaw = FoundTemplate = FoundStringTemplate = false;
3225 }
3226 } else if (AllowRaw && IsRaw) {
3227 FoundRaw = true;
3228 } else if (AllowTemplate && IsTemplate) {
3229 FoundTemplate = true;
3230 } else if (AllowStringTemplate && IsStringTemplate) {
3231 FoundStringTemplate = true;
3232 } else {
3233 F.erase();
3234 }
3235 }
3236
3237 F.done();
3238
3239 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3240 // parameter type, that is used in preference to a raw literal operator
3241 // or literal operator template.
3242 if (FoundExactMatch)
3243 return LOLR_Cooked;
3244
3245 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3246 // operator template, but not both.
3247 if (FoundRaw && FoundTemplate) {
3248 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3249 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3250 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3251 return LOLR_Error;
3252 }
3253
3254 if (FoundRaw)
3255 return LOLR_Raw;
3256
3257 if (FoundTemplate)
3258 return LOLR_Template;
3259
3260 if (FoundStringTemplate)
3261 return LOLR_StringTemplate;
3262
3263 // Didn't find anything we could use.
3264 if (DiagnoseMissing) {
3265 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3266 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3267 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3268 << (AllowTemplate || AllowStringTemplate);
3269 return LOLR_Error;
3270 }
3271
3272 return LOLR_ErrorNoDiagnostic;
3273}
3274
3275void ADLResult::insert(NamedDecl *New) {
3276 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3277
3278 // If we haven't yet seen a decl for this key, or the last decl
3279 // was exactly this one, we're done.
3280 if (Old == nullptr || Old == New) {
3281 Old = New;
3282 return;
3283 }
3284
3285 // Otherwise, decide which is a more recent redeclaration.
3286 FunctionDecl *OldFD = Old->getAsFunction();
3287 FunctionDecl *NewFD = New->getAsFunction();
3288
3289 FunctionDecl *Cursor = NewFD;
3290 while (true) {
3291 Cursor = Cursor->getPreviousDecl();
3292
3293 // If we got to the end without finding OldFD, OldFD is the newer
3294 // declaration; leave things as they are.
3295 if (!Cursor) return;
3296
3297 // If we do find OldFD, then NewFD is newer.
3298 if (Cursor == OldFD) break;
3299
3300 // Otherwise, keep looking.
3301 }
3302
3303 Old = New;
3304}
3305
3306void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3307 ArrayRef<Expr *> Args, ADLResult &Result) {
3308 // Find all of the associated namespaces and classes based on the
3309 // arguments we have.
3310 AssociatedNamespaceSet AssociatedNamespaces;
3311 AssociatedClassSet AssociatedClasses;
3312 FindAssociatedClassesAndNamespaces(Loc, Args,
3313 AssociatedNamespaces,
3314 AssociatedClasses);
3315
3316 // C++ [basic.lookup.argdep]p3:
3317 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3318 // and let Y be the lookup set produced by argument dependent
3319 // lookup (defined as follows). If X contains [...] then Y is
3320 // empty. Otherwise Y is the set of declarations found in the
3321 // namespaces associated with the argument types as described
3322 // below. The set of declarations found by the lookup of the name
3323 // is the union of X and Y.
3324 //
3325 // Here, we compute Y and add its members to the overloaded
3326 // candidate set.
3327 for (auto *NS : AssociatedNamespaces) {
3328 // When considering an associated namespace, the lookup is the
3329 // same as the lookup performed when the associated namespace is
3330 // used as a qualifier (3.4.3.2) except that:
3331 //
3332 // -- Any using-directives in the associated namespace are
3333 // ignored.
3334 //
3335 // -- Any namespace-scope friend functions declared in
3336 // associated classes are visible within their respective
3337 // namespaces even if they are not visible during an ordinary
3338 // lookup (11.4).
3339 DeclContext::lookup_result R = NS->lookup(Name);
3340 for (auto *D : R) {
3341 auto *Underlying = D;
3342 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3343 Underlying = USD->getTargetDecl();
3344
3345 if (!isa<FunctionDecl>(Underlying) &&
3346 !isa<FunctionTemplateDecl>(Underlying))
3347 continue;
3348
3349 if (!isVisible(D)) {
3350 D = findAcceptableDecl(
3351 *this, D, (Decl::IDNS_Ordinary | Decl::IDNS_OrdinaryFriend));
3352 if (!D)
3353 continue;
3354 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3355 Underlying = USD->getTargetDecl();
3356 }
3357
3358 // If the only declaration here is an ordinary friend, consider
3359 // it only if it was declared in an associated classes.
3360 if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
3361 // If it's neither ordinarily visible nor a friend, we can't find it.
3362 if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
3363 continue;
3364
3365 bool DeclaredInAssociatedClass = false;
3366 for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
3367 DeclContext *LexDC = DI->getLexicalDeclContext();
3368 if (isa<CXXRecordDecl>(LexDC) &&
3369 AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
3370 isVisible(cast<NamedDecl>(DI))) {
3371 DeclaredInAssociatedClass = true;
3372 break;
3373 }
3374 }
3375 if (!DeclaredInAssociatedClass)
3376 continue;
3377 }
3378
3379 // FIXME: Preserve D as the FoundDecl.
3380 Result.insert(Underlying);
3381 }
3382 }
3383}
3384
3385//----------------------------------------------------------------------------
3386// Search for all visible declarations.
3387//----------------------------------------------------------------------------
3388VisibleDeclConsumer::~VisibleDeclConsumer() { }
3389
3390bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3391
3392namespace {
3393
3394class ShadowContextRAII;
3395
3396class VisibleDeclsRecord {
3397public:
3398 /// An entry in the shadow map, which is optimized to store a
3399 /// single declaration (the common case) but can also store a list
3400 /// of declarations.
3401 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3402
3403private:
3404 /// A mapping from declaration names to the declarations that have
3405 /// this name within a particular scope.
3406 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3407
3408 /// A list of shadow maps, which is used to model name hiding.
3409 std::list<ShadowMap> ShadowMaps;
3410
3411 /// The declaration contexts we have already visited.
3412 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3413
3414 friend class ShadowContextRAII;
3415
3416public:
3417 /// Determine whether we have already visited this context
3418 /// (and, if not, note that we are going to visit that context now).
3419 bool visitedContext(DeclContext *Ctx) {
3420 return !VisitedContexts.insert(Ctx).second;
3421 }
3422
3423 bool alreadyVisitedContext(DeclContext *Ctx) {
3424 return VisitedContexts.count(Ctx);
3425 }
3426
3427 /// Determine whether the given declaration is hidden in the
3428 /// current scope.
3429 ///
3430 /// \returns the declaration that hides the given declaration, or
3431 /// NULL if no such declaration exists.
3432 NamedDecl *checkHidden(NamedDecl *ND);
3433
3434 /// Add a declaration to the current shadow map.
3435 void add(NamedDecl *ND) {
3436 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3437 }
3438};
3439
3440/// RAII object that records when we've entered a shadow context.
3441class ShadowContextRAII {
3442 VisibleDeclsRecord &Visible;
3443
3444 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3445
3446public:
3447 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3448 Visible.ShadowMaps.emplace_back();
3449 }
3450
3451 ~ShadowContextRAII() {
3452 Visible.ShadowMaps.pop_back();
3453 }
3454};
3455
3456} // end anonymous namespace
3457
3458NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3459 unsigned IDNS = ND->getIdentifierNamespace();
3460 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3461 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3462 SM != SMEnd; ++SM) {
3463 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3464 if (Pos == SM->end())
3465 continue;
3466
3467 for (auto *D : Pos->second) {
3468 // A tag declaration does not hide a non-tag declaration.
3469 if (D->hasTagIdentifierNamespace() &&
3470 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3471 Decl::IDNS_ObjCProtocol)))
3472 continue;
3473
3474 // Protocols are in distinct namespaces from everything else.
3475 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3476 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3477 D->getIdentifierNamespace() != IDNS)
3478 continue;
3479
3480 // Functions and function templates in the same scope overload
3481 // rather than hide. FIXME: Look for hiding based on function
3482 // signatures!
3483 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3484 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3485 SM == ShadowMaps.rbegin())
3486 continue;
3487
3488 // A shadow declaration that's created by a resolved using declaration
3489 // is not hidden by the same using declaration.
3490 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3491 cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3492 continue;
3493
3494 // We've found a declaration that hides this one.
3495 return D;
3496 }
3497 }
3498
3499 return nullptr;
3500}
3501
3502static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3503 bool QualifiedNameLookup,
3504 bool InBaseClass,
3505 VisibleDeclConsumer &Consumer,
3506 VisibleDeclsRecord &Visited,
3507 bool IncludeDependentBases,
3508 bool LoadExternal) {
3509 if (!Ctx)
3510 return;
3511
3512 // Make sure we don't visit the same context twice.
3513 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3514 return;
3515
3516 Consumer.EnteredContext(Ctx);
3517
3518 // Outside C++, lookup results for the TU live on identifiers.
3519 if (isa<TranslationUnitDecl>(Ctx) &&
3520 !Result.getSema().getLangOpts().CPlusPlus) {
3521 auto &S = Result.getSema();
3522 auto &Idents = S.Context.Idents;
3523
3524 // Ensure all external identifiers are in the identifier table.
3525 if (LoadExternal)
3526 if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3527 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3528 for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3529 Idents.get(Name);
3530 }
3531
3532 // Walk all lookup results in the TU for each identifier.
3533 for (const auto &Ident : Idents) {
3534 for (auto I = S.IdResolver.begin(Ident.getValue()),
3535 E = S.IdResolver.end();
3536 I != E; ++I) {
3537 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3538 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3539 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3540 Visited.add(ND);
3541 }
3542 }
3543 }
3544 }
3545
3546 return;
3547 }
3548
3549 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3550 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3551
3552 // We sometimes skip loading namespace-level results (they tend to be huge).
3553 bool Load = LoadExternal ||
3554 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3555 // Enumerate all of the results in this context.
3556 for (DeclContextLookupResult R :
3557 Load ? Ctx->lookups()
3558 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3559 for (auto *D : R) {
3560 if (auto *ND = Result.getAcceptableDecl(D)) {
3561 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3562 Visited.add(ND);
3563 }
3564 }
3565 }
3566
3567 // Traverse using directives for qualified name lookup.
3568 if (QualifiedNameLookup) {
3569 ShadowContextRAII Shadow(Visited);
3570 for (auto I : Ctx->using_directives()) {
3571 if (!Result.getSema().isVisible(I))
3572 continue;
3573 LookupVisibleDecls(I->getNominatedNamespace(), Result,
3574 QualifiedNameLookup, InBaseClass, Consumer, Visited,
3575 IncludeDependentBases, LoadExternal);
3576 }
3577 }
3578
3579 // Traverse the contexts of inherited C++ classes.
3580 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3581 if (!Record->hasDefinition())
3582 return;
3583
3584 for (const auto &B : Record->bases()) {
3585 QualType BaseType = B.getType();
3586
3587 RecordDecl *RD;
3588 if (BaseType->isDependentType()) {
3589 if (!IncludeDependentBases) {
3590 // Don't look into dependent bases, because name lookup can't look
3591 // there anyway.
3592 continue;
3593 }
3594 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3595 if (!TST)
3596 continue;
3597 TemplateName TN = TST->getTemplateName();
3598 const auto *TD =
3599 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3600 if (!TD)
3601 continue;
3602 RD = TD->getTemplatedDecl();
3603 } else {
3604 const auto *Record = BaseType->getAs<RecordType>();
3605 if (!Record)
3606 continue;
3607 RD = Record->getDecl();
3608 }
3609
3610 // FIXME: It would be nice to be able to determine whether referencing
3611 // a particular member would be ambiguous. For example, given
3612 //
3613 // struct A { int member; };
3614 // struct B { int member; };
3615 // struct C : A, B { };
3616 //
3617 // void f(C *c) { c->### }
3618 //
3619 // accessing 'member' would result in an ambiguity. However, we
3620 // could be smart enough to qualify the member with the base
3621 // class, e.g.,
3622 //
3623 // c->B::member
3624 //
3625 // or
3626 //
3627 // c->A::member
3628
3629 // Find results in this base class (and its bases).
3630 ShadowContextRAII Shadow(Visited);
3631 LookupVisibleDecls(RD, Result, QualifiedNameLookup, true, Consumer,
3632 Visited, IncludeDependentBases, LoadExternal);
3633 }
3634 }
3635
3636 // Traverse the contexts of Objective-C classes.
3637 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3638 // Traverse categories.
3639 for (auto *Cat : IFace->visible_categories()) {
3640 ShadowContextRAII Shadow(Visited);
3641 LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false, Consumer,
3642 Visited, IncludeDependentBases, LoadExternal);
3643 }
3644
3645 // Traverse protocols.
3646 for (auto *I : IFace->all_referenced_protocols()) {
3647 ShadowContextRAII Shadow(Visited);
3648 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3649 Visited, IncludeDependentBases, LoadExternal);
3650 }
3651
3652 // Traverse the superclass.
3653 if (IFace->getSuperClass()) {
3654 ShadowContextRAII Shadow(Visited);
3655 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3656 true, Consumer, Visited, IncludeDependentBases,
3657 LoadExternal);
3658 }
3659
3660 // If there is an implementation, traverse it. We do this to find
3661 // synthesized ivars.
3662 if (IFace->getImplementation()) {
3663 ShadowContextRAII Shadow(Visited);
3664 LookupVisibleDecls(IFace->getImplementation(), Result,
3665 QualifiedNameLookup, InBaseClass, Consumer, Visited,
3666 IncludeDependentBases, LoadExternal);
3667 }
3668 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3669 for (auto *I : Protocol->protocols()) {
3670 ShadowContextRAII Shadow(Visited);
3671 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3672 Visited, IncludeDependentBases, LoadExternal);
3673 }
3674 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3675 for (auto *I : Category->protocols()) {
3676 ShadowContextRAII Shadow(Visited);
3677 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3678 Visited, IncludeDependentBases, LoadExternal);
3679 }
3680
3681 // If there is an implementation, traverse it.
3682 if (Category->getImplementation()) {
3683 ShadowContextRAII Shadow(Visited);
3684 LookupVisibleDecls(Category->getImplementation(), Result,
3685 QualifiedNameLookup, true, Consumer, Visited,
3686 IncludeDependentBases, LoadExternal);
3687 }
3688 }
3689}
3690
3691static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3692 UnqualUsingDirectiveSet &UDirs,
3693 VisibleDeclConsumer &Consumer,
3694 VisibleDeclsRecord &Visited,
3695 bool LoadExternal) {
3696 if (!S)
3697 return;
3698
3699 if (!S->getEntity() ||
3700 (!S->getParent() &&
3701 !Visited.alreadyVisitedContext(S->getEntity())) ||
3702 (S->getEntity())->isFunctionOrMethod()) {
3703 FindLocalExternScope FindLocals(Result);
3704 // Walk through the declarations in this Scope. The consumer might add new
3705 // decls to the scope as part of deserialization, so make a copy first.
3706 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3707 for (Decl *D : ScopeDecls) {
3708 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3709 if ((ND = Result.getAcceptableDecl(ND))) {
3710 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3711 Visited.add(ND);
3712 }
3713 }
3714 }
3715
3716 // FIXME: C++ [temp.local]p8
3717 DeclContext *Entity = nullptr;
3718 if (S->getEntity()) {
3719 // Look into this scope's declaration context, along with any of its
3720 // parent lookup contexts (e.g., enclosing classes), up to the point
3721 // where we hit the context stored in the next outer scope.
3722 Entity = S->getEntity();
3723 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3724
3725 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3726 Ctx = Ctx->getLookupParent()) {
3727 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3728 if (Method->isInstanceMethod()) {
3729 // For instance methods, look for ivars in the method's interface.
3730 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3731 Result.getNameLoc(), Sema::LookupMemberName);
3732 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3733 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3734 /*InBaseClass=*/false, Consumer, Visited,
3735 /*IncludeDependentBases=*/false, LoadExternal);
3736 }
3737 }
3738
3739 // We've already performed all of the name lookup that we need
3740 // to for Objective-C methods; the next context will be the
3741 // outer scope.
3742 break;
3743 }
3744
3745 if (Ctx->isFunctionOrMethod())
3746 continue;
3747
3748 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3749 /*InBaseClass=*/false, Consumer, Visited,
3750 /*IncludeDependentBases=*/false, LoadExternal);
3751 }
3752 } else if (!S->getParent()) {
3753 // Look into the translation unit scope. We walk through the translation
3754 // unit's declaration context, because the Scope itself won't have all of
3755 // the declarations if we loaded a precompiled header.
3756 // FIXME: We would like the translation unit's Scope object to point to the
3757 // translation unit, so we don't need this special "if" branch. However,
3758 // doing so would force the normal C++ name-lookup code to look into the
3759 // translation unit decl when the IdentifierInfo chains would suffice.
3760 // Once we fix that problem (which is part of a more general "don't look
3761 // in DeclContexts unless we have to" optimization), we can eliminate this.
3762 Entity = Result.getSema().Context.getTranslationUnitDecl();
3763 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3764 /*InBaseClass=*/false, Consumer, Visited,
3765 /*IncludeDependentBases=*/false, LoadExternal);
3766 }
3767
3768 if (Entity) {
3769 // Lookup visible declarations in any namespaces found by using
3770 // directives.
3771 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3772 LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3773 Result, /*QualifiedNameLookup=*/false,
3774 /*InBaseClass=*/false, Consumer, Visited,
3775 /*IncludeDependentBases=*/false, LoadExternal);
3776 }
3777
3778 // Lookup names in the parent scope.
3779 ShadowContextRAII Shadow(Visited);
3780 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited,
3781 LoadExternal);
3782}
3783
3784void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3785 VisibleDeclConsumer &Consumer,
3786 bool IncludeGlobalScope, bool LoadExternal) {
3787 // Determine the set of using directives available during
3788 // unqualified name lookup.
3789 Scope *Initial = S;
3790 UnqualUsingDirectiveSet UDirs(*this);
3791 if (getLangOpts().CPlusPlus) {
3792 // Find the first namespace or translation-unit scope.
3793 while (S && !isNamespaceOrTranslationUnitScope(S))
3794 S = S->getParent();
3795
3796 UDirs.visitScopeChain(Initial, S);
3797 }
3798 UDirs.done();
3799
3800 // Look for visible declarations.
3801 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3802 Result.setAllowHidden(Consumer.includeHiddenDecls());
3803 VisibleDeclsRecord Visited;
3804 if (!IncludeGlobalScope)
3805 Visited.visitedContext(Context.getTranslationUnitDecl());
3806 ShadowContextRAII Shadow(Visited);
3807 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited, LoadExternal);
3808}
3809
3810void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3811 VisibleDeclConsumer &Consumer,
3812 bool IncludeGlobalScope,
3813 bool IncludeDependentBases, bool LoadExternal) {
3814 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3815 Result.setAllowHidden(Consumer.includeHiddenDecls());
3816 VisibleDeclsRecord Visited;
3817 if (!IncludeGlobalScope)
3818 Visited.visitedContext(Context.getTranslationUnitDecl());
3819 ShadowContextRAII Shadow(Visited);
3820 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3821 /*InBaseClass=*/false, Consumer, Visited,
3822 IncludeDependentBases, LoadExternal);
3823}
3824
3825/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3826/// If GnuLabelLoc is a valid source location, then this is a definition
3827/// of an __label__ label name, otherwise it is a normal label definition
3828/// or use.
3829LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3830 SourceLocation GnuLabelLoc) {
3831 // Do a lookup to see if we have a label with this name already.
3832 NamedDecl *Res = nullptr;
3833
3834 if (GnuLabelLoc.isValid()) {
3835 // Local label definitions always shadow existing labels.
3836 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3837 Scope *S = CurScope;
3838 PushOnScopeChains(Res, S, true);
3839 return cast<LabelDecl>(Res);
3840 }
3841
3842 // Not a GNU local label.
3843 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3844 // If we found a label, check to see if it is in the same context as us.
3845 // When in a Block, we don't want to reuse a label in an enclosing function.
3846 if (Res && Res->getDeclContext() != CurContext)
3847 Res = nullptr;
3848 if (!Res) {
3849 // If not forward referenced or defined already, create the backing decl.
3850 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3851 Scope *S = CurScope->getFnParent();
3852 assert(S && "Not in a function?")(static_cast <bool> (S && "Not in a function?")
? void (0) : __assert_fail ("S && \"Not in a function?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 3852, __extension__ __PRETTY_FUNCTION__))
;
3853 PushOnScopeChains(Res, S, true);
3854 }
3855 return cast<LabelDecl>(Res);
3856}
3857
3858//===----------------------------------------------------------------------===//
3859// Typo correction
3860//===----------------------------------------------------------------------===//
3861
3862static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3863 TypoCorrection &Candidate) {
3864 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3865 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3866}
3867
3868static void LookupPotentialTypoResult(Sema &SemaRef,
3869 LookupResult &Res,
3870 IdentifierInfo *Name,
3871 Scope *S, CXXScopeSpec *SS,
3872 DeclContext *MemberContext,
3873 bool EnteringContext,
3874 bool isObjCIvarLookup,
3875 bool FindHidden);
3876
3877/// Check whether the declarations found for a typo correction are
3878/// visible. Set the correction's RequiresImport flag to true if none of the
3879/// declarations are visible, false otherwise.
3880static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3881 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3882
3883 for (/**/; DI != DE; ++DI)
3884 if (!LookupResult::isVisible(SemaRef, *DI))
3885 break;
3886 // No filtering needed if all decls are visible.
3887 if (DI == DE) {
3888 TC.setRequiresImport(false);
3889 return;
3890 }
3891
3892 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3893 bool AnyVisibleDecls = !NewDecls.empty();
3894
3895 for (/**/; DI != DE; ++DI) {
3896 if (LookupResult::isVisible(SemaRef, *DI)) {
3897 if (!AnyVisibleDecls) {
3898 // Found a visible decl, discard all hidden ones.
3899 AnyVisibleDecls = true;
3900 NewDecls.clear();
3901 }
3902 NewDecls.push_back(*DI);
3903 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3904 NewDecls.push_back(*DI);
3905 }
3906
3907 if (NewDecls.empty())
3908 TC = TypoCorrection();
3909 else {
3910 TC.setCorrectionDecls(NewDecls);
3911 TC.setRequiresImport(!AnyVisibleDecls);
3912 }
3913}
3914
3915// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3916// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3917// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3918static void getNestedNameSpecifierIdentifiers(
3919 NestedNameSpecifier *NNS,
3920 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3921 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3922 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3923 else
3924 Identifiers.clear();
3925
3926 const IdentifierInfo *II = nullptr;
3927
3928 switch (NNS->getKind()) {
3929 case NestedNameSpecifier::Identifier:
3930 II = NNS->getAsIdentifier();
3931 break;
3932
3933 case NestedNameSpecifier::Namespace:
3934 if (NNS->getAsNamespace()->isAnonymousNamespace())
3935 return;
3936 II = NNS->getAsNamespace()->getIdentifier();
3937 break;
3938
3939 case NestedNameSpecifier::NamespaceAlias:
3940 II = NNS->getAsNamespaceAlias()->getIdentifier();
3941 break;
3942
3943 case NestedNameSpecifier::TypeSpecWithTemplate:
3944 case NestedNameSpecifier::TypeSpec:
3945 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3946 break;
3947
3948 case NestedNameSpecifier::Global:
3949 case NestedNameSpecifier::Super:
3950 return;
3951 }
3952
3953 if (II)
3954 Identifiers.push_back(II);
3955}
3956
3957void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3958 DeclContext *Ctx, bool InBaseClass) {
3959 // Don't consider hidden names for typo correction.
3960 if (Hiding)
3961 return;
3962
3963 // Only consider entities with identifiers for names, ignoring
3964 // special names (constructors, overloaded operators, selectors,
3965 // etc.).
3966 IdentifierInfo *Name = ND->getIdentifier();
3967 if (!Name)
3968 return;
3969
3970 // Only consider visible declarations and declarations from modules with
3971 // names that exactly match.
3972 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
3973 return;
3974
3975 FoundName(Name->getName());
3976}
3977
3978void TypoCorrectionConsumer::FoundName(StringRef Name) {
3979 // Compute the edit distance between the typo and the name of this
3980 // entity, and add the identifier to the list of results.
3981 addName(Name, nullptr);
3982}
3983
3984void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3985 // Compute the edit distance between the typo and this keyword,
3986 // and add the keyword to the list of results.
3987 addName(Keyword, nullptr, nullptr, true);
3988}
3989
3990void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3991 NestedNameSpecifier *NNS, bool isKeyword) {
3992 // Use a simple length-based heuristic to determine the minimum possible
3993 // edit distance. If the minimum isn't good enough, bail out early.
3994 StringRef TypoStr = Typo->getName();
3995 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3996 if (MinED && TypoStr.size() / MinED < 3)
3997 return;
3998
3999 // Compute an upper bound on the allowable edit distance, so that the
4000 // edit-distance algorithm can short-circuit.
4001 unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
4002 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4003 if (ED >= UpperBound) return;
4004
4005 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4006 if (isKeyword) TC.makeKeyword();
4007 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4008 addCorrection(TC);
4009}
4010
4011static const unsigned MaxTypoDistanceResultSets = 5;
4012
4013void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4014 StringRef TypoStr = Typo->getName();
4015 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4016
4017 // For very short typos, ignore potential corrections that have a different
4018 // base identifier from the typo or which have a normalized edit distance
4019 // longer than the typo itself.
4020 if (TypoStr.size() < 3 &&
4021 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4022 return;
4023
4024 // If the correction is resolved but is not viable, ignore it.
4025 if (Correction.isResolved()) {
4026 checkCorrectionVisibility(SemaRef, Correction);
4027 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4028 return;
4029 }
4030
4031 TypoResultList &CList =
4032 CorrectionResults[Correction.getEditDistance(false)][Name];
4033
4034 if (!CList.empty() && !CList.back().isResolved())
4035 CList.pop_back();
4036 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4037 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4038 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4039 RI != RIEnd; ++RI) {
4040 // If the Correction refers to a decl already in the result list,
4041 // replace the existing result if the string representation of Correction
4042 // comes before the current result alphabetically, then stop as there is
4043 // nothing more to be done to add Correction to the candidate set.
4044 if (RI->getCorrectionDecl() == NewND) {
4045 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4046 *RI = Correction;
4047 return;
4048 }
4049 }
4050 }
4051 if (CList.empty() || Correction.isResolved())
4052 CList.push_back(Correction);
4053
4054 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4055 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4056}
4057
4058void TypoCorrectionConsumer::addNamespaces(
4059 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4060 SearchNamespaces = true;
4061
4062 for (auto KNPair : KnownNamespaces)
4063 Namespaces.addNameSpecifier(KNPair.first);
4064
4065 bool SSIsTemplate = false;
4066 if (NestedNameSpecifier *NNS =
4067 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4068 if (const Type *T = NNS->getAsType())
4069 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4070 }
4071 // Do not transform this into an iterator-based loop. The loop body can
4072 // trigger the creation of further types (through lazy deserialization) and
4073 // invalide iterators into this list.
4074 auto &Types = SemaRef.getASTContext().getTypes();
4075 for (unsigned I = 0; I != Types.size(); ++I) {
4076 const auto *TI = Types[I];
4077 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4078 CD = CD->getCanonicalDecl();
4079 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4080 !CD->isUnion() && CD->getIdentifier() &&
4081 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4082 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4083 Namespaces.addNameSpecifier(CD);
4084 }
4085 }
4086}
4087
4088const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4089 if (++CurrentTCIndex < ValidatedCorrections.size())
4090 return ValidatedCorrections[CurrentTCIndex];
4091
4092 CurrentTCIndex = ValidatedCorrections.size();
4093 while (!CorrectionResults.empty()) {
4094 auto DI = CorrectionResults.begin();
4095 if (DI->second.empty()) {
4096 CorrectionResults.erase(DI);
4097 continue;
4098 }
4099
4100 auto RI = DI->second.begin();
4101 if (RI->second.empty()) {
4102 DI->second.erase(RI);
4103 performQualifiedLookups();
4104 continue;
4105 }
4106
4107 TypoCorrection TC = RI->second.pop_back_val();
4108 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4109 ValidatedCorrections.push_back(TC);
4110 return ValidatedCorrections[CurrentTCIndex];
4111 }
4112 }
4113 return ValidatedCorrections[0]; // The empty correction.
4114}
4115
4116bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4117 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4118 DeclContext *TempMemberContext = MemberContext;
4119 CXXScopeSpec *TempSS = SS.get();
4120retry_lookup:
4121 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4122 EnteringContext,
4123 CorrectionValidator->IsObjCIvarLookup,
4124 Name == Typo && !Candidate.WillReplaceSpecifier());
4125 switch (Result.getResultKind()) {
4126 case LookupResult::NotFound:
4127 case LookupResult::NotFoundInCurrentInstantiation:
4128 case LookupResult::FoundUnresolvedValue:
4129 if (TempSS) {
4130 // Immediately retry the lookup without the given CXXScopeSpec
4131 TempSS = nullptr;
4132 Candidate.WillReplaceSpecifier(true);
4133 goto retry_lookup;
4134 }
4135 if (TempMemberContext) {
4136 if (SS && !TempSS)
4137 TempSS = SS.get();
4138 TempMemberContext = nullptr;
4139 goto retry_lookup;
4140 }
4141 if (SearchNamespaces)
4142 QualifiedResults.push_back(Candidate);
4143 break;
4144
4145 case LookupResult::Ambiguous:
4146 // We don't deal with ambiguities.
4147 break;
4148
4149 case LookupResult::Found:
4150 case LookupResult::FoundOverloaded:
4151 // Store all of the Decls for overloaded symbols
4152 for (auto *TRD : Result)
4153 Candidate.addCorrectionDecl(TRD);
4154 checkCorrectionVisibility(SemaRef, Candidate);
4155 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4156 if (SearchNamespaces)
4157 QualifiedResults.push_back(Candidate);
4158 break;
4159 }
4160 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4161 return true;
4162 }
4163 return false;
4164}
4165
4166void TypoCorrectionConsumer::performQualifiedLookups() {
4167 unsigned TypoLen = Typo->getName().size();
4168 for (const TypoCorrection &QR : QualifiedResults) {
4169 for (const auto &NSI : Namespaces) {
4170 DeclContext *Ctx = NSI.DeclCtx;
4171 const Type *NSType = NSI.NameSpecifier->getAsType();
4172
4173 // If the current NestedNameSpecifier refers to a class and the
4174 // current correction candidate is the name of that class, then skip
4175 // it as it is unlikely a qualified version of the class' constructor
4176 // is an appropriate correction.
4177 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4178 nullptr) {
4179 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4180 continue;
4181 }
4182
4183 TypoCorrection TC(QR);
4184 TC.ClearCorrectionDecls();
4185 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4186 TC.setQualifierDistance(NSI.EditDistance);
4187 TC.setCallbackDistance(0); // Reset the callback distance
4188
4189 // If the current correction candidate and namespace combination are
4190 // too far away from the original typo based on the normalized edit
4191 // distance, then skip performing a qualified name lookup.
4192 unsigned TmpED = TC.getEditDistance(true);
4193 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4194 TypoLen / TmpED < 3)
4195 continue;
4196
4197 Result.clear();
4198 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4199 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4200 continue;
4201
4202 // Any corrections added below will be validated in subsequent
4203 // iterations of the main while() loop over the Consumer's contents.
4204 switch (Result.getResultKind()) {
4205 case LookupResult::Found:
4206 case LookupResult::FoundOverloaded: {
4207 if (SS && SS->isValid()) {
4208 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4209 std::string OldQualified;
4210 llvm::raw_string_ostream OldOStream(OldQualified);
4211 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4212 OldOStream << Typo->getName();
4213 // If correction candidate would be an identical written qualified
4214 // identifer, then the existing CXXScopeSpec probably included a
4215 // typedef that didn't get accounted for properly.
4216 if (OldOStream.str() == NewQualified)
4217 break;
4218 }
4219 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4220 TRD != TRDEnd; ++TRD) {
4221 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4222 NSType ? NSType->getAsCXXRecordDecl()
4223 : nullptr,
4224 TRD.getPair()) == Sema::AR_accessible)
4225 TC.addCorrectionDecl(*TRD);
4226 }
4227 if (TC.isResolved()) {
4228 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4229 addCorrection(TC);
4230 }
4231 break;
4232 }
4233 case LookupResult::NotFound:
4234 case LookupResult::NotFoundInCurrentInstantiation:
4235 case LookupResult::Ambiguous:
4236 case LookupResult::FoundUnresolvedValue:
4237 break;
4238 }
4239 }
4240 }
4241 QualifiedResults.clear();
4242}
4243
4244TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4245 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4246 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4247 if (NestedNameSpecifier *NNS =
4248 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4249 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4250 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4251
4252 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4253 }
4254 // Build the list of identifiers that would be used for an absolute
4255 // (from the global context) NestedNameSpecifier referring to the current
4256 // context.
4257 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4258 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4259 CurContextIdentifiers.push_back(ND->getIdentifier());
4260 }
4261
4262 // Add the global context as a NestedNameSpecifier
4263 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4264 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4265 DistanceMap[1].push_back(SI);
4266}
4267
4268auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4269 DeclContext *Start) -> DeclContextList {
4270 assert(Start && "Building a context chain from a null context")(static_cast <bool> (Start && "Building a context chain from a null context"
) ? void (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 4270, __extension__ __PRETTY_FUNCTION__))
;
4271 DeclContextList Chain;
4272 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4273 DC = DC->getLookupParent()) {
4274 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4275 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4276 !(ND && ND->isAnonymousNamespace()))
4277 Chain.push_back(DC->getPrimaryContext());
4278 }
4279 return Chain;
4280}
4281
4282unsigned
4283TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4284 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4285 unsigned NumSpecifiers = 0;
4286 for (DeclContext *C : llvm::reverse(DeclChain)) {
4287 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4288 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4289 ++NumSpecifiers;
4290 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4291 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4292 RD->getTypeForDecl());
4293 ++NumSpecifiers;
4294 }
4295 }
4296 return NumSpecifiers;
4297}
4298
4299void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4300 DeclContext *Ctx) {
4301 NestedNameSpecifier *NNS = nullptr;
4302 unsigned NumSpecifiers = 0;
4303 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4304 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4305
4306 // Eliminate common elements from the two DeclContext chains.
4307 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4308 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4309 break;
4310 NamespaceDeclChain.pop_back();
4311 }
4312
4313 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4314 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4315
4316 // Add an explicit leading '::' specifier if needed.
4317 if (NamespaceDeclChain.empty()) {
4318 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4319 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4320 NumSpecifiers =
4321 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4322 } else if (NamedDecl *ND =
4323 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4324 IdentifierInfo *Name = ND->getIdentifier();
4325 bool SameNameSpecifier = false;
4326 if (std::find(CurNameSpecifierIdentifiers.begin(),
4327 CurNameSpecifierIdentifiers.end(),
4328 Name) != CurNameSpecifierIdentifiers.end()) {
4329 std::string NewNameSpecifier;
4330 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4331 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4332 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4333 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4334 SpecifierOStream.flush();
4335 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4336 }
4337 if (SameNameSpecifier ||
4338 std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4339 Name) != CurContextIdentifiers.end()) {
4340 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4341 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4342 NumSpecifiers =
4343 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4344 }
4345 }
4346
4347 // If the built NestedNameSpecifier would be replacing an existing
4348 // NestedNameSpecifier, use the number of component identifiers that
4349 // would need to be changed as the edit distance instead of the number
4350 // of components in the built NestedNameSpecifier.
4351 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4352 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4353 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4354 NumSpecifiers = llvm::ComputeEditDistance(
4355 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4356 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4357 }
4358
4359 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4360 DistanceMap[NumSpecifiers].push_back(SI);
4361}
4362
4363/// Perform name lookup for a possible result for typo correction.
4364static void LookupPotentialTypoResult(Sema &SemaRef,
4365 LookupResult &Res,
4366 IdentifierInfo *Name,
4367 Scope *S, CXXScopeSpec *SS,
4368 DeclContext *MemberContext,
4369 bool EnteringContext,
4370 bool isObjCIvarLookup,
4371 bool FindHidden) {
4372 Res.suppressDiagnostics();
4373 Res.clear();
4374 Res.setLookupName(Name);
4375 Res.setAllowHidden(FindHidden);
4376 if (MemberContext) {
4377 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4378 if (isObjCIvarLookup) {
4379 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4380 Res.addDecl(Ivar);
4381 Res.resolveKind();
4382 return;
4383 }
4384 }
4385
4386 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4387 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4388 Res.addDecl(Prop);
4389 Res.resolveKind();
4390 return;
4391 }
4392 }
4393
4394 SemaRef.LookupQualifiedName(Res, MemberContext);
4395 return;
4396 }
4397
4398 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4399 EnteringContext);
4400
4401 // Fake ivar lookup; this should really be part of
4402 // LookupParsedName.
4403 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4404 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4405 (Res.empty() ||
4406 (Res.isSingleResult() &&
4407 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4408 if (ObjCIvarDecl *IV
4409 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4410 Res.addDecl(IV);
4411 Res.resolveKind();
4412 }
4413 }
4414 }
4415}
4416
4417/// Add keywords to the consumer as possible typo corrections.
4418static void AddKeywordsToConsumer(Sema &SemaRef,
4419 TypoCorrectionConsumer &Consumer,
4420 Scope *S, CorrectionCandidateCallback &CCC,
4421 bool AfterNestedNameSpecifier) {
4422 if (AfterNestedNameSpecifier) {
4423 // For 'X::', we know exactly which keywords can appear next.
4424 Consumer.addKeywordResult("template");
4425 if (CCC.WantExpressionKeywords)
4426 Consumer.addKeywordResult("operator");
4427 return;
4428 }
4429
4430 if (CCC.WantObjCSuper)
4431 Consumer.addKeywordResult("super");
4432
4433 if (CCC.WantTypeSpecifiers) {
4434 // Add type-specifier keywords to the set of results.
4435 static const char *const CTypeSpecs[] = {
4436 "char", "const", "double", "enum", "float", "int", "long", "short",
4437 "signed", "struct", "union", "unsigned", "void", "volatile",
4438 "_Complex", "_Imaginary",
4439 // storage-specifiers as well
4440 "extern", "inline", "static", "typedef"
4441 };
4442
4443 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4444 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4445 Consumer.addKeywordResult(CTypeSpecs[I]);
4446
4447 if (SemaRef.getLangOpts().C99)
4448 Consumer.addKeywordResult("restrict");
4449 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4450 Consumer.addKeywordResult("bool");
4451 else if (SemaRef.getLangOpts().C99)
4452 Consumer.addKeywordResult("_Bool");
4453
4454 if (SemaRef.getLangOpts().CPlusPlus) {
4455 Consumer.addKeywordResult("class");
4456 Consumer.addKeywordResult("typename");
4457 Consumer.addKeywordResult("wchar_t");
4458
4459 if (SemaRef.getLangOpts().CPlusPlus11) {
4460 Consumer.addKeywordResult("char16_t");
4461 Consumer.addKeywordResult("char32_t");
4462 Consumer.addKeywordResult("constexpr");
4463 Consumer.addKeywordResult("decltype");
4464 Consumer.addKeywordResult("thread_local");
4465 }
4466 }
4467
4468 if (SemaRef.getLangOpts().GNUKeywords)
4469 Consumer.addKeywordResult("typeof");
4470 } else if (CCC.WantFunctionLikeCasts) {
4471 static const char *const CastableTypeSpecs[] = {
4472 "char", "double", "float", "int", "long", "short",
4473 "signed", "unsigned", "void"
4474 };
4475 for (auto *kw : CastableTypeSpecs)
4476 Consumer.addKeywordResult(kw);
4477 }
4478
4479 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4480 Consumer.addKeywordResult("const_cast");
4481 Consumer.addKeywordResult("dynamic_cast");
4482 Consumer.addKeywordResult("reinterpret_cast");
4483 Consumer.addKeywordResult("static_cast");
4484 }
4485
4486 if (CCC.WantExpressionKeywords) {
4487 Consumer.addKeywordResult("sizeof");
4488 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4489 Consumer.addKeywordResult("false");
4490 Consumer.addKeywordResult("true");
4491 }
4492
4493 if (SemaRef.getLangOpts().CPlusPlus) {
4494 static const char *const CXXExprs[] = {
4495 "delete", "new", "operator", "throw", "typeid"
4496 };
4497 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4498 for (unsigned I = 0; I != NumCXXExprs; ++I)
4499 Consumer.addKeywordResult(CXXExprs[I]);
4500
4501 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4502 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4503 Consumer.addKeywordResult("this");
4504
4505 if (SemaRef.getLangOpts().CPlusPlus11) {
4506 Consumer.addKeywordResult("alignof");
4507 Consumer.addKeywordResult("nullptr");
4508 }
4509 }
4510
4511 if (SemaRef.getLangOpts().C11) {
4512 // FIXME: We should not suggest _Alignof if the alignof macro
4513 // is present.
4514 Consumer.addKeywordResult("_Alignof");
4515 }
4516 }
4517
4518 if (CCC.WantRemainingKeywords) {
4519 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4520 // Statements.
4521 static const char *const CStmts[] = {
4522 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4523 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4524 for (unsigned I = 0; I != NumCStmts; ++I)
4525 Consumer.addKeywordResult(CStmts[I]);
4526
4527 if (SemaRef.getLangOpts().CPlusPlus) {
4528 Consumer.addKeywordResult("catch");
4529 Consumer.addKeywordResult("try");
4530 }
4531
4532 if (S && S->getBreakParent())
4533 Consumer.addKeywordResult("break");
4534
4535 if (S && S->getContinueParent())
4536 Consumer.addKeywordResult("continue");
4537
4538 if (SemaRef.getCurFunction() &&
4539 !SemaRef.getCurFunction()->SwitchStack.empty()) {
4540 Consumer.addKeywordResult("case");
4541 Consumer.addKeywordResult("default");
4542 }
4543 } else {
4544 if (SemaRef.getLangOpts().CPlusPlus) {
4545 Consumer.addKeywordResult("namespace");
4546 Consumer.addKeywordResult("template");
4547 }
4548
4549 if (S && S->isClassScope()) {
4550 Consumer.addKeywordResult("explicit");
4551 Consumer.addKeywordResult("friend");
4552 Consumer.addKeywordResult("mutable");
4553 Consumer.addKeywordResult("private");
4554 Consumer.addKeywordResult("protected");
4555 Consumer.addKeywordResult("public");
4556 Consumer.addKeywordResult("virtual");
4557 }
4558 }
4559
4560 if (SemaRef.getLangOpts().CPlusPlus) {
4561 Consumer.addKeywordResult("using");
4562
4563 if (SemaRef.getLangOpts().CPlusPlus11)
4564 Consumer.addKeywordResult("static_assert");
4565 }
4566 }
4567}
4568
4569std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4570 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4571 Scope *S, CXXScopeSpec *SS,
4572 std::unique_ptr<CorrectionCandidateCallback> CCC,
4573 DeclContext *MemberContext, bool EnteringContext,
4574 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4575
4576 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
3
Assuming the condition is false
4
Assuming the condition is false
6
Taking false branch
4577 DisableTypoCorrection)
5
Assuming the condition is false
4578 return nullptr;
4579
4580 // In Microsoft mode, don't perform typo correction in a template member
4581 // function dependent context because it interferes with the "lookup into
4582 // dependent bases of class templates" feature.
4583 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
7
Assuming the condition is false
4584 isa<CXXMethodDecl>(CurContext))
4585 return nullptr;
4586
4587 // We only attempt to correct typos for identifiers.
4588 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4589 if (!Typo)
8
Assuming 'Typo' is non-null
9
Taking false branch
4590 return nullptr;
4591
4592 // If the scope specifier itself was invalid, don't try to correct
4593 // typos.
4594 if (SS && SS->isInvalid())
10
Assuming 'SS' is null
4595 return nullptr;
4596
4597 // Never try to correct typos during any kind of code synthesis.
4598 if (!CodeSynthesisContexts.empty())
11
Taking false branch
4599 return nullptr;
4600
4601 // Don't try to correct 'super'.
4602 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
12
Assuming 'S' is null
4603 return nullptr;
4604
4605 // Abort if typo correction already failed for this specific typo.
4606 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4607 if (locs != TypoCorrectionFailures.end() &&
13
Assuming the condition is false
14
Taking false branch
4608 locs->second.count(TypoName.getLoc()))
4609 return nullptr;
4610
4611 // Don't try to correct the identifier "vector" when in AltiVec mode.
4612 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4613 // remove this workaround.
4614 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
15
Assuming the condition is false
16
Assuming the condition is false
4615 return nullptr;
4616
4617 // Provide a stop gap for files that are just seriously broken. Trying
4618 // to correct all typos can turn into a HUGE performance penalty, causing
4619 // some files to take minutes to get rejected by the parser.
4620 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4621 if (Limit && TyposCorrected >= Limit)
17
Assuming 'Limit' is 0
4622 return nullptr;
4623 ++TyposCorrected;
4624
4625 // If we're handling a missing symbol error, using modules, and the
4626 // special search all modules option is used, look for a missing import.
4627 if (ErrorRecovery && getLangOpts().Modules &&
4628 getLangOpts().ModulesSearchAll) {
4629 // The following has the side effect of loading the missing module.
4630 getModuleLoader().lookupMissingImports(Typo->getName(),
4631 TypoName.getLocStart());
4632 }
4633
4634 CorrectionCandidateCallback &CCCRef = *CCC;
4635 auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
18
Calling 'make_unique<clang::TypoCorrectionConsumer, clang::Sema &, const clang::DeclarationNameInfo &, clang::Sema::LookupNameKind &, clang::Scope *&, clang::CXXScopeSpec *&, std::unique_ptr<clang::CorrectionCandidateCallback, std::default_delete<clang::CorrectionCandidateCallback> >, clang::DeclContext *&, bool &>'
25
Returning; memory was released
4636 *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4637 EnteringContext);
4638
4639 // Perform name lookup to find visible, similarly-named entities.
4640 bool IsUnqualifiedLookup = false;
4641 DeclContext *QualifiedDC = MemberContext;
4642 if (MemberContext) {
26
Assuming 'MemberContext' is null
27
Taking false branch
4643 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4644
4645 // Look in qualified interfaces.
4646 if (OPT) {
4647 for (auto *I : OPT->quals())
4648 LookupVisibleDecls(I, LookupKind, *Consumer);
4649 }
4650 } else if (SS && SS->isSet()) {
4651 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4652 if (!QualifiedDC)
4653 return nullptr;
4654
4655 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4656 } else {
4657 IsUnqualifiedLookup = true;
4658 }
4659
4660 // Determine whether we are going to search in the various namespaces for
4661 // corrections.
4662 bool SearchNamespaces
4663 = getLangOpts().CPlusPlus &&
28
Assuming the condition is false
4664 (IsUnqualifiedLookup || (SS && SS->isSet()));
4665
4666 if (IsUnqualifiedLookup || SearchNamespaces) {
4667 // For unqualified lookup, look through all of the names that we have
4668 // seen in this translation unit.
4669 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4670 for (const auto &I : Context.Idents)
4671 Consumer->FoundName(I.getKey());
4672
4673 // Walk through identifiers in external identifier sources.
4674 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4675 if (IdentifierInfoLookup *External
29
Assuming 'External' is null
30
Taking false branch
4676 = Context.Idents.getExternalIdentifierLookup()) {
4677 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4678 do {
4679 StringRef Name = Iter->Next();
4680 if (Name.empty())
4681 break;
4682
4683 Consumer->FoundName(Name);
4684 } while (true);
4685 }
4686 }
4687
4688 AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
31
Use of memory after it is freed
4689
4690 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4691 // to search those namespaces.
4692 if (SearchNamespaces) {
4693 // Load any externally-known namespaces.
4694 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4695 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4696 LoadedExternalKnownNamespaces = true;
4697 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4698 for (auto *N : ExternalKnownNamespaces)
4699 KnownNamespaces[N] = true;
4700 }
4701
4702 Consumer->addNamespaces(KnownNamespaces);
4703 }
4704
4705 return Consumer;
4706}
4707
4708/// Try to "correct" a typo in the source code by finding
4709/// visible declarations whose names are similar to the name that was
4710/// present in the source code.
4711///
4712/// \param TypoName the \c DeclarationNameInfo structure that contains
4713/// the name that was present in the source code along with its location.
4714///
4715/// \param LookupKind the name-lookup criteria used to search for the name.
4716///
4717/// \param S the scope in which name lookup occurs.
4718///
4719/// \param SS the nested-name-specifier that precedes the name we're
4720/// looking for, if present.
4721///
4722/// \param CCC A CorrectionCandidateCallback object that provides further
4723/// validation of typo correction candidates. It also provides flags for
4724/// determining the set of keywords permitted.
4725///
4726/// \param MemberContext if non-NULL, the context in which to look for
4727/// a member access expression.
4728///
4729/// \param EnteringContext whether we're entering the context described by
4730/// the nested-name-specifier SS.
4731///
4732/// \param OPT when non-NULL, the search for visible declarations will
4733/// also walk the protocols in the qualified interfaces of \p OPT.
4734///
4735/// \returns a \c TypoCorrection containing the corrected name if the typo
4736/// along with information such as the \c NamedDecl where the corrected name
4737/// was declared, and any additional \c NestedNameSpecifier needed to access
4738/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4739TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4740 Sema::LookupNameKind LookupKind,
4741 Scope *S, CXXScopeSpec *SS,
4742 std::unique_ptr<CorrectionCandidateCallback> CCC,
4743 CorrectTypoKind Mode,
4744 DeclContext *MemberContext,
4745 bool EnteringContext,
4746 const ObjCObjectPointerType *OPT,
4747 bool RecordFailure) {
4748 assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback")(static_cast <bool> (CCC && "CorrectTypo requires a CorrectionCandidateCallback"
) ? void (0) : __assert_fail ("CCC && \"CorrectTypo requires a CorrectionCandidateCallback\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 4748, __extension__ __PRETTY_FUNCTION__))
;
4749
4750 // Always let the ExternalSource have the first chance at correction, even
4751 // if we would otherwise have given up.
4752 if (ExternalSource) {
4753 if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4754 TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4755 return Correction;
4756 }
4757
4758 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4759 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4760 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4761 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4762 bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4763
4764 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4765 auto Consumer = makeTypoCorrectionConsumer(
4766 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4767 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4768
4769 if (!Consumer)
4770 return TypoCorrection();
4771
4772 // If we haven't found anything, we're done.
4773 if (Consumer->empty())
4774 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4775
4776 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4777 // is not more that about a third of the length of the typo's identifier.
4778 unsigned ED = Consumer->getBestEditDistance(true);
4779 unsigned TypoLen = Typo->getName().size();
4780 if (ED > 0 && TypoLen / ED < 3)
4781 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4782
4783 TypoCorrection BestTC = Consumer->getNextCorrection();
4784 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4785 if (!BestTC)
4786 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4787
4788 ED = BestTC.getEditDistance();
4789
4790 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4791 // If this was an unqualified lookup and we believe the callback
4792 // object wouldn't have filtered out possible corrections, note
4793 // that no correction was found.
4794 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4795 }
4796
4797 // If only a single name remains, return that result.
4798 if (!SecondBestTC ||
4799 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4800 const TypoCorrection &Result = BestTC;
4801
4802 // Don't correct to a keyword that's the same as the typo; the keyword
4803 // wasn't actually in scope.
4804 if (ED == 0 && Result.isKeyword())
4805 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4806
4807 TypoCorrection TC = Result;
4808 TC.setCorrectionRange(SS, TypoName);
4809 checkCorrectionVisibility(*this, TC);
4810 return TC;
4811 } else if (SecondBestTC && ObjCMessageReceiver) {
4812 // Prefer 'super' when we're completing in a message-receiver
4813 // context.
4814
4815 if (BestTC.getCorrection().getAsString() != "super") {
4816 if (SecondBestTC.getCorrection().getAsString() == "super")
4817 BestTC = SecondBestTC;
4818 else if ((*Consumer)["super"].front().isKeyword())
4819 BestTC = (*Consumer)["super"].front();
4820 }
4821 // Don't correct to a keyword that's the same as the typo; the keyword
4822 // wasn't actually in scope.
4823 if (BestTC.getEditDistance() == 0 ||
4824 BestTC.getCorrection().getAsString() != "super")
4825 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4826
4827 BestTC.setCorrectionRange(SS, TypoName);
4828 return BestTC;
4829 }
4830
4831 // Record the failure's location if needed and return an empty correction. If
4832 // this was an unqualified lookup and we believe the callback object did not
4833 // filter out possible corrections, also cache the failure for the typo.
4834 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4835}
4836
4837/// Try to "correct" a typo in the source code by finding
4838/// visible declarations whose names are similar to the name that was
4839/// present in the source code.
4840///
4841/// \param TypoName the \c DeclarationNameInfo structure that contains
4842/// the name that was present in the source code along with its location.
4843///
4844/// \param LookupKind the name-lookup criteria used to search for the name.
4845///
4846/// \param S the scope in which name lookup occurs.
4847///
4848/// \param SS the nested-name-specifier that precedes the name we're
4849/// looking for, if present.
4850///
4851/// \param CCC A CorrectionCandidateCallback object that provides further
4852/// validation of typo correction candidates. It also provides flags for
4853/// determining the set of keywords permitted.
4854///
4855/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4856/// diagnostics when the actual typo correction is attempted.
4857///
4858/// \param TRC A TypoRecoveryCallback functor that will be used to build an
4859/// Expr from a typo correction candidate.
4860///
4861/// \param MemberContext if non-NULL, the context in which to look for
4862/// a member access expression.
4863///
4864/// \param EnteringContext whether we're entering the context described by
4865/// the nested-name-specifier SS.
4866///
4867/// \param OPT when non-NULL, the search for visible declarations will
4868/// also walk the protocols in the qualified interfaces of \p OPT.
4869///
4870/// \returns a new \c TypoExpr that will later be replaced in the AST with an
4871/// Expr representing the result of performing typo correction, or nullptr if
4872/// typo correction is not possible. If nullptr is returned, no diagnostics will
4873/// be emitted and it is the responsibility of the caller to emit any that are
4874/// needed.
4875TypoExpr *Sema::CorrectTypoDelayed(
4876 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4877 Scope *S, CXXScopeSpec *SS,
4878 std::unique_ptr<CorrectionCandidateCallback> CCC,
4879 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4880 DeclContext *MemberContext, bool EnteringContext,
4881 const ObjCObjectPointerType *OPT) {
4882 assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback")(static_cast <bool> (CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback"
) ? void (0) : __assert_fail ("CCC && \"CorrectTypoDelayed requires a CorrectionCandidateCallback\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 4882, __extension__ __PRETTY_FUNCTION__))
;
4883
4884 auto Consumer = makeTypoCorrectionConsumer(
2
Calling 'Sema::makeTypoCorrectionConsumer'
4885 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4886 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
1
Assuming 'Mode' is not equal to CTK_ErrorRecovery
4887
4888 // Give the external sema source a chance to correct the typo.
4889 TypoCorrection ExternalTypo;
4890 if (ExternalSource && Consumer) {
4891 ExternalTypo = ExternalSource->CorrectTypo(
4892 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
4893 MemberContext, EnteringContext, OPT);
4894 if (ExternalTypo)
4895 Consumer->addCorrection(ExternalTypo);
4896 }
4897
4898 if (!Consumer || Consumer->empty())
4899 return nullptr;
4900
4901 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4902 // is not more that about a third of the length of the typo's identifier.
4903 unsigned ED = Consumer->getBestEditDistance(true);
4904 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4905 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
4906 return nullptr;
4907
4908 ExprEvalContexts.back().NumTypos++;
4909 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4910}
4911
4912void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4913 if (!CDecl) return;
4914
4915 if (isKeyword())
4916 CorrectionDecls.clear();
4917
4918 CorrectionDecls.push_back(CDecl);
4919
4920 if (!CorrectionName)
4921 CorrectionName = CDecl->getDeclName();
4922}
4923
4924std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4925 if (CorrectionNameSpec) {
4926 std::string tmpBuffer;
4927 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4928 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4929 PrefixOStream << CorrectionName;
4930 return PrefixOStream.str();
4931 }
4932
4933 return CorrectionName.getAsString();
4934}
4935
4936bool CorrectionCandidateCallback::ValidateCandidate(
4937 const TypoCorrection &candidate) {
4938 if (!candidate.isResolved())
4939 return true;
4940
4941 if (candidate.isKeyword())
4942 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4943 WantRemainingKeywords || WantObjCSuper;
4944
4945 bool HasNonType = false;
4946 bool HasStaticMethod = false;
4947 bool HasNonStaticMethod = false;
4948 for (Decl *D : candidate) {
4949 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4950 D = FTD->getTemplatedDecl();
4951 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4952 if (Method->isStatic())
4953 HasStaticMethod = true;
4954 else
4955 HasNonStaticMethod = true;
4956 }
4957 if (!isa<TypeDecl>(D))
4958 HasNonType = true;
4959 }
4960
4961 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4962 !candidate.getCorrectionSpecifier())
4963 return false;
4964
4965 return WantTypeSpecifiers || HasNonType;
4966}
4967
4968FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4969 bool HasExplicitTemplateArgs,
4970 MemberExpr *ME)
4971 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4972 CurContext(SemaRef.CurContext), MemberFn(ME) {
4973 WantTypeSpecifiers = false;
4974 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4975 WantRemainingKeywords = false;
4976}
4977
4978bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4979 if (!candidate.getCorrectionDecl())
4980 return candidate.isKeyword();
4981
4982 for (auto *C : candidate) {
4983 FunctionDecl *FD = nullptr;
4984 NamedDecl *ND = C->getUnderlyingDecl();
4985 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4986 FD = FTD->getTemplatedDecl();
4987 if (!HasExplicitTemplateArgs && !FD) {
4988 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4989 // If the Decl is neither a function nor a template function,
4990 // determine if it is a pointer or reference to a function. If so,
4991 // check against the number of arguments expected for the pointee.
4992 QualType ValType = cast<ValueDecl>(ND)->getType();
4993 if (ValType.isNull())
4994 continue;
4995 if (ValType->isAnyPointerType() || ValType->isReferenceType())
4996 ValType = ValType->getPointeeType();
4997 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4998 if (FPT->getNumParams() == NumArgs)
4999 return true;
5000 }
5001 }
5002
5003 // Skip the current candidate if it is not a FunctionDecl or does not accept
5004 // the current number of arguments.
5005 if (!FD || !(FD->getNumParams() >= NumArgs &&
5006 FD->getMinRequiredArguments() <= NumArgs))
5007 continue;
5008
5009 // If the current candidate is a non-static C++ method, skip the candidate
5010 // unless the method being corrected--or the current DeclContext, if the
5011 // function being corrected is not a method--is a method in the same class
5012 // or a descendent class of the candidate's parent class.
5013 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5014 if (MemberFn || !MD->isStatic()) {
5015 CXXMethodDecl *CurMD =
5016 MemberFn
5017 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5018 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5019 CXXRecordDecl *CurRD =
5020 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5021 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5022 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5023 continue;
5024 }
5025 }
5026 return true;
5027 }
5028 return false;
5029}
5030
5031void Sema::diagnoseTypo(const TypoCorrection &Correction,
5032 const PartialDiagnostic &TypoDiag,
5033 bool ErrorRecovery) {
5034 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5035 ErrorRecovery);
5036}
5037
5038/// Find which declaration we should import to provide the definition of
5039/// the given declaration.
5040static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5041 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5042 return VD->getDefinition();
5043 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5044 return FD->getDefinition();
5045 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5046 return TD->getDefinition();
5047 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5048 return ID->getDefinition();
5049 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5050 return PD->getDefinition();
5051 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5052 return getDefinitionToImport(TD->getTemplatedDecl());
5053 return nullptr;
5054}
5055
5056void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5057 MissingImportKind MIK, bool Recover) {
5058 // Suggest importing a module providing the definition of this entity, if
5059 // possible.
5060 NamedDecl *Def = getDefinitionToImport(Decl);
5061 if (!Def)
5062 Def = Decl;
5063
5064 Module *Owner = getOwningModule(Decl);
5065 assert(Owner && "definition of hidden declaration is not in a module")(static_cast <bool> (Owner && "definition of hidden declaration is not in a module"
) ? void (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 5065, __extension__ __PRETTY_FUNCTION__))
;
5066
5067 llvm::SmallVector<Module*, 8> OwningModules;
5068 OwningModules.push_back(Owner);
5069 auto Merged = Context.getModulesWithMergedDefinition(Decl);
5070 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5071
5072 diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK,
5073 Recover);
5074}
5075
5076/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5077/// suggesting the addition of a #include of the specified file.
5078static std::string getIncludeStringForHeader(Preprocessor &PP,
5079 const FileEntry *E) {
5080 bool IsSystem;
5081 auto Path =
5082 PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(E, &IsSystem);
5083 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5084}
5085
5086void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5087 SourceLocation DeclLoc,
5088 ArrayRef<Module *> Modules,
5089 MissingImportKind MIK, bool Recover) {
5090 assert(!Modules.empty())(static_cast <bool> (!Modules.empty()) ? void (0) : __assert_fail
("!Modules.empty()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 5090, __extension__ __PRETTY_FUNCTION__))
;
5091
5092 // Weed out duplicates from module list.
5093 llvm::SmallVector<Module*, 8> UniqueModules;
5094 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5095 for (auto *M : Modules)
5096 if (UniqueModuleSet.insert(M).second)
5097 UniqueModules.push_back(M);
5098 Modules = UniqueModules;
5099
5100 if (Modules.size() > 1) {
5101 std::string ModuleList;
5102 unsigned N = 0;
5103 for (Module *M : Modules) {
5104 ModuleList += "\n ";
5105 if (++N == 5 && N != Modules.size()) {
5106 ModuleList += "[...]";
5107 break;
5108 }
5109 ModuleList += M->getFullModuleName();
5110 }
5111
5112 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5113 << (int)MIK << Decl << ModuleList;
5114 } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5115 UseLoc, Modules[0], DeclLoc)) {
5116 // The right way to make the declaration visible is to include a header;
5117 // suggest doing so.
5118 //
5119 // FIXME: Find a smart place to suggest inserting a #include, and add
5120 // a FixItHint there.
5121 Diag(UseLoc, diag::err_module_unimported_use_header)
5122 << (int)MIK << Decl << Modules[0]->getFullModuleName()
5123 << getIncludeStringForHeader(PP, E);
5124 } else {
5125 // FIXME: Add a FixItHint that imports the corresponding module.
5126 Diag(UseLoc, diag::err_module_unimported_use)
5127 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5128 }
5129
5130 unsigned DiagID;
5131 switch (MIK) {
5132 case MissingImportKind::Declaration:
5133 DiagID = diag::note_previous_declaration;
5134 break;
5135 case MissingImportKind::Definition:
5136 DiagID = diag::note_previous_definition;
5137 break;
5138 case MissingImportKind::DefaultArgument:
5139 DiagID = diag::note_default_argument_declared_here;
5140 break;
5141 case MissingImportKind::ExplicitSpecialization:
5142 DiagID = diag::note_explicit_specialization_declared_here;
5143 break;
5144 case MissingImportKind::PartialSpecialization:
5145 DiagID = diag::note_partial_specialization_declared_here;
5146 break;
5147 }
5148 Diag(DeclLoc, DiagID);
5149
5150 // Try to recover by implicitly importing this module.
5151 if (Recover)
5152 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5153}
5154
5155/// Diagnose a successfully-corrected typo. Separated from the correction
5156/// itself to allow external validation of the result, etc.
5157///
5158/// \param Correction The result of performing typo correction.
5159/// \param TypoDiag The diagnostic to produce. This will have the corrected
5160/// string added to it (and usually also a fixit).
5161/// \param PrevNote A note to use when indicating the location of the entity to
5162/// which we are correcting. Will have the correction string added to it.
5163/// \param ErrorRecovery If \c true (the default), the caller is going to
5164/// recover from the typo as if the corrected string had been typed.
5165/// In this case, \c PDiag must be an error, and we will attach a fixit
5166/// to it.
5167void Sema::diagnoseTypo(const TypoCorrection &Correction,
5168 const PartialDiagnostic &TypoDiag,
5169 const PartialDiagnostic &PrevNote,
5170 bool ErrorRecovery) {
5171 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5172 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5173 FixItHint FixTypo = FixItHint::CreateReplacement(
5174 Correction.getCorrectionRange(), CorrectedStr);
5175
5176 // Maybe we're just missing a module import.
5177 if (Correction.requiresImport()) {
5178 NamedDecl *Decl = Correction.getFoundDecl();
5179 assert(Decl && "import required but no declaration to import")(static_cast <bool> (Decl && "import required but no declaration to import"
) ? void (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 5179, __extension__ __PRETTY_FUNCTION__))
;
5180
5181 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5182 MissingImportKind::Declaration, ErrorRecovery);
5183 return;
5184 }
5185
5186 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5187 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5188
5189 NamedDecl *ChosenDecl =
5190 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5191 if (PrevNote.getDiagID() && ChosenDecl)
5192 Diag(ChosenDecl->getLocation(), PrevNote)
5193 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5194
5195 // Add any extra diagnostics.
5196 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5197 Diag(Correction.getCorrectionRange().getBegin(), PD);
5198}
5199
5200TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5201 TypoDiagnosticGenerator TDG,
5202 TypoRecoveryCallback TRC) {
5203 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")(static_cast <bool> (TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? void (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 5203, __extension__ __PRETTY_FUNCTION__))
;
5204 auto TE = new (Context) TypoExpr(Context.DependentTy);
5205 auto &State = DelayedTypos[TE];
5206 State.Consumer = std::move(TCC);
5207 State.DiagHandler = std::move(TDG);
5208 State.RecoveryHandler = std::move(TRC);
5209 return TE;
5210}
5211
5212const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5213 auto Entry = DelayedTypos.find(TE);
5214 assert(Entry != DelayedTypos.end() &&(static_cast <bool> (Entry != DelayedTypos.end() &&
"Failed to get the state for a TypoExpr!") ? void (0) : __assert_fail
("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 5215, __extension__ __PRETTY_FUNCTION__))
5215 "Failed to get the state for a TypoExpr!")(static_cast <bool> (Entry != DelayedTypos.end() &&
"Failed to get the state for a TypoExpr!") ? void (0) : __assert_fail
("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaLookup.cpp"
, 5215, __extension__ __PRETTY_FUNCTION__))
;
5216 return Entry->second;
5217}
5218
5219void Sema::clearDelayedTypo(TypoExpr *TE) {
5220 DelayedTypos.erase(TE);
5221}
5222
5223void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5224 DeclarationNameInfo Name(II, IILoc);
5225 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5226 R.suppressDiagnostics();
5227 R.setHideTags(false);
5228 LookupName(R, S);
5229 R.dump();
5230}

/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39#ifdef EXPENSIVE_CHECKS
40#include <random> // for std::mt19937
41#endif
42
43namespace llvm {
44
45// Only used by compiler if both template types are the same. Useful when
46// using SFINAE to test for the existence of member functions.
47template <typename T, T> struct SameType;
48
49namespace detail {
50
51template <typename RangeT>
52using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54template <typename RangeT>
55using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
57
58} // end namespace detail
59
60//===----------------------------------------------------------------------===//
61// Extra additions to <type_traits>
62//===----------------------------------------------------------------------===//
63
64template <typename T>
65struct negation : std::integral_constant<bool, !bool(T::value)> {};
66
67template <typename...> struct conjunction : std::true_type {};
68template <typename B1> struct conjunction<B1> : B1 {};
69template <typename B1, typename... Bn>
70struct conjunction<B1, Bn...>
71 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
72
73//===----------------------------------------------------------------------===//
74// Extra additions to <functional>
75//===----------------------------------------------------------------------===//
76
77template <class Ty> struct identity {
78 using argument_type = Ty;
79
80 Ty &operator()(Ty &self) const {
81 return self;
82 }
83 const Ty &operator()(const Ty &self) const {
84 return self;
85 }
86};
87
88template <class Ty> struct less_ptr {
89 bool operator()(const Ty* left, const Ty* right) const {
90 return *left < *right;
91 }
92};
93
94template <class Ty> struct greater_ptr {
95 bool operator()(const Ty* left, const Ty* right) const {
96 return *right < *left;
97 }
98};
99
100/// An efficient, type-erasing, non-owning reference to a callable. This is
101/// intended for use as the type of a function parameter that is not used
102/// after the function in question returns.
103///
104/// This class does not own the callable, so it is not in general safe to store
105/// a function_ref.
106template<typename Fn> class function_ref;
107
108template<typename Ret, typename ...Params>
109class function_ref<Ret(Params...)> {
110 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
111 intptr_t callable;
112
113 template<typename Callable>
114 static Ret callback_fn(intptr_t callable, Params ...params) {
115 return (*reinterpret_cast<Callable*>(callable))(
116 std::forward<Params>(params)...);
117 }
118
119public:
120 function_ref() = default;
121 function_ref(std::nullptr_t) {}
122
123 template <typename Callable>
124 function_ref(Callable &&callable,
125 typename std::enable_if<
126 !std::is_same<typename std::remove_reference<Callable>::type,
127 function_ref>::value>::type * = nullptr)
128 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
129 callable(reinterpret_cast<intptr_t>(&callable)) {}
130
131 Ret operator()(Params ...params) const {
132 return callback(callable, std::forward<Params>(params)...);
133 }
134
135 operator bool() const { return callback; }
136};
137
138// deleter - Very very very simple method that is used to invoke operator
139// delete on something. It is used like this:
140//
141// for_each(V.begin(), B.end(), deleter<Interval>);
142template <class T>
143inline void deleter(T *Ptr) {
144 delete Ptr;
145}
146
147//===----------------------------------------------------------------------===//
148// Extra additions to <iterator>
149//===----------------------------------------------------------------------===//
150
151namespace adl_detail {
152
153using std::begin;
154
155template <typename ContainerTy>
156auto adl_begin(ContainerTy &&container)
157 -> decltype(begin(std::forward<ContainerTy>(container))) {
158 return begin(std::forward<ContainerTy>(container));
159}
160
161using std::end;
162
163template <typename ContainerTy>
164auto adl_end(ContainerTy &&container)
165 -> decltype(end(std::forward<ContainerTy>(container))) {
166 return end(std::forward<ContainerTy>(container));
167}
168
169using std::swap;
170
171template <typename T>
172void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
173 std::declval<T>()))) {
174 swap(std::forward<T>(lhs), std::forward<T>(rhs));
175}
176
177} // end namespace adl_detail
178
179template <typename ContainerTy>
180auto adl_begin(ContainerTy &&container)
181 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
182 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
183}
184
185template <typename ContainerTy>
186auto adl_end(ContainerTy &&container)
187 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
188 return adl_detail::adl_end(std::forward<ContainerTy>(container));
189}
190
191template <typename T>
192void adl_swap(T &&lhs, T &&rhs) noexcept(
193 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
194 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
195}
196
197// mapped_iterator - This is a simple iterator adapter that causes a function to
198// be applied whenever operator* is invoked on the iterator.
199
200template <typename ItTy, typename FuncTy,
201 typename FuncReturnTy =
202 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
203class mapped_iterator
204 : public iterator_adaptor_base<
205 mapped_iterator<ItTy, FuncTy>, ItTy,
206 typename std::iterator_traits<ItTy>::iterator_category,
207 typename std::remove_reference<FuncReturnTy>::type> {
208public:
209 mapped_iterator(ItTy U, FuncTy F)
210 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
211
212 ItTy getCurrent() { return this->I; }
213
214 FuncReturnTy operator*() { return F(*this->I); }
215
216private:
217 FuncTy F;
218};
219
220// map_iterator - Provide a convenient way to create mapped_iterators, just like
221// make_pair is useful for creating pairs...
222template <class ItTy, class FuncTy>
223inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
224 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
225}
226
227/// Helper to determine if type T has a member called rbegin().
228template <typename Ty> class has_rbegin_impl {
229 using yes = char[1];
230 using no = char[2];
231
232 template <typename Inner>
233 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
234
235 template <typename>
236 static no& test(...);
237
238public:
239 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
240};
241
242/// Metafunction to determine if T& or T has a member called rbegin().
243template <typename Ty>
244struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
245};
246
247// Returns an iterator_range over the given container which iterates in reverse.
248// Note that the container must have rbegin()/rend() methods for this to work.
249template <typename ContainerTy>
250auto reverse(ContainerTy &&C,
251 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
252 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
253 return make_range(C.rbegin(), C.rend());
254}
255
256// Returns a std::reverse_iterator wrapped around the given iterator.
257template <typename IteratorTy>
258std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
259 return std::reverse_iterator<IteratorTy>(It);
260}
261
262// Returns an iterator_range over the given container which iterates in reverse.
263// Note that the container must have begin()/end() methods which return
264// bidirectional iterators for this to work.
265template <typename ContainerTy>
266auto reverse(
267 ContainerTy &&C,
268 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
269 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
270 llvm::make_reverse_iterator(std::begin(C)))) {
271 return make_range(llvm::make_reverse_iterator(std::end(C)),
272 llvm::make_reverse_iterator(std::begin(C)));
273}
274
275/// An iterator adaptor that filters the elements of given inner iterators.
276///
277/// The predicate parameter should be a callable object that accepts the wrapped
278/// iterator's reference type and returns a bool. When incrementing or
279/// decrementing the iterator, it will call the predicate on each element and
280/// skip any where it returns false.
281///
282/// \code
283/// int A[] = { 1, 2, 3, 4 };
284/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
285/// // R contains { 1, 3 }.
286/// \endcode
287///
288/// Note: filter_iterator_base implements support for forward iteration.
289/// filter_iterator_impl exists to provide support for bidirectional iteration,
290/// conditional on whether the wrapped iterator supports it.
291template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
292class filter_iterator_base
293 : public iterator_adaptor_base<
294 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
295 WrappedIteratorT,
296 typename std::common_type<
297 IterTag, typename std::iterator_traits<
298 WrappedIteratorT>::iterator_category>::type> {
299 using BaseT = iterator_adaptor_base<
300 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
301 WrappedIteratorT,
302 typename std::common_type<
303 IterTag, typename std::iterator_traits<
304 WrappedIteratorT>::iterator_category>::type>;
305
306protected:
307 WrappedIteratorT End;
308 PredicateT Pred;
309
310 void findNextValid() {
311 while (this->I != End && !Pred(*this->I))
312 BaseT::operator++();
313 }
314
315 // Construct the iterator. The begin iterator needs to know where the end
316 // is, so that it can properly stop when it gets there. The end iterator only
317 // needs the predicate to support bidirectional iteration.
318 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
319 PredicateT Pred)
320 : BaseT(Begin), End(End), Pred(Pred) {
321 findNextValid();
322 }
323
324public:
325 using BaseT::operator++;
326
327 filter_iterator_base &operator++() {
328 BaseT::operator++();
329 findNextValid();
330 return *this;
331 }
332};
333
334/// Specialization of filter_iterator_base for forward iteration only.
335template <typename WrappedIteratorT, typename PredicateT,
336 typename IterTag = std::forward_iterator_tag>
337class filter_iterator_impl
338 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
339 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
340
341public:
342 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
343 PredicateT Pred)
344 : BaseT(Begin, End, Pred) {}
345};
346
347/// Specialization of filter_iterator_base for bidirectional iteration.
348template <typename WrappedIteratorT, typename PredicateT>
349class filter_iterator_impl<WrappedIteratorT, PredicateT,
350 std::bidirectional_iterator_tag>
351 : public filter_iterator_base<WrappedIteratorT, PredicateT,
352 std::bidirectional_iterator_tag> {
353 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
354 std::bidirectional_iterator_tag>;
355 void findPrevValid() {
356 while (!this->Pred(*this->I))
357 BaseT::operator--();
358 }
359
360public:
361 using BaseT::operator--;
362
363 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
364 PredicateT Pred)
365 : BaseT(Begin, End, Pred) {}
366
367 filter_iterator_impl &operator--() {
368 BaseT::operator--();
369 findPrevValid();
370 return *this;
371 }
372};
373
374namespace detail {
375
376template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
377 using type = std::forward_iterator_tag;
378};
379
380template <> struct fwd_or_bidi_tag_impl<true> {
381 using type = std::bidirectional_iterator_tag;
382};
383
384/// Helper which sets its type member to forward_iterator_tag if the category
385/// of \p IterT does not derive from bidirectional_iterator_tag, and to
386/// bidirectional_iterator_tag otherwise.
387template <typename IterT> struct fwd_or_bidi_tag {
388 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
389 std::bidirectional_iterator_tag,
390 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
391};
392
393} // namespace detail
394
395/// Defines filter_iterator to a suitable specialization of
396/// filter_iterator_impl, based on the underlying iterator's category.
397template <typename WrappedIteratorT, typename PredicateT>
398using filter_iterator = filter_iterator_impl<
399 WrappedIteratorT, PredicateT,
400 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
401
402/// Convenience function that takes a range of elements and a predicate,
403/// and return a new filter_iterator range.
404///
405/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
406/// lifetime of that temporary is not kept by the returned range object, and the
407/// temporary is going to be dropped on the floor after the make_iterator_range
408/// full expression that contains this function call.
409template <typename RangeT, typename PredicateT>
410iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
411make_filter_range(RangeT &&Range, PredicateT Pred) {
412 using FilterIteratorT =
413 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
414 return make_range(
415 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
416 std::end(std::forward<RangeT>(Range)), Pred),
417 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
418 std::end(std::forward<RangeT>(Range)), Pred));
419}
420
421// forward declarations required by zip_shortest/zip_first
422template <typename R, typename UnaryPredicate>
423bool all_of(R &&range, UnaryPredicate P);
424
425template <size_t... I> struct index_sequence;
426
427template <class... Ts> struct index_sequence_for;
428
429namespace detail {
430
431using std::declval;
432
433// We have to alias this since inlining the actual type at the usage site
434// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
435template<typename... Iters> struct ZipTupleType {
436 using type = std::tuple<decltype(*declval<Iters>())...>;
437};
438
439template <typename ZipType, typename... Iters>
440using zip_traits = iterator_facade_base<
441 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
442 typename std::iterator_traits<
443 Iters>::iterator_category...>::type,
444 // ^ TODO: Implement random access methods.
445 typename ZipTupleType<Iters...>::type,
446 typename std::iterator_traits<typename std::tuple_element<
447 0, std::tuple<Iters...>>::type>::difference_type,
448 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
449 // inner iterators have the same difference_type. It would fail if, for
450 // instance, the second field's difference_type were non-numeric while the
451 // first is.
452 typename ZipTupleType<Iters...>::type *,
453 typename ZipTupleType<Iters...>::type>;
454
455template <typename ZipType, typename... Iters>
456struct zip_common : public zip_traits<ZipType, Iters...> {
457 using Base = zip_traits<ZipType, Iters...>;
458 using value_type = typename Base::value_type;
459
460 std::tuple<Iters...> iterators;
461
462protected:
463 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
464 return value_type(*std::get<Ns>(iterators)...);
465 }
466
467 template <size_t... Ns>
468 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
469 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
470 }
471
472 template <size_t... Ns>
473 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
474 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
475 }
476
477public:
478 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
479
480 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
481
482 const value_type operator*() const {
483 return deref(index_sequence_for<Iters...>{});
484 }
485
486 ZipType &operator++() {
487 iterators = tup_inc(index_sequence_for<Iters...>{});
488 return *reinterpret_cast<ZipType *>(this);
489 }
490
491 ZipType &operator--() {
492 static_assert(Base::IsBidirectional,
493 "All inner iterators must be at least bidirectional.");
494 iterators = tup_dec(index_sequence_for<Iters...>{});
495 return *reinterpret_cast<ZipType *>(this);
496 }
497};
498
499template <typename... Iters>
500struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
501 using Base = zip_common<zip_first<Iters...>, Iters...>;
502
503 bool operator==(const zip_first<Iters...> &other) const {
504 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
505 }
506
507 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
508};
509
510template <typename... Iters>
511class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
512 template <size_t... Ns>
513 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
514 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
515 std::get<Ns>(other.iterators)...},
516 identity<bool>{});
517 }
518
519public:
520 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
521
522 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
523
524 bool operator==(const zip_shortest<Iters...> &other) const {
525 return !test(other, index_sequence_for<Iters...>{});
526 }
527};
528
529template <template <typename...> class ItType, typename... Args> class zippy {
530public:
531 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
532 using iterator_category = typename iterator::iterator_category;
533 using value_type = typename iterator::value_type;
534 using difference_type = typename iterator::difference_type;
535 using pointer = typename iterator::pointer;
536 using reference = typename iterator::reference;
537
538private:
539 std::tuple<Args...> ts;
540
541 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
542 return iterator(std::begin(std::get<Ns>(ts))...);
543 }
544 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
545 return iterator(std::end(std::get<Ns>(ts))...);
546 }
547
548public:
549 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
550
551 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
552 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
553};
554
555} // end namespace detail
556
557/// zip iterator for two or more iteratable types.
558template <typename T, typename U, typename... Args>
559detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
560 Args &&... args) {
561 return detail::zippy<detail::zip_shortest, T, U, Args...>(
562 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
563}
564
565/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
566/// be the shortest.
567template <typename T, typename U, typename... Args>
568detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
569 Args &&... args) {
570 return detail::zippy<detail::zip_first, T, U, Args...>(
571 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
572}
573
574/// Iterator wrapper that concatenates sequences together.
575///
576/// This can concatenate different iterators, even with different types, into
577/// a single iterator provided the value types of all the concatenated
578/// iterators expose `reference` and `pointer` types that can be converted to
579/// `ValueT &` and `ValueT *` respectively. It doesn't support more
580/// interesting/customized pointer or reference types.
581///
582/// Currently this only supports forward or higher iterator categories as
583/// inputs and always exposes a forward iterator interface.
584template <typename ValueT, typename... IterTs>
585class concat_iterator
586 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
587 std::forward_iterator_tag, ValueT> {
588 using BaseT = typename concat_iterator::iterator_facade_base;
589
590 /// We store both the current and end iterators for each concatenated
591 /// sequence in a tuple of pairs.
592 ///
593 /// Note that something like iterator_range seems nice at first here, but the
594 /// range properties are of little benefit and end up getting in the way
595 /// because we need to do mutation on the current iterators.
596 std::tuple<std::pair<IterTs, IterTs>...> IterPairs;
597
598 /// Attempts to increment a specific iterator.
599 ///
600 /// Returns true if it was able to increment the iterator. Returns false if
601 /// the iterator is already at the end iterator.
602 template <size_t Index> bool incrementHelper() {
603 auto &IterPair = std::get<Index>(IterPairs);
604 if (IterPair.first == IterPair.second)
605 return false;
606
607 ++IterPair.first;
608 return true;
609 }
610
611 /// Increments the first non-end iterator.
612 ///
613 /// It is an error to call this with all iterators at the end.
614 template <size_t... Ns> void increment(index_sequence<Ns...>) {
615 // Build a sequence of functions to increment each iterator if possible.
616 bool (concat_iterator::*IncrementHelperFns[])() = {
617 &concat_iterator::incrementHelper<Ns>...};
618
619 // Loop over them, and stop as soon as we succeed at incrementing one.
620 for (auto &IncrementHelperFn : IncrementHelperFns)
621 if ((this->*IncrementHelperFn)())
622 return;
623
624 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h"
, 624)
;
625 }
626
627 /// Returns null if the specified iterator is at the end. Otherwise,
628 /// dereferences the iterator and returns the address of the resulting
629 /// reference.
630 template <size_t Index> ValueT *getHelper() const {
631 auto &IterPair = std::get<Index>(IterPairs);
632 if (IterPair.first == IterPair.second)
633 return nullptr;
634
635 return &*IterPair.first;
636 }
637
638 /// Finds the first non-end iterator, dereferences, and returns the resulting
639 /// reference.
640 ///
641 /// It is an error to call this with all iterators at the end.
642 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
643 // Build a sequence of functions to get from iterator if possible.
644 ValueT *(concat_iterator::*GetHelperFns[])() const = {
645 &concat_iterator::getHelper<Ns>...};
646
647 // Loop over them, and return the first result we find.
648 for (auto &GetHelperFn : GetHelperFns)
649 if (ValueT *P = (this->*GetHelperFn)())
650 return *P;
651
652 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h"
, 652)
;
653 }
654
655public:
656 /// Constructs an iterator from a squence of ranges.
657 ///
658 /// We need the full range to know how to switch between each of the
659 /// iterators.
660 template <typename... RangeTs>
661 explicit concat_iterator(RangeTs &&... Ranges)
662 : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {}
663
664 using BaseT::operator++;
665
666 concat_iterator &operator++() {
667 increment(index_sequence_for<IterTs...>());
668 return *this;
669 }
670
671 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
672
673 bool operator==(const concat_iterator &RHS) const {
674 return IterPairs == RHS.IterPairs;
675 }
676};
677
678namespace detail {
679
680/// Helper to store a sequence of ranges being concatenated and access them.
681///
682/// This is designed to facilitate providing actual storage when temporaries
683/// are passed into the constructor such that we can use it as part of range
684/// based for loops.
685template <typename ValueT, typename... RangeTs> class concat_range {
686public:
687 using iterator =
688 concat_iterator<ValueT,
689 decltype(std::begin(std::declval<RangeTs &>()))...>;
690
691private:
692 std::tuple<RangeTs...> Ranges;
693
694 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
695 return iterator(std::get<Ns>(Ranges)...);
696 }
697 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
698 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
699 std::end(std::get<Ns>(Ranges)))...);
700 }
701
702public:
703 concat_range(RangeTs &&... Ranges)
704 : Ranges(std::forward<RangeTs>(Ranges)...) {}
705
706 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
707 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
708};
709
710} // end namespace detail
711
712/// Concatenated range across two or more ranges.
713///
714/// The desired value type must be explicitly specified.
715template <typename ValueT, typename... RangeTs>
716detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
717 static_assert(sizeof...(RangeTs) > 1,
718 "Need more than one range to concatenate!");
719 return detail::concat_range<ValueT, RangeTs...>(
720 std::forward<RangeTs>(Ranges)...);
721}
722
723//===----------------------------------------------------------------------===//
724// Extra additions to <utility>
725//===----------------------------------------------------------------------===//
726
727/// Function object to check whether the first component of a std::pair
728/// compares less than the first component of another std::pair.
729struct less_first {
730 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
731 return lhs.first < rhs.first;
732 }
733};
734
735/// Function object to check whether the second component of a std::pair
736/// compares less than the second component of another std::pair.
737struct less_second {
738 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
739 return lhs.second < rhs.second;
740 }
741};
742
743// A subset of N3658. More stuff can be added as-needed.
744
745/// Represents a compile-time sequence of integers.
746template <class T, T... I> struct integer_sequence {
747 using value_type = T;
748
749 static constexpr size_t size() { return sizeof...(I); }
750};
751
752/// Alias for the common case of a sequence of size_ts.
753template <size_t... I>
754struct index_sequence : integer_sequence<std::size_t, I...> {};
755
756template <std::size_t N, std::size_t... I>
757struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
758template <std::size_t... I>
759struct build_index_impl<0, I...> : index_sequence<I...> {};
760
761/// Creates a compile-time integer sequence for a parameter pack.
762template <class... Ts>
763struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
764
765/// Utility type to build an inheritance chain that makes it easy to rank
766/// overload candidates.
767template <int N> struct rank : rank<N - 1> {};
768template <> struct rank<0> {};
769
770/// traits class for checking whether type T is one of any of the given
771/// types in the variadic list.
772template <typename T, typename... Ts> struct is_one_of {
773 static const bool value = false;
774};
775
776template <typename T, typename U, typename... Ts>
777struct is_one_of<T, U, Ts...> {
778 static const bool value =
779 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
780};
781
782/// traits class for checking whether type T is a base class for all
783/// the given types in the variadic list.
784template <typename T, typename... Ts> struct are_base_of {
785 static const bool value = true;
786};
787
788template <typename T, typename U, typename... Ts>
789struct are_base_of<T, U, Ts...> {
790 static const bool value =
791 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
792};
793
794//===----------------------------------------------------------------------===//
795// Extra additions for arrays
796//===----------------------------------------------------------------------===//
797
798/// Find the length of an array.
799template <class T, std::size_t N>
800constexpr inline size_t array_lengthof(T (&)[N]) {
801 return N;
802}
803
804/// Adapt std::less<T> for array_pod_sort.
805template<typename T>
806inline int array_pod_sort_comparator(const void *P1, const void *P2) {
807 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
808 *reinterpret_cast<const T*>(P2)))
809 return -1;
810 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
811 *reinterpret_cast<const T*>(P1)))
812 return 1;
813 return 0;
814}
815
816/// get_array_pod_sort_comparator - This is an internal helper function used to
817/// get type deduction of T right.
818template<typename T>
819inline int (*get_array_pod_sort_comparator(const T &))
820 (const void*, const void*) {
821 return array_pod_sort_comparator<T>;
822}
823
824/// array_pod_sort - This sorts an array with the specified start and end
825/// extent. This is just like std::sort, except that it calls qsort instead of
826/// using an inlined template. qsort is slightly slower than std::sort, but
827/// most sorts are not performance critical in LLVM and std::sort has to be
828/// template instantiated for each type, leading to significant measured code
829/// bloat. This function should generally be used instead of std::sort where
830/// possible.
831///
832/// This function assumes that you have simple POD-like types that can be
833/// compared with std::less and can be moved with memcpy. If this isn't true,
834/// you should use std::sort.
835///
836/// NOTE: If qsort_r were portable, we could allow a custom comparator and
837/// default to std::less.
838template<class IteratorTy>
839inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
840 // Don't inefficiently call qsort with one element or trigger undefined
841 // behavior with an empty sequence.
842 auto NElts = End - Start;
843 if (NElts <= 1) return;
844#ifdef EXPENSIVE_CHECKS
845 std::mt19937 Generator(std::random_device{}());
846 std::shuffle(Start, End, Generator);
847#endif
848 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
849}
850
851template <class IteratorTy>
852inline void array_pod_sort(
853 IteratorTy Start, IteratorTy End,
854 int (*Compare)(
855 const typename std::iterator_traits<IteratorTy>::value_type *,
856 const typename std::iterator_traits<IteratorTy>::value_type *)) {
857 // Don't inefficiently call qsort with one element or trigger undefined
858 // behavior with an empty sequence.
859 auto NElts = End - Start;
860 if (NElts <= 1) return;
861#ifdef EXPENSIVE_CHECKS
862 std::mt19937 Generator(std::random_device{}());
863 std::shuffle(Start, End, Generator);
864#endif
865 qsort(&*Start, NElts, sizeof(*Start),
866 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
867}
868
869// Provide wrappers to std::sort which shuffle the elements before sorting
870// to help uncover non-deterministic behavior (PR35135).
871template <typename IteratorTy>
872inline void sort(IteratorTy Start, IteratorTy End) {
873#ifdef EXPENSIVE_CHECKS
874 std::mt19937 Generator(std::random_device{}());
875 std::shuffle(Start, End, Generator);
876#endif
877 std::sort(Start, End);
878}
879
880template <typename IteratorTy, typename Compare>
881inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
882#ifdef EXPENSIVE_CHECKS
883 std::mt19937 Generator(std::random_device{}());
884 std::shuffle(Start, End, Generator);
885#endif
886 std::sort(Start, End, Comp);
887}
888
889//===----------------------------------------------------------------------===//
890// Extra additions to <algorithm>
891//===----------------------------------------------------------------------===//
892
893/// For a container of pointers, deletes the pointers and then clears the
894/// container.
895template<typename Container>
896void DeleteContainerPointers(Container &C) {
897 for (auto V : C)
898 delete V;
899 C.clear();
900}
901
902/// In a container of pairs (usually a map) whose second element is a pointer,
903/// deletes the second elements and then clears the container.
904template<typename Container>
905void DeleteContainerSeconds(Container &C) {
906 for (auto &V : C)
907 delete V.second;
908 C.clear();
909}
910
911/// Provide wrappers to std::for_each which take ranges instead of having to
912/// pass begin/end explicitly.
913template <typename R, typename UnaryPredicate>
914UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
915 return std::for_each(adl_begin(Range), adl_end(Range), P);
916}
917
918/// Provide wrappers to std::all_of which take ranges instead of having to pass
919/// begin/end explicitly.
920template <typename R, typename UnaryPredicate>
921bool all_of(R &&Range, UnaryPredicate P) {
922 return std::all_of(adl_begin(Range), adl_end(Range), P);
923}
924
925/// Provide wrappers to std::any_of which take ranges instead of having to pass
926/// begin/end explicitly.
927template <typename R, typename UnaryPredicate>
928bool any_of(R &&Range, UnaryPredicate P) {
929 return std::any_of(adl_begin(Range), adl_end(Range), P);
930}
931
932/// Provide wrappers to std::none_of which take ranges instead of having to pass
933/// begin/end explicitly.
934template <typename R, typename UnaryPredicate>
935bool none_of(R &&Range, UnaryPredicate P) {
936 return std::none_of(adl_begin(Range), adl_end(Range), P);
937}
938
939/// Provide wrappers to std::find which take ranges instead of having to pass
940/// begin/end explicitly.
941template <typename R, typename T>
942auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
943 return std::find(adl_begin(Range), adl_end(Range), Val);
944}
945
946/// Provide wrappers to std::find_if which take ranges instead of having to pass
947/// begin/end explicitly.
948template <typename R, typename UnaryPredicate>
949auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
950 return std::find_if(adl_begin(Range), adl_end(Range), P);
951}
952
953template <typename R, typename UnaryPredicate>
954auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
955 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
956}
957
958/// Provide wrappers to std::remove_if which take ranges instead of having to
959/// pass begin/end explicitly.
960template <typename R, typename UnaryPredicate>
961auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
962 return std::remove_if(adl_begin(Range), adl_end(Range), P);
963}
964
965/// Provide wrappers to std::copy_if which take ranges instead of having to
966/// pass begin/end explicitly.
967template <typename R, typename OutputIt, typename UnaryPredicate>
968OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
969 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
970}
971
972template <typename R, typename OutputIt>
973OutputIt copy(R &&Range, OutputIt Out) {
974 return std::copy(adl_begin(Range), adl_end(Range), Out);
975}
976
977/// Wrapper function around std::find to detect if an element exists
978/// in a container.
979template <typename R, typename E>
980bool is_contained(R &&Range, const E &Element) {
981 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
982}
983
984/// Wrapper function around std::count to count the number of times an element
985/// \p Element occurs in the given range \p Range.
986template <typename R, typename E>
987auto count(R &&Range, const E &Element) ->
988 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
989 return std::count(adl_begin(Range), adl_end(Range), Element);
990}
991
992/// Wrapper function around std::count_if to count the number of times an
993/// element satisfying a given predicate occurs in a range.
994template <typename R, typename UnaryPredicate>
995auto count_if(R &&Range, UnaryPredicate P) ->
996 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
997 return std::count_if(adl_begin(Range), adl_end(Range), P);
998}
999
1000/// Wrapper function around std::transform to apply a function to a range and
1001/// store the result elsewhere.
1002template <typename R, typename OutputIt, typename UnaryPredicate>
1003OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1004 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1005}
1006
1007/// Provide wrappers to std::partition which take ranges instead of having to
1008/// pass begin/end explicitly.
1009template <typename R, typename UnaryPredicate>
1010auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1011 return std::partition(adl_begin(Range), adl_end(Range), P);
1012}
1013
1014/// Provide wrappers to std::lower_bound which take ranges instead of having to
1015/// pass begin/end explicitly.
1016template <typename R, typename ForwardIt>
1017auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1018 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1019}
1020
1021/// Given a range of type R, iterate the entire range and return a
1022/// SmallVector with elements of the vector. This is useful, for example,
1023/// when you want to iterate a range and then sort the results.
1024template <unsigned Size, typename R>
1025SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1026to_vector(R &&Range) {
1027 return {adl_begin(Range), adl_end(Range)};
1028}
1029
1030/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1031/// `erase_if` which is equivalent to:
1032///
1033/// C.erase(remove_if(C, pred), C.end());
1034///
1035/// This version works for any container with an erase method call accepting
1036/// two iterators.
1037template <typename Container, typename UnaryPredicate>
1038void erase_if(Container &C, UnaryPredicate P) {
1039 C.erase(remove_if(C, P), C.end());
1040}
1041
1042/// Get the size of a range. This is a wrapper function around std::distance
1043/// which is only enabled when the operation is O(1).
1044template <typename R>
1045auto size(R &&Range, typename std::enable_if<
1046 std::is_same<typename std::iterator_traits<decltype(
1047 Range.begin())>::iterator_category,
1048 std::random_access_iterator_tag>::value,
1049 void>::type * = nullptr)
1050 -> decltype(std::distance(Range.begin(), Range.end())) {
1051 return std::distance(Range.begin(), Range.end());
1052}
1053
1054//===----------------------------------------------------------------------===//
1055// Extra additions to <memory>
1056//===----------------------------------------------------------------------===//
1057
1058// Implement make_unique according to N3656.
1059
1060/// Constructs a `new T()` with the given args and returns a
1061/// `unique_ptr<T>` which owns the object.
1062///
1063/// Example:
1064///
1065/// auto p = make_unique<int>();
1066/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1067template <class T, class... Args>
1068typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1069make_unique(Args &&... args) {
1070 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
19
Calling '~unique_ptr'
24
Returning from '~unique_ptr'
1071}
1072
1073/// Constructs a `new T[n]` with the given args and returns a
1074/// `unique_ptr<T[]>` which owns the object.
1075///
1076/// \param n size of the new array.
1077///
1078/// Example:
1079///
1080/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1081template <class T>
1082typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1083 std::unique_ptr<T>>::type
1084make_unique(size_t n) {
1085 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1086}
1087
1088/// This function isn't used and is only here to provide better compile errors.
1089template <class T, class... Args>
1090typename std::enable_if<std::extent<T>::value != 0>::type
1091make_unique(Args &&...) = delete;
1092
1093struct FreeDeleter {
1094 void operator()(void* v) {
1095 ::free(v);
1096 }
1097};
1098
1099template<typename First, typename Second>
1100struct pair_hash {
1101 size_t operator()(const std::pair<First, Second> &P) const {
1102 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1103 }
1104};
1105
1106/// A functor like C++14's std::less<void> in its absence.
1107struct less {
1108 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1109 return std::forward<A>(a) < std::forward<B>(b);
1110 }
1111};
1112
1113/// A functor like C++14's std::equal<void> in its absence.
1114struct equal {
1115 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1116 return std::forward<A>(a) == std::forward<B>(b);
1117 }
1118};
1119
1120/// Binary functor that adapts to any other binary functor after dereferencing
1121/// operands.
1122template <typename T> struct deref {
1123 T func;
1124
1125 // Could be further improved to cope with non-derivable functors and
1126 // non-binary functors (should be a variadic template member function
1127 // operator()).
1128 template <typename A, typename B>
1129 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1130 assert(lhs)(static_cast <bool> (lhs) ? void (0) : __assert_fail ("lhs"
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h"
, 1130, __extension__ __PRETTY_FUNCTION__))
;
1131 assert(rhs)(static_cast <bool> (rhs) ? void (0) : __assert_fail ("rhs"
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h"
, 1131, __extension__ __PRETTY_FUNCTION__))
;
1132 return func(*lhs, *rhs);
1133 }
1134};
1135
1136namespace detail {
1137
1138template <typename R> class enumerator_iter;
1139
1140template <typename R> struct result_pair {
1141 friend class enumerator_iter<R>;
1142
1143 result_pair() = default;
1144 result_pair(std::size_t Index, IterOfRange<R> Iter)
1145 : Index(Index), Iter(Iter) {}
1146
1147 result_pair<R> &operator=(const result_pair<R> &Other) {
1148 Index = Other.Index;
1149 Iter = Other.Iter;
1150 return *this;
1151 }
1152
1153 std::size_t index() const { return Index; }
1154 const ValueOfRange<R> &value() const { return *Iter; }
1155 ValueOfRange<R> &value() { return *Iter; }
1156
1157private:
1158 std::size_t Index = std::numeric_limits<std::size_t>::max();
1159 IterOfRange<R> Iter;
1160};
1161
1162template <typename R>
1163class enumerator_iter
1164 : public iterator_facade_base<
1165 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1166 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1167 typename std::iterator_traits<IterOfRange<R>>::pointer,
1168 typename std::iterator_traits<IterOfRange<R>>::reference> {
1169 using result_type = result_pair<R>;
1170
1171public:
1172 explicit enumerator_iter(IterOfRange<R> EndIter)
1173 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1174
1175 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1176 : Result(Index, Iter) {}
1177
1178 result_type &operator*() { return Result; }
1179 const result_type &operator*() const { return Result; }
1180
1181 enumerator_iter<R> &operator++() {
1182 assert(Result.Index != std::numeric_limits<size_t>::max())(static_cast <bool> (Result.Index != std::numeric_limits
<size_t>::max()) ? void (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/ADT/STLExtras.h"
, 1182, __extension__ __PRETTY_FUNCTION__))
;
1183 ++Result.Iter;
1184 ++Result.Index;
1185 return *this;
1186 }
1187
1188 bool operator==(const enumerator_iter<R> &RHS) const {
1189 // Don't compare indices here, only iterators. It's possible for an end
1190 // iterator to have different indices depending on whether it was created
1191 // by calling std::end() versus incrementing a valid iterator.
1192 return Result.Iter == RHS.Result.Iter;
1193 }
1194
1195 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1196 Result = Other.Result;
1197 return *this;
1198 }
1199
1200private:
1201 result_type Result;
1202};
1203
1204template <typename R> class enumerator {
1205public:
1206 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1207
1208 enumerator_iter<R> begin() {
1209 return enumerator_iter<R>(0, std::begin(TheRange));
1210 }
1211
1212 enumerator_iter<R> end() {
1213 return enumerator_iter<R>(std::end(TheRange));
1214 }
1215
1216private:
1217 R TheRange;
1218};
1219
1220} // end namespace detail
1221
1222/// Given an input range, returns a new range whose values are are pair (A,B)
1223/// such that A is the 0-based index of the item in the sequence, and B is
1224/// the value from the original sequence. Example:
1225///
1226/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1227/// for (auto X : enumerate(Items)) {
1228/// printf("Item %d - %c\n", X.index(), X.value());
1229/// }
1230///
1231/// Output:
1232/// Item 0 - A
1233/// Item 1 - B
1234/// Item 2 - C
1235/// Item 3 - D
1236///
1237template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1238 return detail::enumerator<R>(std::forward<R>(TheRange));
1239}
1240
1241namespace detail {
1242
1243template <typename F, typename Tuple, std::size_t... I>
1244auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1245 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1246 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1247}
1248
1249} // end namespace detail
1250
1251/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1252/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1253/// return the result.
1254template <typename F, typename Tuple>
1255auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1256 std::forward<F>(f), std::forward<Tuple>(t),
1257 build_index_impl<
1258 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1259 using Indices = build_index_impl<
1260 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1261
1262 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1263 Indices{});
1264}
1265
1266} // end namespace llvm
1267
1268#endif // LLVM_ADT_STLEXTRAS_H

/usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/bits/unique_ptr.h

1// unique_ptr implementation -*- C++ -*-
2
3// Copyright (C) 2008-2018 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file bits/unique_ptr.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{memory}
28 */
29
30#ifndef _UNIQUE_PTR_H1
31#define _UNIQUE_PTR_H1 1
32
33#include <bits/c++config.h>
34#include <debug/assertions.h>
35#include <type_traits>
36#include <utility>
37#include <tuple>
38#include <bits/stl_function.h>
39#include <bits/functional_hash.h>
40
41namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
42{
43_GLIBCXX_BEGIN_NAMESPACE_VERSION
44
45 /**
46 * @addtogroup pointer_abstractions
47 * @{
48 */
49
50#if _GLIBCXX_USE_DEPRECATED1
51#pragma GCC diagnostic push
52#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
53 template<typename> class auto_ptr;
54#pragma GCC diagnostic pop
55#endif
56
57 /// Primary template of default_delete, used by unique_ptr
58 template<typename _Tp>
59 struct default_delete
60 {
61 /// Default constructor
62 constexpr default_delete() noexcept = default;
63
64 /** @brief Converting constructor.
65 *
66 * Allows conversion from a deleter for arrays of another type, @p _Up,
67 * only if @p _Up* is convertible to @p _Tp*.
68 */
69 template<typename _Up, typename = typename
70 enable_if<is_convertible<_Up*, _Tp*>::value>::type>
71 default_delete(const default_delete<_Up>&) noexcept { }
72
73 /// Calls @c delete @p __ptr
74 void
75 operator()(_Tp* __ptr) const
76 {
77 static_assert(!is_void<_Tp>::value,
78 "can't delete pointer to incomplete type");
79 static_assert(sizeof(_Tp)>0,
80 "can't delete pointer to incomplete type");
81 delete __ptr;
22
Memory is released
82 }
83 };
84
85 // _GLIBCXX_RESOLVE_LIB_DEFECTS
86 // DR 740 - omit specialization for array objects with a compile time length
87 /// Specialization for arrays, default_delete.
88 template<typename _Tp>
89 struct default_delete<_Tp[]>
90 {
91 public:
92 /// Default constructor
93 constexpr default_delete() noexcept = default;
94
95 /** @brief Converting constructor.
96 *
97 * Allows conversion from a deleter for arrays of another type, such as
98 * a const-qualified version of @p _Tp.
99 *
100 * Conversions from types derived from @c _Tp are not allowed because
101 * it is unsafe to @c delete[] an array of derived types through a
102 * pointer to the base type.
103 */
104 template<typename _Up, typename = typename
105 enable_if<is_convertible<_Up(*)[], _Tp(*)[]>::value>::type>
106 default_delete(const default_delete<_Up[]>&) noexcept { }
107
108 /// Calls @c delete[] @p __ptr
109 template<typename _Up>
110 typename enable_if<is_convertible<_Up(*)[], _Tp(*)[]>::value>::type
111 operator()(_Up* __ptr) const
112 {
113 static_assert(sizeof(_Tp)>0,
114 "can't delete pointer to incomplete type");
115 delete [] __ptr;
116 }
117 };
118
119 template <typename _Tp, typename _Dp>
120 class __uniq_ptr_impl
121 {
122 template <typename _Up, typename _Ep, typename = void>
123 struct _Ptr
124 {
125 using type = _Up*;
126 };
127
128 template <typename _Up, typename _Ep>
129 struct
130 _Ptr<_Up, _Ep, __void_t<typename remove_reference<_Ep>::type::pointer>>
131 {
132 using type = typename remove_reference<_Ep>::type::pointer;
133 };
134
135 public:
136 using _DeleterConstraint = enable_if<
137 __and_<__not_<is_pointer<_Dp>>,
138 is_default_constructible<_Dp>>::value>;
139
140 using pointer = typename _Ptr<_Tp, _Dp>::type;
141
142 __uniq_ptr_impl() = default;
143 __uniq_ptr_impl(pointer __p) : _M_t() { _M_ptr() = __p; }
144
145 template<typename _Del>
146 __uniq_ptr_impl(pointer __p, _Del&& __d)
147 : _M_t(__p, std::forward<_Del>(__d)) { }
148
149 pointer& _M_ptr() { return std::get<0>(_M_t); }
150 pointer _M_ptr() const { return std::get<0>(_M_t); }
151 _Dp& _M_deleter() { return std::get<1>(_M_t); }
152 const _Dp& _M_deleter() const { return std::get<1>(_M_t); }
153
154 private:
155 tuple<pointer, _Dp> _M_t;
156 };
157
158 /// 20.7.1.2 unique_ptr for single objects.
159 template <typename _Tp, typename _Dp = default_delete<_Tp>>
160 class unique_ptr
161 {
162 template <class _Up>
163 using _DeleterConstraint =
164 typename __uniq_ptr_impl<_Tp, _Up>::_DeleterConstraint::type;
165
166 __uniq_ptr_impl<_Tp, _Dp> _M_t;
167
168 public:
169 using pointer = typename __uniq_ptr_impl<_Tp, _Dp>::pointer;
170 using element_type = _Tp;
171 using deleter_type = _Dp;
172
173 // helper template for detecting a safe conversion from another
174 // unique_ptr
175 template<typename _Up, typename _Ep>
176 using __safe_conversion_up = __and_<
177 is_convertible<typename unique_ptr<_Up, _Ep>::pointer, pointer>,
178 __not_<is_array<_Up>>,
179 __or_<__and_<is_reference<deleter_type>,
180 is_same<deleter_type, _Ep>>,
181 __and_<__not_<is_reference<deleter_type>>,
182 is_convertible<_Ep, deleter_type>>
183 >
184 >;
185
186 // Constructors.
187
188 /// Default constructor, creates a unique_ptr that owns nothing.
189 template <typename _Up = _Dp,
190 typename = _DeleterConstraint<_Up>>
191 constexpr unique_ptr() noexcept
192 : _M_t()
193 { }
194
195 /** Takes ownership of a pointer.
196 *
197 * @param __p A pointer to an object of @c element_type
198 *
199 * The deleter will be value-initialized.
200 */
201 template <typename _Up = _Dp,
202 typename = _DeleterConstraint<_Up>>
203 explicit
204 unique_ptr(pointer __p) noexcept
205 : _M_t(__p)
206 { }
207
208 /** Takes ownership of a pointer.
209 *
210 * @param __p A pointer to an object of @c element_type
211 * @param __d A reference to a deleter.
212 *
213 * The deleter will be initialized with @p __d
214 */
215 unique_ptr(pointer __p,
216 typename conditional<is_reference<deleter_type>::value,
217 deleter_type, const deleter_type&>::type __d) noexcept
218 : _M_t(__p, __d) { }
219
220 /** Takes ownership of a pointer.
221 *
222 * @param __p A pointer to an object of @c element_type
223 * @param __d An rvalue reference to a deleter.
224 *
225 * The deleter will be initialized with @p std::move(__d)
226 */
227 unique_ptr(pointer __p,
228 typename remove_reference<deleter_type>::type&& __d) noexcept
229 : _M_t(std::move(__p), std::move(__d))
230 { static_assert(!std::is_reference<deleter_type>::value,
231 "rvalue deleter bound to reference"); }
232
233 /// Creates a unique_ptr that owns nothing.
234 template <typename _Up = _Dp,
235 typename = _DeleterConstraint<_Up>>
236 constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { }
237
238 // Move constructors.
239
240 /// Move constructor.
241 unique_ptr(unique_ptr&& __u) noexcept
242 : _M_t(__u.release(), std::forward<deleter_type>(__u.get_deleter())) { }
243
244 /** @brief Converting constructor from another type
245 *
246 * Requires that the pointer owned by @p __u is convertible to the
247 * type of pointer owned by this object, @p __u does not own an array,
248 * and @p __u has a compatible deleter type.
249 */
250 template<typename _Up, typename _Ep, typename = _Require<
251 __safe_conversion_up<_Up, _Ep>,
252 typename conditional<is_reference<_Dp>::value,
253 is_same<_Ep, _Dp>,
254 is_convertible<_Ep, _Dp>>::type>>
255 unique_ptr(unique_ptr<_Up, _Ep>&& __u) noexcept
256 : _M_t(__u.release(), std::forward<_Ep>(__u.get_deleter()))
257 { }
258
259#if _GLIBCXX_USE_DEPRECATED1
260#pragma GCC diagnostic push
261#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
262 /// Converting constructor from @c auto_ptr
263 template<typename _Up, typename = _Require<
264 is_convertible<_Up*, _Tp*>, is_same<_Dp, default_delete<_Tp>>>>
265 unique_ptr(auto_ptr<_Up>&& __u) noexcept;
266#pragma GCC diagnostic pop
267#endif
268
269 /// Destructor, invokes the deleter if the stored pointer is not null.
270 ~unique_ptr() noexcept
271 {
272 auto& __ptr = _M_t._M_ptr();
273 if (__ptr != nullptr)
20
Taking true branch
274 get_deleter()(__ptr);
21
Calling 'default_delete::operator()'
23
Returning; memory was released via 2nd parameter
275 __ptr = pointer();
276 }
277
278 // Assignment.
279
280 /** @brief Move assignment operator.
281 *
282 * @param __u The object to transfer ownership from.
283 *
284 * Invokes the deleter first if this object owns a pointer.
285 */
286 unique_ptr&
287 operator=(unique_ptr&& __u) noexcept
288 {
289 reset(__u.release());
290 get_deleter() = std::forward<deleter_type>(__u.get_deleter());
291 return *this;
292 }
293
294 /** @brief Assignment from another type.
295 *
296 * @param __u The object to transfer ownership from, which owns a
297 * convertible pointer to a non-array object.
298 *
299 * Invokes the deleter first if this object owns a pointer.
300 */
301 template<typename _Up, typename _Ep>
302 typename enable_if< __and_<
303 __safe_conversion_up<_Up, _Ep>,
304 is_assignable<deleter_type&, _Ep&&>
305 >::value,
306 unique_ptr&>::type
307 operator=(unique_ptr<_Up, _Ep>&& __u) noexcept
308 {
309 reset(__u.release());
310 get_deleter() = std::forward<_Ep>(__u.get_deleter());
311 return *this;
312 }
313
314 /// Reset the %unique_ptr to empty, invoking the deleter if necessary.
315 unique_ptr&
316 operator=(nullptr_t) noexcept
317 {
318 reset();
319 return *this;
320 }
321
322 // Observers.
323
324 /// Dereference the stored pointer.
325 typename add_lvalue_reference<element_type>::type
326 operator*() const
327 {
328 __glibcxx_assert(get() != pointer());
329 return *get();
330 }
331
332 /// Return the stored pointer.
333 pointer
334 operator->() const noexcept
335 {
336 _GLIBCXX_DEBUG_PEDASSERT(get() != pointer());
337 return get();
338 }
339
340 /// Return the stored pointer.
341 pointer
342 get() const noexcept
343 { return _M_t._M_ptr(); }
344
345 /// Return a reference to the stored deleter.
346 deleter_type&
347 get_deleter() noexcept
348 { return _M_t._M_deleter(); }
349
350 /// Return a reference to the stored deleter.
351 const deleter_type&
352 get_deleter() const noexcept
353 { return _M_t._M_deleter(); }
354
355 /// Return @c true if the stored pointer is not null.
356 explicit operator bool() const noexcept
357 { return get() == pointer() ? false : true; }
358
359 // Modifiers.
360
361 /// Release ownership of any stored pointer.
362 pointer
363 release() noexcept
364 {
365 pointer __p = get();
366 _M_t._M_ptr() = pointer();
367 return __p;
368 }
369
370 /** @brief Replace the stored pointer.
371 *
372 * @param __p The new pointer to store.
373 *
374 * The deleter will be invoked if a pointer is already owned.
375 */
376 void
377 reset(pointer __p = pointer()) noexcept
378 {
379 using std::swap;
380 swap(_M_t._M_ptr(), __p);
381 if (__p != pointer())
382 get_deleter()(__p);
383 }
384
385 /// Exchange the pointer and deleter with another object.
386 void
387 swap(unique_ptr& __u) noexcept
388 {
389 using std::swap;
390 swap(_M_t, __u._M_t);
391 }
392
393 // Disable copy from lvalue.
394 unique_ptr(const unique_ptr&) = delete;
395 unique_ptr& operator=(const unique_ptr&) = delete;
396 };
397
398 /// 20.7.1.3 unique_ptr for array objects with a runtime length
399 // [unique.ptr.runtime]
400 // _GLIBCXX_RESOLVE_LIB_DEFECTS
401 // DR 740 - omit specialization for array objects with a compile time length
402 template<typename _Tp, typename _Dp>
403 class unique_ptr<_Tp[], _Dp>
404 {
405 template <typename _Up>
406 using _DeleterConstraint =
407 typename __uniq_ptr_impl<_Tp, _Up>::_DeleterConstraint::type;
408
409 __uniq_ptr_impl<_Tp, _Dp> _M_t;
410
411 template<typename _Up>
412 using __remove_cv = typename remove_cv<_Up>::type;
413
414 // like is_base_of<_Tp, _Up> but false if unqualified types are the same
415 template<typename _Up>
416 using __is_derived_Tp
417 = __and_< is_base_of<_Tp, _Up>,
418 __not_<is_same<__remove_cv<_Tp>, __remove_cv<_Up>>> >;
419
420 public:
421 using pointer = typename __uniq_ptr_impl<_Tp, _Dp>::pointer;
422 using element_type = _Tp;
423 using deleter_type = _Dp;
424
425 // helper template for detecting a safe conversion from another
426 // unique_ptr
427 template<typename _Up, typename _Ep,
428 typename _Up_up = unique_ptr<_Up, _Ep>,
429 typename _Up_element_type = typename _Up_up::element_type>
430 using __safe_conversion_up = __and_<
431 is_array<_Up>,
432 is_same<pointer, element_type*>,
433 is_same<typename _Up_up::pointer, _Up_element_type*>,
434 is_convertible<_Up_element_type(*)[], element_type(*)[]>,
435 __or_<__and_<is_reference<deleter_type>, is_same<deleter_type, _Ep>>,
436 __and_<__not_<is_reference<deleter_type>>,
437 is_convertible<_Ep, deleter_type>>>
438 >;
439
440 // helper template for detecting a safe conversion from a raw pointer
441 template<typename _Up>
442 using __safe_conversion_raw = __and_<
443 __or_<__or_<is_same<_Up, pointer>,
444 is_same<_Up, nullptr_t>>,
445 __and_<is_pointer<_Up>,
446 is_same<pointer, element_type*>,
447 is_convertible<
448 typename remove_pointer<_Up>::type(*)[],
449 element_type(*)[]>
450 >
451 >
452 >;
453
454 // Constructors.
455
456 /// Default constructor, creates a unique_ptr that owns nothing.
457 template <typename _Up = _Dp,
458 typename = _DeleterConstraint<_Up>>
459 constexpr unique_ptr() noexcept
460 : _M_t()
461 { }
462
463 /** Takes ownership of a pointer.
464 *
465 * @param __p A pointer to an array of a type safely convertible
466 * to an array of @c element_type
467 *
468 * The deleter will be value-initialized.
469 */
470 template<typename _Up,
471 typename _Vp = _Dp,
472 typename = _DeleterConstraint<_Vp>,
473 typename = typename enable_if<
474 __safe_conversion_raw<_Up>::value, bool>::type>
475 explicit
476 unique_ptr(_Up __p) noexcept
477 : _M_t(__p)
478 { }
479
480 /** Takes ownership of a pointer.
481 *
482 * @param __p A pointer to an array of a type safely convertible
483 * to an array of @c element_type
484 * @param __d A reference to a deleter.
485 *
486 * The deleter will be initialized with @p __d
487 */
488 template<typename _Up,
489 typename = typename enable_if<
490 __safe_conversion_raw<_Up>::value, bool>::type>
491 unique_ptr(_Up __p,
492 typename conditional<is_reference<deleter_type>::value,
493 deleter_type, const deleter_type&>::type __d) noexcept
494 : _M_t(__p, __d) { }
495
496 /** Takes ownership of a pointer.
497 *
498 * @param __p A pointer to an array of a type safely convertible
499 * to an array of @c element_type
500 * @param __d A reference to a deleter.
501 *
502 * The deleter will be initialized with @p std::move(__d)
503 */
504 template<typename _Up,
505 typename = typename enable_if<
506 __safe_conversion_raw<_Up>::value, bool>::type>
507 unique_ptr(_Up __p, typename
508 remove_reference<deleter_type>::type&& __d) noexcept
509 : _M_t(std::move(__p), std::move(__d))
510 { static_assert(!is_reference<deleter_type>::value,
511 "rvalue deleter bound to reference"); }
512
513 /// Move constructor.
514 unique_ptr(unique_ptr&& __u) noexcept
515 : _M_t(__u.release(), std::forward<deleter_type>(__u.get_deleter())) { }
516
517 /// Creates a unique_ptr that owns nothing.
518 template <typename _Up = _Dp,
519 typename = _DeleterConstraint<_Up>>
520 constexpr unique_ptr(nullptr_t) noexcept : unique_ptr() { }
521
522 template<typename _Up, typename _Ep,
523 typename = _Require<__safe_conversion_up<_Up, _Ep>>>
524 unique_ptr(unique_ptr<_Up, _Ep>&& __u) noexcept
525 : _M_t(__u.release(), std::forward<_Ep>(__u.get_deleter()))
526 { }
527
528 /// Destructor, invokes the deleter if the stored pointer is not null.
529 ~unique_ptr()
530 {
531 auto& __ptr = _M_t._M_ptr();
532 if (__ptr != nullptr)
533 get_deleter()(__ptr);
534 __ptr = pointer();
535 }
536
537 // Assignment.
538
539 /** @brief Move assignment operator.
540 *
541 * @param __u The object to transfer ownership from.
542 *
543 * Invokes the deleter first if this object owns a pointer.
544 */
545 unique_ptr&
546 operator=(unique_ptr&& __u) noexcept
547 {
548 reset(__u.release());
549 get_deleter() = std::forward<deleter_type>(__u.get_deleter());
550 return *this;
551 }
552
553 /** @brief Assignment from another type.
554 *
555 * @param __u The object to transfer ownership from, which owns a
556 * convertible pointer to an array object.
557 *
558 * Invokes the deleter first if this object owns a pointer.
559 */
560 template<typename _Up, typename _Ep>
561 typename
562 enable_if<__and_<__safe_conversion_up<_Up, _Ep>,
563 is_assignable<deleter_type&, _Ep&&>
564 >::value,
565 unique_ptr&>::type
566 operator=(unique_ptr<_Up, _Ep>&& __u) noexcept
567 {
568 reset(__u.release());
569 get_deleter() = std::forward<_Ep>(__u.get_deleter());
570 return *this;
571 }
572
573 /// Reset the %unique_ptr to empty, invoking the deleter if necessary.
574 unique_ptr&
575 operator=(nullptr_t) noexcept
576 {
577 reset();
578 return *this;
579 }
580
581 // Observers.
582
583 /// Access an element of owned array.
584 typename std::add_lvalue_reference<element_type>::type
585 operator[](size_t __i) const
586 {
587 __glibcxx_assert(get() != pointer());
588 return get()[__i];
589 }
590
591 /// Return the stored pointer.
592 pointer
593 get() const noexcept
594 { return _M_t._M_ptr(); }
595
596 /// Return a reference to the stored deleter.
597 deleter_type&
598 get_deleter() noexcept
599 { return _M_t._M_deleter(); }
600
601 /// Return a reference to the stored deleter.
602 const deleter_type&
603 get_deleter() const noexcept
604 { return _M_t._M_deleter(); }
605
606 /// Return @c true if the stored pointer is not null.
607 explicit operator bool() const noexcept
608 { return get() == pointer() ? false : true; }
609
610 // Modifiers.
611
612 /// Release ownership of any stored pointer.
613 pointer
614 release() noexcept
615 {
616 pointer __p = get();
617 _M_t._M_ptr() = pointer();
618 return __p;
619 }
620
621 /** @brief Replace the stored pointer.
622 *
623 * @param __p The new pointer to store.
624 *
625 * The deleter will be invoked if a pointer is already owned.
626 */
627 template <typename _Up,
628 typename = _Require<
629 __or_<is_same<_Up, pointer>,
630 __and_<is_same<pointer, element_type*>,
631 is_pointer<_Up>,
632 is_convertible<
633 typename remove_pointer<_Up>::type(*)[],
634 element_type(*)[]
635 >
636 >
637 >
638 >>
639 void
640 reset(_Up __p) noexcept
641 {
642 pointer __ptr = __p;
643 using std::swap;
644 swap(_M_t._M_ptr(), __ptr);
645 if (__ptr != nullptr)
646 get_deleter()(__ptr);
647 }
648
649 void reset(nullptr_t = nullptr) noexcept
650 {
651 reset(pointer());
652 }
653
654 /// Exchange the pointer and deleter with another object.
655 void
656 swap(unique_ptr& __u) noexcept
657 {
658 using std::swap;
659 swap(_M_t, __u._M_t);
660 }
661
662 // Disable copy from lvalue.
663 unique_ptr(const unique_ptr&) = delete;
664 unique_ptr& operator=(const unique_ptr&) = delete;
665 };
666
667 template<typename _Tp, typename _Dp>
668 inline
669#if __cplusplus201103L > 201402L || !defined(__STRICT_ANSI__1) // c++1z or gnu++11
670 // Constrained free swap overload, see p0185r1
671 typename enable_if<__is_swappable<_Dp>::value>::type
672#else
673 void
674#endif
675 swap(unique_ptr<_Tp, _Dp>& __x,
676 unique_ptr<_Tp, _Dp>& __y) noexcept
677 { __x.swap(__y); }
678
679#if __cplusplus201103L > 201402L || !defined(__STRICT_ANSI__1) // c++1z or gnu++11
680 template<typename _Tp, typename _Dp>
681 typename enable_if<!__is_swappable<_Dp>::value>::type
682 swap(unique_ptr<_Tp, _Dp>&,
683 unique_ptr<_Tp, _Dp>&) = delete;
684#endif
685
686 template<typename _Tp, typename _Dp,
687 typename _Up, typename _Ep>
688 inline bool
689 operator==(const unique_ptr<_Tp, _Dp>& __x,
690 const unique_ptr<_Up, _Ep>& __y)
691 { return __x.get() == __y.get(); }
692
693 template<typename _Tp, typename _Dp>
694 inline bool
695 operator==(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) noexcept
696 { return !__x; }
697
698 template<typename _Tp, typename _Dp>
699 inline bool
700 operator==(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) noexcept
701 { return !__x; }
702
703 template<typename _Tp, typename _Dp,
704 typename _Up, typename _Ep>
705 inline bool
706 operator!=(const unique_ptr<_Tp, _Dp>& __x,
707 const unique_ptr<_Up, _Ep>& __y)
708 { return __x.get() != __y.get(); }
709
710 template<typename _Tp, typename _Dp>
711 inline bool
712 operator!=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t) noexcept
713 { return (bool)__x; }
714
715 template<typename _Tp, typename _Dp>
716 inline bool
717 operator!=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x) noexcept
718 { return (bool)__x; }
719
720 template<typename _Tp, typename _Dp,
721 typename _Up, typename _Ep>
722 inline bool
723 operator<(const unique_ptr<_Tp, _Dp>& __x,
724 const unique_ptr<_Up, _Ep>& __y)
725 {
726 typedef typename
727 std::common_type<typename unique_ptr<_Tp, _Dp>::pointer,
728 typename unique_ptr<_Up, _Ep>::pointer>::type _CT;
729 return std::less<_CT>()(__x.get(), __y.get());
730 }
731
732 template<typename _Tp, typename _Dp>
733 inline bool
734 operator<(const unique_ptr<_Tp, _Dp>& __x, nullptr_t)
735 { return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(__x.get(),
736 nullptr); }
737
738 template<typename _Tp, typename _Dp>
739 inline bool
740 operator<(nullptr_t, const unique_ptr<_Tp, _Dp>& __x)
741 { return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(nullptr,
742 __x.get()); }
743
744 template<typename _Tp, typename _Dp,
745 typename _Up, typename _Ep>
746 inline bool
747 operator<=(const unique_ptr<_Tp, _Dp>& __x,
748 const unique_ptr<_Up, _Ep>& __y)
749 { return !(__y < __x); }
750
751 template<typename _Tp, typename _Dp>
752 inline bool
753 operator<=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t)
754 { return !(nullptr < __x); }
755
756 template<typename _Tp, typename _Dp>
757 inline bool
758 operator<=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x)
759 { return !(__x < nullptr); }
760
761 template<typename _Tp, typename _Dp,
762 typename _Up, typename _Ep>
763 inline bool
764 operator>(const unique_ptr<_Tp, _Dp>& __x,
765 const unique_ptr<_Up, _Ep>& __y)
766 { return (__y < __x); }
767
768 template<typename _Tp, typename _Dp>
769 inline bool
770 operator>(const unique_ptr<_Tp, _Dp>& __x, nullptr_t)
771 { return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(nullptr,
772 __x.get()); }
773
774 template<typename _Tp, typename _Dp>
775 inline bool
776 operator>(nullptr_t, const unique_ptr<_Tp, _Dp>& __x)
777 { return std::less<typename unique_ptr<_Tp, _Dp>::pointer>()(__x.get(),
778 nullptr); }
779
780 template<typename _Tp, typename _Dp,
781 typename _Up, typename _Ep>
782 inline bool
783 operator>=(const unique_ptr<_Tp, _Dp>& __x,
784 const unique_ptr<_Up, _Ep>& __y)
785 { return !(__x < __y); }
786
787 template<typename _Tp, typename _Dp>
788 inline bool
789 operator>=(const unique_ptr<_Tp, _Dp>& __x, nullptr_t)
790 { return !(__x < nullptr); }
791
792 template<typename _Tp, typename _Dp>
793 inline bool
794 operator>=(nullptr_t, const unique_ptr<_Tp, _Dp>& __x)
795 { return !(nullptr < __x); }
796
797 /// std::hash specialization for unique_ptr.
798 template<typename _Tp, typename _Dp>
799 struct hash<unique_ptr<_Tp, _Dp>>
800 : public __hash_base<size_t, unique_ptr<_Tp, _Dp>>,
801 private __poison_hash<typename unique_ptr<_Tp, _Dp>::pointer>
802 {
803 size_t
804 operator()(const unique_ptr<_Tp, _Dp>& __u) const noexcept
805 {
806 typedef unique_ptr<_Tp, _Dp> _UP;
807 return std::hash<typename _UP::pointer>()(__u.get());
808 }
809 };
810
811#if __cplusplus201103L > 201103L
812
813#define __cpp_lib_make_unique 201304
814
815 template<typename _Tp>
816 struct _MakeUniq
817 { typedef unique_ptr<_Tp> __single_object; };
818
819 template<typename _Tp>
820 struct _MakeUniq<_Tp[]>
821 { typedef unique_ptr<_Tp[]> __array; };
822
823 template<typename _Tp, size_t _Bound>
824 struct _MakeUniq<_Tp[_Bound]>
825 { struct __invalid_type { }; };
826
827 /// std::make_unique for single objects
828 template<typename _Tp, typename... _Args>
829 inline typename _MakeUniq<_Tp>::__single_object
830 make_unique(_Args&&... __args)
831 { return unique_ptr<_Tp>(new _Tp(std::forward<_Args>(__args)...)); }
832
833 /// std::make_unique for arrays of unknown bound
834 template<typename _Tp>
835 inline typename _MakeUniq<_Tp>::__array
836 make_unique(size_t __num)
837 { return unique_ptr<_Tp>(new remove_extent_t<_Tp>[__num]()); }
838
839 /// Disable std::make_unique for arrays of known bound
840 template<typename _Tp, typename... _Args>
841 inline typename _MakeUniq<_Tp>::__invalid_type
842 make_unique(_Args&&...) = delete;
843#endif
844
845 // @} group pointer_abstractions
846
847_GLIBCXX_END_NAMESPACE_VERSION
848} // namespace
849
850#endif /* _UNIQUE_PTR_H */