Bug Summary

File:tools/clang/lib/Sema/SemaLookup.cpp
Warning:line 106, column 38
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaLookup.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp -faddrsig
1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements name lookup for C, C++, Objective-C, and
11// Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclLookups.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50using namespace clang;
51using namespace sema;
52
53namespace {
54 class UnqualUsingEntry {
55 const DeclContext *Nominated;
56 const DeclContext *CommonAncestor;
57
58 public:
59 UnqualUsingEntry(const DeclContext *Nominated,
60 const DeclContext *CommonAncestor)
61 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
62 }
63
64 const DeclContext *getCommonAncestor() const {
65 return CommonAncestor;
66 }
67
68 const DeclContext *getNominatedNamespace() const {
69 return Nominated;
70 }
71
72 // Sort by the pointer value of the common ancestor.
73 struct Comparator {
74 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
75 return L.getCommonAncestor() < R.getCommonAncestor();
76 }
77
78 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
79 return E.getCommonAncestor() < DC;
80 }
81
82 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
83 return DC < E.getCommonAncestor();
84 }
85 };
86 };
87
88 /// A collection of using directives, as used by C++ unqualified
89 /// lookup.
90 class UnqualUsingDirectiveSet {
91 Sema &SemaRef;
92
93 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94
95 ListTy list;
96 llvm::SmallPtrSet<DeclContext*, 8> visited;
97
98 public:
99 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
100
101 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102 // C++ [namespace.udir]p1:
103 // During unqualified name lookup, the names appear as if they
104 // were declared in the nearest enclosing namespace which contains
105 // both the using-directive and the nominated namespace.
106 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
6
Called C++ object pointer is null
107 assert(InnermostFileDC && InnermostFileDC->isFileContext())((InnermostFileDC && InnermostFileDC->isFileContext
()) ? static_cast<void> (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 107, __PRETTY_FUNCTION__))
;
108
109 for (; S; S = S->getParent()) {
110 // C++ [namespace.udir]p1:
111 // A using-directive shall not appear in class scope, but may
112 // appear in namespace scope or in block scope.
113 DeclContext *Ctx = S->getEntity();
114 if (Ctx && Ctx->isFileContext()) {
115 visit(Ctx, Ctx);
116 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117 for (auto *I : S->using_directives())
118 if (SemaRef.isVisible(I))
119 visit(I, InnermostFileDC);
120 }
121 }
122 }
123
124 // Visits a context and collect all of its using directives
125 // recursively. Treats all using directives as if they were
126 // declared in the context.
127 //
128 // A given context is only every visited once, so it is important
129 // that contexts be visited from the inside out in order to get
130 // the effective DCs right.
131 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
132 if (!visited.insert(DC).second)
133 return;
134
135 addUsingDirectives(DC, EffectiveDC);
136 }
137
138 // Visits a using directive and collects all of its using
139 // directives recursively. Treats all using directives as if they
140 // were declared in the effective DC.
141 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
142 DeclContext *NS = UD->getNominatedNamespace();
143 if (!visited.insert(NS).second)
144 return;
145
146 addUsingDirective(UD, EffectiveDC);
147 addUsingDirectives(NS, EffectiveDC);
148 }
149
150 // Adds all the using directives in a context (and those nominated
151 // by its using directives, transitively) as if they appeared in
152 // the given effective context.
153 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
154 SmallVector<DeclContext*, 4> queue;
155 while (true) {
156 for (auto UD : DC->using_directives()) {
157 DeclContext *NS = UD->getNominatedNamespace();
158 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
159 addUsingDirective(UD, EffectiveDC);
160 queue.push_back(NS);
161 }
162 }
163
164 if (queue.empty())
165 return;
166
167 DC = queue.pop_back_val();
168 }
169 }
170
171 // Add a using directive as if it had been declared in the given
172 // context. This helps implement C++ [namespace.udir]p3:
173 // The using-directive is transitive: if a scope contains a
174 // using-directive that nominates a second namespace that itself
175 // contains using-directives, the effect is as if the
176 // using-directives from the second namespace also appeared in
177 // the first.
178 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
179 // Find the common ancestor between the effective context and
180 // the nominated namespace.
181 DeclContext *Common = UD->getNominatedNamespace();
182 while (!Common->Encloses(EffectiveDC))
183 Common = Common->getParent();
184 Common = Common->getPrimaryContext();
185
186 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
187 }
188
189 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
190
191 typedef ListTy::const_iterator const_iterator;
192
193 const_iterator begin() const { return list.begin(); }
194 const_iterator end() const { return list.end(); }
195
196 llvm::iterator_range<const_iterator>
197 getNamespacesFor(DeclContext *DC) const {
198 return llvm::make_range(std::equal_range(begin(), end(),
199 DC->getPrimaryContext(),
200 UnqualUsingEntry::Comparator()));
201 }
202 };
203} // end anonymous namespace
204
205// Retrieve the set of identifier namespaces that correspond to a
206// specific kind of name lookup.
207static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
208 bool CPlusPlus,
209 bool Redeclaration) {
210 unsigned IDNS = 0;
211 switch (NameKind) {
212 case Sema::LookupObjCImplicitSelfParam:
213 case Sema::LookupOrdinaryName:
214 case Sema::LookupRedeclarationWithLinkage:
215 case Sema::LookupLocalFriendName:
216 IDNS = Decl::IDNS_Ordinary;
217 if (CPlusPlus) {
218 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
219 if (Redeclaration)
220 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
221 }
222 if (Redeclaration)
223 IDNS |= Decl::IDNS_LocalExtern;
224 break;
225
226 case Sema::LookupOperatorName:
227 // Operator lookup is its own crazy thing; it is not the same
228 // as (e.g.) looking up an operator name for redeclaration.
229 assert(!Redeclaration && "cannot do redeclaration operator lookup")((!Redeclaration && "cannot do redeclaration operator lookup"
) ? static_cast<void> (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 229, __PRETTY_FUNCTION__))
;
230 IDNS = Decl::IDNS_NonMemberOperator;
231 break;
232
233 case Sema::LookupTagName:
234 if (CPlusPlus) {
235 IDNS = Decl::IDNS_Type;
236
237 // When looking for a redeclaration of a tag name, we add:
238 // 1) TagFriend to find undeclared friend decls
239 // 2) Namespace because they can't "overload" with tag decls.
240 // 3) Tag because it includes class templates, which can't
241 // "overload" with tag decls.
242 if (Redeclaration)
243 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
244 } else {
245 IDNS = Decl::IDNS_Tag;
246 }
247 break;
248
249 case Sema::LookupLabel:
250 IDNS = Decl::IDNS_Label;
251 break;
252
253 case Sema::LookupMemberName:
254 IDNS = Decl::IDNS_Member;
255 if (CPlusPlus)
256 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
257 break;
258
259 case Sema::LookupNestedNameSpecifierName:
260 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
261 break;
262
263 case Sema::LookupNamespaceName:
264 IDNS = Decl::IDNS_Namespace;
265 break;
266
267 case Sema::LookupUsingDeclName:
268 assert(Redeclaration && "should only be used for redecl lookup")((Redeclaration && "should only be used for redecl lookup"
) ? static_cast<void> (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 268, __PRETTY_FUNCTION__))
;
269 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
270 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
271 Decl::IDNS_LocalExtern;
272 break;
273
274 case Sema::LookupObjCProtocolName:
275 IDNS = Decl::IDNS_ObjCProtocol;
276 break;
277
278 case Sema::LookupOMPReductionName:
279 IDNS = Decl::IDNS_OMPReduction;
280 break;
281
282 case Sema::LookupAnyName:
283 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
284 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
285 | Decl::IDNS_Type;
286 break;
287 }
288 return IDNS;
289}
290
291void LookupResult::configure() {
292 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
293 isForRedeclaration());
294
295 // If we're looking for one of the allocation or deallocation
296 // operators, make sure that the implicitly-declared new and delete
297 // operators can be found.
298 switch (NameInfo.getName().getCXXOverloadedOperator()) {
299 case OO_New:
300 case OO_Delete:
301 case OO_Array_New:
302 case OO_Array_Delete:
303 getSema().DeclareGlobalNewDelete();
304 break;
305
306 default:
307 break;
308 }
309
310 // Compiler builtins are always visible, regardless of where they end
311 // up being declared.
312 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
313 if (unsigned BuiltinID = Id->getBuiltinID()) {
314 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
315 AllowHidden = true;
316 }
317 }
318}
319
320bool LookupResult::sanity() const {
321 // This function is never called by NDEBUG builds.
322 assert(ResultKind != NotFound || Decls.size() == 0)((ResultKind != NotFound || Decls.size() == 0) ? static_cast<
void> (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 322, __PRETTY_FUNCTION__))
;
323 assert(ResultKind != Found || Decls.size() == 1)((ResultKind != Found || Decls.size() == 1) ? static_cast<
void> (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 323, __PRETTY_FUNCTION__))
;
324 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 326, __PRETTY_FUNCTION__))
325 (Decls.size() == 1 &&((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 326, __PRETTY_FUNCTION__))
326 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 326, __PRETTY_FUNCTION__))
;
327 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())((ResultKind != FoundUnresolvedValue || sanityCheckUnresolved
()) ? static_cast<void> (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 327, __PRETTY_FUNCTION__))
;
328 assert(ResultKind != Ambiguous || Decls.size() > 1 ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 330, __PRETTY_FUNCTION__))
329 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 330, __PRETTY_FUNCTION__))
330 Ambiguity == AmbiguousBaseSubobjectTypes)))((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 330, __PRETTY_FUNCTION__))
;
331 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 333, __PRETTY_FUNCTION__))
332 (Ambiguity == AmbiguousBaseSubobjectTypes ||(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 333, __PRETTY_FUNCTION__))
333 Ambiguity == AmbiguousBaseSubobjects)))(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 333, __PRETTY_FUNCTION__))
;
334 return true;
335}
336
337// Necessary because CXXBasePaths is not complete in Sema.h
338void LookupResult::deletePaths(CXXBasePaths *Paths) {
339 delete Paths;
340}
341
342/// Get a representative context for a declaration such that two declarations
343/// will have the same context if they were found within the same scope.
344static DeclContext *getContextForScopeMatching(Decl *D) {
345 // For function-local declarations, use that function as the context. This
346 // doesn't account for scopes within the function; the caller must deal with
347 // those.
348 DeclContext *DC = D->getLexicalDeclContext();
349 if (DC->isFunctionOrMethod())
350 return DC;
351
352 // Otherwise, look at the semantic context of the declaration. The
353 // declaration must have been found there.
354 return D->getDeclContext()->getRedeclContext();
355}
356
357/// Determine whether \p D is a better lookup result than \p Existing,
358/// given that they declare the same entity.
359static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
360 NamedDecl *D, NamedDecl *Existing) {
361 // When looking up redeclarations of a using declaration, prefer a using
362 // shadow declaration over any other declaration of the same entity.
363 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
364 !isa<UsingShadowDecl>(Existing))
365 return true;
366
367 auto *DUnderlying = D->getUnderlyingDecl();
368 auto *EUnderlying = Existing->getUnderlyingDecl();
369
370 // If they have different underlying declarations, prefer a typedef over the
371 // original type (this happens when two type declarations denote the same
372 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
373 // might carry additional semantic information, such as an alignment override.
374 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
375 // declaration over a typedef.
376 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
377 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))((isa<TypeDecl>(DUnderlying) && isa<TypeDecl
>(EUnderlying)) ? static_cast<void> (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 377, __PRETTY_FUNCTION__))
;
378 bool HaveTag = isa<TagDecl>(EUnderlying);
379 bool WantTag = Kind == Sema::LookupTagName;
380 return HaveTag != WantTag;
381 }
382
383 // Pick the function with more default arguments.
384 // FIXME: In the presence of ambiguous default arguments, we should keep both,
385 // so we can diagnose the ambiguity if the default argument is needed.
386 // See C++ [over.match.best]p3.
387 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
388 auto *EFD = cast<FunctionDecl>(EUnderlying);
389 unsigned DMin = DFD->getMinRequiredArguments();
390 unsigned EMin = EFD->getMinRequiredArguments();
391 // If D has more default arguments, it is preferred.
392 if (DMin != EMin)
393 return DMin < EMin;
394 // FIXME: When we track visibility for default function arguments, check
395 // that we pick the declaration with more visible default arguments.
396 }
397
398 // Pick the template with more default template arguments.
399 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
400 auto *ETD = cast<TemplateDecl>(EUnderlying);
401 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
402 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
403 // If D has more default arguments, it is preferred. Note that default
404 // arguments (and their visibility) is monotonically increasing across the
405 // redeclaration chain, so this is a quick proxy for "is more recent".
406 if (DMin != EMin)
407 return DMin < EMin;
408 // If D has more *visible* default arguments, it is preferred. Note, an
409 // earlier default argument being visible does not imply that a later
410 // default argument is visible, so we can't just check the first one.
411 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
412 I != N; ++I) {
413 if (!S.hasVisibleDefaultArgument(
414 ETD->getTemplateParameters()->getParam(I)) &&
415 S.hasVisibleDefaultArgument(
416 DTD->getTemplateParameters()->getParam(I)))
417 return true;
418 }
419 }
420
421 // VarDecl can have incomplete array types, prefer the one with more complete
422 // array type.
423 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
424 VarDecl *EVD = cast<VarDecl>(EUnderlying);
425 if (EVD->getType()->isIncompleteType() &&
426 !DVD->getType()->isIncompleteType()) {
427 // Prefer the decl with a more complete type if visible.
428 return S.isVisible(DVD);
429 }
430 return false; // Avoid picking up a newer decl, just because it was newer.
431 }
432
433 // For most kinds of declaration, it doesn't really matter which one we pick.
434 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
435 // If the existing declaration is hidden, prefer the new one. Otherwise,
436 // keep what we've got.
437 return !S.isVisible(Existing);
438 }
439
440 // Pick the newer declaration; it might have a more precise type.
441 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
442 Prev = Prev->getPreviousDecl())
443 if (Prev == EUnderlying)
444 return true;
445 return false;
446}
447
448/// Determine whether \p D can hide a tag declaration.
449static bool canHideTag(NamedDecl *D) {
450 // C++ [basic.scope.declarative]p4:
451 // Given a set of declarations in a single declarative region [...]
452 // exactly one declaration shall declare a class name or enumeration name
453 // that is not a typedef name and the other declarations shall all refer to
454 // the same variable, non-static data member, or enumerator, or all refer
455 // to functions and function templates; in this case the class name or
456 // enumeration name is hidden.
457 // C++ [basic.scope.hiding]p2:
458 // A class name or enumeration name can be hidden by the name of a
459 // variable, data member, function, or enumerator declared in the same
460 // scope.
461 // An UnresolvedUsingValueDecl always instantiates to one of these.
462 D = D->getUnderlyingDecl();
463 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
464 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
465 isa<UnresolvedUsingValueDecl>(D);
466}
467
468/// Resolves the result kind of this lookup.
469void LookupResult::resolveKind() {
470 unsigned N = Decls.size();
471
472 // Fast case: no possible ambiguity.
473 if (N == 0) {
474 assert(ResultKind == NotFound ||((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 475, __PRETTY_FUNCTION__))
475 ResultKind == NotFoundInCurrentInstantiation)((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 475, __PRETTY_FUNCTION__))
;
476 return;
477 }
478
479 // If there's a single decl, we need to examine it to decide what
480 // kind of lookup this is.
481 if (N == 1) {
482 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
483 if (isa<FunctionTemplateDecl>(D))
484 ResultKind = FoundOverloaded;
485 else if (isa<UnresolvedUsingValueDecl>(D))
486 ResultKind = FoundUnresolvedValue;
487 return;
488 }
489
490 // Don't do any extra resolution if we've already resolved as ambiguous.
491 if (ResultKind == Ambiguous) return;
492
493 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
494 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
495
496 bool Ambiguous = false;
497 bool HasTag = false, HasFunction = false;
498 bool HasFunctionTemplate = false, HasUnresolved = false;
499 NamedDecl *HasNonFunction = nullptr;
500
501 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
502
503 unsigned UniqueTagIndex = 0;
504
505 unsigned I = 0;
506 while (I < N) {
507 NamedDecl *D = Decls[I]->getUnderlyingDecl();
508 D = cast<NamedDecl>(D->getCanonicalDecl());
509
510 // Ignore an invalid declaration unless it's the only one left.
511 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
512 Decls[I] = Decls[--N];
513 continue;
514 }
515
516 llvm::Optional<unsigned> ExistingI;
517
518 // Redeclarations of types via typedef can occur both within a scope
519 // and, through using declarations and directives, across scopes. There is
520 // no ambiguity if they all refer to the same type, so unique based on the
521 // canonical type.
522 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
523 QualType T = getSema().Context.getTypeDeclType(TD);
524 auto UniqueResult = UniqueTypes.insert(
525 std::make_pair(getSema().Context.getCanonicalType(T), I));
526 if (!UniqueResult.second) {
527 // The type is not unique.
528 ExistingI = UniqueResult.first->second;
529 }
530 }
531
532 // For non-type declarations, check for a prior lookup result naming this
533 // canonical declaration.
534 if (!ExistingI) {
535 auto UniqueResult = Unique.insert(std::make_pair(D, I));
536 if (!UniqueResult.second) {
537 // We've seen this entity before.
538 ExistingI = UniqueResult.first->second;
539 }
540 }
541
542 if (ExistingI) {
543 // This is not a unique lookup result. Pick one of the results and
544 // discard the other.
545 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
546 Decls[*ExistingI]))
547 Decls[*ExistingI] = Decls[I];
548 Decls[I] = Decls[--N];
549 continue;
550 }
551
552 // Otherwise, do some decl type analysis and then continue.
553
554 if (isa<UnresolvedUsingValueDecl>(D)) {
555 HasUnresolved = true;
556 } else if (isa<TagDecl>(D)) {
557 if (HasTag)
558 Ambiguous = true;
559 UniqueTagIndex = I;
560 HasTag = true;
561 } else if (isa<FunctionTemplateDecl>(D)) {
562 HasFunction = true;
563 HasFunctionTemplate = true;
564 } else if (isa<FunctionDecl>(D)) {
565 HasFunction = true;
566 } else {
567 if (HasNonFunction) {
568 // If we're about to create an ambiguity between two declarations that
569 // are equivalent, but one is an internal linkage declaration from one
570 // module and the other is an internal linkage declaration from another
571 // module, just skip it.
572 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
573 D)) {
574 EquivalentNonFunctions.push_back(D);
575 Decls[I] = Decls[--N];
576 continue;
577 }
578
579 Ambiguous = true;
580 }
581 HasNonFunction = D;
582 }
583 I++;
584 }
585
586 // C++ [basic.scope.hiding]p2:
587 // A class name or enumeration name can be hidden by the name of
588 // an object, function, or enumerator declared in the same
589 // scope. If a class or enumeration name and an object, function,
590 // or enumerator are declared in the same scope (in any order)
591 // with the same name, the class or enumeration name is hidden
592 // wherever the object, function, or enumerator name is visible.
593 // But it's still an error if there are distinct tag types found,
594 // even if they're not visible. (ref?)
595 if (N > 1 && HideTags && HasTag && !Ambiguous &&
596 (HasFunction || HasNonFunction || HasUnresolved)) {
597 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
598 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
599 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
600 getContextForScopeMatching(OtherDecl)) &&
601 canHideTag(OtherDecl))
602 Decls[UniqueTagIndex] = Decls[--N];
603 else
604 Ambiguous = true;
605 }
606
607 // FIXME: This diagnostic should really be delayed until we're done with
608 // the lookup result, in case the ambiguity is resolved by the caller.
609 if (!EquivalentNonFunctions.empty() && !Ambiguous)
610 getSema().diagnoseEquivalentInternalLinkageDeclarations(
611 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
612
613 Decls.set_size(N);
614
615 if (HasNonFunction && (HasFunction || HasUnresolved))
616 Ambiguous = true;
617
618 if (Ambiguous)
619 setAmbiguous(LookupResult::AmbiguousReference);
620 else if (HasUnresolved)
621 ResultKind = LookupResult::FoundUnresolvedValue;
622 else if (N > 1 || HasFunctionTemplate)
623 ResultKind = LookupResult::FoundOverloaded;
624 else
625 ResultKind = LookupResult::Found;
626}
627
628void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
629 CXXBasePaths::const_paths_iterator I, E;
630 for (I = P.begin(), E = P.end(); I != E; ++I)
631 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
632 DE = I->Decls.end(); DI != DE; ++DI)
633 addDecl(*DI);
634}
635
636void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
637 Paths = new CXXBasePaths;
638 Paths->swap(P);
639 addDeclsFromBasePaths(*Paths);
640 resolveKind();
641 setAmbiguous(AmbiguousBaseSubobjects);
642}
643
644void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
645 Paths = new CXXBasePaths;
646 Paths->swap(P);
647 addDeclsFromBasePaths(*Paths);
648 resolveKind();
649 setAmbiguous(AmbiguousBaseSubobjectTypes);
650}
651
652void LookupResult::print(raw_ostream &Out) {
653 Out << Decls.size() << " result(s)";
654 if (isAmbiguous()) Out << ", ambiguous";
655 if (Paths) Out << ", base paths present";
656
657 for (iterator I = begin(), E = end(); I != E; ++I) {
658 Out << "\n";
659 (*I)->print(Out, 2);
660 }
661}
662
663LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
664 llvm::errs() << "lookup results for " << getLookupName().getAsString()
665 << ":\n";
666 for (NamedDecl *D : *this)
667 D->dump();
668}
669
670/// Lookup a builtin function, when name lookup would otherwise
671/// fail.
672static bool LookupBuiltin(Sema &S, LookupResult &R) {
673 Sema::LookupNameKind NameKind = R.getLookupKind();
674
675 // If we didn't find a use of this identifier, and if the identifier
676 // corresponds to a compiler builtin, create the decl object for the builtin
677 // now, injecting it into translation unit scope, and return it.
678 if (NameKind == Sema::LookupOrdinaryName ||
679 NameKind == Sema::LookupRedeclarationWithLinkage) {
680 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
681 if (II) {
682 if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
683 if (II == S.getASTContext().getMakeIntegerSeqName()) {
684 R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
685 return true;
686 } else if (II == S.getASTContext().getTypePackElementName()) {
687 R.addDecl(S.getASTContext().getTypePackElementDecl());
688 return true;
689 }
690 }
691
692 // If this is a builtin on this (or all) targets, create the decl.
693 if (unsigned BuiltinID = II->getBuiltinID()) {
694 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
695 // library functions like 'malloc'. Instead, we'll just error.
696 if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
697 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
698 return false;
699
700 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
701 BuiltinID, S.TUScope,
702 R.isForRedeclaration(),
703 R.getNameLoc())) {
704 R.addDecl(D);
705 return true;
706 }
707 }
708 }
709 }
710
711 return false;
712}
713
714/// Determine whether we can declare a special member function within
715/// the class at this point.
716static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
717 // We need to have a definition for the class.
718 if (!Class->getDefinition() || Class->isDependentContext())
719 return false;
720
721 // We can't be in the middle of defining the class.
722 return !Class->isBeingDefined();
723}
724
725void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
726 if (!CanDeclareSpecialMemberFunction(Class))
727 return;
728
729 // If the default constructor has not yet been declared, do so now.
730 if (Class->needsImplicitDefaultConstructor())
731 DeclareImplicitDefaultConstructor(Class);
732
733 // If the copy constructor has not yet been declared, do so now.
734 if (Class->needsImplicitCopyConstructor())
735 DeclareImplicitCopyConstructor(Class);
736
737 // If the copy assignment operator has not yet been declared, do so now.
738 if (Class->needsImplicitCopyAssignment())
739 DeclareImplicitCopyAssignment(Class);
740
741 if (getLangOpts().CPlusPlus11) {
742 // If the move constructor has not yet been declared, do so now.
743 if (Class->needsImplicitMoveConstructor())
744 DeclareImplicitMoveConstructor(Class);
745
746 // If the move assignment operator has not yet been declared, do so now.
747 if (Class->needsImplicitMoveAssignment())
748 DeclareImplicitMoveAssignment(Class);
749 }
750
751 // If the destructor has not yet been declared, do so now.
752 if (Class->needsImplicitDestructor())
753 DeclareImplicitDestructor(Class);
754}
755
756/// Determine whether this is the name of an implicitly-declared
757/// special member function.
758static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
759 switch (Name.getNameKind()) {
760 case DeclarationName::CXXConstructorName:
761 case DeclarationName::CXXDestructorName:
762 return true;
763
764 case DeclarationName::CXXOperatorName:
765 return Name.getCXXOverloadedOperator() == OO_Equal;
766
767 default:
768 break;
769 }
770
771 return false;
772}
773
774/// If there are any implicit member functions with the given name
775/// that need to be declared in the given declaration context, do so.
776static void DeclareImplicitMemberFunctionsWithName(Sema &S,
777 DeclarationName Name,
778 SourceLocation Loc,
779 const DeclContext *DC) {
780 if (!DC)
781 return;
782
783 switch (Name.getNameKind()) {
784 case DeclarationName::CXXConstructorName:
785 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
786 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
787 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
788 if (Record->needsImplicitDefaultConstructor())
789 S.DeclareImplicitDefaultConstructor(Class);
790 if (Record->needsImplicitCopyConstructor())
791 S.DeclareImplicitCopyConstructor(Class);
792 if (S.getLangOpts().CPlusPlus11 &&
793 Record->needsImplicitMoveConstructor())
794 S.DeclareImplicitMoveConstructor(Class);
795 }
796 break;
797
798 case DeclarationName::CXXDestructorName:
799 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
800 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
801 CanDeclareSpecialMemberFunction(Record))
802 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
803 break;
804
805 case DeclarationName::CXXOperatorName:
806 if (Name.getCXXOverloadedOperator() != OO_Equal)
807 break;
808
809 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
810 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
811 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
812 if (Record->needsImplicitCopyAssignment())
813 S.DeclareImplicitCopyAssignment(Class);
814 if (S.getLangOpts().CPlusPlus11 &&
815 Record->needsImplicitMoveAssignment())
816 S.DeclareImplicitMoveAssignment(Class);
817 }
818 }
819 break;
820
821 case DeclarationName::CXXDeductionGuideName:
822 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
823 break;
824
825 default:
826 break;
827 }
828}
829
830// Adds all qualifying matches for a name within a decl context to the
831// given lookup result. Returns true if any matches were found.
832static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
833 bool Found = false;
834
835 // Lazily declare C++ special member functions.
836 if (S.getLangOpts().CPlusPlus)
837 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
838 DC);
839
840 // Perform lookup into this declaration context.
841 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
842 for (NamedDecl *D : DR) {
843 if ((D = R.getAcceptableDecl(D))) {
844 R.addDecl(D);
845 Found = true;
846 }
847 }
848
849 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
850 return true;
851
852 if (R.getLookupName().getNameKind()
853 != DeclarationName::CXXConversionFunctionName ||
854 R.getLookupName().getCXXNameType()->isDependentType() ||
855 !isa<CXXRecordDecl>(DC))
856 return Found;
857
858 // C++ [temp.mem]p6:
859 // A specialization of a conversion function template is not found by
860 // name lookup. Instead, any conversion function templates visible in the
861 // context of the use are considered. [...]
862 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
863 if (!Record->isCompleteDefinition())
864 return Found;
865
866 // For conversion operators, 'operator auto' should only match
867 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
868 // as a candidate for template substitution.
869 auto *ContainedDeducedType =
870 R.getLookupName().getCXXNameType()->getContainedDeducedType();
871 if (R.getLookupName().getNameKind() ==
872 DeclarationName::CXXConversionFunctionName &&
873 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
874 return Found;
875
876 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
877 UEnd = Record->conversion_end(); U != UEnd; ++U) {
878 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
879 if (!ConvTemplate)
880 continue;
881
882 // When we're performing lookup for the purposes of redeclaration, just
883 // add the conversion function template. When we deduce template
884 // arguments for specializations, we'll end up unifying the return
885 // type of the new declaration with the type of the function template.
886 if (R.isForRedeclaration()) {
887 R.addDecl(ConvTemplate);
888 Found = true;
889 continue;
890 }
891
892 // C++ [temp.mem]p6:
893 // [...] For each such operator, if argument deduction succeeds
894 // (14.9.2.3), the resulting specialization is used as if found by
895 // name lookup.
896 //
897 // When referencing a conversion function for any purpose other than
898 // a redeclaration (such that we'll be building an expression with the
899 // result), perform template argument deduction and place the
900 // specialization into the result set. We do this to avoid forcing all
901 // callers to perform special deduction for conversion functions.
902 TemplateDeductionInfo Info(R.getNameLoc());
903 FunctionDecl *Specialization = nullptr;
904
905 const FunctionProtoType *ConvProto
906 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
907 assert(ConvProto && "Nonsensical conversion function template type")((ConvProto && "Nonsensical conversion function template type"
) ? static_cast<void> (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 907, __PRETTY_FUNCTION__))
;
908
909 // Compute the type of the function that we would expect the conversion
910 // function to have, if it were to match the name given.
911 // FIXME: Calling convention!
912 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
913 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
914 EPI.ExceptionSpec = EST_None;
915 QualType ExpectedType
916 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
917 None, EPI);
918
919 // Perform template argument deduction against the type that we would
920 // expect the function to have.
921 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
922 Specialization, Info)
923 == Sema::TDK_Success) {
924 R.addDecl(Specialization);
925 Found = true;
926 }
927 }
928
929 return Found;
930}
931
932// Performs C++ unqualified lookup into the given file context.
933static bool
934CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
935 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
936
937 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")((NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"
) ? static_cast<void> (0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 937, __PRETTY_FUNCTION__))
;
938
939 // Perform direct name lookup into the LookupCtx.
940 bool Found = LookupDirect(S, R, NS);
941
942 // Perform direct name lookup into the namespaces nominated by the
943 // using directives whose common ancestor is this namespace.
944 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
945 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
946 Found = true;
947
948 R.resolveKind();
949
950 return Found;
951}
952
953static bool isNamespaceOrTranslationUnitScope(Scope *S) {
954 if (DeclContext *Ctx = S->getEntity())
955 return Ctx->isFileContext();
956 return false;
957}
958
959// Find the next outer declaration context from this scope. This
960// routine actually returns the semantic outer context, which may
961// differ from the lexical context (encoded directly in the Scope
962// stack) when we are parsing a member of a class template. In this
963// case, the second element of the pair will be true, to indicate that
964// name lookup should continue searching in this semantic context when
965// it leaves the current template parameter scope.
966static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
967 DeclContext *DC = S->getEntity();
968 DeclContext *Lexical = nullptr;
969 for (Scope *OuterS = S->getParent(); OuterS;
970 OuterS = OuterS->getParent()) {
971 if (OuterS->getEntity()) {
972 Lexical = OuterS->getEntity();
973 break;
974 }
975 }
976
977 // C++ [temp.local]p8:
978 // In the definition of a member of a class template that appears
979 // outside of the namespace containing the class template
980 // definition, the name of a template-parameter hides the name of
981 // a member of this namespace.
982 //
983 // Example:
984 //
985 // namespace N {
986 // class C { };
987 //
988 // template<class T> class B {
989 // void f(T);
990 // };
991 // }
992 //
993 // template<class C> void N::B<C>::f(C) {
994 // C b; // C is the template parameter, not N::C
995 // }
996 //
997 // In this example, the lexical context we return is the
998 // TranslationUnit, while the semantic context is the namespace N.
999 if (!Lexical || !DC || !S->getParent() ||
1000 !S->getParent()->isTemplateParamScope())
1001 return std::make_pair(Lexical, false);
1002
1003 // Find the outermost template parameter scope.
1004 // For the example, this is the scope for the template parameters of
1005 // template<class C>.
1006 Scope *OutermostTemplateScope = S->getParent();
1007 while (OutermostTemplateScope->getParent() &&
1008 OutermostTemplateScope->getParent()->isTemplateParamScope())
1009 OutermostTemplateScope = OutermostTemplateScope->getParent();
1010
1011 // Find the namespace context in which the original scope occurs. In
1012 // the example, this is namespace N.
1013 DeclContext *Semantic = DC;
1014 while (!Semantic->isFileContext())
1015 Semantic = Semantic->getParent();
1016
1017 // Find the declaration context just outside of the template
1018 // parameter scope. This is the context in which the template is
1019 // being lexically declaration (a namespace context). In the
1020 // example, this is the global scope.
1021 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1022 Lexical->Encloses(Semantic))
1023 return std::make_pair(Semantic, true);
1024
1025 return std::make_pair(Lexical, false);
1026}
1027
1028namespace {
1029/// An RAII object to specify that we want to find block scope extern
1030/// declarations.
1031struct FindLocalExternScope {
1032 FindLocalExternScope(LookupResult &R)
1033 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1034 Decl::IDNS_LocalExtern) {
1035 R.setFindLocalExtern(R.getIdentifierNamespace() &
1036 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1037 }
1038 void restore() {
1039 R.setFindLocalExtern(OldFindLocalExtern);
1040 }
1041 ~FindLocalExternScope() {
1042 restore();
1043 }
1044 LookupResult &R;
1045 bool OldFindLocalExtern;
1046};
1047} // end anonymous namespace
1048
1049bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1050 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")((getLangOpts().CPlusPlus && "Can perform only C++ lookup"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1050, __PRETTY_FUNCTION__))
;
1051
1052 DeclarationName Name = R.getLookupName();
1053 Sema::LookupNameKind NameKind = R.getLookupKind();
1054
1055 // If this is the name of an implicitly-declared special member function,
1056 // go through the scope stack to implicitly declare
1057 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1058 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1059 if (DeclContext *DC = PreS->getEntity())
1060 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1061 }
1062
1063 // Implicitly declare member functions with the name we're looking for, if in
1064 // fact we are in a scope where it matters.
1065
1066 Scope *Initial = S;
1067 IdentifierResolver::iterator
1068 I = IdResolver.begin(Name),
1069 IEnd = IdResolver.end();
1070
1071 // First we lookup local scope.
1072 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1073 // ...During unqualified name lookup (3.4.1), the names appear as if
1074 // they were declared in the nearest enclosing namespace which contains
1075 // both the using-directive and the nominated namespace.
1076 // [Note: in this context, "contains" means "contains directly or
1077 // indirectly".
1078 //
1079 // For example:
1080 // namespace A { int i; }
1081 // void foo() {
1082 // int i;
1083 // {
1084 // using namespace A;
1085 // ++i; // finds local 'i', A::i appears at global scope
1086 // }
1087 // }
1088 //
1089 UnqualUsingDirectiveSet UDirs(*this);
1090 bool VisitedUsingDirectives = false;
1091 bool LeftStartingScope = false;
1092 DeclContext *OutsideOfTemplateParamDC = nullptr;
1093
1094 // When performing a scope lookup, we want to find local extern decls.
1095 FindLocalExternScope FindLocals(R);
1096
1097 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1098 DeclContext *Ctx = S->getEntity();
1099 bool SearchNamespaceScope = true;
1100 // Check whether the IdResolver has anything in this scope.
1101 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1102 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1103 if (NameKind == LookupRedeclarationWithLinkage &&
1104 !(*I)->isTemplateParameter()) {
1105 // If it's a template parameter, we still find it, so we can diagnose
1106 // the invalid redeclaration.
1107
1108 // Determine whether this (or a previous) declaration is
1109 // out-of-scope.
1110 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1111 LeftStartingScope = true;
1112
1113 // If we found something outside of our starting scope that
1114 // does not have linkage, skip it.
1115 if (LeftStartingScope && !((*I)->hasLinkage())) {
1116 R.setShadowed();
1117 continue;
1118 }
1119 } else {
1120 // We found something in this scope, we should not look at the
1121 // namespace scope
1122 SearchNamespaceScope = false;
1123 }
1124 R.addDecl(ND);
1125 }
1126 }
1127 if (!SearchNamespaceScope) {
1128 R.resolveKind();
1129 if (S->isClassScope())
1130 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1131 R.setNamingClass(Record);
1132 return true;
1133 }
1134
1135 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1136 // C++11 [class.friend]p11:
1137 // If a friend declaration appears in a local class and the name
1138 // specified is an unqualified name, a prior declaration is
1139 // looked up without considering scopes that are outside the
1140 // innermost enclosing non-class scope.
1141 return false;
1142 }
1143
1144 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1145 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1146 // We've just searched the last template parameter scope and
1147 // found nothing, so look into the contexts between the
1148 // lexical and semantic declaration contexts returned by
1149 // findOuterContext(). This implements the name lookup behavior
1150 // of C++ [temp.local]p8.
1151 Ctx = OutsideOfTemplateParamDC;
1152 OutsideOfTemplateParamDC = nullptr;
1153 }
1154
1155 if (Ctx) {
1156 DeclContext *OuterCtx;
1157 bool SearchAfterTemplateScope;
1158 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1159 if (SearchAfterTemplateScope)
1160 OutsideOfTemplateParamDC = OuterCtx;
1161
1162 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1163 // We do not directly look into transparent contexts, since
1164 // those entities will be found in the nearest enclosing
1165 // non-transparent context.
1166 if (Ctx->isTransparentContext())
1167 continue;
1168
1169 // We do not look directly into function or method contexts,
1170 // since all of the local variables and parameters of the
1171 // function/method are present within the Scope.
1172 if (Ctx->isFunctionOrMethod()) {
1173 // If we have an Objective-C instance method, look for ivars
1174 // in the corresponding interface.
1175 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1176 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1177 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1178 ObjCInterfaceDecl *ClassDeclared;
1179 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1180 Name.getAsIdentifierInfo(),
1181 ClassDeclared)) {
1182 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1183 R.addDecl(ND);
1184 R.resolveKind();
1185 return true;
1186 }
1187 }
1188 }
1189 }
1190
1191 continue;
1192 }
1193
1194 // If this is a file context, we need to perform unqualified name
1195 // lookup considering using directives.
1196 if (Ctx->isFileContext()) {
1197 // If we haven't handled using directives yet, do so now.
1198 if (!VisitedUsingDirectives) {
1199 // Add using directives from this context up to the top level.
1200 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1201 if (UCtx->isTransparentContext())
1202 continue;
1203
1204 UDirs.visit(UCtx, UCtx);
1205 }
1206
1207 // Find the innermost file scope, so we can add using directives
1208 // from local scopes.
1209 Scope *InnermostFileScope = S;
1210 while (InnermostFileScope &&
1211 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1212 InnermostFileScope = InnermostFileScope->getParent();
1213 UDirs.visitScopeChain(Initial, InnermostFileScope);
1214
1215 UDirs.done();
1216
1217 VisitedUsingDirectives = true;
1218 }
1219
1220 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1221 R.resolveKind();
1222 return true;
1223 }
1224
1225 continue;
1226 }
1227
1228 // Perform qualified name lookup into this context.
1229 // FIXME: In some cases, we know that every name that could be found by
1230 // this qualified name lookup will also be on the identifier chain. For
1231 // example, inside a class without any base classes, we never need to
1232 // perform qualified lookup because all of the members are on top of the
1233 // identifier chain.
1234 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1235 return true;
1236 }
1237 }
1238 }
1239
1240 // Stop if we ran out of scopes.
1241 // FIXME: This really, really shouldn't be happening.
1242 if (!S) return false;
1243
1244 // If we are looking for members, no need to look into global/namespace scope.
1245 if (NameKind == LookupMemberName)
1246 return false;
1247
1248 // Collect UsingDirectiveDecls in all scopes, and recursively all
1249 // nominated namespaces by those using-directives.
1250 //
1251 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1252 // don't build it for each lookup!
1253 if (!VisitedUsingDirectives) {
1254 UDirs.visitScopeChain(Initial, S);
1255 UDirs.done();
1256 }
1257
1258 // If we're not performing redeclaration lookup, do not look for local
1259 // extern declarations outside of a function scope.
1260 if (!R.isForRedeclaration())
1261 FindLocals.restore();
1262
1263 // Lookup namespace scope, and global scope.
1264 // Unqualified name lookup in C++ requires looking into scopes
1265 // that aren't strictly lexical, and therefore we walk through the
1266 // context as well as walking through the scopes.
1267 for (; S; S = S->getParent()) {
1268 // Check whether the IdResolver has anything in this scope.
1269 bool Found = false;
1270 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1271 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1272 // We found something. Look for anything else in our scope
1273 // with this same name and in an acceptable identifier
1274 // namespace, so that we can construct an overload set if we
1275 // need to.
1276 Found = true;
1277 R.addDecl(ND);
1278 }
1279 }
1280
1281 if (Found && S->isTemplateParamScope()) {
1282 R.resolveKind();
1283 return true;
1284 }
1285
1286 DeclContext *Ctx = S->getEntity();
1287 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1288 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1289 // We've just searched the last template parameter scope and
1290 // found nothing, so look into the contexts between the
1291 // lexical and semantic declaration contexts returned by
1292 // findOuterContext(). This implements the name lookup behavior
1293 // of C++ [temp.local]p8.
1294 Ctx = OutsideOfTemplateParamDC;
1295 OutsideOfTemplateParamDC = nullptr;
1296 }
1297
1298 if (Ctx) {
1299 DeclContext *OuterCtx;
1300 bool SearchAfterTemplateScope;
1301 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1302 if (SearchAfterTemplateScope)
1303 OutsideOfTemplateParamDC = OuterCtx;
1304
1305 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1306 // We do not directly look into transparent contexts, since
1307 // those entities will be found in the nearest enclosing
1308 // non-transparent context.
1309 if (Ctx->isTransparentContext())
1310 continue;
1311
1312 // If we have a context, and it's not a context stashed in the
1313 // template parameter scope for an out-of-line definition, also
1314 // look into that context.
1315 if (!(Found && S->isTemplateParamScope())) {
1316 assert(Ctx->isFileContext() &&((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1317, __PRETTY_FUNCTION__))
1317 "We should have been looking only at file context here already.")((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1317, __PRETTY_FUNCTION__))
;
1318
1319 // Look into context considering using-directives.
1320 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1321 Found = true;
1322 }
1323
1324 if (Found) {
1325 R.resolveKind();
1326 return true;
1327 }
1328
1329 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1330 return false;
1331 }
1332 }
1333
1334 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1335 return false;
1336 }
1337
1338 return !R.empty();
1339}
1340
1341void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1342 if (auto *M = getCurrentModule())
1343 Context.mergeDefinitionIntoModule(ND, M);
1344 else
1345 // We're not building a module; just make the definition visible.
1346 ND->setVisibleDespiteOwningModule();
1347
1348 // If ND is a template declaration, make the template parameters
1349 // visible too. They're not (necessarily) within a mergeable DeclContext.
1350 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1351 for (auto *Param : *TD->getTemplateParameters())
1352 makeMergedDefinitionVisible(Param);
1353}
1354
1355/// Find the module in which the given declaration was defined.
1356static Module *getDefiningModule(Sema &S, Decl *Entity) {
1357 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1358 // If this function was instantiated from a template, the defining module is
1359 // the module containing the pattern.
1360 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1361 Entity = Pattern;
1362 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1363 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1364 Entity = Pattern;
1365 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1366 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1367 Entity = Pattern;
1368 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1369 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1370 Entity = Pattern;
1371 }
1372
1373 // Walk up to the containing context. That might also have been instantiated
1374 // from a template.
1375 DeclContext *Context = Entity->getLexicalDeclContext();
1376 if (Context->isFileContext())
1377 return S.getOwningModule(Entity);
1378 return getDefiningModule(S, cast<Decl>(Context));
1379}
1380
1381llvm::DenseSet<Module*> &Sema::getLookupModules() {
1382 unsigned N = CodeSynthesisContexts.size();
1383 for (unsigned I = CodeSynthesisContextLookupModules.size();
1384 I != N; ++I) {
1385 Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1386 if (M && !LookupModulesCache.insert(M).second)
1387 M = nullptr;
1388 CodeSynthesisContextLookupModules.push_back(M);
1389 }
1390 return LookupModulesCache;
1391}
1392
1393/// Determine whether the module M is part of the current module from the
1394/// perspective of a module-private visibility check.
1395static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1396 // If M is the global module fragment of a module that we've not yet finished
1397 // parsing, then it must be part of the current module.
1398 return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1399 (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1400}
1401
1402bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1403 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1404 if (isModuleVisible(Merged))
1405 return true;
1406 return false;
1407}
1408
1409bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1410 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1411 if (isInCurrentModule(Merged, getLangOpts()))
1412 return true;
1413 return false;
1414}
1415
1416template<typename ParmDecl>
1417static bool
1418hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1419 llvm::SmallVectorImpl<Module *> *Modules) {
1420 if (!D->hasDefaultArgument())
1421 return false;
1422
1423 while (D) {
1424 auto &DefaultArg = D->getDefaultArgStorage();
1425 if (!DefaultArg.isInherited() && S.isVisible(D))
1426 return true;
1427
1428 if (!DefaultArg.isInherited() && Modules) {
1429 auto *NonConstD = const_cast<ParmDecl*>(D);
1430 Modules->push_back(S.getOwningModule(NonConstD));
1431 }
1432
1433 // If there was a previous default argument, maybe its parameter is visible.
1434 D = DefaultArg.getInheritedFrom();
1435 }
1436 return false;
1437}
1438
1439bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1440 llvm::SmallVectorImpl<Module *> *Modules) {
1441 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1442 return ::hasVisibleDefaultArgument(*this, P, Modules);
1443 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1444 return ::hasVisibleDefaultArgument(*this, P, Modules);
1445 return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1446 Modules);
1447}
1448
1449template<typename Filter>
1450static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1451 llvm::SmallVectorImpl<Module *> *Modules,
1452 Filter F) {
1453 bool HasFilteredRedecls = false;
1454
1455 for (auto *Redecl : D->redecls()) {
1456 auto *R = cast<NamedDecl>(Redecl);
1457 if (!F(R))
1458 continue;
1459
1460 if (S.isVisible(R))
1461 return true;
1462
1463 HasFilteredRedecls = true;
1464
1465 if (Modules)
1466 Modules->push_back(R->getOwningModule());
1467 }
1468
1469 // Only return false if there is at least one redecl that is not filtered out.
1470 if (HasFilteredRedecls)
1471 return false;
1472
1473 return true;
1474}
1475
1476bool Sema::hasVisibleExplicitSpecialization(
1477 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1478 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1479 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1480 return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1481 if (auto *FD = dyn_cast<FunctionDecl>(D))
1482 return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1483 if (auto *VD = dyn_cast<VarDecl>(D))
1484 return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1485 llvm_unreachable("unknown explicit specialization kind")::llvm::llvm_unreachable_internal("unknown explicit specialization kind"
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1485)
;
1486 });
1487}
1488
1489bool Sema::hasVisibleMemberSpecialization(
1490 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1491 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1492, __PRETTY_FUNCTION__))
1492 "not a member specialization")((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1492, __PRETTY_FUNCTION__))
;
1493 return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1494 // If the specialization is declared at namespace scope, then it's a member
1495 // specialization declaration. If it's lexically inside the class
1496 // definition then it was instantiated.
1497 //
1498 // FIXME: This is a hack. There should be a better way to determine this.
1499 // FIXME: What about MS-style explicit specializations declared within a
1500 // class definition?
1501 return D->getLexicalDeclContext()->isFileContext();
1502 });
1503}
1504
1505/// Determine whether a declaration is visible to name lookup.
1506///
1507/// This routine determines whether the declaration D is visible in the current
1508/// lookup context, taking into account the current template instantiation
1509/// stack. During template instantiation, a declaration is visible if it is
1510/// visible from a module containing any entity on the template instantiation
1511/// path (by instantiating a template, you allow it to see the declarations that
1512/// your module can see, including those later on in your module).
1513bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1514 assert(D->isHidden() && "should not call this: not in slow case")((D->isHidden() && "should not call this: not in slow case"
) ? static_cast<void> (0) : __assert_fail ("D->isHidden() && \"should not call this: not in slow case\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1514, __PRETTY_FUNCTION__))
;
1515
1516 Module *DeclModule = SemaRef.getOwningModule(D);
1517 assert(DeclModule && "hidden decl has no owning module")((DeclModule && "hidden decl has no owning module") ?
static_cast<void> (0) : __assert_fail ("DeclModule && \"hidden decl has no owning module\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1517, __PRETTY_FUNCTION__))
;
1518
1519 // If the owning module is visible, the decl is visible.
1520 if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1521 return true;
1522
1523 // Determine whether a decl context is a file context for the purpose of
1524 // visibility. This looks through some (export and linkage spec) transparent
1525 // contexts, but not others (enums).
1526 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1527 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1528 isa<ExportDecl>(DC);
1529 };
1530
1531 // If this declaration is not at namespace scope
1532 // then it is visible if its lexical parent has a visible definition.
1533 DeclContext *DC = D->getLexicalDeclContext();
1534 if (DC && !IsEffectivelyFileContext(DC)) {
1535 // For a parameter, check whether our current template declaration's
1536 // lexical context is visible, not whether there's some other visible
1537 // definition of it, because parameters aren't "within" the definition.
1538 //
1539 // In C++ we need to check for a visible definition due to ODR merging,
1540 // and in C we must not because each declaration of a function gets its own
1541 // set of declarations for tags in prototype scope.
1542 bool VisibleWithinParent;
1543 if (D->isTemplateParameter() || isa<ParmVarDecl>(D) ||
1544 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1545 VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1546 else if (D->isModulePrivate()) {
1547 // A module-private declaration is only visible if an enclosing lexical
1548 // parent was merged with another definition in the current module.
1549 VisibleWithinParent = false;
1550 do {
1551 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1552 VisibleWithinParent = true;
1553 break;
1554 }
1555 DC = DC->getLexicalParent();
1556 } while (!IsEffectivelyFileContext(DC));
1557 } else {
1558 VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1559 }
1560
1561 if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1562 // FIXME: Do something better in this case.
1563 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1564 // Cache the fact that this declaration is implicitly visible because
1565 // its parent has a visible definition.
1566 D->setVisibleDespiteOwningModule();
1567 }
1568 return VisibleWithinParent;
1569 }
1570
1571 return false;
1572}
1573
1574bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1575 // The module might be ordinarily visible. For a module-private query, that
1576 // means it is part of the current module. For any other query, that means it
1577 // is in our visible module set.
1578 if (ModulePrivate) {
1579 if (isInCurrentModule(M, getLangOpts()))
1580 return true;
1581 } else {
1582 if (VisibleModules.isVisible(M))
1583 return true;
1584 }
1585
1586 // Otherwise, it might be visible by virtue of the query being within a
1587 // template instantiation or similar that is permitted to look inside M.
1588
1589 // Find the extra places where we need to look.
1590 const auto &LookupModules = getLookupModules();
1591 if (LookupModules.empty())
1592 return false;
1593
1594 // If our lookup set contains the module, it's visible.
1595 if (LookupModules.count(M))
1596 return true;
1597
1598 // For a module-private query, that's everywhere we get to look.
1599 if (ModulePrivate)
1600 return false;
1601
1602 // Check whether M is transitively exported to an import of the lookup set.
1603 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1604 return LookupM->isModuleVisible(M);
1605 });
1606}
1607
1608bool Sema::isVisibleSlow(const NamedDecl *D) {
1609 return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1610}
1611
1612bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1613 // FIXME: If there are both visible and hidden declarations, we need to take
1614 // into account whether redeclaration is possible. Example:
1615 //
1616 // Non-imported module:
1617 // int f(T); // #1
1618 // Some TU:
1619 // static int f(U); // #2, not a redeclaration of #1
1620 // int f(T); // #3, finds both, should link with #1 if T != U, but
1621 // // with #2 if T == U; neither should be ambiguous.
1622 for (auto *D : R) {
1623 if (isVisible(D))
1624 return true;
1625 assert(D->isExternallyDeclarable() &&((D->isExternallyDeclarable() && "should not have hidden, non-externally-declarable result here"
) ? static_cast<void> (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1626, __PRETTY_FUNCTION__))
1626 "should not have hidden, non-externally-declarable result here")((D->isExternallyDeclarable() && "should not have hidden, non-externally-declarable result here"
) ? static_cast<void> (0) : __assert_fail ("D->isExternallyDeclarable() && \"should not have hidden, non-externally-declarable result here\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1626, __PRETTY_FUNCTION__))
;
1627 }
1628
1629 // This function is called once "New" is essentially complete, but before a
1630 // previous declaration is attached. We can't query the linkage of "New" in
1631 // general, because attaching the previous declaration can change the
1632 // linkage of New to match the previous declaration.
1633 //
1634 // However, because we've just determined that there is no *visible* prior
1635 // declaration, we can compute the linkage here. There are two possibilities:
1636 //
1637 // * This is not a redeclaration; it's safe to compute the linkage now.
1638 //
1639 // * This is a redeclaration of a prior declaration that is externally
1640 // redeclarable. In that case, the linkage of the declaration is not
1641 // changed by attaching the prior declaration, because both are externally
1642 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1643 //
1644 // FIXME: This is subtle and fragile.
1645 return New->isExternallyDeclarable();
1646}
1647
1648/// Retrieve the visible declaration corresponding to D, if any.
1649///
1650/// This routine determines whether the declaration D is visible in the current
1651/// module, with the current imports. If not, it checks whether any
1652/// redeclaration of D is visible, and if so, returns that declaration.
1653///
1654/// \returns D, or a visible previous declaration of D, whichever is more recent
1655/// and visible. If no declaration of D is visible, returns null.
1656static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
1657 unsigned IDNS) {
1658 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")((!LookupResult::isVisible(SemaRef, D) && "not in slow case"
) ? static_cast<void> (0) : __assert_fail ("!LookupResult::isVisible(SemaRef, D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1658, __PRETTY_FUNCTION__))
;
1659
1660 for (auto RD : D->redecls()) {
1661 // Don't bother with extra checks if we already know this one isn't visible.
1662 if (RD == D)
1663 continue;
1664
1665 auto ND = cast<NamedDecl>(RD);
1666 // FIXME: This is wrong in the case where the previous declaration is not
1667 // visible in the same scope as D. This needs to be done much more
1668 // carefully.
1669 if (ND->isInIdentifierNamespace(IDNS) &&
1670 LookupResult::isVisible(SemaRef, ND))
1671 return ND;
1672 }
1673
1674 return nullptr;
1675}
1676
1677bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1678 llvm::SmallVectorImpl<Module *> *Modules) {
1679 assert(!isVisible(D) && "not in slow case")((!isVisible(D) && "not in slow case") ? static_cast<
void> (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1679, __PRETTY_FUNCTION__))
;
1680 return hasVisibleDeclarationImpl(*this, D, Modules,
1681 [](const NamedDecl *) { return true; });
1682}
1683
1684NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1685 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1686 // Namespaces are a bit of a special case: we expect there to be a lot of
1687 // redeclarations of some namespaces, all declarations of a namespace are
1688 // essentially interchangeable, all declarations are found by name lookup
1689 // if any is, and namespaces are never looked up during template
1690 // instantiation. So we benefit from caching the check in this case, and
1691 // it is correct to do so.
1692 auto *Key = ND->getCanonicalDecl();
1693 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1694 return Acceptable;
1695 auto *Acceptable = isVisible(getSema(), Key)
1696 ? Key
1697 : findAcceptableDecl(getSema(), Key, IDNS);
1698 if (Acceptable)
1699 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1700 return Acceptable;
1701 }
1702
1703 return findAcceptableDecl(getSema(), D, IDNS);
1704}
1705
1706/// Perform unqualified name lookup starting from a given
1707/// scope.
1708///
1709/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1710/// used to find names within the current scope. For example, 'x' in
1711/// @code
1712/// int x;
1713/// int f() {
1714/// return x; // unqualified name look finds 'x' in the global scope
1715/// }
1716/// @endcode
1717///
1718/// Different lookup criteria can find different names. For example, a
1719/// particular scope can have both a struct and a function of the same
1720/// name, and each can be found by certain lookup criteria. For more
1721/// information about lookup criteria, see the documentation for the
1722/// class LookupCriteria.
1723///
1724/// @param S The scope from which unqualified name lookup will
1725/// begin. If the lookup criteria permits, name lookup may also search
1726/// in the parent scopes.
1727///
1728/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1729/// look up and the lookup kind), and is updated with the results of lookup
1730/// including zero or more declarations and possibly additional information
1731/// used to diagnose ambiguities.
1732///
1733/// @returns \c true if lookup succeeded and false otherwise.
1734bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1735 DeclarationName Name = R.getLookupName();
1736 if (!Name) return false;
1737
1738 LookupNameKind NameKind = R.getLookupKind();
1739
1740 if (!getLangOpts().CPlusPlus) {
1741 // Unqualified name lookup in C/Objective-C is purely lexical, so
1742 // search in the declarations attached to the name.
1743 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1744 // Find the nearest non-transparent declaration scope.
1745 while (!(S->getFlags() & Scope::DeclScope) ||
1746 (S->getEntity() && S->getEntity()->isTransparentContext()))
1747 S = S->getParent();
1748 }
1749
1750 // When performing a scope lookup, we want to find local extern decls.
1751 FindLocalExternScope FindLocals(R);
1752
1753 // Scan up the scope chain looking for a decl that matches this
1754 // identifier that is in the appropriate namespace. This search
1755 // should not take long, as shadowing of names is uncommon, and
1756 // deep shadowing is extremely uncommon.
1757 bool LeftStartingScope = false;
1758
1759 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1760 IEnd = IdResolver.end();
1761 I != IEnd; ++I)
1762 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1763 if (NameKind == LookupRedeclarationWithLinkage) {
1764 // Determine whether this (or a previous) declaration is
1765 // out-of-scope.
1766 if (!LeftStartingScope && !S->isDeclScope(*I))
1767 LeftStartingScope = true;
1768
1769 // If we found something outside of our starting scope that
1770 // does not have linkage, skip it.
1771 if (LeftStartingScope && !((*I)->hasLinkage())) {
1772 R.setShadowed();
1773 continue;
1774 }
1775 }
1776 else if (NameKind == LookupObjCImplicitSelfParam &&
1777 !isa<ImplicitParamDecl>(*I))
1778 continue;
1779
1780 R.addDecl(D);
1781
1782 // Check whether there are any other declarations with the same name
1783 // and in the same scope.
1784 if (I != IEnd) {
1785 // Find the scope in which this declaration was declared (if it
1786 // actually exists in a Scope).
1787 while (S && !S->isDeclScope(D))
1788 S = S->getParent();
1789
1790 // If the scope containing the declaration is the translation unit,
1791 // then we'll need to perform our checks based on the matching
1792 // DeclContexts rather than matching scopes.
1793 if (S && isNamespaceOrTranslationUnitScope(S))
1794 S = nullptr;
1795
1796 // Compute the DeclContext, if we need it.
1797 DeclContext *DC = nullptr;
1798 if (!S)
1799 DC = (*I)->getDeclContext()->getRedeclContext();
1800
1801 IdentifierResolver::iterator LastI = I;
1802 for (++LastI; LastI != IEnd; ++LastI) {
1803 if (S) {
1804 // Match based on scope.
1805 if (!S->isDeclScope(*LastI))
1806 break;
1807 } else {
1808 // Match based on DeclContext.
1809 DeclContext *LastDC
1810 = (*LastI)->getDeclContext()->getRedeclContext();
1811 if (!LastDC->Equals(DC))
1812 break;
1813 }
1814
1815 // If the declaration is in the right namespace and visible, add it.
1816 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1817 R.addDecl(LastD);
1818 }
1819
1820 R.resolveKind();
1821 }
1822
1823 return true;
1824 }
1825 } else {
1826 // Perform C++ unqualified name lookup.
1827 if (CppLookupName(R, S))
1828 return true;
1829 }
1830
1831 // If we didn't find a use of this identifier, and if the identifier
1832 // corresponds to a compiler builtin, create the decl object for the builtin
1833 // now, injecting it into translation unit scope, and return it.
1834 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1835 return true;
1836
1837 // If we didn't find a use of this identifier, the ExternalSource
1838 // may be able to handle the situation.
1839 // Note: some lookup failures are expected!
1840 // See e.g. R.isForRedeclaration().
1841 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1842}
1843
1844/// Perform qualified name lookup in the namespaces nominated by
1845/// using directives by the given context.
1846///
1847/// C++98 [namespace.qual]p2:
1848/// Given X::m (where X is a user-declared namespace), or given \::m
1849/// (where X is the global namespace), let S be the set of all
1850/// declarations of m in X and in the transitive closure of all
1851/// namespaces nominated by using-directives in X and its used
1852/// namespaces, except that using-directives are ignored in any
1853/// namespace, including X, directly containing one or more
1854/// declarations of m. No namespace is searched more than once in
1855/// the lookup of a name. If S is the empty set, the program is
1856/// ill-formed. Otherwise, if S has exactly one member, or if the
1857/// context of the reference is a using-declaration
1858/// (namespace.udecl), S is the required set of declarations of
1859/// m. Otherwise if the use of m is not one that allows a unique
1860/// declaration to be chosen from S, the program is ill-formed.
1861///
1862/// C++98 [namespace.qual]p5:
1863/// During the lookup of a qualified namespace member name, if the
1864/// lookup finds more than one declaration of the member, and if one
1865/// declaration introduces a class name or enumeration name and the
1866/// other declarations either introduce the same object, the same
1867/// enumerator or a set of functions, the non-type name hides the
1868/// class or enumeration name if and only if the declarations are
1869/// from the same namespace; otherwise (the declarations are from
1870/// different namespaces), the program is ill-formed.
1871static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1872 DeclContext *StartDC) {
1873 assert(StartDC->isFileContext() && "start context is not a file context")((StartDC->isFileContext() && "start context is not a file context"
) ? static_cast<void> (0) : __assert_fail ("StartDC->isFileContext() && \"start context is not a file context\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1873, __PRETTY_FUNCTION__))
;
1874
1875 // We have not yet looked into these namespaces, much less added
1876 // their "using-children" to the queue.
1877 SmallVector<NamespaceDecl*, 8> Queue;
1878
1879 // We have at least added all these contexts to the queue.
1880 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1881 Visited.insert(StartDC);
1882
1883 // We have already looked into the initial namespace; seed the queue
1884 // with its using-children.
1885 for (auto *I : StartDC->using_directives()) {
1886 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1887 if (S.isVisible(I) && Visited.insert(ND).second)
1888 Queue.push_back(ND);
1889 }
1890
1891 // The easiest way to implement the restriction in [namespace.qual]p5
1892 // is to check whether any of the individual results found a tag
1893 // and, if so, to declare an ambiguity if the final result is not
1894 // a tag.
1895 bool FoundTag = false;
1896 bool FoundNonTag = false;
1897
1898 LookupResult LocalR(LookupResult::Temporary, R);
1899
1900 bool Found = false;
1901 while (!Queue.empty()) {
1902 NamespaceDecl *ND = Queue.pop_back_val();
1903
1904 // We go through some convolutions here to avoid copying results
1905 // between LookupResults.
1906 bool UseLocal = !R.empty();
1907 LookupResult &DirectR = UseLocal ? LocalR : R;
1908 bool FoundDirect = LookupDirect(S, DirectR, ND);
1909
1910 if (FoundDirect) {
1911 // First do any local hiding.
1912 DirectR.resolveKind();
1913
1914 // If the local result is a tag, remember that.
1915 if (DirectR.isSingleTagDecl())
1916 FoundTag = true;
1917 else
1918 FoundNonTag = true;
1919
1920 // Append the local results to the total results if necessary.
1921 if (UseLocal) {
1922 R.addAllDecls(LocalR);
1923 LocalR.clear();
1924 }
1925 }
1926
1927 // If we find names in this namespace, ignore its using directives.
1928 if (FoundDirect) {
1929 Found = true;
1930 continue;
1931 }
1932
1933 for (auto I : ND->using_directives()) {
1934 NamespaceDecl *Nom = I->getNominatedNamespace();
1935 if (S.isVisible(I) && Visited.insert(Nom).second)
1936 Queue.push_back(Nom);
1937 }
1938 }
1939
1940 if (Found) {
1941 if (FoundTag && FoundNonTag)
1942 R.setAmbiguousQualifiedTagHiding();
1943 else
1944 R.resolveKind();
1945 }
1946
1947 return Found;
1948}
1949
1950/// Callback that looks for any member of a class with the given name.
1951static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1952 CXXBasePath &Path, DeclarationName Name) {
1953 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1954
1955 Path.Decls = BaseRecord->lookup(Name);
1956 return !Path.Decls.empty();
1957}
1958
1959/// Determine whether the given set of member declarations contains only
1960/// static members, nested types, and enumerators.
1961template<typename InputIterator>
1962static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1963 Decl *D = (*First)->getUnderlyingDecl();
1964 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1965 return true;
1966
1967 if (isa<CXXMethodDecl>(D)) {
1968 // Determine whether all of the methods are static.
1969 bool AllMethodsAreStatic = true;
1970 for(; First != Last; ++First) {
1971 D = (*First)->getUnderlyingDecl();
1972
1973 if (!isa<CXXMethodDecl>(D)) {
1974 assert(isa<TagDecl>(D) && "Non-function must be a tag decl")((isa<TagDecl>(D) && "Non-function must be a tag decl"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(D) && \"Non-function must be a tag decl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 1974, __PRETTY_FUNCTION__))
;
1975 break;
1976 }
1977
1978 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1979 AllMethodsAreStatic = false;
1980 break;
1981 }
1982 }
1983
1984 if (AllMethodsAreStatic)
1985 return true;
1986 }
1987
1988 return false;
1989}
1990
1991/// Perform qualified name lookup into a given context.
1992///
1993/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1994/// names when the context of those names is explicit specified, e.g.,
1995/// "std::vector" or "x->member", or as part of unqualified name lookup.
1996///
1997/// Different lookup criteria can find different names. For example, a
1998/// particular scope can have both a struct and a function of the same
1999/// name, and each can be found by certain lookup criteria. For more
2000/// information about lookup criteria, see the documentation for the
2001/// class LookupCriteria.
2002///
2003/// \param R captures both the lookup criteria and any lookup results found.
2004///
2005/// \param LookupCtx The context in which qualified name lookup will
2006/// search. If the lookup criteria permits, name lookup may also search
2007/// in the parent contexts or (for C++ classes) base classes.
2008///
2009/// \param InUnqualifiedLookup true if this is qualified name lookup that
2010/// occurs as part of unqualified name lookup.
2011///
2012/// \returns true if lookup succeeded, false if it failed.
2013bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2014 bool InUnqualifiedLookup) {
2015 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")((LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? static_cast<void> (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2015, __PRETTY_FUNCTION__))
;
2016
2017 if (!R.getLookupName())
2018 return false;
2019
2020 // Make sure that the declaration context is complete.
2021 assert((!isa<TagDecl>(LookupCtx) ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2025, __PRETTY_FUNCTION__))
2022 LookupCtx->isDependentContext() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2025, __PRETTY_FUNCTION__))
2023 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2025, __PRETTY_FUNCTION__))
2024 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2025, __PRETTY_FUNCTION__))
2025 "Declaration context must already be complete!")(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2025, __PRETTY_FUNCTION__))
;
2026
2027 struct QualifiedLookupInScope {
2028 bool oldVal;
2029 DeclContext *Context;
2030 // Set flag in DeclContext informing debugger that we're looking for qualified name
2031 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2032 oldVal = ctx->setUseQualifiedLookup();
2033 }
2034 ~QualifiedLookupInScope() {
2035 Context->setUseQualifiedLookup(oldVal);
2036 }
2037 } QL(LookupCtx);
2038
2039 if (LookupDirect(*this, R, LookupCtx)) {
2040 R.resolveKind();
2041 if (isa<CXXRecordDecl>(LookupCtx))
2042 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2043 return true;
2044 }
2045
2046 // Don't descend into implied contexts for redeclarations.
2047 // C++98 [namespace.qual]p6:
2048 // In a declaration for a namespace member in which the
2049 // declarator-id is a qualified-id, given that the qualified-id
2050 // for the namespace member has the form
2051 // nested-name-specifier unqualified-id
2052 // the unqualified-id shall name a member of the namespace
2053 // designated by the nested-name-specifier.
2054 // See also [class.mfct]p5 and [class.static.data]p2.
2055 if (R.isForRedeclaration())
2056 return false;
2057
2058 // If this is a namespace, look it up in the implied namespaces.
2059 if (LookupCtx->isFileContext())
2060 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2061
2062 // If this isn't a C++ class, we aren't allowed to look into base
2063 // classes, we're done.
2064 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2065 if (!LookupRec || !LookupRec->getDefinition())
2066 return false;
2067
2068 // If we're performing qualified name lookup into a dependent class,
2069 // then we are actually looking into a current instantiation. If we have any
2070 // dependent base classes, then we either have to delay lookup until
2071 // template instantiation time (at which point all bases will be available)
2072 // or we have to fail.
2073 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2074 LookupRec->hasAnyDependentBases()) {
2075 R.setNotFoundInCurrentInstantiation();
2076 return false;
2077 }
2078
2079 // Perform lookup into our base classes.
2080 CXXBasePaths Paths;
2081 Paths.setOrigin(LookupRec);
2082
2083 // Look for this member in our base classes
2084 bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2085 DeclarationName Name) = nullptr;
2086 switch (R.getLookupKind()) {
2087 case LookupObjCImplicitSelfParam:
2088 case LookupOrdinaryName:
2089 case LookupMemberName:
2090 case LookupRedeclarationWithLinkage:
2091 case LookupLocalFriendName:
2092 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2093 break;
2094
2095 case LookupTagName:
2096 BaseCallback = &CXXRecordDecl::FindTagMember;
2097 break;
2098
2099 case LookupAnyName:
2100 BaseCallback = &LookupAnyMember;
2101 break;
2102
2103 case LookupOMPReductionName:
2104 BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2105 break;
2106
2107 case LookupUsingDeclName:
2108 // This lookup is for redeclarations only.
2109
2110 case LookupOperatorName:
2111 case LookupNamespaceName:
2112 case LookupObjCProtocolName:
2113 case LookupLabel:
2114 // These lookups will never find a member in a C++ class (or base class).
2115 return false;
2116
2117 case LookupNestedNameSpecifierName:
2118 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2119 break;
2120 }
2121
2122 DeclarationName Name = R.getLookupName();
2123 if (!LookupRec->lookupInBases(
2124 [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2125 return BaseCallback(Specifier, Path, Name);
2126 },
2127 Paths))
2128 return false;
2129
2130 R.setNamingClass(LookupRec);
2131
2132 // C++ [class.member.lookup]p2:
2133 // [...] If the resulting set of declarations are not all from
2134 // sub-objects of the same type, or the set has a nonstatic member
2135 // and includes members from distinct sub-objects, there is an
2136 // ambiguity and the program is ill-formed. Otherwise that set is
2137 // the result of the lookup.
2138 QualType SubobjectType;
2139 int SubobjectNumber = 0;
2140 AccessSpecifier SubobjectAccess = AS_none;
2141
2142 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2143 Path != PathEnd; ++Path) {
2144 const CXXBasePathElement &PathElement = Path->back();
2145
2146 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2147 // across all paths.
2148 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2149
2150 // Determine whether we're looking at a distinct sub-object or not.
2151 if (SubobjectType.isNull()) {
2152 // This is the first subobject we've looked at. Record its type.
2153 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2154 SubobjectNumber = PathElement.SubobjectNumber;
2155 continue;
2156 }
2157
2158 if (SubobjectType
2159 != Context.getCanonicalType(PathElement.Base->getType())) {
2160 // We found members of the given name in two subobjects of
2161 // different types. If the declaration sets aren't the same, this
2162 // lookup is ambiguous.
2163 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2164 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2165 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2166 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2167
2168 while (FirstD != FirstPath->Decls.end() &&
2169 CurrentD != Path->Decls.end()) {
2170 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
2171 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
2172 break;
2173
2174 ++FirstD;
2175 ++CurrentD;
2176 }
2177
2178 if (FirstD == FirstPath->Decls.end() &&
2179 CurrentD == Path->Decls.end())
2180 continue;
2181 }
2182
2183 R.setAmbiguousBaseSubobjectTypes(Paths);
2184 return true;
2185 }
2186
2187 if (SubobjectNumber != PathElement.SubobjectNumber) {
2188 // We have a different subobject of the same type.
2189
2190 // C++ [class.member.lookup]p5:
2191 // A static member, a nested type or an enumerator defined in
2192 // a base class T can unambiguously be found even if an object
2193 // has more than one base class subobject of type T.
2194 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2195 continue;
2196
2197 // We have found a nonstatic member name in multiple, distinct
2198 // subobjects. Name lookup is ambiguous.
2199 R.setAmbiguousBaseSubobjects(Paths);
2200 return true;
2201 }
2202 }
2203
2204 // Lookup in a base class succeeded; return these results.
2205
2206 for (auto *D : Paths.front().Decls) {
2207 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2208 D->getAccess());
2209 R.addDecl(D, AS);
2210 }
2211 R.resolveKind();
2212 return true;
2213}
2214
2215/// Performs qualified name lookup or special type of lookup for
2216/// "__super::" scope specifier.
2217///
2218/// This routine is a convenience overload meant to be called from contexts
2219/// that need to perform a qualified name lookup with an optional C++ scope
2220/// specifier that might require special kind of lookup.
2221///
2222/// \param R captures both the lookup criteria and any lookup results found.
2223///
2224/// \param LookupCtx The context in which qualified name lookup will
2225/// search.
2226///
2227/// \param SS An optional C++ scope-specifier.
2228///
2229/// \returns true if lookup succeeded, false if it failed.
2230bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2231 CXXScopeSpec &SS) {
2232 auto *NNS = SS.getScopeRep();
2233 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2234 return LookupInSuper(R, NNS->getAsRecordDecl());
2235 else
2236
2237 return LookupQualifiedName(R, LookupCtx);
2238}
2239
2240/// Performs name lookup for a name that was parsed in the
2241/// source code, and may contain a C++ scope specifier.
2242///
2243/// This routine is a convenience routine meant to be called from
2244/// contexts that receive a name and an optional C++ scope specifier
2245/// (e.g., "N::M::x"). It will then perform either qualified or
2246/// unqualified name lookup (with LookupQualifiedName or LookupName,
2247/// respectively) on the given name and return those results. It will
2248/// perform a special type of lookup for "__super::" scope specifier.
2249///
2250/// @param S The scope from which unqualified name lookup will
2251/// begin.
2252///
2253/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2254///
2255/// @param EnteringContext Indicates whether we are going to enter the
2256/// context of the scope-specifier SS (if present).
2257///
2258/// @returns True if any decls were found (but possibly ambiguous)
2259bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2260 bool AllowBuiltinCreation, bool EnteringContext) {
2261 if (SS && SS->isInvalid()) {
2262 // When the scope specifier is invalid, don't even look for
2263 // anything.
2264 return false;
2265 }
2266
2267 if (SS && SS->isSet()) {
2268 NestedNameSpecifier *NNS = SS->getScopeRep();
2269 if (NNS->getKind() == NestedNameSpecifier::Super)
2270 return LookupInSuper(R, NNS->getAsRecordDecl());
2271
2272 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2273 // We have resolved the scope specifier to a particular declaration
2274 // contex, and will perform name lookup in that context.
2275 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2276 return false;
2277
2278 R.setContextRange(SS->getRange());
2279 return LookupQualifiedName(R, DC);
2280 }
2281
2282 // We could not resolve the scope specified to a specific declaration
2283 // context, which means that SS refers to an unknown specialization.
2284 // Name lookup can't find anything in this case.
2285 R.setNotFoundInCurrentInstantiation();
2286 R.setContextRange(SS->getRange());
2287 return false;
2288 }
2289
2290 // Perform unqualified name lookup starting in the given scope.
2291 return LookupName(R, S, AllowBuiltinCreation);
2292}
2293
2294/// Perform qualified name lookup into all base classes of the given
2295/// class.
2296///
2297/// \param R captures both the lookup criteria and any lookup results found.
2298///
2299/// \param Class The context in which qualified name lookup will
2300/// search. Name lookup will search in all base classes merging the results.
2301///
2302/// @returns True if any decls were found (but possibly ambiguous)
2303bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2304 // The access-control rules we use here are essentially the rules for
2305 // doing a lookup in Class that just magically skipped the direct
2306 // members of Class itself. That is, the naming class is Class, and the
2307 // access includes the access of the base.
2308 for (const auto &BaseSpec : Class->bases()) {
2309 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2310 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2311 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2312 Result.setBaseObjectType(Context.getRecordType(Class));
2313 LookupQualifiedName(Result, RD);
2314
2315 // Copy the lookup results into the target, merging the base's access into
2316 // the path access.
2317 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2318 R.addDecl(I.getDecl(),
2319 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2320 I.getAccess()));
2321 }
2322
2323 Result.suppressDiagnostics();
2324 }
2325
2326 R.resolveKind();
2327 R.setNamingClass(Class);
2328
2329 return !R.empty();
2330}
2331
2332/// Produce a diagnostic describing the ambiguity that resulted
2333/// from name lookup.
2334///
2335/// \param Result The result of the ambiguous lookup to be diagnosed.
2336void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2337 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")((Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2337, __PRETTY_FUNCTION__))
;
2338
2339 DeclarationName Name = Result.getLookupName();
2340 SourceLocation NameLoc = Result.getNameLoc();
2341 SourceRange LookupRange = Result.getContextRange();
2342
2343 switch (Result.getAmbiguityKind()) {
2344 case LookupResult::AmbiguousBaseSubobjects: {
2345 CXXBasePaths *Paths = Result.getBasePaths();
2346 QualType SubobjectType = Paths->front().back().Base->getType();
2347 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2348 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2349 << LookupRange;
2350
2351 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2352 while (isa<CXXMethodDecl>(*Found) &&
2353 cast<CXXMethodDecl>(*Found)->isStatic())
2354 ++Found;
2355
2356 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2357 break;
2358 }
2359
2360 case LookupResult::AmbiguousBaseSubobjectTypes: {
2361 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2362 << Name << LookupRange;
2363
2364 CXXBasePaths *Paths = Result.getBasePaths();
2365 std::set<Decl *> DeclsPrinted;
2366 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2367 PathEnd = Paths->end();
2368 Path != PathEnd; ++Path) {
2369 Decl *D = Path->Decls.front();
2370 if (DeclsPrinted.insert(D).second)
2371 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2372 }
2373 break;
2374 }
2375
2376 case LookupResult::AmbiguousTagHiding: {
2377 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2378
2379 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2380
2381 for (auto *D : Result)
2382 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2383 TagDecls.insert(TD);
2384 Diag(TD->getLocation(), diag::note_hidden_tag);
2385 }
2386
2387 for (auto *D : Result)
2388 if (!isa<TagDecl>(D))
2389 Diag(D->getLocation(), diag::note_hiding_object);
2390
2391 // For recovery purposes, go ahead and implement the hiding.
2392 LookupResult::Filter F = Result.makeFilter();
2393 while (F.hasNext()) {
2394 if (TagDecls.count(F.next()))
2395 F.erase();
2396 }
2397 F.done();
2398 break;
2399 }
2400
2401 case LookupResult::AmbiguousReference: {
2402 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2403
2404 for (auto *D : Result)
2405 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2406 break;
2407 }
2408 }
2409}
2410
2411namespace {
2412 struct AssociatedLookup {
2413 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2414 Sema::AssociatedNamespaceSet &Namespaces,
2415 Sema::AssociatedClassSet &Classes)
2416 : S(S), Namespaces(Namespaces), Classes(Classes),
2417 InstantiationLoc(InstantiationLoc) {
2418 }
2419
2420 Sema &S;
2421 Sema::AssociatedNamespaceSet &Namespaces;
2422 Sema::AssociatedClassSet &Classes;
2423 SourceLocation InstantiationLoc;
2424 };
2425} // end anonymous namespace
2426
2427static void
2428addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2429
2430static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2431 DeclContext *Ctx) {
2432 // Add the associated namespace for this class.
2433
2434 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2435 // be a locally scoped record.
2436
2437 // We skip out of inline namespaces. The innermost non-inline namespace
2438 // contains all names of all its nested inline namespaces anyway, so we can
2439 // replace the entire inline namespace tree with its root.
2440 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2441 Ctx->isInlineNamespace())
2442 Ctx = Ctx->getParent();
2443
2444 if (Ctx->isFileContext())
2445 Namespaces.insert(Ctx->getPrimaryContext());
2446}
2447
2448// Add the associated classes and namespaces for argument-dependent
2449// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2450static void
2451addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2452 const TemplateArgument &Arg) {
2453 // C++ [basic.lookup.koenig]p2, last bullet:
2454 // -- [...] ;
2455 switch (Arg.getKind()) {
2456 case TemplateArgument::Null:
2457 break;
2458
2459 case TemplateArgument::Type:
2460 // [...] the namespaces and classes associated with the types of the
2461 // template arguments provided for template type parameters (excluding
2462 // template template parameters)
2463 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2464 break;
2465
2466 case TemplateArgument::Template:
2467 case TemplateArgument::TemplateExpansion: {
2468 // [...] the namespaces in which any template template arguments are
2469 // defined; and the classes in which any member templates used as
2470 // template template arguments are defined.
2471 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2472 if (ClassTemplateDecl *ClassTemplate
2473 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2474 DeclContext *Ctx = ClassTemplate->getDeclContext();
2475 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2476 Result.Classes.insert(EnclosingClass);
2477 // Add the associated namespace for this class.
2478 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2479 }
2480 break;
2481 }
2482
2483 case TemplateArgument::Declaration:
2484 case TemplateArgument::Integral:
2485 case TemplateArgument::Expression:
2486 case TemplateArgument::NullPtr:
2487 // [Note: non-type template arguments do not contribute to the set of
2488 // associated namespaces. ]
2489 break;
2490
2491 case TemplateArgument::Pack:
2492 for (const auto &P : Arg.pack_elements())
2493 addAssociatedClassesAndNamespaces(Result, P);
2494 break;
2495 }
2496}
2497
2498// Add the associated classes and namespaces for
2499// argument-dependent lookup with an argument of class type
2500// (C++ [basic.lookup.koenig]p2).
2501static void
2502addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2503 CXXRecordDecl *Class) {
2504
2505 // Just silently ignore anything whose name is __va_list_tag.
2506 if (Class->getDeclName() == Result.S.VAListTagName)
2507 return;
2508
2509 // C++ [basic.lookup.koenig]p2:
2510 // [...]
2511 // -- If T is a class type (including unions), its associated
2512 // classes are: the class itself; the class of which it is a
2513 // member, if any; and its direct and indirect base
2514 // classes. Its associated namespaces are the namespaces in
2515 // which its associated classes are defined.
2516
2517 // Add the class of which it is a member, if any.
2518 DeclContext *Ctx = Class->getDeclContext();
2519 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2520 Result.Classes.insert(EnclosingClass);
2521 // Add the associated namespace for this class.
2522 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2523
2524 // Add the class itself. If we've already seen this class, we don't
2525 // need to visit base classes.
2526 //
2527 // FIXME: That's not correct, we may have added this class only because it
2528 // was the enclosing class of another class, and in that case we won't have
2529 // added its base classes yet.
2530 if (!Result.Classes.insert(Class))
2531 return;
2532
2533 // -- If T is a template-id, its associated namespaces and classes are
2534 // the namespace in which the template is defined; for member
2535 // templates, the member template's class; the namespaces and classes
2536 // associated with the types of the template arguments provided for
2537 // template type parameters (excluding template template parameters); the
2538 // namespaces in which any template template arguments are defined; and
2539 // the classes in which any member templates used as template template
2540 // arguments are defined. [Note: non-type template arguments do not
2541 // contribute to the set of associated namespaces. ]
2542 if (ClassTemplateSpecializationDecl *Spec
2543 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2544 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2545 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2546 Result.Classes.insert(EnclosingClass);
2547 // Add the associated namespace for this class.
2548 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2549
2550 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2551 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2552 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2553 }
2554
2555 // Only recurse into base classes for complete types.
2556 if (!Result.S.isCompleteType(Result.InstantiationLoc,
2557 Result.S.Context.getRecordType(Class)))
2558 return;
2559
2560 // Add direct and indirect base classes along with their associated
2561 // namespaces.
2562 SmallVector<CXXRecordDecl *, 32> Bases;
2563 Bases.push_back(Class);
2564 while (!Bases.empty()) {
2565 // Pop this class off the stack.
2566 Class = Bases.pop_back_val();
2567
2568 // Visit the base classes.
2569 for (const auto &Base : Class->bases()) {
2570 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2571 // In dependent contexts, we do ADL twice, and the first time around,
2572 // the base type might be a dependent TemplateSpecializationType, or a
2573 // TemplateTypeParmType. If that happens, simply ignore it.
2574 // FIXME: If we want to support export, we probably need to add the
2575 // namespace of the template in a TemplateSpecializationType, or even
2576 // the classes and namespaces of known non-dependent arguments.
2577 if (!BaseType)
2578 continue;
2579 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2580 if (Result.Classes.insert(BaseDecl)) {
2581 // Find the associated namespace for this base class.
2582 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2583 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2584
2585 // Make sure we visit the bases of this base class.
2586 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2587 Bases.push_back(BaseDecl);
2588 }
2589 }
2590 }
2591}
2592
2593// Add the associated classes and namespaces for
2594// argument-dependent lookup with an argument of type T
2595// (C++ [basic.lookup.koenig]p2).
2596static void
2597addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2598 // C++ [basic.lookup.koenig]p2:
2599 //
2600 // For each argument type T in the function call, there is a set
2601 // of zero or more associated namespaces and a set of zero or more
2602 // associated classes to be considered. The sets of namespaces and
2603 // classes is determined entirely by the types of the function
2604 // arguments (and the namespace of any template template
2605 // argument). Typedef names and using-declarations used to specify
2606 // the types do not contribute to this set. The sets of namespaces
2607 // and classes are determined in the following way:
2608
2609 SmallVector<const Type *, 16> Queue;
2610 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2611
2612 while (true) {
2613 switch (T->getTypeClass()) {
2614
2615#define TYPE(Class, Base)
2616#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2617#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2618#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2619#define ABSTRACT_TYPE(Class, Base)
2620#include "clang/AST/TypeNodes.def"
2621 // T is canonical. We can also ignore dependent types because
2622 // we don't need to do ADL at the definition point, but if we
2623 // wanted to implement template export (or if we find some other
2624 // use for associated classes and namespaces...) this would be
2625 // wrong.
2626 break;
2627
2628 // -- If T is a pointer to U or an array of U, its associated
2629 // namespaces and classes are those associated with U.
2630 case Type::Pointer:
2631 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2632 continue;
2633 case Type::ConstantArray:
2634 case Type::IncompleteArray:
2635 case Type::VariableArray:
2636 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2637 continue;
2638
2639 // -- If T is a fundamental type, its associated sets of
2640 // namespaces and classes are both empty.
2641 case Type::Builtin:
2642 break;
2643
2644 // -- If T is a class type (including unions), its associated
2645 // classes are: the class itself; the class of which it is a
2646 // member, if any; and its direct and indirect base
2647 // classes. Its associated namespaces are the namespaces in
2648 // which its associated classes are defined.
2649 case Type::Record: {
2650 CXXRecordDecl *Class =
2651 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2652 addAssociatedClassesAndNamespaces(Result, Class);
2653 break;
2654 }
2655
2656 // -- If T is an enumeration type, its associated namespace is
2657 // the namespace in which it is defined. If it is class
2658 // member, its associated class is the member's class; else
2659 // it has no associated class.
2660 case Type::Enum: {
2661 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2662
2663 DeclContext *Ctx = Enum->getDeclContext();
2664 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2665 Result.Classes.insert(EnclosingClass);
2666
2667 // Add the associated namespace for this class.
2668 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2669
2670 break;
2671 }
2672
2673 // -- If T is a function type, its associated namespaces and
2674 // classes are those associated with the function parameter
2675 // types and those associated with the return type.
2676 case Type::FunctionProto: {
2677 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2678 for (const auto &Arg : Proto->param_types())
2679 Queue.push_back(Arg.getTypePtr());
2680 // fallthrough
2681 LLVM_FALLTHROUGH[[clang::fallthrough]];
2682 }
2683 case Type::FunctionNoProto: {
2684 const FunctionType *FnType = cast<FunctionType>(T);
2685 T = FnType->getReturnType().getTypePtr();
2686 continue;
2687 }
2688
2689 // -- If T is a pointer to a member function of a class X, its
2690 // associated namespaces and classes are those associated
2691 // with the function parameter types and return type,
2692 // together with those associated with X.
2693 //
2694 // -- If T is a pointer to a data member of class X, its
2695 // associated namespaces and classes are those associated
2696 // with the member type together with those associated with
2697 // X.
2698 case Type::MemberPointer: {
2699 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2700
2701 // Queue up the class type into which this points.
2702 Queue.push_back(MemberPtr->getClass());
2703
2704 // And directly continue with the pointee type.
2705 T = MemberPtr->getPointeeType().getTypePtr();
2706 continue;
2707 }
2708
2709 // As an extension, treat this like a normal pointer.
2710 case Type::BlockPointer:
2711 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2712 continue;
2713
2714 // References aren't covered by the standard, but that's such an
2715 // obvious defect that we cover them anyway.
2716 case Type::LValueReference:
2717 case Type::RValueReference:
2718 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2719 continue;
2720
2721 // These are fundamental types.
2722 case Type::Vector:
2723 case Type::ExtVector:
2724 case Type::Complex:
2725 break;
2726
2727 // Non-deduced auto types only get here for error cases.
2728 case Type::Auto:
2729 case Type::DeducedTemplateSpecialization:
2730 break;
2731
2732 // If T is an Objective-C object or interface type, or a pointer to an
2733 // object or interface type, the associated namespace is the global
2734 // namespace.
2735 case Type::ObjCObject:
2736 case Type::ObjCInterface:
2737 case Type::ObjCObjectPointer:
2738 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2739 break;
2740
2741 // Atomic types are just wrappers; use the associations of the
2742 // contained type.
2743 case Type::Atomic:
2744 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2745 continue;
2746 case Type::Pipe:
2747 T = cast<PipeType>(T)->getElementType().getTypePtr();
2748 continue;
2749 }
2750
2751 if (Queue.empty())
2752 break;
2753 T = Queue.pop_back_val();
2754 }
2755}
2756
2757/// Find the associated classes and namespaces for
2758/// argument-dependent lookup for a call with the given set of
2759/// arguments.
2760///
2761/// This routine computes the sets of associated classes and associated
2762/// namespaces searched by argument-dependent lookup
2763/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2764void Sema::FindAssociatedClassesAndNamespaces(
2765 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2766 AssociatedNamespaceSet &AssociatedNamespaces,
2767 AssociatedClassSet &AssociatedClasses) {
2768 AssociatedNamespaces.clear();
2769 AssociatedClasses.clear();
2770
2771 AssociatedLookup Result(*this, InstantiationLoc,
2772 AssociatedNamespaces, AssociatedClasses);
2773
2774 // C++ [basic.lookup.koenig]p2:
2775 // For each argument type T in the function call, there is a set
2776 // of zero or more associated namespaces and a set of zero or more
2777 // associated classes to be considered. The sets of namespaces and
2778 // classes is determined entirely by the types of the function
2779 // arguments (and the namespace of any template template
2780 // argument).
2781 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2782 Expr *Arg = Args[ArgIdx];
2783
2784 if (Arg->getType() != Context.OverloadTy) {
2785 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2786 continue;
2787 }
2788
2789 // [...] In addition, if the argument is the name or address of a
2790 // set of overloaded functions and/or function templates, its
2791 // associated classes and namespaces are the union of those
2792 // associated with each of the members of the set: the namespace
2793 // in which the function or function template is defined and the
2794 // classes and namespaces associated with its (non-dependent)
2795 // parameter types and return type.
2796 Arg = Arg->IgnoreParens();
2797 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2798 if (unaryOp->getOpcode() == UO_AddrOf)
2799 Arg = unaryOp->getSubExpr();
2800
2801 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2802 if (!ULE) continue;
2803
2804 for (const auto *D : ULE->decls()) {
2805 // Look through any using declarations to find the underlying function.
2806 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2807
2808 // Add the classes and namespaces associated with the parameter
2809 // types and return type of this function.
2810 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2811 }
2812 }
2813}
2814
2815NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2816 SourceLocation Loc,
2817 LookupNameKind NameKind,
2818 RedeclarationKind Redecl) {
2819 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2820 LookupName(R, S);
2821 return R.getAsSingle<NamedDecl>();
2822}
2823
2824/// Find the protocol with the given name, if any.
2825ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2826 SourceLocation IdLoc,
2827 RedeclarationKind Redecl) {
2828 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2829 LookupObjCProtocolName, Redecl);
2830 return cast_or_null<ObjCProtocolDecl>(D);
2831}
2832
2833void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2834 QualType T1, QualType T2,
2835 UnresolvedSetImpl &Functions) {
2836 // C++ [over.match.oper]p3:
2837 // -- The set of non-member candidates is the result of the
2838 // unqualified lookup of operator@ in the context of the
2839 // expression according to the usual rules for name lookup in
2840 // unqualified function calls (3.4.2) except that all member
2841 // functions are ignored.
2842 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2843 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2844 LookupName(Operators, S);
2845
2846 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")((!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2846, __PRETTY_FUNCTION__))
;
2847 Functions.append(Operators.begin(), Operators.end());
2848}
2849
2850Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
2851 CXXSpecialMember SM,
2852 bool ConstArg,
2853 bool VolatileArg,
2854 bool RValueThis,
2855 bool ConstThis,
2856 bool VolatileThis) {
2857 assert(CanDeclareSpecialMemberFunction(RD) &&((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2858, __PRETTY_FUNCTION__))
2858 "doing special member lookup into record that isn't fully complete")((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2858, __PRETTY_FUNCTION__))
;
2859 RD = RD->getDefinition();
2860 if (RValueThis || ConstThis || VolatileThis)
2861 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2862, __PRETTY_FUNCTION__))
2862 "constructors and destructors always have unqualified lvalue this")(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2862, __PRETTY_FUNCTION__))
;
2863 if (ConstArg || VolatileArg)
2864 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2865, __PRETTY_FUNCTION__))
2865 "parameter-less special members can't have qualified arguments")(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2865, __PRETTY_FUNCTION__))
;
2866
2867 // FIXME: Get the caller to pass in a location for the lookup.
2868 SourceLocation LookupLoc = RD->getLocation();
2869
2870 llvm::FoldingSetNodeID ID;
2871 ID.AddPointer(RD);
2872 ID.AddInteger(SM);
2873 ID.AddInteger(ConstArg);
2874 ID.AddInteger(VolatileArg);
2875 ID.AddInteger(RValueThis);
2876 ID.AddInteger(ConstThis);
2877 ID.AddInteger(VolatileThis);
2878
2879 void *InsertPoint;
2880 SpecialMemberOverloadResultEntry *Result =
2881 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2882
2883 // This was already cached
2884 if (Result)
2885 return *Result;
2886
2887 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
2888 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
2889 SpecialMemberCache.InsertNode(Result, InsertPoint);
2890
2891 if (SM == CXXDestructor) {
2892 if (RD->needsImplicitDestructor())
2893 DeclareImplicitDestructor(RD);
2894 CXXDestructorDecl *DD = RD->getDestructor();
2895 assert(DD && "record without a destructor")((DD && "record without a destructor") ? static_cast<
void> (0) : __assert_fail ("DD && \"record without a destructor\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2895, __PRETTY_FUNCTION__))
;
2896 Result->setMethod(DD);
2897 Result->setKind(DD->isDeleted() ?
2898 SpecialMemberOverloadResult::NoMemberOrDeleted :
2899 SpecialMemberOverloadResult::Success);
2900 return *Result;
2901 }
2902
2903 // Prepare for overload resolution. Here we construct a synthetic argument
2904 // if necessary and make sure that implicit functions are declared.
2905 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2906 DeclarationName Name;
2907 Expr *Arg = nullptr;
2908 unsigned NumArgs;
2909
2910 QualType ArgType = CanTy;
2911 ExprValueKind VK = VK_LValue;
2912
2913 if (SM == CXXDefaultConstructor) {
2914 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2915 NumArgs = 0;
2916 if (RD->needsImplicitDefaultConstructor())
2917 DeclareImplicitDefaultConstructor(RD);
2918 } else {
2919 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2920 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2921 if (RD->needsImplicitCopyConstructor())
2922 DeclareImplicitCopyConstructor(RD);
2923 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2924 DeclareImplicitMoveConstructor(RD);
2925 } else {
2926 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2927 if (RD->needsImplicitCopyAssignment())
2928 DeclareImplicitCopyAssignment(RD);
2929 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2930 DeclareImplicitMoveAssignment(RD);
2931 }
2932
2933 if (ConstArg)
2934 ArgType.addConst();
2935 if (VolatileArg)
2936 ArgType.addVolatile();
2937
2938 // This isn't /really/ specified by the standard, but it's implied
2939 // we should be working from an RValue in the case of move to ensure
2940 // that we prefer to bind to rvalue references, and an LValue in the
2941 // case of copy to ensure we don't bind to rvalue references.
2942 // Possibly an XValue is actually correct in the case of move, but
2943 // there is no semantic difference for class types in this restricted
2944 // case.
2945 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2946 VK = VK_LValue;
2947 else
2948 VK = VK_RValue;
2949 }
2950
2951 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
2952
2953 if (SM != CXXDefaultConstructor) {
2954 NumArgs = 1;
2955 Arg = &FakeArg;
2956 }
2957
2958 // Create the object argument
2959 QualType ThisTy = CanTy;
2960 if (ConstThis)
2961 ThisTy.addConst();
2962 if (VolatileThis)
2963 ThisTy.addVolatile();
2964 Expr::Classification Classification =
2965 OpaqueValueExpr(LookupLoc, ThisTy,
2966 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2967
2968 // Now we perform lookup on the name we computed earlier and do overload
2969 // resolution. Lookup is only performed directly into the class since there
2970 // will always be a (possibly implicit) declaration to shadow any others.
2971 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
2972 DeclContext::lookup_result R = RD->lookup(Name);
2973
2974 if (R.empty()) {
2975 // We might have no default constructor because we have a lambda's closure
2976 // type, rather than because there's some other declared constructor.
2977 // Every class has a copy/move constructor, copy/move assignment, and
2978 // destructor.
2979 assert(SM == CXXDefaultConstructor &&((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2980, __PRETTY_FUNCTION__))
2980 "lookup for a constructor or assignment operator was empty")((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 2980, __PRETTY_FUNCTION__))
;
2981 Result->setMethod(nullptr);
2982 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2983 return *Result;
2984 }
2985
2986 // Copy the candidates as our processing of them may load new declarations
2987 // from an external source and invalidate lookup_result.
2988 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2989
2990 for (NamedDecl *CandDecl : Candidates) {
2991 if (CandDecl->isInvalidDecl())
2992 continue;
2993
2994 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
2995 auto CtorInfo = getConstructorInfo(Cand);
2996 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
2997 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2998 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
2999 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3000 else if (CtorInfo)
3001 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3002 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3003 else
3004 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3005 true);
3006 } else if (FunctionTemplateDecl *Tmpl =
3007 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3008 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3009 AddMethodTemplateCandidate(
3010 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3011 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3012 else if (CtorInfo)
3013 AddTemplateOverloadCandidate(
3014 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3015 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3016 else
3017 AddTemplateOverloadCandidate(
3018 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3019 } else {
3020 assert(isa<UsingDecl>(Cand.getDecl()) &&((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3021, __PRETTY_FUNCTION__))
3021 "illegal Kind of operator = Decl")((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3021, __PRETTY_FUNCTION__))
;
3022 }
3023 }
3024
3025 OverloadCandidateSet::iterator Best;
3026 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3027 case OR_Success:
3028 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3029 Result->setKind(SpecialMemberOverloadResult::Success);
3030 break;
3031
3032 case OR_Deleted:
3033 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3034 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3035 break;
3036
3037 case OR_Ambiguous:
3038 Result->setMethod(nullptr);
3039 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3040 break;
3041
3042 case OR_No_Viable_Function:
3043 Result->setMethod(nullptr);
3044 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3045 break;
3046 }
3047
3048 return *Result;
3049}
3050
3051/// Look up the default constructor for the given class.
3052CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3053 SpecialMemberOverloadResult Result =
3054 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3055 false, false);
3056
3057 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3058}
3059
3060/// Look up the copying constructor for the given class.
3061CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3062 unsigned Quals) {
3063 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3064, __PRETTY_FUNCTION__))
3064 "non-const, non-volatile qualifiers for copy ctor arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3064, __PRETTY_FUNCTION__))
;
3065 SpecialMemberOverloadResult Result =
3066 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3067 Quals & Qualifiers::Volatile, false, false, false);
3068
3069 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3070}
3071
3072/// Look up the moving constructor for the given class.
3073CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3074 unsigned Quals) {
3075 SpecialMemberOverloadResult Result =
3076 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3077 Quals & Qualifiers::Volatile, false, false, false);
3078
3079 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3080}
3081
3082/// Look up the constructors for the given class.
3083DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3084 // If the implicit constructors have not yet been declared, do so now.
3085 if (CanDeclareSpecialMemberFunction(Class)) {
3086 if (Class->needsImplicitDefaultConstructor())
3087 DeclareImplicitDefaultConstructor(Class);
3088 if (Class->needsImplicitCopyConstructor())
3089 DeclareImplicitCopyConstructor(Class);
3090 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3091 DeclareImplicitMoveConstructor(Class);
3092 }
3093
3094 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3095 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3096 return Class->lookup(Name);
3097}
3098
3099/// Look up the copying assignment operator for the given class.
3100CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3101 unsigned Quals, bool RValueThis,
3102 unsigned ThisQuals) {
3103 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3104, __PRETTY_FUNCTION__))
3104 "non-const, non-volatile qualifiers for copy assignment arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3104, __PRETTY_FUNCTION__))
;
3105 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3106, __PRETTY_FUNCTION__))
3106 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3106, __PRETTY_FUNCTION__))
;
3107 SpecialMemberOverloadResult Result =
3108 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3109 Quals & Qualifiers::Volatile, RValueThis,
3110 ThisQuals & Qualifiers::Const,
3111 ThisQuals & Qualifiers::Volatile);
3112
3113 return Result.getMethod();
3114}
3115
3116/// Look up the moving assignment operator for the given class.
3117CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3118 unsigned Quals,
3119 bool RValueThis,
3120 unsigned ThisQuals) {
3121 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3122, __PRETTY_FUNCTION__))
3122 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3122, __PRETTY_FUNCTION__))
;
3123 SpecialMemberOverloadResult Result =
3124 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3125 Quals & Qualifiers::Volatile, RValueThis,
3126 ThisQuals & Qualifiers::Const,
3127 ThisQuals & Qualifiers::Volatile);
3128
3129 return Result.getMethod();
3130}
3131
3132/// Look for the destructor of the given class.
3133///
3134/// During semantic analysis, this routine should be used in lieu of
3135/// CXXRecordDecl::getDestructor().
3136///
3137/// \returns The destructor for this class.
3138CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3139 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3140 false, false, false,
3141 false, false).getMethod());
3142}
3143
3144/// LookupLiteralOperator - Determine which literal operator should be used for
3145/// a user-defined literal, per C++11 [lex.ext].
3146///
3147/// Normal overload resolution is not used to select which literal operator to
3148/// call for a user-defined literal. Look up the provided literal operator name,
3149/// and filter the results to the appropriate set for the given argument types.
3150Sema::LiteralOperatorLookupResult
3151Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3152 ArrayRef<QualType> ArgTys,
3153 bool AllowRaw, bool AllowTemplate,
3154 bool AllowStringTemplate, bool DiagnoseMissing) {
3155 LookupName(R, S);
3156 assert(R.getResultKind() != LookupResult::Ambiguous &&((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3157, __PRETTY_FUNCTION__))
3157 "literal operator lookup can't be ambiguous")((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3157, __PRETTY_FUNCTION__))
;
3158
3159 // Filter the lookup results appropriately.
3160 LookupResult::Filter F = R.makeFilter();
3161
3162 bool FoundRaw = false;
3163 bool FoundTemplate = false;
3164 bool FoundStringTemplate = false;
3165 bool FoundExactMatch = false;
3166
3167 while (F.hasNext()) {
3168 Decl *D = F.next();
3169 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3170 D = USD->getTargetDecl();
3171
3172 // If the declaration we found is invalid, skip it.
3173 if (D->isInvalidDecl()) {
3174 F.erase();
3175 continue;
3176 }
3177
3178 bool IsRaw = false;
3179 bool IsTemplate = false;
3180 bool IsStringTemplate = false;
3181 bool IsExactMatch = false;
3182
3183 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3184 if (FD->getNumParams() == 1 &&
3185 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3186 IsRaw = true;
3187 else if (FD->getNumParams() == ArgTys.size()) {
3188 IsExactMatch = true;
3189 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3190 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3191 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3192 IsExactMatch = false;
3193 break;
3194 }
3195 }
3196 }
3197 }
3198 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3199 TemplateParameterList *Params = FD->getTemplateParameters();
3200 if (Params->size() == 1)
3201 IsTemplate = true;
3202 else
3203 IsStringTemplate = true;
3204 }
3205
3206 if (IsExactMatch) {
3207 FoundExactMatch = true;
3208 AllowRaw = false;
3209 AllowTemplate = false;
3210 AllowStringTemplate = false;
3211 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3212 // Go through again and remove the raw and template decls we've
3213 // already found.
3214 F.restart();
3215 FoundRaw = FoundTemplate = FoundStringTemplate = false;
3216 }
3217 } else if (AllowRaw && IsRaw) {
3218 FoundRaw = true;
3219 } else if (AllowTemplate && IsTemplate) {
3220 FoundTemplate = true;
3221 } else if (AllowStringTemplate && IsStringTemplate) {
3222 FoundStringTemplate = true;
3223 } else {
3224 F.erase();
3225 }
3226 }
3227
3228 F.done();
3229
3230 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3231 // parameter type, that is used in preference to a raw literal operator
3232 // or literal operator template.
3233 if (FoundExactMatch)
3234 return LOLR_Cooked;
3235
3236 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3237 // operator template, but not both.
3238 if (FoundRaw && FoundTemplate) {
3239 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3240 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3241 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3242 return LOLR_Error;
3243 }
3244
3245 if (FoundRaw)
3246 return LOLR_Raw;
3247
3248 if (FoundTemplate)
3249 return LOLR_Template;
3250
3251 if (FoundStringTemplate)
3252 return LOLR_StringTemplate;
3253
3254 // Didn't find anything we could use.
3255 if (DiagnoseMissing) {
3256 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3257 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3258 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3259 << (AllowTemplate || AllowStringTemplate);
3260 return LOLR_Error;
3261 }
3262
3263 return LOLR_ErrorNoDiagnostic;
3264}
3265
3266void ADLResult::insert(NamedDecl *New) {
3267 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3268
3269 // If we haven't yet seen a decl for this key, or the last decl
3270 // was exactly this one, we're done.
3271 if (Old == nullptr || Old == New) {
3272 Old = New;
3273 return;
3274 }
3275
3276 // Otherwise, decide which is a more recent redeclaration.
3277 FunctionDecl *OldFD = Old->getAsFunction();
3278 FunctionDecl *NewFD = New->getAsFunction();
3279
3280 FunctionDecl *Cursor = NewFD;
3281 while (true) {
3282 Cursor = Cursor->getPreviousDecl();
3283
3284 // If we got to the end without finding OldFD, OldFD is the newer
3285 // declaration; leave things as they are.
3286 if (!Cursor) return;
3287
3288 // If we do find OldFD, then NewFD is newer.
3289 if (Cursor == OldFD) break;
3290
3291 // Otherwise, keep looking.
3292 }
3293
3294 Old = New;
3295}
3296
3297void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3298 ArrayRef<Expr *> Args, ADLResult &Result) {
3299 // Find all of the associated namespaces and classes based on the
3300 // arguments we have.
3301 AssociatedNamespaceSet AssociatedNamespaces;
3302 AssociatedClassSet AssociatedClasses;
3303 FindAssociatedClassesAndNamespaces(Loc, Args,
3304 AssociatedNamespaces,
3305 AssociatedClasses);
3306
3307 // C++ [basic.lookup.argdep]p3:
3308 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3309 // and let Y be the lookup set produced by argument dependent
3310 // lookup (defined as follows). If X contains [...] then Y is
3311 // empty. Otherwise Y is the set of declarations found in the
3312 // namespaces associated with the argument types as described
3313 // below. The set of declarations found by the lookup of the name
3314 // is the union of X and Y.
3315 //
3316 // Here, we compute Y and add its members to the overloaded
3317 // candidate set.
3318 for (auto *NS : AssociatedNamespaces) {
3319 // When considering an associated namespace, the lookup is the
3320 // same as the lookup performed when the associated namespace is
3321 // used as a qualifier (3.4.3.2) except that:
3322 //
3323 // -- Any using-directives in the associated namespace are
3324 // ignored.
3325 //
3326 // -- Any namespace-scope friend functions declared in
3327 // associated classes are visible within their respective
3328 // namespaces even if they are not visible during an ordinary
3329 // lookup (11.4).
3330 DeclContext::lookup_result R = NS->lookup(Name);
3331 for (auto *D : R) {
3332 auto *Underlying = D;
3333 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3334 Underlying = USD->getTargetDecl();
3335
3336 if (!isa<FunctionDecl>(Underlying) &&
3337 !isa<FunctionTemplateDecl>(Underlying))
3338 continue;
3339
3340 if (!isVisible(D)) {
3341 D = findAcceptableDecl(
3342 *this, D, (Decl::IDNS_Ordinary | Decl::IDNS_OrdinaryFriend));
3343 if (!D)
3344 continue;
3345 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3346 Underlying = USD->getTargetDecl();
3347 }
3348
3349 // If the only declaration here is an ordinary friend, consider
3350 // it only if it was declared in an associated classes.
3351 if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
3352 // If it's neither ordinarily visible nor a friend, we can't find it.
3353 if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
3354 continue;
3355
3356 bool DeclaredInAssociatedClass = false;
3357 for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
3358 DeclContext *LexDC = DI->getLexicalDeclContext();
3359 if (isa<CXXRecordDecl>(LexDC) &&
3360 AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
3361 isVisible(cast<NamedDecl>(DI))) {
3362 DeclaredInAssociatedClass = true;
3363 break;
3364 }
3365 }
3366 if (!DeclaredInAssociatedClass)
3367 continue;
3368 }
3369
3370 // FIXME: Preserve D as the FoundDecl.
3371 Result.insert(Underlying);
3372 }
3373 }
3374}
3375
3376//----------------------------------------------------------------------------
3377// Search for all visible declarations.
3378//----------------------------------------------------------------------------
3379VisibleDeclConsumer::~VisibleDeclConsumer() { }
3380
3381bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3382
3383namespace {
3384
3385class ShadowContextRAII;
3386
3387class VisibleDeclsRecord {
3388public:
3389 /// An entry in the shadow map, which is optimized to store a
3390 /// single declaration (the common case) but can also store a list
3391 /// of declarations.
3392 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3393
3394private:
3395 /// A mapping from declaration names to the declarations that have
3396 /// this name within a particular scope.
3397 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3398
3399 /// A list of shadow maps, which is used to model name hiding.
3400 std::list<ShadowMap> ShadowMaps;
3401
3402 /// The declaration contexts we have already visited.
3403 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3404
3405 friend class ShadowContextRAII;
3406
3407public:
3408 /// Determine whether we have already visited this context
3409 /// (and, if not, note that we are going to visit that context now).
3410 bool visitedContext(DeclContext *Ctx) {
3411 return !VisitedContexts.insert(Ctx).second;
3412 }
3413
3414 bool alreadyVisitedContext(DeclContext *Ctx) {
3415 return VisitedContexts.count(Ctx);
3416 }
3417
3418 /// Determine whether the given declaration is hidden in the
3419 /// current scope.
3420 ///
3421 /// \returns the declaration that hides the given declaration, or
3422 /// NULL if no such declaration exists.
3423 NamedDecl *checkHidden(NamedDecl *ND);
3424
3425 /// Add a declaration to the current shadow map.
3426 void add(NamedDecl *ND) {
3427 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3428 }
3429};
3430
3431/// RAII object that records when we've entered a shadow context.
3432class ShadowContextRAII {
3433 VisibleDeclsRecord &Visible;
3434
3435 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3436
3437public:
3438 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3439 Visible.ShadowMaps.emplace_back();
3440 }
3441
3442 ~ShadowContextRAII() {
3443 Visible.ShadowMaps.pop_back();
3444 }
3445};
3446
3447} // end anonymous namespace
3448
3449NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3450 unsigned IDNS = ND->getIdentifierNamespace();
3451 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3452 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3453 SM != SMEnd; ++SM) {
3454 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3455 if (Pos == SM->end())
3456 continue;
3457
3458 for (auto *D : Pos->second) {
3459 // A tag declaration does not hide a non-tag declaration.
3460 if (D->hasTagIdentifierNamespace() &&
3461 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3462 Decl::IDNS_ObjCProtocol)))
3463 continue;
3464
3465 // Protocols are in distinct namespaces from everything else.
3466 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3467 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3468 D->getIdentifierNamespace() != IDNS)
3469 continue;
3470
3471 // Functions and function templates in the same scope overload
3472 // rather than hide. FIXME: Look for hiding based on function
3473 // signatures!
3474 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3475 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3476 SM == ShadowMaps.rbegin())
3477 continue;
3478
3479 // A shadow declaration that's created by a resolved using declaration
3480 // is not hidden by the same using declaration.
3481 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3482 cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3483 continue;
3484
3485 // We've found a declaration that hides this one.
3486 return D;
3487 }
3488 }
3489
3490 return nullptr;
3491}
3492
3493static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3494 bool QualifiedNameLookup,
3495 bool InBaseClass,
3496 VisibleDeclConsumer &Consumer,
3497 VisibleDeclsRecord &Visited,
3498 bool IncludeDependentBases,
3499 bool LoadExternal) {
3500 if (!Ctx)
3501 return;
3502
3503 // Make sure we don't visit the same context twice.
3504 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3505 return;
3506
3507 Consumer.EnteredContext(Ctx);
3508
3509 // Outside C++, lookup results for the TU live on identifiers.
3510 if (isa<TranslationUnitDecl>(Ctx) &&
3511 !Result.getSema().getLangOpts().CPlusPlus) {
3512 auto &S = Result.getSema();
3513 auto &Idents = S.Context.Idents;
3514
3515 // Ensure all external identifiers are in the identifier table.
3516 if (LoadExternal)
3517 if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3518 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3519 for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3520 Idents.get(Name);
3521 }
3522
3523 // Walk all lookup results in the TU for each identifier.
3524 for (const auto &Ident : Idents) {
3525 for (auto I = S.IdResolver.begin(Ident.getValue()),
3526 E = S.IdResolver.end();
3527 I != E; ++I) {
3528 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3529 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3530 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3531 Visited.add(ND);
3532 }
3533 }
3534 }
3535 }
3536
3537 return;
3538 }
3539
3540 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3541 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3542
3543 // We sometimes skip loading namespace-level results (they tend to be huge).
3544 bool Load = LoadExternal ||
3545 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3546 // Enumerate all of the results in this context.
3547 for (DeclContextLookupResult R :
3548 Load ? Ctx->lookups()
3549 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3550 for (auto *D : R) {
3551 if (auto *ND = Result.getAcceptableDecl(D)) {
3552 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3553 Visited.add(ND);
3554 }
3555 }
3556 }
3557
3558 // Traverse using directives for qualified name lookup.
3559 if (QualifiedNameLookup) {
3560 ShadowContextRAII Shadow(Visited);
3561 for (auto I : Ctx->using_directives()) {
3562 if (!Result.getSema().isVisible(I))
3563 continue;
3564 LookupVisibleDecls(I->getNominatedNamespace(), Result,
3565 QualifiedNameLookup, InBaseClass, Consumer, Visited,
3566 IncludeDependentBases, LoadExternal);
3567 }
3568 }
3569
3570 // Traverse the contexts of inherited C++ classes.
3571 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3572 if (!Record->hasDefinition())
3573 return;
3574
3575 for (const auto &B : Record->bases()) {
3576 QualType BaseType = B.getType();
3577
3578 RecordDecl *RD;
3579 if (BaseType->isDependentType()) {
3580 if (!IncludeDependentBases) {
3581 // Don't look into dependent bases, because name lookup can't look
3582 // there anyway.
3583 continue;
3584 }
3585 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3586 if (!TST)
3587 continue;
3588 TemplateName TN = TST->getTemplateName();
3589 const auto *TD =
3590 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3591 if (!TD)
3592 continue;
3593 RD = TD->getTemplatedDecl();
3594 } else {
3595 const auto *Record = BaseType->getAs<RecordType>();
3596 if (!Record)
3597 continue;
3598 RD = Record->getDecl();
3599 }
3600
3601 // FIXME: It would be nice to be able to determine whether referencing
3602 // a particular member would be ambiguous. For example, given
3603 //
3604 // struct A { int member; };
3605 // struct B { int member; };
3606 // struct C : A, B { };
3607 //
3608 // void f(C *c) { c->### }
3609 //
3610 // accessing 'member' would result in an ambiguity. However, we
3611 // could be smart enough to qualify the member with the base
3612 // class, e.g.,
3613 //
3614 // c->B::member
3615 //
3616 // or
3617 //
3618 // c->A::member
3619
3620 // Find results in this base class (and its bases).
3621 ShadowContextRAII Shadow(Visited);
3622 LookupVisibleDecls(RD, Result, QualifiedNameLookup, /*InBaseClass=*/true,
3623 Consumer, Visited, IncludeDependentBases,
3624 LoadExternal);
3625 }
3626 }
3627
3628 // Traverse the contexts of Objective-C classes.
3629 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3630 // Traverse categories.
3631 for (auto *Cat : IFace->visible_categories()) {
3632 ShadowContextRAII Shadow(Visited);
3633 LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false, Consumer,
3634 Visited, IncludeDependentBases, LoadExternal);
3635 }
3636
3637 // Traverse protocols.
3638 for (auto *I : IFace->all_referenced_protocols()) {
3639 ShadowContextRAII Shadow(Visited);
3640 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3641 Visited, IncludeDependentBases, LoadExternal);
3642 }
3643
3644 // Traverse the superclass.
3645 if (IFace->getSuperClass()) {
3646 ShadowContextRAII Shadow(Visited);
3647 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3648 true, Consumer, Visited, IncludeDependentBases,
3649 LoadExternal);
3650 }
3651
3652 // If there is an implementation, traverse it. We do this to find
3653 // synthesized ivars.
3654 if (IFace->getImplementation()) {
3655 ShadowContextRAII Shadow(Visited);
3656 LookupVisibleDecls(IFace->getImplementation(), Result,
3657 QualifiedNameLookup, InBaseClass, Consumer, Visited,
3658 IncludeDependentBases, LoadExternal);
3659 }
3660 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3661 for (auto *I : Protocol->protocols()) {
3662 ShadowContextRAII Shadow(Visited);
3663 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3664 Visited, IncludeDependentBases, LoadExternal);
3665 }
3666 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3667 for (auto *I : Category->protocols()) {
3668 ShadowContextRAII Shadow(Visited);
3669 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3670 Visited, IncludeDependentBases, LoadExternal);
3671 }
3672
3673 // If there is an implementation, traverse it.
3674 if (Category->getImplementation()) {
3675 ShadowContextRAII Shadow(Visited);
3676 LookupVisibleDecls(Category->getImplementation(), Result,
3677 QualifiedNameLookup, true, Consumer, Visited,
3678 IncludeDependentBases, LoadExternal);
3679 }
3680 }
3681}
3682
3683static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3684 UnqualUsingDirectiveSet &UDirs,
3685 VisibleDeclConsumer &Consumer,
3686 VisibleDeclsRecord &Visited,
3687 bool LoadExternal) {
3688 if (!S)
3689 return;
3690
3691 if (!S->getEntity() ||
3692 (!S->getParent() &&
3693 !Visited.alreadyVisitedContext(S->getEntity())) ||
3694 (S->getEntity())->isFunctionOrMethod()) {
3695 FindLocalExternScope FindLocals(Result);
3696 // Walk through the declarations in this Scope. The consumer might add new
3697 // decls to the scope as part of deserialization, so make a copy first.
3698 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3699 for (Decl *D : ScopeDecls) {
3700 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3701 if ((ND = Result.getAcceptableDecl(ND))) {
3702 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3703 Visited.add(ND);
3704 }
3705 }
3706 }
3707
3708 // FIXME: C++ [temp.local]p8
3709 DeclContext *Entity = nullptr;
3710 if (S->getEntity()) {
3711 // Look into this scope's declaration context, along with any of its
3712 // parent lookup contexts (e.g., enclosing classes), up to the point
3713 // where we hit the context stored in the next outer scope.
3714 Entity = S->getEntity();
3715 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3716
3717 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3718 Ctx = Ctx->getLookupParent()) {
3719 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3720 if (Method->isInstanceMethod()) {
3721 // For instance methods, look for ivars in the method's interface.
3722 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3723 Result.getNameLoc(), Sema::LookupMemberName);
3724 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3725 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3726 /*InBaseClass=*/false, Consumer, Visited,
3727 /*IncludeDependentBases=*/false, LoadExternal);
3728 }
3729 }
3730
3731 // We've already performed all of the name lookup that we need
3732 // to for Objective-C methods; the next context will be the
3733 // outer scope.
3734 break;
3735 }
3736
3737 if (Ctx->isFunctionOrMethod())
3738 continue;
3739
3740 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3741 /*InBaseClass=*/false, Consumer, Visited,
3742 /*IncludeDependentBases=*/false, LoadExternal);
3743 }
3744 } else if (!S->getParent()) {
3745 // Look into the translation unit scope. We walk through the translation
3746 // unit's declaration context, because the Scope itself won't have all of
3747 // the declarations if we loaded a precompiled header.
3748 // FIXME: We would like the translation unit's Scope object to point to the
3749 // translation unit, so we don't need this special "if" branch. However,
3750 // doing so would force the normal C++ name-lookup code to look into the
3751 // translation unit decl when the IdentifierInfo chains would suffice.
3752 // Once we fix that problem (which is part of a more general "don't look
3753 // in DeclContexts unless we have to" optimization), we can eliminate this.
3754 Entity = Result.getSema().Context.getTranslationUnitDecl();
3755 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3756 /*InBaseClass=*/false, Consumer, Visited,
3757 /*IncludeDependentBases=*/false, LoadExternal);
3758 }
3759
3760 if (Entity) {
3761 // Lookup visible declarations in any namespaces found by using
3762 // directives.
3763 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3764 LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3765 Result, /*QualifiedNameLookup=*/false,
3766 /*InBaseClass=*/false, Consumer, Visited,
3767 /*IncludeDependentBases=*/false, LoadExternal);
3768 }
3769
3770 // Lookup names in the parent scope.
3771 ShadowContextRAII Shadow(Visited);
3772 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited,
3773 LoadExternal);
3774}
3775
3776void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3777 VisibleDeclConsumer &Consumer,
3778 bool IncludeGlobalScope, bool LoadExternal) {
3779 // Determine the set of using directives available during
3780 // unqualified name lookup.
3781 Scope *Initial = S;
3782 UnqualUsingDirectiveSet UDirs(*this);
3783 if (getLangOpts().CPlusPlus) {
1
Assuming the condition is true
2
Taking true branch
3784 // Find the first namespace or translation-unit scope.
3785 while (S && !isNamespaceOrTranslationUnitScope(S))
3
Assuming 'S' is null
3786 S = S->getParent();
3787
3788 UDirs.visitScopeChain(Initial, S);
4
Passing null pointer value via 2nd parameter 'InnermostFileScope'
5
Calling 'UnqualUsingDirectiveSet::visitScopeChain'
3789 }
3790 UDirs.done();
3791
3792 // Look for visible declarations.
3793 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3794 Result.setAllowHidden(Consumer.includeHiddenDecls());
3795 VisibleDeclsRecord Visited;
3796 if (!IncludeGlobalScope)
3797 Visited.visitedContext(Context.getTranslationUnitDecl());
3798 ShadowContextRAII Shadow(Visited);
3799 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited, LoadExternal);
3800}
3801
3802void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3803 VisibleDeclConsumer &Consumer,
3804 bool IncludeGlobalScope,
3805 bool IncludeDependentBases, bool LoadExternal) {
3806 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3807 Result.setAllowHidden(Consumer.includeHiddenDecls());
3808 VisibleDeclsRecord Visited;
3809 if (!IncludeGlobalScope)
3810 Visited.visitedContext(Context.getTranslationUnitDecl());
3811 ShadowContextRAII Shadow(Visited);
3812 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3813 /*InBaseClass=*/false, Consumer, Visited,
3814 IncludeDependentBases, LoadExternal);
3815}
3816
3817/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3818/// If GnuLabelLoc is a valid source location, then this is a definition
3819/// of an __label__ label name, otherwise it is a normal label definition
3820/// or use.
3821LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3822 SourceLocation GnuLabelLoc) {
3823 // Do a lookup to see if we have a label with this name already.
3824 NamedDecl *Res = nullptr;
3825
3826 if (GnuLabelLoc.isValid()) {
3827 // Local label definitions always shadow existing labels.
3828 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3829 Scope *S = CurScope;
3830 PushOnScopeChains(Res, S, true);
3831 return cast<LabelDecl>(Res);
3832 }
3833
3834 // Not a GNU local label.
3835 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3836 // If we found a label, check to see if it is in the same context as us.
3837 // When in a Block, we don't want to reuse a label in an enclosing function.
3838 if (Res && Res->getDeclContext() != CurContext)
3839 Res = nullptr;
3840 if (!Res) {
3841 // If not forward referenced or defined already, create the backing decl.
3842 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3843 Scope *S = CurScope->getFnParent();
3844 assert(S && "Not in a function?")((S && "Not in a function?") ? static_cast<void>
(0) : __assert_fail ("S && \"Not in a function?\"", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 3844, __PRETTY_FUNCTION__))
;
3845 PushOnScopeChains(Res, S, true);
3846 }
3847 return cast<LabelDecl>(Res);
3848}
3849
3850//===----------------------------------------------------------------------===//
3851// Typo correction
3852//===----------------------------------------------------------------------===//
3853
3854static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3855 TypoCorrection &Candidate) {
3856 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3857 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3858}
3859
3860static void LookupPotentialTypoResult(Sema &SemaRef,
3861 LookupResult &Res,
3862 IdentifierInfo *Name,
3863 Scope *S, CXXScopeSpec *SS,
3864 DeclContext *MemberContext,
3865 bool EnteringContext,
3866 bool isObjCIvarLookup,
3867 bool FindHidden);
3868
3869/// Check whether the declarations found for a typo correction are
3870/// visible. Set the correction's RequiresImport flag to true if none of the
3871/// declarations are visible, false otherwise.
3872static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3873 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3874
3875 for (/**/; DI != DE; ++DI)
3876 if (!LookupResult::isVisible(SemaRef, *DI))
3877 break;
3878 // No filtering needed if all decls are visible.
3879 if (DI == DE) {
3880 TC.setRequiresImport(false);
3881 return;
3882 }
3883
3884 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3885 bool AnyVisibleDecls = !NewDecls.empty();
3886
3887 for (/**/; DI != DE; ++DI) {
3888 if (LookupResult::isVisible(SemaRef, *DI)) {
3889 if (!AnyVisibleDecls) {
3890 // Found a visible decl, discard all hidden ones.
3891 AnyVisibleDecls = true;
3892 NewDecls.clear();
3893 }
3894 NewDecls.push_back(*DI);
3895 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3896 NewDecls.push_back(*DI);
3897 }
3898
3899 if (NewDecls.empty())
3900 TC = TypoCorrection();
3901 else {
3902 TC.setCorrectionDecls(NewDecls);
3903 TC.setRequiresImport(!AnyVisibleDecls);
3904 }
3905}
3906
3907// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3908// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3909// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3910static void getNestedNameSpecifierIdentifiers(
3911 NestedNameSpecifier *NNS,
3912 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3913 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3914 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3915 else
3916 Identifiers.clear();
3917
3918 const IdentifierInfo *II = nullptr;
3919
3920 switch (NNS->getKind()) {
3921 case NestedNameSpecifier::Identifier:
3922 II = NNS->getAsIdentifier();
3923 break;
3924
3925 case NestedNameSpecifier::Namespace:
3926 if (NNS->getAsNamespace()->isAnonymousNamespace())
3927 return;
3928 II = NNS->getAsNamespace()->getIdentifier();
3929 break;
3930
3931 case NestedNameSpecifier::NamespaceAlias:
3932 II = NNS->getAsNamespaceAlias()->getIdentifier();
3933 break;
3934
3935 case NestedNameSpecifier::TypeSpecWithTemplate:
3936 case NestedNameSpecifier::TypeSpec:
3937 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3938 break;
3939
3940 case NestedNameSpecifier::Global:
3941 case NestedNameSpecifier::Super:
3942 return;
3943 }
3944
3945 if (II)
3946 Identifiers.push_back(II);
3947}
3948
3949void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3950 DeclContext *Ctx, bool InBaseClass) {
3951 // Don't consider hidden names for typo correction.
3952 if (Hiding)
3953 return;
3954
3955 // Only consider entities with identifiers for names, ignoring
3956 // special names (constructors, overloaded operators, selectors,
3957 // etc.).
3958 IdentifierInfo *Name = ND->getIdentifier();
3959 if (!Name)
3960 return;
3961
3962 // Only consider visible declarations and declarations from modules with
3963 // names that exactly match.
3964 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
3965 return;
3966
3967 FoundName(Name->getName());
3968}
3969
3970void TypoCorrectionConsumer::FoundName(StringRef Name) {
3971 // Compute the edit distance between the typo and the name of this
3972 // entity, and add the identifier to the list of results.
3973 addName(Name, nullptr);
3974}
3975
3976void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3977 // Compute the edit distance between the typo and this keyword,
3978 // and add the keyword to the list of results.
3979 addName(Keyword, nullptr, nullptr, true);
3980}
3981
3982void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3983 NestedNameSpecifier *NNS, bool isKeyword) {
3984 // Use a simple length-based heuristic to determine the minimum possible
3985 // edit distance. If the minimum isn't good enough, bail out early.
3986 StringRef TypoStr = Typo->getName();
3987 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3988 if (MinED && TypoStr.size() / MinED < 3)
3989 return;
3990
3991 // Compute an upper bound on the allowable edit distance, so that the
3992 // edit-distance algorithm can short-circuit.
3993 unsigned UpperBound = (TypoStr.size() + 2) / 3;
3994 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3995 if (ED > UpperBound) return;
3996
3997 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3998 if (isKeyword) TC.makeKeyword();
3999 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4000 addCorrection(TC);
4001}
4002
4003static const unsigned MaxTypoDistanceResultSets = 5;
4004
4005void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4006 StringRef TypoStr = Typo->getName();
4007 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4008
4009 // For very short typos, ignore potential corrections that have a different
4010 // base identifier from the typo or which have a normalized edit distance
4011 // longer than the typo itself.
4012 if (TypoStr.size() < 3 &&
4013 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4014 return;
4015
4016 // If the correction is resolved but is not viable, ignore it.
4017 if (Correction.isResolved()) {
4018 checkCorrectionVisibility(SemaRef, Correction);
4019 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4020 return;
4021 }
4022
4023 TypoResultList &CList =
4024 CorrectionResults[Correction.getEditDistance(false)][Name];
4025
4026 if (!CList.empty() && !CList.back().isResolved())
4027 CList.pop_back();
4028 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4029 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4030 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4031 RI != RIEnd; ++RI) {
4032 // If the Correction refers to a decl already in the result list,
4033 // replace the existing result if the string representation of Correction
4034 // comes before the current result alphabetically, then stop as there is
4035 // nothing more to be done to add Correction to the candidate set.
4036 if (RI->getCorrectionDecl() == NewND) {
4037 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4038 *RI = Correction;
4039 return;
4040 }
4041 }
4042 }
4043 if (CList.empty() || Correction.isResolved())
4044 CList.push_back(Correction);
4045
4046 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4047 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4048}
4049
4050void TypoCorrectionConsumer::addNamespaces(
4051 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4052 SearchNamespaces = true;
4053
4054 for (auto KNPair : KnownNamespaces)
4055 Namespaces.addNameSpecifier(KNPair.first);
4056
4057 bool SSIsTemplate = false;
4058 if (NestedNameSpecifier *NNS =
4059 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4060 if (const Type *T = NNS->getAsType())
4061 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4062 }
4063 // Do not transform this into an iterator-based loop. The loop body can
4064 // trigger the creation of further types (through lazy deserialization) and
4065 // invalide iterators into this list.
4066 auto &Types = SemaRef.getASTContext().getTypes();
4067 for (unsigned I = 0; I != Types.size(); ++I) {
4068 const auto *TI = Types[I];
4069 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4070 CD = CD->getCanonicalDecl();
4071 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4072 !CD->isUnion() && CD->getIdentifier() &&
4073 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4074 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4075 Namespaces.addNameSpecifier(CD);
4076 }
4077 }
4078}
4079
4080const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4081 if (++CurrentTCIndex < ValidatedCorrections.size())
4082 return ValidatedCorrections[CurrentTCIndex];
4083
4084 CurrentTCIndex = ValidatedCorrections.size();
4085 while (!CorrectionResults.empty()) {
4086 auto DI = CorrectionResults.begin();
4087 if (DI->second.empty()) {
4088 CorrectionResults.erase(DI);
4089 continue;
4090 }
4091
4092 auto RI = DI->second.begin();
4093 if (RI->second.empty()) {
4094 DI->second.erase(RI);
4095 performQualifiedLookups();
4096 continue;
4097 }
4098
4099 TypoCorrection TC = RI->second.pop_back_val();
4100 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4101 ValidatedCorrections.push_back(TC);
4102 return ValidatedCorrections[CurrentTCIndex];
4103 }
4104 }
4105 return ValidatedCorrections[0]; // The empty correction.
4106}
4107
4108bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4109 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4110 DeclContext *TempMemberContext = MemberContext;
4111 CXXScopeSpec *TempSS = SS.get();
4112retry_lookup:
4113 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4114 EnteringContext,
4115 CorrectionValidator->IsObjCIvarLookup,
4116 Name == Typo && !Candidate.WillReplaceSpecifier());
4117 switch (Result.getResultKind()) {
4118 case LookupResult::NotFound:
4119 case LookupResult::NotFoundInCurrentInstantiation:
4120 case LookupResult::FoundUnresolvedValue:
4121 if (TempSS) {
4122 // Immediately retry the lookup without the given CXXScopeSpec
4123 TempSS = nullptr;
4124 Candidate.WillReplaceSpecifier(true);
4125 goto retry_lookup;
4126 }
4127 if (TempMemberContext) {
4128 if (SS && !TempSS)
4129 TempSS = SS.get();
4130 TempMemberContext = nullptr;
4131 goto retry_lookup;
4132 }
4133 if (SearchNamespaces)
4134 QualifiedResults.push_back(Candidate);
4135 break;
4136
4137 case LookupResult::Ambiguous:
4138 // We don't deal with ambiguities.
4139 break;
4140
4141 case LookupResult::Found:
4142 case LookupResult::FoundOverloaded:
4143 // Store all of the Decls for overloaded symbols
4144 for (auto *TRD : Result)
4145 Candidate.addCorrectionDecl(TRD);
4146 checkCorrectionVisibility(SemaRef, Candidate);
4147 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4148 if (SearchNamespaces)
4149 QualifiedResults.push_back(Candidate);
4150 break;
4151 }
4152 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4153 return true;
4154 }
4155 return false;
4156}
4157
4158void TypoCorrectionConsumer::performQualifiedLookups() {
4159 unsigned TypoLen = Typo->getName().size();
4160 for (const TypoCorrection &QR : QualifiedResults) {
4161 for (const auto &NSI : Namespaces) {
4162 DeclContext *Ctx = NSI.DeclCtx;
4163 const Type *NSType = NSI.NameSpecifier->getAsType();
4164
4165 // If the current NestedNameSpecifier refers to a class and the
4166 // current correction candidate is the name of that class, then skip
4167 // it as it is unlikely a qualified version of the class' constructor
4168 // is an appropriate correction.
4169 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4170 nullptr) {
4171 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4172 continue;
4173 }
4174
4175 TypoCorrection TC(QR);
4176 TC.ClearCorrectionDecls();
4177 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4178 TC.setQualifierDistance(NSI.EditDistance);
4179 TC.setCallbackDistance(0); // Reset the callback distance
4180
4181 // If the current correction candidate and namespace combination are
4182 // too far away from the original typo based on the normalized edit
4183 // distance, then skip performing a qualified name lookup.
4184 unsigned TmpED = TC.getEditDistance(true);
4185 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4186 TypoLen / TmpED < 3)
4187 continue;
4188
4189 Result.clear();
4190 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4191 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4192 continue;
4193
4194 // Any corrections added below will be validated in subsequent
4195 // iterations of the main while() loop over the Consumer's contents.
4196 switch (Result.getResultKind()) {
4197 case LookupResult::Found:
4198 case LookupResult::FoundOverloaded: {
4199 if (SS && SS->isValid()) {
4200 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4201 std::string OldQualified;
4202 llvm::raw_string_ostream OldOStream(OldQualified);
4203 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4204 OldOStream << Typo->getName();
4205 // If correction candidate would be an identical written qualified
4206 // identifer, then the existing CXXScopeSpec probably included a
4207 // typedef that didn't get accounted for properly.
4208 if (OldOStream.str() == NewQualified)
4209 break;
4210 }
4211 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4212 TRD != TRDEnd; ++TRD) {
4213 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4214 NSType ? NSType->getAsCXXRecordDecl()
4215 : nullptr,
4216 TRD.getPair()) == Sema::AR_accessible)
4217 TC.addCorrectionDecl(*TRD);
4218 }
4219 if (TC.isResolved()) {
4220 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4221 addCorrection(TC);
4222 }
4223 break;
4224 }
4225 case LookupResult::NotFound:
4226 case LookupResult::NotFoundInCurrentInstantiation:
4227 case LookupResult::Ambiguous:
4228 case LookupResult::FoundUnresolvedValue:
4229 break;
4230 }
4231 }
4232 }
4233 QualifiedResults.clear();
4234}
4235
4236TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4237 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4238 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4239 if (NestedNameSpecifier *NNS =
4240 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4241 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4242 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4243
4244 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4245 }
4246 // Build the list of identifiers that would be used for an absolute
4247 // (from the global context) NestedNameSpecifier referring to the current
4248 // context.
4249 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4250 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4251 CurContextIdentifiers.push_back(ND->getIdentifier());
4252 }
4253
4254 // Add the global context as a NestedNameSpecifier
4255 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4256 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4257 DistanceMap[1].push_back(SI);
4258}
4259
4260auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4261 DeclContext *Start) -> DeclContextList {
4262 assert(Start && "Building a context chain from a null context")((Start && "Building a context chain from a null context"
) ? static_cast<void> (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 4262, __PRETTY_FUNCTION__))
;
4263 DeclContextList Chain;
4264 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4265 DC = DC->getLookupParent()) {
4266 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4267 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4268 !(ND && ND->isAnonymousNamespace()))
4269 Chain.push_back(DC->getPrimaryContext());
4270 }
4271 return Chain;
4272}
4273
4274unsigned
4275TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4276 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4277 unsigned NumSpecifiers = 0;
4278 for (DeclContext *C : llvm::reverse(DeclChain)) {
4279 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4280 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4281 ++NumSpecifiers;
4282 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4283 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4284 RD->getTypeForDecl());
4285 ++NumSpecifiers;
4286 }
4287 }
4288 return NumSpecifiers;
4289}
4290
4291void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4292 DeclContext *Ctx) {
4293 NestedNameSpecifier *NNS = nullptr;
4294 unsigned NumSpecifiers = 0;
4295 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4296 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4297
4298 // Eliminate common elements from the two DeclContext chains.
4299 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4300 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4301 break;
4302 NamespaceDeclChain.pop_back();
4303 }
4304
4305 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4306 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4307
4308 // Add an explicit leading '::' specifier if needed.
4309 if (NamespaceDeclChain.empty()) {
4310 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4311 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4312 NumSpecifiers =
4313 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4314 } else if (NamedDecl *ND =
4315 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4316 IdentifierInfo *Name = ND->getIdentifier();
4317 bool SameNameSpecifier = false;
4318 if (std::find(CurNameSpecifierIdentifiers.begin(),
4319 CurNameSpecifierIdentifiers.end(),
4320 Name) != CurNameSpecifierIdentifiers.end()) {
4321 std::string NewNameSpecifier;
4322 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4323 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4324 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4325 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4326 SpecifierOStream.flush();
4327 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4328 }
4329 if (SameNameSpecifier ||
4330 std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4331 Name) != CurContextIdentifiers.end()) {
4332 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4333 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4334 NumSpecifiers =
4335 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4336 }
4337 }
4338
4339 // If the built NestedNameSpecifier would be replacing an existing
4340 // NestedNameSpecifier, use the number of component identifiers that
4341 // would need to be changed as the edit distance instead of the number
4342 // of components in the built NestedNameSpecifier.
4343 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4344 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4345 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4346 NumSpecifiers = llvm::ComputeEditDistance(
4347 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4348 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4349 }
4350
4351 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4352 DistanceMap[NumSpecifiers].push_back(SI);
4353}
4354
4355/// Perform name lookup for a possible result for typo correction.
4356static void LookupPotentialTypoResult(Sema &SemaRef,
4357 LookupResult &Res,
4358 IdentifierInfo *Name,
4359 Scope *S, CXXScopeSpec *SS,
4360 DeclContext *MemberContext,
4361 bool EnteringContext,
4362 bool isObjCIvarLookup,
4363 bool FindHidden) {
4364 Res.suppressDiagnostics();
4365 Res.clear();
4366 Res.setLookupName(Name);
4367 Res.setAllowHidden(FindHidden);
4368 if (MemberContext) {
4369 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4370 if (isObjCIvarLookup) {
4371 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4372 Res.addDecl(Ivar);
4373 Res.resolveKind();
4374 return;
4375 }
4376 }
4377
4378 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4379 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4380 Res.addDecl(Prop);
4381 Res.resolveKind();
4382 return;
4383 }
4384 }
4385
4386 SemaRef.LookupQualifiedName(Res, MemberContext);
4387 return;
4388 }
4389
4390 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4391 EnteringContext);
4392
4393 // Fake ivar lookup; this should really be part of
4394 // LookupParsedName.
4395 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4396 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4397 (Res.empty() ||
4398 (Res.isSingleResult() &&
4399 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4400 if (ObjCIvarDecl *IV
4401 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4402 Res.addDecl(IV);
4403 Res.resolveKind();
4404 }
4405 }
4406 }
4407}
4408
4409/// Add keywords to the consumer as possible typo corrections.
4410static void AddKeywordsToConsumer(Sema &SemaRef,
4411 TypoCorrectionConsumer &Consumer,
4412 Scope *S, CorrectionCandidateCallback &CCC,
4413 bool AfterNestedNameSpecifier) {
4414 if (AfterNestedNameSpecifier) {
4415 // For 'X::', we know exactly which keywords can appear next.
4416 Consumer.addKeywordResult("template");
4417 if (CCC.WantExpressionKeywords)
4418 Consumer.addKeywordResult("operator");
4419 return;
4420 }
4421
4422 if (CCC.WantObjCSuper)
4423 Consumer.addKeywordResult("super");
4424
4425 if (CCC.WantTypeSpecifiers) {
4426 // Add type-specifier keywords to the set of results.
4427 static const char *const CTypeSpecs[] = {
4428 "char", "const", "double", "enum", "float", "int", "long", "short",
4429 "signed", "struct", "union", "unsigned", "void", "volatile",
4430 "_Complex", "_Imaginary",
4431 // storage-specifiers as well
4432 "extern", "inline", "static", "typedef"
4433 };
4434
4435 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4436 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4437 Consumer.addKeywordResult(CTypeSpecs[I]);
4438
4439 if (SemaRef.getLangOpts().C99)
4440 Consumer.addKeywordResult("restrict");
4441 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4442 Consumer.addKeywordResult("bool");
4443 else if (SemaRef.getLangOpts().C99)
4444 Consumer.addKeywordResult("_Bool");
4445
4446 if (SemaRef.getLangOpts().CPlusPlus) {
4447 Consumer.addKeywordResult("class");
4448 Consumer.addKeywordResult("typename");
4449 Consumer.addKeywordResult("wchar_t");
4450
4451 if (SemaRef.getLangOpts().CPlusPlus11) {
4452 Consumer.addKeywordResult("char16_t");
4453 Consumer.addKeywordResult("char32_t");
4454 Consumer.addKeywordResult("constexpr");
4455 Consumer.addKeywordResult("decltype");
4456 Consumer.addKeywordResult("thread_local");
4457 }
4458 }
4459
4460 if (SemaRef.getLangOpts().GNUKeywords)
4461 Consumer.addKeywordResult("typeof");
4462 } else if (CCC.WantFunctionLikeCasts) {
4463 static const char *const CastableTypeSpecs[] = {
4464 "char", "double", "float", "int", "long", "short",
4465 "signed", "unsigned", "void"
4466 };
4467 for (auto *kw : CastableTypeSpecs)
4468 Consumer.addKeywordResult(kw);
4469 }
4470
4471 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4472 Consumer.addKeywordResult("const_cast");
4473 Consumer.addKeywordResult("dynamic_cast");
4474 Consumer.addKeywordResult("reinterpret_cast");
4475 Consumer.addKeywordResult("static_cast");
4476 }
4477
4478 if (CCC.WantExpressionKeywords) {
4479 Consumer.addKeywordResult("sizeof");
4480 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4481 Consumer.addKeywordResult("false");
4482 Consumer.addKeywordResult("true");
4483 }
4484
4485 if (SemaRef.getLangOpts().CPlusPlus) {
4486 static const char *const CXXExprs[] = {
4487 "delete", "new", "operator", "throw", "typeid"
4488 };
4489 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4490 for (unsigned I = 0; I != NumCXXExprs; ++I)
4491 Consumer.addKeywordResult(CXXExprs[I]);
4492
4493 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4494 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4495 Consumer.addKeywordResult("this");
4496
4497 if (SemaRef.getLangOpts().CPlusPlus11) {
4498 Consumer.addKeywordResult("alignof");
4499 Consumer.addKeywordResult("nullptr");
4500 }
4501 }
4502
4503 if (SemaRef.getLangOpts().C11) {
4504 // FIXME: We should not suggest _Alignof if the alignof macro
4505 // is present.
4506 Consumer.addKeywordResult("_Alignof");
4507 }
4508 }
4509
4510 if (CCC.WantRemainingKeywords) {
4511 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4512 // Statements.
4513 static const char *const CStmts[] = {
4514 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4515 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4516 for (unsigned I = 0; I != NumCStmts; ++I)
4517 Consumer.addKeywordResult(CStmts[I]);
4518
4519 if (SemaRef.getLangOpts().CPlusPlus) {
4520 Consumer.addKeywordResult("catch");
4521 Consumer.addKeywordResult("try");
4522 }
4523
4524 if (S && S->getBreakParent())
4525 Consumer.addKeywordResult("break");
4526
4527 if (S && S->getContinueParent())
4528 Consumer.addKeywordResult("continue");
4529
4530 if (SemaRef.getCurFunction() &&
4531 !SemaRef.getCurFunction()->SwitchStack.empty()) {
4532 Consumer.addKeywordResult("case");
4533 Consumer.addKeywordResult("default");
4534 }
4535 } else {
4536 if (SemaRef.getLangOpts().CPlusPlus) {
4537 Consumer.addKeywordResult("namespace");
4538 Consumer.addKeywordResult("template");
4539 }
4540
4541 if (S && S->isClassScope()) {
4542 Consumer.addKeywordResult("explicit");
4543 Consumer.addKeywordResult("friend");
4544 Consumer.addKeywordResult("mutable");
4545 Consumer.addKeywordResult("private");
4546 Consumer.addKeywordResult("protected");
4547 Consumer.addKeywordResult("public");
4548 Consumer.addKeywordResult("virtual");
4549 }
4550 }
4551
4552 if (SemaRef.getLangOpts().CPlusPlus) {
4553 Consumer.addKeywordResult("using");
4554
4555 if (SemaRef.getLangOpts().CPlusPlus11)
4556 Consumer.addKeywordResult("static_assert");
4557 }
4558 }
4559}
4560
4561std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4562 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4563 Scope *S, CXXScopeSpec *SS,
4564 std::unique_ptr<CorrectionCandidateCallback> CCC,
4565 DeclContext *MemberContext, bool EnteringContext,
4566 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4567
4568 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4569 DisableTypoCorrection)
4570 return nullptr;
4571
4572 // In Microsoft mode, don't perform typo correction in a template member
4573 // function dependent context because it interferes with the "lookup into
4574 // dependent bases of class templates" feature.
4575 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4576 isa<CXXMethodDecl>(CurContext))
4577 return nullptr;
4578
4579 // We only attempt to correct typos for identifiers.
4580 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4581 if (!Typo)
4582 return nullptr;
4583
4584 // If the scope specifier itself was invalid, don't try to correct
4585 // typos.
4586 if (SS && SS->isInvalid())
4587 return nullptr;
4588
4589 // Never try to correct typos during any kind of code synthesis.
4590 if (!CodeSynthesisContexts.empty())
4591 return nullptr;
4592
4593 // Don't try to correct 'super'.
4594 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4595 return nullptr;
4596
4597 // Abort if typo correction already failed for this specific typo.
4598 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4599 if (locs != TypoCorrectionFailures.end() &&
4600 locs->second.count(TypoName.getLoc()))
4601 return nullptr;
4602
4603 // Don't try to correct the identifier "vector" when in AltiVec mode.
4604 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4605 // remove this workaround.
4606 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4607 return nullptr;
4608
4609 // Provide a stop gap for files that are just seriously broken. Trying
4610 // to correct all typos can turn into a HUGE performance penalty, causing
4611 // some files to take minutes to get rejected by the parser.
4612 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4613 if (Limit && TyposCorrected >= Limit)
4614 return nullptr;
4615 ++TyposCorrected;
4616
4617 // If we're handling a missing symbol error, using modules, and the
4618 // special search all modules option is used, look for a missing import.
4619 if (ErrorRecovery && getLangOpts().Modules &&
4620 getLangOpts().ModulesSearchAll) {
4621 // The following has the side effect of loading the missing module.
4622 getModuleLoader().lookupMissingImports(Typo->getName(),
4623 TypoName.getBeginLoc());
4624 }
4625
4626 CorrectionCandidateCallback &CCCRef = *CCC;
4627 auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4628 *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4629 EnteringContext);
4630
4631 // Perform name lookup to find visible, similarly-named entities.
4632 bool IsUnqualifiedLookup = false;
4633 DeclContext *QualifiedDC = MemberContext;
4634 if (MemberContext) {
4635 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4636
4637 // Look in qualified interfaces.
4638 if (OPT) {
4639 for (auto *I : OPT->quals())
4640 LookupVisibleDecls(I, LookupKind, *Consumer);
4641 }
4642 } else if (SS && SS->isSet()) {
4643 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4644 if (!QualifiedDC)
4645 return nullptr;
4646
4647 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4648 } else {
4649 IsUnqualifiedLookup = true;
4650 }
4651
4652 // Determine whether we are going to search in the various namespaces for
4653 // corrections.
4654 bool SearchNamespaces
4655 = getLangOpts().CPlusPlus &&
4656 (IsUnqualifiedLookup || (SS && SS->isSet()));
4657
4658 if (IsUnqualifiedLookup || SearchNamespaces) {
4659 // For unqualified lookup, look through all of the names that we have
4660 // seen in this translation unit.
4661 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4662 for (const auto &I : Context.Idents)
4663 Consumer->FoundName(I.getKey());
4664
4665 // Walk through identifiers in external identifier sources.
4666 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4667 if (IdentifierInfoLookup *External
4668 = Context.Idents.getExternalIdentifierLookup()) {
4669 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4670 do {
4671 StringRef Name = Iter->Next();
4672 if (Name.empty())
4673 break;
4674
4675 Consumer->FoundName(Name);
4676 } while (true);
4677 }
4678 }
4679
4680 AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4681
4682 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4683 // to search those namespaces.
4684 if (SearchNamespaces) {
4685 // Load any externally-known namespaces.
4686 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4687 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4688 LoadedExternalKnownNamespaces = true;
4689 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4690 for (auto *N : ExternalKnownNamespaces)
4691 KnownNamespaces[N] = true;
4692 }
4693
4694 Consumer->addNamespaces(KnownNamespaces);
4695 }
4696
4697 return Consumer;
4698}
4699
4700/// Try to "correct" a typo in the source code by finding
4701/// visible declarations whose names are similar to the name that was
4702/// present in the source code.
4703///
4704/// \param TypoName the \c DeclarationNameInfo structure that contains
4705/// the name that was present in the source code along with its location.
4706///
4707/// \param LookupKind the name-lookup criteria used to search for the name.
4708///
4709/// \param S the scope in which name lookup occurs.
4710///
4711/// \param SS the nested-name-specifier that precedes the name we're
4712/// looking for, if present.
4713///
4714/// \param CCC A CorrectionCandidateCallback object that provides further
4715/// validation of typo correction candidates. It also provides flags for
4716/// determining the set of keywords permitted.
4717///
4718/// \param MemberContext if non-NULL, the context in which to look for
4719/// a member access expression.
4720///
4721/// \param EnteringContext whether we're entering the context described by
4722/// the nested-name-specifier SS.
4723///
4724/// \param OPT when non-NULL, the search for visible declarations will
4725/// also walk the protocols in the qualified interfaces of \p OPT.
4726///
4727/// \returns a \c TypoCorrection containing the corrected name if the typo
4728/// along with information such as the \c NamedDecl where the corrected name
4729/// was declared, and any additional \c NestedNameSpecifier needed to access
4730/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4731TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4732 Sema::LookupNameKind LookupKind,
4733 Scope *S, CXXScopeSpec *SS,
4734 std::unique_ptr<CorrectionCandidateCallback> CCC,
4735 CorrectTypoKind Mode,
4736 DeclContext *MemberContext,
4737 bool EnteringContext,
4738 const ObjCObjectPointerType *OPT,
4739 bool RecordFailure) {
4740 assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback")((CCC && "CorrectTypo requires a CorrectionCandidateCallback"
) ? static_cast<void> (0) : __assert_fail ("CCC && \"CorrectTypo requires a CorrectionCandidateCallback\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 4740, __PRETTY_FUNCTION__))
;
4741
4742 // Always let the ExternalSource have the first chance at correction, even
4743 // if we would otherwise have given up.
4744 if (ExternalSource) {
4745 if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4746 TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4747 return Correction;
4748 }
4749
4750 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4751 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4752 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4753 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4754 bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4755
4756 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4757 auto Consumer = makeTypoCorrectionConsumer(
4758 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4759 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4760
4761 if (!Consumer)
4762 return TypoCorrection();
4763
4764 // If we haven't found anything, we're done.
4765 if (Consumer->empty())
4766 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4767
4768 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4769 // is not more that about a third of the length of the typo's identifier.
4770 unsigned ED = Consumer->getBestEditDistance(true);
4771 unsigned TypoLen = Typo->getName().size();
4772 if (ED > 0 && TypoLen / ED < 3)
4773 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4774
4775 TypoCorrection BestTC = Consumer->getNextCorrection();
4776 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4777 if (!BestTC)
4778 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4779
4780 ED = BestTC.getEditDistance();
4781
4782 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4783 // If this was an unqualified lookup and we believe the callback
4784 // object wouldn't have filtered out possible corrections, note
4785 // that no correction was found.
4786 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4787 }
4788
4789 // If only a single name remains, return that result.
4790 if (!SecondBestTC ||
4791 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4792 const TypoCorrection &Result = BestTC;
4793
4794 // Don't correct to a keyword that's the same as the typo; the keyword
4795 // wasn't actually in scope.
4796 if (ED == 0 && Result.isKeyword())
4797 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4798
4799 TypoCorrection TC = Result;
4800 TC.setCorrectionRange(SS, TypoName);
4801 checkCorrectionVisibility(*this, TC);
4802 return TC;
4803 } else if (SecondBestTC && ObjCMessageReceiver) {
4804 // Prefer 'super' when we're completing in a message-receiver
4805 // context.
4806
4807 if (BestTC.getCorrection().getAsString() != "super") {
4808 if (SecondBestTC.getCorrection().getAsString() == "super")
4809 BestTC = SecondBestTC;
4810 else if ((*Consumer)["super"].front().isKeyword())
4811 BestTC = (*Consumer)["super"].front();
4812 }
4813 // Don't correct to a keyword that's the same as the typo; the keyword
4814 // wasn't actually in scope.
4815 if (BestTC.getEditDistance() == 0 ||
4816 BestTC.getCorrection().getAsString() != "super")
4817 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4818
4819 BestTC.setCorrectionRange(SS, TypoName);
4820 return BestTC;
4821 }
4822
4823 // Record the failure's location if needed and return an empty correction. If
4824 // this was an unqualified lookup and we believe the callback object did not
4825 // filter out possible corrections, also cache the failure for the typo.
4826 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4827}
4828
4829/// Try to "correct" a typo in the source code by finding
4830/// visible declarations whose names are similar to the name that was
4831/// present in the source code.
4832///
4833/// \param TypoName the \c DeclarationNameInfo structure that contains
4834/// the name that was present in the source code along with its location.
4835///
4836/// \param LookupKind the name-lookup criteria used to search for the name.
4837///
4838/// \param S the scope in which name lookup occurs.
4839///
4840/// \param SS the nested-name-specifier that precedes the name we're
4841/// looking for, if present.
4842///
4843/// \param CCC A CorrectionCandidateCallback object that provides further
4844/// validation of typo correction candidates. It also provides flags for
4845/// determining the set of keywords permitted.
4846///
4847/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4848/// diagnostics when the actual typo correction is attempted.
4849///
4850/// \param TRC A TypoRecoveryCallback functor that will be used to build an
4851/// Expr from a typo correction candidate.
4852///
4853/// \param MemberContext if non-NULL, the context in which to look for
4854/// a member access expression.
4855///
4856/// \param EnteringContext whether we're entering the context described by
4857/// the nested-name-specifier SS.
4858///
4859/// \param OPT when non-NULL, the search for visible declarations will
4860/// also walk the protocols in the qualified interfaces of \p OPT.
4861///
4862/// \returns a new \c TypoExpr that will later be replaced in the AST with an
4863/// Expr representing the result of performing typo correction, or nullptr if
4864/// typo correction is not possible. If nullptr is returned, no diagnostics will
4865/// be emitted and it is the responsibility of the caller to emit any that are
4866/// needed.
4867TypoExpr *Sema::CorrectTypoDelayed(
4868 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4869 Scope *S, CXXScopeSpec *SS,
4870 std::unique_ptr<CorrectionCandidateCallback> CCC,
4871 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4872 DeclContext *MemberContext, bool EnteringContext,
4873 const ObjCObjectPointerType *OPT) {
4874 assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback")((CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback"
) ? static_cast<void> (0) : __assert_fail ("CCC && \"CorrectTypoDelayed requires a CorrectionCandidateCallback\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 4874, __PRETTY_FUNCTION__))
;
4875
4876 auto Consumer = makeTypoCorrectionConsumer(
4877 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4878 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4879
4880 // Give the external sema source a chance to correct the typo.
4881 TypoCorrection ExternalTypo;
4882 if (ExternalSource && Consumer) {
4883 ExternalTypo = ExternalSource->CorrectTypo(
4884 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
4885 MemberContext, EnteringContext, OPT);
4886 if (ExternalTypo)
4887 Consumer->addCorrection(ExternalTypo);
4888 }
4889
4890 if (!Consumer || Consumer->empty())
4891 return nullptr;
4892
4893 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4894 // is not more that about a third of the length of the typo's identifier.
4895 unsigned ED = Consumer->getBestEditDistance(true);
4896 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4897 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
4898 return nullptr;
4899
4900 ExprEvalContexts.back().NumTypos++;
4901 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4902}
4903
4904void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4905 if (!CDecl) return;
4906
4907 if (isKeyword())
4908 CorrectionDecls.clear();
4909
4910 CorrectionDecls.push_back(CDecl);
4911
4912 if (!CorrectionName)
4913 CorrectionName = CDecl->getDeclName();
4914}
4915
4916std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4917 if (CorrectionNameSpec) {
4918 std::string tmpBuffer;
4919 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4920 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4921 PrefixOStream << CorrectionName;
4922 return PrefixOStream.str();
4923 }
4924
4925 return CorrectionName.getAsString();
4926}
4927
4928bool CorrectionCandidateCallback::ValidateCandidate(
4929 const TypoCorrection &candidate) {
4930 if (!candidate.isResolved())
4931 return true;
4932
4933 if (candidate.isKeyword())
4934 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4935 WantRemainingKeywords || WantObjCSuper;
4936
4937 bool HasNonType = false;
4938 bool HasStaticMethod = false;
4939 bool HasNonStaticMethod = false;
4940 for (Decl *D : candidate) {
4941 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4942 D = FTD->getTemplatedDecl();
4943 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4944 if (Method->isStatic())
4945 HasStaticMethod = true;
4946 else
4947 HasNonStaticMethod = true;
4948 }
4949 if (!isa<TypeDecl>(D))
4950 HasNonType = true;
4951 }
4952
4953 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4954 !candidate.getCorrectionSpecifier())
4955 return false;
4956
4957 return WantTypeSpecifiers || HasNonType;
4958}
4959
4960FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4961 bool HasExplicitTemplateArgs,
4962 MemberExpr *ME)
4963 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4964 CurContext(SemaRef.CurContext), MemberFn(ME) {
4965 WantTypeSpecifiers = false;
4966 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4967 WantRemainingKeywords = false;
4968}
4969
4970bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4971 if (!candidate.getCorrectionDecl())
4972 return candidate.isKeyword();
4973
4974 for (auto *C : candidate) {
4975 FunctionDecl *FD = nullptr;
4976 NamedDecl *ND = C->getUnderlyingDecl();
4977 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4978 FD = FTD->getTemplatedDecl();
4979 if (!HasExplicitTemplateArgs && !FD) {
4980 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4981 // If the Decl is neither a function nor a template function,
4982 // determine if it is a pointer or reference to a function. If so,
4983 // check against the number of arguments expected for the pointee.
4984 QualType ValType = cast<ValueDecl>(ND)->getType();
4985 if (ValType.isNull())
4986 continue;
4987 if (ValType->isAnyPointerType() || ValType->isReferenceType())
4988 ValType = ValType->getPointeeType();
4989 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4990 if (FPT->getNumParams() == NumArgs)
4991 return true;
4992 }
4993 }
4994
4995 // Skip the current candidate if it is not a FunctionDecl or does not accept
4996 // the current number of arguments.
4997 if (!FD || !(FD->getNumParams() >= NumArgs &&
4998 FD->getMinRequiredArguments() <= NumArgs))
4999 continue;
5000
5001 // If the current candidate is a non-static C++ method, skip the candidate
5002 // unless the method being corrected--or the current DeclContext, if the
5003 // function being corrected is not a method--is a method in the same class
5004 // or a descendent class of the candidate's parent class.
5005 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5006 if (MemberFn || !MD->isStatic()) {
5007 CXXMethodDecl *CurMD =
5008 MemberFn
5009 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5010 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5011 CXXRecordDecl *CurRD =
5012 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5013 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5014 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5015 continue;
5016 }
5017 }
5018 return true;
5019 }
5020 return false;
5021}
5022
5023void Sema::diagnoseTypo(const TypoCorrection &Correction,
5024 const PartialDiagnostic &TypoDiag,
5025 bool ErrorRecovery) {
5026 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5027 ErrorRecovery);
5028}
5029
5030/// Find which declaration we should import to provide the definition of
5031/// the given declaration.
5032static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5033 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5034 return VD->getDefinition();
5035 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5036 return FD->getDefinition();
5037 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5038 return TD->getDefinition();
5039 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5040 return ID->getDefinition();
5041 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5042 return PD->getDefinition();
5043 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5044 return getDefinitionToImport(TD->getTemplatedDecl());
5045 return nullptr;
5046}
5047
5048void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5049 MissingImportKind MIK, bool Recover) {
5050 // Suggest importing a module providing the definition of this entity, if
5051 // possible.
5052 NamedDecl *Def = getDefinitionToImport(Decl);
5053 if (!Def)
5054 Def = Decl;
5055
5056 Module *Owner = getOwningModule(Def);
5057 assert(Owner && "definition of hidden declaration is not in a module")((Owner && "definition of hidden declaration is not in a module"
) ? static_cast<void> (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 5057, __PRETTY_FUNCTION__))
;
5058
5059 llvm::SmallVector<Module*, 8> OwningModules;
5060 OwningModules.push_back(Owner);
5061 auto Merged = Context.getModulesWithMergedDefinition(Def);
5062 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5063
5064 diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK,
5065 Recover);
5066}
5067
5068/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5069/// suggesting the addition of a #include of the specified file.
5070static std::string getIncludeStringForHeader(Preprocessor &PP,
5071 const FileEntry *E) {
5072 bool IsSystem;
5073 auto Path =
5074 PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(E, &IsSystem);
5075 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5076}
5077
5078void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5079 SourceLocation DeclLoc,
5080 ArrayRef<Module *> Modules,
5081 MissingImportKind MIK, bool Recover) {
5082 assert(!Modules.empty())((!Modules.empty()) ? static_cast<void> (0) : __assert_fail
("!Modules.empty()", "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 5082, __PRETTY_FUNCTION__))
;
5083
5084 // Weed out duplicates from module list.
5085 llvm::SmallVector<Module*, 8> UniqueModules;
5086 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5087 for (auto *M : Modules)
5088 if (UniqueModuleSet.insert(M).second)
5089 UniqueModules.push_back(M);
5090 Modules = UniqueModules;
5091
5092 if (Modules.size() > 1) {
5093 std::string ModuleList;
5094 unsigned N = 0;
5095 for (Module *M : Modules) {
5096 ModuleList += "\n ";
5097 if (++N == 5 && N != Modules.size()) {
5098 ModuleList += "[...]";
5099 break;
5100 }
5101 ModuleList += M->getFullModuleName();
5102 }
5103
5104 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5105 << (int)MIK << Decl << ModuleList;
5106 } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5107 UseLoc, Modules[0], DeclLoc)) {
5108 // The right way to make the declaration visible is to include a header;
5109 // suggest doing so.
5110 //
5111 // FIXME: Find a smart place to suggest inserting a #include, and add
5112 // a FixItHint there.
5113 Diag(UseLoc, diag::err_module_unimported_use_header)
5114 << (int)MIK << Decl << Modules[0]->getFullModuleName()
5115 << getIncludeStringForHeader(PP, E);
5116 } else {
5117 // FIXME: Add a FixItHint that imports the corresponding module.
5118 Diag(UseLoc, diag::err_module_unimported_use)
5119 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5120 }
5121
5122 unsigned DiagID;
5123 switch (MIK) {
5124 case MissingImportKind::Declaration:
5125 DiagID = diag::note_previous_declaration;
5126 break;
5127 case MissingImportKind::Definition:
5128 DiagID = diag::note_previous_definition;
5129 break;
5130 case MissingImportKind::DefaultArgument:
5131 DiagID = diag::note_default_argument_declared_here;
5132 break;
5133 case MissingImportKind::ExplicitSpecialization:
5134 DiagID = diag::note_explicit_specialization_declared_here;
5135 break;
5136 case MissingImportKind::PartialSpecialization:
5137 DiagID = diag::note_partial_specialization_declared_here;
5138 break;
5139 }
5140 Diag(DeclLoc, DiagID);
5141
5142 // Try to recover by implicitly importing this module.
5143 if (Recover)
5144 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5145}
5146
5147/// Diagnose a successfully-corrected typo. Separated from the correction
5148/// itself to allow external validation of the result, etc.
5149///
5150/// \param Correction The result of performing typo correction.
5151/// \param TypoDiag The diagnostic to produce. This will have the corrected
5152/// string added to it (and usually also a fixit).
5153/// \param PrevNote A note to use when indicating the location of the entity to
5154/// which we are correcting. Will have the correction string added to it.
5155/// \param ErrorRecovery If \c true (the default), the caller is going to
5156/// recover from the typo as if the corrected string had been typed.
5157/// In this case, \c PDiag must be an error, and we will attach a fixit
5158/// to it.
5159void Sema::diagnoseTypo(const TypoCorrection &Correction,
5160 const PartialDiagnostic &TypoDiag,
5161 const PartialDiagnostic &PrevNote,
5162 bool ErrorRecovery) {
5163 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5164 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5165 FixItHint FixTypo = FixItHint::CreateReplacement(
5166 Correction.getCorrectionRange(), CorrectedStr);
5167
5168 // Maybe we're just missing a module import.
5169 if (Correction.requiresImport()) {
5170 NamedDecl *Decl = Correction.getFoundDecl();
5171 assert(Decl && "import required but no declaration to import")((Decl && "import required but no declaration to import"
) ? static_cast<void> (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 5171, __PRETTY_FUNCTION__))
;
5172
5173 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5174 MissingImportKind::Declaration, ErrorRecovery);
5175 return;
5176 }
5177
5178 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5179 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5180
5181 NamedDecl *ChosenDecl =
5182 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5183 if (PrevNote.getDiagID() && ChosenDecl)
5184 Diag(ChosenDecl->getLocation(), PrevNote)
5185 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5186
5187 // Add any extra diagnostics.
5188 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5189 Diag(Correction.getCorrectionRange().getBegin(), PD);
5190}
5191
5192TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5193 TypoDiagnosticGenerator TDG,
5194 TypoRecoveryCallback TRC) {
5195 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")((TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? static_cast<void> (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 5195, __PRETTY_FUNCTION__))
;
5196 auto TE = new (Context) TypoExpr(Context.DependentTy);
5197 auto &State = DelayedTypos[TE];
5198 State.Consumer = std::move(TCC);
5199 State.DiagHandler = std::move(TDG);
5200 State.RecoveryHandler = std::move(TRC);
5201 return TE;
5202}
5203
5204const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5205 auto Entry = DelayedTypos.find(TE);
5206 assert(Entry != DelayedTypos.end() &&((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 5207, __PRETTY_FUNCTION__))
5207 "Failed to get the state for a TypoExpr!")((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/tools/clang/lib/Sema/SemaLookup.cpp"
, 5207, __PRETTY_FUNCTION__))
;
5208 return Entry->second;
5209}
5210
5211void Sema::clearDelayedTypo(TypoExpr *TE) {
5212 DelayedTypos.erase(TE);
5213}
5214
5215void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5216 DeclarationNameInfo Name(II, IILoc);
5217 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5218 R.suppressDiagnostics();
5219 R.setHideTags(false);
5220 LookupName(R, S);
5221 R.dump();
5222}