File: | clang/lib/Sema/SemaOverload.cpp |
Warning: | line 13899, column 26 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // This file provides Sema routines for C++ overloading. | ||||
10 | // | ||||
11 | //===----------------------------------------------------------------------===// | ||||
12 | |||||
13 | #include "clang/Sema/Overload.h" | ||||
14 | #include "clang/AST/ASTContext.h" | ||||
15 | #include "clang/AST/CXXInheritance.h" | ||||
16 | #include "clang/AST/DeclObjC.h" | ||||
17 | #include "clang/AST/Expr.h" | ||||
18 | #include "clang/AST/ExprCXX.h" | ||||
19 | #include "clang/AST/ExprObjC.h" | ||||
20 | #include "clang/AST/TypeOrdering.h" | ||||
21 | #include "clang/Basic/Diagnostic.h" | ||||
22 | #include "clang/Basic/DiagnosticOptions.h" | ||||
23 | #include "clang/Basic/PartialDiagnostic.h" | ||||
24 | #include "clang/Basic/TargetInfo.h" | ||||
25 | #include "clang/Sema/Initialization.h" | ||||
26 | #include "clang/Sema/Lookup.h" | ||||
27 | #include "clang/Sema/SemaInternal.h" | ||||
28 | #include "clang/Sema/Template.h" | ||||
29 | #include "clang/Sema/TemplateDeduction.h" | ||||
30 | #include "llvm/ADT/DenseSet.h" | ||||
31 | #include "llvm/ADT/Optional.h" | ||||
32 | #include "llvm/ADT/STLExtras.h" | ||||
33 | #include "llvm/ADT/SmallPtrSet.h" | ||||
34 | #include "llvm/ADT/SmallString.h" | ||||
35 | #include <algorithm> | ||||
36 | #include <cstdlib> | ||||
37 | |||||
38 | using namespace clang; | ||||
39 | using namespace sema; | ||||
40 | |||||
41 | static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { | ||||
42 | return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { | ||||
43 | return P->hasAttr<PassObjectSizeAttr>(); | ||||
44 | }); | ||||
45 | } | ||||
46 | |||||
47 | /// A convenience routine for creating a decayed reference to a function. | ||||
48 | static ExprResult | ||||
49 | CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, | ||||
50 | const Expr *Base, bool HadMultipleCandidates, | ||||
51 | SourceLocation Loc = SourceLocation(), | ||||
52 | const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ | ||||
53 | if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) | ||||
54 | return ExprError(); | ||||
55 | // If FoundDecl is different from Fn (such as if one is a template | ||||
56 | // and the other a specialization), make sure DiagnoseUseOfDecl is | ||||
57 | // called on both. | ||||
58 | // FIXME: This would be more comprehensively addressed by modifying | ||||
59 | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl | ||||
60 | // being used. | ||||
61 | if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) | ||||
62 | return ExprError(); | ||||
63 | if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) | ||||
64 | S.ResolveExceptionSpec(Loc, FPT); | ||||
65 | DeclRefExpr *DRE = new (S.Context) | ||||
66 | DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); | ||||
67 | if (HadMultipleCandidates) | ||||
68 | DRE->setHadMultipleCandidates(true); | ||||
69 | |||||
70 | S.MarkDeclRefReferenced(DRE, Base); | ||||
71 | return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), | ||||
72 | CK_FunctionToPointerDecay); | ||||
73 | } | ||||
74 | |||||
75 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, | ||||
76 | bool InOverloadResolution, | ||||
77 | StandardConversionSequence &SCS, | ||||
78 | bool CStyle, | ||||
79 | bool AllowObjCWritebackConversion); | ||||
80 | |||||
81 | static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, | ||||
82 | QualType &ToType, | ||||
83 | bool InOverloadResolution, | ||||
84 | StandardConversionSequence &SCS, | ||||
85 | bool CStyle); | ||||
86 | static OverloadingResult | ||||
87 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | ||||
88 | UserDefinedConversionSequence& User, | ||||
89 | OverloadCandidateSet& Conversions, | ||||
90 | bool AllowExplicit, | ||||
91 | bool AllowObjCConversionOnExplicit); | ||||
92 | |||||
93 | |||||
94 | static ImplicitConversionSequence::CompareKind | ||||
95 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, | ||||
96 | const StandardConversionSequence& SCS1, | ||||
97 | const StandardConversionSequence& SCS2); | ||||
98 | |||||
99 | static ImplicitConversionSequence::CompareKind | ||||
100 | CompareQualificationConversions(Sema &S, | ||||
101 | const StandardConversionSequence& SCS1, | ||||
102 | const StandardConversionSequence& SCS2); | ||||
103 | |||||
104 | static ImplicitConversionSequence::CompareKind | ||||
105 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, | ||||
106 | const StandardConversionSequence& SCS1, | ||||
107 | const StandardConversionSequence& SCS2); | ||||
108 | |||||
109 | /// GetConversionRank - Retrieve the implicit conversion rank | ||||
110 | /// corresponding to the given implicit conversion kind. | ||||
111 | ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { | ||||
112 | static const ImplicitConversionRank | ||||
113 | Rank[(int)ICK_Num_Conversion_Kinds] = { | ||||
114 | ICR_Exact_Match, | ||||
115 | ICR_Exact_Match, | ||||
116 | ICR_Exact_Match, | ||||
117 | ICR_Exact_Match, | ||||
118 | ICR_Exact_Match, | ||||
119 | ICR_Exact_Match, | ||||
120 | ICR_Promotion, | ||||
121 | ICR_Promotion, | ||||
122 | ICR_Promotion, | ||||
123 | ICR_Conversion, | ||||
124 | ICR_Conversion, | ||||
125 | ICR_Conversion, | ||||
126 | ICR_Conversion, | ||||
127 | ICR_Conversion, | ||||
128 | ICR_Conversion, | ||||
129 | ICR_Conversion, | ||||
130 | ICR_Conversion, | ||||
131 | ICR_Conversion, | ||||
132 | ICR_Conversion, | ||||
133 | ICR_OCL_Scalar_Widening, | ||||
134 | ICR_Complex_Real_Conversion, | ||||
135 | ICR_Conversion, | ||||
136 | ICR_Conversion, | ||||
137 | ICR_Writeback_Conversion, | ||||
138 | ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- | ||||
139 | // it was omitted by the patch that added | ||||
140 | // ICK_Zero_Event_Conversion | ||||
141 | ICR_C_Conversion, | ||||
142 | ICR_C_Conversion_Extension | ||||
143 | }; | ||||
144 | return Rank[(int)Kind]; | ||||
145 | } | ||||
146 | |||||
147 | /// GetImplicitConversionName - Return the name of this kind of | ||||
148 | /// implicit conversion. | ||||
149 | static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { | ||||
150 | static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { | ||||
151 | "No conversion", | ||||
152 | "Lvalue-to-rvalue", | ||||
153 | "Array-to-pointer", | ||||
154 | "Function-to-pointer", | ||||
155 | "Function pointer conversion", | ||||
156 | "Qualification", | ||||
157 | "Integral promotion", | ||||
158 | "Floating point promotion", | ||||
159 | "Complex promotion", | ||||
160 | "Integral conversion", | ||||
161 | "Floating conversion", | ||||
162 | "Complex conversion", | ||||
163 | "Floating-integral conversion", | ||||
164 | "Pointer conversion", | ||||
165 | "Pointer-to-member conversion", | ||||
166 | "Boolean conversion", | ||||
167 | "Compatible-types conversion", | ||||
168 | "Derived-to-base conversion", | ||||
169 | "Vector conversion", | ||||
170 | "Vector splat", | ||||
171 | "Complex-real conversion", | ||||
172 | "Block Pointer conversion", | ||||
173 | "Transparent Union Conversion", | ||||
174 | "Writeback conversion", | ||||
175 | "OpenCL Zero Event Conversion", | ||||
176 | "C specific type conversion", | ||||
177 | "Incompatible pointer conversion" | ||||
178 | }; | ||||
179 | return Name[Kind]; | ||||
180 | } | ||||
181 | |||||
182 | /// StandardConversionSequence - Set the standard conversion | ||||
183 | /// sequence to the identity conversion. | ||||
184 | void StandardConversionSequence::setAsIdentityConversion() { | ||||
185 | First = ICK_Identity; | ||||
186 | Second = ICK_Identity; | ||||
187 | Third = ICK_Identity; | ||||
188 | DeprecatedStringLiteralToCharPtr = false; | ||||
189 | QualificationIncludesObjCLifetime = false; | ||||
190 | ReferenceBinding = false; | ||||
191 | DirectBinding = false; | ||||
192 | IsLvalueReference = true; | ||||
193 | BindsToFunctionLvalue = false; | ||||
194 | BindsToRvalue = false; | ||||
195 | BindsImplicitObjectArgumentWithoutRefQualifier = false; | ||||
196 | ObjCLifetimeConversionBinding = false; | ||||
197 | CopyConstructor = nullptr; | ||||
198 | } | ||||
199 | |||||
200 | /// getRank - Retrieve the rank of this standard conversion sequence | ||||
201 | /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the | ||||
202 | /// implicit conversions. | ||||
203 | ImplicitConversionRank StandardConversionSequence::getRank() const { | ||||
204 | ImplicitConversionRank Rank = ICR_Exact_Match; | ||||
205 | if (GetConversionRank(First) > Rank) | ||||
206 | Rank = GetConversionRank(First); | ||||
207 | if (GetConversionRank(Second) > Rank) | ||||
208 | Rank = GetConversionRank(Second); | ||||
209 | if (GetConversionRank(Third) > Rank) | ||||
210 | Rank = GetConversionRank(Third); | ||||
211 | return Rank; | ||||
212 | } | ||||
213 | |||||
214 | /// isPointerConversionToBool - Determines whether this conversion is | ||||
215 | /// a conversion of a pointer or pointer-to-member to bool. This is | ||||
216 | /// used as part of the ranking of standard conversion sequences | ||||
217 | /// (C++ 13.3.3.2p4). | ||||
218 | bool StandardConversionSequence::isPointerConversionToBool() const { | ||||
219 | // Note that FromType has not necessarily been transformed by the | ||||
220 | // array-to-pointer or function-to-pointer implicit conversions, so | ||||
221 | // check for their presence as well as checking whether FromType is | ||||
222 | // a pointer. | ||||
223 | if (getToType(1)->isBooleanType() && | ||||
224 | (getFromType()->isPointerType() || | ||||
225 | getFromType()->isMemberPointerType() || | ||||
226 | getFromType()->isObjCObjectPointerType() || | ||||
227 | getFromType()->isBlockPointerType() || | ||||
228 | getFromType()->isNullPtrType() || | ||||
229 | First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) | ||||
230 | return true; | ||||
231 | |||||
232 | return false; | ||||
233 | } | ||||
234 | |||||
235 | /// isPointerConversionToVoidPointer - Determines whether this | ||||
236 | /// conversion is a conversion of a pointer to a void pointer. This is | ||||
237 | /// used as part of the ranking of standard conversion sequences (C++ | ||||
238 | /// 13.3.3.2p4). | ||||
239 | bool | ||||
240 | StandardConversionSequence:: | ||||
241 | isPointerConversionToVoidPointer(ASTContext& Context) const { | ||||
242 | QualType FromType = getFromType(); | ||||
243 | QualType ToType = getToType(1); | ||||
244 | |||||
245 | // Note that FromType has not necessarily been transformed by the | ||||
246 | // array-to-pointer implicit conversion, so check for its presence | ||||
247 | // and redo the conversion to get a pointer. | ||||
248 | if (First == ICK_Array_To_Pointer) | ||||
249 | FromType = Context.getArrayDecayedType(FromType); | ||||
250 | |||||
251 | if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) | ||||
252 | if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) | ||||
253 | return ToPtrType->getPointeeType()->isVoidType(); | ||||
254 | |||||
255 | return false; | ||||
256 | } | ||||
257 | |||||
258 | /// Skip any implicit casts which could be either part of a narrowing conversion | ||||
259 | /// or after one in an implicit conversion. | ||||
260 | static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, | ||||
261 | const Expr *Converted) { | ||||
262 | // We can have cleanups wrapping the converted expression; these need to be | ||||
263 | // preserved so that destructors run if necessary. | ||||
264 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { | ||||
265 | Expr *Inner = | ||||
266 | const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); | ||||
267 | return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), | ||||
268 | EWC->getObjects()); | ||||
269 | } | ||||
270 | |||||
271 | while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { | ||||
272 | switch (ICE->getCastKind()) { | ||||
273 | case CK_NoOp: | ||||
274 | case CK_IntegralCast: | ||||
275 | case CK_IntegralToBoolean: | ||||
276 | case CK_IntegralToFloating: | ||||
277 | case CK_BooleanToSignedIntegral: | ||||
278 | case CK_FloatingToIntegral: | ||||
279 | case CK_FloatingToBoolean: | ||||
280 | case CK_FloatingCast: | ||||
281 | Converted = ICE->getSubExpr(); | ||||
282 | continue; | ||||
283 | |||||
284 | default: | ||||
285 | return Converted; | ||||
286 | } | ||||
287 | } | ||||
288 | |||||
289 | return Converted; | ||||
290 | } | ||||
291 | |||||
292 | /// Check if this standard conversion sequence represents a narrowing | ||||
293 | /// conversion, according to C++11 [dcl.init.list]p7. | ||||
294 | /// | ||||
295 | /// \param Ctx The AST context. | ||||
296 | /// \param Converted The result of applying this standard conversion sequence. | ||||
297 | /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the | ||||
298 | /// value of the expression prior to the narrowing conversion. | ||||
299 | /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the | ||||
300 | /// type of the expression prior to the narrowing conversion. | ||||
301 | /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions | ||||
302 | /// from floating point types to integral types should be ignored. | ||||
303 | NarrowingKind StandardConversionSequence::getNarrowingKind( | ||||
304 | ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, | ||||
305 | QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { | ||||
306 | assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++" ) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 306, __PRETTY_FUNCTION__)); | ||||
307 | |||||
308 | // C++11 [dcl.init.list]p7: | ||||
309 | // A narrowing conversion is an implicit conversion ... | ||||
310 | QualType FromType = getToType(0); | ||||
311 | QualType ToType = getToType(1); | ||||
312 | |||||
313 | // A conversion to an enumeration type is narrowing if the conversion to | ||||
314 | // the underlying type is narrowing. This only arises for expressions of | ||||
315 | // the form 'Enum{init}'. | ||||
316 | if (auto *ET = ToType->getAs<EnumType>()) | ||||
317 | ToType = ET->getDecl()->getIntegerType(); | ||||
318 | |||||
319 | switch (Second) { | ||||
320 | // 'bool' is an integral type; dispatch to the right place to handle it. | ||||
321 | case ICK_Boolean_Conversion: | ||||
322 | if (FromType->isRealFloatingType()) | ||||
323 | goto FloatingIntegralConversion; | ||||
324 | if (FromType->isIntegralOrUnscopedEnumerationType()) | ||||
325 | goto IntegralConversion; | ||||
326 | // Boolean conversions can be from pointers and pointers to members | ||||
327 | // [conv.bool], and those aren't considered narrowing conversions. | ||||
328 | return NK_Not_Narrowing; | ||||
329 | |||||
330 | // -- from a floating-point type to an integer type, or | ||||
331 | // | ||||
332 | // -- from an integer type or unscoped enumeration type to a floating-point | ||||
333 | // type, except where the source is a constant expression and the actual | ||||
334 | // value after conversion will fit into the target type and will produce | ||||
335 | // the original value when converted back to the original type, or | ||||
336 | case ICK_Floating_Integral: | ||||
337 | FloatingIntegralConversion: | ||||
338 | if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { | ||||
339 | return NK_Type_Narrowing; | ||||
340 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && | ||||
341 | ToType->isRealFloatingType()) { | ||||
342 | if (IgnoreFloatToIntegralConversion) | ||||
343 | return NK_Not_Narrowing; | ||||
344 | llvm::APSInt IntConstantValue; | ||||
345 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | ||||
346 | assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast <void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 346, __PRETTY_FUNCTION__)); | ||||
347 | |||||
348 | // If it's value-dependent, we can't tell whether it's narrowing. | ||||
349 | if (Initializer->isValueDependent()) | ||||
350 | return NK_Dependent_Narrowing; | ||||
351 | |||||
352 | if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { | ||||
353 | // Convert the integer to the floating type. | ||||
354 | llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); | ||||
355 | Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), | ||||
356 | llvm::APFloat::rmNearestTiesToEven); | ||||
357 | // And back. | ||||
358 | llvm::APSInt ConvertedValue = IntConstantValue; | ||||
359 | bool ignored; | ||||
360 | Result.convertToInteger(ConvertedValue, | ||||
361 | llvm::APFloat::rmTowardZero, &ignored); | ||||
362 | // If the resulting value is different, this was a narrowing conversion. | ||||
363 | if (IntConstantValue != ConvertedValue) { | ||||
364 | ConstantValue = APValue(IntConstantValue); | ||||
365 | ConstantType = Initializer->getType(); | ||||
366 | return NK_Constant_Narrowing; | ||||
367 | } | ||||
368 | } else { | ||||
369 | // Variables are always narrowings. | ||||
370 | return NK_Variable_Narrowing; | ||||
371 | } | ||||
372 | } | ||||
373 | return NK_Not_Narrowing; | ||||
374 | |||||
375 | // -- from long double to double or float, or from double to float, except | ||||
376 | // where the source is a constant expression and the actual value after | ||||
377 | // conversion is within the range of values that can be represented (even | ||||
378 | // if it cannot be represented exactly), or | ||||
379 | case ICK_Floating_Conversion: | ||||
380 | if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && | ||||
381 | Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { | ||||
382 | // FromType is larger than ToType. | ||||
383 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | ||||
384 | |||||
385 | // If it's value-dependent, we can't tell whether it's narrowing. | ||||
386 | if (Initializer->isValueDependent()) | ||||
387 | return NK_Dependent_Narrowing; | ||||
388 | |||||
389 | if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { | ||||
390 | // Constant! | ||||
391 | assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail ("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 391, __PRETTY_FUNCTION__)); | ||||
392 | llvm::APFloat FloatVal = ConstantValue.getFloat(); | ||||
393 | // Convert the source value into the target type. | ||||
394 | bool ignored; | ||||
395 | llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( | ||||
396 | Ctx.getFloatTypeSemantics(ToType), | ||||
397 | llvm::APFloat::rmNearestTiesToEven, &ignored); | ||||
398 | // If there was no overflow, the source value is within the range of | ||||
399 | // values that can be represented. | ||||
400 | if (ConvertStatus & llvm::APFloat::opOverflow) { | ||||
401 | ConstantType = Initializer->getType(); | ||||
402 | return NK_Constant_Narrowing; | ||||
403 | } | ||||
404 | } else { | ||||
405 | return NK_Variable_Narrowing; | ||||
406 | } | ||||
407 | } | ||||
408 | return NK_Not_Narrowing; | ||||
409 | |||||
410 | // -- from an integer type or unscoped enumeration type to an integer type | ||||
411 | // that cannot represent all the values of the original type, except where | ||||
412 | // the source is a constant expression and the actual value after | ||||
413 | // conversion will fit into the target type and will produce the original | ||||
414 | // value when converted back to the original type. | ||||
415 | case ICK_Integral_Conversion: | ||||
416 | IntegralConversion: { | ||||
417 | assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast <void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 417, __PRETTY_FUNCTION__)); | ||||
418 | assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast <void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 418, __PRETTY_FUNCTION__)); | ||||
419 | const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); | ||||
420 | const unsigned FromWidth = Ctx.getIntWidth(FromType); | ||||
421 | const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); | ||||
422 | const unsigned ToWidth = Ctx.getIntWidth(ToType); | ||||
423 | |||||
424 | if (FromWidth > ToWidth || | ||||
425 | (FromWidth == ToWidth && FromSigned != ToSigned) || | ||||
426 | (FromSigned && !ToSigned)) { | ||||
427 | // Not all values of FromType can be represented in ToType. | ||||
428 | llvm::APSInt InitializerValue; | ||||
429 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); | ||||
430 | |||||
431 | // If it's value-dependent, we can't tell whether it's narrowing. | ||||
432 | if (Initializer->isValueDependent()) | ||||
433 | return NK_Dependent_Narrowing; | ||||
434 | |||||
435 | if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { | ||||
436 | // Such conversions on variables are always narrowing. | ||||
437 | return NK_Variable_Narrowing; | ||||
438 | } | ||||
439 | bool Narrowing = false; | ||||
440 | if (FromWidth < ToWidth) { | ||||
441 | // Negative -> unsigned is narrowing. Otherwise, more bits is never | ||||
442 | // narrowing. | ||||
443 | if (InitializerValue.isSigned() && InitializerValue.isNegative()) | ||||
444 | Narrowing = true; | ||||
445 | } else { | ||||
446 | // Add a bit to the InitializerValue so we don't have to worry about | ||||
447 | // signed vs. unsigned comparisons. | ||||
448 | InitializerValue = InitializerValue.extend( | ||||
449 | InitializerValue.getBitWidth() + 1); | ||||
450 | // Convert the initializer to and from the target width and signed-ness. | ||||
451 | llvm::APSInt ConvertedValue = InitializerValue; | ||||
452 | ConvertedValue = ConvertedValue.trunc(ToWidth); | ||||
453 | ConvertedValue.setIsSigned(ToSigned); | ||||
454 | ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); | ||||
455 | ConvertedValue.setIsSigned(InitializerValue.isSigned()); | ||||
456 | // If the result is different, this was a narrowing conversion. | ||||
457 | if (ConvertedValue != InitializerValue) | ||||
458 | Narrowing = true; | ||||
459 | } | ||||
460 | if (Narrowing) { | ||||
461 | ConstantType = Initializer->getType(); | ||||
462 | ConstantValue = APValue(InitializerValue); | ||||
463 | return NK_Constant_Narrowing; | ||||
464 | } | ||||
465 | } | ||||
466 | return NK_Not_Narrowing; | ||||
467 | } | ||||
468 | |||||
469 | default: | ||||
470 | // Other kinds of conversions are not narrowings. | ||||
471 | return NK_Not_Narrowing; | ||||
472 | } | ||||
473 | } | ||||
474 | |||||
475 | /// dump - Print this standard conversion sequence to standard | ||||
476 | /// error. Useful for debugging overloading issues. | ||||
477 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const { | ||||
478 | raw_ostream &OS = llvm::errs(); | ||||
479 | bool PrintedSomething = false; | ||||
480 | if (First != ICK_Identity) { | ||||
481 | OS << GetImplicitConversionName(First); | ||||
482 | PrintedSomething = true; | ||||
483 | } | ||||
484 | |||||
485 | if (Second != ICK_Identity) { | ||||
486 | if (PrintedSomething) { | ||||
487 | OS << " -> "; | ||||
488 | } | ||||
489 | OS << GetImplicitConversionName(Second); | ||||
490 | |||||
491 | if (CopyConstructor) { | ||||
492 | OS << " (by copy constructor)"; | ||||
493 | } else if (DirectBinding) { | ||||
494 | OS << " (direct reference binding)"; | ||||
495 | } else if (ReferenceBinding) { | ||||
496 | OS << " (reference binding)"; | ||||
497 | } | ||||
498 | PrintedSomething = true; | ||||
499 | } | ||||
500 | |||||
501 | if (Third != ICK_Identity) { | ||||
502 | if (PrintedSomething) { | ||||
503 | OS << " -> "; | ||||
504 | } | ||||
505 | OS << GetImplicitConversionName(Third); | ||||
506 | PrintedSomething = true; | ||||
507 | } | ||||
508 | |||||
509 | if (!PrintedSomething) { | ||||
510 | OS << "No conversions required"; | ||||
511 | } | ||||
512 | } | ||||
513 | |||||
514 | /// dump - Print this user-defined conversion sequence to standard | ||||
515 | /// error. Useful for debugging overloading issues. | ||||
516 | void UserDefinedConversionSequence::dump() const { | ||||
517 | raw_ostream &OS = llvm::errs(); | ||||
518 | if (Before.First || Before.Second || Before.Third) { | ||||
519 | Before.dump(); | ||||
520 | OS << " -> "; | ||||
521 | } | ||||
522 | if (ConversionFunction) | ||||
523 | OS << '\'' << *ConversionFunction << '\''; | ||||
524 | else | ||||
525 | OS << "aggregate initialization"; | ||||
526 | if (After.First || After.Second || After.Third) { | ||||
527 | OS << " -> "; | ||||
528 | After.dump(); | ||||
529 | } | ||||
530 | } | ||||
531 | |||||
532 | /// dump - Print this implicit conversion sequence to standard | ||||
533 | /// error. Useful for debugging overloading issues. | ||||
534 | void ImplicitConversionSequence::dump() const { | ||||
535 | raw_ostream &OS = llvm::errs(); | ||||
536 | if (isStdInitializerListElement()) | ||||
537 | OS << "Worst std::initializer_list element conversion: "; | ||||
538 | switch (ConversionKind) { | ||||
539 | case StandardConversion: | ||||
540 | OS << "Standard conversion: "; | ||||
541 | Standard.dump(); | ||||
542 | break; | ||||
543 | case UserDefinedConversion: | ||||
544 | OS << "User-defined conversion: "; | ||||
545 | UserDefined.dump(); | ||||
546 | break; | ||||
547 | case EllipsisConversion: | ||||
548 | OS << "Ellipsis conversion"; | ||||
549 | break; | ||||
550 | case AmbiguousConversion: | ||||
551 | OS << "Ambiguous conversion"; | ||||
552 | break; | ||||
553 | case BadConversion: | ||||
554 | OS << "Bad conversion"; | ||||
555 | break; | ||||
556 | } | ||||
557 | |||||
558 | OS << "\n"; | ||||
559 | } | ||||
560 | |||||
561 | void AmbiguousConversionSequence::construct() { | ||||
562 | new (&conversions()) ConversionSet(); | ||||
563 | } | ||||
564 | |||||
565 | void AmbiguousConversionSequence::destruct() { | ||||
566 | conversions().~ConversionSet(); | ||||
567 | } | ||||
568 | |||||
569 | void | ||||
570 | AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { | ||||
571 | FromTypePtr = O.FromTypePtr; | ||||
572 | ToTypePtr = O.ToTypePtr; | ||||
573 | new (&conversions()) ConversionSet(O.conversions()); | ||||
574 | } | ||||
575 | |||||
576 | namespace { | ||||
577 | // Structure used by DeductionFailureInfo to store | ||||
578 | // template argument information. | ||||
579 | struct DFIArguments { | ||||
580 | TemplateArgument FirstArg; | ||||
581 | TemplateArgument SecondArg; | ||||
582 | }; | ||||
583 | // Structure used by DeductionFailureInfo to store | ||||
584 | // template parameter and template argument information. | ||||
585 | struct DFIParamWithArguments : DFIArguments { | ||||
586 | TemplateParameter Param; | ||||
587 | }; | ||||
588 | // Structure used by DeductionFailureInfo to store template argument | ||||
589 | // information and the index of the problematic call argument. | ||||
590 | struct DFIDeducedMismatchArgs : DFIArguments { | ||||
591 | TemplateArgumentList *TemplateArgs; | ||||
592 | unsigned CallArgIndex; | ||||
593 | }; | ||||
594 | } | ||||
595 | |||||
596 | /// Convert from Sema's representation of template deduction information | ||||
597 | /// to the form used in overload-candidate information. | ||||
598 | DeductionFailureInfo | ||||
599 | clang::MakeDeductionFailureInfo(ASTContext &Context, | ||||
600 | Sema::TemplateDeductionResult TDK, | ||||
601 | TemplateDeductionInfo &Info) { | ||||
602 | DeductionFailureInfo Result; | ||||
603 | Result.Result = static_cast<unsigned>(TDK); | ||||
604 | Result.HasDiagnostic = false; | ||||
605 | switch (TDK) { | ||||
606 | case Sema::TDK_Invalid: | ||||
607 | case Sema::TDK_InstantiationDepth: | ||||
608 | case Sema::TDK_TooManyArguments: | ||||
609 | case Sema::TDK_TooFewArguments: | ||||
610 | case Sema::TDK_MiscellaneousDeductionFailure: | ||||
611 | case Sema::TDK_CUDATargetMismatch: | ||||
612 | Result.Data = nullptr; | ||||
613 | break; | ||||
614 | |||||
615 | case Sema::TDK_Incomplete: | ||||
616 | case Sema::TDK_InvalidExplicitArguments: | ||||
617 | Result.Data = Info.Param.getOpaqueValue(); | ||||
618 | break; | ||||
619 | |||||
620 | case Sema::TDK_DeducedMismatch: | ||||
621 | case Sema::TDK_DeducedMismatchNested: { | ||||
622 | // FIXME: Should allocate from normal heap so that we can free this later. | ||||
623 | auto *Saved = new (Context) DFIDeducedMismatchArgs; | ||||
624 | Saved->FirstArg = Info.FirstArg; | ||||
625 | Saved->SecondArg = Info.SecondArg; | ||||
626 | Saved->TemplateArgs = Info.take(); | ||||
627 | Saved->CallArgIndex = Info.CallArgIndex; | ||||
628 | Result.Data = Saved; | ||||
629 | break; | ||||
630 | } | ||||
631 | |||||
632 | case Sema::TDK_NonDeducedMismatch: { | ||||
633 | // FIXME: Should allocate from normal heap so that we can free this later. | ||||
634 | DFIArguments *Saved = new (Context) DFIArguments; | ||||
635 | Saved->FirstArg = Info.FirstArg; | ||||
636 | Saved->SecondArg = Info.SecondArg; | ||||
637 | Result.Data = Saved; | ||||
638 | break; | ||||
639 | } | ||||
640 | |||||
641 | case Sema::TDK_IncompletePack: | ||||
642 | // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. | ||||
643 | case Sema::TDK_Inconsistent: | ||||
644 | case Sema::TDK_Underqualified: { | ||||
645 | // FIXME: Should allocate from normal heap so that we can free this later. | ||||
646 | DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; | ||||
647 | Saved->Param = Info.Param; | ||||
648 | Saved->FirstArg = Info.FirstArg; | ||||
649 | Saved->SecondArg = Info.SecondArg; | ||||
650 | Result.Data = Saved; | ||||
651 | break; | ||||
652 | } | ||||
653 | |||||
654 | case Sema::TDK_SubstitutionFailure: | ||||
655 | Result.Data = Info.take(); | ||||
656 | if (Info.hasSFINAEDiagnostic()) { | ||||
657 | PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( | ||||
658 | SourceLocation(), PartialDiagnostic::NullDiagnostic()); | ||||
659 | Info.takeSFINAEDiagnostic(*Diag); | ||||
660 | Result.HasDiagnostic = true; | ||||
661 | } | ||||
662 | break; | ||||
663 | |||||
664 | case Sema::TDK_Success: | ||||
665 | case Sema::TDK_NonDependentConversionFailure: | ||||
666 | llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 666); | ||||
667 | } | ||||
668 | |||||
669 | return Result; | ||||
670 | } | ||||
671 | |||||
672 | void DeductionFailureInfo::Destroy() { | ||||
673 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | ||||
674 | case Sema::TDK_Success: | ||||
675 | case Sema::TDK_Invalid: | ||||
676 | case Sema::TDK_InstantiationDepth: | ||||
677 | case Sema::TDK_Incomplete: | ||||
678 | case Sema::TDK_TooManyArguments: | ||||
679 | case Sema::TDK_TooFewArguments: | ||||
680 | case Sema::TDK_InvalidExplicitArguments: | ||||
681 | case Sema::TDK_CUDATargetMismatch: | ||||
682 | case Sema::TDK_NonDependentConversionFailure: | ||||
683 | break; | ||||
684 | |||||
685 | case Sema::TDK_IncompletePack: | ||||
686 | case Sema::TDK_Inconsistent: | ||||
687 | case Sema::TDK_Underqualified: | ||||
688 | case Sema::TDK_DeducedMismatch: | ||||
689 | case Sema::TDK_DeducedMismatchNested: | ||||
690 | case Sema::TDK_NonDeducedMismatch: | ||||
691 | // FIXME: Destroy the data? | ||||
692 | Data = nullptr; | ||||
693 | break; | ||||
694 | |||||
695 | case Sema::TDK_SubstitutionFailure: | ||||
696 | // FIXME: Destroy the template argument list? | ||||
697 | Data = nullptr; | ||||
698 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { | ||||
699 | Diag->~PartialDiagnosticAt(); | ||||
700 | HasDiagnostic = false; | ||||
701 | } | ||||
702 | break; | ||||
703 | |||||
704 | // Unhandled | ||||
705 | case Sema::TDK_MiscellaneousDeductionFailure: | ||||
706 | break; | ||||
707 | } | ||||
708 | } | ||||
709 | |||||
710 | PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { | ||||
711 | if (HasDiagnostic) | ||||
712 | return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); | ||||
713 | return nullptr; | ||||
714 | } | ||||
715 | |||||
716 | TemplateParameter DeductionFailureInfo::getTemplateParameter() { | ||||
717 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | ||||
718 | case Sema::TDK_Success: | ||||
719 | case Sema::TDK_Invalid: | ||||
720 | case Sema::TDK_InstantiationDepth: | ||||
721 | case Sema::TDK_TooManyArguments: | ||||
722 | case Sema::TDK_TooFewArguments: | ||||
723 | case Sema::TDK_SubstitutionFailure: | ||||
724 | case Sema::TDK_DeducedMismatch: | ||||
725 | case Sema::TDK_DeducedMismatchNested: | ||||
726 | case Sema::TDK_NonDeducedMismatch: | ||||
727 | case Sema::TDK_CUDATargetMismatch: | ||||
728 | case Sema::TDK_NonDependentConversionFailure: | ||||
729 | return TemplateParameter(); | ||||
730 | |||||
731 | case Sema::TDK_Incomplete: | ||||
732 | case Sema::TDK_InvalidExplicitArguments: | ||||
733 | return TemplateParameter::getFromOpaqueValue(Data); | ||||
734 | |||||
735 | case Sema::TDK_IncompletePack: | ||||
736 | case Sema::TDK_Inconsistent: | ||||
737 | case Sema::TDK_Underqualified: | ||||
738 | return static_cast<DFIParamWithArguments*>(Data)->Param; | ||||
739 | |||||
740 | // Unhandled | ||||
741 | case Sema::TDK_MiscellaneousDeductionFailure: | ||||
742 | break; | ||||
743 | } | ||||
744 | |||||
745 | return TemplateParameter(); | ||||
746 | } | ||||
747 | |||||
748 | TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { | ||||
749 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | ||||
750 | case Sema::TDK_Success: | ||||
751 | case Sema::TDK_Invalid: | ||||
752 | case Sema::TDK_InstantiationDepth: | ||||
753 | case Sema::TDK_TooManyArguments: | ||||
754 | case Sema::TDK_TooFewArguments: | ||||
755 | case Sema::TDK_Incomplete: | ||||
756 | case Sema::TDK_IncompletePack: | ||||
757 | case Sema::TDK_InvalidExplicitArguments: | ||||
758 | case Sema::TDK_Inconsistent: | ||||
759 | case Sema::TDK_Underqualified: | ||||
760 | case Sema::TDK_NonDeducedMismatch: | ||||
761 | case Sema::TDK_CUDATargetMismatch: | ||||
762 | case Sema::TDK_NonDependentConversionFailure: | ||||
763 | return nullptr; | ||||
764 | |||||
765 | case Sema::TDK_DeducedMismatch: | ||||
766 | case Sema::TDK_DeducedMismatchNested: | ||||
767 | return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; | ||||
768 | |||||
769 | case Sema::TDK_SubstitutionFailure: | ||||
770 | return static_cast<TemplateArgumentList*>(Data); | ||||
771 | |||||
772 | // Unhandled | ||||
773 | case Sema::TDK_MiscellaneousDeductionFailure: | ||||
774 | break; | ||||
775 | } | ||||
776 | |||||
777 | return nullptr; | ||||
778 | } | ||||
779 | |||||
780 | const TemplateArgument *DeductionFailureInfo::getFirstArg() { | ||||
781 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | ||||
782 | case Sema::TDK_Success: | ||||
783 | case Sema::TDK_Invalid: | ||||
784 | case Sema::TDK_InstantiationDepth: | ||||
785 | case Sema::TDK_Incomplete: | ||||
786 | case Sema::TDK_TooManyArguments: | ||||
787 | case Sema::TDK_TooFewArguments: | ||||
788 | case Sema::TDK_InvalidExplicitArguments: | ||||
789 | case Sema::TDK_SubstitutionFailure: | ||||
790 | case Sema::TDK_CUDATargetMismatch: | ||||
791 | case Sema::TDK_NonDependentConversionFailure: | ||||
792 | return nullptr; | ||||
793 | |||||
794 | case Sema::TDK_IncompletePack: | ||||
795 | case Sema::TDK_Inconsistent: | ||||
796 | case Sema::TDK_Underqualified: | ||||
797 | case Sema::TDK_DeducedMismatch: | ||||
798 | case Sema::TDK_DeducedMismatchNested: | ||||
799 | case Sema::TDK_NonDeducedMismatch: | ||||
800 | return &static_cast<DFIArguments*>(Data)->FirstArg; | ||||
801 | |||||
802 | // Unhandled | ||||
803 | case Sema::TDK_MiscellaneousDeductionFailure: | ||||
804 | break; | ||||
805 | } | ||||
806 | |||||
807 | return nullptr; | ||||
808 | } | ||||
809 | |||||
810 | const TemplateArgument *DeductionFailureInfo::getSecondArg() { | ||||
811 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | ||||
812 | case Sema::TDK_Success: | ||||
813 | case Sema::TDK_Invalid: | ||||
814 | case Sema::TDK_InstantiationDepth: | ||||
815 | case Sema::TDK_Incomplete: | ||||
816 | case Sema::TDK_IncompletePack: | ||||
817 | case Sema::TDK_TooManyArguments: | ||||
818 | case Sema::TDK_TooFewArguments: | ||||
819 | case Sema::TDK_InvalidExplicitArguments: | ||||
820 | case Sema::TDK_SubstitutionFailure: | ||||
821 | case Sema::TDK_CUDATargetMismatch: | ||||
822 | case Sema::TDK_NonDependentConversionFailure: | ||||
823 | return nullptr; | ||||
824 | |||||
825 | case Sema::TDK_Inconsistent: | ||||
826 | case Sema::TDK_Underqualified: | ||||
827 | case Sema::TDK_DeducedMismatch: | ||||
828 | case Sema::TDK_DeducedMismatchNested: | ||||
829 | case Sema::TDK_NonDeducedMismatch: | ||||
830 | return &static_cast<DFIArguments*>(Data)->SecondArg; | ||||
831 | |||||
832 | // Unhandled | ||||
833 | case Sema::TDK_MiscellaneousDeductionFailure: | ||||
834 | break; | ||||
835 | } | ||||
836 | |||||
837 | return nullptr; | ||||
838 | } | ||||
839 | |||||
840 | llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() { | ||||
841 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | ||||
842 | case Sema::TDK_DeducedMismatch: | ||||
843 | case Sema::TDK_DeducedMismatchNested: | ||||
844 | return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; | ||||
845 | |||||
846 | default: | ||||
847 | return llvm::None; | ||||
848 | } | ||||
849 | } | ||||
850 | |||||
851 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( | ||||
852 | OverloadedOperatorKind Op) { | ||||
853 | if (!AllowRewrittenCandidates) | ||||
854 | return false; | ||||
855 | return Op == OO_EqualEqual || Op == OO_Spaceship; | ||||
856 | } | ||||
857 | |||||
858 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( | ||||
859 | ASTContext &Ctx, const FunctionDecl *FD) { | ||||
860 | if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator())) | ||||
861 | return false; | ||||
862 | // Don't bother adding a reversed candidate that can never be a better | ||||
863 | // match than the non-reversed version. | ||||
864 | return FD->getNumParams() != 2 || | ||||
865 | !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), | ||||
866 | FD->getParamDecl(1)->getType()) || | ||||
867 | FD->hasAttr<EnableIfAttr>(); | ||||
868 | } | ||||
869 | |||||
870 | void OverloadCandidateSet::destroyCandidates() { | ||||
871 | for (iterator i = begin(), e = end(); i != e; ++i) { | ||||
872 | for (auto &C : i->Conversions) | ||||
873 | C.~ImplicitConversionSequence(); | ||||
874 | if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) | ||||
875 | i->DeductionFailure.Destroy(); | ||||
876 | } | ||||
877 | } | ||||
878 | |||||
879 | void OverloadCandidateSet::clear(CandidateSetKind CSK) { | ||||
880 | destroyCandidates(); | ||||
881 | SlabAllocator.Reset(); | ||||
882 | NumInlineBytesUsed = 0; | ||||
883 | Candidates.clear(); | ||||
884 | Functions.clear(); | ||||
885 | Kind = CSK; | ||||
886 | } | ||||
887 | |||||
888 | namespace { | ||||
889 | class UnbridgedCastsSet { | ||||
890 | struct Entry { | ||||
891 | Expr **Addr; | ||||
892 | Expr *Saved; | ||||
893 | }; | ||||
894 | SmallVector<Entry, 2> Entries; | ||||
895 | |||||
896 | public: | ||||
897 | void save(Sema &S, Expr *&E) { | ||||
898 | assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast <void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 898, __PRETTY_FUNCTION__)); | ||||
899 | Entry entry = { &E, E }; | ||||
900 | Entries.push_back(entry); | ||||
901 | E = S.stripARCUnbridgedCast(E); | ||||
902 | } | ||||
903 | |||||
904 | void restore() { | ||||
905 | for (SmallVectorImpl<Entry>::iterator | ||||
906 | i = Entries.begin(), e = Entries.end(); i != e; ++i) | ||||
907 | *i->Addr = i->Saved; | ||||
908 | } | ||||
909 | }; | ||||
910 | } | ||||
911 | |||||
912 | /// checkPlaceholderForOverload - Do any interesting placeholder-like | ||||
913 | /// preprocessing on the given expression. | ||||
914 | /// | ||||
915 | /// \param unbridgedCasts a collection to which to add unbridged casts; | ||||
916 | /// without this, they will be immediately diagnosed as errors | ||||
917 | /// | ||||
918 | /// Return true on unrecoverable error. | ||||
919 | static bool | ||||
920 | checkPlaceholderForOverload(Sema &S, Expr *&E, | ||||
921 | UnbridgedCastsSet *unbridgedCasts = nullptr) { | ||||
922 | if (const BuiltinType *placeholder
| ||||
923 | // We can't handle overloaded expressions here because overload | ||||
924 | // resolution might reasonably tweak them. | ||||
925 | if (placeholder->getKind() == BuiltinType::Overload) return false; | ||||
926 | |||||
927 | // If the context potentially accepts unbridged ARC casts, strip | ||||
928 | // the unbridged cast and add it to the collection for later restoration. | ||||
929 | if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && | ||||
930 | unbridgedCasts) { | ||||
931 | unbridgedCasts->save(S, E); | ||||
932 | return false; | ||||
933 | } | ||||
934 | |||||
935 | // Go ahead and check everything else. | ||||
936 | ExprResult result = S.CheckPlaceholderExpr(E); | ||||
937 | if (result.isInvalid()) | ||||
938 | return true; | ||||
939 | |||||
940 | E = result.get(); | ||||
941 | return false; | ||||
942 | } | ||||
943 | |||||
944 | // Nothing to do. | ||||
945 | return false; | ||||
946 | } | ||||
947 | |||||
948 | /// checkArgPlaceholdersForOverload - Check a set of call operands for | ||||
949 | /// placeholders. | ||||
950 | static bool checkArgPlaceholdersForOverload(Sema &S, | ||||
951 | MultiExprArg Args, | ||||
952 | UnbridgedCastsSet &unbridged) { | ||||
953 | for (unsigned i = 0, e = Args.size(); i != e; ++i) | ||||
954 | if (checkPlaceholderForOverload(S, Args[i], &unbridged)) | ||||
955 | return true; | ||||
956 | |||||
957 | return false; | ||||
958 | } | ||||
959 | |||||
960 | /// Determine whether the given New declaration is an overload of the | ||||
961 | /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if | ||||
962 | /// New and Old cannot be overloaded, e.g., if New has the same signature as | ||||
963 | /// some function in Old (C++ 1.3.10) or if the Old declarations aren't | ||||
964 | /// functions (or function templates) at all. When it does return Ovl_Match or | ||||
965 | /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be | ||||
966 | /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying | ||||
967 | /// declaration. | ||||
968 | /// | ||||
969 | /// Example: Given the following input: | ||||
970 | /// | ||||
971 | /// void f(int, float); // #1 | ||||
972 | /// void f(int, int); // #2 | ||||
973 | /// int f(int, int); // #3 | ||||
974 | /// | ||||
975 | /// When we process #1, there is no previous declaration of "f", so IsOverload | ||||
976 | /// will not be used. | ||||
977 | /// | ||||
978 | /// When we process #2, Old contains only the FunctionDecl for #1. By comparing | ||||
979 | /// the parameter types, we see that #1 and #2 are overloaded (since they have | ||||
980 | /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is | ||||
981 | /// unchanged. | ||||
982 | /// | ||||
983 | /// When we process #3, Old is an overload set containing #1 and #2. We compare | ||||
984 | /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then | ||||
985 | /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of | ||||
986 | /// functions are not part of the signature), IsOverload returns Ovl_Match and | ||||
987 | /// MatchedDecl will be set to point to the FunctionDecl for #2. | ||||
988 | /// | ||||
989 | /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class | ||||
990 | /// by a using declaration. The rules for whether to hide shadow declarations | ||||
991 | /// ignore some properties which otherwise figure into a function template's | ||||
992 | /// signature. | ||||
993 | Sema::OverloadKind | ||||
994 | Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, | ||||
995 | NamedDecl *&Match, bool NewIsUsingDecl) { | ||||
996 | for (LookupResult::iterator I = Old.begin(), E = Old.end(); | ||||
997 | I != E; ++I) { | ||||
998 | NamedDecl *OldD = *I; | ||||
999 | |||||
1000 | bool OldIsUsingDecl = false; | ||||
1001 | if (isa<UsingShadowDecl>(OldD)) { | ||||
1002 | OldIsUsingDecl = true; | ||||
1003 | |||||
1004 | // We can always introduce two using declarations into the same | ||||
1005 | // context, even if they have identical signatures. | ||||
1006 | if (NewIsUsingDecl) continue; | ||||
1007 | |||||
1008 | OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); | ||||
1009 | } | ||||
1010 | |||||
1011 | // A using-declaration does not conflict with another declaration | ||||
1012 | // if one of them is hidden. | ||||
1013 | if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) | ||||
1014 | continue; | ||||
1015 | |||||
1016 | // If either declaration was introduced by a using declaration, | ||||
1017 | // we'll need to use slightly different rules for matching. | ||||
1018 | // Essentially, these rules are the normal rules, except that | ||||
1019 | // function templates hide function templates with different | ||||
1020 | // return types or template parameter lists. | ||||
1021 | bool UseMemberUsingDeclRules = | ||||
1022 | (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && | ||||
1023 | !New->getFriendObjectKind(); | ||||
1024 | |||||
1025 | if (FunctionDecl *OldF = OldD->getAsFunction()) { | ||||
1026 | if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { | ||||
1027 | if (UseMemberUsingDeclRules && OldIsUsingDecl) { | ||||
1028 | HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); | ||||
1029 | continue; | ||||
1030 | } | ||||
1031 | |||||
1032 | if (!isa<FunctionTemplateDecl>(OldD) && | ||||
1033 | !shouldLinkPossiblyHiddenDecl(*I, New)) | ||||
1034 | continue; | ||||
1035 | |||||
1036 | Match = *I; | ||||
1037 | return Ovl_Match; | ||||
1038 | } | ||||
1039 | |||||
1040 | // Builtins that have custom typechecking or have a reference should | ||||
1041 | // not be overloadable or redeclarable. | ||||
1042 | if (!getASTContext().canBuiltinBeRedeclared(OldF)) { | ||||
1043 | Match = *I; | ||||
1044 | return Ovl_NonFunction; | ||||
1045 | } | ||||
1046 | } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { | ||||
1047 | // We can overload with these, which can show up when doing | ||||
1048 | // redeclaration checks for UsingDecls. | ||||
1049 | assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast< void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1049, __PRETTY_FUNCTION__)); | ||||
1050 | } else if (isa<TagDecl>(OldD)) { | ||||
1051 | // We can always overload with tags by hiding them. | ||||
1052 | } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { | ||||
1053 | // Optimistically assume that an unresolved using decl will | ||||
1054 | // overload; if it doesn't, we'll have to diagnose during | ||||
1055 | // template instantiation. | ||||
1056 | // | ||||
1057 | // Exception: if the scope is dependent and this is not a class | ||||
1058 | // member, the using declaration can only introduce an enumerator. | ||||
1059 | if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { | ||||
1060 | Match = *I; | ||||
1061 | return Ovl_NonFunction; | ||||
1062 | } | ||||
1063 | } else { | ||||
1064 | // (C++ 13p1): | ||||
1065 | // Only function declarations can be overloaded; object and type | ||||
1066 | // declarations cannot be overloaded. | ||||
1067 | Match = *I; | ||||
1068 | return Ovl_NonFunction; | ||||
1069 | } | ||||
1070 | } | ||||
1071 | |||||
1072 | // C++ [temp.friend]p1: | ||||
1073 | // For a friend function declaration that is not a template declaration: | ||||
1074 | // -- if the name of the friend is a qualified or unqualified template-id, | ||||
1075 | // [...], otherwise | ||||
1076 | // -- if the name of the friend is a qualified-id and a matching | ||||
1077 | // non-template function is found in the specified class or namespace, | ||||
1078 | // the friend declaration refers to that function, otherwise, | ||||
1079 | // -- if the name of the friend is a qualified-id and a matching function | ||||
1080 | // template is found in the specified class or namespace, the friend | ||||
1081 | // declaration refers to the deduced specialization of that function | ||||
1082 | // template, otherwise | ||||
1083 | // -- the name shall be an unqualified-id [...] | ||||
1084 | // If we get here for a qualified friend declaration, we've just reached the | ||||
1085 | // third bullet. If the type of the friend is dependent, skip this lookup | ||||
1086 | // until instantiation. | ||||
1087 | if (New->getFriendObjectKind() && New->getQualifier() && | ||||
1088 | !New->getDescribedFunctionTemplate() && | ||||
1089 | !New->getDependentSpecializationInfo() && | ||||
1090 | !New->getType()->isDependentType()) { | ||||
1091 | LookupResult TemplateSpecResult(LookupResult::Temporary, Old); | ||||
1092 | TemplateSpecResult.addAllDecls(Old); | ||||
1093 | if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, | ||||
1094 | /*QualifiedFriend*/true)) { | ||||
1095 | New->setInvalidDecl(); | ||||
1096 | return Ovl_Overload; | ||||
1097 | } | ||||
1098 | |||||
1099 | Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); | ||||
1100 | return Ovl_Match; | ||||
1101 | } | ||||
1102 | |||||
1103 | return Ovl_Overload; | ||||
1104 | } | ||||
1105 | |||||
1106 | bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, | ||||
1107 | bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) { | ||||
1108 | // C++ [basic.start.main]p2: This function shall not be overloaded. | ||||
1109 | if (New->isMain()) | ||||
1110 | return false; | ||||
1111 | |||||
1112 | // MSVCRT user defined entry points cannot be overloaded. | ||||
1113 | if (New->isMSVCRTEntryPoint()) | ||||
1114 | return false; | ||||
1115 | |||||
1116 | FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); | ||||
1117 | FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); | ||||
1118 | |||||
1119 | // C++ [temp.fct]p2: | ||||
1120 | // A function template can be overloaded with other function templates | ||||
1121 | // and with normal (non-template) functions. | ||||
1122 | if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) | ||||
1123 | return true; | ||||
1124 | |||||
1125 | // Is the function New an overload of the function Old? | ||||
1126 | QualType OldQType = Context.getCanonicalType(Old->getType()); | ||||
1127 | QualType NewQType = Context.getCanonicalType(New->getType()); | ||||
1128 | |||||
1129 | // Compare the signatures (C++ 1.3.10) of the two functions to | ||||
1130 | // determine whether they are overloads. If we find any mismatch | ||||
1131 | // in the signature, they are overloads. | ||||
1132 | |||||
1133 | // If either of these functions is a K&R-style function (no | ||||
1134 | // prototype), then we consider them to have matching signatures. | ||||
1135 | if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || | ||||
1136 | isa<FunctionNoProtoType>(NewQType.getTypePtr())) | ||||
1137 | return false; | ||||
1138 | |||||
1139 | const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); | ||||
1140 | const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); | ||||
1141 | |||||
1142 | // The signature of a function includes the types of its | ||||
1143 | // parameters (C++ 1.3.10), which includes the presence or absence | ||||
1144 | // of the ellipsis; see C++ DR 357). | ||||
1145 | if (OldQType != NewQType && | ||||
1146 | (OldType->getNumParams() != NewType->getNumParams() || | ||||
1147 | OldType->isVariadic() != NewType->isVariadic() || | ||||
1148 | !FunctionParamTypesAreEqual(OldType, NewType))) | ||||
1149 | return true; | ||||
1150 | |||||
1151 | // C++ [temp.over.link]p4: | ||||
1152 | // The signature of a function template consists of its function | ||||
1153 | // signature, its return type and its template parameter list. The names | ||||
1154 | // of the template parameters are significant only for establishing the | ||||
1155 | // relationship between the template parameters and the rest of the | ||||
1156 | // signature. | ||||
1157 | // | ||||
1158 | // We check the return type and template parameter lists for function | ||||
1159 | // templates first; the remaining checks follow. | ||||
1160 | // | ||||
1161 | // However, we don't consider either of these when deciding whether | ||||
1162 | // a member introduced by a shadow declaration is hidden. | ||||
1163 | if (!UseMemberUsingDeclRules && NewTemplate && | ||||
1164 | (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), | ||||
1165 | OldTemplate->getTemplateParameters(), | ||||
1166 | false, TPL_TemplateMatch) || | ||||
1167 | !Context.hasSameType(Old->getDeclaredReturnType(), | ||||
1168 | New->getDeclaredReturnType()))) | ||||
1169 | return true; | ||||
1170 | |||||
1171 | // If the function is a class member, its signature includes the | ||||
1172 | // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. | ||||
1173 | // | ||||
1174 | // As part of this, also check whether one of the member functions | ||||
1175 | // is static, in which case they are not overloads (C++ | ||||
1176 | // 13.1p2). While not part of the definition of the signature, | ||||
1177 | // this check is important to determine whether these functions | ||||
1178 | // can be overloaded. | ||||
1179 | CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); | ||||
1180 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); | ||||
1181 | if (OldMethod && NewMethod && | ||||
1182 | !OldMethod->isStatic() && !NewMethod->isStatic()) { | ||||
1183 | if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { | ||||
1184 | if (!UseMemberUsingDeclRules && | ||||
1185 | (OldMethod->getRefQualifier() == RQ_None || | ||||
1186 | NewMethod->getRefQualifier() == RQ_None)) { | ||||
1187 | // C++0x [over.load]p2: | ||||
1188 | // - Member function declarations with the same name and the same | ||||
1189 | // parameter-type-list as well as member function template | ||||
1190 | // declarations with the same name, the same parameter-type-list, and | ||||
1191 | // the same template parameter lists cannot be overloaded if any of | ||||
1192 | // them, but not all, have a ref-qualifier (8.3.5). | ||||
1193 | Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) | ||||
1194 | << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); | ||||
1195 | Diag(OldMethod->getLocation(), diag::note_previous_declaration); | ||||
1196 | } | ||||
1197 | return true; | ||||
1198 | } | ||||
1199 | |||||
1200 | // We may not have applied the implicit const for a constexpr member | ||||
1201 | // function yet (because we haven't yet resolved whether this is a static | ||||
1202 | // or non-static member function). Add it now, on the assumption that this | ||||
1203 | // is a redeclaration of OldMethod. | ||||
1204 | auto OldQuals = OldMethod->getMethodQualifiers(); | ||||
1205 | auto NewQuals = NewMethod->getMethodQualifiers(); | ||||
1206 | if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && | ||||
1207 | !isa<CXXConstructorDecl>(NewMethod)) | ||||
1208 | NewQuals.addConst(); | ||||
1209 | // We do not allow overloading based off of '__restrict'. | ||||
1210 | OldQuals.removeRestrict(); | ||||
1211 | NewQuals.removeRestrict(); | ||||
1212 | if (OldQuals != NewQuals) | ||||
1213 | return true; | ||||
1214 | } | ||||
1215 | |||||
1216 | // Though pass_object_size is placed on parameters and takes an argument, we | ||||
1217 | // consider it to be a function-level modifier for the sake of function | ||||
1218 | // identity. Either the function has one or more parameters with | ||||
1219 | // pass_object_size or it doesn't. | ||||
1220 | if (functionHasPassObjectSizeParams(New) != | ||||
1221 | functionHasPassObjectSizeParams(Old)) | ||||
1222 | return true; | ||||
1223 | |||||
1224 | // enable_if attributes are an order-sensitive part of the signature. | ||||
1225 | for (specific_attr_iterator<EnableIfAttr> | ||||
1226 | NewI = New->specific_attr_begin<EnableIfAttr>(), | ||||
1227 | NewE = New->specific_attr_end<EnableIfAttr>(), | ||||
1228 | OldI = Old->specific_attr_begin<EnableIfAttr>(), | ||||
1229 | OldE = Old->specific_attr_end<EnableIfAttr>(); | ||||
1230 | NewI != NewE || OldI != OldE; ++NewI, ++OldI) { | ||||
1231 | if (NewI == NewE || OldI == OldE) | ||||
1232 | return true; | ||||
1233 | llvm::FoldingSetNodeID NewID, OldID; | ||||
1234 | NewI->getCond()->Profile(NewID, Context, true); | ||||
1235 | OldI->getCond()->Profile(OldID, Context, true); | ||||
1236 | if (NewID != OldID) | ||||
1237 | return true; | ||||
1238 | } | ||||
1239 | |||||
1240 | if (getLangOpts().CUDA && ConsiderCudaAttrs) { | ||||
1241 | // Don't allow overloading of destructors. (In theory we could, but it | ||||
1242 | // would be a giant change to clang.) | ||||
1243 | if (isa<CXXDestructorDecl>(New)) | ||||
1244 | return false; | ||||
1245 | |||||
1246 | CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), | ||||
1247 | OldTarget = IdentifyCUDATarget(Old); | ||||
1248 | if (NewTarget == CFT_InvalidTarget) | ||||
1249 | return false; | ||||
1250 | |||||
1251 | assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target." ) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1251, __PRETTY_FUNCTION__)); | ||||
1252 | |||||
1253 | // Allow overloading of functions with same signature and different CUDA | ||||
1254 | // target attributes. | ||||
1255 | return NewTarget != OldTarget; | ||||
1256 | } | ||||
1257 | |||||
1258 | // The signatures match; this is not an overload. | ||||
1259 | return false; | ||||
1260 | } | ||||
1261 | |||||
1262 | /// Tries a user-defined conversion from From to ToType. | ||||
1263 | /// | ||||
1264 | /// Produces an implicit conversion sequence for when a standard conversion | ||||
1265 | /// is not an option. See TryImplicitConversion for more information. | ||||
1266 | static ImplicitConversionSequence | ||||
1267 | TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | ||||
1268 | bool SuppressUserConversions, | ||||
1269 | bool AllowExplicit, | ||||
1270 | bool InOverloadResolution, | ||||
1271 | bool CStyle, | ||||
1272 | bool AllowObjCWritebackConversion, | ||||
1273 | bool AllowObjCConversionOnExplicit) { | ||||
1274 | ImplicitConversionSequence ICS; | ||||
1275 | |||||
1276 | if (SuppressUserConversions) { | ||||
1277 | // We're not in the case above, so there is no conversion that | ||||
1278 | // we can perform. | ||||
1279 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | ||||
1280 | return ICS; | ||||
1281 | } | ||||
1282 | |||||
1283 | // Attempt user-defined conversion. | ||||
1284 | OverloadCandidateSet Conversions(From->getExprLoc(), | ||||
1285 | OverloadCandidateSet::CSK_Normal); | ||||
1286 | switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, | ||||
1287 | Conversions, AllowExplicit, | ||||
1288 | AllowObjCConversionOnExplicit)) { | ||||
1289 | case OR_Success: | ||||
1290 | case OR_Deleted: | ||||
1291 | ICS.setUserDefined(); | ||||
1292 | // C++ [over.ics.user]p4: | ||||
1293 | // A conversion of an expression of class type to the same class | ||||
1294 | // type is given Exact Match rank, and a conversion of an | ||||
1295 | // expression of class type to a base class of that type is | ||||
1296 | // given Conversion rank, in spite of the fact that a copy | ||||
1297 | // constructor (i.e., a user-defined conversion function) is | ||||
1298 | // called for those cases. | ||||
1299 | if (CXXConstructorDecl *Constructor | ||||
1300 | = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { | ||||
1301 | QualType FromCanon | ||||
1302 | = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); | ||||
1303 | QualType ToCanon | ||||
1304 | = S.Context.getCanonicalType(ToType).getUnqualifiedType(); | ||||
1305 | if (Constructor->isCopyConstructor() && | ||||
1306 | (FromCanon == ToCanon || | ||||
1307 | S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { | ||||
1308 | // Turn this into a "standard" conversion sequence, so that it | ||||
1309 | // gets ranked with standard conversion sequences. | ||||
1310 | DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; | ||||
1311 | ICS.setStandard(); | ||||
1312 | ICS.Standard.setAsIdentityConversion(); | ||||
1313 | ICS.Standard.setFromType(From->getType()); | ||||
1314 | ICS.Standard.setAllToTypes(ToType); | ||||
1315 | ICS.Standard.CopyConstructor = Constructor; | ||||
1316 | ICS.Standard.FoundCopyConstructor = Found; | ||||
1317 | if (ToCanon != FromCanon) | ||||
1318 | ICS.Standard.Second = ICK_Derived_To_Base; | ||||
1319 | } | ||||
1320 | } | ||||
1321 | break; | ||||
1322 | |||||
1323 | case OR_Ambiguous: | ||||
1324 | ICS.setAmbiguous(); | ||||
1325 | ICS.Ambiguous.setFromType(From->getType()); | ||||
1326 | ICS.Ambiguous.setToType(ToType); | ||||
1327 | for (OverloadCandidateSet::iterator Cand = Conversions.begin(); | ||||
1328 | Cand != Conversions.end(); ++Cand) | ||||
1329 | if (Cand->Best) | ||||
1330 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); | ||||
1331 | break; | ||||
1332 | |||||
1333 | // Fall through. | ||||
1334 | case OR_No_Viable_Function: | ||||
1335 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | ||||
1336 | break; | ||||
1337 | } | ||||
1338 | |||||
1339 | return ICS; | ||||
1340 | } | ||||
1341 | |||||
1342 | /// TryImplicitConversion - Attempt to perform an implicit conversion | ||||
1343 | /// from the given expression (Expr) to the given type (ToType). This | ||||
1344 | /// function returns an implicit conversion sequence that can be used | ||||
1345 | /// to perform the initialization. Given | ||||
1346 | /// | ||||
1347 | /// void f(float f); | ||||
1348 | /// void g(int i) { f(i); } | ||||
1349 | /// | ||||
1350 | /// this routine would produce an implicit conversion sequence to | ||||
1351 | /// describe the initialization of f from i, which will be a standard | ||||
1352 | /// conversion sequence containing an lvalue-to-rvalue conversion (C++ | ||||
1353 | /// 4.1) followed by a floating-integral conversion (C++ 4.9). | ||||
1354 | // | ||||
1355 | /// Note that this routine only determines how the conversion can be | ||||
1356 | /// performed; it does not actually perform the conversion. As such, | ||||
1357 | /// it will not produce any diagnostics if no conversion is available, | ||||
1358 | /// but will instead return an implicit conversion sequence of kind | ||||
1359 | /// "BadConversion". | ||||
1360 | /// | ||||
1361 | /// If @p SuppressUserConversions, then user-defined conversions are | ||||
1362 | /// not permitted. | ||||
1363 | /// If @p AllowExplicit, then explicit user-defined conversions are | ||||
1364 | /// permitted. | ||||
1365 | /// | ||||
1366 | /// \param AllowObjCWritebackConversion Whether we allow the Objective-C | ||||
1367 | /// writeback conversion, which allows __autoreleasing id* parameters to | ||||
1368 | /// be initialized with __strong id* or __weak id* arguments. | ||||
1369 | static ImplicitConversionSequence | ||||
1370 | TryImplicitConversion(Sema &S, Expr *From, QualType ToType, | ||||
1371 | bool SuppressUserConversions, | ||||
1372 | bool AllowExplicit, | ||||
1373 | bool InOverloadResolution, | ||||
1374 | bool CStyle, | ||||
1375 | bool AllowObjCWritebackConversion, | ||||
1376 | bool AllowObjCConversionOnExplicit) { | ||||
1377 | ImplicitConversionSequence ICS; | ||||
1378 | if (IsStandardConversion(S, From, ToType, InOverloadResolution, | ||||
1379 | ICS.Standard, CStyle, AllowObjCWritebackConversion)){ | ||||
1380 | ICS.setStandard(); | ||||
1381 | return ICS; | ||||
1382 | } | ||||
1383 | |||||
1384 | if (!S.getLangOpts().CPlusPlus) { | ||||
1385 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | ||||
1386 | return ICS; | ||||
1387 | } | ||||
1388 | |||||
1389 | // C++ [over.ics.user]p4: | ||||
1390 | // A conversion of an expression of class type to the same class | ||||
1391 | // type is given Exact Match rank, and a conversion of an | ||||
1392 | // expression of class type to a base class of that type is | ||||
1393 | // given Conversion rank, in spite of the fact that a copy/move | ||||
1394 | // constructor (i.e., a user-defined conversion function) is | ||||
1395 | // called for those cases. | ||||
1396 | QualType FromType = From->getType(); | ||||
1397 | if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && | ||||
1398 | (S.Context.hasSameUnqualifiedType(FromType, ToType) || | ||||
1399 | S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { | ||||
1400 | ICS.setStandard(); | ||||
1401 | ICS.Standard.setAsIdentityConversion(); | ||||
1402 | ICS.Standard.setFromType(FromType); | ||||
1403 | ICS.Standard.setAllToTypes(ToType); | ||||
1404 | |||||
1405 | // We don't actually check at this point whether there is a valid | ||||
1406 | // copy/move constructor, since overloading just assumes that it | ||||
1407 | // exists. When we actually perform initialization, we'll find the | ||||
1408 | // appropriate constructor to copy the returned object, if needed. | ||||
1409 | ICS.Standard.CopyConstructor = nullptr; | ||||
1410 | |||||
1411 | // Determine whether this is considered a derived-to-base conversion. | ||||
1412 | if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) | ||||
1413 | ICS.Standard.Second = ICK_Derived_To_Base; | ||||
1414 | |||||
1415 | return ICS; | ||||
1416 | } | ||||
1417 | |||||
1418 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, | ||||
1419 | AllowExplicit, InOverloadResolution, CStyle, | ||||
1420 | AllowObjCWritebackConversion, | ||||
1421 | AllowObjCConversionOnExplicit); | ||||
1422 | } | ||||
1423 | |||||
1424 | ImplicitConversionSequence | ||||
1425 | Sema::TryImplicitConversion(Expr *From, QualType ToType, | ||||
1426 | bool SuppressUserConversions, | ||||
1427 | bool AllowExplicit, | ||||
1428 | bool InOverloadResolution, | ||||
1429 | bool CStyle, | ||||
1430 | bool AllowObjCWritebackConversion) { | ||||
1431 | return ::TryImplicitConversion(*this, From, ToType, | ||||
1432 | SuppressUserConversions, AllowExplicit, | ||||
1433 | InOverloadResolution, CStyle, | ||||
1434 | AllowObjCWritebackConversion, | ||||
1435 | /*AllowObjCConversionOnExplicit=*/false); | ||||
1436 | } | ||||
1437 | |||||
1438 | /// PerformImplicitConversion - Perform an implicit conversion of the | ||||
1439 | /// expression From to the type ToType. Returns the | ||||
1440 | /// converted expression. Flavor is the kind of conversion we're | ||||
1441 | /// performing, used in the error message. If @p AllowExplicit, | ||||
1442 | /// explicit user-defined conversions are permitted. | ||||
1443 | ExprResult | ||||
1444 | Sema::PerformImplicitConversion(Expr *From, QualType ToType, | ||||
1445 | AssignmentAction Action, bool AllowExplicit) { | ||||
1446 | ImplicitConversionSequence ICS; | ||||
1447 | return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); | ||||
1448 | } | ||||
1449 | |||||
1450 | ExprResult | ||||
1451 | Sema::PerformImplicitConversion(Expr *From, QualType ToType, | ||||
1452 | AssignmentAction Action, bool AllowExplicit, | ||||
1453 | ImplicitConversionSequence& ICS) { | ||||
1454 | if (checkPlaceholderForOverload(*this, From)) | ||||
1455 | return ExprError(); | ||||
1456 | |||||
1457 | // Objective-C ARC: Determine whether we will allow the writeback conversion. | ||||
1458 | bool AllowObjCWritebackConversion | ||||
1459 | = getLangOpts().ObjCAutoRefCount && | ||||
1460 | (Action == AA_Passing || Action == AA_Sending); | ||||
1461 | if (getLangOpts().ObjC) | ||||
1462 | CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, | ||||
1463 | From->getType(), From); | ||||
1464 | ICS = ::TryImplicitConversion(*this, From, ToType, | ||||
1465 | /*SuppressUserConversions=*/false, | ||||
1466 | AllowExplicit, | ||||
1467 | /*InOverloadResolution=*/false, | ||||
1468 | /*CStyle=*/false, | ||||
1469 | AllowObjCWritebackConversion, | ||||
1470 | /*AllowObjCConversionOnExplicit=*/false); | ||||
1471 | return PerformImplicitConversion(From, ToType, ICS, Action); | ||||
1472 | } | ||||
1473 | |||||
1474 | /// Determine whether the conversion from FromType to ToType is a valid | ||||
1475 | /// conversion that strips "noexcept" or "noreturn" off the nested function | ||||
1476 | /// type. | ||||
1477 | bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, | ||||
1478 | QualType &ResultTy) { | ||||
1479 | if (Context.hasSameUnqualifiedType(FromType, ToType)) | ||||
1480 | return false; | ||||
1481 | |||||
1482 | // Permit the conversion F(t __attribute__((noreturn))) -> F(t) | ||||
1483 | // or F(t noexcept) -> F(t) | ||||
1484 | // where F adds one of the following at most once: | ||||
1485 | // - a pointer | ||||
1486 | // - a member pointer | ||||
1487 | // - a block pointer | ||||
1488 | // Changes here need matching changes in FindCompositePointerType. | ||||
1489 | CanQualType CanTo = Context.getCanonicalType(ToType); | ||||
1490 | CanQualType CanFrom = Context.getCanonicalType(FromType); | ||||
1491 | Type::TypeClass TyClass = CanTo->getTypeClass(); | ||||
1492 | if (TyClass != CanFrom->getTypeClass()) return false; | ||||
1493 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { | ||||
1494 | if (TyClass == Type::Pointer) { | ||||
1495 | CanTo = CanTo.castAs<PointerType>()->getPointeeType(); | ||||
1496 | CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); | ||||
1497 | } else if (TyClass == Type::BlockPointer) { | ||||
1498 | CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); | ||||
1499 | CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); | ||||
1500 | } else if (TyClass == Type::MemberPointer) { | ||||
1501 | auto ToMPT = CanTo.castAs<MemberPointerType>(); | ||||
1502 | auto FromMPT = CanFrom.castAs<MemberPointerType>(); | ||||
1503 | // A function pointer conversion cannot change the class of the function. | ||||
1504 | if (ToMPT->getClass() != FromMPT->getClass()) | ||||
1505 | return false; | ||||
1506 | CanTo = ToMPT->getPointeeType(); | ||||
1507 | CanFrom = FromMPT->getPointeeType(); | ||||
1508 | } else { | ||||
1509 | return false; | ||||
1510 | } | ||||
1511 | |||||
1512 | TyClass = CanTo->getTypeClass(); | ||||
1513 | if (TyClass != CanFrom->getTypeClass()) return false; | ||||
1514 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) | ||||
1515 | return false; | ||||
1516 | } | ||||
1517 | |||||
1518 | const auto *FromFn = cast<FunctionType>(CanFrom); | ||||
1519 | FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); | ||||
1520 | |||||
1521 | const auto *ToFn = cast<FunctionType>(CanTo); | ||||
1522 | FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); | ||||
1523 | |||||
1524 | bool Changed = false; | ||||
1525 | |||||
1526 | // Drop 'noreturn' if not present in target type. | ||||
1527 | if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { | ||||
1528 | FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); | ||||
1529 | Changed = true; | ||||
1530 | } | ||||
1531 | |||||
1532 | // Drop 'noexcept' if not present in target type. | ||||
1533 | if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { | ||||
1534 | const auto *ToFPT = cast<FunctionProtoType>(ToFn); | ||||
1535 | if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { | ||||
1536 | FromFn = cast<FunctionType>( | ||||
1537 | Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), | ||||
1538 | EST_None) | ||||
1539 | .getTypePtr()); | ||||
1540 | Changed = true; | ||||
1541 | } | ||||
1542 | |||||
1543 | // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid | ||||
1544 | // only if the ExtParameterInfo lists of the two function prototypes can be | ||||
1545 | // merged and the merged list is identical to ToFPT's ExtParameterInfo list. | ||||
1546 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; | ||||
1547 | bool CanUseToFPT, CanUseFromFPT; | ||||
1548 | if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, | ||||
1549 | CanUseFromFPT, NewParamInfos) && | ||||
1550 | CanUseToFPT && !CanUseFromFPT) { | ||||
1551 | FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); | ||||
1552 | ExtInfo.ExtParameterInfos = | ||||
1553 | NewParamInfos.empty() ? nullptr : NewParamInfos.data(); | ||||
1554 | QualType QT = Context.getFunctionType(FromFPT->getReturnType(), | ||||
1555 | FromFPT->getParamTypes(), ExtInfo); | ||||
1556 | FromFn = QT->getAs<FunctionType>(); | ||||
1557 | Changed = true; | ||||
1558 | } | ||||
1559 | } | ||||
1560 | |||||
1561 | if (!Changed) | ||||
1562 | return false; | ||||
1563 | |||||
1564 | assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void> (0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1564, __PRETTY_FUNCTION__)); | ||||
1565 | if (QualType(FromFn, 0) != CanTo) return false; | ||||
1566 | |||||
1567 | ResultTy = ToType; | ||||
1568 | return true; | ||||
1569 | } | ||||
1570 | |||||
1571 | /// Determine whether the conversion from FromType to ToType is a valid | ||||
1572 | /// vector conversion. | ||||
1573 | /// | ||||
1574 | /// \param ICK Will be set to the vector conversion kind, if this is a vector | ||||
1575 | /// conversion. | ||||
1576 | static bool IsVectorConversion(Sema &S, QualType FromType, | ||||
1577 | QualType ToType, ImplicitConversionKind &ICK) { | ||||
1578 | // We need at least one of these types to be a vector type to have a vector | ||||
1579 | // conversion. | ||||
1580 | if (!ToType->isVectorType() && !FromType->isVectorType()) | ||||
1581 | return false; | ||||
1582 | |||||
1583 | // Identical types require no conversions. | ||||
1584 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) | ||||
1585 | return false; | ||||
1586 | |||||
1587 | // There are no conversions between extended vector types, only identity. | ||||
1588 | if (ToType->isExtVectorType()) { | ||||
1589 | // There are no conversions between extended vector types other than the | ||||
1590 | // identity conversion. | ||||
1591 | if (FromType->isExtVectorType()) | ||||
1592 | return false; | ||||
1593 | |||||
1594 | // Vector splat from any arithmetic type to a vector. | ||||
1595 | if (FromType->isArithmeticType()) { | ||||
1596 | ICK = ICK_Vector_Splat; | ||||
1597 | return true; | ||||
1598 | } | ||||
1599 | } | ||||
1600 | |||||
1601 | // We can perform the conversion between vector types in the following cases: | ||||
1602 | // 1)vector types are equivalent AltiVec and GCC vector types | ||||
1603 | // 2)lax vector conversions are permitted and the vector types are of the | ||||
1604 | // same size | ||||
1605 | if (ToType->isVectorType() && FromType->isVectorType()) { | ||||
1606 | if (S.Context.areCompatibleVectorTypes(FromType, ToType) || | ||||
1607 | S.isLaxVectorConversion(FromType, ToType)) { | ||||
1608 | ICK = ICK_Vector_Conversion; | ||||
1609 | return true; | ||||
1610 | } | ||||
1611 | } | ||||
1612 | |||||
1613 | return false; | ||||
1614 | } | ||||
1615 | |||||
1616 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, | ||||
1617 | bool InOverloadResolution, | ||||
1618 | StandardConversionSequence &SCS, | ||||
1619 | bool CStyle); | ||||
1620 | |||||
1621 | /// IsStandardConversion - Determines whether there is a standard | ||||
1622 | /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the | ||||
1623 | /// expression From to the type ToType. Standard conversion sequences | ||||
1624 | /// only consider non-class types; for conversions that involve class | ||||
1625 | /// types, use TryImplicitConversion. If a conversion exists, SCS will | ||||
1626 | /// contain the standard conversion sequence required to perform this | ||||
1627 | /// conversion and this routine will return true. Otherwise, this | ||||
1628 | /// routine will return false and the value of SCS is unspecified. | ||||
1629 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, | ||||
1630 | bool InOverloadResolution, | ||||
1631 | StandardConversionSequence &SCS, | ||||
1632 | bool CStyle, | ||||
1633 | bool AllowObjCWritebackConversion) { | ||||
1634 | QualType FromType = From->getType(); | ||||
1635 | |||||
1636 | // Standard conversions (C++ [conv]) | ||||
1637 | SCS.setAsIdentityConversion(); | ||||
1638 | SCS.IncompatibleObjC = false; | ||||
1639 | SCS.setFromType(FromType); | ||||
1640 | SCS.CopyConstructor = nullptr; | ||||
1641 | |||||
1642 | // There are no standard conversions for class types in C++, so | ||||
1643 | // abort early. When overloading in C, however, we do permit them. | ||||
1644 | if (S.getLangOpts().CPlusPlus && | ||||
1645 | (FromType->isRecordType() || ToType->isRecordType())) | ||||
1646 | return false; | ||||
1647 | |||||
1648 | // The first conversion can be an lvalue-to-rvalue conversion, | ||||
1649 | // array-to-pointer conversion, or function-to-pointer conversion | ||||
1650 | // (C++ 4p1). | ||||
1651 | |||||
1652 | if (FromType == S.Context.OverloadTy) { | ||||
1653 | DeclAccessPair AccessPair; | ||||
1654 | if (FunctionDecl *Fn | ||||
1655 | = S.ResolveAddressOfOverloadedFunction(From, ToType, false, | ||||
1656 | AccessPair)) { | ||||
1657 | // We were able to resolve the address of the overloaded function, | ||||
1658 | // so we can convert to the type of that function. | ||||
1659 | FromType = Fn->getType(); | ||||
1660 | SCS.setFromType(FromType); | ||||
1661 | |||||
1662 | // we can sometimes resolve &foo<int> regardless of ToType, so check | ||||
1663 | // if the type matches (identity) or we are converting to bool | ||||
1664 | if (!S.Context.hasSameUnqualifiedType( | ||||
1665 | S.ExtractUnqualifiedFunctionType(ToType), FromType)) { | ||||
1666 | QualType resultTy; | ||||
1667 | // if the function type matches except for [[noreturn]], it's ok | ||||
1668 | if (!S.IsFunctionConversion(FromType, | ||||
1669 | S.ExtractUnqualifiedFunctionType(ToType), resultTy)) | ||||
1670 | // otherwise, only a boolean conversion is standard | ||||
1671 | if (!ToType->isBooleanType()) | ||||
1672 | return false; | ||||
1673 | } | ||||
1674 | |||||
1675 | // Check if the "from" expression is taking the address of an overloaded | ||||
1676 | // function and recompute the FromType accordingly. Take advantage of the | ||||
1677 | // fact that non-static member functions *must* have such an address-of | ||||
1678 | // expression. | ||||
1679 | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); | ||||
1680 | if (Method && !Method->isStatic()) { | ||||
1681 | assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) && "Non-unary operator on non-static member address") ? static_cast <void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1682, __PRETTY_FUNCTION__)) | ||||
1682 | "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) && "Non-unary operator on non-static member address") ? static_cast <void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1682, __PRETTY_FUNCTION__)); | ||||
1683 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1685, __PRETTY_FUNCTION__)) | ||||
1684 | == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1685, __PRETTY_FUNCTION__)) | ||||
1685 | "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1685, __PRETTY_FUNCTION__)); | ||||
1686 | const Type *ClassType | ||||
1687 | = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); | ||||
1688 | FromType = S.Context.getMemberPointerType(FromType, ClassType); | ||||
1689 | } else if (isa<UnaryOperator>(From->IgnoreParens())) { | ||||
1690 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1692, __PRETTY_FUNCTION__)) | ||||
1691 | UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1692, __PRETTY_FUNCTION__)) | ||||
1692 | "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1692, __PRETTY_FUNCTION__)); | ||||
1693 | FromType = S.Context.getPointerType(FromType); | ||||
1694 | } | ||||
1695 | |||||
1696 | // Check that we've computed the proper type after overload resolution. | ||||
1697 | // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't | ||||
1698 | // be calling it from within an NDEBUG block. | ||||
1699 | assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference (From, AccessPair, Fn)->getType())) ? static_cast<void> (0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1701, __PRETTY_FUNCTION__)) | ||||
1700 | FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference (From, AccessPair, Fn)->getType())) ? static_cast<void> (0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1701, __PRETTY_FUNCTION__)) | ||||
1701 | S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference (From, AccessPair, Fn)->getType())) ? static_cast<void> (0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1701, __PRETTY_FUNCTION__)); | ||||
1702 | } else { | ||||
1703 | return false; | ||||
1704 | } | ||||
1705 | } | ||||
1706 | // Lvalue-to-rvalue conversion (C++11 4.1): | ||||
1707 | // A glvalue (3.10) of a non-function, non-array type T can | ||||
1708 | // be converted to a prvalue. | ||||
1709 | bool argIsLValue = From->isGLValue(); | ||||
1710 | if (argIsLValue && | ||||
1711 | !FromType->isFunctionType() && !FromType->isArrayType() && | ||||
1712 | S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { | ||||
1713 | SCS.First = ICK_Lvalue_To_Rvalue; | ||||
1714 | |||||
1715 | // C11 6.3.2.1p2: | ||||
1716 | // ... if the lvalue has atomic type, the value has the non-atomic version | ||||
1717 | // of the type of the lvalue ... | ||||
1718 | if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) | ||||
1719 | FromType = Atomic->getValueType(); | ||||
1720 | |||||
1721 | // If T is a non-class type, the type of the rvalue is the | ||||
1722 | // cv-unqualified version of T. Otherwise, the type of the rvalue | ||||
1723 | // is T (C++ 4.1p1). C++ can't get here with class types; in C, we | ||||
1724 | // just strip the qualifiers because they don't matter. | ||||
1725 | FromType = FromType.getUnqualifiedType(); | ||||
1726 | } else if (FromType->isArrayType()) { | ||||
1727 | // Array-to-pointer conversion (C++ 4.2) | ||||
1728 | SCS.First = ICK_Array_To_Pointer; | ||||
1729 | |||||
1730 | // An lvalue or rvalue of type "array of N T" or "array of unknown | ||||
1731 | // bound of T" can be converted to an rvalue of type "pointer to | ||||
1732 | // T" (C++ 4.2p1). | ||||
1733 | FromType = S.Context.getArrayDecayedType(FromType); | ||||
1734 | |||||
1735 | if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { | ||||
1736 | // This conversion is deprecated in C++03 (D.4) | ||||
1737 | SCS.DeprecatedStringLiteralToCharPtr = true; | ||||
1738 | |||||
1739 | // For the purpose of ranking in overload resolution | ||||
1740 | // (13.3.3.1.1), this conversion is considered an | ||||
1741 | // array-to-pointer conversion followed by a qualification | ||||
1742 | // conversion (4.4). (C++ 4.2p2) | ||||
1743 | SCS.Second = ICK_Identity; | ||||
1744 | SCS.Third = ICK_Qualification; | ||||
1745 | SCS.QualificationIncludesObjCLifetime = false; | ||||
1746 | SCS.setAllToTypes(FromType); | ||||
1747 | return true; | ||||
1748 | } | ||||
1749 | } else if (FromType->isFunctionType() && argIsLValue) { | ||||
1750 | // Function-to-pointer conversion (C++ 4.3). | ||||
1751 | SCS.First = ICK_Function_To_Pointer; | ||||
1752 | |||||
1753 | if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) | ||||
1754 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) | ||||
1755 | if (!S.checkAddressOfFunctionIsAvailable(FD)) | ||||
1756 | return false; | ||||
1757 | |||||
1758 | // An lvalue of function type T can be converted to an rvalue of | ||||
1759 | // type "pointer to T." The result is a pointer to the | ||||
1760 | // function. (C++ 4.3p1). | ||||
1761 | FromType = S.Context.getPointerType(FromType); | ||||
1762 | } else { | ||||
1763 | // We don't require any conversions for the first step. | ||||
1764 | SCS.First = ICK_Identity; | ||||
1765 | } | ||||
1766 | SCS.setToType(0, FromType); | ||||
1767 | |||||
1768 | // The second conversion can be an integral promotion, floating | ||||
1769 | // point promotion, integral conversion, floating point conversion, | ||||
1770 | // floating-integral conversion, pointer conversion, | ||||
1771 | // pointer-to-member conversion, or boolean conversion (C++ 4p1). | ||||
1772 | // For overloading in C, this can also be a "compatible-type" | ||||
1773 | // conversion. | ||||
1774 | bool IncompatibleObjC = false; | ||||
1775 | ImplicitConversionKind SecondICK = ICK_Identity; | ||||
1776 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { | ||||
1777 | // The unqualified versions of the types are the same: there's no | ||||
1778 | // conversion to do. | ||||
1779 | SCS.Second = ICK_Identity; | ||||
1780 | } else if (S.IsIntegralPromotion(From, FromType, ToType)) { | ||||
1781 | // Integral promotion (C++ 4.5). | ||||
1782 | SCS.Second = ICK_Integral_Promotion; | ||||
1783 | FromType = ToType.getUnqualifiedType(); | ||||
1784 | } else if (S.IsFloatingPointPromotion(FromType, ToType)) { | ||||
1785 | // Floating point promotion (C++ 4.6). | ||||
1786 | SCS.Second = ICK_Floating_Promotion; | ||||
1787 | FromType = ToType.getUnqualifiedType(); | ||||
1788 | } else if (S.IsComplexPromotion(FromType, ToType)) { | ||||
1789 | // Complex promotion (Clang extension) | ||||
1790 | SCS.Second = ICK_Complex_Promotion; | ||||
1791 | FromType = ToType.getUnqualifiedType(); | ||||
1792 | } else if (ToType->isBooleanType() && | ||||
1793 | (FromType->isArithmeticType() || | ||||
1794 | FromType->isAnyPointerType() || | ||||
1795 | FromType->isBlockPointerType() || | ||||
1796 | FromType->isMemberPointerType() || | ||||
1797 | FromType->isNullPtrType())) { | ||||
1798 | // Boolean conversions (C++ 4.12). | ||||
1799 | SCS.Second = ICK_Boolean_Conversion; | ||||
1800 | FromType = S.Context.BoolTy; | ||||
1801 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && | ||||
1802 | ToType->isIntegralType(S.Context)) { | ||||
1803 | // Integral conversions (C++ 4.7). | ||||
1804 | SCS.Second = ICK_Integral_Conversion; | ||||
1805 | FromType = ToType.getUnqualifiedType(); | ||||
1806 | } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { | ||||
1807 | // Complex conversions (C99 6.3.1.6) | ||||
1808 | SCS.Second = ICK_Complex_Conversion; | ||||
1809 | FromType = ToType.getUnqualifiedType(); | ||||
1810 | } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || | ||||
1811 | (ToType->isAnyComplexType() && FromType->isArithmeticType())) { | ||||
1812 | // Complex-real conversions (C99 6.3.1.7) | ||||
1813 | SCS.Second = ICK_Complex_Real; | ||||
1814 | FromType = ToType.getUnqualifiedType(); | ||||
1815 | } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { | ||||
1816 | // FIXME: disable conversions between long double and __float128 if | ||||
1817 | // their representation is different until there is back end support | ||||
1818 | // We of course allow this conversion if long double is really double. | ||||
1819 | if (&S.Context.getFloatTypeSemantics(FromType) != | ||||
1820 | &S.Context.getFloatTypeSemantics(ToType)) { | ||||
1821 | bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty && | ||||
1822 | ToType == S.Context.LongDoubleTy) || | ||||
1823 | (FromType == S.Context.LongDoubleTy && | ||||
1824 | ToType == S.Context.Float128Ty)); | ||||
1825 | if (Float128AndLongDouble && | ||||
1826 | (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == | ||||
1827 | &llvm::APFloat::PPCDoubleDouble())) | ||||
1828 | return false; | ||||
1829 | } | ||||
1830 | // Floating point conversions (C++ 4.8). | ||||
1831 | SCS.Second = ICK_Floating_Conversion; | ||||
1832 | FromType = ToType.getUnqualifiedType(); | ||||
1833 | } else if ((FromType->isRealFloatingType() && | ||||
1834 | ToType->isIntegralType(S.Context)) || | ||||
1835 | (FromType->isIntegralOrUnscopedEnumerationType() && | ||||
1836 | ToType->isRealFloatingType())) { | ||||
1837 | // Floating-integral conversions (C++ 4.9). | ||||
1838 | SCS.Second = ICK_Floating_Integral; | ||||
1839 | FromType = ToType.getUnqualifiedType(); | ||||
1840 | } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { | ||||
1841 | SCS.Second = ICK_Block_Pointer_Conversion; | ||||
1842 | } else if (AllowObjCWritebackConversion && | ||||
1843 | S.isObjCWritebackConversion(FromType, ToType, FromType)) { | ||||
1844 | SCS.Second = ICK_Writeback_Conversion; | ||||
1845 | } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, | ||||
1846 | FromType, IncompatibleObjC)) { | ||||
1847 | // Pointer conversions (C++ 4.10). | ||||
1848 | SCS.Second = ICK_Pointer_Conversion; | ||||
1849 | SCS.IncompatibleObjC = IncompatibleObjC; | ||||
1850 | FromType = FromType.getUnqualifiedType(); | ||||
1851 | } else if (S.IsMemberPointerConversion(From, FromType, ToType, | ||||
1852 | InOverloadResolution, FromType)) { | ||||
1853 | // Pointer to member conversions (4.11). | ||||
1854 | SCS.Second = ICK_Pointer_Member; | ||||
1855 | } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) { | ||||
1856 | SCS.Second = SecondICK; | ||||
1857 | FromType = ToType.getUnqualifiedType(); | ||||
1858 | } else if (!S.getLangOpts().CPlusPlus && | ||||
1859 | S.Context.typesAreCompatible(ToType, FromType)) { | ||||
1860 | // Compatible conversions (Clang extension for C function overloading) | ||||
1861 | SCS.Second = ICK_Compatible_Conversion; | ||||
1862 | FromType = ToType.getUnqualifiedType(); | ||||
1863 | } else if (IsTransparentUnionStandardConversion(S, From, ToType, | ||||
1864 | InOverloadResolution, | ||||
1865 | SCS, CStyle)) { | ||||
1866 | SCS.Second = ICK_TransparentUnionConversion; | ||||
1867 | FromType = ToType; | ||||
1868 | } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, | ||||
1869 | CStyle)) { | ||||
1870 | // tryAtomicConversion has updated the standard conversion sequence | ||||
1871 | // appropriately. | ||||
1872 | return true; | ||||
1873 | } else if (ToType->isEventT() && | ||||
1874 | From->isIntegerConstantExpr(S.getASTContext()) && | ||||
1875 | From->EvaluateKnownConstInt(S.getASTContext()) == 0) { | ||||
1876 | SCS.Second = ICK_Zero_Event_Conversion; | ||||
1877 | FromType = ToType; | ||||
1878 | } else if (ToType->isQueueT() && | ||||
1879 | From->isIntegerConstantExpr(S.getASTContext()) && | ||||
1880 | (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { | ||||
1881 | SCS.Second = ICK_Zero_Queue_Conversion; | ||||
1882 | FromType = ToType; | ||||
1883 | } else if (ToType->isSamplerT() && | ||||
1884 | From->isIntegerConstantExpr(S.getASTContext())) { | ||||
1885 | SCS.Second = ICK_Compatible_Conversion; | ||||
1886 | FromType = ToType; | ||||
1887 | } else { | ||||
1888 | // No second conversion required. | ||||
1889 | SCS.Second = ICK_Identity; | ||||
1890 | } | ||||
1891 | SCS.setToType(1, FromType); | ||||
1892 | |||||
1893 | // The third conversion can be a function pointer conversion or a | ||||
1894 | // qualification conversion (C++ [conv.fctptr], [conv.qual]). | ||||
1895 | bool ObjCLifetimeConversion; | ||||
1896 | if (S.IsFunctionConversion(FromType, ToType, FromType)) { | ||||
1897 | // Function pointer conversions (removing 'noexcept') including removal of | ||||
1898 | // 'noreturn' (Clang extension). | ||||
1899 | SCS.Third = ICK_Function_Conversion; | ||||
1900 | } else if (S.IsQualificationConversion(FromType, ToType, CStyle, | ||||
1901 | ObjCLifetimeConversion)) { | ||||
1902 | SCS.Third = ICK_Qualification; | ||||
1903 | SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; | ||||
1904 | FromType = ToType; | ||||
1905 | } else { | ||||
1906 | // No conversion required | ||||
1907 | SCS.Third = ICK_Identity; | ||||
1908 | } | ||||
1909 | |||||
1910 | // C++ [over.best.ics]p6: | ||||
1911 | // [...] Any difference in top-level cv-qualification is | ||||
1912 | // subsumed by the initialization itself and does not constitute | ||||
1913 | // a conversion. [...] | ||||
1914 | QualType CanonFrom = S.Context.getCanonicalType(FromType); | ||||
1915 | QualType CanonTo = S.Context.getCanonicalType(ToType); | ||||
1916 | if (CanonFrom.getLocalUnqualifiedType() | ||||
1917 | == CanonTo.getLocalUnqualifiedType() && | ||||
1918 | CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { | ||||
1919 | FromType = ToType; | ||||
1920 | CanonFrom = CanonTo; | ||||
1921 | } | ||||
1922 | |||||
1923 | SCS.setToType(2, FromType); | ||||
1924 | |||||
1925 | if (CanonFrom == CanonTo) | ||||
1926 | return true; | ||||
1927 | |||||
1928 | // If we have not converted the argument type to the parameter type, | ||||
1929 | // this is a bad conversion sequence, unless we're resolving an overload in C. | ||||
1930 | if (S.getLangOpts().CPlusPlus || !InOverloadResolution) | ||||
1931 | return false; | ||||
1932 | |||||
1933 | ExprResult ER = ExprResult{From}; | ||||
1934 | Sema::AssignConvertType Conv = | ||||
1935 | S.CheckSingleAssignmentConstraints(ToType, ER, | ||||
1936 | /*Diagnose=*/false, | ||||
1937 | /*DiagnoseCFAudited=*/false, | ||||
1938 | /*ConvertRHS=*/false); | ||||
1939 | ImplicitConversionKind SecondConv; | ||||
1940 | switch (Conv) { | ||||
1941 | case Sema::Compatible: | ||||
1942 | SecondConv = ICK_C_Only_Conversion; | ||||
1943 | break; | ||||
1944 | // For our purposes, discarding qualifiers is just as bad as using an | ||||
1945 | // incompatible pointer. Note that an IncompatiblePointer conversion can drop | ||||
1946 | // qualifiers, as well. | ||||
1947 | case Sema::CompatiblePointerDiscardsQualifiers: | ||||
1948 | case Sema::IncompatiblePointer: | ||||
1949 | case Sema::IncompatiblePointerSign: | ||||
1950 | SecondConv = ICK_Incompatible_Pointer_Conversion; | ||||
1951 | break; | ||||
1952 | default: | ||||
1953 | return false; | ||||
1954 | } | ||||
1955 | |||||
1956 | // First can only be an lvalue conversion, so we pretend that this was the | ||||
1957 | // second conversion. First should already be valid from earlier in the | ||||
1958 | // function. | ||||
1959 | SCS.Second = SecondConv; | ||||
1960 | SCS.setToType(1, ToType); | ||||
1961 | |||||
1962 | // Third is Identity, because Second should rank us worse than any other | ||||
1963 | // conversion. This could also be ICK_Qualification, but it's simpler to just | ||||
1964 | // lump everything in with the second conversion, and we don't gain anything | ||||
1965 | // from making this ICK_Qualification. | ||||
1966 | SCS.Third = ICK_Identity; | ||||
1967 | SCS.setToType(2, ToType); | ||||
1968 | return true; | ||||
1969 | } | ||||
1970 | |||||
1971 | static bool | ||||
1972 | IsTransparentUnionStandardConversion(Sema &S, Expr* From, | ||||
1973 | QualType &ToType, | ||||
1974 | bool InOverloadResolution, | ||||
1975 | StandardConversionSequence &SCS, | ||||
1976 | bool CStyle) { | ||||
1977 | |||||
1978 | const RecordType *UT = ToType->getAsUnionType(); | ||||
1979 | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) | ||||
1980 | return false; | ||||
1981 | // The field to initialize within the transparent union. | ||||
1982 | RecordDecl *UD = UT->getDecl(); | ||||
1983 | // It's compatible if the expression matches any of the fields. | ||||
1984 | for (const auto *it : UD->fields()) { | ||||
1985 | if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, | ||||
1986 | CStyle, /*AllowObjCWritebackConversion=*/false)) { | ||||
1987 | ToType = it->getType(); | ||||
1988 | return true; | ||||
1989 | } | ||||
1990 | } | ||||
1991 | return false; | ||||
1992 | } | ||||
1993 | |||||
1994 | /// IsIntegralPromotion - Determines whether the conversion from the | ||||
1995 | /// expression From (whose potentially-adjusted type is FromType) to | ||||
1996 | /// ToType is an integral promotion (C++ 4.5). If so, returns true and | ||||
1997 | /// sets PromotedType to the promoted type. | ||||
1998 | bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { | ||||
1999 | const BuiltinType *To = ToType->getAs<BuiltinType>(); | ||||
2000 | // All integers are built-in. | ||||
2001 | if (!To) { | ||||
2002 | return false; | ||||
2003 | } | ||||
2004 | |||||
2005 | // An rvalue of type char, signed char, unsigned char, short int, or | ||||
2006 | // unsigned short int can be converted to an rvalue of type int if | ||||
2007 | // int can represent all the values of the source type; otherwise, | ||||
2008 | // the source rvalue can be converted to an rvalue of type unsigned | ||||
2009 | // int (C++ 4.5p1). | ||||
2010 | if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && | ||||
2011 | !FromType->isEnumeralType()) { | ||||
2012 | if (// We can promote any signed, promotable integer type to an int | ||||
2013 | (FromType->isSignedIntegerType() || | ||||
2014 | // We can promote any unsigned integer type whose size is | ||||
2015 | // less than int to an int. | ||||
2016 | Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { | ||||
2017 | return To->getKind() == BuiltinType::Int; | ||||
2018 | } | ||||
2019 | |||||
2020 | return To->getKind() == BuiltinType::UInt; | ||||
2021 | } | ||||
2022 | |||||
2023 | // C++11 [conv.prom]p3: | ||||
2024 | // A prvalue of an unscoped enumeration type whose underlying type is not | ||||
2025 | // fixed (7.2) can be converted to an rvalue a prvalue of the first of the | ||||
2026 | // following types that can represent all the values of the enumeration | ||||
2027 | // (i.e., the values in the range bmin to bmax as described in 7.2): int, | ||||
2028 | // unsigned int, long int, unsigned long int, long long int, or unsigned | ||||
2029 | // long long int. If none of the types in that list can represent all the | ||||
2030 | // values of the enumeration, an rvalue a prvalue of an unscoped enumeration | ||||
2031 | // type can be converted to an rvalue a prvalue of the extended integer type | ||||
2032 | // with lowest integer conversion rank (4.13) greater than the rank of long | ||||
2033 | // long in which all the values of the enumeration can be represented. If | ||||
2034 | // there are two such extended types, the signed one is chosen. | ||||
2035 | // C++11 [conv.prom]p4: | ||||
2036 | // A prvalue of an unscoped enumeration type whose underlying type is fixed | ||||
2037 | // can be converted to a prvalue of its underlying type. Moreover, if | ||||
2038 | // integral promotion can be applied to its underlying type, a prvalue of an | ||||
2039 | // unscoped enumeration type whose underlying type is fixed can also be | ||||
2040 | // converted to a prvalue of the promoted underlying type. | ||||
2041 | if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { | ||||
2042 | // C++0x 7.2p9: Note that this implicit enum to int conversion is not | ||||
2043 | // provided for a scoped enumeration. | ||||
2044 | if (FromEnumType->getDecl()->isScoped()) | ||||
2045 | return false; | ||||
2046 | |||||
2047 | // We can perform an integral promotion to the underlying type of the enum, | ||||
2048 | // even if that's not the promoted type. Note that the check for promoting | ||||
2049 | // the underlying type is based on the type alone, and does not consider | ||||
2050 | // the bitfield-ness of the actual source expression. | ||||
2051 | if (FromEnumType->getDecl()->isFixed()) { | ||||
2052 | QualType Underlying = FromEnumType->getDecl()->getIntegerType(); | ||||
2053 | return Context.hasSameUnqualifiedType(Underlying, ToType) || | ||||
2054 | IsIntegralPromotion(nullptr, Underlying, ToType); | ||||
2055 | } | ||||
2056 | |||||
2057 | // We have already pre-calculated the promotion type, so this is trivial. | ||||
2058 | if (ToType->isIntegerType() && | ||||
2059 | isCompleteType(From->getBeginLoc(), FromType)) | ||||
2060 | return Context.hasSameUnqualifiedType( | ||||
2061 | ToType, FromEnumType->getDecl()->getPromotionType()); | ||||
2062 | |||||
2063 | // C++ [conv.prom]p5: | ||||
2064 | // If the bit-field has an enumerated type, it is treated as any other | ||||
2065 | // value of that type for promotion purposes. | ||||
2066 | // | ||||
2067 | // ... so do not fall through into the bit-field checks below in C++. | ||||
2068 | if (getLangOpts().CPlusPlus) | ||||
2069 | return false; | ||||
2070 | } | ||||
2071 | |||||
2072 | // C++0x [conv.prom]p2: | ||||
2073 | // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted | ||||
2074 | // to an rvalue a prvalue of the first of the following types that can | ||||
2075 | // represent all the values of its underlying type: int, unsigned int, | ||||
2076 | // long int, unsigned long int, long long int, or unsigned long long int. | ||||
2077 | // If none of the types in that list can represent all the values of its | ||||
2078 | // underlying type, an rvalue a prvalue of type char16_t, char32_t, | ||||
2079 | // or wchar_t can be converted to an rvalue a prvalue of its underlying | ||||
2080 | // type. | ||||
2081 | if (FromType->isAnyCharacterType() && !FromType->isCharType() && | ||||
2082 | ToType->isIntegerType()) { | ||||
2083 | // Determine whether the type we're converting from is signed or | ||||
2084 | // unsigned. | ||||
2085 | bool FromIsSigned = FromType->isSignedIntegerType(); | ||||
2086 | uint64_t FromSize = Context.getTypeSize(FromType); | ||||
2087 | |||||
2088 | // The types we'll try to promote to, in the appropriate | ||||
2089 | // order. Try each of these types. | ||||
2090 | QualType PromoteTypes[6] = { | ||||
2091 | Context.IntTy, Context.UnsignedIntTy, | ||||
2092 | Context.LongTy, Context.UnsignedLongTy , | ||||
2093 | Context.LongLongTy, Context.UnsignedLongLongTy | ||||
2094 | }; | ||||
2095 | for (int Idx = 0; Idx < 6; ++Idx) { | ||||
2096 | uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); | ||||
2097 | if (FromSize < ToSize || | ||||
2098 | (FromSize == ToSize && | ||||
2099 | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { | ||||
2100 | // We found the type that we can promote to. If this is the | ||||
2101 | // type we wanted, we have a promotion. Otherwise, no | ||||
2102 | // promotion. | ||||
2103 | return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); | ||||
2104 | } | ||||
2105 | } | ||||
2106 | } | ||||
2107 | |||||
2108 | // An rvalue for an integral bit-field (9.6) can be converted to an | ||||
2109 | // rvalue of type int if int can represent all the values of the | ||||
2110 | // bit-field; otherwise, it can be converted to unsigned int if | ||||
2111 | // unsigned int can represent all the values of the bit-field. If | ||||
2112 | // the bit-field is larger yet, no integral promotion applies to | ||||
2113 | // it. If the bit-field has an enumerated type, it is treated as any | ||||
2114 | // other value of that type for promotion purposes (C++ 4.5p3). | ||||
2115 | // FIXME: We should delay checking of bit-fields until we actually perform the | ||||
2116 | // conversion. | ||||
2117 | // | ||||
2118 | // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be | ||||
2119 | // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum | ||||
2120 | // bit-fields and those whose underlying type is larger than int) for GCC | ||||
2121 | // compatibility. | ||||
2122 | if (From) { | ||||
2123 | if (FieldDecl *MemberDecl = From->getSourceBitField()) { | ||||
2124 | llvm::APSInt BitWidth; | ||||
2125 | if (FromType->isIntegralType(Context) && | ||||
2126 | MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { | ||||
2127 | llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); | ||||
2128 | ToSize = Context.getTypeSize(ToType); | ||||
2129 | |||||
2130 | // Are we promoting to an int from a bitfield that fits in an int? | ||||
2131 | if (BitWidth < ToSize || | ||||
2132 | (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { | ||||
2133 | return To->getKind() == BuiltinType::Int; | ||||
2134 | } | ||||
2135 | |||||
2136 | // Are we promoting to an unsigned int from an unsigned bitfield | ||||
2137 | // that fits into an unsigned int? | ||||
2138 | if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { | ||||
2139 | return To->getKind() == BuiltinType::UInt; | ||||
2140 | } | ||||
2141 | |||||
2142 | return false; | ||||
2143 | } | ||||
2144 | } | ||||
2145 | } | ||||
2146 | |||||
2147 | // An rvalue of type bool can be converted to an rvalue of type int, | ||||
2148 | // with false becoming zero and true becoming one (C++ 4.5p4). | ||||
2149 | if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { | ||||
2150 | return true; | ||||
2151 | } | ||||
2152 | |||||
2153 | return false; | ||||
2154 | } | ||||
2155 | |||||
2156 | /// IsFloatingPointPromotion - Determines whether the conversion from | ||||
2157 | /// FromType to ToType is a floating point promotion (C++ 4.6). If so, | ||||
2158 | /// returns true and sets PromotedType to the promoted type. | ||||
2159 | bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { | ||||
2160 | if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) | ||||
2161 | if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { | ||||
2162 | /// An rvalue of type float can be converted to an rvalue of type | ||||
2163 | /// double. (C++ 4.6p1). | ||||
2164 | if (FromBuiltin->getKind() == BuiltinType::Float && | ||||
2165 | ToBuiltin->getKind() == BuiltinType::Double) | ||||
2166 | return true; | ||||
2167 | |||||
2168 | // C99 6.3.1.5p1: | ||||
2169 | // When a float is promoted to double or long double, or a | ||||
2170 | // double is promoted to long double [...]. | ||||
2171 | if (!getLangOpts().CPlusPlus && | ||||
2172 | (FromBuiltin->getKind() == BuiltinType::Float || | ||||
2173 | FromBuiltin->getKind() == BuiltinType::Double) && | ||||
2174 | (ToBuiltin->getKind() == BuiltinType::LongDouble || | ||||
2175 | ToBuiltin->getKind() == BuiltinType::Float128)) | ||||
2176 | return true; | ||||
2177 | |||||
2178 | // Half can be promoted to float. | ||||
2179 | if (!getLangOpts().NativeHalfType && | ||||
2180 | FromBuiltin->getKind() == BuiltinType::Half && | ||||
2181 | ToBuiltin->getKind() == BuiltinType::Float) | ||||
2182 | return true; | ||||
2183 | } | ||||
2184 | |||||
2185 | return false; | ||||
2186 | } | ||||
2187 | |||||
2188 | /// Determine if a conversion is a complex promotion. | ||||
2189 | /// | ||||
2190 | /// A complex promotion is defined as a complex -> complex conversion | ||||
2191 | /// where the conversion between the underlying real types is a | ||||
2192 | /// floating-point or integral promotion. | ||||
2193 | bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { | ||||
2194 | const ComplexType *FromComplex = FromType->getAs<ComplexType>(); | ||||
2195 | if (!FromComplex) | ||||
2196 | return false; | ||||
2197 | |||||
2198 | const ComplexType *ToComplex = ToType->getAs<ComplexType>(); | ||||
2199 | if (!ToComplex) | ||||
2200 | return false; | ||||
2201 | |||||
2202 | return IsFloatingPointPromotion(FromComplex->getElementType(), | ||||
2203 | ToComplex->getElementType()) || | ||||
2204 | IsIntegralPromotion(nullptr, FromComplex->getElementType(), | ||||
2205 | ToComplex->getElementType()); | ||||
2206 | } | ||||
2207 | |||||
2208 | /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from | ||||
2209 | /// the pointer type FromPtr to a pointer to type ToPointee, with the | ||||
2210 | /// same type qualifiers as FromPtr has on its pointee type. ToType, | ||||
2211 | /// if non-empty, will be a pointer to ToType that may or may not have | ||||
2212 | /// the right set of qualifiers on its pointee. | ||||
2213 | /// | ||||
2214 | static QualType | ||||
2215 | BuildSimilarlyQualifiedPointerType(const Type *FromPtr, | ||||
2216 | QualType ToPointee, QualType ToType, | ||||
2217 | ASTContext &Context, | ||||
2218 | bool StripObjCLifetime = false) { | ||||
2219 | assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr-> getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type" ) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 2221, __PRETTY_FUNCTION__)) | ||||
2220 | FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr-> getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type" ) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 2221, __PRETTY_FUNCTION__)) | ||||
2221 | "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr-> getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type" ) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 2221, __PRETTY_FUNCTION__)); | ||||
2222 | |||||
2223 | /// Conversions to 'id' subsume cv-qualifier conversions. | ||||
2224 | if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) | ||||
2225 | return ToType.getUnqualifiedType(); | ||||
2226 | |||||
2227 | QualType CanonFromPointee | ||||
2228 | = Context.getCanonicalType(FromPtr->getPointeeType()); | ||||
2229 | QualType CanonToPointee = Context.getCanonicalType(ToPointee); | ||||
2230 | Qualifiers Quals = CanonFromPointee.getQualifiers(); | ||||
2231 | |||||
2232 | if (StripObjCLifetime) | ||||
2233 | Quals.removeObjCLifetime(); | ||||
2234 | |||||
2235 | // Exact qualifier match -> return the pointer type we're converting to. | ||||
2236 | if (CanonToPointee.getLocalQualifiers() == Quals) { | ||||
2237 | // ToType is exactly what we need. Return it. | ||||
2238 | if (!ToType.isNull()) | ||||
2239 | return ToType.getUnqualifiedType(); | ||||
2240 | |||||
2241 | // Build a pointer to ToPointee. It has the right qualifiers | ||||
2242 | // already. | ||||
2243 | if (isa<ObjCObjectPointerType>(ToType)) | ||||
2244 | return Context.getObjCObjectPointerType(ToPointee); | ||||
2245 | return Context.getPointerType(ToPointee); | ||||
2246 | } | ||||
2247 | |||||
2248 | // Just build a canonical type that has the right qualifiers. | ||||
2249 | QualType QualifiedCanonToPointee | ||||
2250 | = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); | ||||
2251 | |||||
2252 | if (isa<ObjCObjectPointerType>(ToType)) | ||||
2253 | return Context.getObjCObjectPointerType(QualifiedCanonToPointee); | ||||
2254 | return Context.getPointerType(QualifiedCanonToPointee); | ||||
2255 | } | ||||
2256 | |||||
2257 | static bool isNullPointerConstantForConversion(Expr *Expr, | ||||
2258 | bool InOverloadResolution, | ||||
2259 | ASTContext &Context) { | ||||
2260 | // Handle value-dependent integral null pointer constants correctly. | ||||
2261 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 | ||||
2262 | if (Expr->isValueDependent() && !Expr->isTypeDependent() && | ||||
2263 | Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) | ||||
2264 | return !InOverloadResolution; | ||||
2265 | |||||
2266 | return Expr->isNullPointerConstant(Context, | ||||
2267 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | ||||
2268 | : Expr::NPC_ValueDependentIsNull); | ||||
2269 | } | ||||
2270 | |||||
2271 | /// IsPointerConversion - Determines whether the conversion of the | ||||
2272 | /// expression From, which has the (possibly adjusted) type FromType, | ||||
2273 | /// can be converted to the type ToType via a pointer conversion (C++ | ||||
2274 | /// 4.10). If so, returns true and places the converted type (that | ||||
2275 | /// might differ from ToType in its cv-qualifiers at some level) into | ||||
2276 | /// ConvertedType. | ||||
2277 | /// | ||||
2278 | /// This routine also supports conversions to and from block pointers | ||||
2279 | /// and conversions with Objective-C's 'id', 'id<protocols...>', and | ||||
2280 | /// pointers to interfaces. FIXME: Once we've determined the | ||||
2281 | /// appropriate overloading rules for Objective-C, we may want to | ||||
2282 | /// split the Objective-C checks into a different routine; however, | ||||
2283 | /// GCC seems to consider all of these conversions to be pointer | ||||
2284 | /// conversions, so for now they live here. IncompatibleObjC will be | ||||
2285 | /// set if the conversion is an allowed Objective-C conversion that | ||||
2286 | /// should result in a warning. | ||||
2287 | bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, | ||||
2288 | bool InOverloadResolution, | ||||
2289 | QualType& ConvertedType, | ||||
2290 | bool &IncompatibleObjC) { | ||||
2291 | IncompatibleObjC = false; | ||||
2292 | if (isObjCPointerConversion(FromType, ToType, ConvertedType, | ||||
2293 | IncompatibleObjC)) | ||||
2294 | return true; | ||||
2295 | |||||
2296 | // Conversion from a null pointer constant to any Objective-C pointer type. | ||||
2297 | if (ToType->isObjCObjectPointerType() && | ||||
2298 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | ||||
2299 | ConvertedType = ToType; | ||||
2300 | return true; | ||||
2301 | } | ||||
2302 | |||||
2303 | // Blocks: Block pointers can be converted to void*. | ||||
2304 | if (FromType->isBlockPointerType() && ToType->isPointerType() && | ||||
2305 | ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { | ||||
2306 | ConvertedType = ToType; | ||||
2307 | return true; | ||||
2308 | } | ||||
2309 | // Blocks: A null pointer constant can be converted to a block | ||||
2310 | // pointer type. | ||||
2311 | if (ToType->isBlockPointerType() && | ||||
2312 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | ||||
2313 | ConvertedType = ToType; | ||||
2314 | return true; | ||||
2315 | } | ||||
2316 | |||||
2317 | // If the left-hand-side is nullptr_t, the right side can be a null | ||||
2318 | // pointer constant. | ||||
2319 | if (ToType->isNullPtrType() && | ||||
2320 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | ||||
2321 | ConvertedType = ToType; | ||||
2322 | return true; | ||||
2323 | } | ||||
2324 | |||||
2325 | const PointerType* ToTypePtr = ToType->getAs<PointerType>(); | ||||
2326 | if (!ToTypePtr) | ||||
2327 | return false; | ||||
2328 | |||||
2329 | // A null pointer constant can be converted to a pointer type (C++ 4.10p1). | ||||
2330 | if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | ||||
2331 | ConvertedType = ToType; | ||||
2332 | return true; | ||||
2333 | } | ||||
2334 | |||||
2335 | // Beyond this point, both types need to be pointers | ||||
2336 | // , including objective-c pointers. | ||||
2337 | QualType ToPointeeType = ToTypePtr->getPointeeType(); | ||||
2338 | if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && | ||||
2339 | !getLangOpts().ObjCAutoRefCount) { | ||||
2340 | ConvertedType = BuildSimilarlyQualifiedPointerType( | ||||
2341 | FromType->getAs<ObjCObjectPointerType>(), | ||||
2342 | ToPointeeType, | ||||
2343 | ToType, Context); | ||||
2344 | return true; | ||||
2345 | } | ||||
2346 | const PointerType *FromTypePtr = FromType->getAs<PointerType>(); | ||||
2347 | if (!FromTypePtr) | ||||
2348 | return false; | ||||
2349 | |||||
2350 | QualType FromPointeeType = FromTypePtr->getPointeeType(); | ||||
2351 | |||||
2352 | // If the unqualified pointee types are the same, this can't be a | ||||
2353 | // pointer conversion, so don't do all of the work below. | ||||
2354 | if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) | ||||
2355 | return false; | ||||
2356 | |||||
2357 | // An rvalue of type "pointer to cv T," where T is an object type, | ||||
2358 | // can be converted to an rvalue of type "pointer to cv void" (C++ | ||||
2359 | // 4.10p2). | ||||
2360 | if (FromPointeeType->isIncompleteOrObjectType() && | ||||
2361 | ToPointeeType->isVoidType()) { | ||||
2362 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | ||||
2363 | ToPointeeType, | ||||
2364 | ToType, Context, | ||||
2365 | /*StripObjCLifetime=*/true); | ||||
2366 | return true; | ||||
2367 | } | ||||
2368 | |||||
2369 | // MSVC allows implicit function to void* type conversion. | ||||
2370 | if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && | ||||
2371 | ToPointeeType->isVoidType()) { | ||||
2372 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | ||||
2373 | ToPointeeType, | ||||
2374 | ToType, Context); | ||||
2375 | return true; | ||||
2376 | } | ||||
2377 | |||||
2378 | // When we're overloading in C, we allow a special kind of pointer | ||||
2379 | // conversion for compatible-but-not-identical pointee types. | ||||
2380 | if (!getLangOpts().CPlusPlus && | ||||
2381 | Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { | ||||
2382 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | ||||
2383 | ToPointeeType, | ||||
2384 | ToType, Context); | ||||
2385 | return true; | ||||
2386 | } | ||||
2387 | |||||
2388 | // C++ [conv.ptr]p3: | ||||
2389 | // | ||||
2390 | // An rvalue of type "pointer to cv D," where D is a class type, | ||||
2391 | // can be converted to an rvalue of type "pointer to cv B," where | ||||
2392 | // B is a base class (clause 10) of D. If B is an inaccessible | ||||
2393 | // (clause 11) or ambiguous (10.2) base class of D, a program that | ||||
2394 | // necessitates this conversion is ill-formed. The result of the | ||||
2395 | // conversion is a pointer to the base class sub-object of the | ||||
2396 | // derived class object. The null pointer value is converted to | ||||
2397 | // the null pointer value of the destination type. | ||||
2398 | // | ||||
2399 | // Note that we do not check for ambiguity or inaccessibility | ||||
2400 | // here. That is handled by CheckPointerConversion. | ||||
2401 | if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && | ||||
2402 | ToPointeeType->isRecordType() && | ||||
2403 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && | ||||
2404 | IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { | ||||
2405 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | ||||
2406 | ToPointeeType, | ||||
2407 | ToType, Context); | ||||
2408 | return true; | ||||
2409 | } | ||||
2410 | |||||
2411 | if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && | ||||
2412 | Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { | ||||
2413 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | ||||
2414 | ToPointeeType, | ||||
2415 | ToType, Context); | ||||
2416 | return true; | ||||
2417 | } | ||||
2418 | |||||
2419 | return false; | ||||
2420 | } | ||||
2421 | |||||
2422 | /// Adopt the given qualifiers for the given type. | ||||
2423 | static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ | ||||
2424 | Qualifiers TQs = T.getQualifiers(); | ||||
2425 | |||||
2426 | // Check whether qualifiers already match. | ||||
2427 | if (TQs == Qs) | ||||
2428 | return T; | ||||
2429 | |||||
2430 | if (Qs.compatiblyIncludes(TQs)) | ||||
2431 | return Context.getQualifiedType(T, Qs); | ||||
2432 | |||||
2433 | return Context.getQualifiedType(T.getUnqualifiedType(), Qs); | ||||
2434 | } | ||||
2435 | |||||
2436 | /// isObjCPointerConversion - Determines whether this is an | ||||
2437 | /// Objective-C pointer conversion. Subroutine of IsPointerConversion, | ||||
2438 | /// with the same arguments and return values. | ||||
2439 | bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, | ||||
2440 | QualType& ConvertedType, | ||||
2441 | bool &IncompatibleObjC) { | ||||
2442 | if (!getLangOpts().ObjC) | ||||
2443 | return false; | ||||
2444 | |||||
2445 | // The set of qualifiers on the type we're converting from. | ||||
2446 | Qualifiers FromQualifiers = FromType.getQualifiers(); | ||||
2447 | |||||
2448 | // First, we handle all conversions on ObjC object pointer types. | ||||
2449 | const ObjCObjectPointerType* ToObjCPtr = | ||||
2450 | ToType->getAs<ObjCObjectPointerType>(); | ||||
2451 | const ObjCObjectPointerType *FromObjCPtr = | ||||
2452 | FromType->getAs<ObjCObjectPointerType>(); | ||||
2453 | |||||
2454 | if (ToObjCPtr && FromObjCPtr) { | ||||
2455 | // If the pointee types are the same (ignoring qualifications), | ||||
2456 | // then this is not a pointer conversion. | ||||
2457 | if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), | ||||
2458 | FromObjCPtr->getPointeeType())) | ||||
2459 | return false; | ||||
2460 | |||||
2461 | // Conversion between Objective-C pointers. | ||||
2462 | if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { | ||||
2463 | const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); | ||||
2464 | const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); | ||||
2465 | if (getLangOpts().CPlusPlus && LHS && RHS && | ||||
2466 | !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( | ||||
2467 | FromObjCPtr->getPointeeType())) | ||||
2468 | return false; | ||||
2469 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, | ||||
2470 | ToObjCPtr->getPointeeType(), | ||||
2471 | ToType, Context); | ||||
2472 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | ||||
2473 | return true; | ||||
2474 | } | ||||
2475 | |||||
2476 | if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { | ||||
2477 | // Okay: this is some kind of implicit downcast of Objective-C | ||||
2478 | // interfaces, which is permitted. However, we're going to | ||||
2479 | // complain about it. | ||||
2480 | IncompatibleObjC = true; | ||||
2481 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, | ||||
2482 | ToObjCPtr->getPointeeType(), | ||||
2483 | ToType, Context); | ||||
2484 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | ||||
2485 | return true; | ||||
2486 | } | ||||
2487 | } | ||||
2488 | // Beyond this point, both types need to be C pointers or block pointers. | ||||
2489 | QualType ToPointeeType; | ||||
2490 | if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) | ||||
2491 | ToPointeeType = ToCPtr->getPointeeType(); | ||||
2492 | else if (const BlockPointerType *ToBlockPtr = | ||||
2493 | ToType->getAs<BlockPointerType>()) { | ||||
2494 | // Objective C++: We're able to convert from a pointer to any object | ||||
2495 | // to a block pointer type. | ||||
2496 | if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { | ||||
2497 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | ||||
2498 | return true; | ||||
2499 | } | ||||
2500 | ToPointeeType = ToBlockPtr->getPointeeType(); | ||||
2501 | } | ||||
2502 | else if (FromType->getAs<BlockPointerType>() && | ||||
2503 | ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { | ||||
2504 | // Objective C++: We're able to convert from a block pointer type to a | ||||
2505 | // pointer to any object. | ||||
2506 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | ||||
2507 | return true; | ||||
2508 | } | ||||
2509 | else | ||||
2510 | return false; | ||||
2511 | |||||
2512 | QualType FromPointeeType; | ||||
2513 | if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) | ||||
2514 | FromPointeeType = FromCPtr->getPointeeType(); | ||||
2515 | else if (const BlockPointerType *FromBlockPtr = | ||||
2516 | FromType->getAs<BlockPointerType>()) | ||||
2517 | FromPointeeType = FromBlockPtr->getPointeeType(); | ||||
2518 | else | ||||
2519 | return false; | ||||
2520 | |||||
2521 | // If we have pointers to pointers, recursively check whether this | ||||
2522 | // is an Objective-C conversion. | ||||
2523 | if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && | ||||
2524 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | ||||
2525 | IncompatibleObjC)) { | ||||
2526 | // We always complain about this conversion. | ||||
2527 | IncompatibleObjC = true; | ||||
2528 | ConvertedType = Context.getPointerType(ConvertedType); | ||||
2529 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | ||||
2530 | return true; | ||||
2531 | } | ||||
2532 | // Allow conversion of pointee being objective-c pointer to another one; | ||||
2533 | // as in I* to id. | ||||
2534 | if (FromPointeeType->getAs<ObjCObjectPointerType>() && | ||||
2535 | ToPointeeType->getAs<ObjCObjectPointerType>() && | ||||
2536 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | ||||
2537 | IncompatibleObjC)) { | ||||
2538 | |||||
2539 | ConvertedType = Context.getPointerType(ConvertedType); | ||||
2540 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); | ||||
2541 | return true; | ||||
2542 | } | ||||
2543 | |||||
2544 | // If we have pointers to functions or blocks, check whether the only | ||||
2545 | // differences in the argument and result types are in Objective-C | ||||
2546 | // pointer conversions. If so, we permit the conversion (but | ||||
2547 | // complain about it). | ||||
2548 | const FunctionProtoType *FromFunctionType | ||||
2549 | = FromPointeeType->getAs<FunctionProtoType>(); | ||||
2550 | const FunctionProtoType *ToFunctionType | ||||
2551 | = ToPointeeType->getAs<FunctionProtoType>(); | ||||
2552 | if (FromFunctionType && ToFunctionType) { | ||||
2553 | // If the function types are exactly the same, this isn't an | ||||
2554 | // Objective-C pointer conversion. | ||||
2555 | if (Context.getCanonicalType(FromPointeeType) | ||||
2556 | == Context.getCanonicalType(ToPointeeType)) | ||||
2557 | return false; | ||||
2558 | |||||
2559 | // Perform the quick checks that will tell us whether these | ||||
2560 | // function types are obviously different. | ||||
2561 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || | ||||
2562 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || | ||||
2563 | FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) | ||||
2564 | return false; | ||||
2565 | |||||
2566 | bool HasObjCConversion = false; | ||||
2567 | if (Context.getCanonicalType(FromFunctionType->getReturnType()) == | ||||
2568 | Context.getCanonicalType(ToFunctionType->getReturnType())) { | ||||
2569 | // Okay, the types match exactly. Nothing to do. | ||||
2570 | } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), | ||||
2571 | ToFunctionType->getReturnType(), | ||||
2572 | ConvertedType, IncompatibleObjC)) { | ||||
2573 | // Okay, we have an Objective-C pointer conversion. | ||||
2574 | HasObjCConversion = true; | ||||
2575 | } else { | ||||
2576 | // Function types are too different. Abort. | ||||
2577 | return false; | ||||
2578 | } | ||||
2579 | |||||
2580 | // Check argument types. | ||||
2581 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); | ||||
2582 | ArgIdx != NumArgs; ++ArgIdx) { | ||||
2583 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); | ||||
2584 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); | ||||
2585 | if (Context.getCanonicalType(FromArgType) | ||||
2586 | == Context.getCanonicalType(ToArgType)) { | ||||
2587 | // Okay, the types match exactly. Nothing to do. | ||||
2588 | } else if (isObjCPointerConversion(FromArgType, ToArgType, | ||||
2589 | ConvertedType, IncompatibleObjC)) { | ||||
2590 | // Okay, we have an Objective-C pointer conversion. | ||||
2591 | HasObjCConversion = true; | ||||
2592 | } else { | ||||
2593 | // Argument types are too different. Abort. | ||||
2594 | return false; | ||||
2595 | } | ||||
2596 | } | ||||
2597 | |||||
2598 | if (HasObjCConversion) { | ||||
2599 | // We had an Objective-C conversion. Allow this pointer | ||||
2600 | // conversion, but complain about it. | ||||
2601 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); | ||||
2602 | IncompatibleObjC = true; | ||||
2603 | return true; | ||||
2604 | } | ||||
2605 | } | ||||
2606 | |||||
2607 | return false; | ||||
2608 | } | ||||
2609 | |||||
2610 | /// Determine whether this is an Objective-C writeback conversion, | ||||
2611 | /// used for parameter passing when performing automatic reference counting. | ||||
2612 | /// | ||||
2613 | /// \param FromType The type we're converting form. | ||||
2614 | /// | ||||
2615 | /// \param ToType The type we're converting to. | ||||
2616 | /// | ||||
2617 | /// \param ConvertedType The type that will be produced after applying | ||||
2618 | /// this conversion. | ||||
2619 | bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, | ||||
2620 | QualType &ConvertedType) { | ||||
2621 | if (!getLangOpts().ObjCAutoRefCount || | ||||
2622 | Context.hasSameUnqualifiedType(FromType, ToType)) | ||||
2623 | return false; | ||||
2624 | |||||
2625 | // Parameter must be a pointer to __autoreleasing (with no other qualifiers). | ||||
2626 | QualType ToPointee; | ||||
2627 | if (const PointerType *ToPointer = ToType->getAs<PointerType>()) | ||||
2628 | ToPointee = ToPointer->getPointeeType(); | ||||
2629 | else | ||||
2630 | return false; | ||||
2631 | |||||
2632 | Qualifiers ToQuals = ToPointee.getQualifiers(); | ||||
2633 | if (!ToPointee->isObjCLifetimeType() || | ||||
2634 | ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || | ||||
2635 | !ToQuals.withoutObjCLifetime().empty()) | ||||
2636 | return false; | ||||
2637 | |||||
2638 | // Argument must be a pointer to __strong to __weak. | ||||
2639 | QualType FromPointee; | ||||
2640 | if (const PointerType *FromPointer = FromType->getAs<PointerType>()) | ||||
2641 | FromPointee = FromPointer->getPointeeType(); | ||||
2642 | else | ||||
2643 | return false; | ||||
2644 | |||||
2645 | Qualifiers FromQuals = FromPointee.getQualifiers(); | ||||
2646 | if (!FromPointee->isObjCLifetimeType() || | ||||
2647 | (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && | ||||
2648 | FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) | ||||
2649 | return false; | ||||
2650 | |||||
2651 | // Make sure that we have compatible qualifiers. | ||||
2652 | FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); | ||||
2653 | if (!ToQuals.compatiblyIncludes(FromQuals)) | ||||
2654 | return false; | ||||
2655 | |||||
2656 | // Remove qualifiers from the pointee type we're converting from; they | ||||
2657 | // aren't used in the compatibility check belong, and we'll be adding back | ||||
2658 | // qualifiers (with __autoreleasing) if the compatibility check succeeds. | ||||
2659 | FromPointee = FromPointee.getUnqualifiedType(); | ||||
2660 | |||||
2661 | // The unqualified form of the pointee types must be compatible. | ||||
2662 | ToPointee = ToPointee.getUnqualifiedType(); | ||||
2663 | bool IncompatibleObjC; | ||||
2664 | if (Context.typesAreCompatible(FromPointee, ToPointee)) | ||||
2665 | FromPointee = ToPointee; | ||||
2666 | else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, | ||||
2667 | IncompatibleObjC)) | ||||
2668 | return false; | ||||
2669 | |||||
2670 | /// Construct the type we're converting to, which is a pointer to | ||||
2671 | /// __autoreleasing pointee. | ||||
2672 | FromPointee = Context.getQualifiedType(FromPointee, FromQuals); | ||||
2673 | ConvertedType = Context.getPointerType(FromPointee); | ||||
2674 | return true; | ||||
2675 | } | ||||
2676 | |||||
2677 | bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, | ||||
2678 | QualType& ConvertedType) { | ||||
2679 | QualType ToPointeeType; | ||||
2680 | if (const BlockPointerType *ToBlockPtr = | ||||
2681 | ToType->getAs<BlockPointerType>()) | ||||
2682 | ToPointeeType = ToBlockPtr->getPointeeType(); | ||||
2683 | else | ||||
2684 | return false; | ||||
2685 | |||||
2686 | QualType FromPointeeType; | ||||
2687 | if (const BlockPointerType *FromBlockPtr = | ||||
2688 | FromType->getAs<BlockPointerType>()) | ||||
2689 | FromPointeeType = FromBlockPtr->getPointeeType(); | ||||
2690 | else | ||||
2691 | return false; | ||||
2692 | // We have pointer to blocks, check whether the only | ||||
2693 | // differences in the argument and result types are in Objective-C | ||||
2694 | // pointer conversions. If so, we permit the conversion. | ||||
2695 | |||||
2696 | const FunctionProtoType *FromFunctionType | ||||
2697 | = FromPointeeType->getAs<FunctionProtoType>(); | ||||
2698 | const FunctionProtoType *ToFunctionType | ||||
2699 | = ToPointeeType->getAs<FunctionProtoType>(); | ||||
2700 | |||||
2701 | if (!FromFunctionType || !ToFunctionType) | ||||
2702 | return false; | ||||
2703 | |||||
2704 | if (Context.hasSameType(FromPointeeType, ToPointeeType)) | ||||
2705 | return true; | ||||
2706 | |||||
2707 | // Perform the quick checks that will tell us whether these | ||||
2708 | // function types are obviously different. | ||||
2709 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || | ||||
2710 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) | ||||
2711 | return false; | ||||
2712 | |||||
2713 | FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); | ||||
2714 | FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); | ||||
2715 | if (FromEInfo != ToEInfo) | ||||
2716 | return false; | ||||
2717 | |||||
2718 | bool IncompatibleObjC = false; | ||||
2719 | if (Context.hasSameType(FromFunctionType->getReturnType(), | ||||
2720 | ToFunctionType->getReturnType())) { | ||||
2721 | // Okay, the types match exactly. Nothing to do. | ||||
2722 | } else { | ||||
2723 | QualType RHS = FromFunctionType->getReturnType(); | ||||
2724 | QualType LHS = ToFunctionType->getReturnType(); | ||||
2725 | if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && | ||||
2726 | !RHS.hasQualifiers() && LHS.hasQualifiers()) | ||||
2727 | LHS = LHS.getUnqualifiedType(); | ||||
2728 | |||||
2729 | if (Context.hasSameType(RHS,LHS)) { | ||||
2730 | // OK exact match. | ||||
2731 | } else if (isObjCPointerConversion(RHS, LHS, | ||||
2732 | ConvertedType, IncompatibleObjC)) { | ||||
2733 | if (IncompatibleObjC) | ||||
2734 | return false; | ||||
2735 | // Okay, we have an Objective-C pointer conversion. | ||||
2736 | } | ||||
2737 | else | ||||
2738 | return false; | ||||
2739 | } | ||||
2740 | |||||
2741 | // Check argument types. | ||||
2742 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); | ||||
2743 | ArgIdx != NumArgs; ++ArgIdx) { | ||||
2744 | IncompatibleObjC = false; | ||||
2745 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); | ||||
2746 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); | ||||
2747 | if (Context.hasSameType(FromArgType, ToArgType)) { | ||||
2748 | // Okay, the types match exactly. Nothing to do. | ||||
2749 | } else if (isObjCPointerConversion(ToArgType, FromArgType, | ||||
2750 | ConvertedType, IncompatibleObjC)) { | ||||
2751 | if (IncompatibleObjC) | ||||
2752 | return false; | ||||
2753 | // Okay, we have an Objective-C pointer conversion. | ||||
2754 | } else | ||||
2755 | // Argument types are too different. Abort. | ||||
2756 | return false; | ||||
2757 | } | ||||
2758 | |||||
2759 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; | ||||
2760 | bool CanUseToFPT, CanUseFromFPT; | ||||
2761 | if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, | ||||
2762 | CanUseToFPT, CanUseFromFPT, | ||||
2763 | NewParamInfos)) | ||||
2764 | return false; | ||||
2765 | |||||
2766 | ConvertedType = ToType; | ||||
2767 | return true; | ||||
2768 | } | ||||
2769 | |||||
2770 | enum { | ||||
2771 | ft_default, | ||||
2772 | ft_different_class, | ||||
2773 | ft_parameter_arity, | ||||
2774 | ft_parameter_mismatch, | ||||
2775 | ft_return_type, | ||||
2776 | ft_qualifer_mismatch, | ||||
2777 | ft_noexcept | ||||
2778 | }; | ||||
2779 | |||||
2780 | /// Attempts to get the FunctionProtoType from a Type. Handles | ||||
2781 | /// MemberFunctionPointers properly. | ||||
2782 | static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { | ||||
2783 | if (auto *FPT = FromType->getAs<FunctionProtoType>()) | ||||
2784 | return FPT; | ||||
2785 | |||||
2786 | if (auto *MPT = FromType->getAs<MemberPointerType>()) | ||||
2787 | return MPT->getPointeeType()->getAs<FunctionProtoType>(); | ||||
2788 | |||||
2789 | return nullptr; | ||||
2790 | } | ||||
2791 | |||||
2792 | /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing | ||||
2793 | /// function types. Catches different number of parameter, mismatch in | ||||
2794 | /// parameter types, and different return types. | ||||
2795 | void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, | ||||
2796 | QualType FromType, QualType ToType) { | ||||
2797 | // If either type is not valid, include no extra info. | ||||
2798 | if (FromType.isNull() || ToType.isNull()) { | ||||
2799 | PDiag << ft_default; | ||||
2800 | return; | ||||
2801 | } | ||||
2802 | |||||
2803 | // Get the function type from the pointers. | ||||
2804 | if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { | ||||
2805 | const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(), | ||||
2806 | *ToMember = ToType->getAs<MemberPointerType>(); | ||||
2807 | if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { | ||||
2808 | PDiag << ft_different_class << QualType(ToMember->getClass(), 0) | ||||
2809 | << QualType(FromMember->getClass(), 0); | ||||
2810 | return; | ||||
2811 | } | ||||
2812 | FromType = FromMember->getPointeeType(); | ||||
2813 | ToType = ToMember->getPointeeType(); | ||||
2814 | } | ||||
2815 | |||||
2816 | if (FromType->isPointerType()) | ||||
2817 | FromType = FromType->getPointeeType(); | ||||
2818 | if (ToType->isPointerType()) | ||||
2819 | ToType = ToType->getPointeeType(); | ||||
2820 | |||||
2821 | // Remove references. | ||||
2822 | FromType = FromType.getNonReferenceType(); | ||||
2823 | ToType = ToType.getNonReferenceType(); | ||||
2824 | |||||
2825 | // Don't print extra info for non-specialized template functions. | ||||
2826 | if (FromType->isInstantiationDependentType() && | ||||
2827 | !FromType->getAs<TemplateSpecializationType>()) { | ||||
2828 | PDiag << ft_default; | ||||
2829 | return; | ||||
2830 | } | ||||
2831 | |||||
2832 | // No extra info for same types. | ||||
2833 | if (Context.hasSameType(FromType, ToType)) { | ||||
2834 | PDiag << ft_default; | ||||
2835 | return; | ||||
2836 | } | ||||
2837 | |||||
2838 | const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), | ||||
2839 | *ToFunction = tryGetFunctionProtoType(ToType); | ||||
2840 | |||||
2841 | // Both types need to be function types. | ||||
2842 | if (!FromFunction || !ToFunction) { | ||||
2843 | PDiag << ft_default; | ||||
2844 | return; | ||||
2845 | } | ||||
2846 | |||||
2847 | if (FromFunction->getNumParams() != ToFunction->getNumParams()) { | ||||
2848 | PDiag << ft_parameter_arity << ToFunction->getNumParams() | ||||
2849 | << FromFunction->getNumParams(); | ||||
2850 | return; | ||||
2851 | } | ||||
2852 | |||||
2853 | // Handle different parameter types. | ||||
2854 | unsigned ArgPos; | ||||
2855 | if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { | ||||
2856 | PDiag << ft_parameter_mismatch << ArgPos + 1 | ||||
2857 | << ToFunction->getParamType(ArgPos) | ||||
2858 | << FromFunction->getParamType(ArgPos); | ||||
2859 | return; | ||||
2860 | } | ||||
2861 | |||||
2862 | // Handle different return type. | ||||
2863 | if (!Context.hasSameType(FromFunction->getReturnType(), | ||||
2864 | ToFunction->getReturnType())) { | ||||
2865 | PDiag << ft_return_type << ToFunction->getReturnType() | ||||
2866 | << FromFunction->getReturnType(); | ||||
2867 | return; | ||||
2868 | } | ||||
2869 | |||||
2870 | if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { | ||||
2871 | PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() | ||||
2872 | << FromFunction->getMethodQuals(); | ||||
2873 | return; | ||||
2874 | } | ||||
2875 | |||||
2876 | // Handle exception specification differences on canonical type (in C++17 | ||||
2877 | // onwards). | ||||
2878 | if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) | ||||
2879 | ->isNothrow() != | ||||
2880 | cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) | ||||
2881 | ->isNothrow()) { | ||||
2882 | PDiag << ft_noexcept; | ||||
2883 | return; | ||||
2884 | } | ||||
2885 | |||||
2886 | // Unable to find a difference, so add no extra info. | ||||
2887 | PDiag << ft_default; | ||||
2888 | } | ||||
2889 | |||||
2890 | /// FunctionParamTypesAreEqual - This routine checks two function proto types | ||||
2891 | /// for equality of their argument types. Caller has already checked that | ||||
2892 | /// they have same number of arguments. If the parameters are different, | ||||
2893 | /// ArgPos will have the parameter index of the first different parameter. | ||||
2894 | bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, | ||||
2895 | const FunctionProtoType *NewType, | ||||
2896 | unsigned *ArgPos) { | ||||
2897 | for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(), | ||||
2898 | N = NewType->param_type_begin(), | ||||
2899 | E = OldType->param_type_end(); | ||||
2900 | O && (O != E); ++O, ++N) { | ||||
2901 | if (!Context.hasSameType(O->getUnqualifiedType(), | ||||
2902 | N->getUnqualifiedType())) { | ||||
2903 | if (ArgPos) | ||||
2904 | *ArgPos = O - OldType->param_type_begin(); | ||||
2905 | return false; | ||||
2906 | } | ||||
2907 | } | ||||
2908 | return true; | ||||
2909 | } | ||||
2910 | |||||
2911 | /// CheckPointerConversion - Check the pointer conversion from the | ||||
2912 | /// expression From to the type ToType. This routine checks for | ||||
2913 | /// ambiguous or inaccessible derived-to-base pointer | ||||
2914 | /// conversions for which IsPointerConversion has already returned | ||||
2915 | /// true. It returns true and produces a diagnostic if there was an | ||||
2916 | /// error, or returns false otherwise. | ||||
2917 | bool Sema::CheckPointerConversion(Expr *From, QualType ToType, | ||||
2918 | CastKind &Kind, | ||||
2919 | CXXCastPath& BasePath, | ||||
2920 | bool IgnoreBaseAccess, | ||||
2921 | bool Diagnose) { | ||||
2922 | QualType FromType = From->getType(); | ||||
2923 | bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; | ||||
2924 | |||||
2925 | Kind = CK_BitCast; | ||||
2926 | |||||
2927 | if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && | ||||
2928 | From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == | ||||
2929 | Expr::NPCK_ZeroExpression) { | ||||
2930 | if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) | ||||
2931 | DiagRuntimeBehavior(From->getExprLoc(), From, | ||||
2932 | PDiag(diag::warn_impcast_bool_to_null_pointer) | ||||
2933 | << ToType << From->getSourceRange()); | ||||
2934 | else if (!isUnevaluatedContext()) | ||||
2935 | Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) | ||||
2936 | << ToType << From->getSourceRange(); | ||||
2937 | } | ||||
2938 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { | ||||
2939 | if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { | ||||
2940 | QualType FromPointeeType = FromPtrType->getPointeeType(), | ||||
2941 | ToPointeeType = ToPtrType->getPointeeType(); | ||||
2942 | |||||
2943 | if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && | ||||
2944 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { | ||||
2945 | // We must have a derived-to-base conversion. Check an | ||||
2946 | // ambiguous or inaccessible conversion. | ||||
2947 | unsigned InaccessibleID = 0; | ||||
2948 | unsigned AmbigiousID = 0; | ||||
2949 | if (Diagnose) { | ||||
2950 | InaccessibleID = diag::err_upcast_to_inaccessible_base; | ||||
2951 | AmbigiousID = diag::err_ambiguous_derived_to_base_conv; | ||||
2952 | } | ||||
2953 | if (CheckDerivedToBaseConversion( | ||||
2954 | FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID, | ||||
2955 | From->getExprLoc(), From->getSourceRange(), DeclarationName(), | ||||
2956 | &BasePath, IgnoreBaseAccess)) | ||||
2957 | return true; | ||||
2958 | |||||
2959 | // The conversion was successful. | ||||
2960 | Kind = CK_DerivedToBase; | ||||
2961 | } | ||||
2962 | |||||
2963 | if (Diagnose && !IsCStyleOrFunctionalCast && | ||||
2964 | FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { | ||||
2965 | assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!" ) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 2966, __PRETTY_FUNCTION__)) | ||||
2966 | "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!" ) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 2966, __PRETTY_FUNCTION__)); | ||||
2967 | Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) | ||||
2968 | << From->getSourceRange(); | ||||
2969 | } | ||||
2970 | } | ||||
2971 | } else if (const ObjCObjectPointerType *ToPtrType = | ||||
2972 | ToType->getAs<ObjCObjectPointerType>()) { | ||||
2973 | if (const ObjCObjectPointerType *FromPtrType = | ||||
2974 | FromType->getAs<ObjCObjectPointerType>()) { | ||||
2975 | // Objective-C++ conversions are always okay. | ||||
2976 | // FIXME: We should have a different class of conversions for the | ||||
2977 | // Objective-C++ implicit conversions. | ||||
2978 | if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) | ||||
2979 | return false; | ||||
2980 | } else if (FromType->isBlockPointerType()) { | ||||
2981 | Kind = CK_BlockPointerToObjCPointerCast; | ||||
2982 | } else { | ||||
2983 | Kind = CK_CPointerToObjCPointerCast; | ||||
2984 | } | ||||
2985 | } else if (ToType->isBlockPointerType()) { | ||||
2986 | if (!FromType->isBlockPointerType()) | ||||
2987 | Kind = CK_AnyPointerToBlockPointerCast; | ||||
2988 | } | ||||
2989 | |||||
2990 | // We shouldn't fall into this case unless it's valid for other | ||||
2991 | // reasons. | ||||
2992 | if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) | ||||
2993 | Kind = CK_NullToPointer; | ||||
2994 | |||||
2995 | return false; | ||||
2996 | } | ||||
2997 | |||||
2998 | /// IsMemberPointerConversion - Determines whether the conversion of the | ||||
2999 | /// expression From, which has the (possibly adjusted) type FromType, can be | ||||
3000 | /// converted to the type ToType via a member pointer conversion (C++ 4.11). | ||||
3001 | /// If so, returns true and places the converted type (that might differ from | ||||
3002 | /// ToType in its cv-qualifiers at some level) into ConvertedType. | ||||
3003 | bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, | ||||
3004 | QualType ToType, | ||||
3005 | bool InOverloadResolution, | ||||
3006 | QualType &ConvertedType) { | ||||
3007 | const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); | ||||
3008 | if (!ToTypePtr) | ||||
3009 | return false; | ||||
3010 | |||||
3011 | // A null pointer constant can be converted to a member pointer (C++ 4.11p1) | ||||
3012 | if (From->isNullPointerConstant(Context, | ||||
3013 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | ||||
3014 | : Expr::NPC_ValueDependentIsNull)) { | ||||
3015 | ConvertedType = ToType; | ||||
3016 | return true; | ||||
3017 | } | ||||
3018 | |||||
3019 | // Otherwise, both types have to be member pointers. | ||||
3020 | const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); | ||||
3021 | if (!FromTypePtr) | ||||
3022 | return false; | ||||
3023 | |||||
3024 | // A pointer to member of B can be converted to a pointer to member of D, | ||||
3025 | // where D is derived from B (C++ 4.11p2). | ||||
3026 | QualType FromClass(FromTypePtr->getClass(), 0); | ||||
3027 | QualType ToClass(ToTypePtr->getClass(), 0); | ||||
3028 | |||||
3029 | if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && | ||||
3030 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { | ||||
3031 | ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), | ||||
3032 | ToClass.getTypePtr()); | ||||
3033 | return true; | ||||
3034 | } | ||||
3035 | |||||
3036 | return false; | ||||
3037 | } | ||||
3038 | |||||
3039 | /// CheckMemberPointerConversion - Check the member pointer conversion from the | ||||
3040 | /// expression From to the type ToType. This routine checks for ambiguous or | ||||
3041 | /// virtual or inaccessible base-to-derived member pointer conversions | ||||
3042 | /// for which IsMemberPointerConversion has already returned true. It returns | ||||
3043 | /// true and produces a diagnostic if there was an error, or returns false | ||||
3044 | /// otherwise. | ||||
3045 | bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, | ||||
3046 | CastKind &Kind, | ||||
3047 | CXXCastPath &BasePath, | ||||
3048 | bool IgnoreBaseAccess) { | ||||
3049 | QualType FromType = From->getType(); | ||||
3050 | const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); | ||||
3051 | if (!FromPtrType) { | ||||
3052 | // This must be a null pointer to member pointer conversion | ||||
3053 | assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull ) && "Expr must be null pointer constant!") ? static_cast <void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3055, __PRETTY_FUNCTION__)) | ||||
3054 | Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull ) && "Expr must be null pointer constant!") ? static_cast <void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3055, __PRETTY_FUNCTION__)) | ||||
3055 | "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull ) && "Expr must be null pointer constant!") ? static_cast <void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3055, __PRETTY_FUNCTION__)); | ||||
3056 | Kind = CK_NullToMemberPointer; | ||||
3057 | return false; | ||||
3058 | } | ||||
3059 | |||||
3060 | const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); | ||||
3061 | assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type " "that is not a member pointer.") ? static_cast<void> ( 0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3062, __PRETTY_FUNCTION__)) | ||||
3062 | "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type " "that is not a member pointer.") ? static_cast<void> ( 0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3062, __PRETTY_FUNCTION__)); | ||||
3063 | |||||
3064 | QualType FromClass = QualType(FromPtrType->getClass(), 0); | ||||
3065 | QualType ToClass = QualType(ToPtrType->getClass(), 0); | ||||
3066 | |||||
3067 | // FIXME: What about dependent types? | ||||
3068 | assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class." ) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3068, __PRETTY_FUNCTION__)); | ||||
3069 | assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class." ) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3069, __PRETTY_FUNCTION__)); | ||||
3070 | |||||
3071 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | ||||
3072 | /*DetectVirtual=*/true); | ||||
3073 | bool DerivationOkay = | ||||
3074 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); | ||||
3075 | assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK." ) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3076, __PRETTY_FUNCTION__)) | ||||
3076 | "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK." ) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3076, __PRETTY_FUNCTION__)); | ||||
3077 | (void)DerivationOkay; | ||||
3078 | |||||
3079 | if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). | ||||
3080 | getUnqualifiedType())) { | ||||
3081 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | ||||
3082 | Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) | ||||
3083 | << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); | ||||
3084 | return true; | ||||
3085 | } | ||||
3086 | |||||
3087 | if (const RecordType *VBase = Paths.getDetectedVirtual()) { | ||||
3088 | Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) | ||||
3089 | << FromClass << ToClass << QualType(VBase, 0) | ||||
3090 | << From->getSourceRange(); | ||||
3091 | return true; | ||||
3092 | } | ||||
3093 | |||||
3094 | if (!IgnoreBaseAccess) | ||||
3095 | CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, | ||||
3096 | Paths.front(), | ||||
3097 | diag::err_downcast_from_inaccessible_base); | ||||
3098 | |||||
3099 | // Must be a base to derived member conversion. | ||||
3100 | BuildBasePathArray(Paths, BasePath); | ||||
3101 | Kind = CK_BaseToDerivedMemberPointer; | ||||
3102 | return false; | ||||
3103 | } | ||||
3104 | |||||
3105 | /// Determine whether the lifetime conversion between the two given | ||||
3106 | /// qualifiers sets is nontrivial. | ||||
3107 | static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, | ||||
3108 | Qualifiers ToQuals) { | ||||
3109 | // Converting anything to const __unsafe_unretained is trivial. | ||||
3110 | if (ToQuals.hasConst() && | ||||
3111 | ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) | ||||
3112 | return false; | ||||
3113 | |||||
3114 | return true; | ||||
3115 | } | ||||
3116 | |||||
3117 | /// IsQualificationConversion - Determines whether the conversion from | ||||
3118 | /// an rvalue of type FromType to ToType is a qualification conversion | ||||
3119 | /// (C++ 4.4). | ||||
3120 | /// | ||||
3121 | /// \param ObjCLifetimeConversion Output parameter that will be set to indicate | ||||
3122 | /// when the qualification conversion involves a change in the Objective-C | ||||
3123 | /// object lifetime. | ||||
3124 | bool | ||||
3125 | Sema::IsQualificationConversion(QualType FromType, QualType ToType, | ||||
3126 | bool CStyle, bool &ObjCLifetimeConversion) { | ||||
3127 | FromType = Context.getCanonicalType(FromType); | ||||
3128 | ToType = Context.getCanonicalType(ToType); | ||||
3129 | ObjCLifetimeConversion = false; | ||||
3130 | |||||
3131 | // If FromType and ToType are the same type, this is not a | ||||
3132 | // qualification conversion. | ||||
3133 | if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) | ||||
3134 | return false; | ||||
3135 | |||||
3136 | // (C++ 4.4p4): | ||||
3137 | // A conversion can add cv-qualifiers at levels other than the first | ||||
3138 | // in multi-level pointers, subject to the following rules: [...] | ||||
3139 | bool PreviousToQualsIncludeConst = true; | ||||
3140 | bool UnwrappedAnyPointer = false; | ||||
3141 | while (Context.UnwrapSimilarTypes(FromType, ToType)) { | ||||
3142 | // Within each iteration of the loop, we check the qualifiers to | ||||
3143 | // determine if this still looks like a qualification | ||||
3144 | // conversion. Then, if all is well, we unwrap one more level of | ||||
3145 | // pointers or pointers-to-members and do it all again | ||||
3146 | // until there are no more pointers or pointers-to-members left to | ||||
3147 | // unwrap. | ||||
3148 | UnwrappedAnyPointer = true; | ||||
3149 | |||||
3150 | Qualifiers FromQuals = FromType.getQualifiers(); | ||||
3151 | Qualifiers ToQuals = ToType.getQualifiers(); | ||||
3152 | |||||
3153 | // Ignore __unaligned qualifier if this type is void. | ||||
3154 | if (ToType.getUnqualifiedType()->isVoidType()) | ||||
3155 | FromQuals.removeUnaligned(); | ||||
3156 | |||||
3157 | // Objective-C ARC: | ||||
3158 | // Check Objective-C lifetime conversions. | ||||
3159 | if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && | ||||
3160 | UnwrappedAnyPointer) { | ||||
3161 | if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { | ||||
3162 | if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) | ||||
3163 | ObjCLifetimeConversion = true; | ||||
3164 | FromQuals.removeObjCLifetime(); | ||||
3165 | ToQuals.removeObjCLifetime(); | ||||
3166 | } else { | ||||
3167 | // Qualification conversions cannot cast between different | ||||
3168 | // Objective-C lifetime qualifiers. | ||||
3169 | return false; | ||||
3170 | } | ||||
3171 | } | ||||
3172 | |||||
3173 | // Allow addition/removal of GC attributes but not changing GC attributes. | ||||
3174 | if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && | ||||
3175 | (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { | ||||
3176 | FromQuals.removeObjCGCAttr(); | ||||
3177 | ToQuals.removeObjCGCAttr(); | ||||
3178 | } | ||||
3179 | |||||
3180 | // -- for every j > 0, if const is in cv 1,j then const is in cv | ||||
3181 | // 2,j, and similarly for volatile. | ||||
3182 | if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) | ||||
3183 | return false; | ||||
3184 | |||||
3185 | // -- if the cv 1,j and cv 2,j are different, then const is in | ||||
3186 | // every cv for 0 < k < j. | ||||
3187 | if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() | ||||
3188 | && !PreviousToQualsIncludeConst) | ||||
3189 | return false; | ||||
3190 | |||||
3191 | // Keep track of whether all prior cv-qualifiers in the "to" type | ||||
3192 | // include const. | ||||
3193 | PreviousToQualsIncludeConst | ||||
3194 | = PreviousToQualsIncludeConst && ToQuals.hasConst(); | ||||
3195 | } | ||||
3196 | |||||
3197 | // Allows address space promotion by language rules implemented in | ||||
3198 | // Type::Qualifiers::isAddressSpaceSupersetOf. | ||||
3199 | Qualifiers FromQuals = FromType.getQualifiers(); | ||||
3200 | Qualifiers ToQuals = ToType.getQualifiers(); | ||||
3201 | if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) && | ||||
3202 | !FromQuals.isAddressSpaceSupersetOf(ToQuals)) { | ||||
3203 | return false; | ||||
3204 | } | ||||
3205 | |||||
3206 | // We are left with FromType and ToType being the pointee types | ||||
3207 | // after unwrapping the original FromType and ToType the same number | ||||
3208 | // of types. If we unwrapped any pointers, and if FromType and | ||||
3209 | // ToType have the same unqualified type (since we checked | ||||
3210 | // qualifiers above), then this is a qualification conversion. | ||||
3211 | return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); | ||||
3212 | } | ||||
3213 | |||||
3214 | /// - Determine whether this is a conversion from a scalar type to an | ||||
3215 | /// atomic type. | ||||
3216 | /// | ||||
3217 | /// If successful, updates \c SCS's second and third steps in the conversion | ||||
3218 | /// sequence to finish the conversion. | ||||
3219 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, | ||||
3220 | bool InOverloadResolution, | ||||
3221 | StandardConversionSequence &SCS, | ||||
3222 | bool CStyle) { | ||||
3223 | const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); | ||||
3224 | if (!ToAtomic) | ||||
3225 | return false; | ||||
3226 | |||||
3227 | StandardConversionSequence InnerSCS; | ||||
3228 | if (!IsStandardConversion(S, From, ToAtomic->getValueType(), | ||||
3229 | InOverloadResolution, InnerSCS, | ||||
3230 | CStyle, /*AllowObjCWritebackConversion=*/false)) | ||||
3231 | return false; | ||||
3232 | |||||
3233 | SCS.Second = InnerSCS.Second; | ||||
3234 | SCS.setToType(1, InnerSCS.getToType(1)); | ||||
3235 | SCS.Third = InnerSCS.Third; | ||||
3236 | SCS.QualificationIncludesObjCLifetime | ||||
3237 | = InnerSCS.QualificationIncludesObjCLifetime; | ||||
3238 | SCS.setToType(2, InnerSCS.getToType(2)); | ||||
3239 | return true; | ||||
3240 | } | ||||
3241 | |||||
3242 | static bool isFirstArgumentCompatibleWithType(ASTContext &Context, | ||||
3243 | CXXConstructorDecl *Constructor, | ||||
3244 | QualType Type) { | ||||
3245 | const FunctionProtoType *CtorType = | ||||
3246 | Constructor->getType()->getAs<FunctionProtoType>(); | ||||
3247 | if (CtorType->getNumParams() > 0) { | ||||
3248 | QualType FirstArg = CtorType->getParamType(0); | ||||
3249 | if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) | ||||
3250 | return true; | ||||
3251 | } | ||||
3252 | return false; | ||||
3253 | } | ||||
3254 | |||||
3255 | static OverloadingResult | ||||
3256 | IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, | ||||
3257 | CXXRecordDecl *To, | ||||
3258 | UserDefinedConversionSequence &User, | ||||
3259 | OverloadCandidateSet &CandidateSet, | ||||
3260 | bool AllowExplicit) { | ||||
3261 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); | ||||
3262 | for (auto *D : S.LookupConstructors(To)) { | ||||
3263 | auto Info = getConstructorInfo(D); | ||||
3264 | if (!Info) | ||||
3265 | continue; | ||||
3266 | |||||
3267 | bool Usable = !Info.Constructor->isInvalidDecl() && | ||||
3268 | S.isInitListConstructor(Info.Constructor) && | ||||
3269 | (AllowExplicit || !Info.Constructor->isExplicit()); | ||||
3270 | if (Usable) { | ||||
3271 | // If the first argument is (a reference to) the target type, | ||||
3272 | // suppress conversions. | ||||
3273 | bool SuppressUserConversions = isFirstArgumentCompatibleWithType( | ||||
3274 | S.Context, Info.Constructor, ToType); | ||||
3275 | if (Info.ConstructorTmpl) | ||||
3276 | S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, | ||||
3277 | /*ExplicitArgs*/ nullptr, From, | ||||
3278 | CandidateSet, SuppressUserConversions, | ||||
3279 | /*PartialOverloading*/ false, | ||||
3280 | AllowExplicit); | ||||
3281 | else | ||||
3282 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, | ||||
3283 | CandidateSet, SuppressUserConversions, | ||||
3284 | /*PartialOverloading*/ false, AllowExplicit); | ||||
3285 | } | ||||
3286 | } | ||||
3287 | |||||
3288 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | ||||
3289 | |||||
3290 | OverloadCandidateSet::iterator Best; | ||||
3291 | switch (auto Result = | ||||
3292 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { | ||||
3293 | case OR_Deleted: | ||||
3294 | case OR_Success: { | ||||
3295 | // Record the standard conversion we used and the conversion function. | ||||
3296 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); | ||||
3297 | QualType ThisType = Constructor->getThisType(); | ||||
3298 | // Initializer lists don't have conversions as such. | ||||
3299 | User.Before.setAsIdentityConversion(); | ||||
3300 | User.HadMultipleCandidates = HadMultipleCandidates; | ||||
3301 | User.ConversionFunction = Constructor; | ||||
3302 | User.FoundConversionFunction = Best->FoundDecl; | ||||
3303 | User.After.setAsIdentityConversion(); | ||||
3304 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); | ||||
3305 | User.After.setAllToTypes(ToType); | ||||
3306 | return Result; | ||||
3307 | } | ||||
3308 | |||||
3309 | case OR_No_Viable_Function: | ||||
3310 | return OR_No_Viable_Function; | ||||
3311 | case OR_Ambiguous: | ||||
3312 | return OR_Ambiguous; | ||||
3313 | } | ||||
3314 | |||||
3315 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3315); | ||||
3316 | } | ||||
3317 | |||||
3318 | /// Determines whether there is a user-defined conversion sequence | ||||
3319 | /// (C++ [over.ics.user]) that converts expression From to the type | ||||
3320 | /// ToType. If such a conversion exists, User will contain the | ||||
3321 | /// user-defined conversion sequence that performs such a conversion | ||||
3322 | /// and this routine will return true. Otherwise, this routine returns | ||||
3323 | /// false and User is unspecified. | ||||
3324 | /// | ||||
3325 | /// \param AllowExplicit true if the conversion should consider C++0x | ||||
3326 | /// "explicit" conversion functions as well as non-explicit conversion | ||||
3327 | /// functions (C++0x [class.conv.fct]p2). | ||||
3328 | /// | ||||
3329 | /// \param AllowObjCConversionOnExplicit true if the conversion should | ||||
3330 | /// allow an extra Objective-C pointer conversion on uses of explicit | ||||
3331 | /// constructors. Requires \c AllowExplicit to also be set. | ||||
3332 | static OverloadingResult | ||||
3333 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, | ||||
3334 | UserDefinedConversionSequence &User, | ||||
3335 | OverloadCandidateSet &CandidateSet, | ||||
3336 | bool AllowExplicit, | ||||
3337 | bool AllowObjCConversionOnExplicit) { | ||||
3338 | assert(AllowExplicit || !AllowObjCConversionOnExplicit)((AllowExplicit || !AllowObjCConversionOnExplicit) ? static_cast <void> (0) : __assert_fail ("AllowExplicit || !AllowObjCConversionOnExplicit" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3338, __PRETTY_FUNCTION__)); | ||||
3339 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); | ||||
3340 | |||||
3341 | // Whether we will only visit constructors. | ||||
3342 | bool ConstructorsOnly = false; | ||||
3343 | |||||
3344 | // If the type we are conversion to is a class type, enumerate its | ||||
3345 | // constructors. | ||||
3346 | if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { | ||||
3347 | // C++ [over.match.ctor]p1: | ||||
3348 | // When objects of class type are direct-initialized (8.5), or | ||||
3349 | // copy-initialized from an expression of the same or a | ||||
3350 | // derived class type (8.5), overload resolution selects the | ||||
3351 | // constructor. [...] For copy-initialization, the candidate | ||||
3352 | // functions are all the converting constructors (12.3.1) of | ||||
3353 | // that class. The argument list is the expression-list within | ||||
3354 | // the parentheses of the initializer. | ||||
3355 | if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || | ||||
3356 | (From->getType()->getAs<RecordType>() && | ||||
3357 | S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) | ||||
3358 | ConstructorsOnly = true; | ||||
3359 | |||||
3360 | if (!S.isCompleteType(From->getExprLoc(), ToType)) { | ||||
3361 | // We're not going to find any constructors. | ||||
3362 | } else if (CXXRecordDecl *ToRecordDecl | ||||
3363 | = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { | ||||
3364 | |||||
3365 | Expr **Args = &From; | ||||
3366 | unsigned NumArgs = 1; | ||||
3367 | bool ListInitializing = false; | ||||
3368 | if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { | ||||
3369 | // But first, see if there is an init-list-constructor that will work. | ||||
3370 | OverloadingResult Result = IsInitializerListConstructorConversion( | ||||
3371 | S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit); | ||||
3372 | if (Result != OR_No_Viable_Function) | ||||
3373 | return Result; | ||||
3374 | // Never mind. | ||||
3375 | CandidateSet.clear( | ||||
3376 | OverloadCandidateSet::CSK_InitByUserDefinedConversion); | ||||
3377 | |||||
3378 | // If we're list-initializing, we pass the individual elements as | ||||
3379 | // arguments, not the entire list. | ||||
3380 | Args = InitList->getInits(); | ||||
3381 | NumArgs = InitList->getNumInits(); | ||||
3382 | ListInitializing = true; | ||||
3383 | } | ||||
3384 | |||||
3385 | for (auto *D : S.LookupConstructors(ToRecordDecl)) { | ||||
3386 | auto Info = getConstructorInfo(D); | ||||
3387 | if (!Info) | ||||
3388 | continue; | ||||
3389 | |||||
3390 | bool Usable = !Info.Constructor->isInvalidDecl(); | ||||
3391 | if (ListInitializing) | ||||
3392 | Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit()); | ||||
3393 | else | ||||
3394 | Usable = Usable && | ||||
3395 | Info.Constructor->isConvertingConstructor(AllowExplicit); | ||||
3396 | if (Usable) { | ||||
3397 | bool SuppressUserConversions = !ConstructorsOnly; | ||||
3398 | if (SuppressUserConversions && ListInitializing) { | ||||
3399 | SuppressUserConversions = false; | ||||
3400 | if (NumArgs == 1) { | ||||
3401 | // If the first argument is (a reference to) the target type, | ||||
3402 | // suppress conversions. | ||||
3403 | SuppressUserConversions = isFirstArgumentCompatibleWithType( | ||||
3404 | S.Context, Info.Constructor, ToType); | ||||
3405 | } | ||||
3406 | } | ||||
3407 | if (Info.ConstructorTmpl) | ||||
3408 | S.AddTemplateOverloadCandidate( | ||||
3409 | Info.ConstructorTmpl, Info.FoundDecl, | ||||
3410 | /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs), | ||||
3411 | CandidateSet, SuppressUserConversions, | ||||
3412 | /*PartialOverloading*/ false, AllowExplicit); | ||||
3413 | else | ||||
3414 | // Allow one user-defined conversion when user specifies a | ||||
3415 | // From->ToType conversion via an static cast (c-style, etc). | ||||
3416 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, | ||||
3417 | llvm::makeArrayRef(Args, NumArgs), | ||||
3418 | CandidateSet, SuppressUserConversions, | ||||
3419 | /*PartialOverloading*/ false, AllowExplicit); | ||||
3420 | } | ||||
3421 | } | ||||
3422 | } | ||||
3423 | } | ||||
3424 | |||||
3425 | // Enumerate conversion functions, if we're allowed to. | ||||
3426 | if (ConstructorsOnly || isa<InitListExpr>(From)) { | ||||
3427 | } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { | ||||
3428 | // No conversion functions from incomplete types. | ||||
3429 | } else if (const RecordType *FromRecordType = | ||||
3430 | From->getType()->getAs<RecordType>()) { | ||||
3431 | if (CXXRecordDecl *FromRecordDecl | ||||
3432 | = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { | ||||
3433 | // Add all of the conversion functions as candidates. | ||||
3434 | const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); | ||||
3435 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | ||||
3436 | DeclAccessPair FoundDecl = I.getPair(); | ||||
3437 | NamedDecl *D = FoundDecl.getDecl(); | ||||
3438 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | ||||
3439 | if (isa<UsingShadowDecl>(D)) | ||||
3440 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | ||||
3441 | |||||
3442 | CXXConversionDecl *Conv; | ||||
3443 | FunctionTemplateDecl *ConvTemplate; | ||||
3444 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) | ||||
3445 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | ||||
3446 | else | ||||
3447 | Conv = cast<CXXConversionDecl>(D); | ||||
3448 | |||||
3449 | if (AllowExplicit || !Conv->isExplicit()) { | ||||
3450 | if (ConvTemplate) | ||||
3451 | S.AddTemplateConversionCandidate( | ||||
3452 | ConvTemplate, FoundDecl, ActingContext, From, ToType, | ||||
3453 | CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit); | ||||
3454 | else | ||||
3455 | S.AddConversionCandidate( | ||||
3456 | Conv, FoundDecl, ActingContext, From, ToType, CandidateSet, | ||||
3457 | AllowObjCConversionOnExplicit, AllowExplicit); | ||||
3458 | } | ||||
3459 | } | ||||
3460 | } | ||||
3461 | } | ||||
3462 | |||||
3463 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | ||||
3464 | |||||
3465 | OverloadCandidateSet::iterator Best; | ||||
3466 | switch (auto Result = | ||||
3467 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { | ||||
3468 | case OR_Success: | ||||
3469 | case OR_Deleted: | ||||
3470 | // Record the standard conversion we used and the conversion function. | ||||
3471 | if (CXXConstructorDecl *Constructor | ||||
3472 | = dyn_cast<CXXConstructorDecl>(Best->Function)) { | ||||
3473 | // C++ [over.ics.user]p1: | ||||
3474 | // If the user-defined conversion is specified by a | ||||
3475 | // constructor (12.3.1), the initial standard conversion | ||||
3476 | // sequence converts the source type to the type required by | ||||
3477 | // the argument of the constructor. | ||||
3478 | // | ||||
3479 | QualType ThisType = Constructor->getThisType(); | ||||
3480 | if (isa<InitListExpr>(From)) { | ||||
3481 | // Initializer lists don't have conversions as such. | ||||
3482 | User.Before.setAsIdentityConversion(); | ||||
3483 | } else { | ||||
3484 | if (Best->Conversions[0].isEllipsis()) | ||||
3485 | User.EllipsisConversion = true; | ||||
3486 | else { | ||||
3487 | User.Before = Best->Conversions[0].Standard; | ||||
3488 | User.EllipsisConversion = false; | ||||
3489 | } | ||||
3490 | } | ||||
3491 | User.HadMultipleCandidates = HadMultipleCandidates; | ||||
3492 | User.ConversionFunction = Constructor; | ||||
3493 | User.FoundConversionFunction = Best->FoundDecl; | ||||
3494 | User.After.setAsIdentityConversion(); | ||||
3495 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); | ||||
3496 | User.After.setAllToTypes(ToType); | ||||
3497 | return Result; | ||||
3498 | } | ||||
3499 | if (CXXConversionDecl *Conversion | ||||
3500 | = dyn_cast<CXXConversionDecl>(Best->Function)) { | ||||
3501 | // C++ [over.ics.user]p1: | ||||
3502 | // | ||||
3503 | // [...] If the user-defined conversion is specified by a | ||||
3504 | // conversion function (12.3.2), the initial standard | ||||
3505 | // conversion sequence converts the source type to the | ||||
3506 | // implicit object parameter of the conversion function. | ||||
3507 | User.Before = Best->Conversions[0].Standard; | ||||
3508 | User.HadMultipleCandidates = HadMultipleCandidates; | ||||
3509 | User.ConversionFunction = Conversion; | ||||
3510 | User.FoundConversionFunction = Best->FoundDecl; | ||||
3511 | User.EllipsisConversion = false; | ||||
3512 | |||||
3513 | // C++ [over.ics.user]p2: | ||||
3514 | // The second standard conversion sequence converts the | ||||
3515 | // result of the user-defined conversion to the target type | ||||
3516 | // for the sequence. Since an implicit conversion sequence | ||||
3517 | // is an initialization, the special rules for | ||||
3518 | // initialization by user-defined conversion apply when | ||||
3519 | // selecting the best user-defined conversion for a | ||||
3520 | // user-defined conversion sequence (see 13.3.3 and | ||||
3521 | // 13.3.3.1). | ||||
3522 | User.After = Best->FinalConversion; | ||||
3523 | return Result; | ||||
3524 | } | ||||
3525 | llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3525); | ||||
3526 | |||||
3527 | case OR_No_Viable_Function: | ||||
3528 | return OR_No_Viable_Function; | ||||
3529 | |||||
3530 | case OR_Ambiguous: | ||||
3531 | return OR_Ambiguous; | ||||
3532 | } | ||||
3533 | |||||
3534 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3534); | ||||
3535 | } | ||||
3536 | |||||
3537 | bool | ||||
3538 | Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { | ||||
3539 | ImplicitConversionSequence ICS; | ||||
3540 | OverloadCandidateSet CandidateSet(From->getExprLoc(), | ||||
3541 | OverloadCandidateSet::CSK_Normal); | ||||
3542 | OverloadingResult OvResult = | ||||
3543 | IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, | ||||
3544 | CandidateSet, false, false); | ||||
3545 | |||||
3546 | if (!(OvResult == OR_Ambiguous || | ||||
3547 | (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) | ||||
3548 | return false; | ||||
3549 | |||||
3550 | auto Cands = CandidateSet.CompleteCandidates( | ||||
3551 | *this, | ||||
3552 | OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, | ||||
3553 | From); | ||||
3554 | if (OvResult == OR_Ambiguous) | ||||
3555 | Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) | ||||
3556 | << From->getType() << ToType << From->getSourceRange(); | ||||
3557 | else { // OR_No_Viable_Function && !CandidateSet.empty() | ||||
3558 | if (!RequireCompleteType(From->getBeginLoc(), ToType, | ||||
3559 | diag::err_typecheck_nonviable_condition_incomplete, | ||||
3560 | From->getType(), From->getSourceRange())) | ||||
3561 | Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) | ||||
3562 | << false << From->getType() << From->getSourceRange() << ToType; | ||||
3563 | } | ||||
3564 | |||||
3565 | CandidateSet.NoteCandidates( | ||||
3566 | *this, From, Cands); | ||||
3567 | return true; | ||||
3568 | } | ||||
3569 | |||||
3570 | /// Compare the user-defined conversion functions or constructors | ||||
3571 | /// of two user-defined conversion sequences to determine whether any ordering | ||||
3572 | /// is possible. | ||||
3573 | static ImplicitConversionSequence::CompareKind | ||||
3574 | compareConversionFunctions(Sema &S, FunctionDecl *Function1, | ||||
3575 | FunctionDecl *Function2) { | ||||
3576 | if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11) | ||||
3577 | return ImplicitConversionSequence::Indistinguishable; | ||||
3578 | |||||
3579 | // Objective-C++: | ||||
3580 | // If both conversion functions are implicitly-declared conversions from | ||||
3581 | // a lambda closure type to a function pointer and a block pointer, | ||||
3582 | // respectively, always prefer the conversion to a function pointer, | ||||
3583 | // because the function pointer is more lightweight and is more likely | ||||
3584 | // to keep code working. | ||||
3585 | CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); | ||||
3586 | if (!Conv1) | ||||
3587 | return ImplicitConversionSequence::Indistinguishable; | ||||
3588 | |||||
3589 | CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2); | ||||
3590 | if (!Conv2) | ||||
3591 | return ImplicitConversionSequence::Indistinguishable; | ||||
3592 | |||||
3593 | if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) { | ||||
3594 | bool Block1 = Conv1->getConversionType()->isBlockPointerType(); | ||||
3595 | bool Block2 = Conv2->getConversionType()->isBlockPointerType(); | ||||
3596 | if (Block1 != Block2) | ||||
3597 | return Block1 ? ImplicitConversionSequence::Worse | ||||
3598 | : ImplicitConversionSequence::Better; | ||||
3599 | } | ||||
3600 | |||||
3601 | return ImplicitConversionSequence::Indistinguishable; | ||||
3602 | } | ||||
3603 | |||||
3604 | static bool hasDeprecatedStringLiteralToCharPtrConversion( | ||||
3605 | const ImplicitConversionSequence &ICS) { | ||||
3606 | return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || | ||||
3607 | (ICS.isUserDefined() && | ||||
3608 | ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); | ||||
3609 | } | ||||
3610 | |||||
3611 | /// CompareImplicitConversionSequences - Compare two implicit | ||||
3612 | /// conversion sequences to determine whether one is better than the | ||||
3613 | /// other or if they are indistinguishable (C++ 13.3.3.2). | ||||
3614 | static ImplicitConversionSequence::CompareKind | ||||
3615 | CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, | ||||
3616 | const ImplicitConversionSequence& ICS1, | ||||
3617 | const ImplicitConversionSequence& ICS2) | ||||
3618 | { | ||||
3619 | // (C++ 13.3.3.2p2): When comparing the basic forms of implicit | ||||
3620 | // conversion sequences (as defined in 13.3.3.1) | ||||
3621 | // -- a standard conversion sequence (13.3.3.1.1) is a better | ||||
3622 | // conversion sequence than a user-defined conversion sequence or | ||||
3623 | // an ellipsis conversion sequence, and | ||||
3624 | // -- a user-defined conversion sequence (13.3.3.1.2) is a better | ||||
3625 | // conversion sequence than an ellipsis conversion sequence | ||||
3626 | // (13.3.3.1.3). | ||||
3627 | // | ||||
3628 | // C++0x [over.best.ics]p10: | ||||
3629 | // For the purpose of ranking implicit conversion sequences as | ||||
3630 | // described in 13.3.3.2, the ambiguous conversion sequence is | ||||
3631 | // treated as a user-defined sequence that is indistinguishable | ||||
3632 | // from any other user-defined conversion sequence. | ||||
3633 | |||||
3634 | // String literal to 'char *' conversion has been deprecated in C++03. It has | ||||
3635 | // been removed from C++11. We still accept this conversion, if it happens at | ||||
3636 | // the best viable function. Otherwise, this conversion is considered worse | ||||
3637 | // than ellipsis conversion. Consider this as an extension; this is not in the | ||||
3638 | // standard. For example: | ||||
3639 | // | ||||
3640 | // int &f(...); // #1 | ||||
3641 | // void f(char*); // #2 | ||||
3642 | // void g() { int &r = f("foo"); } | ||||
3643 | // | ||||
3644 | // In C++03, we pick #2 as the best viable function. | ||||
3645 | // In C++11, we pick #1 as the best viable function, because ellipsis | ||||
3646 | // conversion is better than string-literal to char* conversion (since there | ||||
3647 | // is no such conversion in C++11). If there was no #1 at all or #1 couldn't | ||||
3648 | // convert arguments, #2 would be the best viable function in C++11. | ||||
3649 | // If the best viable function has this conversion, a warning will be issued | ||||
3650 | // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. | ||||
3651 | |||||
3652 | if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && | ||||
3653 | hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != | ||||
3654 | hasDeprecatedStringLiteralToCharPtrConversion(ICS2)) | ||||
3655 | return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) | ||||
3656 | ? ImplicitConversionSequence::Worse | ||||
3657 | : ImplicitConversionSequence::Better; | ||||
3658 | |||||
3659 | if (ICS1.getKindRank() < ICS2.getKindRank()) | ||||
3660 | return ImplicitConversionSequence::Better; | ||||
3661 | if (ICS2.getKindRank() < ICS1.getKindRank()) | ||||
3662 | return ImplicitConversionSequence::Worse; | ||||
3663 | |||||
3664 | // The following checks require both conversion sequences to be of | ||||
3665 | // the same kind. | ||||
3666 | if (ICS1.getKind() != ICS2.getKind()) | ||||
3667 | return ImplicitConversionSequence::Indistinguishable; | ||||
3668 | |||||
3669 | ImplicitConversionSequence::CompareKind Result = | ||||
3670 | ImplicitConversionSequence::Indistinguishable; | ||||
3671 | |||||
3672 | // Two implicit conversion sequences of the same form are | ||||
3673 | // indistinguishable conversion sequences unless one of the | ||||
3674 | // following rules apply: (C++ 13.3.3.2p3): | ||||
3675 | |||||
3676 | // List-initialization sequence L1 is a better conversion sequence than | ||||
3677 | // list-initialization sequence L2 if: | ||||
3678 | // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, | ||||
3679 | // if not that, | ||||
3680 | // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T", | ||||
3681 | // and N1 is smaller than N2., | ||||
3682 | // even if one of the other rules in this paragraph would otherwise apply. | ||||
3683 | if (!ICS1.isBad()) { | ||||
3684 | if (ICS1.isStdInitializerListElement() && | ||||
3685 | !ICS2.isStdInitializerListElement()) | ||||
3686 | return ImplicitConversionSequence::Better; | ||||
3687 | if (!ICS1.isStdInitializerListElement() && | ||||
3688 | ICS2.isStdInitializerListElement()) | ||||
3689 | return ImplicitConversionSequence::Worse; | ||||
3690 | } | ||||
3691 | |||||
3692 | if (ICS1.isStandard()) | ||||
3693 | // Standard conversion sequence S1 is a better conversion sequence than | ||||
3694 | // standard conversion sequence S2 if [...] | ||||
3695 | Result = CompareStandardConversionSequences(S, Loc, | ||||
3696 | ICS1.Standard, ICS2.Standard); | ||||
3697 | else if (ICS1.isUserDefined()) { | ||||
3698 | // User-defined conversion sequence U1 is a better conversion | ||||
3699 | // sequence than another user-defined conversion sequence U2 if | ||||
3700 | // they contain the same user-defined conversion function or | ||||
3701 | // constructor and if the second standard conversion sequence of | ||||
3702 | // U1 is better than the second standard conversion sequence of | ||||
3703 | // U2 (C++ 13.3.3.2p3). | ||||
3704 | if (ICS1.UserDefined.ConversionFunction == | ||||
3705 | ICS2.UserDefined.ConversionFunction) | ||||
3706 | Result = CompareStandardConversionSequences(S, Loc, | ||||
3707 | ICS1.UserDefined.After, | ||||
3708 | ICS2.UserDefined.After); | ||||
3709 | else | ||||
3710 | Result = compareConversionFunctions(S, | ||||
3711 | ICS1.UserDefined.ConversionFunction, | ||||
3712 | ICS2.UserDefined.ConversionFunction); | ||||
3713 | } | ||||
3714 | |||||
3715 | return Result; | ||||
3716 | } | ||||
3717 | |||||
3718 | // Per 13.3.3.2p3, compare the given standard conversion sequences to | ||||
3719 | // determine if one is a proper subset of the other. | ||||
3720 | static ImplicitConversionSequence::CompareKind | ||||
3721 | compareStandardConversionSubsets(ASTContext &Context, | ||||
3722 | const StandardConversionSequence& SCS1, | ||||
3723 | const StandardConversionSequence& SCS2) { | ||||
3724 | ImplicitConversionSequence::CompareKind Result | ||||
3725 | = ImplicitConversionSequence::Indistinguishable; | ||||
3726 | |||||
3727 | // the identity conversion sequence is considered to be a subsequence of | ||||
3728 | // any non-identity conversion sequence | ||||
3729 | if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) | ||||
3730 | return ImplicitConversionSequence::Better; | ||||
3731 | else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) | ||||
3732 | return ImplicitConversionSequence::Worse; | ||||
3733 | |||||
3734 | if (SCS1.Second != SCS2.Second) { | ||||
3735 | if (SCS1.Second == ICK_Identity) | ||||
3736 | Result = ImplicitConversionSequence::Better; | ||||
3737 | else if (SCS2.Second == ICK_Identity) | ||||
3738 | Result = ImplicitConversionSequence::Worse; | ||||
3739 | else | ||||
3740 | return ImplicitConversionSequence::Indistinguishable; | ||||
3741 | } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) | ||||
3742 | return ImplicitConversionSequence::Indistinguishable; | ||||
3743 | |||||
3744 | if (SCS1.Third == SCS2.Third) { | ||||
3745 | return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result | ||||
3746 | : ImplicitConversionSequence::Indistinguishable; | ||||
3747 | } | ||||
3748 | |||||
3749 | if (SCS1.Third == ICK_Identity) | ||||
3750 | return Result == ImplicitConversionSequence::Worse | ||||
3751 | ? ImplicitConversionSequence::Indistinguishable | ||||
3752 | : ImplicitConversionSequence::Better; | ||||
3753 | |||||
3754 | if (SCS2.Third == ICK_Identity) | ||||
3755 | return Result == ImplicitConversionSequence::Better | ||||
3756 | ? ImplicitConversionSequence::Indistinguishable | ||||
3757 | : ImplicitConversionSequence::Worse; | ||||
3758 | |||||
3759 | return ImplicitConversionSequence::Indistinguishable; | ||||
3760 | } | ||||
3761 | |||||
3762 | /// Determine whether one of the given reference bindings is better | ||||
3763 | /// than the other based on what kind of bindings they are. | ||||
3764 | static bool | ||||
3765 | isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, | ||||
3766 | const StandardConversionSequence &SCS2) { | ||||
3767 | // C++0x [over.ics.rank]p3b4: | ||||
3768 | // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an | ||||
3769 | // implicit object parameter of a non-static member function declared | ||||
3770 | // without a ref-qualifier, and *either* S1 binds an rvalue reference | ||||
3771 | // to an rvalue and S2 binds an lvalue reference *or S1 binds an | ||||
3772 | // lvalue reference to a function lvalue and S2 binds an rvalue | ||||
3773 | // reference*. | ||||
3774 | // | ||||
3775 | // FIXME: Rvalue references. We're going rogue with the above edits, | ||||
3776 | // because the semantics in the current C++0x working paper (N3225 at the | ||||
3777 | // time of this writing) break the standard definition of std::forward | ||||
3778 | // and std::reference_wrapper when dealing with references to functions. | ||||
3779 | // Proposed wording changes submitted to CWG for consideration. | ||||
3780 | if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || | ||||
3781 | SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) | ||||
3782 | return false; | ||||
3783 | |||||
3784 | return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && | ||||
3785 | SCS2.IsLvalueReference) || | ||||
3786 | (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && | ||||
3787 | !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); | ||||
3788 | } | ||||
3789 | |||||
3790 | enum class FixedEnumPromotion { | ||||
3791 | None, | ||||
3792 | ToUnderlyingType, | ||||
3793 | ToPromotedUnderlyingType | ||||
3794 | }; | ||||
3795 | |||||
3796 | /// Returns kind of fixed enum promotion the \a SCS uses. | ||||
3797 | static FixedEnumPromotion | ||||
3798 | getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { | ||||
3799 | |||||
3800 | if (SCS.Second != ICK_Integral_Promotion) | ||||
3801 | return FixedEnumPromotion::None; | ||||
3802 | |||||
3803 | QualType FromType = SCS.getFromType(); | ||||
3804 | if (!FromType->isEnumeralType()) | ||||
3805 | return FixedEnumPromotion::None; | ||||
3806 | |||||
3807 | EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl(); | ||||
3808 | if (!Enum->isFixed()) | ||||
3809 | return FixedEnumPromotion::None; | ||||
3810 | |||||
3811 | QualType UnderlyingType = Enum->getIntegerType(); | ||||
3812 | if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) | ||||
3813 | return FixedEnumPromotion::ToUnderlyingType; | ||||
3814 | |||||
3815 | return FixedEnumPromotion::ToPromotedUnderlyingType; | ||||
3816 | } | ||||
3817 | |||||
3818 | /// CompareStandardConversionSequences - Compare two standard | ||||
3819 | /// conversion sequences to determine whether one is better than the | ||||
3820 | /// other or if they are indistinguishable (C++ 13.3.3.2p3). | ||||
3821 | static ImplicitConversionSequence::CompareKind | ||||
3822 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, | ||||
3823 | const StandardConversionSequence& SCS1, | ||||
3824 | const StandardConversionSequence& SCS2) | ||||
3825 | { | ||||
3826 | // Standard conversion sequence S1 is a better conversion sequence | ||||
3827 | // than standard conversion sequence S2 if (C++ 13.3.3.2p3): | ||||
3828 | |||||
3829 | // -- S1 is a proper subsequence of S2 (comparing the conversion | ||||
3830 | // sequences in the canonical form defined by 13.3.3.1.1, | ||||
3831 | // excluding any Lvalue Transformation; the identity conversion | ||||
3832 | // sequence is considered to be a subsequence of any | ||||
3833 | // non-identity conversion sequence) or, if not that, | ||||
3834 | if (ImplicitConversionSequence::CompareKind CK | ||||
3835 | = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) | ||||
3836 | return CK; | ||||
3837 | |||||
3838 | // -- the rank of S1 is better than the rank of S2 (by the rules | ||||
3839 | // defined below), or, if not that, | ||||
3840 | ImplicitConversionRank Rank1 = SCS1.getRank(); | ||||
3841 | ImplicitConversionRank Rank2 = SCS2.getRank(); | ||||
3842 | if (Rank1 < Rank2) | ||||
3843 | return ImplicitConversionSequence::Better; | ||||
3844 | else if (Rank2 < Rank1) | ||||
3845 | return ImplicitConversionSequence::Worse; | ||||
3846 | |||||
3847 | // (C++ 13.3.3.2p4): Two conversion sequences with the same rank | ||||
3848 | // are indistinguishable unless one of the following rules | ||||
3849 | // applies: | ||||
3850 | |||||
3851 | // A conversion that is not a conversion of a pointer, or | ||||
3852 | // pointer to member, to bool is better than another conversion | ||||
3853 | // that is such a conversion. | ||||
3854 | if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) | ||||
3855 | return SCS2.isPointerConversionToBool() | ||||
3856 | ? ImplicitConversionSequence::Better | ||||
3857 | : ImplicitConversionSequence::Worse; | ||||
3858 | |||||
3859 | // C++14 [over.ics.rank]p4b2: | ||||
3860 | // This is retroactively applied to C++11 by CWG 1601. | ||||
3861 | // | ||||
3862 | // A conversion that promotes an enumeration whose underlying type is fixed | ||||
3863 | // to its underlying type is better than one that promotes to the promoted | ||||
3864 | // underlying type, if the two are different. | ||||
3865 | FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); | ||||
3866 | FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); | ||||
3867 | if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && | ||||
3868 | FEP1 != FEP2) | ||||
3869 | return FEP1 == FixedEnumPromotion::ToUnderlyingType | ||||
3870 | ? ImplicitConversionSequence::Better | ||||
3871 | : ImplicitConversionSequence::Worse; | ||||
3872 | |||||
3873 | // C++ [over.ics.rank]p4b2: | ||||
3874 | // | ||||
3875 | // If class B is derived directly or indirectly from class A, | ||||
3876 | // conversion of B* to A* is better than conversion of B* to | ||||
3877 | // void*, and conversion of A* to void* is better than conversion | ||||
3878 | // of B* to void*. | ||||
3879 | bool SCS1ConvertsToVoid | ||||
3880 | = SCS1.isPointerConversionToVoidPointer(S.Context); | ||||
3881 | bool SCS2ConvertsToVoid | ||||
3882 | = SCS2.isPointerConversionToVoidPointer(S.Context); | ||||
3883 | if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { | ||||
3884 | // Exactly one of the conversion sequences is a conversion to | ||||
3885 | // a void pointer; it's the worse conversion. | ||||
3886 | return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better | ||||
3887 | : ImplicitConversionSequence::Worse; | ||||
3888 | } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { | ||||
3889 | // Neither conversion sequence converts to a void pointer; compare | ||||
3890 | // their derived-to-base conversions. | ||||
3891 | if (ImplicitConversionSequence::CompareKind DerivedCK | ||||
3892 | = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) | ||||
3893 | return DerivedCK; | ||||
3894 | } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && | ||||
3895 | !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { | ||||
3896 | // Both conversion sequences are conversions to void | ||||
3897 | // pointers. Compare the source types to determine if there's an | ||||
3898 | // inheritance relationship in their sources. | ||||
3899 | QualType FromType1 = SCS1.getFromType(); | ||||
3900 | QualType FromType2 = SCS2.getFromType(); | ||||
3901 | |||||
3902 | // Adjust the types we're converting from via the array-to-pointer | ||||
3903 | // conversion, if we need to. | ||||
3904 | if (SCS1.First == ICK_Array_To_Pointer) | ||||
3905 | FromType1 = S.Context.getArrayDecayedType(FromType1); | ||||
3906 | if (SCS2.First == ICK_Array_To_Pointer) | ||||
3907 | FromType2 = S.Context.getArrayDecayedType(FromType2); | ||||
3908 | |||||
3909 | QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); | ||||
3910 | QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); | ||||
3911 | |||||
3912 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | ||||
3913 | return ImplicitConversionSequence::Better; | ||||
3914 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | ||||
3915 | return ImplicitConversionSequence::Worse; | ||||
3916 | |||||
3917 | // Objective-C++: If one interface is more specific than the | ||||
3918 | // other, it is the better one. | ||||
3919 | const ObjCObjectPointerType* FromObjCPtr1 | ||||
3920 | = FromType1->getAs<ObjCObjectPointerType>(); | ||||
3921 | const ObjCObjectPointerType* FromObjCPtr2 | ||||
3922 | = FromType2->getAs<ObjCObjectPointerType>(); | ||||
3923 | if (FromObjCPtr1 && FromObjCPtr2) { | ||||
3924 | bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, | ||||
3925 | FromObjCPtr2); | ||||
3926 | bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, | ||||
3927 | FromObjCPtr1); | ||||
3928 | if (AssignLeft != AssignRight) { | ||||
3929 | return AssignLeft? ImplicitConversionSequence::Better | ||||
3930 | : ImplicitConversionSequence::Worse; | ||||
3931 | } | ||||
3932 | } | ||||
3933 | } | ||||
3934 | |||||
3935 | // Compare based on qualification conversions (C++ 13.3.3.2p3, | ||||
3936 | // bullet 3). | ||||
3937 | if (ImplicitConversionSequence::CompareKind QualCK | ||||
3938 | = CompareQualificationConversions(S, SCS1, SCS2)) | ||||
3939 | return QualCK; | ||||
3940 | |||||
3941 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { | ||||
3942 | // Check for a better reference binding based on the kind of bindings. | ||||
3943 | if (isBetterReferenceBindingKind(SCS1, SCS2)) | ||||
3944 | return ImplicitConversionSequence::Better; | ||||
3945 | else if (isBetterReferenceBindingKind(SCS2, SCS1)) | ||||
3946 | return ImplicitConversionSequence::Worse; | ||||
3947 | |||||
3948 | // C++ [over.ics.rank]p3b4: | ||||
3949 | // -- S1 and S2 are reference bindings (8.5.3), and the types to | ||||
3950 | // which the references refer are the same type except for | ||||
3951 | // top-level cv-qualifiers, and the type to which the reference | ||||
3952 | // initialized by S2 refers is more cv-qualified than the type | ||||
3953 | // to which the reference initialized by S1 refers. | ||||
3954 | QualType T1 = SCS1.getToType(2); | ||||
3955 | QualType T2 = SCS2.getToType(2); | ||||
3956 | T1 = S.Context.getCanonicalType(T1); | ||||
3957 | T2 = S.Context.getCanonicalType(T2); | ||||
3958 | Qualifiers T1Quals, T2Quals; | ||||
3959 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); | ||||
3960 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); | ||||
3961 | if (UnqualT1 == UnqualT2) { | ||||
3962 | // Objective-C++ ARC: If the references refer to objects with different | ||||
3963 | // lifetimes, prefer bindings that don't change lifetime. | ||||
3964 | if (SCS1.ObjCLifetimeConversionBinding != | ||||
3965 | SCS2.ObjCLifetimeConversionBinding) { | ||||
3966 | return SCS1.ObjCLifetimeConversionBinding | ||||
3967 | ? ImplicitConversionSequence::Worse | ||||
3968 | : ImplicitConversionSequence::Better; | ||||
3969 | } | ||||
3970 | |||||
3971 | // If the type is an array type, promote the element qualifiers to the | ||||
3972 | // type for comparison. | ||||
3973 | if (isa<ArrayType>(T1) && T1Quals) | ||||
3974 | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); | ||||
3975 | if (isa<ArrayType>(T2) && T2Quals) | ||||
3976 | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); | ||||
3977 | if (T2.isMoreQualifiedThan(T1)) | ||||
3978 | return ImplicitConversionSequence::Better; | ||||
3979 | else if (T1.isMoreQualifiedThan(T2)) | ||||
3980 | return ImplicitConversionSequence::Worse; | ||||
3981 | } | ||||
3982 | } | ||||
3983 | |||||
3984 | // In Microsoft mode, prefer an integral conversion to a | ||||
3985 | // floating-to-integral conversion if the integral conversion | ||||
3986 | // is between types of the same size. | ||||
3987 | // For example: | ||||
3988 | // void f(float); | ||||
3989 | // void f(int); | ||||
3990 | // int main { | ||||
3991 | // long a; | ||||
3992 | // f(a); | ||||
3993 | // } | ||||
3994 | // Here, MSVC will call f(int) instead of generating a compile error | ||||
3995 | // as clang will do in standard mode. | ||||
3996 | if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion && | ||||
3997 | SCS2.Second == ICK_Floating_Integral && | ||||
3998 | S.Context.getTypeSize(SCS1.getFromType()) == | ||||
3999 | S.Context.getTypeSize(SCS1.getToType(2))) | ||||
4000 | return ImplicitConversionSequence::Better; | ||||
4001 | |||||
4002 | // Prefer a compatible vector conversion over a lax vector conversion | ||||
4003 | // For example: | ||||
4004 | // | ||||
4005 | // typedef float __v4sf __attribute__((__vector_size__(16))); | ||||
4006 | // void f(vector float); | ||||
4007 | // void f(vector signed int); | ||||
4008 | // int main() { | ||||
4009 | // __v4sf a; | ||||
4010 | // f(a); | ||||
4011 | // } | ||||
4012 | // Here, we'd like to choose f(vector float) and not | ||||
4013 | // report an ambiguous call error | ||||
4014 | if (SCS1.Second == ICK_Vector_Conversion && | ||||
4015 | SCS2.Second == ICK_Vector_Conversion) { | ||||
4016 | bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( | ||||
4017 | SCS1.getFromType(), SCS1.getToType(2)); | ||||
4018 | bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( | ||||
4019 | SCS2.getFromType(), SCS2.getToType(2)); | ||||
4020 | |||||
4021 | if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) | ||||
4022 | return SCS1IsCompatibleVectorConversion | ||||
4023 | ? ImplicitConversionSequence::Better | ||||
4024 | : ImplicitConversionSequence::Worse; | ||||
4025 | } | ||||
4026 | |||||
4027 | return ImplicitConversionSequence::Indistinguishable; | ||||
4028 | } | ||||
4029 | |||||
4030 | /// CompareQualificationConversions - Compares two standard conversion | ||||
4031 | /// sequences to determine whether they can be ranked based on their | ||||
4032 | /// qualification conversions (C++ 13.3.3.2p3 bullet 3). | ||||
4033 | static ImplicitConversionSequence::CompareKind | ||||
4034 | CompareQualificationConversions(Sema &S, | ||||
4035 | const StandardConversionSequence& SCS1, | ||||
4036 | const StandardConversionSequence& SCS2) { | ||||
4037 | // C++ 13.3.3.2p3: | ||||
4038 | // -- S1 and S2 differ only in their qualification conversion and | ||||
4039 | // yield similar types T1 and T2 (C++ 4.4), respectively, and the | ||||
4040 | // cv-qualification signature of type T1 is a proper subset of | ||||
4041 | // the cv-qualification signature of type T2, and S1 is not the | ||||
4042 | // deprecated string literal array-to-pointer conversion (4.2). | ||||
4043 | if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || | ||||
4044 | SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) | ||||
4045 | return ImplicitConversionSequence::Indistinguishable; | ||||
4046 | |||||
4047 | // FIXME: the example in the standard doesn't use a qualification | ||||
4048 | // conversion (!) | ||||
4049 | QualType T1 = SCS1.getToType(2); | ||||
4050 | QualType T2 = SCS2.getToType(2); | ||||
4051 | T1 = S.Context.getCanonicalType(T1); | ||||
4052 | T2 = S.Context.getCanonicalType(T2); | ||||
4053 | Qualifiers T1Quals, T2Quals; | ||||
4054 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); | ||||
4055 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); | ||||
4056 | |||||
4057 | // If the types are the same, we won't learn anything by unwrapped | ||||
4058 | // them. | ||||
4059 | if (UnqualT1 == UnqualT2) | ||||
4060 | return ImplicitConversionSequence::Indistinguishable; | ||||
4061 | |||||
4062 | // If the type is an array type, promote the element qualifiers to the type | ||||
4063 | // for comparison. | ||||
4064 | if (isa<ArrayType>(T1) && T1Quals) | ||||
4065 | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); | ||||
4066 | if (isa<ArrayType>(T2) && T2Quals) | ||||
4067 | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); | ||||
4068 | |||||
4069 | ImplicitConversionSequence::CompareKind Result | ||||
4070 | = ImplicitConversionSequence::Indistinguishable; | ||||
4071 | |||||
4072 | // Objective-C++ ARC: | ||||
4073 | // Prefer qualification conversions not involving a change in lifetime | ||||
4074 | // to qualification conversions that do not change lifetime. | ||||
4075 | if (SCS1.QualificationIncludesObjCLifetime != | ||||
4076 | SCS2.QualificationIncludesObjCLifetime) { | ||||
4077 | Result = SCS1.QualificationIncludesObjCLifetime | ||||
4078 | ? ImplicitConversionSequence::Worse | ||||
4079 | : ImplicitConversionSequence::Better; | ||||
4080 | } | ||||
4081 | |||||
4082 | while (S.Context.UnwrapSimilarTypes(T1, T2)) { | ||||
4083 | // Within each iteration of the loop, we check the qualifiers to | ||||
4084 | // determine if this still looks like a qualification | ||||
4085 | // conversion. Then, if all is well, we unwrap one more level of | ||||
4086 | // pointers or pointers-to-members and do it all again | ||||
4087 | // until there are no more pointers or pointers-to-members left | ||||
4088 | // to unwrap. This essentially mimics what | ||||
4089 | // IsQualificationConversion does, but here we're checking for a | ||||
4090 | // strict subset of qualifiers. | ||||
4091 | if (T1.getQualifiers().withoutObjCLifetime() == | ||||
4092 | T2.getQualifiers().withoutObjCLifetime()) | ||||
4093 | // The qualifiers are the same, so this doesn't tell us anything | ||||
4094 | // about how the sequences rank. | ||||
4095 | // ObjC ownership quals are omitted above as they interfere with | ||||
4096 | // the ARC overload rule. | ||||
4097 | ; | ||||
4098 | else if (T2.isMoreQualifiedThan(T1)) { | ||||
4099 | // T1 has fewer qualifiers, so it could be the better sequence. | ||||
4100 | if (Result == ImplicitConversionSequence::Worse) | ||||
4101 | // Neither has qualifiers that are a subset of the other's | ||||
4102 | // qualifiers. | ||||
4103 | return ImplicitConversionSequence::Indistinguishable; | ||||
4104 | |||||
4105 | Result = ImplicitConversionSequence::Better; | ||||
4106 | } else if (T1.isMoreQualifiedThan(T2)) { | ||||
4107 | // T2 has fewer qualifiers, so it could be the better sequence. | ||||
4108 | if (Result == ImplicitConversionSequence::Better) | ||||
4109 | // Neither has qualifiers that are a subset of the other's | ||||
4110 | // qualifiers. | ||||
4111 | return ImplicitConversionSequence::Indistinguishable; | ||||
4112 | |||||
4113 | Result = ImplicitConversionSequence::Worse; | ||||
4114 | } else { | ||||
4115 | // Qualifiers are disjoint. | ||||
4116 | return ImplicitConversionSequence::Indistinguishable; | ||||
4117 | } | ||||
4118 | |||||
4119 | // If the types after this point are equivalent, we're done. | ||||
4120 | if (S.Context.hasSameUnqualifiedType(T1, T2)) | ||||
4121 | break; | ||||
4122 | } | ||||
4123 | |||||
4124 | // Check that the winning standard conversion sequence isn't using | ||||
4125 | // the deprecated string literal array to pointer conversion. | ||||
4126 | switch (Result) { | ||||
4127 | case ImplicitConversionSequence::Better: | ||||
4128 | if (SCS1.DeprecatedStringLiteralToCharPtr) | ||||
4129 | Result = ImplicitConversionSequence::Indistinguishable; | ||||
4130 | break; | ||||
4131 | |||||
4132 | case ImplicitConversionSequence::Indistinguishable: | ||||
4133 | break; | ||||
4134 | |||||
4135 | case ImplicitConversionSequence::Worse: | ||||
4136 | if (SCS2.DeprecatedStringLiteralToCharPtr) | ||||
4137 | Result = ImplicitConversionSequence::Indistinguishable; | ||||
4138 | break; | ||||
4139 | } | ||||
4140 | |||||
4141 | return Result; | ||||
4142 | } | ||||
4143 | |||||
4144 | /// CompareDerivedToBaseConversions - Compares two standard conversion | ||||
4145 | /// sequences to determine whether they can be ranked based on their | ||||
4146 | /// various kinds of derived-to-base conversions (C++ | ||||
4147 | /// [over.ics.rank]p4b3). As part of these checks, we also look at | ||||
4148 | /// conversions between Objective-C interface types. | ||||
4149 | static ImplicitConversionSequence::CompareKind | ||||
4150 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, | ||||
4151 | const StandardConversionSequence& SCS1, | ||||
4152 | const StandardConversionSequence& SCS2) { | ||||
4153 | QualType FromType1 = SCS1.getFromType(); | ||||
4154 | QualType ToType1 = SCS1.getToType(1); | ||||
4155 | QualType FromType2 = SCS2.getFromType(); | ||||
4156 | QualType ToType2 = SCS2.getToType(1); | ||||
4157 | |||||
4158 | // Adjust the types we're converting from via the array-to-pointer | ||||
4159 | // conversion, if we need to. | ||||
4160 | if (SCS1.First == ICK_Array_To_Pointer) | ||||
4161 | FromType1 = S.Context.getArrayDecayedType(FromType1); | ||||
4162 | if (SCS2.First == ICK_Array_To_Pointer) | ||||
4163 | FromType2 = S.Context.getArrayDecayedType(FromType2); | ||||
4164 | |||||
4165 | // Canonicalize all of the types. | ||||
4166 | FromType1 = S.Context.getCanonicalType(FromType1); | ||||
4167 | ToType1 = S.Context.getCanonicalType(ToType1); | ||||
4168 | FromType2 = S.Context.getCanonicalType(FromType2); | ||||
4169 | ToType2 = S.Context.getCanonicalType(ToType2); | ||||
4170 | |||||
4171 | // C++ [over.ics.rank]p4b3: | ||||
4172 | // | ||||
4173 | // If class B is derived directly or indirectly from class A and | ||||
4174 | // class C is derived directly or indirectly from B, | ||||
4175 | // | ||||
4176 | // Compare based on pointer conversions. | ||||
4177 | if (SCS1.Second == ICK_Pointer_Conversion && | ||||
4178 | SCS2.Second == ICK_Pointer_Conversion && | ||||
4179 | /*FIXME: Remove if Objective-C id conversions get their own rank*/ | ||||
4180 | FromType1->isPointerType() && FromType2->isPointerType() && | ||||
4181 | ToType1->isPointerType() && ToType2->isPointerType()) { | ||||
4182 | QualType FromPointee1 = | ||||
4183 | FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | ||||
4184 | QualType ToPointee1 = | ||||
4185 | ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | ||||
4186 | QualType FromPointee2 = | ||||
4187 | FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | ||||
4188 | QualType ToPointee2 = | ||||
4189 | ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); | ||||
4190 | |||||
4191 | // -- conversion of C* to B* is better than conversion of C* to A*, | ||||
4192 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | ||||
4193 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) | ||||
4194 | return ImplicitConversionSequence::Better; | ||||
4195 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) | ||||
4196 | return ImplicitConversionSequence::Worse; | ||||
4197 | } | ||||
4198 | |||||
4199 | // -- conversion of B* to A* is better than conversion of C* to A*, | ||||
4200 | if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { | ||||
4201 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | ||||
4202 | return ImplicitConversionSequence::Better; | ||||
4203 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | ||||
4204 | return ImplicitConversionSequence::Worse; | ||||
4205 | } | ||||
4206 | } else if (SCS1.Second == ICK_Pointer_Conversion && | ||||
4207 | SCS2.Second == ICK_Pointer_Conversion) { | ||||
4208 | const ObjCObjectPointerType *FromPtr1 | ||||
4209 | = FromType1->getAs<ObjCObjectPointerType>(); | ||||
4210 | const ObjCObjectPointerType *FromPtr2 | ||||
4211 | = FromType2->getAs<ObjCObjectPointerType>(); | ||||
4212 | const ObjCObjectPointerType *ToPtr1 | ||||
4213 | = ToType1->getAs<ObjCObjectPointerType>(); | ||||
4214 | const ObjCObjectPointerType *ToPtr2 | ||||
4215 | = ToType2->getAs<ObjCObjectPointerType>(); | ||||
4216 | |||||
4217 | if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { | ||||
4218 | // Apply the same conversion ranking rules for Objective-C pointer types | ||||
4219 | // that we do for C++ pointers to class types. However, we employ the | ||||
4220 | // Objective-C pseudo-subtyping relationship used for assignment of | ||||
4221 | // Objective-C pointer types. | ||||
4222 | bool FromAssignLeft | ||||
4223 | = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); | ||||
4224 | bool FromAssignRight | ||||
4225 | = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); | ||||
4226 | bool ToAssignLeft | ||||
4227 | = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); | ||||
4228 | bool ToAssignRight | ||||
4229 | = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); | ||||
4230 | |||||
4231 | // A conversion to an a non-id object pointer type or qualified 'id' | ||||
4232 | // type is better than a conversion to 'id'. | ||||
4233 | if (ToPtr1->isObjCIdType() && | ||||
4234 | (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) | ||||
4235 | return ImplicitConversionSequence::Worse; | ||||
4236 | if (ToPtr2->isObjCIdType() && | ||||
4237 | (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) | ||||
4238 | return ImplicitConversionSequence::Better; | ||||
4239 | |||||
4240 | // A conversion to a non-id object pointer type is better than a | ||||
4241 | // conversion to a qualified 'id' type | ||||
4242 | if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) | ||||
4243 | return ImplicitConversionSequence::Worse; | ||||
4244 | if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) | ||||
4245 | return ImplicitConversionSequence::Better; | ||||
4246 | |||||
4247 | // A conversion to an a non-Class object pointer type or qualified 'Class' | ||||
4248 | // type is better than a conversion to 'Class'. | ||||
4249 | if (ToPtr1->isObjCClassType() && | ||||
4250 | (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) | ||||
4251 | return ImplicitConversionSequence::Worse; | ||||
4252 | if (ToPtr2->isObjCClassType() && | ||||
4253 | (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) | ||||
4254 | return ImplicitConversionSequence::Better; | ||||
4255 | |||||
4256 | // A conversion to a non-Class object pointer type is better than a | ||||
4257 | // conversion to a qualified 'Class' type. | ||||
4258 | if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) | ||||
4259 | return ImplicitConversionSequence::Worse; | ||||
4260 | if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) | ||||
4261 | return ImplicitConversionSequence::Better; | ||||
4262 | |||||
4263 | // -- "conversion of C* to B* is better than conversion of C* to A*," | ||||
4264 | if (S.Context.hasSameType(FromType1, FromType2) && | ||||
4265 | !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && | ||||
4266 | (ToAssignLeft != ToAssignRight)) { | ||||
4267 | if (FromPtr1->isSpecialized()) { | ||||
4268 | // "conversion of B<A> * to B * is better than conversion of B * to | ||||
4269 | // C *. | ||||
4270 | bool IsFirstSame = | ||||
4271 | FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); | ||||
4272 | bool IsSecondSame = | ||||
4273 | FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); | ||||
4274 | if (IsFirstSame) { | ||||
4275 | if (!IsSecondSame) | ||||
4276 | return ImplicitConversionSequence::Better; | ||||
4277 | } else if (IsSecondSame) | ||||
4278 | return ImplicitConversionSequence::Worse; | ||||
4279 | } | ||||
4280 | return ToAssignLeft? ImplicitConversionSequence::Worse | ||||
4281 | : ImplicitConversionSequence::Better; | ||||
4282 | } | ||||
4283 | |||||
4284 | // -- "conversion of B* to A* is better than conversion of C* to A*," | ||||
4285 | if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && | ||||
4286 | (FromAssignLeft != FromAssignRight)) | ||||
4287 | return FromAssignLeft? ImplicitConversionSequence::Better | ||||
4288 | : ImplicitConversionSequence::Worse; | ||||
4289 | } | ||||
4290 | } | ||||
4291 | |||||
4292 | // Ranking of member-pointer types. | ||||
4293 | if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && | ||||
4294 | FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && | ||||
4295 | ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { | ||||
4296 | const MemberPointerType * FromMemPointer1 = | ||||
4297 | FromType1->getAs<MemberPointerType>(); | ||||
4298 | const MemberPointerType * ToMemPointer1 = | ||||
4299 | ToType1->getAs<MemberPointerType>(); | ||||
4300 | const MemberPointerType * FromMemPointer2 = | ||||
4301 | FromType2->getAs<MemberPointerType>(); | ||||
4302 | const MemberPointerType * ToMemPointer2 = | ||||
4303 | ToType2->getAs<MemberPointerType>(); | ||||
4304 | const Type *FromPointeeType1 = FromMemPointer1->getClass(); | ||||
4305 | const Type *ToPointeeType1 = ToMemPointer1->getClass(); | ||||
4306 | const Type *FromPointeeType2 = FromMemPointer2->getClass(); | ||||
4307 | const Type *ToPointeeType2 = ToMemPointer2->getClass(); | ||||
4308 | QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); | ||||
4309 | QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); | ||||
4310 | QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); | ||||
4311 | QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); | ||||
4312 | // conversion of A::* to B::* is better than conversion of A::* to C::*, | ||||
4313 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | ||||
4314 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) | ||||
4315 | return ImplicitConversionSequence::Worse; | ||||
4316 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) | ||||
4317 | return ImplicitConversionSequence::Better; | ||||
4318 | } | ||||
4319 | // conversion of B::* to C::* is better than conversion of A::* to C::* | ||||
4320 | if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { | ||||
4321 | if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) | ||||
4322 | return ImplicitConversionSequence::Better; | ||||
4323 | else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) | ||||
4324 | return ImplicitConversionSequence::Worse; | ||||
4325 | } | ||||
4326 | } | ||||
4327 | |||||
4328 | if (SCS1.Second == ICK_Derived_To_Base) { | ||||
4329 | // -- conversion of C to B is better than conversion of C to A, | ||||
4330 | // -- binding of an expression of type C to a reference of type | ||||
4331 | // B& is better than binding an expression of type C to a | ||||
4332 | // reference of type A&, | ||||
4333 | if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && | ||||
4334 | !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { | ||||
4335 | if (S.IsDerivedFrom(Loc, ToType1, ToType2)) | ||||
4336 | return ImplicitConversionSequence::Better; | ||||
4337 | else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) | ||||
4338 | return ImplicitConversionSequence::Worse; | ||||
4339 | } | ||||
4340 | |||||
4341 | // -- conversion of B to A is better than conversion of C to A. | ||||
4342 | // -- binding of an expression of type B to a reference of type | ||||
4343 | // A& is better than binding an expression of type C to a | ||||
4344 | // reference of type A&, | ||||
4345 | if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && | ||||
4346 | S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { | ||||
4347 | if (S.IsDerivedFrom(Loc, FromType2, FromType1)) | ||||
4348 | return ImplicitConversionSequence::Better; | ||||
4349 | else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) | ||||
4350 | return ImplicitConversionSequence::Worse; | ||||
4351 | } | ||||
4352 | } | ||||
4353 | |||||
4354 | return ImplicitConversionSequence::Indistinguishable; | ||||
4355 | } | ||||
4356 | |||||
4357 | /// Determine whether the given type is valid, e.g., it is not an invalid | ||||
4358 | /// C++ class. | ||||
4359 | static bool isTypeValid(QualType T) { | ||||
4360 | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) | ||||
4361 | return !Record->isInvalidDecl(); | ||||
4362 | |||||
4363 | return true; | ||||
4364 | } | ||||
4365 | |||||
4366 | /// CompareReferenceRelationship - Compare the two types T1 and T2 to | ||||
4367 | /// determine whether they are reference-related, | ||||
4368 | /// reference-compatible, reference-compatible with added | ||||
4369 | /// qualification, or incompatible, for use in C++ initialization by | ||||
4370 | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference | ||||
4371 | /// type, and the first type (T1) is the pointee type of the reference | ||||
4372 | /// type being initialized. | ||||
4373 | Sema::ReferenceCompareResult | ||||
4374 | Sema::CompareReferenceRelationship(SourceLocation Loc, | ||||
4375 | QualType OrigT1, QualType OrigT2, | ||||
4376 | bool &DerivedToBase, | ||||
4377 | bool &ObjCConversion, | ||||
4378 | bool &ObjCLifetimeConversion, | ||||
4379 | bool &FunctionConversion) { | ||||
4380 | assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type" ) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4381, __PRETTY_FUNCTION__)) | ||||
4381 | "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type" ) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4381, __PRETTY_FUNCTION__)); | ||||
4382 | assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type" ) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4382, __PRETTY_FUNCTION__)); | ||||
4383 | |||||
4384 | QualType T1 = Context.getCanonicalType(OrigT1); | ||||
4385 | QualType T2 = Context.getCanonicalType(OrigT2); | ||||
4386 | Qualifiers T1Quals, T2Quals; | ||||
4387 | QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); | ||||
4388 | QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); | ||||
4389 | |||||
4390 | // C++ [dcl.init.ref]p4: | ||||
4391 | // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is | ||||
4392 | // reference-related to "cv2 T2" if T1 is the same type as T2, or | ||||
4393 | // T1 is a base class of T2. | ||||
4394 | DerivedToBase = false; | ||||
4395 | ObjCConversion = false; | ||||
4396 | ObjCLifetimeConversion = false; | ||||
4397 | QualType ConvertedT2; | ||||
4398 | if (UnqualT1 == UnqualT2) { | ||||
4399 | // Nothing to do. | ||||
4400 | } else if (isCompleteType(Loc, OrigT2) && | ||||
4401 | isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && | ||||
4402 | IsDerivedFrom(Loc, UnqualT2, UnqualT1)) | ||||
4403 | DerivedToBase = true; | ||||
4404 | else if (UnqualT1->isObjCObjectOrInterfaceType() && | ||||
4405 | UnqualT2->isObjCObjectOrInterfaceType() && | ||||
4406 | Context.canBindObjCObjectType(UnqualT1, UnqualT2)) | ||||
4407 | ObjCConversion = true; | ||||
4408 | else if (UnqualT2->isFunctionType() && | ||||
4409 | IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { | ||||
4410 | // C++1z [dcl.init.ref]p4: | ||||
4411 | // cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept | ||||
4412 | // function" and T1 is "function" | ||||
4413 | // | ||||
4414 | // We extend this to also apply to 'noreturn', so allow any function | ||||
4415 | // conversion between function types. | ||||
4416 | FunctionConversion = true; | ||||
4417 | return Ref_Compatible; | ||||
4418 | } else | ||||
4419 | return Ref_Incompatible; | ||||
4420 | |||||
4421 | // At this point, we know that T1 and T2 are reference-related (at | ||||
4422 | // least). | ||||
4423 | |||||
4424 | // If the type is an array type, promote the element qualifiers to the type | ||||
4425 | // for comparison. | ||||
4426 | if (isa<ArrayType>(T1) && T1Quals) | ||||
4427 | T1 = Context.getQualifiedType(UnqualT1, T1Quals); | ||||
4428 | if (isa<ArrayType>(T2) && T2Quals) | ||||
4429 | T2 = Context.getQualifiedType(UnqualT2, T2Quals); | ||||
4430 | |||||
4431 | // C++ [dcl.init.ref]p4: | ||||
4432 | // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is | ||||
4433 | // reference-related to T2 and cv1 is the same cv-qualification | ||||
4434 | // as, or greater cv-qualification than, cv2. For purposes of | ||||
4435 | // overload resolution, cases for which cv1 is greater | ||||
4436 | // cv-qualification than cv2 are identified as | ||||
4437 | // reference-compatible with added qualification (see 13.3.3.2). | ||||
4438 | // | ||||
4439 | // Note that we also require equivalence of Objective-C GC and address-space | ||||
4440 | // qualifiers when performing these computations, so that e.g., an int in | ||||
4441 | // address space 1 is not reference-compatible with an int in address | ||||
4442 | // space 2. | ||||
4443 | if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && | ||||
4444 | T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { | ||||
4445 | if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals)) | ||||
4446 | ObjCLifetimeConversion = true; | ||||
4447 | |||||
4448 | T1Quals.removeObjCLifetime(); | ||||
4449 | T2Quals.removeObjCLifetime(); | ||||
4450 | } | ||||
4451 | |||||
4452 | // MS compiler ignores __unaligned qualifier for references; do the same. | ||||
4453 | T1Quals.removeUnaligned(); | ||||
4454 | T2Quals.removeUnaligned(); | ||||
4455 | |||||
4456 | if (T1Quals.compatiblyIncludes(T2Quals)) | ||||
4457 | return Ref_Compatible; | ||||
4458 | else | ||||
4459 | return Ref_Related; | ||||
4460 | } | ||||
4461 | |||||
4462 | /// Look for a user-defined conversion to a value reference-compatible | ||||
4463 | /// with DeclType. Return true if something definite is found. | ||||
4464 | static bool | ||||
4465 | FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, | ||||
4466 | QualType DeclType, SourceLocation DeclLoc, | ||||
4467 | Expr *Init, QualType T2, bool AllowRvalues, | ||||
4468 | bool AllowExplicit) { | ||||
4469 | assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types." ) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4469, __PRETTY_FUNCTION__)); | ||||
4470 | CXXRecordDecl *T2RecordDecl | ||||
4471 | = dyn_cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); | ||||
4472 | |||||
4473 | OverloadCandidateSet CandidateSet( | ||||
4474 | DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); | ||||
4475 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); | ||||
4476 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | ||||
4477 | NamedDecl *D = *I; | ||||
4478 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); | ||||
4479 | if (isa<UsingShadowDecl>(D)) | ||||
4480 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | ||||
4481 | |||||
4482 | FunctionTemplateDecl *ConvTemplate | ||||
4483 | = dyn_cast<FunctionTemplateDecl>(D); | ||||
4484 | CXXConversionDecl *Conv; | ||||
4485 | if (ConvTemplate) | ||||
4486 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | ||||
4487 | else | ||||
4488 | Conv = cast<CXXConversionDecl>(D); | ||||
4489 | |||||
4490 | // If this is an explicit conversion, and we're not allowed to consider | ||||
4491 | // explicit conversions, skip it. | ||||
4492 | if (!AllowExplicit && Conv->isExplicit()) | ||||
4493 | continue; | ||||
4494 | |||||
4495 | if (AllowRvalues) { | ||||
4496 | bool DerivedToBase = false; | ||||
4497 | bool ObjCConversion = false; | ||||
4498 | bool ObjCLifetimeConversion = false; | ||||
4499 | bool FunctionConversion = false; | ||||
4500 | |||||
4501 | // If we are initializing an rvalue reference, don't permit conversion | ||||
4502 | // functions that return lvalues. | ||||
4503 | if (!ConvTemplate && DeclType->isRValueReferenceType()) { | ||||
4504 | const ReferenceType *RefType | ||||
4505 | = Conv->getConversionType()->getAs<LValueReferenceType>(); | ||||
4506 | if (RefType && !RefType->getPointeeType()->isFunctionType()) | ||||
4507 | continue; | ||||
4508 | } | ||||
4509 | |||||
4510 | if (!ConvTemplate && | ||||
4511 | S.CompareReferenceRelationship( | ||||
4512 | DeclLoc, | ||||
4513 | Conv->getConversionType() | ||||
4514 | .getNonReferenceType() | ||||
4515 | .getUnqualifiedType(), | ||||
4516 | DeclType.getNonReferenceType().getUnqualifiedType(), | ||||
4517 | DerivedToBase, ObjCConversion, ObjCLifetimeConversion, | ||||
4518 | FunctionConversion) == Sema::Ref_Incompatible) | ||||
4519 | continue; | ||||
4520 | } else { | ||||
4521 | // If the conversion function doesn't return a reference type, | ||||
4522 | // it can't be considered for this conversion. An rvalue reference | ||||
4523 | // is only acceptable if its referencee is a function type. | ||||
4524 | |||||
4525 | const ReferenceType *RefType = | ||||
4526 | Conv->getConversionType()->getAs<ReferenceType>(); | ||||
4527 | if (!RefType || | ||||
4528 | (!RefType->isLValueReferenceType() && | ||||
4529 | !RefType->getPointeeType()->isFunctionType())) | ||||
4530 | continue; | ||||
4531 | } | ||||
4532 | |||||
4533 | if (ConvTemplate) | ||||
4534 | S.AddTemplateConversionCandidate( | ||||
4535 | ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, | ||||
4536 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); | ||||
4537 | else | ||||
4538 | S.AddConversionCandidate( | ||||
4539 | Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, | ||||
4540 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); | ||||
4541 | } | ||||
4542 | |||||
4543 | bool HadMultipleCandidates = (CandidateSet.size() > 1); | ||||
4544 | |||||
4545 | OverloadCandidateSet::iterator Best; | ||||
4546 | switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { | ||||
4547 | case OR_Success: | ||||
4548 | // C++ [over.ics.ref]p1: | ||||
4549 | // | ||||
4550 | // [...] If the parameter binds directly to the result of | ||||
4551 | // applying a conversion function to the argument | ||||
4552 | // expression, the implicit conversion sequence is a | ||||
4553 | // user-defined conversion sequence (13.3.3.1.2), with the | ||||
4554 | // second standard conversion sequence either an identity | ||||
4555 | // conversion or, if the conversion function returns an | ||||
4556 | // entity of a type that is a derived class of the parameter | ||||
4557 | // type, a derived-to-base Conversion. | ||||
4558 | if (!Best->FinalConversion.DirectBinding) | ||||
4559 | return false; | ||||
4560 | |||||
4561 | ICS.setUserDefined(); | ||||
4562 | ICS.UserDefined.Before = Best->Conversions[0].Standard; | ||||
4563 | ICS.UserDefined.After = Best->FinalConversion; | ||||
4564 | ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; | ||||
4565 | ICS.UserDefined.ConversionFunction = Best->Function; | ||||
4566 | ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; | ||||
4567 | ICS.UserDefined.EllipsisConversion = false; | ||||
4568 | assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined .After.DirectBinding && "Expected a direct reference binding!" ) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4570, __PRETTY_FUNCTION__)) | ||||
4569 | ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined .After.DirectBinding && "Expected a direct reference binding!" ) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4570, __PRETTY_FUNCTION__)) | ||||
4570 | "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined .After.DirectBinding && "Expected a direct reference binding!" ) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4570, __PRETTY_FUNCTION__)); | ||||
4571 | return true; | ||||
4572 | |||||
4573 | case OR_Ambiguous: | ||||
4574 | ICS.setAmbiguous(); | ||||
4575 | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); | ||||
4576 | Cand != CandidateSet.end(); ++Cand) | ||||
4577 | if (Cand->Best) | ||||
4578 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); | ||||
4579 | return true; | ||||
4580 | |||||
4581 | case OR_No_Viable_Function: | ||||
4582 | case OR_Deleted: | ||||
4583 | // There was no suitable conversion, or we found a deleted | ||||
4584 | // conversion; continue with other checks. | ||||
4585 | return false; | ||||
4586 | } | ||||
4587 | |||||
4588 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4588); | ||||
4589 | } | ||||
4590 | |||||
4591 | /// Compute an implicit conversion sequence for reference | ||||
4592 | /// initialization. | ||||
4593 | static ImplicitConversionSequence | ||||
4594 | TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, | ||||
4595 | SourceLocation DeclLoc, | ||||
4596 | bool SuppressUserConversions, | ||||
4597 | bool AllowExplicit) { | ||||
4598 | assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference" ) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4598, __PRETTY_FUNCTION__)); | ||||
4599 | |||||
4600 | // Most paths end in a failed conversion. | ||||
4601 | ImplicitConversionSequence ICS; | ||||
4602 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | ||||
4603 | |||||
4604 | QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); | ||||
4605 | QualType T2 = Init->getType(); | ||||
4606 | |||||
4607 | // If the initializer is the address of an overloaded function, try | ||||
4608 | // to resolve the overloaded function. If all goes well, T2 is the | ||||
4609 | // type of the resulting function. | ||||
4610 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | ||||
4611 | DeclAccessPair Found; | ||||
4612 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, | ||||
4613 | false, Found)) | ||||
4614 | T2 = Fn->getType(); | ||||
4615 | } | ||||
4616 | |||||
4617 | // Compute some basic properties of the types and the initializer. | ||||
4618 | bool isRValRef = DeclType->isRValueReferenceType(); | ||||
4619 | bool DerivedToBase = false; | ||||
4620 | bool ObjCConversion = false; | ||||
4621 | bool ObjCLifetimeConversion = false; | ||||
4622 | bool FunctionConversion = false; | ||||
4623 | Expr::Classification InitCategory = Init->Classify(S.Context); | ||||
4624 | Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship( | ||||
4625 | DeclLoc, T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion, | ||||
4626 | FunctionConversion); | ||||
4627 | |||||
4628 | // C++0x [dcl.init.ref]p5: | ||||
4629 | // A reference to type "cv1 T1" is initialized by an expression | ||||
4630 | // of type "cv2 T2" as follows: | ||||
4631 | |||||
4632 | // -- If reference is an lvalue reference and the initializer expression | ||||
4633 | if (!isRValRef) { | ||||
4634 | // -- is an lvalue (but is not a bit-field), and "cv1 T1" is | ||||
4635 | // reference-compatible with "cv2 T2," or | ||||
4636 | // | ||||
4637 | // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. | ||||
4638 | if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { | ||||
4639 | // C++ [over.ics.ref]p1: | ||||
4640 | // When a parameter of reference type binds directly (8.5.3) | ||||
4641 | // to an argument expression, the implicit conversion sequence | ||||
4642 | // is the identity conversion, unless the argument expression | ||||
4643 | // has a type that is a derived class of the parameter type, | ||||
4644 | // in which case the implicit conversion sequence is a | ||||
4645 | // derived-to-base Conversion (13.3.3.1). | ||||
4646 | ICS.setStandard(); | ||||
4647 | ICS.Standard.First = ICK_Identity; | ||||
4648 | ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base | ||||
4649 | : ObjCConversion? ICK_Compatible_Conversion | ||||
4650 | : ICK_Identity; | ||||
4651 | ICS.Standard.Third = ICK_Identity; | ||||
4652 | ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); | ||||
4653 | ICS.Standard.setToType(0, T2); | ||||
4654 | ICS.Standard.setToType(1, T1); | ||||
4655 | ICS.Standard.setToType(2, T1); | ||||
4656 | ICS.Standard.ReferenceBinding = true; | ||||
4657 | ICS.Standard.DirectBinding = true; | ||||
4658 | ICS.Standard.IsLvalueReference = !isRValRef; | ||||
4659 | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); | ||||
4660 | ICS.Standard.BindsToRvalue = false; | ||||
4661 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | ||||
4662 | ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; | ||||
4663 | ICS.Standard.CopyConstructor = nullptr; | ||||
4664 | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; | ||||
4665 | |||||
4666 | // Nothing more to do: the inaccessibility/ambiguity check for | ||||
4667 | // derived-to-base conversions is suppressed when we're | ||||
4668 | // computing the implicit conversion sequence (C++ | ||||
4669 | // [over.best.ics]p2). | ||||
4670 | return ICS; | ||||
4671 | } | ||||
4672 | |||||
4673 | // -- has a class type (i.e., T2 is a class type), where T1 is | ||||
4674 | // not reference-related to T2, and can be implicitly | ||||
4675 | // converted to an lvalue of type "cv3 T3," where "cv1 T1" | ||||
4676 | // is reference-compatible with "cv3 T3" 92) (this | ||||
4677 | // conversion is selected by enumerating the applicable | ||||
4678 | // conversion functions (13.3.1.6) and choosing the best | ||||
4679 | // one through overload resolution (13.3)), | ||||
4680 | if (!SuppressUserConversions && T2->isRecordType() && | ||||
4681 | S.isCompleteType(DeclLoc, T2) && | ||||
4682 | RefRelationship == Sema::Ref_Incompatible) { | ||||
4683 | if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, | ||||
4684 | Init, T2, /*AllowRvalues=*/false, | ||||
4685 | AllowExplicit)) | ||||
4686 | return ICS; | ||||
4687 | } | ||||
4688 | } | ||||
4689 | |||||
4690 | // -- Otherwise, the reference shall be an lvalue reference to a | ||||
4691 | // non-volatile const type (i.e., cv1 shall be const), or the reference | ||||
4692 | // shall be an rvalue reference. | ||||
4693 | if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) | ||||
4694 | return ICS; | ||||
4695 | |||||
4696 | // -- If the initializer expression | ||||
4697 | // | ||||
4698 | // -- is an xvalue, class prvalue, array prvalue or function | ||||
4699 | // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or | ||||
4700 | if (RefRelationship == Sema::Ref_Compatible && | ||||
4701 | (InitCategory.isXValue() || | ||||
4702 | (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || | ||||
4703 | (InitCategory.isLValue() && T2->isFunctionType()))) { | ||||
4704 | ICS.setStandard(); | ||||
4705 | ICS.Standard.First = ICK_Identity; | ||||
4706 | ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base | ||||
4707 | : ObjCConversion? ICK_Compatible_Conversion | ||||
4708 | : ICK_Identity; | ||||
4709 | ICS.Standard.Third = ICK_Identity; | ||||
4710 | ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); | ||||
4711 | ICS.Standard.setToType(0, T2); | ||||
4712 | ICS.Standard.setToType(1, T1); | ||||
4713 | ICS.Standard.setToType(2, T1); | ||||
4714 | ICS.Standard.ReferenceBinding = true; | ||||
4715 | // In C++0x, this is always a direct binding. In C++98/03, it's a direct | ||||
4716 | // binding unless we're binding to a class prvalue. | ||||
4717 | // Note: Although xvalues wouldn't normally show up in C++98/03 code, we | ||||
4718 | // allow the use of rvalue references in C++98/03 for the benefit of | ||||
4719 | // standard library implementors; therefore, we need the xvalue check here. | ||||
4720 | ICS.Standard.DirectBinding = | ||||
4721 | S.getLangOpts().CPlusPlus11 || | ||||
4722 | !(InitCategory.isPRValue() || T2->isRecordType()); | ||||
4723 | ICS.Standard.IsLvalueReference = !isRValRef; | ||||
4724 | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); | ||||
4725 | ICS.Standard.BindsToRvalue = InitCategory.isRValue(); | ||||
4726 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | ||||
4727 | ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; | ||||
4728 | ICS.Standard.CopyConstructor = nullptr; | ||||
4729 | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; | ||||
4730 | return ICS; | ||||
4731 | } | ||||
4732 | |||||
4733 | // -- has a class type (i.e., T2 is a class type), where T1 is not | ||||
4734 | // reference-related to T2, and can be implicitly converted to | ||||
4735 | // an xvalue, class prvalue, or function lvalue of type | ||||
4736 | // "cv3 T3", where "cv1 T1" is reference-compatible with | ||||
4737 | // "cv3 T3", | ||||
4738 | // | ||||
4739 | // then the reference is bound to the value of the initializer | ||||
4740 | // expression in the first case and to the result of the conversion | ||||
4741 | // in the second case (or, in either case, to an appropriate base | ||||
4742 | // class subobject). | ||||
4743 | if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | ||||
4744 | T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && | ||||
4745 | FindConversionForRefInit(S, ICS, DeclType, DeclLoc, | ||||
4746 | Init, T2, /*AllowRvalues=*/true, | ||||
4747 | AllowExplicit)) { | ||||
4748 | // In the second case, if the reference is an rvalue reference | ||||
4749 | // and the second standard conversion sequence of the | ||||
4750 | // user-defined conversion sequence includes an lvalue-to-rvalue | ||||
4751 | // conversion, the program is ill-formed. | ||||
4752 | if (ICS.isUserDefined() && isRValRef && | ||||
4753 | ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) | ||||
4754 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | ||||
4755 | |||||
4756 | return ICS; | ||||
4757 | } | ||||
4758 | |||||
4759 | // A temporary of function type cannot be created; don't even try. | ||||
4760 | if (T1->isFunctionType()) | ||||
4761 | return ICS; | ||||
4762 | |||||
4763 | // -- Otherwise, a temporary of type "cv1 T1" is created and | ||||
4764 | // initialized from the initializer expression using the | ||||
4765 | // rules for a non-reference copy initialization (8.5). The | ||||
4766 | // reference is then bound to the temporary. If T1 is | ||||
4767 | // reference-related to T2, cv1 must be the same | ||||
4768 | // cv-qualification as, or greater cv-qualification than, | ||||
4769 | // cv2; otherwise, the program is ill-formed. | ||||
4770 | if (RefRelationship == Sema::Ref_Related) { | ||||
4771 | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then | ||||
4772 | // we would be reference-compatible or reference-compatible with | ||||
4773 | // added qualification. But that wasn't the case, so the reference | ||||
4774 | // initialization fails. | ||||
4775 | // | ||||
4776 | // Note that we only want to check address spaces and cvr-qualifiers here. | ||||
4777 | // ObjC GC, lifetime and unaligned qualifiers aren't important. | ||||
4778 | Qualifiers T1Quals = T1.getQualifiers(); | ||||
4779 | Qualifiers T2Quals = T2.getQualifiers(); | ||||
4780 | T1Quals.removeObjCGCAttr(); | ||||
4781 | T1Quals.removeObjCLifetime(); | ||||
4782 | T2Quals.removeObjCGCAttr(); | ||||
4783 | T2Quals.removeObjCLifetime(); | ||||
4784 | // MS compiler ignores __unaligned qualifier for references; do the same. | ||||
4785 | T1Quals.removeUnaligned(); | ||||
4786 | T2Quals.removeUnaligned(); | ||||
4787 | if (!T1Quals.compatiblyIncludes(T2Quals)) | ||||
4788 | return ICS; | ||||
4789 | } | ||||
4790 | |||||
4791 | // If at least one of the types is a class type, the types are not | ||||
4792 | // related, and we aren't allowed any user conversions, the | ||||
4793 | // reference binding fails. This case is important for breaking | ||||
4794 | // recursion, since TryImplicitConversion below will attempt to | ||||
4795 | // create a temporary through the use of a copy constructor. | ||||
4796 | if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | ||||
4797 | (T1->isRecordType() || T2->isRecordType())) | ||||
4798 | return ICS; | ||||
4799 | |||||
4800 | // If T1 is reference-related to T2 and the reference is an rvalue | ||||
4801 | // reference, the initializer expression shall not be an lvalue. | ||||
4802 | if (RefRelationship >= Sema::Ref_Related && | ||||
4803 | isRValRef && Init->Classify(S.Context).isLValue()) | ||||
4804 | return ICS; | ||||
4805 | |||||
4806 | // C++ [over.ics.ref]p2: | ||||
4807 | // When a parameter of reference type is not bound directly to | ||||
4808 | // an argument expression, the conversion sequence is the one | ||||
4809 | // required to convert the argument expression to the | ||||
4810 | // underlying type of the reference according to | ||||
4811 | // 13.3.3.1. Conceptually, this conversion sequence corresponds | ||||
4812 | // to copy-initializing a temporary of the underlying type with | ||||
4813 | // the argument expression. Any difference in top-level | ||||
4814 | // cv-qualification is subsumed by the initialization itself | ||||
4815 | // and does not constitute a conversion. | ||||
4816 | ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, | ||||
4817 | /*AllowExplicit=*/false, | ||||
4818 | /*InOverloadResolution=*/false, | ||||
4819 | /*CStyle=*/false, | ||||
4820 | /*AllowObjCWritebackConversion=*/false, | ||||
4821 | /*AllowObjCConversionOnExplicit=*/false); | ||||
4822 | |||||
4823 | // Of course, that's still a reference binding. | ||||
4824 | if (ICS.isStandard()) { | ||||
4825 | ICS.Standard.ReferenceBinding = true; | ||||
4826 | ICS.Standard.IsLvalueReference = !isRValRef; | ||||
4827 | ICS.Standard.BindsToFunctionLvalue = false; | ||||
4828 | ICS.Standard.BindsToRvalue = true; | ||||
4829 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; | ||||
4830 | ICS.Standard.ObjCLifetimeConversionBinding = false; | ||||
4831 | } else if (ICS.isUserDefined()) { | ||||
4832 | const ReferenceType *LValRefType = | ||||
4833 | ICS.UserDefined.ConversionFunction->getReturnType() | ||||
4834 | ->getAs<LValueReferenceType>(); | ||||
4835 | |||||
4836 | // C++ [over.ics.ref]p3: | ||||
4837 | // Except for an implicit object parameter, for which see 13.3.1, a | ||||
4838 | // standard conversion sequence cannot be formed if it requires [...] | ||||
4839 | // binding an rvalue reference to an lvalue other than a function | ||||
4840 | // lvalue. | ||||
4841 | // Note that the function case is not possible here. | ||||
4842 | if (DeclType->isRValueReferenceType() && LValRefType) { | ||||
4843 | // FIXME: This is the wrong BadConversionSequence. The problem is binding | ||||
4844 | // an rvalue reference to a (non-function) lvalue, not binding an lvalue | ||||
4845 | // reference to an rvalue! | ||||
4846 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); | ||||
4847 | return ICS; | ||||
4848 | } | ||||
4849 | |||||
4850 | ICS.UserDefined.After.ReferenceBinding = true; | ||||
4851 | ICS.UserDefined.After.IsLvalueReference = !isRValRef; | ||||
4852 | ICS.UserDefined.After.BindsToFunctionLvalue = false; | ||||
4853 | ICS.UserDefined.After.BindsToRvalue = !LValRefType; | ||||
4854 | ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; | ||||
4855 | ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; | ||||
4856 | } | ||||
4857 | |||||
4858 | return ICS; | ||||
4859 | } | ||||
4860 | |||||
4861 | static ImplicitConversionSequence | ||||
4862 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | ||||
4863 | bool SuppressUserConversions, | ||||
4864 | bool InOverloadResolution, | ||||
4865 | bool AllowObjCWritebackConversion, | ||||
4866 | bool AllowExplicit = false); | ||||
4867 | |||||
4868 | /// TryListConversion - Try to copy-initialize a value of type ToType from the | ||||
4869 | /// initializer list From. | ||||
4870 | static ImplicitConversionSequence | ||||
4871 | TryListConversion(Sema &S, InitListExpr *From, QualType ToType, | ||||
4872 | bool SuppressUserConversions, | ||||
4873 | bool InOverloadResolution, | ||||
4874 | bool AllowObjCWritebackConversion) { | ||||
4875 | // C++11 [over.ics.list]p1: | ||||
4876 | // When an argument is an initializer list, it is not an expression and | ||||
4877 | // special rules apply for converting it to a parameter type. | ||||
4878 | |||||
4879 | ImplicitConversionSequence Result; | ||||
4880 | Result.setBad(BadConversionSequence::no_conversion, From, ToType); | ||||
4881 | |||||
4882 | // We need a complete type for what follows. Incomplete types can never be | ||||
4883 | // initialized from init lists. | ||||
4884 | if (!S.isCompleteType(From->getBeginLoc(), ToType)) | ||||
4885 | return Result; | ||||
4886 | |||||
4887 | // Per DR1467: | ||||
4888 | // If the parameter type is a class X and the initializer list has a single | ||||
4889 | // element of type cv U, where U is X or a class derived from X, the | ||||
4890 | // implicit conversion sequence is the one required to convert the element | ||||
4891 | // to the parameter type. | ||||
4892 | // | ||||
4893 | // Otherwise, if the parameter type is a character array [... ] | ||||
4894 | // and the initializer list has a single element that is an | ||||
4895 | // appropriately-typed string literal (8.5.2 [dcl.init.string]), the | ||||
4896 | // implicit conversion sequence is the identity conversion. | ||||
4897 | if (From->getNumInits() == 1) { | ||||
4898 | if (ToType->isRecordType()) { | ||||
4899 | QualType InitType = From->getInit(0)->getType(); | ||||
4900 | if (S.Context.hasSameUnqualifiedType(InitType, ToType) || | ||||
4901 | S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) | ||||
4902 | return TryCopyInitialization(S, From->getInit(0), ToType, | ||||
4903 | SuppressUserConversions, | ||||
4904 | InOverloadResolution, | ||||
4905 | AllowObjCWritebackConversion); | ||||
4906 | } | ||||
4907 | // FIXME: Check the other conditions here: array of character type, | ||||
4908 | // initializer is a string literal. | ||||
4909 | if (ToType->isArrayType()) { | ||||
4910 | InitializedEntity Entity = | ||||
4911 | InitializedEntity::InitializeParameter(S.Context, ToType, | ||||
4912 | /*Consumed=*/false); | ||||
4913 | if (S.CanPerformCopyInitialization(Entity, From)) { | ||||
4914 | Result.setStandard(); | ||||
4915 | Result.Standard.setAsIdentityConversion(); | ||||
4916 | Result.Standard.setFromType(ToType); | ||||
4917 | Result.Standard.setAllToTypes(ToType); | ||||
4918 | return Result; | ||||
4919 | } | ||||
4920 | } | ||||
4921 | } | ||||
4922 | |||||
4923 | // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). | ||||
4924 | // C++11 [over.ics.list]p2: | ||||
4925 | // If the parameter type is std::initializer_list<X> or "array of X" and | ||||
4926 | // all the elements can be implicitly converted to X, the implicit | ||||
4927 | // conversion sequence is the worst conversion necessary to convert an | ||||
4928 | // element of the list to X. | ||||
4929 | // | ||||
4930 | // C++14 [over.ics.list]p3: | ||||
4931 | // Otherwise, if the parameter type is "array of N X", if the initializer | ||||
4932 | // list has exactly N elements or if it has fewer than N elements and X is | ||||
4933 | // default-constructible, and if all the elements of the initializer list | ||||
4934 | // can be implicitly converted to X, the implicit conversion sequence is | ||||
4935 | // the worst conversion necessary to convert an element of the list to X. | ||||
4936 | // | ||||
4937 | // FIXME: We're missing a lot of these checks. | ||||
4938 | bool toStdInitializerList = false; | ||||
4939 | QualType X; | ||||
4940 | if (ToType->isArrayType()) | ||||
4941 | X = S.Context.getAsArrayType(ToType)->getElementType(); | ||||
4942 | else | ||||
4943 | toStdInitializerList = S.isStdInitializerList(ToType, &X); | ||||
4944 | if (!X.isNull()) { | ||||
4945 | for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { | ||||
4946 | Expr *Init = From->getInit(i); | ||||
4947 | ImplicitConversionSequence ICS = | ||||
4948 | TryCopyInitialization(S, Init, X, SuppressUserConversions, | ||||
4949 | InOverloadResolution, | ||||
4950 | AllowObjCWritebackConversion); | ||||
4951 | // If a single element isn't convertible, fail. | ||||
4952 | if (ICS.isBad()) { | ||||
4953 | Result = ICS; | ||||
4954 | break; | ||||
4955 | } | ||||
4956 | // Otherwise, look for the worst conversion. | ||||
4957 | if (Result.isBad() || CompareImplicitConversionSequences( | ||||
4958 | S, From->getBeginLoc(), ICS, Result) == | ||||
4959 | ImplicitConversionSequence::Worse) | ||||
4960 | Result = ICS; | ||||
4961 | } | ||||
4962 | |||||
4963 | // For an empty list, we won't have computed any conversion sequence. | ||||
4964 | // Introduce the identity conversion sequence. | ||||
4965 | if (From->getNumInits() == 0) { | ||||
4966 | Result.setStandard(); | ||||
4967 | Result.Standard.setAsIdentityConversion(); | ||||
4968 | Result.Standard.setFromType(ToType); | ||||
4969 | Result.Standard.setAllToTypes(ToType); | ||||
4970 | } | ||||
4971 | |||||
4972 | Result.setStdInitializerListElement(toStdInitializerList); | ||||
4973 | return Result; | ||||
4974 | } | ||||
4975 | |||||
4976 | // C++14 [over.ics.list]p4: | ||||
4977 | // C++11 [over.ics.list]p3: | ||||
4978 | // Otherwise, if the parameter is a non-aggregate class X and overload | ||||
4979 | // resolution chooses a single best constructor [...] the implicit | ||||
4980 | // conversion sequence is a user-defined conversion sequence. If multiple | ||||
4981 | // constructors are viable but none is better than the others, the | ||||
4982 | // implicit conversion sequence is a user-defined conversion sequence. | ||||
4983 | if (ToType->isRecordType() && !ToType->isAggregateType()) { | ||||
4984 | // This function can deal with initializer lists. | ||||
4985 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, | ||||
4986 | /*AllowExplicit=*/false, | ||||
4987 | InOverloadResolution, /*CStyle=*/false, | ||||
4988 | AllowObjCWritebackConversion, | ||||
4989 | /*AllowObjCConversionOnExplicit=*/false); | ||||
4990 | } | ||||
4991 | |||||
4992 | // C++14 [over.ics.list]p5: | ||||
4993 | // C++11 [over.ics.list]p4: | ||||
4994 | // Otherwise, if the parameter has an aggregate type which can be | ||||
4995 | // initialized from the initializer list [...] the implicit conversion | ||||
4996 | // sequence is a user-defined conversion sequence. | ||||
4997 | if (ToType->isAggregateType()) { | ||||
4998 | // Type is an aggregate, argument is an init list. At this point it comes | ||||
4999 | // down to checking whether the initialization works. | ||||
5000 | // FIXME: Find out whether this parameter is consumed or not. | ||||
5001 | InitializedEntity Entity = | ||||
5002 | InitializedEntity::InitializeParameter(S.Context, ToType, | ||||
5003 | /*Consumed=*/false); | ||||
5004 | if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, | ||||
5005 | From)) { | ||||
5006 | Result.setUserDefined(); | ||||
5007 | Result.UserDefined.Before.setAsIdentityConversion(); | ||||
5008 | // Initializer lists don't have a type. | ||||
5009 | Result.UserDefined.Before.setFromType(QualType()); | ||||
5010 | Result.UserDefined.Before.setAllToTypes(QualType()); | ||||
5011 | |||||
5012 | Result.UserDefined.After.setAsIdentityConversion(); | ||||
5013 | Result.UserDefined.After.setFromType(ToType); | ||||
5014 | Result.UserDefined.After.setAllToTypes(ToType); | ||||
5015 | Result.UserDefined.ConversionFunction = nullptr; | ||||
5016 | } | ||||
5017 | return Result; | ||||
5018 | } | ||||
5019 | |||||
5020 | // C++14 [over.ics.list]p6: | ||||
5021 | // C++11 [over.ics.list]p5: | ||||
5022 | // Otherwise, if the parameter is a reference, see 13.3.3.1.4. | ||||
5023 | if (ToType->isReferenceType()) { | ||||
5024 | // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't | ||||
5025 | // mention initializer lists in any way. So we go by what list- | ||||
5026 | // initialization would do and try to extrapolate from that. | ||||
5027 | |||||
5028 | QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); | ||||
5029 | |||||
5030 | // If the initializer list has a single element that is reference-related | ||||
5031 | // to the parameter type, we initialize the reference from that. | ||||
5032 | if (From->getNumInits() == 1) { | ||||
5033 | Expr *Init = From->getInit(0); | ||||
5034 | |||||
5035 | QualType T2 = Init->getType(); | ||||
5036 | |||||
5037 | // If the initializer is the address of an overloaded function, try | ||||
5038 | // to resolve the overloaded function. If all goes well, T2 is the | ||||
5039 | // type of the resulting function. | ||||
5040 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | ||||
5041 | DeclAccessPair Found; | ||||
5042 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( | ||||
5043 | Init, ToType, false, Found)) | ||||
5044 | T2 = Fn->getType(); | ||||
5045 | } | ||||
5046 | |||||
5047 | // Compute some basic properties of the types and the initializer. | ||||
5048 | bool dummy1 = false; | ||||
5049 | bool dummy2 = false; | ||||
5050 | bool dummy3 = false; | ||||
5051 | bool dummy4 = false; | ||||
5052 | Sema::ReferenceCompareResult RefRelationship = | ||||
5053 | S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2, dummy1, | ||||
5054 | dummy2, dummy3, dummy4); | ||||
5055 | |||||
5056 | if (RefRelationship >= Sema::Ref_Related) { | ||||
5057 | return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), | ||||
5058 | SuppressUserConversions, | ||||
5059 | /*AllowExplicit=*/false); | ||||
5060 | } | ||||
5061 | } | ||||
5062 | |||||
5063 | // Otherwise, we bind the reference to a temporary created from the | ||||
5064 | // initializer list. | ||||
5065 | Result = TryListConversion(S, From, T1, SuppressUserConversions, | ||||
5066 | InOverloadResolution, | ||||
5067 | AllowObjCWritebackConversion); | ||||
5068 | if (Result.isFailure()) | ||||
5069 | return Result; | ||||
5070 | assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion." ) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5071, __PRETTY_FUNCTION__)) | ||||
5071 | "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion." ) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5071, __PRETTY_FUNCTION__)); | ||||
5072 | |||||
5073 | // Can we even bind to a temporary? | ||||
5074 | if (ToType->isRValueReferenceType() || | ||||
5075 | (T1.isConstQualified() && !T1.isVolatileQualified())) { | ||||
5076 | StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : | ||||
5077 | Result.UserDefined.After; | ||||
5078 | SCS.ReferenceBinding = true; | ||||
5079 | SCS.IsLvalueReference = ToType->isLValueReferenceType(); | ||||
5080 | SCS.BindsToRvalue = true; | ||||
5081 | SCS.BindsToFunctionLvalue = false; | ||||
5082 | SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; | ||||
5083 | SCS.ObjCLifetimeConversionBinding = false; | ||||
5084 | } else | ||||
5085 | Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, | ||||
5086 | From, ToType); | ||||
5087 | return Result; | ||||
5088 | } | ||||
5089 | |||||
5090 | // C++14 [over.ics.list]p7: | ||||
5091 | // C++11 [over.ics.list]p6: | ||||
5092 | // Otherwise, if the parameter type is not a class: | ||||
5093 | if (!ToType->isRecordType()) { | ||||
5094 | // - if the initializer list has one element that is not itself an | ||||
5095 | // initializer list, the implicit conversion sequence is the one | ||||
5096 | // required to convert the element to the parameter type. | ||||
5097 | unsigned NumInits = From->getNumInits(); | ||||
5098 | if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) | ||||
5099 | Result = TryCopyInitialization(S, From->getInit(0), ToType, | ||||
5100 | SuppressUserConversions, | ||||
5101 | InOverloadResolution, | ||||
5102 | AllowObjCWritebackConversion); | ||||
5103 | // - if the initializer list has no elements, the implicit conversion | ||||
5104 | // sequence is the identity conversion. | ||||
5105 | else if (NumInits == 0) { | ||||
5106 | Result.setStandard(); | ||||
5107 | Result.Standard.setAsIdentityConversion(); | ||||
5108 | Result.Standard.setFromType(ToType); | ||||
5109 | Result.Standard.setAllToTypes(ToType); | ||||
5110 | } | ||||
5111 | return Result; | ||||
5112 | } | ||||
5113 | |||||
5114 | // C++14 [over.ics.list]p8: | ||||
5115 | // C++11 [over.ics.list]p7: | ||||
5116 | // In all cases other than those enumerated above, no conversion is possible | ||||
5117 | return Result; | ||||
5118 | } | ||||
5119 | |||||
5120 | /// TryCopyInitialization - Try to copy-initialize a value of type | ||||
5121 | /// ToType from the expression From. Return the implicit conversion | ||||
5122 | /// sequence required to pass this argument, which may be a bad | ||||
5123 | /// conversion sequence (meaning that the argument cannot be passed to | ||||
5124 | /// a parameter of this type). If @p SuppressUserConversions, then we | ||||
5125 | /// do not permit any user-defined conversion sequences. | ||||
5126 | static ImplicitConversionSequence | ||||
5127 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | ||||
5128 | bool SuppressUserConversions, | ||||
5129 | bool InOverloadResolution, | ||||
5130 | bool AllowObjCWritebackConversion, | ||||
5131 | bool AllowExplicit) { | ||||
5132 | if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) | ||||
5133 | return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, | ||||
5134 | InOverloadResolution,AllowObjCWritebackConversion); | ||||
5135 | |||||
5136 | if (ToType->isReferenceType()) | ||||
5137 | return TryReferenceInit(S, From, ToType, | ||||
5138 | /*FIXME:*/ From->getBeginLoc(), | ||||
5139 | SuppressUserConversions, AllowExplicit); | ||||
5140 | |||||
5141 | return TryImplicitConversion(S, From, ToType, | ||||
5142 | SuppressUserConversions, | ||||
5143 | /*AllowExplicit=*/false, | ||||
5144 | InOverloadResolution, | ||||
5145 | /*CStyle=*/false, | ||||
5146 | AllowObjCWritebackConversion, | ||||
5147 | /*AllowObjCConversionOnExplicit=*/false); | ||||
5148 | } | ||||
5149 | |||||
5150 | static bool TryCopyInitialization(const CanQualType FromQTy, | ||||
5151 | const CanQualType ToQTy, | ||||
5152 | Sema &S, | ||||
5153 | SourceLocation Loc, | ||||
5154 | ExprValueKind FromVK) { | ||||
5155 | OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); | ||||
5156 | ImplicitConversionSequence ICS = | ||||
5157 | TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); | ||||
5158 | |||||
5159 | return !ICS.isBad(); | ||||
5160 | } | ||||
5161 | |||||
5162 | /// TryObjectArgumentInitialization - Try to initialize the object | ||||
5163 | /// parameter of the given member function (@c Method) from the | ||||
5164 | /// expression @p From. | ||||
5165 | static ImplicitConversionSequence | ||||
5166 | TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, | ||||
5167 | Expr::Classification FromClassification, | ||||
5168 | CXXMethodDecl *Method, | ||||
5169 | CXXRecordDecl *ActingContext) { | ||||
5170 | QualType ClassType = S.Context.getTypeDeclType(ActingContext); | ||||
5171 | // [class.dtor]p2: A destructor can be invoked for a const, volatile or | ||||
5172 | // const volatile object. | ||||
5173 | Qualifiers Quals = Method->getMethodQualifiers(); | ||||
5174 | if (isa<CXXDestructorDecl>(Method)) { | ||||
5175 | Quals.addConst(); | ||||
5176 | Quals.addVolatile(); | ||||
5177 | } | ||||
5178 | |||||
5179 | QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); | ||||
5180 | |||||
5181 | // Set up the conversion sequence as a "bad" conversion, to allow us | ||||
5182 | // to exit early. | ||||
5183 | ImplicitConversionSequence ICS; | ||||
5184 | |||||
5185 | // We need to have an object of class type. | ||||
5186 | if (const PointerType *PT = FromType->getAs<PointerType>()) { | ||||
5187 | FromType = PT->getPointeeType(); | ||||
5188 | |||||
5189 | // When we had a pointer, it's implicitly dereferenced, so we | ||||
5190 | // better have an lvalue. | ||||
5191 | assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0 ) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5191, __PRETTY_FUNCTION__)); | ||||
5192 | } | ||||
5193 | |||||
5194 | assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) : __assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5194, __PRETTY_FUNCTION__)); | ||||
5195 | |||||
5196 | // C++0x [over.match.funcs]p4: | ||||
5197 | // For non-static member functions, the type of the implicit object | ||||
5198 | // parameter is | ||||
5199 | // | ||||
5200 | // - "lvalue reference to cv X" for functions declared without a | ||||
5201 | // ref-qualifier or with the & ref-qualifier | ||||
5202 | // - "rvalue reference to cv X" for functions declared with the && | ||||
5203 | // ref-qualifier | ||||
5204 | // | ||||
5205 | // where X is the class of which the function is a member and cv is the | ||||
5206 | // cv-qualification on the member function declaration. | ||||
5207 | // | ||||
5208 | // However, when finding an implicit conversion sequence for the argument, we | ||||
5209 | // are not allowed to perform user-defined conversions | ||||
5210 | // (C++ [over.match.funcs]p5). We perform a simplified version of | ||||
5211 | // reference binding here, that allows class rvalues to bind to | ||||
5212 | // non-constant references. | ||||
5213 | |||||
5214 | // First check the qualifiers. | ||||
5215 | QualType FromTypeCanon = S.Context.getCanonicalType(FromType); | ||||
5216 | if (ImplicitParamType.getCVRQualifiers() | ||||
5217 | != FromTypeCanon.getLocalCVRQualifiers() && | ||||
5218 | !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { | ||||
5219 | ICS.setBad(BadConversionSequence::bad_qualifiers, | ||||
5220 | FromType, ImplicitParamType); | ||||
5221 | return ICS; | ||||
5222 | } | ||||
5223 | |||||
5224 | if (FromTypeCanon.getQualifiers().hasAddressSpace()) { | ||||
5225 | Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); | ||||
5226 | Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); | ||||
5227 | if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { | ||||
5228 | ICS.setBad(BadConversionSequence::bad_qualifiers, | ||||
5229 | FromType, ImplicitParamType); | ||||
5230 | return ICS; | ||||
5231 | } | ||||
5232 | } | ||||
5233 | |||||
5234 | // Check that we have either the same type or a derived type. It | ||||
5235 | // affects the conversion rank. | ||||
5236 | QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); | ||||
5237 | ImplicitConversionKind SecondKind; | ||||
5238 | if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { | ||||
5239 | SecondKind = ICK_Identity; | ||||
5240 | } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) | ||||
5241 | SecondKind = ICK_Derived_To_Base; | ||||
5242 | else { | ||||
5243 | ICS.setBad(BadConversionSequence::unrelated_class, | ||||
5244 | FromType, ImplicitParamType); | ||||
5245 | return ICS; | ||||
5246 | } | ||||
5247 | |||||
5248 | // Check the ref-qualifier. | ||||
5249 | switch (Method->getRefQualifier()) { | ||||
5250 | case RQ_None: | ||||
5251 | // Do nothing; we don't care about lvalueness or rvalueness. | ||||
5252 | break; | ||||
5253 | |||||
5254 | case RQ_LValue: | ||||
5255 | if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { | ||||
5256 | // non-const lvalue reference cannot bind to an rvalue | ||||
5257 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, | ||||
5258 | ImplicitParamType); | ||||
5259 | return ICS; | ||||
5260 | } | ||||
5261 | break; | ||||
5262 | |||||
5263 | case RQ_RValue: | ||||
5264 | if (!FromClassification.isRValue()) { | ||||
5265 | // rvalue reference cannot bind to an lvalue | ||||
5266 | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, | ||||
5267 | ImplicitParamType); | ||||
5268 | return ICS; | ||||
5269 | } | ||||
5270 | break; | ||||
5271 | } | ||||
5272 | |||||
5273 | // Success. Mark this as a reference binding. | ||||
5274 | ICS.setStandard(); | ||||
5275 | ICS.Standard.setAsIdentityConversion(); | ||||
5276 | ICS.Standard.Second = SecondKind; | ||||
5277 | ICS.Standard.setFromType(FromType); | ||||
5278 | ICS.Standard.setAllToTypes(ImplicitParamType); | ||||
5279 | ICS.Standard.ReferenceBinding = true; | ||||
5280 | ICS.Standard.DirectBinding = true; | ||||
5281 | ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; | ||||
5282 | ICS.Standard.BindsToFunctionLvalue = false; | ||||
5283 | ICS.Standard.BindsToRvalue = FromClassification.isRValue(); | ||||
5284 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier | ||||
5285 | = (Method->getRefQualifier() == RQ_None); | ||||
5286 | return ICS; | ||||
5287 | } | ||||
5288 | |||||
5289 | /// PerformObjectArgumentInitialization - Perform initialization of | ||||
5290 | /// the implicit object parameter for the given Method with the given | ||||
5291 | /// expression. | ||||
5292 | ExprResult | ||||
5293 | Sema::PerformObjectArgumentInitialization(Expr *From, | ||||
5294 | NestedNameSpecifier *Qualifier, | ||||
5295 | NamedDecl *FoundDecl, | ||||
5296 | CXXMethodDecl *Method) { | ||||
5297 | QualType FromRecordType, DestType; | ||||
5298 | QualType ImplicitParamRecordType = | ||||
5299 | Method->getThisType()->castAs<PointerType>()->getPointeeType(); | ||||
5300 | |||||
5301 | Expr::Classification FromClassification; | ||||
5302 | if (const PointerType *PT = From->getType()->getAs<PointerType>()) { | ||||
5303 | FromRecordType = PT->getPointeeType(); | ||||
5304 | DestType = Method->getThisType(); | ||||
5305 | FromClassification = Expr::Classification::makeSimpleLValue(); | ||||
5306 | } else { | ||||
5307 | FromRecordType = From->getType(); | ||||
5308 | DestType = ImplicitParamRecordType; | ||||
5309 | FromClassification = From->Classify(Context); | ||||
5310 | |||||
5311 | // When performing member access on an rvalue, materialize a temporary. | ||||
5312 | if (From->isRValue()) { | ||||
5313 | From = CreateMaterializeTemporaryExpr(FromRecordType, From, | ||||
5314 | Method->getRefQualifier() != | ||||
5315 | RefQualifierKind::RQ_RValue); | ||||
5316 | } | ||||
5317 | } | ||||
5318 | |||||
5319 | // Note that we always use the true parent context when performing | ||||
5320 | // the actual argument initialization. | ||||
5321 | ImplicitConversionSequence ICS = TryObjectArgumentInitialization( | ||||
5322 | *this, From->getBeginLoc(), From->getType(), FromClassification, Method, | ||||
5323 | Method->getParent()); | ||||
5324 | if (ICS.isBad()) { | ||||
5325 | switch (ICS.Bad.Kind) { | ||||
5326 | case BadConversionSequence::bad_qualifiers: { | ||||
5327 | Qualifiers FromQs = FromRecordType.getQualifiers(); | ||||
5328 | Qualifiers ToQs = DestType.getQualifiers(); | ||||
5329 | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); | ||||
5330 | if (CVR) { | ||||
5331 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) | ||||
5332 | << Method->getDeclName() << FromRecordType << (CVR - 1) | ||||
5333 | << From->getSourceRange(); | ||||
5334 | Diag(Method->getLocation(), diag::note_previous_decl) | ||||
5335 | << Method->getDeclName(); | ||||
5336 | return ExprError(); | ||||
5337 | } | ||||
5338 | break; | ||||
5339 | } | ||||
5340 | |||||
5341 | case BadConversionSequence::lvalue_ref_to_rvalue: | ||||
5342 | case BadConversionSequence::rvalue_ref_to_lvalue: { | ||||
5343 | bool IsRValueQualified = | ||||
5344 | Method->getRefQualifier() == RefQualifierKind::RQ_RValue; | ||||
5345 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) | ||||
5346 | << Method->getDeclName() << FromClassification.isRValue() | ||||
5347 | << IsRValueQualified; | ||||
5348 | Diag(Method->getLocation(), diag::note_previous_decl) | ||||
5349 | << Method->getDeclName(); | ||||
5350 | return ExprError(); | ||||
5351 | } | ||||
5352 | |||||
5353 | case BadConversionSequence::no_conversion: | ||||
5354 | case BadConversionSequence::unrelated_class: | ||||
5355 | break; | ||||
5356 | } | ||||
5357 | |||||
5358 | return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) | ||||
5359 | << ImplicitParamRecordType << FromRecordType | ||||
5360 | << From->getSourceRange(); | ||||
5361 | } | ||||
5362 | |||||
5363 | if (ICS.Standard.Second == ICK_Derived_To_Base) { | ||||
5364 | ExprResult FromRes = | ||||
5365 | PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); | ||||
5366 | if (FromRes.isInvalid()) | ||||
5367 | return ExprError(); | ||||
5368 | From = FromRes.get(); | ||||
5369 | } | ||||
5370 | |||||
5371 | if (!Context.hasSameType(From->getType(), DestType)) { | ||||
5372 | CastKind CK; | ||||
5373 | QualType PteeTy = DestType->getPointeeType(); | ||||
5374 | LangAS DestAS = | ||||
5375 | PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); | ||||
5376 | if (FromRecordType.getAddressSpace() != DestAS) | ||||
5377 | CK = CK_AddressSpaceConversion; | ||||
5378 | else | ||||
5379 | CK = CK_NoOp; | ||||
5380 | From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); | ||||
5381 | } | ||||
5382 | return From; | ||||
5383 | } | ||||
5384 | |||||
5385 | /// TryContextuallyConvertToBool - Attempt to contextually convert the | ||||
5386 | /// expression From to bool (C++0x [conv]p3). | ||||
5387 | static ImplicitConversionSequence | ||||
5388 | TryContextuallyConvertToBool(Sema &S, Expr *From) { | ||||
5389 | return TryImplicitConversion(S, From, S.Context.BoolTy, | ||||
5390 | /*SuppressUserConversions=*/false, | ||||
5391 | /*AllowExplicit=*/true, | ||||
5392 | /*InOverloadResolution=*/false, | ||||
5393 | /*CStyle=*/false, | ||||
5394 | /*AllowObjCWritebackConversion=*/false, | ||||
5395 | /*AllowObjCConversionOnExplicit=*/false); | ||||
5396 | } | ||||
5397 | |||||
5398 | /// PerformContextuallyConvertToBool - Perform a contextual conversion | ||||
5399 | /// of the expression From to bool (C++0x [conv]p3). | ||||
5400 | ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { | ||||
5401 | if (checkPlaceholderForOverload(*this, From)) | ||||
5402 | return ExprError(); | ||||
5403 | |||||
5404 | ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); | ||||
5405 | if (!ICS.isBad()) | ||||
5406 | return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); | ||||
5407 | |||||
5408 | if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) | ||||
5409 | return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) | ||||
5410 | << From->getType() << From->getSourceRange(); | ||||
5411 | return ExprError(); | ||||
5412 | } | ||||
5413 | |||||
5414 | /// Check that the specified conversion is permitted in a converted constant | ||||
5415 | /// expression, according to C++11 [expr.const]p3. Return true if the conversion | ||||
5416 | /// is acceptable. | ||||
5417 | static bool CheckConvertedConstantConversions(Sema &S, | ||||
5418 | StandardConversionSequence &SCS) { | ||||
5419 | // Since we know that the target type is an integral or unscoped enumeration | ||||
5420 | // type, most conversion kinds are impossible. All possible First and Third | ||||
5421 | // conversions are fine. | ||||
5422 | switch (SCS.Second) { | ||||
5423 | case ICK_Identity: | ||||
5424 | case ICK_Function_Conversion: | ||||
5425 | case ICK_Integral_Promotion: | ||||
5426 | case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. | ||||
5427 | case ICK_Zero_Queue_Conversion: | ||||
5428 | return true; | ||||
5429 | |||||
5430 | case ICK_Boolean_Conversion: | ||||
5431 | // Conversion from an integral or unscoped enumeration type to bool is | ||||
5432 | // classified as ICK_Boolean_Conversion, but it's also arguably an integral | ||||
5433 | // conversion, so we allow it in a converted constant expression. | ||||
5434 | // | ||||
5435 | // FIXME: Per core issue 1407, we should not allow this, but that breaks | ||||
5436 | // a lot of popular code. We should at least add a warning for this | ||||
5437 | // (non-conforming) extension. | ||||
5438 | return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && | ||||
5439 | SCS.getToType(2)->isBooleanType(); | ||||
5440 | |||||
5441 | case ICK_Pointer_Conversion: | ||||
5442 | case ICK_Pointer_Member: | ||||
5443 | // C++1z: null pointer conversions and null member pointer conversions are | ||||
5444 | // only permitted if the source type is std::nullptr_t. | ||||
5445 | return SCS.getFromType()->isNullPtrType(); | ||||
5446 | |||||
5447 | case ICK_Floating_Promotion: | ||||
5448 | case ICK_Complex_Promotion: | ||||
5449 | case ICK_Floating_Conversion: | ||||
5450 | case ICK_Complex_Conversion: | ||||
5451 | case ICK_Floating_Integral: | ||||
5452 | case ICK_Compatible_Conversion: | ||||
5453 | case ICK_Derived_To_Base: | ||||
5454 | case ICK_Vector_Conversion: | ||||
5455 | case ICK_Vector_Splat: | ||||
5456 | case ICK_Complex_Real: | ||||
5457 | case ICK_Block_Pointer_Conversion: | ||||
5458 | case ICK_TransparentUnionConversion: | ||||
5459 | case ICK_Writeback_Conversion: | ||||
5460 | case ICK_Zero_Event_Conversion: | ||||
5461 | case ICK_C_Only_Conversion: | ||||
5462 | case ICK_Incompatible_Pointer_Conversion: | ||||
5463 | return false; | ||||
5464 | |||||
5465 | case ICK_Lvalue_To_Rvalue: | ||||
5466 | case ICK_Array_To_Pointer: | ||||
5467 | case ICK_Function_To_Pointer: | ||||
5468 | llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5468); | ||||
5469 | |||||
5470 | case ICK_Qualification: | ||||
5471 | llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5471); | ||||
5472 | |||||
5473 | case ICK_Num_Conversion_Kinds: | ||||
5474 | break; | ||||
5475 | } | ||||
5476 | |||||
5477 | llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5477); | ||||
5478 | } | ||||
5479 | |||||
5480 | /// CheckConvertedConstantExpression - Check that the expression From is a | ||||
5481 | /// converted constant expression of type T, perform the conversion and produce | ||||
5482 | /// the converted expression, per C++11 [expr.const]p3. | ||||
5483 | static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, | ||||
5484 | QualType T, APValue &Value, | ||||
5485 | Sema::CCEKind CCE, | ||||
5486 | bool RequireInt) { | ||||
5487 | assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11" ) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5488, __PRETTY_FUNCTION__)) | ||||
5488 | "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11" ) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5488, __PRETTY_FUNCTION__)); | ||||
5489 | |||||
5490 | if (checkPlaceholderForOverload(S, From)) | ||||
5491 | return ExprError(); | ||||
5492 | |||||
5493 | // C++1z [expr.const]p3: | ||||
5494 | // A converted constant expression of type T is an expression, | ||||
5495 | // implicitly converted to type T, where the converted | ||||
5496 | // expression is a constant expression and the implicit conversion | ||||
5497 | // sequence contains only [... list of conversions ...]. | ||||
5498 | // C++1z [stmt.if]p2: | ||||
5499 | // If the if statement is of the form if constexpr, the value of the | ||||
5500 | // condition shall be a contextually converted constant expression of type | ||||
5501 | // bool. | ||||
5502 | ImplicitConversionSequence ICS = | ||||
5503 | CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool | ||||
5504 | ? TryContextuallyConvertToBool(S, From) | ||||
5505 | : TryCopyInitialization(S, From, T, | ||||
5506 | /*SuppressUserConversions=*/false, | ||||
5507 | /*InOverloadResolution=*/false, | ||||
5508 | /*AllowObjCWritebackConversion=*/false, | ||||
5509 | /*AllowExplicit=*/false); | ||||
5510 | StandardConversionSequence *SCS = nullptr; | ||||
5511 | switch (ICS.getKind()) { | ||||
5512 | case ImplicitConversionSequence::StandardConversion: | ||||
5513 | SCS = &ICS.Standard; | ||||
5514 | break; | ||||
5515 | case ImplicitConversionSequence::UserDefinedConversion: | ||||
5516 | // We are converting to a non-class type, so the Before sequence | ||||
5517 | // must be trivial. | ||||
5518 | SCS = &ICS.UserDefined.After; | ||||
5519 | break; | ||||
5520 | case ImplicitConversionSequence::AmbiguousConversion: | ||||
5521 | case ImplicitConversionSequence::BadConversion: | ||||
5522 | if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) | ||||
5523 | return S.Diag(From->getBeginLoc(), | ||||
5524 | diag::err_typecheck_converted_constant_expression) | ||||
5525 | << From->getType() << From->getSourceRange() << T; | ||||
5526 | return ExprError(); | ||||
5527 | |||||
5528 | case ImplicitConversionSequence::EllipsisConversion: | ||||
5529 | llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5529); | ||||
5530 | } | ||||
5531 | |||||
5532 | // Check that we would only use permitted conversions. | ||||
5533 | if (!CheckConvertedConstantConversions(S, *SCS)) { | ||||
5534 | return S.Diag(From->getBeginLoc(), | ||||
5535 | diag::err_typecheck_converted_constant_expression_disallowed) | ||||
5536 | << From->getType() << From->getSourceRange() << T; | ||||
5537 | } | ||||
5538 | // [...] and where the reference binding (if any) binds directly. | ||||
5539 | if (SCS->ReferenceBinding && !SCS->DirectBinding) { | ||||
5540 | return S.Diag(From->getBeginLoc(), | ||||
5541 | diag::err_typecheck_converted_constant_expression_indirect) | ||||
5542 | << From->getType() << From->getSourceRange() << T; | ||||
5543 | } | ||||
5544 | |||||
5545 | ExprResult Result = | ||||
5546 | S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); | ||||
5547 | if (Result.isInvalid()) | ||||
5548 | return Result; | ||||
5549 | |||||
5550 | // C++2a [intro.execution]p5: | ||||
5551 | // A full-expression is [...] a constant-expression [...] | ||||
5552 | Result = | ||||
5553 | S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), | ||||
5554 | /*DiscardedValue=*/false, /*IsConstexpr=*/true); | ||||
5555 | if (Result.isInvalid()) | ||||
5556 | return Result; | ||||
5557 | |||||
5558 | // Check for a narrowing implicit conversion. | ||||
5559 | APValue PreNarrowingValue; | ||||
5560 | QualType PreNarrowingType; | ||||
5561 | switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, | ||||
5562 | PreNarrowingType)) { | ||||
5563 | case NK_Dependent_Narrowing: | ||||
5564 | // Implicit conversion to a narrower type, but the expression is | ||||
5565 | // value-dependent so we can't tell whether it's actually narrowing. | ||||
5566 | case NK_Variable_Narrowing: | ||||
5567 | // Implicit conversion to a narrower type, and the value is not a constant | ||||
5568 | // expression. We'll diagnose this in a moment. | ||||
5569 | case NK_Not_Narrowing: | ||||
5570 | break; | ||||
5571 | |||||
5572 | case NK_Constant_Narrowing: | ||||
5573 | S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) | ||||
5574 | << CCE << /*Constant*/ 1 | ||||
5575 | << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; | ||||
5576 | break; | ||||
5577 | |||||
5578 | case NK_Type_Narrowing: | ||||
5579 | S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) | ||||
5580 | << CCE << /*Constant*/ 0 << From->getType() << T; | ||||
5581 | break; | ||||
5582 | } | ||||
5583 | |||||
5584 | if (Result.get()->isValueDependent()) { | ||||
5585 | Value = APValue(); | ||||
5586 | return Result; | ||||
5587 | } | ||||
5588 | |||||
5589 | // Check the expression is a constant expression. | ||||
5590 | SmallVector<PartialDiagnosticAt, 8> Notes; | ||||
5591 | Expr::EvalResult Eval; | ||||
5592 | Eval.Diag = &Notes; | ||||
5593 | Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg | ||||
5594 | ? Expr::EvaluateForMangling | ||||
5595 | : Expr::EvaluateForCodeGen; | ||||
5596 | |||||
5597 | if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) || | ||||
5598 | (RequireInt && !Eval.Val.isInt())) { | ||||
5599 | // The expression can't be folded, so we can't keep it at this position in | ||||
5600 | // the AST. | ||||
5601 | Result = ExprError(); | ||||
5602 | } else { | ||||
5603 | Value = Eval.Val; | ||||
5604 | |||||
5605 | if (Notes.empty()) { | ||||
5606 | // It's a constant expression. | ||||
5607 | return ConstantExpr::Create(S.Context, Result.get(), Value); | ||||
5608 | } | ||||
5609 | } | ||||
5610 | |||||
5611 | // It's not a constant expression. Produce an appropriate diagnostic. | ||||
5612 | if (Notes.size() == 1 && | ||||
5613 | Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) | ||||
5614 | S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; | ||||
5615 | else { | ||||
5616 | S.Diag(From->getBeginLoc(), diag::err_expr_not_cce) | ||||
5617 | << CCE << From->getSourceRange(); | ||||
5618 | for (unsigned I = 0; I < Notes.size(); ++I) | ||||
5619 | S.Diag(Notes[I].first, Notes[I].second); | ||||
5620 | } | ||||
5621 | return ExprError(); | ||||
5622 | } | ||||
5623 | |||||
5624 | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, | ||||
5625 | APValue &Value, CCEKind CCE) { | ||||
5626 | return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false); | ||||
5627 | } | ||||
5628 | |||||
5629 | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, | ||||
5630 | llvm::APSInt &Value, | ||||
5631 | CCEKind CCE) { | ||||
5632 | assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type" ) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5632, __PRETTY_FUNCTION__)); | ||||
5633 | |||||
5634 | APValue V; | ||||
5635 | auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true); | ||||
5636 | if (!R.isInvalid() && !R.get()->isValueDependent()) | ||||
5637 | Value = V.getInt(); | ||||
5638 | return R; | ||||
5639 | } | ||||
5640 | |||||
5641 | |||||
5642 | /// dropPointerConversions - If the given standard conversion sequence | ||||
5643 | /// involves any pointer conversions, remove them. This may change | ||||
5644 | /// the result type of the conversion sequence. | ||||
5645 | static void dropPointerConversion(StandardConversionSequence &SCS) { | ||||
5646 | if (SCS.Second == ICK_Pointer_Conversion) { | ||||
5647 | SCS.Second = ICK_Identity; | ||||
5648 | SCS.Third = ICK_Identity; | ||||
5649 | SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; | ||||
5650 | } | ||||
5651 | } | ||||
5652 | |||||
5653 | /// TryContextuallyConvertToObjCPointer - Attempt to contextually | ||||
5654 | /// convert the expression From to an Objective-C pointer type. | ||||
5655 | static ImplicitConversionSequence | ||||
5656 | TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { | ||||
5657 | // Do an implicit conversion to 'id'. | ||||
5658 | QualType Ty = S.Context.getObjCIdType(); | ||||
5659 | ImplicitConversionSequence ICS | ||||
5660 | = TryImplicitConversion(S, From, Ty, | ||||
5661 | // FIXME: Are these flags correct? | ||||
5662 | /*SuppressUserConversions=*/false, | ||||
5663 | /*AllowExplicit=*/true, | ||||
5664 | /*InOverloadResolution=*/false, | ||||
5665 | /*CStyle=*/false, | ||||
5666 | /*AllowObjCWritebackConversion=*/false, | ||||
5667 | /*AllowObjCConversionOnExplicit=*/true); | ||||
5668 | |||||
5669 | // Strip off any final conversions to 'id'. | ||||
5670 | switch (ICS.getKind()) { | ||||
5671 | case ImplicitConversionSequence::BadConversion: | ||||
5672 | case ImplicitConversionSequence::AmbiguousConversion: | ||||
5673 | case ImplicitConversionSequence::EllipsisConversion: | ||||
5674 | break; | ||||
5675 | |||||
5676 | case ImplicitConversionSequence::UserDefinedConversion: | ||||
5677 | dropPointerConversion(ICS.UserDefined.After); | ||||
5678 | break; | ||||
5679 | |||||
5680 | case ImplicitConversionSequence::StandardConversion: | ||||
5681 | dropPointerConversion(ICS.Standard); | ||||
5682 | break; | ||||
5683 | } | ||||
5684 | |||||
5685 | return ICS; | ||||
5686 | } | ||||
5687 | |||||
5688 | /// PerformContextuallyConvertToObjCPointer - Perform a contextual | ||||
5689 | /// conversion of the expression From to an Objective-C pointer type. | ||||
5690 | /// Returns a valid but null ExprResult if no conversion sequence exists. | ||||
5691 | ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { | ||||
5692 | if (checkPlaceholderForOverload(*this, From)) | ||||
5693 | return ExprError(); | ||||
5694 | |||||
5695 | QualType Ty = Context.getObjCIdType(); | ||||
5696 | ImplicitConversionSequence ICS = | ||||
5697 | TryContextuallyConvertToObjCPointer(*this, From); | ||||
5698 | if (!ICS.isBad()) | ||||
5699 | return PerformImplicitConversion(From, Ty, ICS, AA_Converting); | ||||
5700 | return ExprResult(); | ||||
5701 | } | ||||
5702 | |||||
5703 | /// Determine whether the provided type is an integral type, or an enumeration | ||||
5704 | /// type of a permitted flavor. | ||||
5705 | bool Sema::ICEConvertDiagnoser::match(QualType T) { | ||||
5706 | return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() | ||||
5707 | : T->isIntegralOrUnscopedEnumerationType(); | ||||
5708 | } | ||||
5709 | |||||
5710 | static ExprResult | ||||
5711 | diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, | ||||
5712 | Sema::ContextualImplicitConverter &Converter, | ||||
5713 | QualType T, UnresolvedSetImpl &ViableConversions) { | ||||
5714 | |||||
5715 | if (Converter.Suppress) | ||||
5716 | return ExprError(); | ||||
5717 | |||||
5718 | Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); | ||||
5719 | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { | ||||
5720 | CXXConversionDecl *Conv = | ||||
5721 | cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); | ||||
5722 | QualType ConvTy = Conv->getConversionType().getNonReferenceType(); | ||||
5723 | Converter.noteAmbiguous(SemaRef, Conv, ConvTy); | ||||
5724 | } | ||||
5725 | return From; | ||||
5726 | } | ||||
5727 | |||||
5728 | static bool | ||||
5729 | diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, | ||||
5730 | Sema::ContextualImplicitConverter &Converter, | ||||
5731 | QualType T, bool HadMultipleCandidates, | ||||
5732 | UnresolvedSetImpl &ExplicitConversions) { | ||||
5733 | if (ExplicitConversions.size() == 1 && !Converter.Suppress) { | ||||
5734 | DeclAccessPair Found = ExplicitConversions[0]; | ||||
5735 | CXXConversionDecl *Conversion = | ||||
5736 | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); | ||||
5737 | |||||
5738 | // The user probably meant to invoke the given explicit | ||||
5739 | // conversion; use it. | ||||
5740 | QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); | ||||
5741 | std::string TypeStr; | ||||
5742 | ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); | ||||
5743 | |||||
5744 | Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) | ||||
5745 | << FixItHint::CreateInsertion(From->getBeginLoc(), | ||||
5746 | "static_cast<" + TypeStr + ">(") | ||||
5747 | << FixItHint::CreateInsertion( | ||||
5748 | SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); | ||||
5749 | Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); | ||||
5750 | |||||
5751 | // If we aren't in a SFINAE context, build a call to the | ||||
5752 | // explicit conversion function. | ||||
5753 | if (SemaRef.isSFINAEContext()) | ||||
5754 | return true; | ||||
5755 | |||||
5756 | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); | ||||
5757 | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, | ||||
5758 | HadMultipleCandidates); | ||||
5759 | if (Result.isInvalid()) | ||||
5760 | return true; | ||||
5761 | // Record usage of conversion in an implicit cast. | ||||
5762 | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), | ||||
5763 | CK_UserDefinedConversion, Result.get(), | ||||
5764 | nullptr, Result.get()->getValueKind()); | ||||
5765 | } | ||||
5766 | return false; | ||||
5767 | } | ||||
5768 | |||||
5769 | static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, | ||||
5770 | Sema::ContextualImplicitConverter &Converter, | ||||
5771 | QualType T, bool HadMultipleCandidates, | ||||
5772 | DeclAccessPair &Found) { | ||||
5773 | CXXConversionDecl *Conversion = | ||||
5774 | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); | ||||
5775 | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); | ||||
5776 | |||||
5777 | QualType ToType = Conversion->getConversionType().getNonReferenceType(); | ||||
5778 | if (!Converter.SuppressConversion) { | ||||
5779 | if (SemaRef.isSFINAEContext()) | ||||
5780 | return true; | ||||
5781 | |||||
5782 | Converter.diagnoseConversion(SemaRef, Loc, T, ToType) | ||||
5783 | << From->getSourceRange(); | ||||
5784 | } | ||||
5785 | |||||
5786 | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, | ||||
5787 | HadMultipleCandidates); | ||||
5788 | if (Result.isInvalid()) | ||||
5789 | return true; | ||||
5790 | // Record usage of conversion in an implicit cast. | ||||
5791 | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), | ||||
5792 | CK_UserDefinedConversion, Result.get(), | ||||
5793 | nullptr, Result.get()->getValueKind()); | ||||
5794 | return false; | ||||
5795 | } | ||||
5796 | |||||
5797 | static ExprResult finishContextualImplicitConversion( | ||||
5798 | Sema &SemaRef, SourceLocation Loc, Expr *From, | ||||
5799 | Sema::ContextualImplicitConverter &Converter) { | ||||
5800 | if (!Converter.match(From->getType()) && !Converter.Suppress) | ||||
5801 | Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) | ||||
5802 | << From->getSourceRange(); | ||||
5803 | |||||
5804 | return SemaRef.DefaultLvalueConversion(From); | ||||
5805 | } | ||||
5806 | |||||
5807 | static void | ||||
5808 | collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, | ||||
5809 | UnresolvedSetImpl &ViableConversions, | ||||
5810 | OverloadCandidateSet &CandidateSet) { | ||||
5811 | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { | ||||
5812 | DeclAccessPair FoundDecl = ViableConversions[I]; | ||||
5813 | NamedDecl *D = FoundDecl.getDecl(); | ||||
5814 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | ||||
5815 | if (isa<UsingShadowDecl>(D)) | ||||
5816 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | ||||
5817 | |||||
5818 | CXXConversionDecl *Conv; | ||||
5819 | FunctionTemplateDecl *ConvTemplate; | ||||
5820 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) | ||||
5821 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | ||||
5822 | else | ||||
5823 | Conv = cast<CXXConversionDecl>(D); | ||||
5824 | |||||
5825 | if (ConvTemplate) | ||||
5826 | SemaRef.AddTemplateConversionCandidate( | ||||
5827 | ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, | ||||
5828 | /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); | ||||
5829 | else | ||||
5830 | SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, | ||||
5831 | ToType, CandidateSet, | ||||
5832 | /*AllowObjCConversionOnExplicit=*/false, | ||||
5833 | /*AllowExplicit*/ true); | ||||
5834 | } | ||||
5835 | } | ||||
5836 | |||||
5837 | /// Attempt to convert the given expression to a type which is accepted | ||||
5838 | /// by the given converter. | ||||
5839 | /// | ||||
5840 | /// This routine will attempt to convert an expression of class type to a | ||||
5841 | /// type accepted by the specified converter. In C++11 and before, the class | ||||
5842 | /// must have a single non-explicit conversion function converting to a matching | ||||
5843 | /// type. In C++1y, there can be multiple such conversion functions, but only | ||||
5844 | /// one target type. | ||||
5845 | /// | ||||
5846 | /// \param Loc The source location of the construct that requires the | ||||
5847 | /// conversion. | ||||
5848 | /// | ||||
5849 | /// \param From The expression we're converting from. | ||||
5850 | /// | ||||
5851 | /// \param Converter Used to control and diagnose the conversion process. | ||||
5852 | /// | ||||
5853 | /// \returns The expression, converted to an integral or enumeration type if | ||||
5854 | /// successful. | ||||
5855 | ExprResult Sema::PerformContextualImplicitConversion( | ||||
5856 | SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { | ||||
5857 | // We can't perform any more checking for type-dependent expressions. | ||||
5858 | if (From->isTypeDependent()) | ||||
5859 | return From; | ||||
5860 | |||||
5861 | // Process placeholders immediately. | ||||
5862 | if (From->hasPlaceholderType()) { | ||||
5863 | ExprResult result = CheckPlaceholderExpr(From); | ||||
5864 | if (result.isInvalid()) | ||||
5865 | return result; | ||||
5866 | From = result.get(); | ||||
5867 | } | ||||
5868 | |||||
5869 | // If the expression already has a matching type, we're golden. | ||||
5870 | QualType T = From->getType(); | ||||
5871 | if (Converter.match(T)) | ||||
5872 | return DefaultLvalueConversion(From); | ||||
5873 | |||||
5874 | // FIXME: Check for missing '()' if T is a function type? | ||||
5875 | |||||
5876 | // We can only perform contextual implicit conversions on objects of class | ||||
5877 | // type. | ||||
5878 | const RecordType *RecordTy = T->getAs<RecordType>(); | ||||
5879 | if (!RecordTy || !getLangOpts().CPlusPlus) { | ||||
5880 | if (!Converter.Suppress) | ||||
5881 | Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); | ||||
5882 | return From; | ||||
5883 | } | ||||
5884 | |||||
5885 | // We must have a complete class type. | ||||
5886 | struct TypeDiagnoserPartialDiag : TypeDiagnoser { | ||||
5887 | ContextualImplicitConverter &Converter; | ||||
5888 | Expr *From; | ||||
5889 | |||||
5890 | TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) | ||||
5891 | : Converter(Converter), From(From) {} | ||||
5892 | |||||
5893 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { | ||||
5894 | Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); | ||||
5895 | } | ||||
5896 | } IncompleteDiagnoser(Converter, From); | ||||
5897 | |||||
5898 | if (Converter.Suppress ? !isCompleteType(Loc, T) | ||||
5899 | : RequireCompleteType(Loc, T, IncompleteDiagnoser)) | ||||
5900 | return From; | ||||
5901 | |||||
5902 | // Look for a conversion to an integral or enumeration type. | ||||
5903 | UnresolvedSet<4> | ||||
5904 | ViableConversions; // These are *potentially* viable in C++1y. | ||||
5905 | UnresolvedSet<4> ExplicitConversions; | ||||
5906 | const auto &Conversions = | ||||
5907 | cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); | ||||
5908 | |||||
5909 | bool HadMultipleCandidates = | ||||
5910 | (std::distance(Conversions.begin(), Conversions.end()) > 1); | ||||
5911 | |||||
5912 | // To check that there is only one target type, in C++1y: | ||||
5913 | QualType ToType; | ||||
5914 | bool HasUniqueTargetType = true; | ||||
5915 | |||||
5916 | // Collect explicit or viable (potentially in C++1y) conversions. | ||||
5917 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { | ||||
5918 | NamedDecl *D = (*I)->getUnderlyingDecl(); | ||||
5919 | CXXConversionDecl *Conversion; | ||||
5920 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); | ||||
5921 | if (ConvTemplate) { | ||||
5922 | if (getLangOpts().CPlusPlus14) | ||||
5923 | Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | ||||
5924 | else | ||||
5925 | continue; // C++11 does not consider conversion operator templates(?). | ||||
5926 | } else | ||||
5927 | Conversion = cast<CXXConversionDecl>(D); | ||||
5928 | |||||
5929 | assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially " "viable in C++1y") ? static_cast<void> (0) : __assert_fail ("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5931, __PRETTY_FUNCTION__)) | ||||
5930 | "Conversion operator templates are considered potentially "(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially " "viable in C++1y") ? static_cast<void> (0) : __assert_fail ("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5931, __PRETTY_FUNCTION__)) | ||||
5931 | "viable in C++1y")(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially " "viable in C++1y") ? static_cast<void> (0) : __assert_fail ("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5931, __PRETTY_FUNCTION__)); | ||||
5932 | |||||
5933 | QualType CurToType = Conversion->getConversionType().getNonReferenceType(); | ||||
5934 | if (Converter.match(CurToType) || ConvTemplate) { | ||||
5935 | |||||
5936 | if (Conversion->isExplicit()) { | ||||
5937 | // FIXME: For C++1y, do we need this restriction? | ||||