File: | clang/lib/Sema/SemaOverload.cpp |
Warning: | line 12948, column 21 Although the value stored to 'LHS' is used in the enclosing expression, the value is never actually read from 'LHS' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file provides Sema routines for C++ overloading. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/Sema/Overload.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/CXXInheritance.h" |
16 | #include "clang/AST/DeclObjC.h" |
17 | #include "clang/AST/Expr.h" |
18 | #include "clang/AST/ExprCXX.h" |
19 | #include "clang/AST/ExprObjC.h" |
20 | #include "clang/AST/TypeOrdering.h" |
21 | #include "clang/Basic/Diagnostic.h" |
22 | #include "clang/Basic/DiagnosticOptions.h" |
23 | #include "clang/Basic/PartialDiagnostic.h" |
24 | #include "clang/Basic/TargetInfo.h" |
25 | #include "clang/Sema/Initialization.h" |
26 | #include "clang/Sema/Lookup.h" |
27 | #include "clang/Sema/SemaInternal.h" |
28 | #include "clang/Sema/Template.h" |
29 | #include "clang/Sema/TemplateDeduction.h" |
30 | #include "llvm/ADT/DenseSet.h" |
31 | #include "llvm/ADT/Optional.h" |
32 | #include "llvm/ADT/STLExtras.h" |
33 | #include "llvm/ADT/SmallPtrSet.h" |
34 | #include "llvm/ADT/SmallString.h" |
35 | #include <algorithm> |
36 | #include <cstdlib> |
37 | |
38 | using namespace clang; |
39 | using namespace sema; |
40 | |
41 | static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { |
42 | return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { |
43 | return P->hasAttr<PassObjectSizeAttr>(); |
44 | }); |
45 | } |
46 | |
47 | /// A convenience routine for creating a decayed reference to a function. |
48 | static ExprResult |
49 | CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, |
50 | const Expr *Base, bool HadMultipleCandidates, |
51 | SourceLocation Loc = SourceLocation(), |
52 | const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ |
53 | if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) |
54 | return ExprError(); |
55 | // If FoundDecl is different from Fn (such as if one is a template |
56 | // and the other a specialization), make sure DiagnoseUseOfDecl is |
57 | // called on both. |
58 | // FIXME: This would be more comprehensively addressed by modifying |
59 | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl |
60 | // being used. |
61 | if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) |
62 | return ExprError(); |
63 | if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) |
64 | S.ResolveExceptionSpec(Loc, FPT); |
65 | DeclRefExpr *DRE = new (S.Context) |
66 | DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); |
67 | if (HadMultipleCandidates) |
68 | DRE->setHadMultipleCandidates(true); |
69 | |
70 | S.MarkDeclRefReferenced(DRE, Base); |
71 | return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), |
72 | CK_FunctionToPointerDecay); |
73 | } |
74 | |
75 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, |
76 | bool InOverloadResolution, |
77 | StandardConversionSequence &SCS, |
78 | bool CStyle, |
79 | bool AllowObjCWritebackConversion); |
80 | |
81 | static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, |
82 | QualType &ToType, |
83 | bool InOverloadResolution, |
84 | StandardConversionSequence &SCS, |
85 | bool CStyle); |
86 | static OverloadingResult |
87 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
88 | UserDefinedConversionSequence& User, |
89 | OverloadCandidateSet& Conversions, |
90 | bool AllowExplicit, |
91 | bool AllowObjCConversionOnExplicit); |
92 | |
93 | |
94 | static ImplicitConversionSequence::CompareKind |
95 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, |
96 | const StandardConversionSequence& SCS1, |
97 | const StandardConversionSequence& SCS2); |
98 | |
99 | static ImplicitConversionSequence::CompareKind |
100 | CompareQualificationConversions(Sema &S, |
101 | const StandardConversionSequence& SCS1, |
102 | const StandardConversionSequence& SCS2); |
103 | |
104 | static ImplicitConversionSequence::CompareKind |
105 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, |
106 | const StandardConversionSequence& SCS1, |
107 | const StandardConversionSequence& SCS2); |
108 | |
109 | /// GetConversionRank - Retrieve the implicit conversion rank |
110 | /// corresponding to the given implicit conversion kind. |
111 | ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { |
112 | static const ImplicitConversionRank |
113 | Rank[(int)ICK_Num_Conversion_Kinds] = { |
114 | ICR_Exact_Match, |
115 | ICR_Exact_Match, |
116 | ICR_Exact_Match, |
117 | ICR_Exact_Match, |
118 | ICR_Exact_Match, |
119 | ICR_Exact_Match, |
120 | ICR_Promotion, |
121 | ICR_Promotion, |
122 | ICR_Promotion, |
123 | ICR_Conversion, |
124 | ICR_Conversion, |
125 | ICR_Conversion, |
126 | ICR_Conversion, |
127 | ICR_Conversion, |
128 | ICR_Conversion, |
129 | ICR_Conversion, |
130 | ICR_Conversion, |
131 | ICR_Conversion, |
132 | ICR_Conversion, |
133 | ICR_OCL_Scalar_Widening, |
134 | ICR_Complex_Real_Conversion, |
135 | ICR_Conversion, |
136 | ICR_Conversion, |
137 | ICR_Writeback_Conversion, |
138 | ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- |
139 | // it was omitted by the patch that added |
140 | // ICK_Zero_Event_Conversion |
141 | ICR_C_Conversion, |
142 | ICR_C_Conversion_Extension |
143 | }; |
144 | return Rank[(int)Kind]; |
145 | } |
146 | |
147 | /// GetImplicitConversionName - Return the name of this kind of |
148 | /// implicit conversion. |
149 | static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { |
150 | static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { |
151 | "No conversion", |
152 | "Lvalue-to-rvalue", |
153 | "Array-to-pointer", |
154 | "Function-to-pointer", |
155 | "Function pointer conversion", |
156 | "Qualification", |
157 | "Integral promotion", |
158 | "Floating point promotion", |
159 | "Complex promotion", |
160 | "Integral conversion", |
161 | "Floating conversion", |
162 | "Complex conversion", |
163 | "Floating-integral conversion", |
164 | "Pointer conversion", |
165 | "Pointer-to-member conversion", |
166 | "Boolean conversion", |
167 | "Compatible-types conversion", |
168 | "Derived-to-base conversion", |
169 | "Vector conversion", |
170 | "Vector splat", |
171 | "Complex-real conversion", |
172 | "Block Pointer conversion", |
173 | "Transparent Union Conversion", |
174 | "Writeback conversion", |
175 | "OpenCL Zero Event Conversion", |
176 | "C specific type conversion", |
177 | "Incompatible pointer conversion" |
178 | }; |
179 | return Name[Kind]; |
180 | } |
181 | |
182 | /// StandardConversionSequence - Set the standard conversion |
183 | /// sequence to the identity conversion. |
184 | void StandardConversionSequence::setAsIdentityConversion() { |
185 | First = ICK_Identity; |
186 | Second = ICK_Identity; |
187 | Third = ICK_Identity; |
188 | DeprecatedStringLiteralToCharPtr = false; |
189 | QualificationIncludesObjCLifetime = false; |
190 | ReferenceBinding = false; |
191 | DirectBinding = false; |
192 | IsLvalueReference = true; |
193 | BindsToFunctionLvalue = false; |
194 | BindsToRvalue = false; |
195 | BindsImplicitObjectArgumentWithoutRefQualifier = false; |
196 | ObjCLifetimeConversionBinding = false; |
197 | CopyConstructor = nullptr; |
198 | } |
199 | |
200 | /// getRank - Retrieve the rank of this standard conversion sequence |
201 | /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the |
202 | /// implicit conversions. |
203 | ImplicitConversionRank StandardConversionSequence::getRank() const { |
204 | ImplicitConversionRank Rank = ICR_Exact_Match; |
205 | if (GetConversionRank(First) > Rank) |
206 | Rank = GetConversionRank(First); |
207 | if (GetConversionRank(Second) > Rank) |
208 | Rank = GetConversionRank(Second); |
209 | if (GetConversionRank(Third) > Rank) |
210 | Rank = GetConversionRank(Third); |
211 | return Rank; |
212 | } |
213 | |
214 | /// isPointerConversionToBool - Determines whether this conversion is |
215 | /// a conversion of a pointer or pointer-to-member to bool. This is |
216 | /// used as part of the ranking of standard conversion sequences |
217 | /// (C++ 13.3.3.2p4). |
218 | bool StandardConversionSequence::isPointerConversionToBool() const { |
219 | // Note that FromType has not necessarily been transformed by the |
220 | // array-to-pointer or function-to-pointer implicit conversions, so |
221 | // check for their presence as well as checking whether FromType is |
222 | // a pointer. |
223 | if (getToType(1)->isBooleanType() && |
224 | (getFromType()->isPointerType() || |
225 | getFromType()->isMemberPointerType() || |
226 | getFromType()->isObjCObjectPointerType() || |
227 | getFromType()->isBlockPointerType() || |
228 | getFromType()->isNullPtrType() || |
229 | First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) |
230 | return true; |
231 | |
232 | return false; |
233 | } |
234 | |
235 | /// isPointerConversionToVoidPointer - Determines whether this |
236 | /// conversion is a conversion of a pointer to a void pointer. This is |
237 | /// used as part of the ranking of standard conversion sequences (C++ |
238 | /// 13.3.3.2p4). |
239 | bool |
240 | StandardConversionSequence:: |
241 | isPointerConversionToVoidPointer(ASTContext& Context) const { |
242 | QualType FromType = getFromType(); |
243 | QualType ToType = getToType(1); |
244 | |
245 | // Note that FromType has not necessarily been transformed by the |
246 | // array-to-pointer implicit conversion, so check for its presence |
247 | // and redo the conversion to get a pointer. |
248 | if (First == ICK_Array_To_Pointer) |
249 | FromType = Context.getArrayDecayedType(FromType); |
250 | |
251 | if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) |
252 | if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) |
253 | return ToPtrType->getPointeeType()->isVoidType(); |
254 | |
255 | return false; |
256 | } |
257 | |
258 | /// Skip any implicit casts which could be either part of a narrowing conversion |
259 | /// or after one in an implicit conversion. |
260 | static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, |
261 | const Expr *Converted) { |
262 | // We can have cleanups wrapping the converted expression; these need to be |
263 | // preserved so that destructors run if necessary. |
264 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { |
265 | Expr *Inner = |
266 | const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); |
267 | return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), |
268 | EWC->getObjects()); |
269 | } |
270 | |
271 | while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { |
272 | switch (ICE->getCastKind()) { |
273 | case CK_NoOp: |
274 | case CK_IntegralCast: |
275 | case CK_IntegralToBoolean: |
276 | case CK_IntegralToFloating: |
277 | case CK_BooleanToSignedIntegral: |
278 | case CK_FloatingToIntegral: |
279 | case CK_FloatingToBoolean: |
280 | case CK_FloatingCast: |
281 | Converted = ICE->getSubExpr(); |
282 | continue; |
283 | |
284 | default: |
285 | return Converted; |
286 | } |
287 | } |
288 | |
289 | return Converted; |
290 | } |
291 | |
292 | /// Check if this standard conversion sequence represents a narrowing |
293 | /// conversion, according to C++11 [dcl.init.list]p7. |
294 | /// |
295 | /// \param Ctx The AST context. |
296 | /// \param Converted The result of applying this standard conversion sequence. |
297 | /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the |
298 | /// value of the expression prior to the narrowing conversion. |
299 | /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the |
300 | /// type of the expression prior to the narrowing conversion. |
301 | /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions |
302 | /// from floating point types to integral types should be ignored. |
303 | NarrowingKind StandardConversionSequence::getNarrowingKind( |
304 | ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, |
305 | QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { |
306 | assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++" ) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 306, __PRETTY_FUNCTION__)); |
307 | |
308 | // C++11 [dcl.init.list]p7: |
309 | // A narrowing conversion is an implicit conversion ... |
310 | QualType FromType = getToType(0); |
311 | QualType ToType = getToType(1); |
312 | |
313 | // A conversion to an enumeration type is narrowing if the conversion to |
314 | // the underlying type is narrowing. This only arises for expressions of |
315 | // the form 'Enum{init}'. |
316 | if (auto *ET = ToType->getAs<EnumType>()) |
317 | ToType = ET->getDecl()->getIntegerType(); |
318 | |
319 | switch (Second) { |
320 | // 'bool' is an integral type; dispatch to the right place to handle it. |
321 | case ICK_Boolean_Conversion: |
322 | if (FromType->isRealFloatingType()) |
323 | goto FloatingIntegralConversion; |
324 | if (FromType->isIntegralOrUnscopedEnumerationType()) |
325 | goto IntegralConversion; |
326 | // Boolean conversions can be from pointers and pointers to members |
327 | // [conv.bool], and those aren't considered narrowing conversions. |
328 | return NK_Not_Narrowing; |
329 | |
330 | // -- from a floating-point type to an integer type, or |
331 | // |
332 | // -- from an integer type or unscoped enumeration type to a floating-point |
333 | // type, except where the source is a constant expression and the actual |
334 | // value after conversion will fit into the target type and will produce |
335 | // the original value when converted back to the original type, or |
336 | case ICK_Floating_Integral: |
337 | FloatingIntegralConversion: |
338 | if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { |
339 | return NK_Type_Narrowing; |
340 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && |
341 | ToType->isRealFloatingType()) { |
342 | if (IgnoreFloatToIntegralConversion) |
343 | return NK_Not_Narrowing; |
344 | llvm::APSInt IntConstantValue; |
345 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
346 | assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast <void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 346, __PRETTY_FUNCTION__)); |
347 | |
348 | // If it's value-dependent, we can't tell whether it's narrowing. |
349 | if (Initializer->isValueDependent()) |
350 | return NK_Dependent_Narrowing; |
351 | |
352 | if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { |
353 | // Convert the integer to the floating type. |
354 | llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); |
355 | Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), |
356 | llvm::APFloat::rmNearestTiesToEven); |
357 | // And back. |
358 | llvm::APSInt ConvertedValue = IntConstantValue; |
359 | bool ignored; |
360 | Result.convertToInteger(ConvertedValue, |
361 | llvm::APFloat::rmTowardZero, &ignored); |
362 | // If the resulting value is different, this was a narrowing conversion. |
363 | if (IntConstantValue != ConvertedValue) { |
364 | ConstantValue = APValue(IntConstantValue); |
365 | ConstantType = Initializer->getType(); |
366 | return NK_Constant_Narrowing; |
367 | } |
368 | } else { |
369 | // Variables are always narrowings. |
370 | return NK_Variable_Narrowing; |
371 | } |
372 | } |
373 | return NK_Not_Narrowing; |
374 | |
375 | // -- from long double to double or float, or from double to float, except |
376 | // where the source is a constant expression and the actual value after |
377 | // conversion is within the range of values that can be represented (even |
378 | // if it cannot be represented exactly), or |
379 | case ICK_Floating_Conversion: |
380 | if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && |
381 | Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { |
382 | // FromType is larger than ToType. |
383 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
384 | |
385 | // If it's value-dependent, we can't tell whether it's narrowing. |
386 | if (Initializer->isValueDependent()) |
387 | return NK_Dependent_Narrowing; |
388 | |
389 | if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { |
390 | // Constant! |
391 | assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail ("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 391, __PRETTY_FUNCTION__)); |
392 | llvm::APFloat FloatVal = ConstantValue.getFloat(); |
393 | // Convert the source value into the target type. |
394 | bool ignored; |
395 | llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( |
396 | Ctx.getFloatTypeSemantics(ToType), |
397 | llvm::APFloat::rmNearestTiesToEven, &ignored); |
398 | // If there was no overflow, the source value is within the range of |
399 | // values that can be represented. |
400 | if (ConvertStatus & llvm::APFloat::opOverflow) { |
401 | ConstantType = Initializer->getType(); |
402 | return NK_Constant_Narrowing; |
403 | } |
404 | } else { |
405 | return NK_Variable_Narrowing; |
406 | } |
407 | } |
408 | return NK_Not_Narrowing; |
409 | |
410 | // -- from an integer type or unscoped enumeration type to an integer type |
411 | // that cannot represent all the values of the original type, except where |
412 | // the source is a constant expression and the actual value after |
413 | // conversion will fit into the target type and will produce the original |
414 | // value when converted back to the original type. |
415 | case ICK_Integral_Conversion: |
416 | IntegralConversion: { |
417 | assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast <void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 417, __PRETTY_FUNCTION__)); |
418 | assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast <void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 418, __PRETTY_FUNCTION__)); |
419 | const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); |
420 | const unsigned FromWidth = Ctx.getIntWidth(FromType); |
421 | const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); |
422 | const unsigned ToWidth = Ctx.getIntWidth(ToType); |
423 | |
424 | if (FromWidth > ToWidth || |
425 | (FromWidth == ToWidth && FromSigned != ToSigned) || |
426 | (FromSigned && !ToSigned)) { |
427 | // Not all values of FromType can be represented in ToType. |
428 | llvm::APSInt InitializerValue; |
429 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
430 | |
431 | // If it's value-dependent, we can't tell whether it's narrowing. |
432 | if (Initializer->isValueDependent()) |
433 | return NK_Dependent_Narrowing; |
434 | |
435 | if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { |
436 | // Such conversions on variables are always narrowing. |
437 | return NK_Variable_Narrowing; |
438 | } |
439 | bool Narrowing = false; |
440 | if (FromWidth < ToWidth) { |
441 | // Negative -> unsigned is narrowing. Otherwise, more bits is never |
442 | // narrowing. |
443 | if (InitializerValue.isSigned() && InitializerValue.isNegative()) |
444 | Narrowing = true; |
445 | } else { |
446 | // Add a bit to the InitializerValue so we don't have to worry about |
447 | // signed vs. unsigned comparisons. |
448 | InitializerValue = InitializerValue.extend( |
449 | InitializerValue.getBitWidth() + 1); |
450 | // Convert the initializer to and from the target width and signed-ness. |
451 | llvm::APSInt ConvertedValue = InitializerValue; |
452 | ConvertedValue = ConvertedValue.trunc(ToWidth); |
453 | ConvertedValue.setIsSigned(ToSigned); |
454 | ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); |
455 | ConvertedValue.setIsSigned(InitializerValue.isSigned()); |
456 | // If the result is different, this was a narrowing conversion. |
457 | if (ConvertedValue != InitializerValue) |
458 | Narrowing = true; |
459 | } |
460 | if (Narrowing) { |
461 | ConstantType = Initializer->getType(); |
462 | ConstantValue = APValue(InitializerValue); |
463 | return NK_Constant_Narrowing; |
464 | } |
465 | } |
466 | return NK_Not_Narrowing; |
467 | } |
468 | |
469 | default: |
470 | // Other kinds of conversions are not narrowings. |
471 | return NK_Not_Narrowing; |
472 | } |
473 | } |
474 | |
475 | /// dump - Print this standard conversion sequence to standard |
476 | /// error. Useful for debugging overloading issues. |
477 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const { |
478 | raw_ostream &OS = llvm::errs(); |
479 | bool PrintedSomething = false; |
480 | if (First != ICK_Identity) { |
481 | OS << GetImplicitConversionName(First); |
482 | PrintedSomething = true; |
483 | } |
484 | |
485 | if (Second != ICK_Identity) { |
486 | if (PrintedSomething) { |
487 | OS << " -> "; |
488 | } |
489 | OS << GetImplicitConversionName(Second); |
490 | |
491 | if (CopyConstructor) { |
492 | OS << " (by copy constructor)"; |
493 | } else if (DirectBinding) { |
494 | OS << " (direct reference binding)"; |
495 | } else if (ReferenceBinding) { |
496 | OS << " (reference binding)"; |
497 | } |
498 | PrintedSomething = true; |
499 | } |
500 | |
501 | if (Third != ICK_Identity) { |
502 | if (PrintedSomething) { |
503 | OS << " -> "; |
504 | } |
505 | OS << GetImplicitConversionName(Third); |
506 | PrintedSomething = true; |
507 | } |
508 | |
509 | if (!PrintedSomething) { |
510 | OS << "No conversions required"; |
511 | } |
512 | } |
513 | |
514 | /// dump - Print this user-defined conversion sequence to standard |
515 | /// error. Useful for debugging overloading issues. |
516 | void UserDefinedConversionSequence::dump() const { |
517 | raw_ostream &OS = llvm::errs(); |
518 | if (Before.First || Before.Second || Before.Third) { |
519 | Before.dump(); |
520 | OS << " -> "; |
521 | } |
522 | if (ConversionFunction) |
523 | OS << '\'' << *ConversionFunction << '\''; |
524 | else |
525 | OS << "aggregate initialization"; |
526 | if (After.First || After.Second || After.Third) { |
527 | OS << " -> "; |
528 | After.dump(); |
529 | } |
530 | } |
531 | |
532 | /// dump - Print this implicit conversion sequence to standard |
533 | /// error. Useful for debugging overloading issues. |
534 | void ImplicitConversionSequence::dump() const { |
535 | raw_ostream &OS = llvm::errs(); |
536 | if (isStdInitializerListElement()) |
537 | OS << "Worst std::initializer_list element conversion: "; |
538 | switch (ConversionKind) { |
539 | case StandardConversion: |
540 | OS << "Standard conversion: "; |
541 | Standard.dump(); |
542 | break; |
543 | case UserDefinedConversion: |
544 | OS << "User-defined conversion: "; |
545 | UserDefined.dump(); |
546 | break; |
547 | case EllipsisConversion: |
548 | OS << "Ellipsis conversion"; |
549 | break; |
550 | case AmbiguousConversion: |
551 | OS << "Ambiguous conversion"; |
552 | break; |
553 | case BadConversion: |
554 | OS << "Bad conversion"; |
555 | break; |
556 | } |
557 | |
558 | OS << "\n"; |
559 | } |
560 | |
561 | void AmbiguousConversionSequence::construct() { |
562 | new (&conversions()) ConversionSet(); |
563 | } |
564 | |
565 | void AmbiguousConversionSequence::destruct() { |
566 | conversions().~ConversionSet(); |
567 | } |
568 | |
569 | void |
570 | AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { |
571 | FromTypePtr = O.FromTypePtr; |
572 | ToTypePtr = O.ToTypePtr; |
573 | new (&conversions()) ConversionSet(O.conversions()); |
574 | } |
575 | |
576 | namespace { |
577 | // Structure used by DeductionFailureInfo to store |
578 | // template argument information. |
579 | struct DFIArguments { |
580 | TemplateArgument FirstArg; |
581 | TemplateArgument SecondArg; |
582 | }; |
583 | // Structure used by DeductionFailureInfo to store |
584 | // template parameter and template argument information. |
585 | struct DFIParamWithArguments : DFIArguments { |
586 | TemplateParameter Param; |
587 | }; |
588 | // Structure used by DeductionFailureInfo to store template argument |
589 | // information and the index of the problematic call argument. |
590 | struct DFIDeducedMismatchArgs : DFIArguments { |
591 | TemplateArgumentList *TemplateArgs; |
592 | unsigned CallArgIndex; |
593 | }; |
594 | } |
595 | |
596 | /// Convert from Sema's representation of template deduction information |
597 | /// to the form used in overload-candidate information. |
598 | DeductionFailureInfo |
599 | clang::MakeDeductionFailureInfo(ASTContext &Context, |
600 | Sema::TemplateDeductionResult TDK, |
601 | TemplateDeductionInfo &Info) { |
602 | DeductionFailureInfo Result; |
603 | Result.Result = static_cast<unsigned>(TDK); |
604 | Result.HasDiagnostic = false; |
605 | switch (TDK) { |
606 | case Sema::TDK_Invalid: |
607 | case Sema::TDK_InstantiationDepth: |
608 | case Sema::TDK_TooManyArguments: |
609 | case Sema::TDK_TooFewArguments: |
610 | case Sema::TDK_MiscellaneousDeductionFailure: |
611 | case Sema::TDK_CUDATargetMismatch: |
612 | Result.Data = nullptr; |
613 | break; |
614 | |
615 | case Sema::TDK_Incomplete: |
616 | case Sema::TDK_InvalidExplicitArguments: |
617 | Result.Data = Info.Param.getOpaqueValue(); |
618 | break; |
619 | |
620 | case Sema::TDK_DeducedMismatch: |
621 | case Sema::TDK_DeducedMismatchNested: { |
622 | // FIXME: Should allocate from normal heap so that we can free this later. |
623 | auto *Saved = new (Context) DFIDeducedMismatchArgs; |
624 | Saved->FirstArg = Info.FirstArg; |
625 | Saved->SecondArg = Info.SecondArg; |
626 | Saved->TemplateArgs = Info.take(); |
627 | Saved->CallArgIndex = Info.CallArgIndex; |
628 | Result.Data = Saved; |
629 | break; |
630 | } |
631 | |
632 | case Sema::TDK_NonDeducedMismatch: { |
633 | // FIXME: Should allocate from normal heap so that we can free this later. |
634 | DFIArguments *Saved = new (Context) DFIArguments; |
635 | Saved->FirstArg = Info.FirstArg; |
636 | Saved->SecondArg = Info.SecondArg; |
637 | Result.Data = Saved; |
638 | break; |
639 | } |
640 | |
641 | case Sema::TDK_IncompletePack: |
642 | // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. |
643 | case Sema::TDK_Inconsistent: |
644 | case Sema::TDK_Underqualified: { |
645 | // FIXME: Should allocate from normal heap so that we can free this later. |
646 | DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; |
647 | Saved->Param = Info.Param; |
648 | Saved->FirstArg = Info.FirstArg; |
649 | Saved->SecondArg = Info.SecondArg; |
650 | Result.Data = Saved; |
651 | break; |
652 | } |
653 | |
654 | case Sema::TDK_SubstitutionFailure: |
655 | Result.Data = Info.take(); |
656 | if (Info.hasSFINAEDiagnostic()) { |
657 | PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( |
658 | SourceLocation(), PartialDiagnostic::NullDiagnostic()); |
659 | Info.takeSFINAEDiagnostic(*Diag); |
660 | Result.HasDiagnostic = true; |
661 | } |
662 | break; |
663 | |
664 | case Sema::TDK_Success: |
665 | case Sema::TDK_NonDependentConversionFailure: |
666 | llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 666); |
667 | } |
668 | |
669 | return Result; |
670 | } |
671 | |
672 | void DeductionFailureInfo::Destroy() { |
673 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
674 | case Sema::TDK_Success: |
675 | case Sema::TDK_Invalid: |
676 | case Sema::TDK_InstantiationDepth: |
677 | case Sema::TDK_Incomplete: |
678 | case Sema::TDK_TooManyArguments: |
679 | case Sema::TDK_TooFewArguments: |
680 | case Sema::TDK_InvalidExplicitArguments: |
681 | case Sema::TDK_CUDATargetMismatch: |
682 | case Sema::TDK_NonDependentConversionFailure: |
683 | break; |
684 | |
685 | case Sema::TDK_IncompletePack: |
686 | case Sema::TDK_Inconsistent: |
687 | case Sema::TDK_Underqualified: |
688 | case Sema::TDK_DeducedMismatch: |
689 | case Sema::TDK_DeducedMismatchNested: |
690 | case Sema::TDK_NonDeducedMismatch: |
691 | // FIXME: Destroy the data? |
692 | Data = nullptr; |
693 | break; |
694 | |
695 | case Sema::TDK_SubstitutionFailure: |
696 | // FIXME: Destroy the template argument list? |
697 | Data = nullptr; |
698 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { |
699 | Diag->~PartialDiagnosticAt(); |
700 | HasDiagnostic = false; |
701 | } |
702 | break; |
703 | |
704 | // Unhandled |
705 | case Sema::TDK_MiscellaneousDeductionFailure: |
706 | break; |
707 | } |
708 | } |
709 | |
710 | PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { |
711 | if (HasDiagnostic) |
712 | return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); |
713 | return nullptr; |
714 | } |
715 | |
716 | TemplateParameter DeductionFailureInfo::getTemplateParameter() { |
717 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
718 | case Sema::TDK_Success: |
719 | case Sema::TDK_Invalid: |
720 | case Sema::TDK_InstantiationDepth: |
721 | case Sema::TDK_TooManyArguments: |
722 | case Sema::TDK_TooFewArguments: |
723 | case Sema::TDK_SubstitutionFailure: |
724 | case Sema::TDK_DeducedMismatch: |
725 | case Sema::TDK_DeducedMismatchNested: |
726 | case Sema::TDK_NonDeducedMismatch: |
727 | case Sema::TDK_CUDATargetMismatch: |
728 | case Sema::TDK_NonDependentConversionFailure: |
729 | return TemplateParameter(); |
730 | |
731 | case Sema::TDK_Incomplete: |
732 | case Sema::TDK_InvalidExplicitArguments: |
733 | return TemplateParameter::getFromOpaqueValue(Data); |
734 | |
735 | case Sema::TDK_IncompletePack: |
736 | case Sema::TDK_Inconsistent: |
737 | case Sema::TDK_Underqualified: |
738 | return static_cast<DFIParamWithArguments*>(Data)->Param; |
739 | |
740 | // Unhandled |
741 | case Sema::TDK_MiscellaneousDeductionFailure: |
742 | break; |
743 | } |
744 | |
745 | return TemplateParameter(); |
746 | } |
747 | |
748 | TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { |
749 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
750 | case Sema::TDK_Success: |
751 | case Sema::TDK_Invalid: |
752 | case Sema::TDK_InstantiationDepth: |
753 | case Sema::TDK_TooManyArguments: |
754 | case Sema::TDK_TooFewArguments: |
755 | case Sema::TDK_Incomplete: |
756 | case Sema::TDK_IncompletePack: |
757 | case Sema::TDK_InvalidExplicitArguments: |
758 | case Sema::TDK_Inconsistent: |
759 | case Sema::TDK_Underqualified: |
760 | case Sema::TDK_NonDeducedMismatch: |
761 | case Sema::TDK_CUDATargetMismatch: |
762 | case Sema::TDK_NonDependentConversionFailure: |
763 | return nullptr; |
764 | |
765 | case Sema::TDK_DeducedMismatch: |
766 | case Sema::TDK_DeducedMismatchNested: |
767 | return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; |
768 | |
769 | case Sema::TDK_SubstitutionFailure: |
770 | return static_cast<TemplateArgumentList*>(Data); |
771 | |
772 | // Unhandled |
773 | case Sema::TDK_MiscellaneousDeductionFailure: |
774 | break; |
775 | } |
776 | |
777 | return nullptr; |
778 | } |
779 | |
780 | const TemplateArgument *DeductionFailureInfo::getFirstArg() { |
781 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
782 | case Sema::TDK_Success: |
783 | case Sema::TDK_Invalid: |
784 | case Sema::TDK_InstantiationDepth: |
785 | case Sema::TDK_Incomplete: |
786 | case Sema::TDK_TooManyArguments: |
787 | case Sema::TDK_TooFewArguments: |
788 | case Sema::TDK_InvalidExplicitArguments: |
789 | case Sema::TDK_SubstitutionFailure: |
790 | case Sema::TDK_CUDATargetMismatch: |
791 | case Sema::TDK_NonDependentConversionFailure: |
792 | return nullptr; |
793 | |
794 | case Sema::TDK_IncompletePack: |
795 | case Sema::TDK_Inconsistent: |
796 | case Sema::TDK_Underqualified: |
797 | case Sema::TDK_DeducedMismatch: |
798 | case Sema::TDK_DeducedMismatchNested: |
799 | case Sema::TDK_NonDeducedMismatch: |
800 | return &static_cast<DFIArguments*>(Data)->FirstArg; |
801 | |
802 | // Unhandled |
803 | case Sema::TDK_MiscellaneousDeductionFailure: |
804 | break; |
805 | } |
806 | |
807 | return nullptr; |
808 | } |
809 | |
810 | const TemplateArgument *DeductionFailureInfo::getSecondArg() { |
811 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
812 | case Sema::TDK_Success: |
813 | case Sema::TDK_Invalid: |
814 | case Sema::TDK_InstantiationDepth: |
815 | case Sema::TDK_Incomplete: |
816 | case Sema::TDK_IncompletePack: |
817 | case Sema::TDK_TooManyArguments: |
818 | case Sema::TDK_TooFewArguments: |
819 | case Sema::TDK_InvalidExplicitArguments: |
820 | case Sema::TDK_SubstitutionFailure: |
821 | case Sema::TDK_CUDATargetMismatch: |
822 | case Sema::TDK_NonDependentConversionFailure: |
823 | return nullptr; |
824 | |
825 | case Sema::TDK_Inconsistent: |
826 | case Sema::TDK_Underqualified: |
827 | case Sema::TDK_DeducedMismatch: |
828 | case Sema::TDK_DeducedMismatchNested: |
829 | case Sema::TDK_NonDeducedMismatch: |
830 | return &static_cast<DFIArguments*>(Data)->SecondArg; |
831 | |
832 | // Unhandled |
833 | case Sema::TDK_MiscellaneousDeductionFailure: |
834 | break; |
835 | } |
836 | |
837 | return nullptr; |
838 | } |
839 | |
840 | llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() { |
841 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
842 | case Sema::TDK_DeducedMismatch: |
843 | case Sema::TDK_DeducedMismatchNested: |
844 | return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; |
845 | |
846 | default: |
847 | return llvm::None; |
848 | } |
849 | } |
850 | |
851 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( |
852 | OverloadedOperatorKind Op) { |
853 | if (!AllowRewrittenCandidates) |
854 | return false; |
855 | return Op == OO_EqualEqual || Op == OO_Spaceship; |
856 | } |
857 | |
858 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( |
859 | ASTContext &Ctx, const FunctionDecl *FD) { |
860 | if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator())) |
861 | return false; |
862 | // Don't bother adding a reversed candidate that can never be a better |
863 | // match than the non-reversed version. |
864 | return FD->getNumParams() != 2 || |
865 | !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), |
866 | FD->getParamDecl(1)->getType()) || |
867 | FD->hasAttr<EnableIfAttr>(); |
868 | } |
869 | |
870 | void OverloadCandidateSet::destroyCandidates() { |
871 | for (iterator i = begin(), e = end(); i != e; ++i) { |
872 | for (auto &C : i->Conversions) |
873 | C.~ImplicitConversionSequence(); |
874 | if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) |
875 | i->DeductionFailure.Destroy(); |
876 | } |
877 | } |
878 | |
879 | void OverloadCandidateSet::clear(CandidateSetKind CSK) { |
880 | destroyCandidates(); |
881 | SlabAllocator.Reset(); |
882 | NumInlineBytesUsed = 0; |
883 | Candidates.clear(); |
884 | Functions.clear(); |
885 | Kind = CSK; |
886 | } |
887 | |
888 | namespace { |
889 | class UnbridgedCastsSet { |
890 | struct Entry { |
891 | Expr **Addr; |
892 | Expr *Saved; |
893 | }; |
894 | SmallVector<Entry, 2> Entries; |
895 | |
896 | public: |
897 | void save(Sema &S, Expr *&E) { |
898 | assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast <void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 898, __PRETTY_FUNCTION__)); |
899 | Entry entry = { &E, E }; |
900 | Entries.push_back(entry); |
901 | E = S.stripARCUnbridgedCast(E); |
902 | } |
903 | |
904 | void restore() { |
905 | for (SmallVectorImpl<Entry>::iterator |
906 | i = Entries.begin(), e = Entries.end(); i != e; ++i) |
907 | *i->Addr = i->Saved; |
908 | } |
909 | }; |
910 | } |
911 | |
912 | /// checkPlaceholderForOverload - Do any interesting placeholder-like |
913 | /// preprocessing on the given expression. |
914 | /// |
915 | /// \param unbridgedCasts a collection to which to add unbridged casts; |
916 | /// without this, they will be immediately diagnosed as errors |
917 | /// |
918 | /// Return true on unrecoverable error. |
919 | static bool |
920 | checkPlaceholderForOverload(Sema &S, Expr *&E, |
921 | UnbridgedCastsSet *unbridgedCasts = nullptr) { |
922 | if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { |
923 | // We can't handle overloaded expressions here because overload |
924 | // resolution might reasonably tweak them. |
925 | if (placeholder->getKind() == BuiltinType::Overload) return false; |
926 | |
927 | // If the context potentially accepts unbridged ARC casts, strip |
928 | // the unbridged cast and add it to the collection for later restoration. |
929 | if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && |
930 | unbridgedCasts) { |
931 | unbridgedCasts->save(S, E); |
932 | return false; |
933 | } |
934 | |
935 | // Go ahead and check everything else. |
936 | ExprResult result = S.CheckPlaceholderExpr(E); |
937 | if (result.isInvalid()) |
938 | return true; |
939 | |
940 | E = result.get(); |
941 | return false; |
942 | } |
943 | |
944 | // Nothing to do. |
945 | return false; |
946 | } |
947 | |
948 | /// checkArgPlaceholdersForOverload - Check a set of call operands for |
949 | /// placeholders. |
950 | static bool checkArgPlaceholdersForOverload(Sema &S, |
951 | MultiExprArg Args, |
952 | UnbridgedCastsSet &unbridged) { |
953 | for (unsigned i = 0, e = Args.size(); i != e; ++i) |
954 | if (checkPlaceholderForOverload(S, Args[i], &unbridged)) |
955 | return true; |
956 | |
957 | return false; |
958 | } |
959 | |
960 | /// Determine whether the given New declaration is an overload of the |
961 | /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if |
962 | /// New and Old cannot be overloaded, e.g., if New has the same signature as |
963 | /// some function in Old (C++ 1.3.10) or if the Old declarations aren't |
964 | /// functions (or function templates) at all. When it does return Ovl_Match or |
965 | /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be |
966 | /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying |
967 | /// declaration. |
968 | /// |
969 | /// Example: Given the following input: |
970 | /// |
971 | /// void f(int, float); // #1 |
972 | /// void f(int, int); // #2 |
973 | /// int f(int, int); // #3 |
974 | /// |
975 | /// When we process #1, there is no previous declaration of "f", so IsOverload |
976 | /// will not be used. |
977 | /// |
978 | /// When we process #2, Old contains only the FunctionDecl for #1. By comparing |
979 | /// the parameter types, we see that #1 and #2 are overloaded (since they have |
980 | /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is |
981 | /// unchanged. |
982 | /// |
983 | /// When we process #3, Old is an overload set containing #1 and #2. We compare |
984 | /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then |
985 | /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of |
986 | /// functions are not part of the signature), IsOverload returns Ovl_Match and |
987 | /// MatchedDecl will be set to point to the FunctionDecl for #2. |
988 | /// |
989 | /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class |
990 | /// by a using declaration. The rules for whether to hide shadow declarations |
991 | /// ignore some properties which otherwise figure into a function template's |
992 | /// signature. |
993 | Sema::OverloadKind |
994 | Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, |
995 | NamedDecl *&Match, bool NewIsUsingDecl) { |
996 | for (LookupResult::iterator I = Old.begin(), E = Old.end(); |
997 | I != E; ++I) { |
998 | NamedDecl *OldD = *I; |
999 | |
1000 | bool OldIsUsingDecl = false; |
1001 | if (isa<UsingShadowDecl>(OldD)) { |
1002 | OldIsUsingDecl = true; |
1003 | |
1004 | // We can always introduce two using declarations into the same |
1005 | // context, even if they have identical signatures. |
1006 | if (NewIsUsingDecl) continue; |
1007 | |
1008 | OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); |
1009 | } |
1010 | |
1011 | // A using-declaration does not conflict with another declaration |
1012 | // if one of them is hidden. |
1013 | if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) |
1014 | continue; |
1015 | |
1016 | // If either declaration was introduced by a using declaration, |
1017 | // we'll need to use slightly different rules for matching. |
1018 | // Essentially, these rules are the normal rules, except that |
1019 | // function templates hide function templates with different |
1020 | // return types or template parameter lists. |
1021 | bool UseMemberUsingDeclRules = |
1022 | (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && |
1023 | !New->getFriendObjectKind(); |
1024 | |
1025 | if (FunctionDecl *OldF = OldD->getAsFunction()) { |
1026 | if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { |
1027 | if (UseMemberUsingDeclRules && OldIsUsingDecl) { |
1028 | HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); |
1029 | continue; |
1030 | } |
1031 | |
1032 | if (!isa<FunctionTemplateDecl>(OldD) && |
1033 | !shouldLinkPossiblyHiddenDecl(*I, New)) |
1034 | continue; |
1035 | |
1036 | Match = *I; |
1037 | return Ovl_Match; |
1038 | } |
1039 | |
1040 | // Builtins that have custom typechecking or have a reference should |
1041 | // not be overloadable or redeclarable. |
1042 | if (!getASTContext().canBuiltinBeRedeclared(OldF)) { |
1043 | Match = *I; |
1044 | return Ovl_NonFunction; |
1045 | } |
1046 | } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { |
1047 | // We can overload with these, which can show up when doing |
1048 | // redeclaration checks for UsingDecls. |
1049 | assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast< void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1049, __PRETTY_FUNCTION__)); |
1050 | } else if (isa<TagDecl>(OldD)) { |
1051 | // We can always overload with tags by hiding them. |
1052 | } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { |
1053 | // Optimistically assume that an unresolved using decl will |
1054 | // overload; if it doesn't, we'll have to diagnose during |
1055 | // template instantiation. |
1056 | // |
1057 | // Exception: if the scope is dependent and this is not a class |
1058 | // member, the using declaration can only introduce an enumerator. |
1059 | if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { |
1060 | Match = *I; |
1061 | return Ovl_NonFunction; |
1062 | } |
1063 | } else { |
1064 | // (C++ 13p1): |
1065 | // Only function declarations can be overloaded; object and type |
1066 | // declarations cannot be overloaded. |
1067 | Match = *I; |
1068 | return Ovl_NonFunction; |
1069 | } |
1070 | } |
1071 | |
1072 | // C++ [temp.friend]p1: |
1073 | // For a friend function declaration that is not a template declaration: |
1074 | // -- if the name of the friend is a qualified or unqualified template-id, |
1075 | // [...], otherwise |
1076 | // -- if the name of the friend is a qualified-id and a matching |
1077 | // non-template function is found in the specified class or namespace, |
1078 | // the friend declaration refers to that function, otherwise, |
1079 | // -- if the name of the friend is a qualified-id and a matching function |
1080 | // template is found in the specified class or namespace, the friend |
1081 | // declaration refers to the deduced specialization of that function |
1082 | // template, otherwise |
1083 | // -- the name shall be an unqualified-id [...] |
1084 | // If we get here for a qualified friend declaration, we've just reached the |
1085 | // third bullet. If the type of the friend is dependent, skip this lookup |
1086 | // until instantiation. |
1087 | if (New->getFriendObjectKind() && New->getQualifier() && |
1088 | !New->getDescribedFunctionTemplate() && |
1089 | !New->getDependentSpecializationInfo() && |
1090 | !New->getType()->isDependentType()) { |
1091 | LookupResult TemplateSpecResult(LookupResult::Temporary, Old); |
1092 | TemplateSpecResult.addAllDecls(Old); |
1093 | if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, |
1094 | /*QualifiedFriend*/true)) { |
1095 | New->setInvalidDecl(); |
1096 | return Ovl_Overload; |
1097 | } |
1098 | |
1099 | Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); |
1100 | return Ovl_Match; |
1101 | } |
1102 | |
1103 | return Ovl_Overload; |
1104 | } |
1105 | |
1106 | bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, |
1107 | bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) { |
1108 | // C++ [basic.start.main]p2: This function shall not be overloaded. |
1109 | if (New->isMain()) |
1110 | return false; |
1111 | |
1112 | // MSVCRT user defined entry points cannot be overloaded. |
1113 | if (New->isMSVCRTEntryPoint()) |
1114 | return false; |
1115 | |
1116 | FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); |
1117 | FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); |
1118 | |
1119 | // C++ [temp.fct]p2: |
1120 | // A function template can be overloaded with other function templates |
1121 | // and with normal (non-template) functions. |
1122 | if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) |
1123 | return true; |
1124 | |
1125 | // Is the function New an overload of the function Old? |
1126 | QualType OldQType = Context.getCanonicalType(Old->getType()); |
1127 | QualType NewQType = Context.getCanonicalType(New->getType()); |
1128 | |
1129 | // Compare the signatures (C++ 1.3.10) of the two functions to |
1130 | // determine whether they are overloads. If we find any mismatch |
1131 | // in the signature, they are overloads. |
1132 | |
1133 | // If either of these functions is a K&R-style function (no |
1134 | // prototype), then we consider them to have matching signatures. |
1135 | if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || |
1136 | isa<FunctionNoProtoType>(NewQType.getTypePtr())) |
1137 | return false; |
1138 | |
1139 | const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); |
1140 | const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); |
1141 | |
1142 | // The signature of a function includes the types of its |
1143 | // parameters (C++ 1.3.10), which includes the presence or absence |
1144 | // of the ellipsis; see C++ DR 357). |
1145 | if (OldQType != NewQType && |
1146 | (OldType->getNumParams() != NewType->getNumParams() || |
1147 | OldType->isVariadic() != NewType->isVariadic() || |
1148 | !FunctionParamTypesAreEqual(OldType, NewType))) |
1149 | return true; |
1150 | |
1151 | // C++ [temp.over.link]p4: |
1152 | // The signature of a function template consists of its function |
1153 | // signature, its return type and its template parameter list. The names |
1154 | // of the template parameters are significant only for establishing the |
1155 | // relationship between the template parameters and the rest of the |
1156 | // signature. |
1157 | // |
1158 | // We check the return type and template parameter lists for function |
1159 | // templates first; the remaining checks follow. |
1160 | // |
1161 | // However, we don't consider either of these when deciding whether |
1162 | // a member introduced by a shadow declaration is hidden. |
1163 | if (!UseMemberUsingDeclRules && NewTemplate && |
1164 | (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), |
1165 | OldTemplate->getTemplateParameters(), |
1166 | false, TPL_TemplateMatch) || |
1167 | !Context.hasSameType(Old->getDeclaredReturnType(), |
1168 | New->getDeclaredReturnType()))) |
1169 | return true; |
1170 | |
1171 | // If the function is a class member, its signature includes the |
1172 | // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. |
1173 | // |
1174 | // As part of this, also check whether one of the member functions |
1175 | // is static, in which case they are not overloads (C++ |
1176 | // 13.1p2). While not part of the definition of the signature, |
1177 | // this check is important to determine whether these functions |
1178 | // can be overloaded. |
1179 | CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); |
1180 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); |
1181 | if (OldMethod && NewMethod && |
1182 | !OldMethod->isStatic() && !NewMethod->isStatic()) { |
1183 | if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { |
1184 | if (!UseMemberUsingDeclRules && |
1185 | (OldMethod->getRefQualifier() == RQ_None || |
1186 | NewMethod->getRefQualifier() == RQ_None)) { |
1187 | // C++0x [over.load]p2: |
1188 | // - Member function declarations with the same name and the same |
1189 | // parameter-type-list as well as member function template |
1190 | // declarations with the same name, the same parameter-type-list, and |
1191 | // the same template parameter lists cannot be overloaded if any of |
1192 | // them, but not all, have a ref-qualifier (8.3.5). |
1193 | Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) |
1194 | << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); |
1195 | Diag(OldMethod->getLocation(), diag::note_previous_declaration); |
1196 | } |
1197 | return true; |
1198 | } |
1199 | |
1200 | // We may not have applied the implicit const for a constexpr member |
1201 | // function yet (because we haven't yet resolved whether this is a static |
1202 | // or non-static member function). Add it now, on the assumption that this |
1203 | // is a redeclaration of OldMethod. |
1204 | auto OldQuals = OldMethod->getMethodQualifiers(); |
1205 | auto NewQuals = NewMethod->getMethodQualifiers(); |
1206 | if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && |
1207 | !isa<CXXConstructorDecl>(NewMethod)) |
1208 | NewQuals.addConst(); |
1209 | // We do not allow overloading based off of '__restrict'. |
1210 | OldQuals.removeRestrict(); |
1211 | NewQuals.removeRestrict(); |
1212 | if (OldQuals != NewQuals) |
1213 | return true; |
1214 | } |
1215 | |
1216 | // Though pass_object_size is placed on parameters and takes an argument, we |
1217 | // consider it to be a function-level modifier for the sake of function |
1218 | // identity. Either the function has one or more parameters with |
1219 | // pass_object_size or it doesn't. |
1220 | if (functionHasPassObjectSizeParams(New) != |
1221 | functionHasPassObjectSizeParams(Old)) |
1222 | return true; |
1223 | |
1224 | // enable_if attributes are an order-sensitive part of the signature. |
1225 | for (specific_attr_iterator<EnableIfAttr> |
1226 | NewI = New->specific_attr_begin<EnableIfAttr>(), |
1227 | NewE = New->specific_attr_end<EnableIfAttr>(), |
1228 | OldI = Old->specific_attr_begin<EnableIfAttr>(), |
1229 | OldE = Old->specific_attr_end<EnableIfAttr>(); |
1230 | NewI != NewE || OldI != OldE; ++NewI, ++OldI) { |
1231 | if (NewI == NewE || OldI == OldE) |
1232 | return true; |
1233 | llvm::FoldingSetNodeID NewID, OldID; |
1234 | NewI->getCond()->Profile(NewID, Context, true); |
1235 | OldI->getCond()->Profile(OldID, Context, true); |
1236 | if (NewID != OldID) |
1237 | return true; |
1238 | } |
1239 | |
1240 | if (getLangOpts().CUDA && ConsiderCudaAttrs) { |
1241 | // Don't allow overloading of destructors. (In theory we could, but it |
1242 | // would be a giant change to clang.) |
1243 | if (isa<CXXDestructorDecl>(New)) |
1244 | return false; |
1245 | |
1246 | CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), |
1247 | OldTarget = IdentifyCUDATarget(Old); |
1248 | if (NewTarget == CFT_InvalidTarget) |
1249 | return false; |
1250 | |
1251 | assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target." ) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1251, __PRETTY_FUNCTION__)); |
1252 | |
1253 | // Allow overloading of functions with same signature and different CUDA |
1254 | // target attributes. |
1255 | return NewTarget != OldTarget; |
1256 | } |
1257 | |
1258 | // The signatures match; this is not an overload. |
1259 | return false; |
1260 | } |
1261 | |
1262 | /// Tries a user-defined conversion from From to ToType. |
1263 | /// |
1264 | /// Produces an implicit conversion sequence for when a standard conversion |
1265 | /// is not an option. See TryImplicitConversion for more information. |
1266 | static ImplicitConversionSequence |
1267 | TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
1268 | bool SuppressUserConversions, |
1269 | bool AllowExplicit, |
1270 | bool InOverloadResolution, |
1271 | bool CStyle, |
1272 | bool AllowObjCWritebackConversion, |
1273 | bool AllowObjCConversionOnExplicit) { |
1274 | ImplicitConversionSequence ICS; |
1275 | |
1276 | if (SuppressUserConversions) { |
1277 | // We're not in the case above, so there is no conversion that |
1278 | // we can perform. |
1279 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
1280 | return ICS; |
1281 | } |
1282 | |
1283 | // Attempt user-defined conversion. |
1284 | OverloadCandidateSet Conversions(From->getExprLoc(), |
1285 | OverloadCandidateSet::CSK_Normal); |
1286 | switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, |
1287 | Conversions, AllowExplicit, |
1288 | AllowObjCConversionOnExplicit)) { |
1289 | case OR_Success: |
1290 | case OR_Deleted: |
1291 | ICS.setUserDefined(); |
1292 | // C++ [over.ics.user]p4: |
1293 | // A conversion of an expression of class type to the same class |
1294 | // type is given Exact Match rank, and a conversion of an |
1295 | // expression of class type to a base class of that type is |
1296 | // given Conversion rank, in spite of the fact that a copy |
1297 | // constructor (i.e., a user-defined conversion function) is |
1298 | // called for those cases. |
1299 | if (CXXConstructorDecl *Constructor |
1300 | = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { |
1301 | QualType FromCanon |
1302 | = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); |
1303 | QualType ToCanon |
1304 | = S.Context.getCanonicalType(ToType).getUnqualifiedType(); |
1305 | if (Constructor->isCopyConstructor() && |
1306 | (FromCanon == ToCanon || |
1307 | S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { |
1308 | // Turn this into a "standard" conversion sequence, so that it |
1309 | // gets ranked with standard conversion sequences. |
1310 | DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; |
1311 | ICS.setStandard(); |
1312 | ICS.Standard.setAsIdentityConversion(); |
1313 | ICS.Standard.setFromType(From->getType()); |
1314 | ICS.Standard.setAllToTypes(ToType); |
1315 | ICS.Standard.CopyConstructor = Constructor; |
1316 | ICS.Standard.FoundCopyConstructor = Found; |
1317 | if (ToCanon != FromCanon) |
1318 | ICS.Standard.Second = ICK_Derived_To_Base; |
1319 | } |
1320 | } |
1321 | break; |
1322 | |
1323 | case OR_Ambiguous: |
1324 | ICS.setAmbiguous(); |
1325 | ICS.Ambiguous.setFromType(From->getType()); |
1326 | ICS.Ambiguous.setToType(ToType); |
1327 | for (OverloadCandidateSet::iterator Cand = Conversions.begin(); |
1328 | Cand != Conversions.end(); ++Cand) |
1329 | if (Cand->Best) |
1330 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); |
1331 | break; |
1332 | |
1333 | // Fall through. |
1334 | case OR_No_Viable_Function: |
1335 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
1336 | break; |
1337 | } |
1338 | |
1339 | return ICS; |
1340 | } |
1341 | |
1342 | /// TryImplicitConversion - Attempt to perform an implicit conversion |
1343 | /// from the given expression (Expr) to the given type (ToType). This |
1344 | /// function returns an implicit conversion sequence that can be used |
1345 | /// to perform the initialization. Given |
1346 | /// |
1347 | /// void f(float f); |
1348 | /// void g(int i) { f(i); } |
1349 | /// |
1350 | /// this routine would produce an implicit conversion sequence to |
1351 | /// describe the initialization of f from i, which will be a standard |
1352 | /// conversion sequence containing an lvalue-to-rvalue conversion (C++ |
1353 | /// 4.1) followed by a floating-integral conversion (C++ 4.9). |
1354 | // |
1355 | /// Note that this routine only determines how the conversion can be |
1356 | /// performed; it does not actually perform the conversion. As such, |
1357 | /// it will not produce any diagnostics if no conversion is available, |
1358 | /// but will instead return an implicit conversion sequence of kind |
1359 | /// "BadConversion". |
1360 | /// |
1361 | /// If @p SuppressUserConversions, then user-defined conversions are |
1362 | /// not permitted. |
1363 | /// If @p AllowExplicit, then explicit user-defined conversions are |
1364 | /// permitted. |
1365 | /// |
1366 | /// \param AllowObjCWritebackConversion Whether we allow the Objective-C |
1367 | /// writeback conversion, which allows __autoreleasing id* parameters to |
1368 | /// be initialized with __strong id* or __weak id* arguments. |
1369 | static ImplicitConversionSequence |
1370 | TryImplicitConversion(Sema &S, Expr *From, QualType ToType, |
1371 | bool SuppressUserConversions, |
1372 | bool AllowExplicit, |
1373 | bool InOverloadResolution, |
1374 | bool CStyle, |
1375 | bool AllowObjCWritebackConversion, |
1376 | bool AllowObjCConversionOnExplicit) { |
1377 | ImplicitConversionSequence ICS; |
1378 | if (IsStandardConversion(S, From, ToType, InOverloadResolution, |
1379 | ICS.Standard, CStyle, AllowObjCWritebackConversion)){ |
1380 | ICS.setStandard(); |
1381 | return ICS; |
1382 | } |
1383 | |
1384 | if (!S.getLangOpts().CPlusPlus) { |
1385 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
1386 | return ICS; |
1387 | } |
1388 | |
1389 | // C++ [over.ics.user]p4: |
1390 | // A conversion of an expression of class type to the same class |
1391 | // type is given Exact Match rank, and a conversion of an |
1392 | // expression of class type to a base class of that type is |
1393 | // given Conversion rank, in spite of the fact that a copy/move |
1394 | // constructor (i.e., a user-defined conversion function) is |
1395 | // called for those cases. |
1396 | QualType FromType = From->getType(); |
1397 | if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && |
1398 | (S.Context.hasSameUnqualifiedType(FromType, ToType) || |
1399 | S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { |
1400 | ICS.setStandard(); |
1401 | ICS.Standard.setAsIdentityConversion(); |
1402 | ICS.Standard.setFromType(FromType); |
1403 | ICS.Standard.setAllToTypes(ToType); |
1404 | |
1405 | // We don't actually check at this point whether there is a valid |
1406 | // copy/move constructor, since overloading just assumes that it |
1407 | // exists. When we actually perform initialization, we'll find the |
1408 | // appropriate constructor to copy the returned object, if needed. |
1409 | ICS.Standard.CopyConstructor = nullptr; |
1410 | |
1411 | // Determine whether this is considered a derived-to-base conversion. |
1412 | if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) |
1413 | ICS.Standard.Second = ICK_Derived_To_Base; |
1414 | |
1415 | return ICS; |
1416 | } |
1417 | |
1418 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, |
1419 | AllowExplicit, InOverloadResolution, CStyle, |
1420 | AllowObjCWritebackConversion, |
1421 | AllowObjCConversionOnExplicit); |
1422 | } |
1423 | |
1424 | ImplicitConversionSequence |
1425 | Sema::TryImplicitConversion(Expr *From, QualType ToType, |
1426 | bool SuppressUserConversions, |
1427 | bool AllowExplicit, |
1428 | bool InOverloadResolution, |
1429 | bool CStyle, |
1430 | bool AllowObjCWritebackConversion) { |
1431 | return ::TryImplicitConversion(*this, From, ToType, |
1432 | SuppressUserConversions, AllowExplicit, |
1433 | InOverloadResolution, CStyle, |
1434 | AllowObjCWritebackConversion, |
1435 | /*AllowObjCConversionOnExplicit=*/false); |
1436 | } |
1437 | |
1438 | /// PerformImplicitConversion - Perform an implicit conversion of the |
1439 | /// expression From to the type ToType. Returns the |
1440 | /// converted expression. Flavor is the kind of conversion we're |
1441 | /// performing, used in the error message. If @p AllowExplicit, |
1442 | /// explicit user-defined conversions are permitted. |
1443 | ExprResult |
1444 | Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
1445 | AssignmentAction Action, bool AllowExplicit) { |
1446 | ImplicitConversionSequence ICS; |
1447 | return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); |
1448 | } |
1449 | |
1450 | ExprResult |
1451 | Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
1452 | AssignmentAction Action, bool AllowExplicit, |
1453 | ImplicitConversionSequence& ICS) { |
1454 | if (checkPlaceholderForOverload(*this, From)) |
1455 | return ExprError(); |
1456 | |
1457 | // Objective-C ARC: Determine whether we will allow the writeback conversion. |
1458 | bool AllowObjCWritebackConversion |
1459 | = getLangOpts().ObjCAutoRefCount && |
1460 | (Action == AA_Passing || Action == AA_Sending); |
1461 | if (getLangOpts().ObjC) |
1462 | CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, |
1463 | From->getType(), From); |
1464 | ICS = ::TryImplicitConversion(*this, From, ToType, |
1465 | /*SuppressUserConversions=*/false, |
1466 | AllowExplicit, |
1467 | /*InOverloadResolution=*/false, |
1468 | /*CStyle=*/false, |
1469 | AllowObjCWritebackConversion, |
1470 | /*AllowObjCConversionOnExplicit=*/false); |
1471 | return PerformImplicitConversion(From, ToType, ICS, Action); |
1472 | } |
1473 | |
1474 | /// Determine whether the conversion from FromType to ToType is a valid |
1475 | /// conversion that strips "noexcept" or "noreturn" off the nested function |
1476 | /// type. |
1477 | bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, |
1478 | QualType &ResultTy) { |
1479 | if (Context.hasSameUnqualifiedType(FromType, ToType)) |
1480 | return false; |
1481 | |
1482 | // Permit the conversion F(t __attribute__((noreturn))) -> F(t) |
1483 | // or F(t noexcept) -> F(t) |
1484 | // where F adds one of the following at most once: |
1485 | // - a pointer |
1486 | // - a member pointer |
1487 | // - a block pointer |
1488 | // Changes here need matching changes in FindCompositePointerType. |
1489 | CanQualType CanTo = Context.getCanonicalType(ToType); |
1490 | CanQualType CanFrom = Context.getCanonicalType(FromType); |
1491 | Type::TypeClass TyClass = CanTo->getTypeClass(); |
1492 | if (TyClass != CanFrom->getTypeClass()) return false; |
1493 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { |
1494 | if (TyClass == Type::Pointer) { |
1495 | CanTo = CanTo.castAs<PointerType>()->getPointeeType(); |
1496 | CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); |
1497 | } else if (TyClass == Type::BlockPointer) { |
1498 | CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); |
1499 | CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); |
1500 | } else if (TyClass == Type::MemberPointer) { |
1501 | auto ToMPT = CanTo.castAs<MemberPointerType>(); |
1502 | auto FromMPT = CanFrom.castAs<MemberPointerType>(); |
1503 | // A function pointer conversion cannot change the class of the function. |
1504 | if (ToMPT->getClass() != FromMPT->getClass()) |
1505 | return false; |
1506 | CanTo = ToMPT->getPointeeType(); |
1507 | CanFrom = FromMPT->getPointeeType(); |
1508 | } else { |
1509 | return false; |
1510 | } |
1511 | |
1512 | TyClass = CanTo->getTypeClass(); |
1513 | if (TyClass != CanFrom->getTypeClass()) return false; |
1514 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) |
1515 | return false; |
1516 | } |
1517 | |
1518 | const auto *FromFn = cast<FunctionType>(CanFrom); |
1519 | FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); |
1520 | |
1521 | const auto *ToFn = cast<FunctionType>(CanTo); |
1522 | FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); |
1523 | |
1524 | bool Changed = false; |
1525 | |
1526 | // Drop 'noreturn' if not present in target type. |
1527 | if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { |
1528 | FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); |
1529 | Changed = true; |
1530 | } |
1531 | |
1532 | // Drop 'noexcept' if not present in target type. |
1533 | if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { |
1534 | const auto *ToFPT = cast<FunctionProtoType>(ToFn); |
1535 | if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { |
1536 | FromFn = cast<FunctionType>( |
1537 | Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), |
1538 | EST_None) |
1539 | .getTypePtr()); |
1540 | Changed = true; |
1541 | } |
1542 | |
1543 | // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid |
1544 | // only if the ExtParameterInfo lists of the two function prototypes can be |
1545 | // merged and the merged list is identical to ToFPT's ExtParameterInfo list. |
1546 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; |
1547 | bool CanUseToFPT, CanUseFromFPT; |
1548 | if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, |
1549 | CanUseFromFPT, NewParamInfos) && |
1550 | CanUseToFPT && !CanUseFromFPT) { |
1551 | FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); |
1552 | ExtInfo.ExtParameterInfos = |
1553 | NewParamInfos.empty() ? nullptr : NewParamInfos.data(); |
1554 | QualType QT = Context.getFunctionType(FromFPT->getReturnType(), |
1555 | FromFPT->getParamTypes(), ExtInfo); |
1556 | FromFn = QT->getAs<FunctionType>(); |
1557 | Changed = true; |
1558 | } |
1559 | } |
1560 | |
1561 | if (!Changed) |
1562 | return false; |
1563 | |
1564 | assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void> (0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1564, __PRETTY_FUNCTION__)); |
1565 | if (QualType(FromFn, 0) != CanTo) return false; |
1566 | |
1567 | ResultTy = ToType; |
1568 | return true; |
1569 | } |
1570 | |
1571 | /// Determine whether the conversion from FromType to ToType is a valid |
1572 | /// vector conversion. |
1573 | /// |
1574 | /// \param ICK Will be set to the vector conversion kind, if this is a vector |
1575 | /// conversion. |
1576 | static bool IsVectorConversion(Sema &S, QualType FromType, |
1577 | QualType ToType, ImplicitConversionKind &ICK) { |
1578 | // We need at least one of these types to be a vector type to have a vector |
1579 | // conversion. |
1580 | if (!ToType->isVectorType() && !FromType->isVectorType()) |
1581 | return false; |
1582 | |
1583 | // Identical types require no conversions. |
1584 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) |
1585 | return false; |
1586 | |
1587 | // There are no conversions between extended vector types, only identity. |
1588 | if (ToType->isExtVectorType()) { |
1589 | // There are no conversions between extended vector types other than the |
1590 | // identity conversion. |
1591 | if (FromType->isExtVectorType()) |
1592 | return false; |
1593 | |
1594 | // Vector splat from any arithmetic type to a vector. |
1595 | if (FromType->isArithmeticType()) { |
1596 | ICK = ICK_Vector_Splat; |
1597 | return true; |
1598 | } |
1599 | } |
1600 | |
1601 | // We can perform the conversion between vector types in the following cases: |
1602 | // 1)vector types are equivalent AltiVec and GCC vector types |
1603 | // 2)lax vector conversions are permitted and the vector types are of the |
1604 | // same size |
1605 | if (ToType->isVectorType() && FromType->isVectorType()) { |
1606 | if (S.Context.areCompatibleVectorTypes(FromType, ToType) || |
1607 | S.isLaxVectorConversion(FromType, ToType)) { |
1608 | ICK = ICK_Vector_Conversion; |
1609 | return true; |
1610 | } |
1611 | } |
1612 | |
1613 | return false; |
1614 | } |
1615 | |
1616 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, |
1617 | bool InOverloadResolution, |
1618 | StandardConversionSequence &SCS, |
1619 | bool CStyle); |
1620 | |
1621 | /// IsStandardConversion - Determines whether there is a standard |
1622 | /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the |
1623 | /// expression From to the type ToType. Standard conversion sequences |
1624 | /// only consider non-class types; for conversions that involve class |
1625 | /// types, use TryImplicitConversion. If a conversion exists, SCS will |
1626 | /// contain the standard conversion sequence required to perform this |
1627 | /// conversion and this routine will return true. Otherwise, this |
1628 | /// routine will return false and the value of SCS is unspecified. |
1629 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, |
1630 | bool InOverloadResolution, |
1631 | StandardConversionSequence &SCS, |
1632 | bool CStyle, |
1633 | bool AllowObjCWritebackConversion) { |
1634 | QualType FromType = From->getType(); |
1635 | |
1636 | // Standard conversions (C++ [conv]) |
1637 | SCS.setAsIdentityConversion(); |
1638 | SCS.IncompatibleObjC = false; |
1639 | SCS.setFromType(FromType); |
1640 | SCS.CopyConstructor = nullptr; |
1641 | |
1642 | // There are no standard conversions for class types in C++, so |
1643 | // abort early. When overloading in C, however, we do permit them. |
1644 | if (S.getLangOpts().CPlusPlus && |
1645 | (FromType->isRecordType() || ToType->isRecordType())) |
1646 | return false; |
1647 | |
1648 | // The first conversion can be an lvalue-to-rvalue conversion, |
1649 | // array-to-pointer conversion, or function-to-pointer conversion |
1650 | // (C++ 4p1). |
1651 | |
1652 | if (FromType == S.Context.OverloadTy) { |
1653 | DeclAccessPair AccessPair; |
1654 | if (FunctionDecl *Fn |
1655 | = S.ResolveAddressOfOverloadedFunction(From, ToType, false, |
1656 | AccessPair)) { |
1657 | // We were able to resolve the address of the overloaded function, |
1658 | // so we can convert to the type of that function. |
1659 | FromType = Fn->getType(); |
1660 | SCS.setFromType(FromType); |
1661 | |
1662 | // we can sometimes resolve &foo<int> regardless of ToType, so check |
1663 | // if the type matches (identity) or we are converting to bool |
1664 | if (!S.Context.hasSameUnqualifiedType( |
1665 | S.ExtractUnqualifiedFunctionType(ToType), FromType)) { |
1666 | QualType resultTy; |
1667 | // if the function type matches except for [[noreturn]], it's ok |
1668 | if (!S.IsFunctionConversion(FromType, |
1669 | S.ExtractUnqualifiedFunctionType(ToType), resultTy)) |
1670 | // otherwise, only a boolean conversion is standard |
1671 | if (!ToType->isBooleanType()) |
1672 | return false; |
1673 | } |
1674 | |
1675 | // Check if the "from" expression is taking the address of an overloaded |
1676 | // function and recompute the FromType accordingly. Take advantage of the |
1677 | // fact that non-static member functions *must* have such an address-of |
1678 | // expression. |
1679 | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); |
1680 | if (Method && !Method->isStatic()) { |
1681 | assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) && "Non-unary operator on non-static member address") ? static_cast <void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1682, __PRETTY_FUNCTION__)) |
1682 | "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) && "Non-unary operator on non-static member address") ? static_cast <void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1682, __PRETTY_FUNCTION__)); |
1683 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1685, __PRETTY_FUNCTION__)) |
1684 | == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1685, __PRETTY_FUNCTION__)) |
1685 | "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator on non-static member address" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1685, __PRETTY_FUNCTION__)); |
1686 | const Type *ClassType |
1687 | = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); |
1688 | FromType = S.Context.getMemberPointerType(FromType, ClassType); |
1689 | } else if (isa<UnaryOperator>(From->IgnoreParens())) { |
1690 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1692, __PRETTY_FUNCTION__)) |
1691 | UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1692, __PRETTY_FUNCTION__)) |
1692 | "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode () == UO_AddrOf && "Non-address-of operator for overloaded function expression" ) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1692, __PRETTY_FUNCTION__)); |
1693 | FromType = S.Context.getPointerType(FromType); |
1694 | } |
1695 | |
1696 | // Check that we've computed the proper type after overload resolution. |
1697 | // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't |
1698 | // be calling it from within an NDEBUG block. |
1699 | assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference (From, AccessPair, Fn)->getType())) ? static_cast<void> (0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1701, __PRETTY_FUNCTION__)) |
1700 | FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference (From, AccessPair, Fn)->getType())) ? static_cast<void> (0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1701, __PRETTY_FUNCTION__)) |
1701 | S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference (From, AccessPair, Fn)->getType())) ? static_cast<void> (0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 1701, __PRETTY_FUNCTION__)); |
1702 | } else { |
1703 | return false; |
1704 | } |
1705 | } |
1706 | // Lvalue-to-rvalue conversion (C++11 4.1): |
1707 | // A glvalue (3.10) of a non-function, non-array type T can |
1708 | // be converted to a prvalue. |
1709 | bool argIsLValue = From->isGLValue(); |
1710 | if (argIsLValue && |
1711 | !FromType->isFunctionType() && !FromType->isArrayType() && |
1712 | S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { |
1713 | SCS.First = ICK_Lvalue_To_Rvalue; |
1714 | |
1715 | // C11 6.3.2.1p2: |
1716 | // ... if the lvalue has atomic type, the value has the non-atomic version |
1717 | // of the type of the lvalue ... |
1718 | if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) |
1719 | FromType = Atomic->getValueType(); |
1720 | |
1721 | // If T is a non-class type, the type of the rvalue is the |
1722 | // cv-unqualified version of T. Otherwise, the type of the rvalue |
1723 | // is T (C++ 4.1p1). C++ can't get here with class types; in C, we |
1724 | // just strip the qualifiers because they don't matter. |
1725 | FromType = FromType.getUnqualifiedType(); |
1726 | } else if (FromType->isArrayType()) { |
1727 | // Array-to-pointer conversion (C++ 4.2) |
1728 | SCS.First = ICK_Array_To_Pointer; |
1729 | |
1730 | // An lvalue or rvalue of type "array of N T" or "array of unknown |
1731 | // bound of T" can be converted to an rvalue of type "pointer to |
1732 | // T" (C++ 4.2p1). |
1733 | FromType = S.Context.getArrayDecayedType(FromType); |
1734 | |
1735 | if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { |
1736 | // This conversion is deprecated in C++03 (D.4) |
1737 | SCS.DeprecatedStringLiteralToCharPtr = true; |
1738 | |
1739 | // For the purpose of ranking in overload resolution |
1740 | // (13.3.3.1.1), this conversion is considered an |
1741 | // array-to-pointer conversion followed by a qualification |
1742 | // conversion (4.4). (C++ 4.2p2) |
1743 | SCS.Second = ICK_Identity; |
1744 | SCS.Third = ICK_Qualification; |
1745 | SCS.QualificationIncludesObjCLifetime = false; |
1746 | SCS.setAllToTypes(FromType); |
1747 | return true; |
1748 | } |
1749 | } else if (FromType->isFunctionType() && argIsLValue) { |
1750 | // Function-to-pointer conversion (C++ 4.3). |
1751 | SCS.First = ICK_Function_To_Pointer; |
1752 | |
1753 | if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) |
1754 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) |
1755 | if (!S.checkAddressOfFunctionIsAvailable(FD)) |
1756 | return false; |
1757 | |
1758 | // An lvalue of function type T can be converted to an rvalue of |
1759 | // type "pointer to T." The result is a pointer to the |
1760 | // function. (C++ 4.3p1). |
1761 | FromType = S.Context.getPointerType(FromType); |
1762 | } else { |
1763 | // We don't require any conversions for the first step. |
1764 | SCS.First = ICK_Identity; |
1765 | } |
1766 | SCS.setToType(0, FromType); |
1767 | |
1768 | // The second conversion can be an integral promotion, floating |
1769 | // point promotion, integral conversion, floating point conversion, |
1770 | // floating-integral conversion, pointer conversion, |
1771 | // pointer-to-member conversion, or boolean conversion (C++ 4p1). |
1772 | // For overloading in C, this can also be a "compatible-type" |
1773 | // conversion. |
1774 | bool IncompatibleObjC = false; |
1775 | ImplicitConversionKind SecondICK = ICK_Identity; |
1776 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { |
1777 | // The unqualified versions of the types are the same: there's no |
1778 | // conversion to do. |
1779 | SCS.Second = ICK_Identity; |
1780 | } else if (S.IsIntegralPromotion(From, FromType, ToType)) { |
1781 | // Integral promotion (C++ 4.5). |
1782 | SCS.Second = ICK_Integral_Promotion; |
1783 | FromType = ToType.getUnqualifiedType(); |
1784 | } else if (S.IsFloatingPointPromotion(FromType, ToType)) { |
1785 | // Floating point promotion (C++ 4.6). |
1786 | SCS.Second = ICK_Floating_Promotion; |
1787 | FromType = ToType.getUnqualifiedType(); |
1788 | } else if (S.IsComplexPromotion(FromType, ToType)) { |
1789 | // Complex promotion (Clang extension) |
1790 | SCS.Second = ICK_Complex_Promotion; |
1791 | FromType = ToType.getUnqualifiedType(); |
1792 | } else if (ToType->isBooleanType() && |
1793 | (FromType->isArithmeticType() || |
1794 | FromType->isAnyPointerType() || |
1795 | FromType->isBlockPointerType() || |
1796 | FromType->isMemberPointerType() || |
1797 | FromType->isNullPtrType())) { |
1798 | // Boolean conversions (C++ 4.12). |
1799 | SCS.Second = ICK_Boolean_Conversion; |
1800 | FromType = S.Context.BoolTy; |
1801 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && |
1802 | ToType->isIntegralType(S.Context)) { |
1803 | // Integral conversions (C++ 4.7). |
1804 | SCS.Second = ICK_Integral_Conversion; |
1805 | FromType = ToType.getUnqualifiedType(); |
1806 | } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { |
1807 | // Complex conversions (C99 6.3.1.6) |
1808 | SCS.Second = ICK_Complex_Conversion; |
1809 | FromType = ToType.getUnqualifiedType(); |
1810 | } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || |
1811 | (ToType->isAnyComplexType() && FromType->isArithmeticType())) { |
1812 | // Complex-real conversions (C99 6.3.1.7) |
1813 | SCS.Second = ICK_Complex_Real; |
1814 | FromType = ToType.getUnqualifiedType(); |
1815 | } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { |
1816 | // FIXME: disable conversions between long double and __float128 if |
1817 | // their representation is different until there is back end support |
1818 | // We of course allow this conversion if long double is really double. |
1819 | if (&S.Context.getFloatTypeSemantics(FromType) != |
1820 | &S.Context.getFloatTypeSemantics(ToType)) { |
1821 | bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty && |
1822 | ToType == S.Context.LongDoubleTy) || |
1823 | (FromType == S.Context.LongDoubleTy && |
1824 | ToType == S.Context.Float128Ty)); |
1825 | if (Float128AndLongDouble && |
1826 | (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == |
1827 | &llvm::APFloat::PPCDoubleDouble())) |
1828 | return false; |
1829 | } |
1830 | // Floating point conversions (C++ 4.8). |
1831 | SCS.Second = ICK_Floating_Conversion; |
1832 | FromType = ToType.getUnqualifiedType(); |
1833 | } else if ((FromType->isRealFloatingType() && |
1834 | ToType->isIntegralType(S.Context)) || |
1835 | (FromType->isIntegralOrUnscopedEnumerationType() && |
1836 | ToType->isRealFloatingType())) { |
1837 | // Floating-integral conversions (C++ 4.9). |
1838 | SCS.Second = ICK_Floating_Integral; |
1839 | FromType = ToType.getUnqualifiedType(); |
1840 | } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { |
1841 | SCS.Second = ICK_Block_Pointer_Conversion; |
1842 | } else if (AllowObjCWritebackConversion && |
1843 | S.isObjCWritebackConversion(FromType, ToType, FromType)) { |
1844 | SCS.Second = ICK_Writeback_Conversion; |
1845 | } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, |
1846 | FromType, IncompatibleObjC)) { |
1847 | // Pointer conversions (C++ 4.10). |
1848 | SCS.Second = ICK_Pointer_Conversion; |
1849 | SCS.IncompatibleObjC = IncompatibleObjC; |
1850 | FromType = FromType.getUnqualifiedType(); |
1851 | } else if (S.IsMemberPointerConversion(From, FromType, ToType, |
1852 | InOverloadResolution, FromType)) { |
1853 | // Pointer to member conversions (4.11). |
1854 | SCS.Second = ICK_Pointer_Member; |
1855 | } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) { |
1856 | SCS.Second = SecondICK; |
1857 | FromType = ToType.getUnqualifiedType(); |
1858 | } else if (!S.getLangOpts().CPlusPlus && |
1859 | S.Context.typesAreCompatible(ToType, FromType)) { |
1860 | // Compatible conversions (Clang extension for C function overloading) |
1861 | SCS.Second = ICK_Compatible_Conversion; |
1862 | FromType = ToType.getUnqualifiedType(); |
1863 | } else if (IsTransparentUnionStandardConversion(S, From, ToType, |
1864 | InOverloadResolution, |
1865 | SCS, CStyle)) { |
1866 | SCS.Second = ICK_TransparentUnionConversion; |
1867 | FromType = ToType; |
1868 | } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, |
1869 | CStyle)) { |
1870 | // tryAtomicConversion has updated the standard conversion sequence |
1871 | // appropriately. |
1872 | return true; |
1873 | } else if (ToType->isEventT() && |
1874 | From->isIntegerConstantExpr(S.getASTContext()) && |
1875 | From->EvaluateKnownConstInt(S.getASTContext()) == 0) { |
1876 | SCS.Second = ICK_Zero_Event_Conversion; |
1877 | FromType = ToType; |
1878 | } else if (ToType->isQueueT() && |
1879 | From->isIntegerConstantExpr(S.getASTContext()) && |
1880 | (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { |
1881 | SCS.Second = ICK_Zero_Queue_Conversion; |
1882 | FromType = ToType; |
1883 | } else if (ToType->isSamplerT() && |
1884 | From->isIntegerConstantExpr(S.getASTContext())) { |
1885 | SCS.Second = ICK_Compatible_Conversion; |
1886 | FromType = ToType; |
1887 | } else { |
1888 | // No second conversion required. |
1889 | SCS.Second = ICK_Identity; |
1890 | } |
1891 | SCS.setToType(1, FromType); |
1892 | |
1893 | // The third conversion can be a function pointer conversion or a |
1894 | // qualification conversion (C++ [conv.fctptr], [conv.qual]). |
1895 | bool ObjCLifetimeConversion; |
1896 | if (S.IsFunctionConversion(FromType, ToType, FromType)) { |
1897 | // Function pointer conversions (removing 'noexcept') including removal of |
1898 | // 'noreturn' (Clang extension). |
1899 | SCS.Third = ICK_Function_Conversion; |
1900 | } else if (S.IsQualificationConversion(FromType, ToType, CStyle, |
1901 | ObjCLifetimeConversion)) { |
1902 | SCS.Third = ICK_Qualification; |
1903 | SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; |
1904 | FromType = ToType; |
1905 | } else { |
1906 | // No conversion required |
1907 | SCS.Third = ICK_Identity; |
1908 | } |
1909 | |
1910 | // C++ [over.best.ics]p6: |
1911 | // [...] Any difference in top-level cv-qualification is |
1912 | // subsumed by the initialization itself and does not constitute |
1913 | // a conversion. [...] |
1914 | QualType CanonFrom = S.Context.getCanonicalType(FromType); |
1915 | QualType CanonTo = S.Context.getCanonicalType(ToType); |
1916 | if (CanonFrom.getLocalUnqualifiedType() |
1917 | == CanonTo.getLocalUnqualifiedType() && |
1918 | CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { |
1919 | FromType = ToType; |
1920 | CanonFrom = CanonTo; |
1921 | } |
1922 | |
1923 | SCS.setToType(2, FromType); |
1924 | |
1925 | if (CanonFrom == CanonTo) |
1926 | return true; |
1927 | |
1928 | // If we have not converted the argument type to the parameter type, |
1929 | // this is a bad conversion sequence, unless we're resolving an overload in C. |
1930 | if (S.getLangOpts().CPlusPlus || !InOverloadResolution) |
1931 | return false; |
1932 | |
1933 | ExprResult ER = ExprResult{From}; |
1934 | Sema::AssignConvertType Conv = |
1935 | S.CheckSingleAssignmentConstraints(ToType, ER, |
1936 | /*Diagnose=*/false, |
1937 | /*DiagnoseCFAudited=*/false, |
1938 | /*ConvertRHS=*/false); |
1939 | ImplicitConversionKind SecondConv; |
1940 | switch (Conv) { |
1941 | case Sema::Compatible: |
1942 | SecondConv = ICK_C_Only_Conversion; |
1943 | break; |
1944 | // For our purposes, discarding qualifiers is just as bad as using an |
1945 | // incompatible pointer. Note that an IncompatiblePointer conversion can drop |
1946 | // qualifiers, as well. |
1947 | case Sema::CompatiblePointerDiscardsQualifiers: |
1948 | case Sema::IncompatiblePointer: |
1949 | case Sema::IncompatiblePointerSign: |
1950 | SecondConv = ICK_Incompatible_Pointer_Conversion; |
1951 | break; |
1952 | default: |
1953 | return false; |
1954 | } |
1955 | |
1956 | // First can only be an lvalue conversion, so we pretend that this was the |
1957 | // second conversion. First should already be valid from earlier in the |
1958 | // function. |
1959 | SCS.Second = SecondConv; |
1960 | SCS.setToType(1, ToType); |
1961 | |
1962 | // Third is Identity, because Second should rank us worse than any other |
1963 | // conversion. This could also be ICK_Qualification, but it's simpler to just |
1964 | // lump everything in with the second conversion, and we don't gain anything |
1965 | // from making this ICK_Qualification. |
1966 | SCS.Third = ICK_Identity; |
1967 | SCS.setToType(2, ToType); |
1968 | return true; |
1969 | } |
1970 | |
1971 | static bool |
1972 | IsTransparentUnionStandardConversion(Sema &S, Expr* From, |
1973 | QualType &ToType, |
1974 | bool InOverloadResolution, |
1975 | StandardConversionSequence &SCS, |
1976 | bool CStyle) { |
1977 | |
1978 | const RecordType *UT = ToType->getAsUnionType(); |
1979 | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
1980 | return false; |
1981 | // The field to initialize within the transparent union. |
1982 | RecordDecl *UD = UT->getDecl(); |
1983 | // It's compatible if the expression matches any of the fields. |
1984 | for (const auto *it : UD->fields()) { |
1985 | if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, |
1986 | CStyle, /*AllowObjCWritebackConversion=*/false)) { |
1987 | ToType = it->getType(); |
1988 | return true; |
1989 | } |
1990 | } |
1991 | return false; |
1992 | } |
1993 | |
1994 | /// IsIntegralPromotion - Determines whether the conversion from the |
1995 | /// expression From (whose potentially-adjusted type is FromType) to |
1996 | /// ToType is an integral promotion (C++ 4.5). If so, returns true and |
1997 | /// sets PromotedType to the promoted type. |
1998 | bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { |
1999 | const BuiltinType *To = ToType->getAs<BuiltinType>(); |
2000 | // All integers are built-in. |
2001 | if (!To) { |
2002 | return false; |
2003 | } |
2004 | |
2005 | // An rvalue of type char, signed char, unsigned char, short int, or |
2006 | // unsigned short int can be converted to an rvalue of type int if |
2007 | // int can represent all the values of the source type; otherwise, |
2008 | // the source rvalue can be converted to an rvalue of type unsigned |
2009 | // int (C++ 4.5p1). |
2010 | if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && |
2011 | !FromType->isEnumeralType()) { |
2012 | if (// We can promote any signed, promotable integer type to an int |
2013 | (FromType->isSignedIntegerType() || |
2014 | // We can promote any unsigned integer type whose size is |
2015 | // less than int to an int. |
2016 | Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { |
2017 | return To->getKind() == BuiltinType::Int; |
2018 | } |
2019 | |
2020 | return To->getKind() == BuiltinType::UInt; |
2021 | } |
2022 | |
2023 | // C++11 [conv.prom]p3: |
2024 | // A prvalue of an unscoped enumeration type whose underlying type is not |
2025 | // fixed (7.2) can be converted to an rvalue a prvalue of the first of the |
2026 | // following types that can represent all the values of the enumeration |
2027 | // (i.e., the values in the range bmin to bmax as described in 7.2): int, |
2028 | // unsigned int, long int, unsigned long int, long long int, or unsigned |
2029 | // long long int. If none of the types in that list can represent all the |
2030 | // values of the enumeration, an rvalue a prvalue of an unscoped enumeration |
2031 | // type can be converted to an rvalue a prvalue of the extended integer type |
2032 | // with lowest integer conversion rank (4.13) greater than the rank of long |
2033 | // long in which all the values of the enumeration can be represented. If |
2034 | // there are two such extended types, the signed one is chosen. |
2035 | // C++11 [conv.prom]p4: |
2036 | // A prvalue of an unscoped enumeration type whose underlying type is fixed |
2037 | // can be converted to a prvalue of its underlying type. Moreover, if |
2038 | // integral promotion can be applied to its underlying type, a prvalue of an |
2039 | // unscoped enumeration type whose underlying type is fixed can also be |
2040 | // converted to a prvalue of the promoted underlying type. |
2041 | if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { |
2042 | // C++0x 7.2p9: Note that this implicit enum to int conversion is not |
2043 | // provided for a scoped enumeration. |
2044 | if (FromEnumType->getDecl()->isScoped()) |
2045 | return false; |
2046 | |
2047 | // We can perform an integral promotion to the underlying type of the enum, |
2048 | // even if that's not the promoted type. Note that the check for promoting |
2049 | // the underlying type is based on the type alone, and does not consider |
2050 | // the bitfield-ness of the actual source expression. |
2051 | if (FromEnumType->getDecl()->isFixed()) { |
2052 | QualType Underlying = FromEnumType->getDecl()->getIntegerType(); |
2053 | return Context.hasSameUnqualifiedType(Underlying, ToType) || |
2054 | IsIntegralPromotion(nullptr, Underlying, ToType); |
2055 | } |
2056 | |
2057 | // We have already pre-calculated the promotion type, so this is trivial. |
2058 | if (ToType->isIntegerType() && |
2059 | isCompleteType(From->getBeginLoc(), FromType)) |
2060 | return Context.hasSameUnqualifiedType( |
2061 | ToType, FromEnumType->getDecl()->getPromotionType()); |
2062 | |
2063 | // C++ [conv.prom]p5: |
2064 | // If the bit-field has an enumerated type, it is treated as any other |
2065 | // value of that type for promotion purposes. |
2066 | // |
2067 | // ... so do not fall through into the bit-field checks below in C++. |
2068 | if (getLangOpts().CPlusPlus) |
2069 | return false; |
2070 | } |
2071 | |
2072 | // C++0x [conv.prom]p2: |
2073 | // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted |
2074 | // to an rvalue a prvalue of the first of the following types that can |
2075 | // represent all the values of its underlying type: int, unsigned int, |
2076 | // long int, unsigned long int, long long int, or unsigned long long int. |
2077 | // If none of the types in that list can represent all the values of its |
2078 | // underlying type, an rvalue a prvalue of type char16_t, char32_t, |
2079 | // or wchar_t can be converted to an rvalue a prvalue of its underlying |
2080 | // type. |
2081 | if (FromType->isAnyCharacterType() && !FromType->isCharType() && |
2082 | ToType->isIntegerType()) { |
2083 | // Determine whether the type we're converting from is signed or |
2084 | // unsigned. |
2085 | bool FromIsSigned = FromType->isSignedIntegerType(); |
2086 | uint64_t FromSize = Context.getTypeSize(FromType); |
2087 | |
2088 | // The types we'll try to promote to, in the appropriate |
2089 | // order. Try each of these types. |
2090 | QualType PromoteTypes[6] = { |
2091 | Context.IntTy, Context.UnsignedIntTy, |
2092 | Context.LongTy, Context.UnsignedLongTy , |
2093 | Context.LongLongTy, Context.UnsignedLongLongTy |
2094 | }; |
2095 | for (int Idx = 0; Idx < 6; ++Idx) { |
2096 | uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); |
2097 | if (FromSize < ToSize || |
2098 | (FromSize == ToSize && |
2099 | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { |
2100 | // We found the type that we can promote to. If this is the |
2101 | // type we wanted, we have a promotion. Otherwise, no |
2102 | // promotion. |
2103 | return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); |
2104 | } |
2105 | } |
2106 | } |
2107 | |
2108 | // An rvalue for an integral bit-field (9.6) can be converted to an |
2109 | // rvalue of type int if int can represent all the values of the |
2110 | // bit-field; otherwise, it can be converted to unsigned int if |
2111 | // unsigned int can represent all the values of the bit-field. If |
2112 | // the bit-field is larger yet, no integral promotion applies to |
2113 | // it. If the bit-field has an enumerated type, it is treated as any |
2114 | // other value of that type for promotion purposes (C++ 4.5p3). |
2115 | // FIXME: We should delay checking of bit-fields until we actually perform the |
2116 | // conversion. |
2117 | // |
2118 | // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be |
2119 | // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum |
2120 | // bit-fields and those whose underlying type is larger than int) for GCC |
2121 | // compatibility. |
2122 | if (From) { |
2123 | if (FieldDecl *MemberDecl = From->getSourceBitField()) { |
2124 | llvm::APSInt BitWidth; |
2125 | if (FromType->isIntegralType(Context) && |
2126 | MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { |
2127 | llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); |
2128 | ToSize = Context.getTypeSize(ToType); |
2129 | |
2130 | // Are we promoting to an int from a bitfield that fits in an int? |
2131 | if (BitWidth < ToSize || |
2132 | (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { |
2133 | return To->getKind() == BuiltinType::Int; |
2134 | } |
2135 | |
2136 | // Are we promoting to an unsigned int from an unsigned bitfield |
2137 | // that fits into an unsigned int? |
2138 | if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { |
2139 | return To->getKind() == BuiltinType::UInt; |
2140 | } |
2141 | |
2142 | return false; |
2143 | } |
2144 | } |
2145 | } |
2146 | |
2147 | // An rvalue of type bool can be converted to an rvalue of type int, |
2148 | // with false becoming zero and true becoming one (C++ 4.5p4). |
2149 | if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { |
2150 | return true; |
2151 | } |
2152 | |
2153 | return false; |
2154 | } |
2155 | |
2156 | /// IsFloatingPointPromotion - Determines whether the conversion from |
2157 | /// FromType to ToType is a floating point promotion (C++ 4.6). If so, |
2158 | /// returns true and sets PromotedType to the promoted type. |
2159 | bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { |
2160 | if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) |
2161 | if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { |
2162 | /// An rvalue of type float can be converted to an rvalue of type |
2163 | /// double. (C++ 4.6p1). |
2164 | if (FromBuiltin->getKind() == BuiltinType::Float && |
2165 | ToBuiltin->getKind() == BuiltinType::Double) |
2166 | return true; |
2167 | |
2168 | // C99 6.3.1.5p1: |
2169 | // When a float is promoted to double or long double, or a |
2170 | // double is promoted to long double [...]. |
2171 | if (!getLangOpts().CPlusPlus && |
2172 | (FromBuiltin->getKind() == BuiltinType::Float || |
2173 | FromBuiltin->getKind() == BuiltinType::Double) && |
2174 | (ToBuiltin->getKind() == BuiltinType::LongDouble || |
2175 | ToBuiltin->getKind() == BuiltinType::Float128)) |
2176 | return true; |
2177 | |
2178 | // Half can be promoted to float. |
2179 | if (!getLangOpts().NativeHalfType && |
2180 | FromBuiltin->getKind() == BuiltinType::Half && |
2181 | ToBuiltin->getKind() == BuiltinType::Float) |
2182 | return true; |
2183 | } |
2184 | |
2185 | return false; |
2186 | } |
2187 | |
2188 | /// Determine if a conversion is a complex promotion. |
2189 | /// |
2190 | /// A complex promotion is defined as a complex -> complex conversion |
2191 | /// where the conversion between the underlying real types is a |
2192 | /// floating-point or integral promotion. |
2193 | bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { |
2194 | const ComplexType *FromComplex = FromType->getAs<ComplexType>(); |
2195 | if (!FromComplex) |
2196 | return false; |
2197 | |
2198 | const ComplexType *ToComplex = ToType->getAs<ComplexType>(); |
2199 | if (!ToComplex) |
2200 | return false; |
2201 | |
2202 | return IsFloatingPointPromotion(FromComplex->getElementType(), |
2203 | ToComplex->getElementType()) || |
2204 | IsIntegralPromotion(nullptr, FromComplex->getElementType(), |
2205 | ToComplex->getElementType()); |
2206 | } |
2207 | |
2208 | /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from |
2209 | /// the pointer type FromPtr to a pointer to type ToPointee, with the |
2210 | /// same type qualifiers as FromPtr has on its pointee type. ToType, |
2211 | /// if non-empty, will be a pointer to ToType that may or may not have |
2212 | /// the right set of qualifiers on its pointee. |
2213 | /// |
2214 | static QualType |
2215 | BuildSimilarlyQualifiedPointerType(const Type *FromPtr, |
2216 | QualType ToPointee, QualType ToType, |
2217 | ASTContext &Context, |
2218 | bool StripObjCLifetime = false) { |
2219 | assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr-> getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type" ) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 2221, __PRETTY_FUNCTION__)) |
2220 | FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr-> getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type" ) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 2221, __PRETTY_FUNCTION__)) |
2221 | "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr-> getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type" ) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 2221, __PRETTY_FUNCTION__)); |
2222 | |
2223 | /// Conversions to 'id' subsume cv-qualifier conversions. |
2224 | if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) |
2225 | return ToType.getUnqualifiedType(); |
2226 | |
2227 | QualType CanonFromPointee |
2228 | = Context.getCanonicalType(FromPtr->getPointeeType()); |
2229 | QualType CanonToPointee = Context.getCanonicalType(ToPointee); |
2230 | Qualifiers Quals = CanonFromPointee.getQualifiers(); |
2231 | |
2232 | if (StripObjCLifetime) |
2233 | Quals.removeObjCLifetime(); |
2234 | |
2235 | // Exact qualifier match -> return the pointer type we're converting to. |
2236 | if (CanonToPointee.getLocalQualifiers() == Quals) { |
2237 | // ToType is exactly what we need. Return it. |
2238 | if (!ToType.isNull()) |
2239 | return ToType.getUnqualifiedType(); |
2240 | |
2241 | // Build a pointer to ToPointee. It has the right qualifiers |
2242 | // already. |
2243 | if (isa<ObjCObjectPointerType>(ToType)) |
2244 | return Context.getObjCObjectPointerType(ToPointee); |
2245 | return Context.getPointerType(ToPointee); |
2246 | } |
2247 | |
2248 | // Just build a canonical type that has the right qualifiers. |
2249 | QualType QualifiedCanonToPointee |
2250 | = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); |
2251 | |
2252 | if (isa<ObjCObjectPointerType>(ToType)) |
2253 | return Context.getObjCObjectPointerType(QualifiedCanonToPointee); |
2254 | return Context.getPointerType(QualifiedCanonToPointee); |
2255 | } |
2256 | |
2257 | static bool isNullPointerConstantForConversion(Expr *Expr, |
2258 | bool InOverloadResolution, |
2259 | ASTContext &Context) { |
2260 | // Handle value-dependent integral null pointer constants correctly. |
2261 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 |
2262 | if (Expr->isValueDependent() && !Expr->isTypeDependent() && |
2263 | Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) |
2264 | return !InOverloadResolution; |
2265 | |
2266 | return Expr->isNullPointerConstant(Context, |
2267 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
2268 | : Expr::NPC_ValueDependentIsNull); |
2269 | } |
2270 | |
2271 | /// IsPointerConversion - Determines whether the conversion of the |
2272 | /// expression From, which has the (possibly adjusted) type FromType, |
2273 | /// can be converted to the type ToType via a pointer conversion (C++ |
2274 | /// 4.10). If so, returns true and places the converted type (that |
2275 | /// might differ from ToType in its cv-qualifiers at some level) into |
2276 | /// ConvertedType. |
2277 | /// |
2278 | /// This routine also supports conversions to and from block pointers |
2279 | /// and conversions with Objective-C's 'id', 'id<protocols...>', and |
2280 | /// pointers to interfaces. FIXME: Once we've determined the |
2281 | /// appropriate overloading rules for Objective-C, we may want to |
2282 | /// split the Objective-C checks into a different routine; however, |
2283 | /// GCC seems to consider all of these conversions to be pointer |
2284 | /// conversions, so for now they live here. IncompatibleObjC will be |
2285 | /// set if the conversion is an allowed Objective-C conversion that |
2286 | /// should result in a warning. |
2287 | bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, |
2288 | bool InOverloadResolution, |
2289 | QualType& ConvertedType, |
2290 | bool &IncompatibleObjC) { |
2291 | IncompatibleObjC = false; |
2292 | if (isObjCPointerConversion(FromType, ToType, ConvertedType, |
2293 | IncompatibleObjC)) |
2294 | return true; |
2295 | |
2296 | // Conversion from a null pointer constant to any Objective-C pointer type. |
2297 | if (ToType->isObjCObjectPointerType() && |
2298 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
2299 | ConvertedType = ToType; |
2300 | return true; |
2301 | } |
2302 | |
2303 | // Blocks: Block pointers can be converted to void*. |
2304 | if (FromType->isBlockPointerType() && ToType->isPointerType() && |
2305 | ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { |
2306 | ConvertedType = ToType; |
2307 | return true; |
2308 | } |
2309 | // Blocks: A null pointer constant can be converted to a block |
2310 | // pointer type. |
2311 | if (ToType->isBlockPointerType() && |
2312 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
2313 | ConvertedType = ToType; |
2314 | return true; |
2315 | } |
2316 | |
2317 | // If the left-hand-side is nullptr_t, the right side can be a null |
2318 | // pointer constant. |
2319 | if (ToType->isNullPtrType() && |
2320 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
2321 | ConvertedType = ToType; |
2322 | return true; |
2323 | } |
2324 | |
2325 | const PointerType* ToTypePtr = ToType->getAs<PointerType>(); |
2326 | if (!ToTypePtr) |
2327 | return false; |
2328 | |
2329 | // A null pointer constant can be converted to a pointer type (C++ 4.10p1). |
2330 | if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
2331 | ConvertedType = ToType; |
2332 | return true; |
2333 | } |
2334 | |
2335 | // Beyond this point, both types need to be pointers |
2336 | // , including objective-c pointers. |
2337 | QualType ToPointeeType = ToTypePtr->getPointeeType(); |
2338 | if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && |
2339 | !getLangOpts().ObjCAutoRefCount) { |
2340 | ConvertedType = BuildSimilarlyQualifiedPointerType( |
2341 | FromType->getAs<ObjCObjectPointerType>(), |
2342 | ToPointeeType, |
2343 | ToType, Context); |
2344 | return true; |
2345 | } |
2346 | const PointerType *FromTypePtr = FromType->getAs<PointerType>(); |
2347 | if (!FromTypePtr) |
2348 | return false; |
2349 | |
2350 | QualType FromPointeeType = FromTypePtr->getPointeeType(); |
2351 | |
2352 | // If the unqualified pointee types are the same, this can't be a |
2353 | // pointer conversion, so don't do all of the work below. |
2354 | if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) |
2355 | return false; |
2356 | |
2357 | // An rvalue of type "pointer to cv T," where T is an object type, |
2358 | // can be converted to an rvalue of type "pointer to cv void" (C++ |
2359 | // 4.10p2). |
2360 | if (FromPointeeType->isIncompleteOrObjectType() && |
2361 | ToPointeeType->isVoidType()) { |
2362 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
2363 | ToPointeeType, |
2364 | ToType, Context, |
2365 | /*StripObjCLifetime=*/true); |
2366 | return true; |
2367 | } |
2368 | |
2369 | // MSVC allows implicit function to void* type conversion. |
2370 | if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && |
2371 | ToPointeeType->isVoidType()) { |
2372 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
2373 | ToPointeeType, |
2374 | ToType, Context); |
2375 | return true; |
2376 | } |
2377 | |
2378 | // When we're overloading in C, we allow a special kind of pointer |
2379 | // conversion for compatible-but-not-identical pointee types. |
2380 | if (!getLangOpts().CPlusPlus && |
2381 | Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { |
2382 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
2383 | ToPointeeType, |
2384 | ToType, Context); |
2385 | return true; |
2386 | } |
2387 | |
2388 | // C++ [conv.ptr]p3: |
2389 | // |
2390 | // An rvalue of type "pointer to cv D," where D is a class type, |
2391 | // can be converted to an rvalue of type "pointer to cv B," where |
2392 | // B is a base class (clause 10) of D. If B is an inaccessible |
2393 | // (clause 11) or ambiguous (10.2) base class of D, a program that |
2394 | // necessitates this conversion is ill-formed. The result of the |
2395 | // conversion is a pointer to the base class sub-object of the |
2396 | // derived class object. The null pointer value is converted to |
2397 | // the null pointer value of the destination type. |
2398 | // |
2399 | // Note that we do not check for ambiguity or inaccessibility |
2400 | // here. That is handled by CheckPointerConversion. |
2401 | if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && |
2402 | ToPointeeType->isRecordType() && |
2403 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && |
2404 | IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { |
2405 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
2406 | ToPointeeType, |
2407 | ToType, Context); |
2408 | return true; |
2409 | } |
2410 | |
2411 | if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && |
2412 | Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { |
2413 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
2414 | ToPointeeType, |
2415 | ToType, Context); |
2416 | return true; |
2417 | } |
2418 | |
2419 | return false; |
2420 | } |
2421 | |
2422 | /// Adopt the given qualifiers for the given type. |
2423 | static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ |
2424 | Qualifiers TQs = T.getQualifiers(); |
2425 | |
2426 | // Check whether qualifiers already match. |
2427 | if (TQs == Qs) |
2428 | return T; |
2429 | |
2430 | if (Qs.compatiblyIncludes(TQs)) |
2431 | return Context.getQualifiedType(T, Qs); |
2432 | |
2433 | return Context.getQualifiedType(T.getUnqualifiedType(), Qs); |
2434 | } |
2435 | |
2436 | /// isObjCPointerConversion - Determines whether this is an |
2437 | /// Objective-C pointer conversion. Subroutine of IsPointerConversion, |
2438 | /// with the same arguments and return values. |
2439 | bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, |
2440 | QualType& ConvertedType, |
2441 | bool &IncompatibleObjC) { |
2442 | if (!getLangOpts().ObjC) |
2443 | return false; |
2444 | |
2445 | // The set of qualifiers on the type we're converting from. |
2446 | Qualifiers FromQualifiers = FromType.getQualifiers(); |
2447 | |
2448 | // First, we handle all conversions on ObjC object pointer types. |
2449 | const ObjCObjectPointerType* ToObjCPtr = |
2450 | ToType->getAs<ObjCObjectPointerType>(); |
2451 | const ObjCObjectPointerType *FromObjCPtr = |
2452 | FromType->getAs<ObjCObjectPointerType>(); |
2453 | |
2454 | if (ToObjCPtr && FromObjCPtr) { |
2455 | // If the pointee types are the same (ignoring qualifications), |
2456 | // then this is not a pointer conversion. |
2457 | if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), |
2458 | FromObjCPtr->getPointeeType())) |
2459 | return false; |
2460 | |
2461 | // Conversion between Objective-C pointers. |
2462 | if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { |
2463 | const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); |
2464 | const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); |
2465 | if (getLangOpts().CPlusPlus && LHS && RHS && |
2466 | !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( |
2467 | FromObjCPtr->getPointeeType())) |
2468 | return false; |
2469 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, |
2470 | ToObjCPtr->getPointeeType(), |
2471 | ToType, Context); |
2472 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
2473 | return true; |
2474 | } |
2475 | |
2476 | if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { |
2477 | // Okay: this is some kind of implicit downcast of Objective-C |
2478 | // interfaces, which is permitted. However, we're going to |
2479 | // complain about it. |
2480 | IncompatibleObjC = true; |
2481 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, |
2482 | ToObjCPtr->getPointeeType(), |
2483 | ToType, Context); |
2484 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
2485 | return true; |
2486 | } |
2487 | } |
2488 | // Beyond this point, both types need to be C pointers or block pointers. |
2489 | QualType ToPointeeType; |
2490 | if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) |
2491 | ToPointeeType = ToCPtr->getPointeeType(); |
2492 | else if (const BlockPointerType *ToBlockPtr = |
2493 | ToType->getAs<BlockPointerType>()) { |
2494 | // Objective C++: We're able to convert from a pointer to any object |
2495 | // to a block pointer type. |
2496 | if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { |
2497 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
2498 | return true; |
2499 | } |
2500 | ToPointeeType = ToBlockPtr->getPointeeType(); |
2501 | } |
2502 | else if (FromType->getAs<BlockPointerType>() && |
2503 | ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { |
2504 | // Objective C++: We're able to convert from a block pointer type to a |
2505 | // pointer to any object. |
2506 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
2507 | return true; |
2508 | } |
2509 | else |
2510 | return false; |
2511 | |
2512 | QualType FromPointeeType; |
2513 | if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) |
2514 | FromPointeeType = FromCPtr->getPointeeType(); |
2515 | else if (const BlockPointerType *FromBlockPtr = |
2516 | FromType->getAs<BlockPointerType>()) |
2517 | FromPointeeType = FromBlockPtr->getPointeeType(); |
2518 | else |
2519 | return false; |
2520 | |
2521 | // If we have pointers to pointers, recursively check whether this |
2522 | // is an Objective-C conversion. |
2523 | if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && |
2524 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, |
2525 | IncompatibleObjC)) { |
2526 | // We always complain about this conversion. |
2527 | IncompatibleObjC = true; |
2528 | ConvertedType = Context.getPointerType(ConvertedType); |
2529 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
2530 | return true; |
2531 | } |
2532 | // Allow conversion of pointee being objective-c pointer to another one; |
2533 | // as in I* to id. |
2534 | if (FromPointeeType->getAs<ObjCObjectPointerType>() && |
2535 | ToPointeeType->getAs<ObjCObjectPointerType>() && |
2536 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, |
2537 | IncompatibleObjC)) { |
2538 | |
2539 | ConvertedType = Context.getPointerType(ConvertedType); |
2540 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
2541 | return true; |
2542 | } |
2543 | |
2544 | // If we have pointers to functions or blocks, check whether the only |
2545 | // differences in the argument and result types are in Objective-C |
2546 | // pointer conversions. If so, we permit the conversion (but |
2547 | // complain about it). |
2548 | const FunctionProtoType *FromFunctionType |
2549 | = FromPointeeType->getAs<FunctionProtoType>(); |
2550 | const FunctionProtoType *ToFunctionType |
2551 | = ToPointeeType->getAs<FunctionProtoType>(); |
2552 | if (FromFunctionType && ToFunctionType) { |
2553 | // If the function types are exactly the same, this isn't an |
2554 | // Objective-C pointer conversion. |
2555 | if (Context.getCanonicalType(FromPointeeType) |
2556 | == Context.getCanonicalType(ToPointeeType)) |
2557 | return false; |
2558 | |
2559 | // Perform the quick checks that will tell us whether these |
2560 | // function types are obviously different. |
2561 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || |
2562 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || |
2563 | FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) |
2564 | return false; |
2565 | |
2566 | bool HasObjCConversion = false; |
2567 | if (Context.getCanonicalType(FromFunctionType->getReturnType()) == |
2568 | Context.getCanonicalType(ToFunctionType->getReturnType())) { |
2569 | // Okay, the types match exactly. Nothing to do. |
2570 | } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), |
2571 | ToFunctionType->getReturnType(), |
2572 | ConvertedType, IncompatibleObjC)) { |
2573 | // Okay, we have an Objective-C pointer conversion. |
2574 | HasObjCConversion = true; |
2575 | } else { |
2576 | // Function types are too different. Abort. |
2577 | return false; |
2578 | } |
2579 | |
2580 | // Check argument types. |
2581 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); |
2582 | ArgIdx != NumArgs; ++ArgIdx) { |
2583 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); |
2584 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); |
2585 | if (Context.getCanonicalType(FromArgType) |
2586 | == Context.getCanonicalType(ToArgType)) { |
2587 | // Okay, the types match exactly. Nothing to do. |
2588 | } else if (isObjCPointerConversion(FromArgType, ToArgType, |
2589 | ConvertedType, IncompatibleObjC)) { |
2590 | // Okay, we have an Objective-C pointer conversion. |
2591 | HasObjCConversion = true; |
2592 | } else { |
2593 | // Argument types are too different. Abort. |
2594 | return false; |
2595 | } |
2596 | } |
2597 | |
2598 | if (HasObjCConversion) { |
2599 | // We had an Objective-C conversion. Allow this pointer |
2600 | // conversion, but complain about it. |
2601 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
2602 | IncompatibleObjC = true; |
2603 | return true; |
2604 | } |
2605 | } |
2606 | |
2607 | return false; |
2608 | } |
2609 | |
2610 | /// Determine whether this is an Objective-C writeback conversion, |
2611 | /// used for parameter passing when performing automatic reference counting. |
2612 | /// |
2613 | /// \param FromType The type we're converting form. |
2614 | /// |
2615 | /// \param ToType The type we're converting to. |
2616 | /// |
2617 | /// \param ConvertedType The type that will be produced after applying |
2618 | /// this conversion. |
2619 | bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, |
2620 | QualType &ConvertedType) { |
2621 | if (!getLangOpts().ObjCAutoRefCount || |
2622 | Context.hasSameUnqualifiedType(FromType, ToType)) |
2623 | return false; |
2624 | |
2625 | // Parameter must be a pointer to __autoreleasing (with no other qualifiers). |
2626 | QualType ToPointee; |
2627 | if (const PointerType *ToPointer = ToType->getAs<PointerType>()) |
2628 | ToPointee = ToPointer->getPointeeType(); |
2629 | else |
2630 | return false; |
2631 | |
2632 | Qualifiers ToQuals = ToPointee.getQualifiers(); |
2633 | if (!ToPointee->isObjCLifetimeType() || |
2634 | ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || |
2635 | !ToQuals.withoutObjCLifetime().empty()) |
2636 | return false; |
2637 | |
2638 | // Argument must be a pointer to __strong to __weak. |
2639 | QualType FromPointee; |
2640 | if (const PointerType *FromPointer = FromType->getAs<PointerType>()) |
2641 | FromPointee = FromPointer->getPointeeType(); |
2642 | else |
2643 | return false; |
2644 | |
2645 | Qualifiers FromQuals = FromPointee.getQualifiers(); |
2646 | if (!FromPointee->isObjCLifetimeType() || |
2647 | (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && |
2648 | FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) |
2649 | return false; |
2650 | |
2651 | // Make sure that we have compatible qualifiers. |
2652 | FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); |
2653 | if (!ToQuals.compatiblyIncludes(FromQuals)) |
2654 | return false; |
2655 | |
2656 | // Remove qualifiers from the pointee type we're converting from; they |
2657 | // aren't used in the compatibility check belong, and we'll be adding back |
2658 | // qualifiers (with __autoreleasing) if the compatibility check succeeds. |
2659 | FromPointee = FromPointee.getUnqualifiedType(); |
2660 | |
2661 | // The unqualified form of the pointee types must be compatible. |
2662 | ToPointee = ToPointee.getUnqualifiedType(); |
2663 | bool IncompatibleObjC; |
2664 | if (Context.typesAreCompatible(FromPointee, ToPointee)) |
2665 | FromPointee = ToPointee; |
2666 | else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, |
2667 | IncompatibleObjC)) |
2668 | return false; |
2669 | |
2670 | /// Construct the type we're converting to, which is a pointer to |
2671 | /// __autoreleasing pointee. |
2672 | FromPointee = Context.getQualifiedType(FromPointee, FromQuals); |
2673 | ConvertedType = Context.getPointerType(FromPointee); |
2674 | return true; |
2675 | } |
2676 | |
2677 | bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, |
2678 | QualType& ConvertedType) { |
2679 | QualType ToPointeeType; |
2680 | if (const BlockPointerType *ToBlockPtr = |
2681 | ToType->getAs<BlockPointerType>()) |
2682 | ToPointeeType = ToBlockPtr->getPointeeType(); |
2683 | else |
2684 | return false; |
2685 | |
2686 | QualType FromPointeeType; |
2687 | if (const BlockPointerType *FromBlockPtr = |
2688 | FromType->getAs<BlockPointerType>()) |
2689 | FromPointeeType = FromBlockPtr->getPointeeType(); |
2690 | else |
2691 | return false; |
2692 | // We have pointer to blocks, check whether the only |
2693 | // differences in the argument and result types are in Objective-C |
2694 | // pointer conversions. If so, we permit the conversion. |
2695 | |
2696 | const FunctionProtoType *FromFunctionType |
2697 | = FromPointeeType->getAs<FunctionProtoType>(); |
2698 | const FunctionProtoType *ToFunctionType |
2699 | = ToPointeeType->getAs<FunctionProtoType>(); |
2700 | |
2701 | if (!FromFunctionType || !ToFunctionType) |
2702 | return false; |
2703 | |
2704 | if (Context.hasSameType(FromPointeeType, ToPointeeType)) |
2705 | return true; |
2706 | |
2707 | // Perform the quick checks that will tell us whether these |
2708 | // function types are obviously different. |
2709 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || |
2710 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) |
2711 | return false; |
2712 | |
2713 | FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); |
2714 | FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); |
2715 | if (FromEInfo != ToEInfo) |
2716 | return false; |
2717 | |
2718 | bool IncompatibleObjC = false; |
2719 | if (Context.hasSameType(FromFunctionType->getReturnType(), |
2720 | ToFunctionType->getReturnType())) { |
2721 | // Okay, the types match exactly. Nothing to do. |
2722 | } else { |
2723 | QualType RHS = FromFunctionType->getReturnType(); |
2724 | QualType LHS = ToFunctionType->getReturnType(); |
2725 | if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && |
2726 | !RHS.hasQualifiers() && LHS.hasQualifiers()) |
2727 | LHS = LHS.getUnqualifiedType(); |
2728 | |
2729 | if (Context.hasSameType(RHS,LHS)) { |
2730 | // OK exact match. |
2731 | } else if (isObjCPointerConversion(RHS, LHS, |
2732 | ConvertedType, IncompatibleObjC)) { |
2733 | if (IncompatibleObjC) |
2734 | return false; |
2735 | // Okay, we have an Objective-C pointer conversion. |
2736 | } |
2737 | else |
2738 | return false; |
2739 | } |
2740 | |
2741 | // Check argument types. |
2742 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); |
2743 | ArgIdx != NumArgs; ++ArgIdx) { |
2744 | IncompatibleObjC = false; |
2745 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); |
2746 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); |
2747 | if (Context.hasSameType(FromArgType, ToArgType)) { |
2748 | // Okay, the types match exactly. Nothing to do. |
2749 | } else if (isObjCPointerConversion(ToArgType, FromArgType, |
2750 | ConvertedType, IncompatibleObjC)) { |
2751 | if (IncompatibleObjC) |
2752 | return false; |
2753 | // Okay, we have an Objective-C pointer conversion. |
2754 | } else |
2755 | // Argument types are too different. Abort. |
2756 | return false; |
2757 | } |
2758 | |
2759 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; |
2760 | bool CanUseToFPT, CanUseFromFPT; |
2761 | if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, |
2762 | CanUseToFPT, CanUseFromFPT, |
2763 | NewParamInfos)) |
2764 | return false; |
2765 | |
2766 | ConvertedType = ToType; |
2767 | return true; |
2768 | } |
2769 | |
2770 | enum { |
2771 | ft_default, |
2772 | ft_different_class, |
2773 | ft_parameter_arity, |
2774 | ft_parameter_mismatch, |
2775 | ft_return_type, |
2776 | ft_qualifer_mismatch, |
2777 | ft_noexcept |
2778 | }; |
2779 | |
2780 | /// Attempts to get the FunctionProtoType from a Type. Handles |
2781 | /// MemberFunctionPointers properly. |
2782 | static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { |
2783 | if (auto *FPT = FromType->getAs<FunctionProtoType>()) |
2784 | return FPT; |
2785 | |
2786 | if (auto *MPT = FromType->getAs<MemberPointerType>()) |
2787 | return MPT->getPointeeType()->getAs<FunctionProtoType>(); |
2788 | |
2789 | return nullptr; |
2790 | } |
2791 | |
2792 | /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing |
2793 | /// function types. Catches different number of parameter, mismatch in |
2794 | /// parameter types, and different return types. |
2795 | void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, |
2796 | QualType FromType, QualType ToType) { |
2797 | // If either type is not valid, include no extra info. |
2798 | if (FromType.isNull() || ToType.isNull()) { |
2799 | PDiag << ft_default; |
2800 | return; |
2801 | } |
2802 | |
2803 | // Get the function type from the pointers. |
2804 | if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { |
2805 | const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(), |
2806 | *ToMember = ToType->getAs<MemberPointerType>(); |
2807 | if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { |
2808 | PDiag << ft_different_class << QualType(ToMember->getClass(), 0) |
2809 | << QualType(FromMember->getClass(), 0); |
2810 | return; |
2811 | } |
2812 | FromType = FromMember->getPointeeType(); |
2813 | ToType = ToMember->getPointeeType(); |
2814 | } |
2815 | |
2816 | if (FromType->isPointerType()) |
2817 | FromType = FromType->getPointeeType(); |
2818 | if (ToType->isPointerType()) |
2819 | ToType = ToType->getPointeeType(); |
2820 | |
2821 | // Remove references. |
2822 | FromType = FromType.getNonReferenceType(); |
2823 | ToType = ToType.getNonReferenceType(); |
2824 | |
2825 | // Don't print extra info for non-specialized template functions. |
2826 | if (FromType->isInstantiationDependentType() && |
2827 | !FromType->getAs<TemplateSpecializationType>()) { |
2828 | PDiag << ft_default; |
2829 | return; |
2830 | } |
2831 | |
2832 | // No extra info for same types. |
2833 | if (Context.hasSameType(FromType, ToType)) { |
2834 | PDiag << ft_default; |
2835 | return; |
2836 | } |
2837 | |
2838 | const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), |
2839 | *ToFunction = tryGetFunctionProtoType(ToType); |
2840 | |
2841 | // Both types need to be function types. |
2842 | if (!FromFunction || !ToFunction) { |
2843 | PDiag << ft_default; |
2844 | return; |
2845 | } |
2846 | |
2847 | if (FromFunction->getNumParams() != ToFunction->getNumParams()) { |
2848 | PDiag << ft_parameter_arity << ToFunction->getNumParams() |
2849 | << FromFunction->getNumParams(); |
2850 | return; |
2851 | } |
2852 | |
2853 | // Handle different parameter types. |
2854 | unsigned ArgPos; |
2855 | if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { |
2856 | PDiag << ft_parameter_mismatch << ArgPos + 1 |
2857 | << ToFunction->getParamType(ArgPos) |
2858 | << FromFunction->getParamType(ArgPos); |
2859 | return; |
2860 | } |
2861 | |
2862 | // Handle different return type. |
2863 | if (!Context.hasSameType(FromFunction->getReturnType(), |
2864 | ToFunction->getReturnType())) { |
2865 | PDiag << ft_return_type << ToFunction->getReturnType() |
2866 | << FromFunction->getReturnType(); |
2867 | return; |
2868 | } |
2869 | |
2870 | if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { |
2871 | PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() |
2872 | << FromFunction->getMethodQuals(); |
2873 | return; |
2874 | } |
2875 | |
2876 | // Handle exception specification differences on canonical type (in C++17 |
2877 | // onwards). |
2878 | if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) |
2879 | ->isNothrow() != |
2880 | cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) |
2881 | ->isNothrow()) { |
2882 | PDiag << ft_noexcept; |
2883 | return; |
2884 | } |
2885 | |
2886 | // Unable to find a difference, so add no extra info. |
2887 | PDiag << ft_default; |
2888 | } |
2889 | |
2890 | /// FunctionParamTypesAreEqual - This routine checks two function proto types |
2891 | /// for equality of their argument types. Caller has already checked that |
2892 | /// they have same number of arguments. If the parameters are different, |
2893 | /// ArgPos will have the parameter index of the first different parameter. |
2894 | bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, |
2895 | const FunctionProtoType *NewType, |
2896 | unsigned *ArgPos) { |
2897 | for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(), |
2898 | N = NewType->param_type_begin(), |
2899 | E = OldType->param_type_end(); |
2900 | O && (O != E); ++O, ++N) { |
2901 | if (!Context.hasSameType(O->getUnqualifiedType(), |
2902 | N->getUnqualifiedType())) { |
2903 | if (ArgPos) |
2904 | *ArgPos = O - OldType->param_type_begin(); |
2905 | return false; |
2906 | } |
2907 | } |
2908 | return true; |
2909 | } |
2910 | |
2911 | /// CheckPointerConversion - Check the pointer conversion from the |
2912 | /// expression From to the type ToType. This routine checks for |
2913 | /// ambiguous or inaccessible derived-to-base pointer |
2914 | /// conversions for which IsPointerConversion has already returned |
2915 | /// true. It returns true and produces a diagnostic if there was an |
2916 | /// error, or returns false otherwise. |
2917 | bool Sema::CheckPointerConversion(Expr *From, QualType ToType, |
2918 | CastKind &Kind, |
2919 | CXXCastPath& BasePath, |
2920 | bool IgnoreBaseAccess, |
2921 | bool Diagnose) { |
2922 | QualType FromType = From->getType(); |
2923 | bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; |
2924 | |
2925 | Kind = CK_BitCast; |
2926 | |
2927 | if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && |
2928 | From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == |
2929 | Expr::NPCK_ZeroExpression) { |
2930 | if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) |
2931 | DiagRuntimeBehavior(From->getExprLoc(), From, |
2932 | PDiag(diag::warn_impcast_bool_to_null_pointer) |
2933 | << ToType << From->getSourceRange()); |
2934 | else if (!isUnevaluatedContext()) |
2935 | Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) |
2936 | << ToType << From->getSourceRange(); |
2937 | } |
2938 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { |
2939 | if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { |
2940 | QualType FromPointeeType = FromPtrType->getPointeeType(), |
2941 | ToPointeeType = ToPtrType->getPointeeType(); |
2942 | |
2943 | if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && |
2944 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { |
2945 | // We must have a derived-to-base conversion. Check an |
2946 | // ambiguous or inaccessible conversion. |
2947 | unsigned InaccessibleID = 0; |
2948 | unsigned AmbigiousID = 0; |
2949 | if (Diagnose) { |
2950 | InaccessibleID = diag::err_upcast_to_inaccessible_base; |
2951 | AmbigiousID = diag::err_ambiguous_derived_to_base_conv; |
2952 | } |
2953 | if (CheckDerivedToBaseConversion( |
2954 | FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID, |
2955 | From->getExprLoc(), From->getSourceRange(), DeclarationName(), |
2956 | &BasePath, IgnoreBaseAccess)) |
2957 | return true; |
2958 | |
2959 | // The conversion was successful. |
2960 | Kind = CK_DerivedToBase; |
2961 | } |
2962 | |
2963 | if (Diagnose && !IsCStyleOrFunctionalCast && |
2964 | FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { |
2965 | assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!" ) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 2966, __PRETTY_FUNCTION__)) |
2966 | "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!" ) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 2966, __PRETTY_FUNCTION__)); |
2967 | Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) |
2968 | << From->getSourceRange(); |
2969 | } |
2970 | } |
2971 | } else if (const ObjCObjectPointerType *ToPtrType = |
2972 | ToType->getAs<ObjCObjectPointerType>()) { |
2973 | if (const ObjCObjectPointerType *FromPtrType = |
2974 | FromType->getAs<ObjCObjectPointerType>()) { |
2975 | // Objective-C++ conversions are always okay. |
2976 | // FIXME: We should have a different class of conversions for the |
2977 | // Objective-C++ implicit conversions. |
2978 | if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) |
2979 | return false; |
2980 | } else if (FromType->isBlockPointerType()) { |
2981 | Kind = CK_BlockPointerToObjCPointerCast; |
2982 | } else { |
2983 | Kind = CK_CPointerToObjCPointerCast; |
2984 | } |
2985 | } else if (ToType->isBlockPointerType()) { |
2986 | if (!FromType->isBlockPointerType()) |
2987 | Kind = CK_AnyPointerToBlockPointerCast; |
2988 | } |
2989 | |
2990 | // We shouldn't fall into this case unless it's valid for other |
2991 | // reasons. |
2992 | if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) |
2993 | Kind = CK_NullToPointer; |
2994 | |
2995 | return false; |
2996 | } |
2997 | |
2998 | /// IsMemberPointerConversion - Determines whether the conversion of the |
2999 | /// expression From, which has the (possibly adjusted) type FromType, can be |
3000 | /// converted to the type ToType via a member pointer conversion (C++ 4.11). |
3001 | /// If so, returns true and places the converted type (that might differ from |
3002 | /// ToType in its cv-qualifiers at some level) into ConvertedType. |
3003 | bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, |
3004 | QualType ToType, |
3005 | bool InOverloadResolution, |
3006 | QualType &ConvertedType) { |
3007 | const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); |
3008 | if (!ToTypePtr) |
3009 | return false; |
3010 | |
3011 | // A null pointer constant can be converted to a member pointer (C++ 4.11p1) |
3012 | if (From->isNullPointerConstant(Context, |
3013 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
3014 | : Expr::NPC_ValueDependentIsNull)) { |
3015 | ConvertedType = ToType; |
3016 | return true; |
3017 | } |
3018 | |
3019 | // Otherwise, both types have to be member pointers. |
3020 | const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); |
3021 | if (!FromTypePtr) |
3022 | return false; |
3023 | |
3024 | // A pointer to member of B can be converted to a pointer to member of D, |
3025 | // where D is derived from B (C++ 4.11p2). |
3026 | QualType FromClass(FromTypePtr->getClass(), 0); |
3027 | QualType ToClass(ToTypePtr->getClass(), 0); |
3028 | |
3029 | if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && |
3030 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { |
3031 | ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), |
3032 | ToClass.getTypePtr()); |
3033 | return true; |
3034 | } |
3035 | |
3036 | return false; |
3037 | } |
3038 | |
3039 | /// CheckMemberPointerConversion - Check the member pointer conversion from the |
3040 | /// expression From to the type ToType. This routine checks for ambiguous or |
3041 | /// virtual or inaccessible base-to-derived member pointer conversions |
3042 | /// for which IsMemberPointerConversion has already returned true. It returns |
3043 | /// true and produces a diagnostic if there was an error, or returns false |
3044 | /// otherwise. |
3045 | bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, |
3046 | CastKind &Kind, |
3047 | CXXCastPath &BasePath, |
3048 | bool IgnoreBaseAccess) { |
3049 | QualType FromType = From->getType(); |
3050 | const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); |
3051 | if (!FromPtrType) { |
3052 | // This must be a null pointer to member pointer conversion |
3053 | assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull ) && "Expr must be null pointer constant!") ? static_cast <void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3055, __PRETTY_FUNCTION__)) |
3054 | Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull ) && "Expr must be null pointer constant!") ? static_cast <void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3055, __PRETTY_FUNCTION__)) |
3055 | "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull ) && "Expr must be null pointer constant!") ? static_cast <void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3055, __PRETTY_FUNCTION__)); |
3056 | Kind = CK_NullToMemberPointer; |
3057 | return false; |
3058 | } |
3059 | |
3060 | const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); |
3061 | assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type " "that is not a member pointer.") ? static_cast<void> ( 0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3062, __PRETTY_FUNCTION__)) |
3062 | "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type " "that is not a member pointer.") ? static_cast<void> ( 0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3062, __PRETTY_FUNCTION__)); |
3063 | |
3064 | QualType FromClass = QualType(FromPtrType->getClass(), 0); |
3065 | QualType ToClass = QualType(ToPtrType->getClass(), 0); |
3066 | |
3067 | // FIXME: What about dependent types? |
3068 | assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class." ) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3068, __PRETTY_FUNCTION__)); |
3069 | assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class." ) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3069, __PRETTY_FUNCTION__)); |
3070 | |
3071 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
3072 | /*DetectVirtual=*/true); |
3073 | bool DerivationOkay = |
3074 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); |
3075 | assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK." ) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3076, __PRETTY_FUNCTION__)) |
3076 | "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK." ) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3076, __PRETTY_FUNCTION__)); |
3077 | (void)DerivationOkay; |
3078 | |
3079 | if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). |
3080 | getUnqualifiedType())) { |
3081 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
3082 | Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) |
3083 | << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); |
3084 | return true; |
3085 | } |
3086 | |
3087 | if (const RecordType *VBase = Paths.getDetectedVirtual()) { |
3088 | Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) |
3089 | << FromClass << ToClass << QualType(VBase, 0) |
3090 | << From->getSourceRange(); |
3091 | return true; |
3092 | } |
3093 | |
3094 | if (!IgnoreBaseAccess) |
3095 | CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, |
3096 | Paths.front(), |
3097 | diag::err_downcast_from_inaccessible_base); |
3098 | |
3099 | // Must be a base to derived member conversion. |
3100 | BuildBasePathArray(Paths, BasePath); |
3101 | Kind = CK_BaseToDerivedMemberPointer; |
3102 | return false; |
3103 | } |
3104 | |
3105 | /// Determine whether the lifetime conversion between the two given |
3106 | /// qualifiers sets is nontrivial. |
3107 | static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, |
3108 | Qualifiers ToQuals) { |
3109 | // Converting anything to const __unsafe_unretained is trivial. |
3110 | if (ToQuals.hasConst() && |
3111 | ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) |
3112 | return false; |
3113 | |
3114 | return true; |
3115 | } |
3116 | |
3117 | /// IsQualificationConversion - Determines whether the conversion from |
3118 | /// an rvalue of type FromType to ToType is a qualification conversion |
3119 | /// (C++ 4.4). |
3120 | /// |
3121 | /// \param ObjCLifetimeConversion Output parameter that will be set to indicate |
3122 | /// when the qualification conversion involves a change in the Objective-C |
3123 | /// object lifetime. |
3124 | bool |
3125 | Sema::IsQualificationConversion(QualType FromType, QualType ToType, |
3126 | bool CStyle, bool &ObjCLifetimeConversion) { |
3127 | FromType = Context.getCanonicalType(FromType); |
3128 | ToType = Context.getCanonicalType(ToType); |
3129 | ObjCLifetimeConversion = false; |
3130 | |
3131 | // If FromType and ToType are the same type, this is not a |
3132 | // qualification conversion. |
3133 | if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) |
3134 | return false; |
3135 | |
3136 | // (C++ 4.4p4): |
3137 | // A conversion can add cv-qualifiers at levels other than the first |
3138 | // in multi-level pointers, subject to the following rules: [...] |
3139 | bool PreviousToQualsIncludeConst = true; |
3140 | bool UnwrappedAnyPointer = false; |
3141 | while (Context.UnwrapSimilarTypes(FromType, ToType)) { |
3142 | // Within each iteration of the loop, we check the qualifiers to |
3143 | // determine if this still looks like a qualification |
3144 | // conversion. Then, if all is well, we unwrap one more level of |
3145 | // pointers or pointers-to-members and do it all again |
3146 | // until there are no more pointers or pointers-to-members left to |
3147 | // unwrap. |
3148 | UnwrappedAnyPointer = true; |
3149 | |
3150 | Qualifiers FromQuals = FromType.getQualifiers(); |
3151 | Qualifiers ToQuals = ToType.getQualifiers(); |
3152 | |
3153 | // Ignore __unaligned qualifier if this type is void. |
3154 | if (ToType.getUnqualifiedType()->isVoidType()) |
3155 | FromQuals.removeUnaligned(); |
3156 | |
3157 | // Objective-C ARC: |
3158 | // Check Objective-C lifetime conversions. |
3159 | if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && |
3160 | UnwrappedAnyPointer) { |
3161 | if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { |
3162 | if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) |
3163 | ObjCLifetimeConversion = true; |
3164 | FromQuals.removeObjCLifetime(); |
3165 | ToQuals.removeObjCLifetime(); |
3166 | } else { |
3167 | // Qualification conversions cannot cast between different |
3168 | // Objective-C lifetime qualifiers. |
3169 | return false; |
3170 | } |
3171 | } |
3172 | |
3173 | // Allow addition/removal of GC attributes but not changing GC attributes. |
3174 | if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && |
3175 | (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { |
3176 | FromQuals.removeObjCGCAttr(); |
3177 | ToQuals.removeObjCGCAttr(); |
3178 | } |
3179 | |
3180 | // -- for every j > 0, if const is in cv 1,j then const is in cv |
3181 | // 2,j, and similarly for volatile. |
3182 | if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) |
3183 | return false; |
3184 | |
3185 | // -- if the cv 1,j and cv 2,j are different, then const is in |
3186 | // every cv for 0 < k < j. |
3187 | if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() |
3188 | && !PreviousToQualsIncludeConst) |
3189 | return false; |
3190 | |
3191 | // Keep track of whether all prior cv-qualifiers in the "to" type |
3192 | // include const. |
3193 | PreviousToQualsIncludeConst |
3194 | = PreviousToQualsIncludeConst && ToQuals.hasConst(); |
3195 | } |
3196 | |
3197 | // Allows address space promotion by language rules implemented in |
3198 | // Type::Qualifiers::isAddressSpaceSupersetOf. |
3199 | Qualifiers FromQuals = FromType.getQualifiers(); |
3200 | Qualifiers ToQuals = ToType.getQualifiers(); |
3201 | if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) && |
3202 | !FromQuals.isAddressSpaceSupersetOf(ToQuals)) { |
3203 | return false; |
3204 | } |
3205 | |
3206 | // We are left with FromType and ToType being the pointee types |
3207 | // after unwrapping the original FromType and ToType the same number |
3208 | // of types. If we unwrapped any pointers, and if FromType and |
3209 | // ToType have the same unqualified type (since we checked |
3210 | // qualifiers above), then this is a qualification conversion. |
3211 | return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); |
3212 | } |
3213 | |
3214 | /// - Determine whether this is a conversion from a scalar type to an |
3215 | /// atomic type. |
3216 | /// |
3217 | /// If successful, updates \c SCS's second and third steps in the conversion |
3218 | /// sequence to finish the conversion. |
3219 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, |
3220 | bool InOverloadResolution, |
3221 | StandardConversionSequence &SCS, |
3222 | bool CStyle) { |
3223 | const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); |
3224 | if (!ToAtomic) |
3225 | return false; |
3226 | |
3227 | StandardConversionSequence InnerSCS; |
3228 | if (!IsStandardConversion(S, From, ToAtomic->getValueType(), |
3229 | InOverloadResolution, InnerSCS, |
3230 | CStyle, /*AllowObjCWritebackConversion=*/false)) |
3231 | return false; |
3232 | |
3233 | SCS.Second = InnerSCS.Second; |
3234 | SCS.setToType(1, InnerSCS.getToType(1)); |
3235 | SCS.Third = InnerSCS.Third; |
3236 | SCS.QualificationIncludesObjCLifetime |
3237 | = InnerSCS.QualificationIncludesObjCLifetime; |
3238 | SCS.setToType(2, InnerSCS.getToType(2)); |
3239 | return true; |
3240 | } |
3241 | |
3242 | static bool isFirstArgumentCompatibleWithType(ASTContext &Context, |
3243 | CXXConstructorDecl *Constructor, |
3244 | QualType Type) { |
3245 | const FunctionProtoType *CtorType = |
3246 | Constructor->getType()->getAs<FunctionProtoType>(); |
3247 | if (CtorType->getNumParams() > 0) { |
3248 | QualType FirstArg = CtorType->getParamType(0); |
3249 | if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) |
3250 | return true; |
3251 | } |
3252 | return false; |
3253 | } |
3254 | |
3255 | static OverloadingResult |
3256 | IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, |
3257 | CXXRecordDecl *To, |
3258 | UserDefinedConversionSequence &User, |
3259 | OverloadCandidateSet &CandidateSet, |
3260 | bool AllowExplicit) { |
3261 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
3262 | for (auto *D : S.LookupConstructors(To)) { |
3263 | auto Info = getConstructorInfo(D); |
3264 | if (!Info) |
3265 | continue; |
3266 | |
3267 | bool Usable = !Info.Constructor->isInvalidDecl() && |
3268 | S.isInitListConstructor(Info.Constructor) && |
3269 | (AllowExplicit || !Info.Constructor->isExplicit()); |
3270 | if (Usable) { |
3271 | // If the first argument is (a reference to) the target type, |
3272 | // suppress conversions. |
3273 | bool SuppressUserConversions = isFirstArgumentCompatibleWithType( |
3274 | S.Context, Info.Constructor, ToType); |
3275 | if (Info.ConstructorTmpl) |
3276 | S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, |
3277 | /*ExplicitArgs*/ nullptr, From, |
3278 | CandidateSet, SuppressUserConversions, |
3279 | /*PartialOverloading*/ false, |
3280 | AllowExplicit); |
3281 | else |
3282 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, |
3283 | CandidateSet, SuppressUserConversions, |
3284 | /*PartialOverloading*/ false, AllowExplicit); |
3285 | } |
3286 | } |
3287 | |
3288 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
3289 | |
3290 | OverloadCandidateSet::iterator Best; |
3291 | switch (auto Result = |
3292 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { |
3293 | case OR_Deleted: |
3294 | case OR_Success: { |
3295 | // Record the standard conversion we used and the conversion function. |
3296 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); |
3297 | QualType ThisType = Constructor->getThisType(); |
3298 | // Initializer lists don't have conversions as such. |
3299 | User.Before.setAsIdentityConversion(); |
3300 | User.HadMultipleCandidates = HadMultipleCandidates; |
3301 | User.ConversionFunction = Constructor; |
3302 | User.FoundConversionFunction = Best->FoundDecl; |
3303 | User.After.setAsIdentityConversion(); |
3304 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); |
3305 | User.After.setAllToTypes(ToType); |
3306 | return Result; |
3307 | } |
3308 | |
3309 | case OR_No_Viable_Function: |
3310 | return OR_No_Viable_Function; |
3311 | case OR_Ambiguous: |
3312 | return OR_Ambiguous; |
3313 | } |
3314 | |
3315 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3315); |
3316 | } |
3317 | |
3318 | /// Determines whether there is a user-defined conversion sequence |
3319 | /// (C++ [over.ics.user]) that converts expression From to the type |
3320 | /// ToType. If such a conversion exists, User will contain the |
3321 | /// user-defined conversion sequence that performs such a conversion |
3322 | /// and this routine will return true. Otherwise, this routine returns |
3323 | /// false and User is unspecified. |
3324 | /// |
3325 | /// \param AllowExplicit true if the conversion should consider C++0x |
3326 | /// "explicit" conversion functions as well as non-explicit conversion |
3327 | /// functions (C++0x [class.conv.fct]p2). |
3328 | /// |
3329 | /// \param AllowObjCConversionOnExplicit true if the conversion should |
3330 | /// allow an extra Objective-C pointer conversion on uses of explicit |
3331 | /// constructors. Requires \c AllowExplicit to also be set. |
3332 | static OverloadingResult |
3333 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
3334 | UserDefinedConversionSequence &User, |
3335 | OverloadCandidateSet &CandidateSet, |
3336 | bool AllowExplicit, |
3337 | bool AllowObjCConversionOnExplicit) { |
3338 | assert(AllowExplicit || !AllowObjCConversionOnExplicit)((AllowExplicit || !AllowObjCConversionOnExplicit) ? static_cast <void> (0) : __assert_fail ("AllowExplicit || !AllowObjCConversionOnExplicit" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3338, __PRETTY_FUNCTION__)); |
3339 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
3340 | |
3341 | // Whether we will only visit constructors. |
3342 | bool ConstructorsOnly = false; |
3343 | |
3344 | // If the type we are conversion to is a class type, enumerate its |
3345 | // constructors. |
3346 | if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { |
3347 | // C++ [over.match.ctor]p1: |
3348 | // When objects of class type are direct-initialized (8.5), or |
3349 | // copy-initialized from an expression of the same or a |
3350 | // derived class type (8.5), overload resolution selects the |
3351 | // constructor. [...] For copy-initialization, the candidate |
3352 | // functions are all the converting constructors (12.3.1) of |
3353 | // that class. The argument list is the expression-list within |
3354 | // the parentheses of the initializer. |
3355 | if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || |
3356 | (From->getType()->getAs<RecordType>() && |
3357 | S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) |
3358 | ConstructorsOnly = true; |
3359 | |
3360 | if (!S.isCompleteType(From->getExprLoc(), ToType)) { |
3361 | // We're not going to find any constructors. |
3362 | } else if (CXXRecordDecl *ToRecordDecl |
3363 | = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { |
3364 | |
3365 | Expr **Args = &From; |
3366 | unsigned NumArgs = 1; |
3367 | bool ListInitializing = false; |
3368 | if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { |
3369 | // But first, see if there is an init-list-constructor that will work. |
3370 | OverloadingResult Result = IsInitializerListConstructorConversion( |
3371 | S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit); |
3372 | if (Result != OR_No_Viable_Function) |
3373 | return Result; |
3374 | // Never mind. |
3375 | CandidateSet.clear( |
3376 | OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
3377 | |
3378 | // If we're list-initializing, we pass the individual elements as |
3379 | // arguments, not the entire list. |
3380 | Args = InitList->getInits(); |
3381 | NumArgs = InitList->getNumInits(); |
3382 | ListInitializing = true; |
3383 | } |
3384 | |
3385 | for (auto *D : S.LookupConstructors(ToRecordDecl)) { |
3386 | auto Info = getConstructorInfo(D); |
3387 | if (!Info) |
3388 | continue; |
3389 | |
3390 | bool Usable = !Info.Constructor->isInvalidDecl(); |
3391 | if (ListInitializing) |
3392 | Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit()); |
3393 | else |
3394 | Usable = Usable && |
3395 | Info.Constructor->isConvertingConstructor(AllowExplicit); |
3396 | if (Usable) { |
3397 | bool SuppressUserConversions = !ConstructorsOnly; |
3398 | if (SuppressUserConversions && ListInitializing) { |
3399 | SuppressUserConversions = false; |
3400 | if (NumArgs == 1) { |
3401 | // If the first argument is (a reference to) the target type, |
3402 | // suppress conversions. |
3403 | SuppressUserConversions = isFirstArgumentCompatibleWithType( |
3404 | S.Context, Info.Constructor, ToType); |
3405 | } |
3406 | } |
3407 | if (Info.ConstructorTmpl) |
3408 | S.AddTemplateOverloadCandidate( |
3409 | Info.ConstructorTmpl, Info.FoundDecl, |
3410 | /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs), |
3411 | CandidateSet, SuppressUserConversions, |
3412 | /*PartialOverloading*/ false, AllowExplicit); |
3413 | else |
3414 | // Allow one user-defined conversion when user specifies a |
3415 | // From->ToType conversion via an static cast (c-style, etc). |
3416 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, |
3417 | llvm::makeArrayRef(Args, NumArgs), |
3418 | CandidateSet, SuppressUserConversions, |
3419 | /*PartialOverloading*/ false, AllowExplicit); |
3420 | } |
3421 | } |
3422 | } |
3423 | } |
3424 | |
3425 | // Enumerate conversion functions, if we're allowed to. |
3426 | if (ConstructorsOnly || isa<InitListExpr>(From)) { |
3427 | } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { |
3428 | // No conversion functions from incomplete types. |
3429 | } else if (const RecordType *FromRecordType = |
3430 | From->getType()->getAs<RecordType>()) { |
3431 | if (CXXRecordDecl *FromRecordDecl |
3432 | = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { |
3433 | // Add all of the conversion functions as candidates. |
3434 | const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); |
3435 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
3436 | DeclAccessPair FoundDecl = I.getPair(); |
3437 | NamedDecl *D = FoundDecl.getDecl(); |
3438 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); |
3439 | if (isa<UsingShadowDecl>(D)) |
3440 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
3441 | |
3442 | CXXConversionDecl *Conv; |
3443 | FunctionTemplateDecl *ConvTemplate; |
3444 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) |
3445 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
3446 | else |
3447 | Conv = cast<CXXConversionDecl>(D); |
3448 | |
3449 | if (AllowExplicit || !Conv->isExplicit()) { |
3450 | if (ConvTemplate) |
3451 | S.AddTemplateConversionCandidate( |
3452 | ConvTemplate, FoundDecl, ActingContext, From, ToType, |
3453 | CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit); |
3454 | else |
3455 | S.AddConversionCandidate( |
3456 | Conv, FoundDecl, ActingContext, From, ToType, CandidateSet, |
3457 | AllowObjCConversionOnExplicit, AllowExplicit); |
3458 | } |
3459 | } |
3460 | } |
3461 | } |
3462 | |
3463 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
3464 | |
3465 | OverloadCandidateSet::iterator Best; |
3466 | switch (auto Result = |
3467 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { |
3468 | case OR_Success: |
3469 | case OR_Deleted: |
3470 | // Record the standard conversion we used and the conversion function. |
3471 | if (CXXConstructorDecl *Constructor |
3472 | = dyn_cast<CXXConstructorDecl>(Best->Function)) { |
3473 | // C++ [over.ics.user]p1: |
3474 | // If the user-defined conversion is specified by a |
3475 | // constructor (12.3.1), the initial standard conversion |
3476 | // sequence converts the source type to the type required by |
3477 | // the argument of the constructor. |
3478 | // |
3479 | QualType ThisType = Constructor->getThisType(); |
3480 | if (isa<InitListExpr>(From)) { |
3481 | // Initializer lists don't have conversions as such. |
3482 | User.Before.setAsIdentityConversion(); |
3483 | } else { |
3484 | if (Best->Conversions[0].isEllipsis()) |
3485 | User.EllipsisConversion = true; |
3486 | else { |
3487 | User.Before = Best->Conversions[0].Standard; |
3488 | User.EllipsisConversion = false; |
3489 | } |
3490 | } |
3491 | User.HadMultipleCandidates = HadMultipleCandidates; |
3492 | User.ConversionFunction = Constructor; |
3493 | User.FoundConversionFunction = Best->FoundDecl; |
3494 | User.After.setAsIdentityConversion(); |
3495 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); |
3496 | User.After.setAllToTypes(ToType); |
3497 | return Result; |
3498 | } |
3499 | if (CXXConversionDecl *Conversion |
3500 | = dyn_cast<CXXConversionDecl>(Best->Function)) { |
3501 | // C++ [over.ics.user]p1: |
3502 | // |
3503 | // [...] If the user-defined conversion is specified by a |
3504 | // conversion function (12.3.2), the initial standard |
3505 | // conversion sequence converts the source type to the |
3506 | // implicit object parameter of the conversion function. |
3507 | User.Before = Best->Conversions[0].Standard; |
3508 | User.HadMultipleCandidates = HadMultipleCandidates; |
3509 | User.ConversionFunction = Conversion; |
3510 | User.FoundConversionFunction = Best->FoundDecl; |
3511 | User.EllipsisConversion = false; |
3512 | |
3513 | // C++ [over.ics.user]p2: |
3514 | // The second standard conversion sequence converts the |
3515 | // result of the user-defined conversion to the target type |
3516 | // for the sequence. Since an implicit conversion sequence |
3517 | // is an initialization, the special rules for |
3518 | // initialization by user-defined conversion apply when |
3519 | // selecting the best user-defined conversion for a |
3520 | // user-defined conversion sequence (see 13.3.3 and |
3521 | // 13.3.3.1). |
3522 | User.After = Best->FinalConversion; |
3523 | return Result; |
3524 | } |
3525 | llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3525); |
3526 | |
3527 | case OR_No_Viable_Function: |
3528 | return OR_No_Viable_Function; |
3529 | |
3530 | case OR_Ambiguous: |
3531 | return OR_Ambiguous; |
3532 | } |
3533 | |
3534 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 3534); |
3535 | } |
3536 | |
3537 | bool |
3538 | Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { |
3539 | ImplicitConversionSequence ICS; |
3540 | OverloadCandidateSet CandidateSet(From->getExprLoc(), |
3541 | OverloadCandidateSet::CSK_Normal); |
3542 | OverloadingResult OvResult = |
3543 | IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, |
3544 | CandidateSet, false, false); |
3545 | |
3546 | if (!(OvResult == OR_Ambiguous || |
3547 | (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) |
3548 | return false; |
3549 | |
3550 | auto Cands = CandidateSet.CompleteCandidates( |
3551 | *this, |
3552 | OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, |
3553 | From); |
3554 | if (OvResult == OR_Ambiguous) |
3555 | Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) |
3556 | << From->getType() << ToType << From->getSourceRange(); |
3557 | else { // OR_No_Viable_Function && !CandidateSet.empty() |
3558 | if (!RequireCompleteType(From->getBeginLoc(), ToType, |
3559 | diag::err_typecheck_nonviable_condition_incomplete, |
3560 | From->getType(), From->getSourceRange())) |
3561 | Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) |
3562 | << false << From->getType() << From->getSourceRange() << ToType; |
3563 | } |
3564 | |
3565 | CandidateSet.NoteCandidates( |
3566 | *this, From, Cands); |
3567 | return true; |
3568 | } |
3569 | |
3570 | /// Compare the user-defined conversion functions or constructors |
3571 | /// of two user-defined conversion sequences to determine whether any ordering |
3572 | /// is possible. |
3573 | static ImplicitConversionSequence::CompareKind |
3574 | compareConversionFunctions(Sema &S, FunctionDecl *Function1, |
3575 | FunctionDecl *Function2) { |
3576 | if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11) |
3577 | return ImplicitConversionSequence::Indistinguishable; |
3578 | |
3579 | // Objective-C++: |
3580 | // If both conversion functions are implicitly-declared conversions from |
3581 | // a lambda closure type to a function pointer and a block pointer, |
3582 | // respectively, always prefer the conversion to a function pointer, |
3583 | // because the function pointer is more lightweight and is more likely |
3584 | // to keep code working. |
3585 | CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); |
3586 | if (!Conv1) |
3587 | return ImplicitConversionSequence::Indistinguishable; |
3588 | |
3589 | CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2); |
3590 | if (!Conv2) |
3591 | return ImplicitConversionSequence::Indistinguishable; |
3592 | |
3593 | if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) { |
3594 | bool Block1 = Conv1->getConversionType()->isBlockPointerType(); |
3595 | bool Block2 = Conv2->getConversionType()->isBlockPointerType(); |
3596 | if (Block1 != Block2) |
3597 | return Block1 ? ImplicitConversionSequence::Worse |
3598 | : ImplicitConversionSequence::Better; |
3599 | } |
3600 | |
3601 | return ImplicitConversionSequence::Indistinguishable; |
3602 | } |
3603 | |
3604 | static bool hasDeprecatedStringLiteralToCharPtrConversion( |
3605 | const ImplicitConversionSequence &ICS) { |
3606 | return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || |
3607 | (ICS.isUserDefined() && |
3608 | ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); |
3609 | } |
3610 | |
3611 | /// CompareImplicitConversionSequences - Compare two implicit |
3612 | /// conversion sequences to determine whether one is better than the |
3613 | /// other or if they are indistinguishable (C++ 13.3.3.2). |
3614 | static ImplicitConversionSequence::CompareKind |
3615 | CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, |
3616 | const ImplicitConversionSequence& ICS1, |
3617 | const ImplicitConversionSequence& ICS2) |
3618 | { |
3619 | // (C++ 13.3.3.2p2): When comparing the basic forms of implicit |
3620 | // conversion sequences (as defined in 13.3.3.1) |
3621 | // -- a standard conversion sequence (13.3.3.1.1) is a better |
3622 | // conversion sequence than a user-defined conversion sequence or |
3623 | // an ellipsis conversion sequence, and |
3624 | // -- a user-defined conversion sequence (13.3.3.1.2) is a better |
3625 | // conversion sequence than an ellipsis conversion sequence |
3626 | // (13.3.3.1.3). |
3627 | // |
3628 | // C++0x [over.best.ics]p10: |
3629 | // For the purpose of ranking implicit conversion sequences as |
3630 | // described in 13.3.3.2, the ambiguous conversion sequence is |
3631 | // treated as a user-defined sequence that is indistinguishable |
3632 | // from any other user-defined conversion sequence. |
3633 | |
3634 | // String literal to 'char *' conversion has been deprecated in C++03. It has |
3635 | // been removed from C++11. We still accept this conversion, if it happens at |
3636 | // the best viable function. Otherwise, this conversion is considered worse |
3637 | // than ellipsis conversion. Consider this as an extension; this is not in the |
3638 | // standard. For example: |
3639 | // |
3640 | // int &f(...); // #1 |
3641 | // void f(char*); // #2 |
3642 | // void g() { int &r = f("foo"); } |
3643 | // |
3644 | // In C++03, we pick #2 as the best viable function. |
3645 | // In C++11, we pick #1 as the best viable function, because ellipsis |
3646 | // conversion is better than string-literal to char* conversion (since there |
3647 | // is no such conversion in C++11). If there was no #1 at all or #1 couldn't |
3648 | // convert arguments, #2 would be the best viable function in C++11. |
3649 | // If the best viable function has this conversion, a warning will be issued |
3650 | // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. |
3651 | |
3652 | if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && |
3653 | hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != |
3654 | hasDeprecatedStringLiteralToCharPtrConversion(ICS2)) |
3655 | return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) |
3656 | ? ImplicitConversionSequence::Worse |
3657 | : ImplicitConversionSequence::Better; |
3658 | |
3659 | if (ICS1.getKindRank() < ICS2.getKindRank()) |
3660 | return ImplicitConversionSequence::Better; |
3661 | if (ICS2.getKindRank() < ICS1.getKindRank()) |
3662 | return ImplicitConversionSequence::Worse; |
3663 | |
3664 | // The following checks require both conversion sequences to be of |
3665 | // the same kind. |
3666 | if (ICS1.getKind() != ICS2.getKind()) |
3667 | return ImplicitConversionSequence::Indistinguishable; |
3668 | |
3669 | ImplicitConversionSequence::CompareKind Result = |
3670 | ImplicitConversionSequence::Indistinguishable; |
3671 | |
3672 | // Two implicit conversion sequences of the same form are |
3673 | // indistinguishable conversion sequences unless one of the |
3674 | // following rules apply: (C++ 13.3.3.2p3): |
3675 | |
3676 | // List-initialization sequence L1 is a better conversion sequence than |
3677 | // list-initialization sequence L2 if: |
3678 | // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, |
3679 | // if not that, |
3680 | // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T", |
3681 | // and N1 is smaller than N2., |
3682 | // even if one of the other rules in this paragraph would otherwise apply. |
3683 | if (!ICS1.isBad()) { |
3684 | if (ICS1.isStdInitializerListElement() && |
3685 | !ICS2.isStdInitializerListElement()) |
3686 | return ImplicitConversionSequence::Better; |
3687 | if (!ICS1.isStdInitializerListElement() && |
3688 | ICS2.isStdInitializerListElement()) |
3689 | return ImplicitConversionSequence::Worse; |
3690 | } |
3691 | |
3692 | if (ICS1.isStandard()) |
3693 | // Standard conversion sequence S1 is a better conversion sequence than |
3694 | // standard conversion sequence S2 if [...] |
3695 | Result = CompareStandardConversionSequences(S, Loc, |
3696 | ICS1.Standard, ICS2.Standard); |
3697 | else if (ICS1.isUserDefined()) { |
3698 | // User-defined conversion sequence U1 is a better conversion |
3699 | // sequence than another user-defined conversion sequence U2 if |
3700 | // they contain the same user-defined conversion function or |
3701 | // constructor and if the second standard conversion sequence of |
3702 | // U1 is better than the second standard conversion sequence of |
3703 | // U2 (C++ 13.3.3.2p3). |
3704 | if (ICS1.UserDefined.ConversionFunction == |
3705 | ICS2.UserDefined.ConversionFunction) |
3706 | Result = CompareStandardConversionSequences(S, Loc, |
3707 | ICS1.UserDefined.After, |
3708 | ICS2.UserDefined.After); |
3709 | else |
3710 | Result = compareConversionFunctions(S, |
3711 | ICS1.UserDefined.ConversionFunction, |
3712 | ICS2.UserDefined.ConversionFunction); |
3713 | } |
3714 | |
3715 | return Result; |
3716 | } |
3717 | |
3718 | // Per 13.3.3.2p3, compare the given standard conversion sequences to |
3719 | // determine if one is a proper subset of the other. |
3720 | static ImplicitConversionSequence::CompareKind |
3721 | compareStandardConversionSubsets(ASTContext &Context, |
3722 | const StandardConversionSequence& SCS1, |
3723 | const StandardConversionSequence& SCS2) { |
3724 | ImplicitConversionSequence::CompareKind Result |
3725 | = ImplicitConversionSequence::Indistinguishable; |
3726 | |
3727 | // the identity conversion sequence is considered to be a subsequence of |
3728 | // any non-identity conversion sequence |
3729 | if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) |
3730 | return ImplicitConversionSequence::Better; |
3731 | else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) |
3732 | return ImplicitConversionSequence::Worse; |
3733 | |
3734 | if (SCS1.Second != SCS2.Second) { |
3735 | if (SCS1.Second == ICK_Identity) |
3736 | Result = ImplicitConversionSequence::Better; |
3737 | else if (SCS2.Second == ICK_Identity) |
3738 | Result = ImplicitConversionSequence::Worse; |
3739 | else |
3740 | return ImplicitConversionSequence::Indistinguishable; |
3741 | } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) |
3742 | return ImplicitConversionSequence::Indistinguishable; |
3743 | |
3744 | if (SCS1.Third == SCS2.Third) { |
3745 | return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result |
3746 | : ImplicitConversionSequence::Indistinguishable; |
3747 | } |
3748 | |
3749 | if (SCS1.Third == ICK_Identity) |
3750 | return Result == ImplicitConversionSequence::Worse |
3751 | ? ImplicitConversionSequence::Indistinguishable |
3752 | : ImplicitConversionSequence::Better; |
3753 | |
3754 | if (SCS2.Third == ICK_Identity) |
3755 | return Result == ImplicitConversionSequence::Better |
3756 | ? ImplicitConversionSequence::Indistinguishable |
3757 | : ImplicitConversionSequence::Worse; |
3758 | |
3759 | return ImplicitConversionSequence::Indistinguishable; |
3760 | } |
3761 | |
3762 | /// Determine whether one of the given reference bindings is better |
3763 | /// than the other based on what kind of bindings they are. |
3764 | static bool |
3765 | isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, |
3766 | const StandardConversionSequence &SCS2) { |
3767 | // C++0x [over.ics.rank]p3b4: |
3768 | // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an |
3769 | // implicit object parameter of a non-static member function declared |
3770 | // without a ref-qualifier, and *either* S1 binds an rvalue reference |
3771 | // to an rvalue and S2 binds an lvalue reference *or S1 binds an |
3772 | // lvalue reference to a function lvalue and S2 binds an rvalue |
3773 | // reference*. |
3774 | // |
3775 | // FIXME: Rvalue references. We're going rogue with the above edits, |
3776 | // because the semantics in the current C++0x working paper (N3225 at the |
3777 | // time of this writing) break the standard definition of std::forward |
3778 | // and std::reference_wrapper when dealing with references to functions. |
3779 | // Proposed wording changes submitted to CWG for consideration. |
3780 | if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || |
3781 | SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) |
3782 | return false; |
3783 | |
3784 | return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && |
3785 | SCS2.IsLvalueReference) || |
3786 | (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && |
3787 | !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); |
3788 | } |
3789 | |
3790 | enum class FixedEnumPromotion { |
3791 | None, |
3792 | ToUnderlyingType, |
3793 | ToPromotedUnderlyingType |
3794 | }; |
3795 | |
3796 | /// Returns kind of fixed enum promotion the \a SCS uses. |
3797 | static FixedEnumPromotion |
3798 | getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { |
3799 | |
3800 | if (SCS.Second != ICK_Integral_Promotion) |
3801 | return FixedEnumPromotion::None; |
3802 | |
3803 | QualType FromType = SCS.getFromType(); |
3804 | if (!FromType->isEnumeralType()) |
3805 | return FixedEnumPromotion::None; |
3806 | |
3807 | EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl(); |
3808 | if (!Enum->isFixed()) |
3809 | return FixedEnumPromotion::None; |
3810 | |
3811 | QualType UnderlyingType = Enum->getIntegerType(); |
3812 | if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) |
3813 | return FixedEnumPromotion::ToUnderlyingType; |
3814 | |
3815 | return FixedEnumPromotion::ToPromotedUnderlyingType; |
3816 | } |
3817 | |
3818 | /// CompareStandardConversionSequences - Compare two standard |
3819 | /// conversion sequences to determine whether one is better than the |
3820 | /// other or if they are indistinguishable (C++ 13.3.3.2p3). |
3821 | static ImplicitConversionSequence::CompareKind |
3822 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, |
3823 | const StandardConversionSequence& SCS1, |
3824 | const StandardConversionSequence& SCS2) |
3825 | { |
3826 | // Standard conversion sequence S1 is a better conversion sequence |
3827 | // than standard conversion sequence S2 if (C++ 13.3.3.2p3): |
3828 | |
3829 | // -- S1 is a proper subsequence of S2 (comparing the conversion |
3830 | // sequences in the canonical form defined by 13.3.3.1.1, |
3831 | // excluding any Lvalue Transformation; the identity conversion |
3832 | // sequence is considered to be a subsequence of any |
3833 | // non-identity conversion sequence) or, if not that, |
3834 | if (ImplicitConversionSequence::CompareKind CK |
3835 | = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) |
3836 | return CK; |
3837 | |
3838 | // -- the rank of S1 is better than the rank of S2 (by the rules |
3839 | // defined below), or, if not that, |
3840 | ImplicitConversionRank Rank1 = SCS1.getRank(); |
3841 | ImplicitConversionRank Rank2 = SCS2.getRank(); |
3842 | if (Rank1 < Rank2) |
3843 | return ImplicitConversionSequence::Better; |
3844 | else if (Rank2 < Rank1) |
3845 | return ImplicitConversionSequence::Worse; |
3846 | |
3847 | // (C++ 13.3.3.2p4): Two conversion sequences with the same rank |
3848 | // are indistinguishable unless one of the following rules |
3849 | // applies: |
3850 | |
3851 | // A conversion that is not a conversion of a pointer, or |
3852 | // pointer to member, to bool is better than another conversion |
3853 | // that is such a conversion. |
3854 | if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) |
3855 | return SCS2.isPointerConversionToBool() |
3856 | ? ImplicitConversionSequence::Better |
3857 | : ImplicitConversionSequence::Worse; |
3858 | |
3859 | // C++14 [over.ics.rank]p4b2: |
3860 | // This is retroactively applied to C++11 by CWG 1601. |
3861 | // |
3862 | // A conversion that promotes an enumeration whose underlying type is fixed |
3863 | // to its underlying type is better than one that promotes to the promoted |
3864 | // underlying type, if the two are different. |
3865 | FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); |
3866 | FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); |
3867 | if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && |
3868 | FEP1 != FEP2) |
3869 | return FEP1 == FixedEnumPromotion::ToUnderlyingType |
3870 | ? ImplicitConversionSequence::Better |
3871 | : ImplicitConversionSequence::Worse; |
3872 | |
3873 | // C++ [over.ics.rank]p4b2: |
3874 | // |
3875 | // If class B is derived directly or indirectly from class A, |
3876 | // conversion of B* to A* is better than conversion of B* to |
3877 | // void*, and conversion of A* to void* is better than conversion |
3878 | // of B* to void*. |
3879 | bool SCS1ConvertsToVoid |
3880 | = SCS1.isPointerConversionToVoidPointer(S.Context); |
3881 | bool SCS2ConvertsToVoid |
3882 | = SCS2.isPointerConversionToVoidPointer(S.Context); |
3883 | if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { |
3884 | // Exactly one of the conversion sequences is a conversion to |
3885 | // a void pointer; it's the worse conversion. |
3886 | return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better |
3887 | : ImplicitConversionSequence::Worse; |
3888 | } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { |
3889 | // Neither conversion sequence converts to a void pointer; compare |
3890 | // their derived-to-base conversions. |
3891 | if (ImplicitConversionSequence::CompareKind DerivedCK |
3892 | = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) |
3893 | return DerivedCK; |
3894 | } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && |
3895 | !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { |
3896 | // Both conversion sequences are conversions to void |
3897 | // pointers. Compare the source types to determine if there's an |
3898 | // inheritance relationship in their sources. |
3899 | QualType FromType1 = SCS1.getFromType(); |
3900 | QualType FromType2 = SCS2.getFromType(); |
3901 | |
3902 | // Adjust the types we're converting from via the array-to-pointer |
3903 | // conversion, if we need to. |
3904 | if (SCS1.First == ICK_Array_To_Pointer) |
3905 | FromType1 = S.Context.getArrayDecayedType(FromType1); |
3906 | if (SCS2.First == ICK_Array_To_Pointer) |
3907 | FromType2 = S.Context.getArrayDecayedType(FromType2); |
3908 | |
3909 | QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); |
3910 | QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); |
3911 | |
3912 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) |
3913 | return ImplicitConversionSequence::Better; |
3914 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) |
3915 | return ImplicitConversionSequence::Worse; |
3916 | |
3917 | // Objective-C++: If one interface is more specific than the |
3918 | // other, it is the better one. |
3919 | const ObjCObjectPointerType* FromObjCPtr1 |
3920 | = FromType1->getAs<ObjCObjectPointerType>(); |
3921 | const ObjCObjectPointerType* FromObjCPtr2 |
3922 | = FromType2->getAs<ObjCObjectPointerType>(); |
3923 | if (FromObjCPtr1 && FromObjCPtr2) { |
3924 | bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, |
3925 | FromObjCPtr2); |
3926 | bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, |
3927 | FromObjCPtr1); |
3928 | if (AssignLeft != AssignRight) { |
3929 | return AssignLeft? ImplicitConversionSequence::Better |
3930 | : ImplicitConversionSequence::Worse; |
3931 | } |
3932 | } |
3933 | } |
3934 | |
3935 | // Compare based on qualification conversions (C++ 13.3.3.2p3, |
3936 | // bullet 3). |
3937 | if (ImplicitConversionSequence::CompareKind QualCK |
3938 | = CompareQualificationConversions(S, SCS1, SCS2)) |
3939 | return QualCK; |
3940 | |
3941 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { |
3942 | // Check for a better reference binding based on the kind of bindings. |
3943 | if (isBetterReferenceBindingKind(SCS1, SCS2)) |
3944 | return ImplicitConversionSequence::Better; |
3945 | else if (isBetterReferenceBindingKind(SCS2, SCS1)) |
3946 | return ImplicitConversionSequence::Worse; |
3947 | |
3948 | // C++ [over.ics.rank]p3b4: |
3949 | // -- S1 and S2 are reference bindings (8.5.3), and the types to |
3950 | // which the references refer are the same type except for |
3951 | // top-level cv-qualifiers, and the type to which the reference |
3952 | // initialized by S2 refers is more cv-qualified than the type |
3953 | // to which the reference initialized by S1 refers. |
3954 | QualType T1 = SCS1.getToType(2); |
3955 | QualType T2 = SCS2.getToType(2); |
3956 | T1 = S.Context.getCanonicalType(T1); |
3957 | T2 = S.Context.getCanonicalType(T2); |
3958 | Qualifiers T1Quals, T2Quals; |
3959 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); |
3960 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); |
3961 | if (UnqualT1 == UnqualT2) { |
3962 | // Objective-C++ ARC: If the references refer to objects with different |
3963 | // lifetimes, prefer bindings that don't change lifetime. |
3964 | if (SCS1.ObjCLifetimeConversionBinding != |
3965 | SCS2.ObjCLifetimeConversionBinding) { |
3966 | return SCS1.ObjCLifetimeConversionBinding |
3967 | ? ImplicitConversionSequence::Worse |
3968 | : ImplicitConversionSequence::Better; |
3969 | } |
3970 | |
3971 | // If the type is an array type, promote the element qualifiers to the |
3972 | // type for comparison. |
3973 | if (isa<ArrayType>(T1) && T1Quals) |
3974 | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); |
3975 | if (isa<ArrayType>(T2) && T2Quals) |
3976 | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); |
3977 | if (T2.isMoreQualifiedThan(T1)) |
3978 | return ImplicitConversionSequence::Better; |
3979 | else if (T1.isMoreQualifiedThan(T2)) |
3980 | return ImplicitConversionSequence::Worse; |
3981 | } |
3982 | } |
3983 | |
3984 | // In Microsoft mode, prefer an integral conversion to a |
3985 | // floating-to-integral conversion if the integral conversion |
3986 | // is between types of the same size. |
3987 | // For example: |
3988 | // void f(float); |
3989 | // void f(int); |
3990 | // int main { |
3991 | // long a; |
3992 | // f(a); |
3993 | // } |
3994 | // Here, MSVC will call f(int) instead of generating a compile error |
3995 | // as clang will do in standard mode. |
3996 | if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion && |
3997 | SCS2.Second == ICK_Floating_Integral && |
3998 | S.Context.getTypeSize(SCS1.getFromType()) == |
3999 | S.Context.getTypeSize(SCS1.getToType(2))) |
4000 | return ImplicitConversionSequence::Better; |
4001 | |
4002 | // Prefer a compatible vector conversion over a lax vector conversion |
4003 | // For example: |
4004 | // |
4005 | // typedef float __v4sf __attribute__((__vector_size__(16))); |
4006 | // void f(vector float); |
4007 | // void f(vector signed int); |
4008 | // int main() { |
4009 | // __v4sf a; |
4010 | // f(a); |
4011 | // } |
4012 | // Here, we'd like to choose f(vector float) and not |
4013 | // report an ambiguous call error |
4014 | if (SCS1.Second == ICK_Vector_Conversion && |
4015 | SCS2.Second == ICK_Vector_Conversion) { |
4016 | bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( |
4017 | SCS1.getFromType(), SCS1.getToType(2)); |
4018 | bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( |
4019 | SCS2.getFromType(), SCS2.getToType(2)); |
4020 | |
4021 | if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) |
4022 | return SCS1IsCompatibleVectorConversion |
4023 | ? ImplicitConversionSequence::Better |
4024 | : ImplicitConversionSequence::Worse; |
4025 | } |
4026 | |
4027 | return ImplicitConversionSequence::Indistinguishable; |
4028 | } |
4029 | |
4030 | /// CompareQualificationConversions - Compares two standard conversion |
4031 | /// sequences to determine whether they can be ranked based on their |
4032 | /// qualification conversions (C++ 13.3.3.2p3 bullet 3). |
4033 | static ImplicitConversionSequence::CompareKind |
4034 | CompareQualificationConversions(Sema &S, |
4035 | const StandardConversionSequence& SCS1, |
4036 | const StandardConversionSequence& SCS2) { |
4037 | // C++ 13.3.3.2p3: |
4038 | // -- S1 and S2 differ only in their qualification conversion and |
4039 | // yield similar types T1 and T2 (C++ 4.4), respectively, and the |
4040 | // cv-qualification signature of type T1 is a proper subset of |
4041 | // the cv-qualification signature of type T2, and S1 is not the |
4042 | // deprecated string literal array-to-pointer conversion (4.2). |
4043 | if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || |
4044 | SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) |
4045 | return ImplicitConversionSequence::Indistinguishable; |
4046 | |
4047 | // FIXME: the example in the standard doesn't use a qualification |
4048 | // conversion (!) |
4049 | QualType T1 = SCS1.getToType(2); |
4050 | QualType T2 = SCS2.getToType(2); |
4051 | T1 = S.Context.getCanonicalType(T1); |
4052 | T2 = S.Context.getCanonicalType(T2); |
4053 | Qualifiers T1Quals, T2Quals; |
4054 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); |
4055 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); |
4056 | |
4057 | // If the types are the same, we won't learn anything by unwrapped |
4058 | // them. |
4059 | if (UnqualT1 == UnqualT2) |
4060 | return ImplicitConversionSequence::Indistinguishable; |
4061 | |
4062 | // If the type is an array type, promote the element qualifiers to the type |
4063 | // for comparison. |
4064 | if (isa<ArrayType>(T1) && T1Quals) |
4065 | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); |
4066 | if (isa<ArrayType>(T2) && T2Quals) |
4067 | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); |
4068 | |
4069 | ImplicitConversionSequence::CompareKind Result |
4070 | = ImplicitConversionSequence::Indistinguishable; |
4071 | |
4072 | // Objective-C++ ARC: |
4073 | // Prefer qualification conversions not involving a change in lifetime |
4074 | // to qualification conversions that do not change lifetime. |
4075 | if (SCS1.QualificationIncludesObjCLifetime != |
4076 | SCS2.QualificationIncludesObjCLifetime) { |
4077 | Result = SCS1.QualificationIncludesObjCLifetime |
4078 | ? ImplicitConversionSequence::Worse |
4079 | : ImplicitConversionSequence::Better; |
4080 | } |
4081 | |
4082 | while (S.Context.UnwrapSimilarTypes(T1, T2)) { |
4083 | // Within each iteration of the loop, we check the qualifiers to |
4084 | // determine if this still looks like a qualification |
4085 | // conversion. Then, if all is well, we unwrap one more level of |
4086 | // pointers or pointers-to-members and do it all again |
4087 | // until there are no more pointers or pointers-to-members left |
4088 | // to unwrap. This essentially mimics what |
4089 | // IsQualificationConversion does, but here we're checking for a |
4090 | // strict subset of qualifiers. |
4091 | if (T1.getQualifiers().withoutObjCLifetime() == |
4092 | T2.getQualifiers().withoutObjCLifetime()) |
4093 | // The qualifiers are the same, so this doesn't tell us anything |
4094 | // about how the sequences rank. |
4095 | // ObjC ownership quals are omitted above as they interfere with |
4096 | // the ARC overload rule. |
4097 | ; |
4098 | else if (T2.isMoreQualifiedThan(T1)) { |
4099 | // T1 has fewer qualifiers, so it could be the better sequence. |
4100 | if (Result == ImplicitConversionSequence::Worse) |
4101 | // Neither has qualifiers that are a subset of the other's |
4102 | // qualifiers. |
4103 | return ImplicitConversionSequence::Indistinguishable; |
4104 | |
4105 | Result = ImplicitConversionSequence::Better; |
4106 | } else if (T1.isMoreQualifiedThan(T2)) { |
4107 | // T2 has fewer qualifiers, so it could be the better sequence. |
4108 | if (Result == ImplicitConversionSequence::Better) |
4109 | // Neither has qualifiers that are a subset of the other's |
4110 | // qualifiers. |
4111 | return ImplicitConversionSequence::Indistinguishable; |
4112 | |
4113 | Result = ImplicitConversionSequence::Worse; |
4114 | } else { |
4115 | // Qualifiers are disjoint. |
4116 | return ImplicitConversionSequence::Indistinguishable; |
4117 | } |
4118 | |
4119 | // If the types after this point are equivalent, we're done. |
4120 | if (S.Context.hasSameUnqualifiedType(T1, T2)) |
4121 | break; |
4122 | } |
4123 | |
4124 | // Check that the winning standard conversion sequence isn't using |
4125 | // the deprecated string literal array to pointer conversion. |
4126 | switch (Result) { |
4127 | case ImplicitConversionSequence::Better: |
4128 | if (SCS1.DeprecatedStringLiteralToCharPtr) |
4129 | Result = ImplicitConversionSequence::Indistinguishable; |
4130 | break; |
4131 | |
4132 | case ImplicitConversionSequence::Indistinguishable: |
4133 | break; |
4134 | |
4135 | case ImplicitConversionSequence::Worse: |
4136 | if (SCS2.DeprecatedStringLiteralToCharPtr) |
4137 | Result = ImplicitConversionSequence::Indistinguishable; |
4138 | break; |
4139 | } |
4140 | |
4141 | return Result; |
4142 | } |
4143 | |
4144 | /// CompareDerivedToBaseConversions - Compares two standard conversion |
4145 | /// sequences to determine whether they can be ranked based on their |
4146 | /// various kinds of derived-to-base conversions (C++ |
4147 | /// [over.ics.rank]p4b3). As part of these checks, we also look at |
4148 | /// conversions between Objective-C interface types. |
4149 | static ImplicitConversionSequence::CompareKind |
4150 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, |
4151 | const StandardConversionSequence& SCS1, |
4152 | const StandardConversionSequence& SCS2) { |
4153 | QualType FromType1 = SCS1.getFromType(); |
4154 | QualType ToType1 = SCS1.getToType(1); |
4155 | QualType FromType2 = SCS2.getFromType(); |
4156 | QualType ToType2 = SCS2.getToType(1); |
4157 | |
4158 | // Adjust the types we're converting from via the array-to-pointer |
4159 | // conversion, if we need to. |
4160 | if (SCS1.First == ICK_Array_To_Pointer) |
4161 | FromType1 = S.Context.getArrayDecayedType(FromType1); |
4162 | if (SCS2.First == ICK_Array_To_Pointer) |
4163 | FromType2 = S.Context.getArrayDecayedType(FromType2); |
4164 | |
4165 | // Canonicalize all of the types. |
4166 | FromType1 = S.Context.getCanonicalType(FromType1); |
4167 | ToType1 = S.Context.getCanonicalType(ToType1); |
4168 | FromType2 = S.Context.getCanonicalType(FromType2); |
4169 | ToType2 = S.Context.getCanonicalType(ToType2); |
4170 | |
4171 | // C++ [over.ics.rank]p4b3: |
4172 | // |
4173 | // If class B is derived directly or indirectly from class A and |
4174 | // class C is derived directly or indirectly from B, |
4175 | // |
4176 | // Compare based on pointer conversions. |
4177 | if (SCS1.Second == ICK_Pointer_Conversion && |
4178 | SCS2.Second == ICK_Pointer_Conversion && |
4179 | /*FIXME: Remove if Objective-C id conversions get their own rank*/ |
4180 | FromType1->isPointerType() && FromType2->isPointerType() && |
4181 | ToType1->isPointerType() && ToType2->isPointerType()) { |
4182 | QualType FromPointee1 = |
4183 | FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
4184 | QualType ToPointee1 = |
4185 | ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
4186 | QualType FromPointee2 = |
4187 | FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
4188 | QualType ToPointee2 = |
4189 | ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
4190 | |
4191 | // -- conversion of C* to B* is better than conversion of C* to A*, |
4192 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
4193 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) |
4194 | return ImplicitConversionSequence::Better; |
4195 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) |
4196 | return ImplicitConversionSequence::Worse; |
4197 | } |
4198 | |
4199 | // -- conversion of B* to A* is better than conversion of C* to A*, |
4200 | if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { |
4201 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) |
4202 | return ImplicitConversionSequence::Better; |
4203 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) |
4204 | return ImplicitConversionSequence::Worse; |
4205 | } |
4206 | } else if (SCS1.Second == ICK_Pointer_Conversion && |
4207 | SCS2.Second == ICK_Pointer_Conversion) { |
4208 | const ObjCObjectPointerType *FromPtr1 |
4209 | = FromType1->getAs<ObjCObjectPointerType>(); |
4210 | const ObjCObjectPointerType *FromPtr2 |
4211 | = FromType2->getAs<ObjCObjectPointerType>(); |
4212 | const ObjCObjectPointerType *ToPtr1 |
4213 | = ToType1->getAs<ObjCObjectPointerType>(); |
4214 | const ObjCObjectPointerType *ToPtr2 |
4215 | = ToType2->getAs<ObjCObjectPointerType>(); |
4216 | |
4217 | if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { |
4218 | // Apply the same conversion ranking rules for Objective-C pointer types |
4219 | // that we do for C++ pointers to class types. However, we employ the |
4220 | // Objective-C pseudo-subtyping relationship used for assignment of |
4221 | // Objective-C pointer types. |
4222 | bool FromAssignLeft |
4223 | = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); |
4224 | bool FromAssignRight |
4225 | = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); |
4226 | bool ToAssignLeft |
4227 | = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); |
4228 | bool ToAssignRight |
4229 | = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); |
4230 | |
4231 | // A conversion to an a non-id object pointer type or qualified 'id' |
4232 | // type is better than a conversion to 'id'. |
4233 | if (ToPtr1->isObjCIdType() && |
4234 | (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) |
4235 | return ImplicitConversionSequence::Worse; |
4236 | if (ToPtr2->isObjCIdType() && |
4237 | (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) |
4238 | return ImplicitConversionSequence::Better; |
4239 | |
4240 | // A conversion to a non-id object pointer type is better than a |
4241 | // conversion to a qualified 'id' type |
4242 | if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) |
4243 | return ImplicitConversionSequence::Worse; |
4244 | if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) |
4245 | return ImplicitConversionSequence::Better; |
4246 | |
4247 | // A conversion to an a non-Class object pointer type or qualified 'Class' |
4248 | // type is better than a conversion to 'Class'. |
4249 | if (ToPtr1->isObjCClassType() && |
4250 | (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) |
4251 | return ImplicitConversionSequence::Worse; |
4252 | if (ToPtr2->isObjCClassType() && |
4253 | (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) |
4254 | return ImplicitConversionSequence::Better; |
4255 | |
4256 | // A conversion to a non-Class object pointer type is better than a |
4257 | // conversion to a qualified 'Class' type. |
4258 | if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) |
4259 | return ImplicitConversionSequence::Worse; |
4260 | if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) |
4261 | return ImplicitConversionSequence::Better; |
4262 | |
4263 | // -- "conversion of C* to B* is better than conversion of C* to A*," |
4264 | if (S.Context.hasSameType(FromType1, FromType2) && |
4265 | !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && |
4266 | (ToAssignLeft != ToAssignRight)) { |
4267 | if (FromPtr1->isSpecialized()) { |
4268 | // "conversion of B<A> * to B * is better than conversion of B * to |
4269 | // C *. |
4270 | bool IsFirstSame = |
4271 | FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); |
4272 | bool IsSecondSame = |
4273 | FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); |
4274 | if (IsFirstSame) { |
4275 | if (!IsSecondSame) |
4276 | return ImplicitConversionSequence::Better; |
4277 | } else if (IsSecondSame) |
4278 | return ImplicitConversionSequence::Worse; |
4279 | } |
4280 | return ToAssignLeft? ImplicitConversionSequence::Worse |
4281 | : ImplicitConversionSequence::Better; |
4282 | } |
4283 | |
4284 | // -- "conversion of B* to A* is better than conversion of C* to A*," |
4285 | if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && |
4286 | (FromAssignLeft != FromAssignRight)) |
4287 | return FromAssignLeft? ImplicitConversionSequence::Better |
4288 | : ImplicitConversionSequence::Worse; |
4289 | } |
4290 | } |
4291 | |
4292 | // Ranking of member-pointer types. |
4293 | if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && |
4294 | FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && |
4295 | ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { |
4296 | const MemberPointerType * FromMemPointer1 = |
4297 | FromType1->getAs<MemberPointerType>(); |
4298 | const MemberPointerType * ToMemPointer1 = |
4299 | ToType1->getAs<MemberPointerType>(); |
4300 | const MemberPointerType * FromMemPointer2 = |
4301 | FromType2->getAs<MemberPointerType>(); |
4302 | const MemberPointerType * ToMemPointer2 = |
4303 | ToType2->getAs<MemberPointerType>(); |
4304 | const Type *FromPointeeType1 = FromMemPointer1->getClass(); |
4305 | const Type *ToPointeeType1 = ToMemPointer1->getClass(); |
4306 | const Type *FromPointeeType2 = FromMemPointer2->getClass(); |
4307 | const Type *ToPointeeType2 = ToMemPointer2->getClass(); |
4308 | QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); |
4309 | QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); |
4310 | QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); |
4311 | QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); |
4312 | // conversion of A::* to B::* is better than conversion of A::* to C::*, |
4313 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
4314 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) |
4315 | return ImplicitConversionSequence::Worse; |
4316 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) |
4317 | return ImplicitConversionSequence::Better; |
4318 | } |
4319 | // conversion of B::* to C::* is better than conversion of A::* to C::* |
4320 | if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { |
4321 | if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) |
4322 | return ImplicitConversionSequence::Better; |
4323 | else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) |
4324 | return ImplicitConversionSequence::Worse; |
4325 | } |
4326 | } |
4327 | |
4328 | if (SCS1.Second == ICK_Derived_To_Base) { |
4329 | // -- conversion of C to B is better than conversion of C to A, |
4330 | // -- binding of an expression of type C to a reference of type |
4331 | // B& is better than binding an expression of type C to a |
4332 | // reference of type A&, |
4333 | if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && |
4334 | !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { |
4335 | if (S.IsDerivedFrom(Loc, ToType1, ToType2)) |
4336 | return ImplicitConversionSequence::Better; |
4337 | else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) |
4338 | return ImplicitConversionSequence::Worse; |
4339 | } |
4340 | |
4341 | // -- conversion of B to A is better than conversion of C to A. |
4342 | // -- binding of an expression of type B to a reference of type |
4343 | // A& is better than binding an expression of type C to a |
4344 | // reference of type A&, |
4345 | if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && |
4346 | S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { |
4347 | if (S.IsDerivedFrom(Loc, FromType2, FromType1)) |
4348 | return ImplicitConversionSequence::Better; |
4349 | else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) |
4350 | return ImplicitConversionSequence::Worse; |
4351 | } |
4352 | } |
4353 | |
4354 | return ImplicitConversionSequence::Indistinguishable; |
4355 | } |
4356 | |
4357 | /// Determine whether the given type is valid, e.g., it is not an invalid |
4358 | /// C++ class. |
4359 | static bool isTypeValid(QualType T) { |
4360 | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) |
4361 | return !Record->isInvalidDecl(); |
4362 | |
4363 | return true; |
4364 | } |
4365 | |
4366 | /// CompareReferenceRelationship - Compare the two types T1 and T2 to |
4367 | /// determine whether they are reference-related, |
4368 | /// reference-compatible, reference-compatible with added |
4369 | /// qualification, or incompatible, for use in C++ initialization by |
4370 | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference |
4371 | /// type, and the first type (T1) is the pointee type of the reference |
4372 | /// type being initialized. |
4373 | Sema::ReferenceCompareResult |
4374 | Sema::CompareReferenceRelationship(SourceLocation Loc, |
4375 | QualType OrigT1, QualType OrigT2, |
4376 | bool &DerivedToBase, |
4377 | bool &ObjCConversion, |
4378 | bool &ObjCLifetimeConversion, |
4379 | bool &FunctionConversion) { |
4380 | assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type" ) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4381, __PRETTY_FUNCTION__)) |
4381 | "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type" ) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4381, __PRETTY_FUNCTION__)); |
4382 | assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type" ) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4382, __PRETTY_FUNCTION__)); |
4383 | |
4384 | QualType T1 = Context.getCanonicalType(OrigT1); |
4385 | QualType T2 = Context.getCanonicalType(OrigT2); |
4386 | Qualifiers T1Quals, T2Quals; |
4387 | QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); |
4388 | QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); |
4389 | |
4390 | // C++ [dcl.init.ref]p4: |
4391 | // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is |
4392 | // reference-related to "cv2 T2" if T1 is the same type as T2, or |
4393 | // T1 is a base class of T2. |
4394 | DerivedToBase = false; |
4395 | ObjCConversion = false; |
4396 | ObjCLifetimeConversion = false; |
4397 | QualType ConvertedT2; |
4398 | if (UnqualT1 == UnqualT2) { |
4399 | // Nothing to do. |
4400 | } else if (isCompleteType(Loc, OrigT2) && |
4401 | isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && |
4402 | IsDerivedFrom(Loc, UnqualT2, UnqualT1)) |
4403 | DerivedToBase = true; |
4404 | else if (UnqualT1->isObjCObjectOrInterfaceType() && |
4405 | UnqualT2->isObjCObjectOrInterfaceType() && |
4406 | Context.canBindObjCObjectType(UnqualT1, UnqualT2)) |
4407 | ObjCConversion = true; |
4408 | else if (UnqualT2->isFunctionType() && |
4409 | IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { |
4410 | // C++1z [dcl.init.ref]p4: |
4411 | // cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept |
4412 | // function" and T1 is "function" |
4413 | // |
4414 | // We extend this to also apply to 'noreturn', so allow any function |
4415 | // conversion between function types. |
4416 | FunctionConversion = true; |
4417 | return Ref_Compatible; |
4418 | } else |
4419 | return Ref_Incompatible; |
4420 | |
4421 | // At this point, we know that T1 and T2 are reference-related (at |
4422 | // least). |
4423 | |
4424 | // If the type is an array type, promote the element qualifiers to the type |
4425 | // for comparison. |
4426 | if (isa<ArrayType>(T1) && T1Quals) |
4427 | T1 = Context.getQualifiedType(UnqualT1, T1Quals); |
4428 | if (isa<ArrayType>(T2) && T2Quals) |
4429 | T2 = Context.getQualifiedType(UnqualT2, T2Quals); |
4430 | |
4431 | // C++ [dcl.init.ref]p4: |
4432 | // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is |
4433 | // reference-related to T2 and cv1 is the same cv-qualification |
4434 | // as, or greater cv-qualification than, cv2. For purposes of |
4435 | // overload resolution, cases for which cv1 is greater |
4436 | // cv-qualification than cv2 are identified as |
4437 | // reference-compatible with added qualification (see 13.3.3.2). |
4438 | // |
4439 | // Note that we also require equivalence of Objective-C GC and address-space |
4440 | // qualifiers when performing these computations, so that e.g., an int in |
4441 | // address space 1 is not reference-compatible with an int in address |
4442 | // space 2. |
4443 | if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && |
4444 | T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { |
4445 | if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals)) |
4446 | ObjCLifetimeConversion = true; |
4447 | |
4448 | T1Quals.removeObjCLifetime(); |
4449 | T2Quals.removeObjCLifetime(); |
4450 | } |
4451 | |
4452 | // MS compiler ignores __unaligned qualifier for references; do the same. |
4453 | T1Quals.removeUnaligned(); |
4454 | T2Quals.removeUnaligned(); |
4455 | |
4456 | if (T1Quals.compatiblyIncludes(T2Quals)) |
4457 | return Ref_Compatible; |
4458 | else |
4459 | return Ref_Related; |
4460 | } |
4461 | |
4462 | /// Look for a user-defined conversion to a value reference-compatible |
4463 | /// with DeclType. Return true if something definite is found. |
4464 | static bool |
4465 | FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, |
4466 | QualType DeclType, SourceLocation DeclLoc, |
4467 | Expr *Init, QualType T2, bool AllowRvalues, |
4468 | bool AllowExplicit) { |
4469 | assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types." ) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4469, __PRETTY_FUNCTION__)); |
4470 | CXXRecordDecl *T2RecordDecl |
4471 | = dyn_cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); |
4472 | |
4473 | OverloadCandidateSet CandidateSet( |
4474 | DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
4475 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
4476 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
4477 | NamedDecl *D = *I; |
4478 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
4479 | if (isa<UsingShadowDecl>(D)) |
4480 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
4481 | |
4482 | FunctionTemplateDecl *ConvTemplate |
4483 | = dyn_cast<FunctionTemplateDecl>(D); |
4484 | CXXConversionDecl *Conv; |
4485 | if (ConvTemplate) |
4486 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
4487 | else |
4488 | Conv = cast<CXXConversionDecl>(D); |
4489 | |
4490 | // If this is an explicit conversion, and we're not allowed to consider |
4491 | // explicit conversions, skip it. |
4492 | if (!AllowExplicit && Conv->isExplicit()) |
4493 | continue; |
4494 | |
4495 | if (AllowRvalues) { |
4496 | bool DerivedToBase = false; |
4497 | bool ObjCConversion = false; |
4498 | bool ObjCLifetimeConversion = false; |
4499 | bool FunctionConversion = false; |
4500 | |
4501 | // If we are initializing an rvalue reference, don't permit conversion |
4502 | // functions that return lvalues. |
4503 | if (!ConvTemplate && DeclType->isRValueReferenceType()) { |
4504 | const ReferenceType *RefType |
4505 | = Conv->getConversionType()->getAs<LValueReferenceType>(); |
4506 | if (RefType && !RefType->getPointeeType()->isFunctionType()) |
4507 | continue; |
4508 | } |
4509 | |
4510 | if (!ConvTemplate && |
4511 | S.CompareReferenceRelationship( |
4512 | DeclLoc, |
4513 | Conv->getConversionType() |
4514 | .getNonReferenceType() |
4515 | .getUnqualifiedType(), |
4516 | DeclType.getNonReferenceType().getUnqualifiedType(), |
4517 | DerivedToBase, ObjCConversion, ObjCLifetimeConversion, |
4518 | FunctionConversion) == Sema::Ref_Incompatible) |
4519 | continue; |
4520 | } else { |
4521 | // If the conversion function doesn't return a reference type, |
4522 | // it can't be considered for this conversion. An rvalue reference |
4523 | // is only acceptable if its referencee is a function type. |
4524 | |
4525 | const ReferenceType *RefType = |
4526 | Conv->getConversionType()->getAs<ReferenceType>(); |
4527 | if (!RefType || |
4528 | (!RefType->isLValueReferenceType() && |
4529 | !RefType->getPointeeType()->isFunctionType())) |
4530 | continue; |
4531 | } |
4532 | |
4533 | if (ConvTemplate) |
4534 | S.AddTemplateConversionCandidate( |
4535 | ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, |
4536 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); |
4537 | else |
4538 | S.AddConversionCandidate( |
4539 | Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, |
4540 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); |
4541 | } |
4542 | |
4543 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
4544 | |
4545 | OverloadCandidateSet::iterator Best; |
4546 | switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { |
4547 | case OR_Success: |
4548 | // C++ [over.ics.ref]p1: |
4549 | // |
4550 | // [...] If the parameter binds directly to the result of |
4551 | // applying a conversion function to the argument |
4552 | // expression, the implicit conversion sequence is a |
4553 | // user-defined conversion sequence (13.3.3.1.2), with the |
4554 | // second standard conversion sequence either an identity |
4555 | // conversion or, if the conversion function returns an |
4556 | // entity of a type that is a derived class of the parameter |
4557 | // type, a derived-to-base Conversion. |
4558 | if (!Best->FinalConversion.DirectBinding) |
4559 | return false; |
4560 | |
4561 | ICS.setUserDefined(); |
4562 | ICS.UserDefined.Before = Best->Conversions[0].Standard; |
4563 | ICS.UserDefined.After = Best->FinalConversion; |
4564 | ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; |
4565 | ICS.UserDefined.ConversionFunction = Best->Function; |
4566 | ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; |
4567 | ICS.UserDefined.EllipsisConversion = false; |
4568 | assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined .After.DirectBinding && "Expected a direct reference binding!" ) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4570, __PRETTY_FUNCTION__)) |
4569 | ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined .After.DirectBinding && "Expected a direct reference binding!" ) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4570, __PRETTY_FUNCTION__)) |
4570 | "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined .After.DirectBinding && "Expected a direct reference binding!" ) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4570, __PRETTY_FUNCTION__)); |
4571 | return true; |
4572 | |
4573 | case OR_Ambiguous: |
4574 | ICS.setAmbiguous(); |
4575 | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); |
4576 | Cand != CandidateSet.end(); ++Cand) |
4577 | if (Cand->Best) |
4578 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); |
4579 | return true; |
4580 | |
4581 | case OR_No_Viable_Function: |
4582 | case OR_Deleted: |
4583 | // There was no suitable conversion, or we found a deleted |
4584 | // conversion; continue with other checks. |
4585 | return false; |
4586 | } |
4587 | |
4588 | llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4588); |
4589 | } |
4590 | |
4591 | /// Compute an implicit conversion sequence for reference |
4592 | /// initialization. |
4593 | static ImplicitConversionSequence |
4594 | TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, |
4595 | SourceLocation DeclLoc, |
4596 | bool SuppressUserConversions, |
4597 | bool AllowExplicit) { |
4598 | assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference" ) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 4598, __PRETTY_FUNCTION__)); |
4599 | |
4600 | // Most paths end in a failed conversion. |
4601 | ImplicitConversionSequence ICS; |
4602 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
4603 | |
4604 | QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); |
4605 | QualType T2 = Init->getType(); |
4606 | |
4607 | // If the initializer is the address of an overloaded function, try |
4608 | // to resolve the overloaded function. If all goes well, T2 is the |
4609 | // type of the resulting function. |
4610 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { |
4611 | DeclAccessPair Found; |
4612 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, |
4613 | false, Found)) |
4614 | T2 = Fn->getType(); |
4615 | } |
4616 | |
4617 | // Compute some basic properties of the types and the initializer. |
4618 | bool isRValRef = DeclType->isRValueReferenceType(); |
4619 | bool DerivedToBase = false; |
4620 | bool ObjCConversion = false; |
4621 | bool ObjCLifetimeConversion = false; |
4622 | bool FunctionConversion = false; |
4623 | Expr::Classification InitCategory = Init->Classify(S.Context); |
4624 | Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship( |
4625 | DeclLoc, T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion, |
4626 | FunctionConversion); |
4627 | |
4628 | // C++0x [dcl.init.ref]p5: |
4629 | // A reference to type "cv1 T1" is initialized by an expression |
4630 | // of type "cv2 T2" as follows: |
4631 | |
4632 | // -- If reference is an lvalue reference and the initializer expression |
4633 | if (!isRValRef) { |
4634 | // -- is an lvalue (but is not a bit-field), and "cv1 T1" is |
4635 | // reference-compatible with "cv2 T2," or |
4636 | // |
4637 | // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. |
4638 | if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { |
4639 | // C++ [over.ics.ref]p1: |
4640 | // When a parameter of reference type binds directly (8.5.3) |
4641 | // to an argument expression, the implicit conversion sequence |
4642 | // is the identity conversion, unless the argument expression |
4643 | // has a type that is a derived class of the parameter type, |
4644 | // in which case the implicit conversion sequence is a |
4645 | // derived-to-base Conversion (13.3.3.1). |
4646 | ICS.setStandard(); |
4647 | ICS.Standard.First = ICK_Identity; |
4648 | ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base |
4649 | : ObjCConversion? ICK_Compatible_Conversion |
4650 | : ICK_Identity; |
4651 | ICS.Standard.Third = ICK_Identity; |
4652 | ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); |
4653 | ICS.Standard.setToType(0, T2); |
4654 | ICS.Standard.setToType(1, T1); |
4655 | ICS.Standard.setToType(2, T1); |
4656 | ICS.Standard.ReferenceBinding = true; |
4657 | ICS.Standard.DirectBinding = true; |
4658 | ICS.Standard.IsLvalueReference = !isRValRef; |
4659 | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); |
4660 | ICS.Standard.BindsToRvalue = false; |
4661 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
4662 | ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; |
4663 | ICS.Standard.CopyConstructor = nullptr; |
4664 | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; |
4665 | |
4666 | // Nothing more to do: the inaccessibility/ambiguity check for |
4667 | // derived-to-base conversions is suppressed when we're |
4668 | // computing the implicit conversion sequence (C++ |
4669 | // [over.best.ics]p2). |
4670 | return ICS; |
4671 | } |
4672 | |
4673 | // -- has a class type (i.e., T2 is a class type), where T1 is |
4674 | // not reference-related to T2, and can be implicitly |
4675 | // converted to an lvalue of type "cv3 T3," where "cv1 T1" |
4676 | // is reference-compatible with "cv3 T3" 92) (this |
4677 | // conversion is selected by enumerating the applicable |
4678 | // conversion functions (13.3.1.6) and choosing the best |
4679 | // one through overload resolution (13.3)), |
4680 | if (!SuppressUserConversions && T2->isRecordType() && |
4681 | S.isCompleteType(DeclLoc, T2) && |
4682 | RefRelationship == Sema::Ref_Incompatible) { |
4683 | if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, |
4684 | Init, T2, /*AllowRvalues=*/false, |
4685 | AllowExplicit)) |
4686 | return ICS; |
4687 | } |
4688 | } |
4689 | |
4690 | // -- Otherwise, the reference shall be an lvalue reference to a |
4691 | // non-volatile const type (i.e., cv1 shall be const), or the reference |
4692 | // shall be an rvalue reference. |
4693 | if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) |
4694 | return ICS; |
4695 | |
4696 | // -- If the initializer expression |
4697 | // |
4698 | // -- is an xvalue, class prvalue, array prvalue or function |
4699 | // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or |
4700 | if (RefRelationship == Sema::Ref_Compatible && |
4701 | (InitCategory.isXValue() || |
4702 | (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || |
4703 | (InitCategory.isLValue() && T2->isFunctionType()))) { |
4704 | ICS.setStandard(); |
4705 | ICS.Standard.First = ICK_Identity; |
4706 | ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base |
4707 | : ObjCConversion? ICK_Compatible_Conversion |
4708 | : ICK_Identity; |
4709 | ICS.Standard.Third = ICK_Identity; |
4710 | ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); |
4711 | ICS.Standard.setToType(0, T2); |
4712 | ICS.Standard.setToType(1, T1); |
4713 | ICS.Standard.setToType(2, T1); |
4714 | ICS.Standard.ReferenceBinding = true; |
4715 | // In C++0x, this is always a direct binding. In C++98/03, it's a direct |
4716 | // binding unless we're binding to a class prvalue. |
4717 | // Note: Although xvalues wouldn't normally show up in C++98/03 code, we |
4718 | // allow the use of rvalue references in C++98/03 for the benefit of |
4719 | // standard library implementors; therefore, we need the xvalue check here. |
4720 | ICS.Standard.DirectBinding = |
4721 | S.getLangOpts().CPlusPlus11 || |
4722 | !(InitCategory.isPRValue() || T2->isRecordType()); |
4723 | ICS.Standard.IsLvalueReference = !isRValRef; |
4724 | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); |
4725 | ICS.Standard.BindsToRvalue = InitCategory.isRValue(); |
4726 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
4727 | ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; |
4728 | ICS.Standard.CopyConstructor = nullptr; |
4729 | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; |
4730 | return ICS; |
4731 | } |
4732 | |
4733 | // -- has a class type (i.e., T2 is a class type), where T1 is not |
4734 | // reference-related to T2, and can be implicitly converted to |
4735 | // an xvalue, class prvalue, or function lvalue of type |
4736 | // "cv3 T3", where "cv1 T1" is reference-compatible with |
4737 | // "cv3 T3", |
4738 | // |
4739 | // then the reference is bound to the value of the initializer |
4740 | // expression in the first case and to the result of the conversion |
4741 | // in the second case (or, in either case, to an appropriate base |
4742 | // class subobject). |
4743 | if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
4744 | T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && |
4745 | FindConversionForRefInit(S, ICS, DeclType, DeclLoc, |
4746 | Init, T2, /*AllowRvalues=*/true, |
4747 | AllowExplicit)) { |
4748 | // In the second case, if the reference is an rvalue reference |
4749 | // and the second standard conversion sequence of the |
4750 | // user-defined conversion sequence includes an lvalue-to-rvalue |
4751 | // conversion, the program is ill-formed. |
4752 | if (ICS.isUserDefined() && isRValRef && |
4753 | ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) |
4754 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
4755 | |
4756 | return ICS; |
4757 | } |
4758 | |
4759 | // A temporary of function type cannot be created; don't even try. |
4760 | if (T1->isFunctionType()) |
4761 | return ICS; |
4762 | |
4763 | // -- Otherwise, a temporary of type "cv1 T1" is created and |
4764 | // initialized from the initializer expression using the |
4765 | // rules for a non-reference copy initialization (8.5). The |
4766 | // reference is then bound to the temporary. If T1 is |
4767 | // reference-related to T2, cv1 must be the same |
4768 | // cv-qualification as, or greater cv-qualification than, |
4769 | // cv2; otherwise, the program is ill-formed. |
4770 | if (RefRelationship == Sema::Ref_Related) { |
4771 | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then |
4772 | // we would be reference-compatible or reference-compatible with |
4773 | // added qualification. But that wasn't the case, so the reference |
4774 | // initialization fails. |
4775 | // |
4776 | // Note that we only want to check address spaces and cvr-qualifiers here. |
4777 | // ObjC GC, lifetime and unaligned qualifiers aren't important. |
4778 | Qualifiers T1Quals = T1.getQualifiers(); |
4779 | Qualifiers T2Quals = T2.getQualifiers(); |
4780 | T1Quals.removeObjCGCAttr(); |
4781 | T1Quals.removeObjCLifetime(); |
4782 | T2Quals.removeObjCGCAttr(); |
4783 | T2Quals.removeObjCLifetime(); |
4784 | // MS compiler ignores __unaligned qualifier for references; do the same. |
4785 | T1Quals.removeUnaligned(); |
4786 | T2Quals.removeUnaligned(); |
4787 | if (!T1Quals.compatiblyIncludes(T2Quals)) |
4788 | return ICS; |
4789 | } |
4790 | |
4791 | // If at least one of the types is a class type, the types are not |
4792 | // related, and we aren't allowed any user conversions, the |
4793 | // reference binding fails. This case is important for breaking |
4794 | // recursion, since TryImplicitConversion below will attempt to |
4795 | // create a temporary through the use of a copy constructor. |
4796 | if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
4797 | (T1->isRecordType() || T2->isRecordType())) |
4798 | return ICS; |
4799 | |
4800 | // If T1 is reference-related to T2 and the reference is an rvalue |
4801 | // reference, the initializer expression shall not be an lvalue. |
4802 | if (RefRelationship >= Sema::Ref_Related && |
4803 | isRValRef && Init->Classify(S.Context).isLValue()) |
4804 | return ICS; |
4805 | |
4806 | // C++ [over.ics.ref]p2: |
4807 | // When a parameter of reference type is not bound directly to |
4808 | // an argument expression, the conversion sequence is the one |
4809 | // required to convert the argument expression to the |
4810 | // underlying type of the reference according to |
4811 | // 13.3.3.1. Conceptually, this conversion sequence corresponds |
4812 | // to copy-initializing a temporary of the underlying type with |
4813 | // the argument expression. Any difference in top-level |
4814 | // cv-qualification is subsumed by the initialization itself |
4815 | // and does not constitute a conversion. |
4816 | ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, |
4817 | /*AllowExplicit=*/false, |
4818 | /*InOverloadResolution=*/false, |
4819 | /*CStyle=*/false, |
4820 | /*AllowObjCWritebackConversion=*/false, |
4821 | /*AllowObjCConversionOnExplicit=*/false); |
4822 | |
4823 | // Of course, that's still a reference binding. |
4824 | if (ICS.isStandard()) { |
4825 | ICS.Standard.ReferenceBinding = true; |
4826 | ICS.Standard.IsLvalueReference = !isRValRef; |
4827 | ICS.Standard.BindsToFunctionLvalue = false; |
4828 | ICS.Standard.BindsToRvalue = true; |
4829 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
4830 | ICS.Standard.ObjCLifetimeConversionBinding = false; |
4831 | } else if (ICS.isUserDefined()) { |
4832 | const ReferenceType *LValRefType = |
4833 | ICS.UserDefined.ConversionFunction->getReturnType() |
4834 | ->getAs<LValueReferenceType>(); |
4835 | |
4836 | // C++ [over.ics.ref]p3: |
4837 | // Except for an implicit object parameter, for which see 13.3.1, a |
4838 | // standard conversion sequence cannot be formed if it requires [...] |
4839 | // binding an rvalue reference to an lvalue other than a function |
4840 | // lvalue. |
4841 | // Note that the function case is not possible here. |
4842 | if (DeclType->isRValueReferenceType() && LValRefType) { |
4843 | // FIXME: This is the wrong BadConversionSequence. The problem is binding |
4844 | // an rvalue reference to a (non-function) lvalue, not binding an lvalue |
4845 | // reference to an rvalue! |
4846 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); |
4847 | return ICS; |
4848 | } |
4849 | |
4850 | ICS.UserDefined.After.ReferenceBinding = true; |
4851 | ICS.UserDefined.After.IsLvalueReference = !isRValRef; |
4852 | ICS.UserDefined.After.BindsToFunctionLvalue = false; |
4853 | ICS.UserDefined.After.BindsToRvalue = !LValRefType; |
4854 | ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
4855 | ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; |
4856 | } |
4857 | |
4858 | return ICS; |
4859 | } |
4860 | |
4861 | static ImplicitConversionSequence |
4862 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
4863 | bool SuppressUserConversions, |
4864 | bool InOverloadResolution, |
4865 | bool AllowObjCWritebackConversion, |
4866 | bool AllowExplicit = false); |
4867 | |
4868 | /// TryListConversion - Try to copy-initialize a value of type ToType from the |
4869 | /// initializer list From. |
4870 | static ImplicitConversionSequence |
4871 | TryListConversion(Sema &S, InitListExpr *From, QualType ToType, |
4872 | bool SuppressUserConversions, |
4873 | bool InOverloadResolution, |
4874 | bool AllowObjCWritebackConversion) { |
4875 | // C++11 [over.ics.list]p1: |
4876 | // When an argument is an initializer list, it is not an expression and |
4877 | // special rules apply for converting it to a parameter type. |
4878 | |
4879 | ImplicitConversionSequence Result; |
4880 | Result.setBad(BadConversionSequence::no_conversion, From, ToType); |
4881 | |
4882 | // We need a complete type for what follows. Incomplete types can never be |
4883 | // initialized from init lists. |
4884 | if (!S.isCompleteType(From->getBeginLoc(), ToType)) |
4885 | return Result; |
4886 | |
4887 | // Per DR1467: |
4888 | // If the parameter type is a class X and the initializer list has a single |
4889 | // element of type cv U, where U is X or a class derived from X, the |
4890 | // implicit conversion sequence is the one required to convert the element |
4891 | // to the parameter type. |
4892 | // |
4893 | // Otherwise, if the parameter type is a character array [... ] |
4894 | // and the initializer list has a single element that is an |
4895 | // appropriately-typed string literal (8.5.2 [dcl.init.string]), the |
4896 | // implicit conversion sequence is the identity conversion. |
4897 | if (From->getNumInits() == 1) { |
4898 | if (ToType->isRecordType()) { |
4899 | QualType InitType = From->getInit(0)->getType(); |
4900 | if (S.Context.hasSameUnqualifiedType(InitType, ToType) || |
4901 | S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) |
4902 | return TryCopyInitialization(S, From->getInit(0), ToType, |
4903 | SuppressUserConversions, |
4904 | InOverloadResolution, |
4905 | AllowObjCWritebackConversion); |
4906 | } |
4907 | // FIXME: Check the other conditions here: array of character type, |
4908 | // initializer is a string literal. |
4909 | if (ToType->isArrayType()) { |
4910 | InitializedEntity Entity = |
4911 | InitializedEntity::InitializeParameter(S.Context, ToType, |
4912 | /*Consumed=*/false); |
4913 | if (S.CanPerformCopyInitialization(Entity, From)) { |
4914 | Result.setStandard(); |
4915 | Result.Standard.setAsIdentityConversion(); |
4916 | Result.Standard.setFromType(ToType); |
4917 | Result.Standard.setAllToTypes(ToType); |
4918 | return Result; |
4919 | } |
4920 | } |
4921 | } |
4922 | |
4923 | // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). |
4924 | // C++11 [over.ics.list]p2: |
4925 | // If the parameter type is std::initializer_list<X> or "array of X" and |
4926 | // all the elements can be implicitly converted to X, the implicit |
4927 | // conversion sequence is the worst conversion necessary to convert an |
4928 | // element of the list to X. |
4929 | // |
4930 | // C++14 [over.ics.list]p3: |
4931 | // Otherwise, if the parameter type is "array of N X", if the initializer |
4932 | // list has exactly N elements or if it has fewer than N elements and X is |
4933 | // default-constructible, and if all the elements of the initializer list |
4934 | // can be implicitly converted to X, the implicit conversion sequence is |
4935 | // the worst conversion necessary to convert an element of the list to X. |
4936 | // |
4937 | // FIXME: We're missing a lot of these checks. |
4938 | bool toStdInitializerList = false; |
4939 | QualType X; |
4940 | if (ToType->isArrayType()) |
4941 | X = S.Context.getAsArrayType(ToType)->getElementType(); |
4942 | else |
4943 | toStdInitializerList = S.isStdInitializerList(ToType, &X); |
4944 | if (!X.isNull()) { |
4945 | for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { |
4946 | Expr *Init = From->getInit(i); |
4947 | ImplicitConversionSequence ICS = |
4948 | TryCopyInitialization(S, Init, X, SuppressUserConversions, |
4949 | InOverloadResolution, |
4950 | AllowObjCWritebackConversion); |
4951 | // If a single element isn't convertible, fail. |
4952 | if (ICS.isBad()) { |
4953 | Result = ICS; |
4954 | break; |
4955 | } |
4956 | // Otherwise, look for the worst conversion. |
4957 | if (Result.isBad() || CompareImplicitConversionSequences( |
4958 | S, From->getBeginLoc(), ICS, Result) == |
4959 | ImplicitConversionSequence::Worse) |
4960 | Result = ICS; |
4961 | } |
4962 | |
4963 | // For an empty list, we won't have computed any conversion sequence. |
4964 | // Introduce the identity conversion sequence. |
4965 | if (From->getNumInits() == 0) { |
4966 | Result.setStandard(); |
4967 | Result.Standard.setAsIdentityConversion(); |
4968 | Result.Standard.setFromType(ToType); |
4969 | Result.Standard.setAllToTypes(ToType); |
4970 | } |
4971 | |
4972 | Result.setStdInitializerListElement(toStdInitializerList); |
4973 | return Result; |
4974 | } |
4975 | |
4976 | // C++14 [over.ics.list]p4: |
4977 | // C++11 [over.ics.list]p3: |
4978 | // Otherwise, if the parameter is a non-aggregate class X and overload |
4979 | // resolution chooses a single best constructor [...] the implicit |
4980 | // conversion sequence is a user-defined conversion sequence. If multiple |
4981 | // constructors are viable but none is better than the others, the |
4982 | // implicit conversion sequence is a user-defined conversion sequence. |
4983 | if (ToType->isRecordType() && !ToType->isAggregateType()) { |
4984 | // This function can deal with initializer lists. |
4985 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, |
4986 | /*AllowExplicit=*/false, |
4987 | InOverloadResolution, /*CStyle=*/false, |
4988 | AllowObjCWritebackConversion, |
4989 | /*AllowObjCConversionOnExplicit=*/false); |
4990 | } |
4991 | |
4992 | // C++14 [over.ics.list]p5: |
4993 | // C++11 [over.ics.list]p4: |
4994 | // Otherwise, if the parameter has an aggregate type which can be |
4995 | // initialized from the initializer list [...] the implicit conversion |
4996 | // sequence is a user-defined conversion sequence. |
4997 | if (ToType->isAggregateType()) { |
4998 | // Type is an aggregate, argument is an init list. At this point it comes |
4999 | // down to checking whether the initialization works. |
5000 | // FIXME: Find out whether this parameter is consumed or not. |
5001 | InitializedEntity Entity = |
5002 | InitializedEntity::InitializeParameter(S.Context, ToType, |
5003 | /*Consumed=*/false); |
5004 | if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, |
5005 | From)) { |
5006 | Result.setUserDefined(); |
5007 | Result.UserDefined.Before.setAsIdentityConversion(); |
5008 | // Initializer lists don't have a type. |
5009 | Result.UserDefined.Before.setFromType(QualType()); |
5010 | Result.UserDefined.Before.setAllToTypes(QualType()); |
5011 | |
5012 | Result.UserDefined.After.setAsIdentityConversion(); |
5013 | Result.UserDefined.After.setFromType(ToType); |
5014 | Result.UserDefined.After.setAllToTypes(ToType); |
5015 | Result.UserDefined.ConversionFunction = nullptr; |
5016 | } |
5017 | return Result; |
5018 | } |
5019 | |
5020 | // C++14 [over.ics.list]p6: |
5021 | // C++11 [over.ics.list]p5: |
5022 | // Otherwise, if the parameter is a reference, see 13.3.3.1.4. |
5023 | if (ToType->isReferenceType()) { |
5024 | // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't |
5025 | // mention initializer lists in any way. So we go by what list- |
5026 | // initialization would do and try to extrapolate from that. |
5027 | |
5028 | QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); |
5029 | |
5030 | // If the initializer list has a single element that is reference-related |
5031 | // to the parameter type, we initialize the reference from that. |
5032 | if (From->getNumInits() == 1) { |
5033 | Expr *Init = From->getInit(0); |
5034 | |
5035 | QualType T2 = Init->getType(); |
5036 | |
5037 | // If the initializer is the address of an overloaded function, try |
5038 | // to resolve the overloaded function. If all goes well, T2 is the |
5039 | // type of the resulting function. |
5040 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { |
5041 | DeclAccessPair Found; |
5042 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( |
5043 | Init, ToType, false, Found)) |
5044 | T2 = Fn->getType(); |
5045 | } |
5046 | |
5047 | // Compute some basic properties of the types and the initializer. |
5048 | bool dummy1 = false; |
5049 | bool dummy2 = false; |
5050 | bool dummy3 = false; |
5051 | bool dummy4 = false; |
5052 | Sema::ReferenceCompareResult RefRelationship = |
5053 | S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2, dummy1, |
5054 | dummy2, dummy3, dummy4); |
5055 | |
5056 | if (RefRelationship >= Sema::Ref_Related) { |
5057 | return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), |
5058 | SuppressUserConversions, |
5059 | /*AllowExplicit=*/false); |
5060 | } |
5061 | } |
5062 | |
5063 | // Otherwise, we bind the reference to a temporary created from the |
5064 | // initializer list. |
5065 | Result = TryListConversion(S, From, T1, SuppressUserConversions, |
5066 | InOverloadResolution, |
5067 | AllowObjCWritebackConversion); |
5068 | if (Result.isFailure()) |
5069 | return Result; |
5070 | assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion." ) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5071, __PRETTY_FUNCTION__)) |
5071 | "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion." ) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5071, __PRETTY_FUNCTION__)); |
5072 | |
5073 | // Can we even bind to a temporary? |
5074 | if (ToType->isRValueReferenceType() || |
5075 | (T1.isConstQualified() && !T1.isVolatileQualified())) { |
5076 | StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : |
5077 | Result.UserDefined.After; |
5078 | SCS.ReferenceBinding = true; |
5079 | SCS.IsLvalueReference = ToType->isLValueReferenceType(); |
5080 | SCS.BindsToRvalue = true; |
5081 | SCS.BindsToFunctionLvalue = false; |
5082 | SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
5083 | SCS.ObjCLifetimeConversionBinding = false; |
5084 | } else |
5085 | Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, |
5086 | From, ToType); |
5087 | return Result; |
5088 | } |
5089 | |
5090 | // C++14 [over.ics.list]p7: |
5091 | // C++11 [over.ics.list]p6: |
5092 | // Otherwise, if the parameter type is not a class: |
5093 | if (!ToType->isRecordType()) { |
5094 | // - if the initializer list has one element that is not itself an |
5095 | // initializer list, the implicit conversion sequence is the one |
5096 | // required to convert the element to the parameter type. |
5097 | unsigned NumInits = From->getNumInits(); |
5098 | if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) |
5099 | Result = TryCopyInitialization(S, From->getInit(0), ToType, |
5100 | SuppressUserConversions, |
5101 | InOverloadResolution, |
5102 | AllowObjCWritebackConversion); |
5103 | // - if the initializer list has no elements, the implicit conversion |
5104 | // sequence is the identity conversion. |
5105 | else if (NumInits == 0) { |
5106 | Result.setStandard(); |
5107 | Result.Standard.setAsIdentityConversion(); |
5108 | Result.Standard.setFromType(ToType); |
5109 | Result.Standard.setAllToTypes(ToType); |
5110 | } |
5111 | return Result; |
5112 | } |
5113 | |
5114 | // C++14 [over.ics.list]p8: |
5115 | // C++11 [over.ics.list]p7: |
5116 | // In all cases other than those enumerated above, no conversion is possible |
5117 | return Result; |
5118 | } |
5119 | |
5120 | /// TryCopyInitialization - Try to copy-initialize a value of type |
5121 | /// ToType from the expression From. Return the implicit conversion |
5122 | /// sequence required to pass this argument, which may be a bad |
5123 | /// conversion sequence (meaning that the argument cannot be passed to |
5124 | /// a parameter of this type). If @p SuppressUserConversions, then we |
5125 | /// do not permit any user-defined conversion sequences. |
5126 | static ImplicitConversionSequence |
5127 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
5128 | bool SuppressUserConversions, |
5129 | bool InOverloadResolution, |
5130 | bool AllowObjCWritebackConversion, |
5131 | bool AllowExplicit) { |
5132 | if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) |
5133 | return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, |
5134 | InOverloadResolution,AllowObjCWritebackConversion); |
5135 | |
5136 | if (ToType->isReferenceType()) |
5137 | return TryReferenceInit(S, From, ToType, |
5138 | /*FIXME:*/ From->getBeginLoc(), |
5139 | SuppressUserConversions, AllowExplicit); |
5140 | |
5141 | return TryImplicitConversion(S, From, ToType, |
5142 | SuppressUserConversions, |
5143 | /*AllowExplicit=*/false, |
5144 | InOverloadResolution, |
5145 | /*CStyle=*/false, |
5146 | AllowObjCWritebackConversion, |
5147 | /*AllowObjCConversionOnExplicit=*/false); |
5148 | } |
5149 | |
5150 | static bool TryCopyInitialization(const CanQualType FromQTy, |
5151 | const CanQualType ToQTy, |
5152 | Sema &S, |
5153 | SourceLocation Loc, |
5154 | ExprValueKind FromVK) { |
5155 | OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); |
5156 | ImplicitConversionSequence ICS = |
5157 | TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); |
5158 | |
5159 | return !ICS.isBad(); |
5160 | } |
5161 | |
5162 | /// TryObjectArgumentInitialization - Try to initialize the object |
5163 | /// parameter of the given member function (@c Method) from the |
5164 | /// expression @p From. |
5165 | static ImplicitConversionSequence |
5166 | TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, |
5167 | Expr::Classification FromClassification, |
5168 | CXXMethodDecl *Method, |
5169 | CXXRecordDecl *ActingContext) { |
5170 | QualType ClassType = S.Context.getTypeDeclType(ActingContext); |
5171 | // [class.dtor]p2: A destructor can be invoked for a const, volatile or |
5172 | // const volatile object. |
5173 | Qualifiers Quals = Method->getMethodQualifiers(); |
5174 | if (isa<CXXDestructorDecl>(Method)) { |
5175 | Quals.addConst(); |
5176 | Quals.addVolatile(); |
5177 | } |
5178 | |
5179 | QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); |
5180 | |
5181 | // Set up the conversion sequence as a "bad" conversion, to allow us |
5182 | // to exit early. |
5183 | ImplicitConversionSequence ICS; |
5184 | |
5185 | // We need to have an object of class type. |
5186 | if (const PointerType *PT = FromType->getAs<PointerType>()) { |
5187 | FromType = PT->getPointeeType(); |
5188 | |
5189 | // When we had a pointer, it's implicitly dereferenced, so we |
5190 | // better have an lvalue. |
5191 | assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0 ) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5191, __PRETTY_FUNCTION__)); |
5192 | } |
5193 | |
5194 | assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) : __assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5194, __PRETTY_FUNCTION__)); |
5195 | |
5196 | // C++0x [over.match.funcs]p4: |
5197 | // For non-static member functions, the type of the implicit object |
5198 | // parameter is |
5199 | // |
5200 | // - "lvalue reference to cv X" for functions declared without a |
5201 | // ref-qualifier or with the & ref-qualifier |
5202 | // - "rvalue reference to cv X" for functions declared with the && |
5203 | // ref-qualifier |
5204 | // |
5205 | // where X is the class of which the function is a member and cv is the |
5206 | // cv-qualification on the member function declaration. |
5207 | // |
5208 | // However, when finding an implicit conversion sequence for the argument, we |
5209 | // are not allowed to perform user-defined conversions |
5210 | // (C++ [over.match.funcs]p5). We perform a simplified version of |
5211 | // reference binding here, that allows class rvalues to bind to |
5212 | // non-constant references. |
5213 | |
5214 | // First check the qualifiers. |
5215 | QualType FromTypeCanon = S.Context.getCanonicalType(FromType); |
5216 | if (ImplicitParamType.getCVRQualifiers() |
5217 | != FromTypeCanon.getLocalCVRQualifiers() && |
5218 | !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { |
5219 | ICS.setBad(BadConversionSequence::bad_qualifiers, |
5220 | FromType, ImplicitParamType); |
5221 | return ICS; |
5222 | } |
5223 | |
5224 | if (FromTypeCanon.getQualifiers().hasAddressSpace()) { |
5225 | Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); |
5226 | Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); |
5227 | if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { |
5228 | ICS.setBad(BadConversionSequence::bad_qualifiers, |
5229 | FromType, ImplicitParamType); |
5230 | return ICS; |
5231 | } |
5232 | } |
5233 | |
5234 | // Check that we have either the same type or a derived type. It |
5235 | // affects the conversion rank. |
5236 | QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); |
5237 | ImplicitConversionKind SecondKind; |
5238 | if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { |
5239 | SecondKind = ICK_Identity; |
5240 | } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) |
5241 | SecondKind = ICK_Derived_To_Base; |
5242 | else { |
5243 | ICS.setBad(BadConversionSequence::unrelated_class, |
5244 | FromType, ImplicitParamType); |
5245 | return ICS; |
5246 | } |
5247 | |
5248 | // Check the ref-qualifier. |
5249 | switch (Method->getRefQualifier()) { |
5250 | case RQ_None: |
5251 | // Do nothing; we don't care about lvalueness or rvalueness. |
5252 | break; |
5253 | |
5254 | case RQ_LValue: |
5255 | if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { |
5256 | // non-const lvalue reference cannot bind to an rvalue |
5257 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, |
5258 | ImplicitParamType); |
5259 | return ICS; |
5260 | } |
5261 | break; |
5262 | |
5263 | case RQ_RValue: |
5264 | if (!FromClassification.isRValue()) { |
5265 | // rvalue reference cannot bind to an lvalue |
5266 | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, |
5267 | ImplicitParamType); |
5268 | return ICS; |
5269 | } |
5270 | break; |
5271 | } |
5272 | |
5273 | // Success. Mark this as a reference binding. |
5274 | ICS.setStandard(); |
5275 | ICS.Standard.setAsIdentityConversion(); |
5276 | ICS.Standard.Second = SecondKind; |
5277 | ICS.Standard.setFromType(FromType); |
5278 | ICS.Standard.setAllToTypes(ImplicitParamType); |
5279 | ICS.Standard.ReferenceBinding = true; |
5280 | ICS.Standard.DirectBinding = true; |
5281 | ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; |
5282 | ICS.Standard.BindsToFunctionLvalue = false; |
5283 | ICS.Standard.BindsToRvalue = FromClassification.isRValue(); |
5284 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier |
5285 | = (Method->getRefQualifier() == RQ_None); |
5286 | return ICS; |
5287 | } |
5288 | |
5289 | /// PerformObjectArgumentInitialization - Perform initialization of |
5290 | /// the implicit object parameter for the given Method with the given |
5291 | /// expression. |
5292 | ExprResult |
5293 | Sema::PerformObjectArgumentInitialization(Expr *From, |
5294 | NestedNameSpecifier *Qualifier, |
5295 | NamedDecl *FoundDecl, |
5296 | CXXMethodDecl *Method) { |
5297 | QualType FromRecordType, DestType; |
5298 | QualType ImplicitParamRecordType = |
5299 | Method->getThisType()->castAs<PointerType>()->getPointeeType(); |
5300 | |
5301 | Expr::Classification FromClassification; |
5302 | if (const PointerType *PT = From->getType()->getAs<PointerType>()) { |
5303 | FromRecordType = PT->getPointeeType(); |
5304 | DestType = Method->getThisType(); |
5305 | FromClassification = Expr::Classification::makeSimpleLValue(); |
5306 | } else { |
5307 | FromRecordType = From->getType(); |
5308 | DestType = ImplicitParamRecordType; |
5309 | FromClassification = From->Classify(Context); |
5310 | |
5311 | // When performing member access on an rvalue, materialize a temporary. |
5312 | if (From->isRValue()) { |
5313 | From = CreateMaterializeTemporaryExpr(FromRecordType, From, |
5314 | Method->getRefQualifier() != |
5315 | RefQualifierKind::RQ_RValue); |
5316 | } |
5317 | } |
5318 | |
5319 | // Note that we always use the true parent context when performing |
5320 | // the actual argument initialization. |
5321 | ImplicitConversionSequence ICS = TryObjectArgumentInitialization( |
5322 | *this, From->getBeginLoc(), From->getType(), FromClassification, Method, |
5323 | Method->getParent()); |
5324 | if (ICS.isBad()) { |
5325 | switch (ICS.Bad.Kind) { |
5326 | case BadConversionSequence::bad_qualifiers: { |
5327 | Qualifiers FromQs = FromRecordType.getQualifiers(); |
5328 | Qualifiers ToQs = DestType.getQualifiers(); |
5329 | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); |
5330 | if (CVR) { |
5331 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) |
5332 | << Method->getDeclName() << FromRecordType << (CVR - 1) |
5333 | << From->getSourceRange(); |
5334 | Diag(Method->getLocation(), diag::note_previous_decl) |
5335 | << Method->getDeclName(); |
5336 | return ExprError(); |
5337 | } |
5338 | break; |
5339 | } |
5340 | |
5341 | case BadConversionSequence::lvalue_ref_to_rvalue: |
5342 | case BadConversionSequence::rvalue_ref_to_lvalue: { |
5343 | bool IsRValueQualified = |
5344 | Method->getRefQualifier() == RefQualifierKind::RQ_RValue; |
5345 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) |
5346 | << Method->getDeclName() << FromClassification.isRValue() |
5347 | << IsRValueQualified; |
5348 | Diag(Method->getLocation(), diag::note_previous_decl) |
5349 | << Method->getDeclName(); |
5350 | return ExprError(); |
5351 | } |
5352 | |
5353 | case BadConversionSequence::no_conversion: |
5354 | case BadConversionSequence::unrelated_class: |
5355 | break; |
5356 | } |
5357 | |
5358 | return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) |
5359 | << ImplicitParamRecordType << FromRecordType |
5360 | << From->getSourceRange(); |
5361 | } |
5362 | |
5363 | if (ICS.Standard.Second == ICK_Derived_To_Base) { |
5364 | ExprResult FromRes = |
5365 | PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); |
5366 | if (FromRes.isInvalid()) |
5367 | return ExprError(); |
5368 | From = FromRes.get(); |
5369 | } |
5370 | |
5371 | if (!Context.hasSameType(From->getType(), DestType)) { |
5372 | CastKind CK; |
5373 | QualType PteeTy = DestType->getPointeeType(); |
5374 | LangAS DestAS = |
5375 | PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); |
5376 | if (FromRecordType.getAddressSpace() != DestAS) |
5377 | CK = CK_AddressSpaceConversion; |
5378 | else |
5379 | CK = CK_NoOp; |
5380 | From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); |
5381 | } |
5382 | return From; |
5383 | } |
5384 | |
5385 | /// TryContextuallyConvertToBool - Attempt to contextually convert the |
5386 | /// expression From to bool (C++0x [conv]p3). |
5387 | static ImplicitConversionSequence |
5388 | TryContextuallyConvertToBool(Sema &S, Expr *From) { |
5389 | return TryImplicitConversion(S, From, S.Context.BoolTy, |
5390 | /*SuppressUserConversions=*/false, |
5391 | /*AllowExplicit=*/true, |
5392 | /*InOverloadResolution=*/false, |
5393 | /*CStyle=*/false, |
5394 | /*AllowObjCWritebackConversion=*/false, |
5395 | /*AllowObjCConversionOnExplicit=*/false); |
5396 | } |
5397 | |
5398 | /// PerformContextuallyConvertToBool - Perform a contextual conversion |
5399 | /// of the expression From to bool (C++0x [conv]p3). |
5400 | ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { |
5401 | if (checkPlaceholderForOverload(*this, From)) |
5402 | return ExprError(); |
5403 | |
5404 | ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); |
5405 | if (!ICS.isBad()) |
5406 | return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); |
5407 | |
5408 | if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) |
5409 | return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) |
5410 | << From->getType() << From->getSourceRange(); |
5411 | return ExprError(); |
5412 | } |
5413 | |
5414 | /// Check that the specified conversion is permitted in a converted constant |
5415 | /// expression, according to C++11 [expr.const]p3. Return true if the conversion |
5416 | /// is acceptable. |
5417 | static bool CheckConvertedConstantConversions(Sema &S, |
5418 | StandardConversionSequence &SCS) { |
5419 | // Since we know that the target type is an integral or unscoped enumeration |
5420 | // type, most conversion kinds are impossible. All possible First and Third |
5421 | // conversions are fine. |
5422 | switch (SCS.Second) { |
5423 | case ICK_Identity: |
5424 | case ICK_Function_Conversion: |
5425 | case ICK_Integral_Promotion: |
5426 | case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. |
5427 | case ICK_Zero_Queue_Conversion: |
5428 | return true; |
5429 | |
5430 | case ICK_Boolean_Conversion: |
5431 | // Conversion from an integral or unscoped enumeration type to bool is |
5432 | // classified as ICK_Boolean_Conversion, but it's also arguably an integral |
5433 | // conversion, so we allow it in a converted constant expression. |
5434 | // |
5435 | // FIXME: Per core issue 1407, we should not allow this, but that breaks |
5436 | // a lot of popular code. We should at least add a warning for this |
5437 | // (non-conforming) extension. |
5438 | return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && |
5439 | SCS.getToType(2)->isBooleanType(); |
5440 | |
5441 | case ICK_Pointer_Conversion: |
5442 | case ICK_Pointer_Member: |
5443 | // C++1z: null pointer conversions and null member pointer conversions are |
5444 | // only permitted if the source type is std::nullptr_t. |
5445 | return SCS.getFromType()->isNullPtrType(); |
5446 | |
5447 | case ICK_Floating_Promotion: |
5448 | case ICK_Complex_Promotion: |
5449 | case ICK_Floating_Conversion: |
5450 | case ICK_Complex_Conversion: |
5451 | case ICK_Floating_Integral: |
5452 | case ICK_Compatible_Conversion: |
5453 | case ICK_Derived_To_Base: |
5454 | case ICK_Vector_Conversion: |
5455 | case ICK_Vector_Splat: |
5456 | case ICK_Complex_Real: |
5457 | case ICK_Block_Pointer_Conversion: |
5458 | case ICK_TransparentUnionConversion: |
5459 | case ICK_Writeback_Conversion: |
5460 | case ICK_Zero_Event_Conversion: |
5461 | case ICK_C_Only_Conversion: |
5462 | case ICK_Incompatible_Pointer_Conversion: |
5463 | return false; |
5464 | |
5465 | case ICK_Lvalue_To_Rvalue: |
5466 | case ICK_Array_To_Pointer: |
5467 | case ICK_Function_To_Pointer: |
5468 | llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5468); |
5469 | |
5470 | case ICK_Qualification: |
5471 | llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5471); |
5472 | |
5473 | case ICK_Num_Conversion_Kinds: |
5474 | break; |
5475 | } |
5476 | |
5477 | llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5477); |
5478 | } |
5479 | |
5480 | /// CheckConvertedConstantExpression - Check that the expression From is a |
5481 | /// converted constant expression of type T, perform the conversion and produce |
5482 | /// the converted expression, per C++11 [expr.const]p3. |
5483 | static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, |
5484 | QualType T, APValue &Value, |
5485 | Sema::CCEKind CCE, |
5486 | bool RequireInt) { |
5487 | assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11" ) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5488, __PRETTY_FUNCTION__)) |
5488 | "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11" ) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5488, __PRETTY_FUNCTION__)); |
5489 | |
5490 | if (checkPlaceholderForOverload(S, From)) |
5491 | return ExprError(); |
5492 | |
5493 | // C++1z [expr.const]p3: |
5494 | // A converted constant expression of type T is an expression, |
5495 | // implicitly converted to type T, where the converted |
5496 | // expression is a constant expression and the implicit conversion |
5497 | // sequence contains only [... list of conversions ...]. |
5498 | // C++1z [stmt.if]p2: |
5499 | // If the if statement is of the form if constexpr, the value of the |
5500 | // condition shall be a contextually converted constant expression of type |
5501 | // bool. |
5502 | ImplicitConversionSequence ICS = |
5503 | CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool |
5504 | ? TryContextuallyConvertToBool(S, From) |
5505 | : TryCopyInitialization(S, From, T, |
5506 | /*SuppressUserConversions=*/false, |
5507 | /*InOverloadResolution=*/false, |
5508 | /*AllowObjCWritebackConversion=*/false, |
5509 | /*AllowExplicit=*/false); |
5510 | StandardConversionSequence *SCS = nullptr; |
5511 | switch (ICS.getKind()) { |
5512 | case ImplicitConversionSequence::StandardConversion: |
5513 | SCS = &ICS.Standard; |
5514 | break; |
5515 | case ImplicitConversionSequence::UserDefinedConversion: |
5516 | // We are converting to a non-class type, so the Before sequence |
5517 | // must be trivial. |
5518 | SCS = &ICS.UserDefined.After; |
5519 | break; |
5520 | case ImplicitConversionSequence::AmbiguousConversion: |
5521 | case ImplicitConversionSequence::BadConversion: |
5522 | if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) |
5523 | return S.Diag(From->getBeginLoc(), |
5524 | diag::err_typecheck_converted_constant_expression) |
5525 | << From->getType() << From->getSourceRange() << T; |
5526 | return ExprError(); |
5527 | |
5528 | case ImplicitConversionSequence::EllipsisConversion: |
5529 | llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5529); |
5530 | } |
5531 | |
5532 | // Check that we would only use permitted conversions. |
5533 | if (!CheckConvertedConstantConversions(S, *SCS)) { |
5534 | return S.Diag(From->getBeginLoc(), |
5535 | diag::err_typecheck_converted_constant_expression_disallowed) |
5536 | << From->getType() << From->getSourceRange() << T; |
5537 | } |
5538 | // [...] and where the reference binding (if any) binds directly. |
5539 | if (SCS->ReferenceBinding && !SCS->DirectBinding) { |
5540 | return S.Diag(From->getBeginLoc(), |
5541 | diag::err_typecheck_converted_constant_expression_indirect) |
5542 | << From->getType() << From->getSourceRange() << T; |
5543 | } |
5544 | |
5545 | ExprResult Result = |
5546 | S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); |
5547 | if (Result.isInvalid()) |
5548 | return Result; |
5549 | |
5550 | // C++2a [intro.execution]p5: |
5551 | // A full-expression is [...] a constant-expression [...] |
5552 | Result = |
5553 | S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), |
5554 | /*DiscardedValue=*/false, /*IsConstexpr=*/true); |
5555 | if (Result.isInvalid()) |
5556 | return Result; |
5557 | |
5558 | // Check for a narrowing implicit conversion. |
5559 | APValue PreNarrowingValue; |
5560 | QualType PreNarrowingType; |
5561 | switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, |
5562 | PreNarrowingType)) { |
5563 | case NK_Dependent_Narrowing: |
5564 | // Implicit conversion to a narrower type, but the expression is |
5565 | // value-dependent so we can't tell whether it's actually narrowing. |
5566 | case NK_Variable_Narrowing: |
5567 | // Implicit conversion to a narrower type, and the value is not a constant |
5568 | // expression. We'll diagnose this in a moment. |
5569 | case NK_Not_Narrowing: |
5570 | break; |
5571 | |
5572 | case NK_Constant_Narrowing: |
5573 | S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) |
5574 | << CCE << /*Constant*/ 1 |
5575 | << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; |
5576 | break; |
5577 | |
5578 | case NK_Type_Narrowing: |
5579 | S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) |
5580 | << CCE << /*Constant*/ 0 << From->getType() << T; |
5581 | break; |
5582 | } |
5583 | |
5584 | if (Result.get()->isValueDependent()) { |
5585 | Value = APValue(); |
5586 | return Result; |
5587 | } |
5588 | |
5589 | // Check the expression is a constant expression. |
5590 | SmallVector<PartialDiagnosticAt, 8> Notes; |
5591 | Expr::EvalResult Eval; |
5592 | Eval.Diag = &Notes; |
5593 | Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg |
5594 | ? Expr::EvaluateForMangling |
5595 | : Expr::EvaluateForCodeGen; |
5596 | |
5597 | if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) || |
5598 | (RequireInt && !Eval.Val.isInt())) { |
5599 | // The expression can't be folded, so we can't keep it at this position in |
5600 | // the AST. |
5601 | Result = ExprError(); |
5602 | } else { |
5603 | Value = Eval.Val; |
5604 | |
5605 | if (Notes.empty()) { |
5606 | // It's a constant expression. |
5607 | return ConstantExpr::Create(S.Context, Result.get(), Value); |
5608 | } |
5609 | } |
5610 | |
5611 | // It's not a constant expression. Produce an appropriate diagnostic. |
5612 | if (Notes.size() == 1 && |
5613 | Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) |
5614 | S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; |
5615 | else { |
5616 | S.Diag(From->getBeginLoc(), diag::err_expr_not_cce) |
5617 | << CCE << From->getSourceRange(); |
5618 | for (unsigned I = 0; I < Notes.size(); ++I) |
5619 | S.Diag(Notes[I].first, Notes[I].second); |
5620 | } |
5621 | return ExprError(); |
5622 | } |
5623 | |
5624 | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, |
5625 | APValue &Value, CCEKind CCE) { |
5626 | return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false); |
5627 | } |
5628 | |
5629 | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, |
5630 | llvm::APSInt &Value, |
5631 | CCEKind CCE) { |
5632 | assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type" ) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5632, __PRETTY_FUNCTION__)); |
5633 | |
5634 | APValue V; |
5635 | auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true); |
5636 | if (!R.isInvalid() && !R.get()->isValueDependent()) |
5637 | Value = V.getInt(); |
5638 | return R; |
5639 | } |
5640 | |
5641 | |
5642 | /// dropPointerConversions - If the given standard conversion sequence |
5643 | /// involves any pointer conversions, remove them. This may change |
5644 | /// the result type of the conversion sequence. |
5645 | static void dropPointerConversion(StandardConversionSequence &SCS) { |
5646 | if (SCS.Second == ICK_Pointer_Conversion) { |
5647 | SCS.Second = ICK_Identity; |
5648 | SCS.Third = ICK_Identity; |
5649 | SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; |
5650 | } |
5651 | } |
5652 | |
5653 | /// TryContextuallyConvertToObjCPointer - Attempt to contextually |
5654 | /// convert the expression From to an Objective-C pointer type. |
5655 | static ImplicitConversionSequence |
5656 | TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { |
5657 | // Do an implicit conversion to 'id'. |
5658 | QualType Ty = S.Context.getObjCIdType(); |
5659 | ImplicitConversionSequence ICS |
5660 | = TryImplicitConversion(S, From, Ty, |
5661 | // FIXME: Are these flags correct? |
5662 | /*SuppressUserConversions=*/false, |
5663 | /*AllowExplicit=*/true, |
5664 | /*InOverloadResolution=*/false, |
5665 | /*CStyle=*/false, |
5666 | /*AllowObjCWritebackConversion=*/false, |
5667 | /*AllowObjCConversionOnExplicit=*/true); |
5668 | |
5669 | // Strip off any final conversions to 'id'. |
5670 | switch (ICS.getKind()) { |
5671 | case ImplicitConversionSequence::BadConversion: |
5672 | case ImplicitConversionSequence::AmbiguousConversion: |
5673 | case ImplicitConversionSequence::EllipsisConversion: |
5674 | break; |
5675 | |
5676 | case ImplicitConversionSequence::UserDefinedConversion: |
5677 | dropPointerConversion(ICS.UserDefined.After); |
5678 | break; |
5679 | |
5680 | case ImplicitConversionSequence::StandardConversion: |
5681 | dropPointerConversion(ICS.Standard); |
5682 | break; |
5683 | } |
5684 | |
5685 | return ICS; |
5686 | } |
5687 | |
5688 | /// PerformContextuallyConvertToObjCPointer - Perform a contextual |
5689 | /// conversion of the expression From to an Objective-C pointer type. |
5690 | /// Returns a valid but null ExprResult if no conversion sequence exists. |
5691 | ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { |
5692 | if (checkPlaceholderForOverload(*this, From)) |
5693 | return ExprError(); |
5694 | |
5695 | QualType Ty = Context.getObjCIdType(); |
5696 | ImplicitConversionSequence ICS = |
5697 | TryContextuallyConvertToObjCPointer(*this, From); |
5698 | if (!ICS.isBad()) |
5699 | return PerformImplicitConversion(From, Ty, ICS, AA_Converting); |
5700 | return ExprResult(); |
5701 | } |
5702 | |
5703 | /// Determine whether the provided type is an integral type, or an enumeration |
5704 | /// type of a permitted flavor. |
5705 | bool Sema::ICEConvertDiagnoser::match(QualType T) { |
5706 | return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() |
5707 | : T->isIntegralOrUnscopedEnumerationType(); |
5708 | } |
5709 | |
5710 | static ExprResult |
5711 | diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, |
5712 | Sema::ContextualImplicitConverter &Converter, |
5713 | QualType T, UnresolvedSetImpl &ViableConversions) { |
5714 | |
5715 | if (Converter.Suppress) |
5716 | return ExprError(); |
5717 | |
5718 | Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); |
5719 | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { |
5720 | CXXConversionDecl *Conv = |
5721 | cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); |
5722 | QualType ConvTy = Conv->getConversionType().getNonReferenceType(); |
5723 | Converter.noteAmbiguous(SemaRef, Conv, ConvTy); |
5724 | } |
5725 | return From; |
5726 | } |
5727 | |
5728 | static bool |
5729 | diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, |
5730 | Sema::ContextualImplicitConverter &Converter, |
5731 | QualType T, bool HadMultipleCandidates, |
5732 | UnresolvedSetImpl &ExplicitConversions) { |
5733 | if (ExplicitConversions.size() == 1 && !Converter.Suppress) { |
5734 | DeclAccessPair Found = ExplicitConversions[0]; |
5735 | CXXConversionDecl *Conversion = |
5736 | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); |
5737 | |
5738 | // The user probably meant to invoke the given explicit |
5739 | // conversion; use it. |
5740 | QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); |
5741 | std::string TypeStr; |
5742 | ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); |
5743 | |
5744 | Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) |
5745 | << FixItHint::CreateInsertion(From->getBeginLoc(), |
5746 | "static_cast<" + TypeStr + ">(") |
5747 | << FixItHint::CreateInsertion( |
5748 | SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); |
5749 | Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); |
5750 | |
5751 | // If we aren't in a SFINAE context, build a call to the |
5752 | // explicit conversion function. |
5753 | if (SemaRef.isSFINAEContext()) |
5754 | return true; |
5755 | |
5756 | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); |
5757 | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, |
5758 | HadMultipleCandidates); |
5759 | if (Result.isInvalid()) |
5760 | return true; |
5761 | // Record usage of conversion in an implicit cast. |
5762 | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), |
5763 | CK_UserDefinedConversion, Result.get(), |
5764 | nullptr, Result.get()->getValueKind()); |
5765 | } |
5766 | return false; |
5767 | } |
5768 | |
5769 | static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, |
5770 | Sema::ContextualImplicitConverter &Converter, |
5771 | QualType T, bool HadMultipleCandidates, |
5772 | DeclAccessPair &Found) { |
5773 | CXXConversionDecl *Conversion = |
5774 | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); |
5775 | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); |
5776 | |
5777 | QualType ToType = Conversion->getConversionType().getNonReferenceType(); |
5778 | if (!Converter.SuppressConversion) { |
5779 | if (SemaRef.isSFINAEContext()) |
5780 | return true; |
5781 | |
5782 | Converter.diagnoseConversion(SemaRef, Loc, T, ToType) |
5783 | << From->getSourceRange(); |
5784 | } |
5785 | |
5786 | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, |
5787 | HadMultipleCandidates); |
5788 | if (Result.isInvalid()) |
5789 | return true; |
5790 | // Record usage of conversion in an implicit cast. |
5791 | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), |
5792 | CK_UserDefinedConversion, Result.get(), |
5793 | nullptr, Result.get()->getValueKind()); |
5794 | return false; |
5795 | } |
5796 | |
5797 | static ExprResult finishContextualImplicitConversion( |
5798 | Sema &SemaRef, SourceLocation Loc, Expr *From, |
5799 | Sema::ContextualImplicitConverter &Converter) { |
5800 | if (!Converter.match(From->getType()) && !Converter.Suppress) |
5801 | Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) |
5802 | << From->getSourceRange(); |
5803 | |
5804 | return SemaRef.DefaultLvalueConversion(From); |
5805 | } |
5806 | |
5807 | static void |
5808 | collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, |
5809 | UnresolvedSetImpl &ViableConversions, |
5810 | OverloadCandidateSet &CandidateSet) { |
5811 | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { |
5812 | DeclAccessPair FoundDecl = ViableConversions[I]; |
5813 | NamedDecl *D = FoundDecl.getDecl(); |
5814 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); |
5815 | if (isa<UsingShadowDecl>(D)) |
5816 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
5817 | |
5818 | CXXConversionDecl *Conv; |
5819 | FunctionTemplateDecl *ConvTemplate; |
5820 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) |
5821 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
5822 | else |
5823 | Conv = cast<CXXConversionDecl>(D); |
5824 | |
5825 | if (ConvTemplate) |
5826 | SemaRef.AddTemplateConversionCandidate( |
5827 | ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, |
5828 | /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); |
5829 | else |
5830 | SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, |
5831 | ToType, CandidateSet, |
5832 | /*AllowObjCConversionOnExplicit=*/false, |
5833 | /*AllowExplicit*/ true); |
5834 | } |
5835 | } |
5836 | |
5837 | /// Attempt to convert the given expression to a type which is accepted |
5838 | /// by the given converter. |
5839 | /// |
5840 | /// This routine will attempt to convert an expression of class type to a |
5841 | /// type accepted by the specified converter. In C++11 and before, the class |
5842 | /// must have a single non-explicit conversion function converting to a matching |
5843 | /// type. In C++1y, there can be multiple such conversion functions, but only |
5844 | /// one target type. |
5845 | /// |
5846 | /// \param Loc The source location of the construct that requires the |
5847 | /// conversion. |
5848 | /// |
5849 | /// \param From The expression we're converting from. |
5850 | /// |
5851 | /// \param Converter Used to control and diagnose the conversion process. |
5852 | /// |
5853 | /// \returns The expression, converted to an integral or enumeration type if |
5854 | /// successful. |
5855 | ExprResult Sema::PerformContextualImplicitConversion( |
5856 | SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { |
5857 | // We can't perform any more checking for type-dependent expressions. |
5858 | if (From->isTypeDependent()) |
5859 | return From; |
5860 | |
5861 | // Process placeholders immediately. |
5862 | if (From->hasPlaceholderType()) { |
5863 | ExprResult result = CheckPlaceholderExpr(From); |
5864 | if (result.isInvalid()) |
5865 | return result; |
5866 | From = result.get(); |
5867 | } |
5868 | |
5869 | // If the expression already has a matching type, we're golden. |
5870 | QualType T = From->getType(); |
5871 | if (Converter.match(T)) |
5872 | return DefaultLvalueConversion(From); |
5873 | |
5874 | // FIXME: Check for missing '()' if T is a function type? |
5875 | |
5876 | // We can only perform contextual implicit conversions on objects of class |
5877 | // type. |
5878 | const RecordType *RecordTy = T->getAs<RecordType>(); |
5879 | if (!RecordTy || !getLangOpts().CPlusPlus) { |
5880 | if (!Converter.Suppress) |
5881 | Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); |
5882 | return From; |
5883 | } |
5884 | |
5885 | // We must have a complete class type. |
5886 | struct TypeDiagnoserPartialDiag : TypeDiagnoser { |
5887 | ContextualImplicitConverter &Converter; |
5888 | Expr *From; |
5889 | |
5890 | TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) |
5891 | : Converter(Converter), From(From) {} |
5892 | |
5893 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { |
5894 | Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); |
5895 | } |
5896 | } IncompleteDiagnoser(Converter, From); |
5897 | |
5898 | if (Converter.Suppress ? !isCompleteType(Loc, T) |
5899 | : RequireCompleteType(Loc, T, IncompleteDiagnoser)) |
5900 | return From; |
5901 | |
5902 | // Look for a conversion to an integral or enumeration type. |
5903 | UnresolvedSet<4> |
5904 | ViableConversions; // These are *potentially* viable in C++1y. |
5905 | UnresolvedSet<4> ExplicitConversions; |
5906 | const auto &Conversions = |
5907 | cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); |
5908 | |
5909 | bool HadMultipleCandidates = |
5910 | (std::distance(Conversions.begin(), Conversions.end()) > 1); |
5911 | |
5912 | // To check that there is only one target type, in C++1y: |
5913 | QualType ToType; |
5914 | bool HasUniqueTargetType = true; |
5915 | |
5916 | // Collect explicit or viable (potentially in C++1y) conversions. |
5917 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
5918 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
5919 | CXXConversionDecl *Conversion; |
5920 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
5921 | if (ConvTemplate) { |
5922 | if (getLangOpts().CPlusPlus14) |
5923 | Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
5924 | else |
5925 | continue; // C++11 does not consider conversion operator templates(?). |
5926 | } else |
5927 | Conversion = cast<CXXConversionDecl>(D); |
5928 | |
5929 | assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially " "viable in C++1y") ? static_cast<void> (0) : __assert_fail ("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5931, __PRETTY_FUNCTION__)) |
5930 | "Conversion operator templates are considered potentially "(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially " "viable in C++1y") ? static_cast<void> (0) : __assert_fail ("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5931, __PRETTY_FUNCTION__)) |
5931 | "viable in C++1y")(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially " "viable in C++1y") ? static_cast<void> (0) : __assert_fail ("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaOverload.cpp" , 5931, __PRETTY_FUNCTION__)); |
5932 | |
5933 | QualType CurToType = Conversion->getConversionType().getNonReferenceType(); |
5934 | if (Converter.match(CurToType) || ConvTemplate) { |
5935 | |
5936 | if (Conversion->isExplicit()) { |
5937 | // FIXME: For C++1y, do we need this restriction? |
5938 | // cf. diagnoseNoViableConversion() |
5939 | if (!ConvTemplate) |
5940 | ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); |
5941 | } else { |
5942 | if (!ConvTemplate && getLangOpts().CPlusPlus14) { |
5943 | if (ToType.isNull()) |
5944 | ToType = CurToType.getUnqualifiedType(); |
5945 | else if (HasUniqueTargetType && |
5946 | (CurToType.getUnqualifiedType() != ToType)) |
5947 | HasUniqueTargetType = false; |
5948 | } |
5949 | ViableConversions.addDecl(I.getDecl(), I.getAccess()); |
5950 | } |
5951 | } |
5952 | } |
5953 | |
5954 | if (getLangOpts().CPlusPlus14) { |
5955 | // C++1y [conv]p6: |
5956 | // ... An expression e of class type E appearing in such a context |
5957 | // is said to be contextually implicitly converted to a specified |
5958 |