Bug Summary

File:tools/clang/lib/Sema/SemaOverload.cpp
Warning:line 9660, column 50
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp
1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Overload.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/Diagnostic.h"
23#include "clang/Basic/DiagnosticOptions.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Sema/Initialization.h"
27#include "clang/Sema/Lookup.h"
28#include "clang/Sema/SemaInternal.h"
29#include "clang/Sema/Template.h"
30#include "clang/Sema/TemplateDeduction.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/Optional.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallString.h"
36#include <algorithm>
37#include <cstdlib>
38
39using namespace clang;
40using namespace sema;
41
42static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
43 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
44 return P->hasAttr<PassObjectSizeAttr>();
45 });
46}
47
48/// A convenience routine for creating a decayed reference to a function.
49static ExprResult
50CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
51 const Expr *Base, bool HadMultipleCandidates,
52 SourceLocation Loc = SourceLocation(),
53 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
54 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
55 return ExprError();
56 // If FoundDecl is different from Fn (such as if one is a template
57 // and the other a specialization), make sure DiagnoseUseOfDecl is
58 // called on both.
59 // FIXME: This would be more comprehensively addressed by modifying
60 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
61 // being used.
62 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
63 return ExprError();
64 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
65 S.ResolveExceptionSpec(Loc, FPT);
66 DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
67 VK_LValue, Loc, LocInfo);
68 if (HadMultipleCandidates)
69 DRE->setHadMultipleCandidates(true);
70
71 S.MarkDeclRefReferenced(DRE, Base);
72 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
73 CK_FunctionToPointerDecay);
74}
75
76static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
77 bool InOverloadResolution,
78 StandardConversionSequence &SCS,
79 bool CStyle,
80 bool AllowObjCWritebackConversion);
81
82static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
83 QualType &ToType,
84 bool InOverloadResolution,
85 StandardConversionSequence &SCS,
86 bool CStyle);
87static OverloadingResult
88IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
89 UserDefinedConversionSequence& User,
90 OverloadCandidateSet& Conversions,
91 bool AllowExplicit,
92 bool AllowObjCConversionOnExplicit);
93
94
95static ImplicitConversionSequence::CompareKind
96CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
97 const StandardConversionSequence& SCS1,
98 const StandardConversionSequence& SCS2);
99
100static ImplicitConversionSequence::CompareKind
101CompareQualificationConversions(Sema &S,
102 const StandardConversionSequence& SCS1,
103 const StandardConversionSequence& SCS2);
104
105static ImplicitConversionSequence::CompareKind
106CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
107 const StandardConversionSequence& SCS1,
108 const StandardConversionSequence& SCS2);
109
110/// GetConversionRank - Retrieve the implicit conversion rank
111/// corresponding to the given implicit conversion kind.
112ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
113 static const ImplicitConversionRank
114 Rank[(int)ICK_Num_Conversion_Kinds] = {
115 ICR_Exact_Match,
116 ICR_Exact_Match,
117 ICR_Exact_Match,
118 ICR_Exact_Match,
119 ICR_Exact_Match,
120 ICR_Exact_Match,
121 ICR_Promotion,
122 ICR_Promotion,
123 ICR_Promotion,
124 ICR_Conversion,
125 ICR_Conversion,
126 ICR_Conversion,
127 ICR_Conversion,
128 ICR_Conversion,
129 ICR_Conversion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_Conversion,
134 ICR_OCL_Scalar_Widening,
135 ICR_Complex_Real_Conversion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Writeback_Conversion,
139 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
140 // it was omitted by the patch that added
141 // ICK_Zero_Event_Conversion
142 ICR_C_Conversion,
143 ICR_C_Conversion_Extension
144 };
145 return Rank[(int)Kind];
146}
147
148/// GetImplicitConversionName - Return the name of this kind of
149/// implicit conversion.
150static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
151 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
152 "No conversion",
153 "Lvalue-to-rvalue",
154 "Array-to-pointer",
155 "Function-to-pointer",
156 "Function pointer conversion",
157 "Qualification",
158 "Integral promotion",
159 "Floating point promotion",
160 "Complex promotion",
161 "Integral conversion",
162 "Floating conversion",
163 "Complex conversion",
164 "Floating-integral conversion",
165 "Pointer conversion",
166 "Pointer-to-member conversion",
167 "Boolean conversion",
168 "Compatible-types conversion",
169 "Derived-to-base conversion",
170 "Vector conversion",
171 "Vector splat",
172 "Complex-real conversion",
173 "Block Pointer conversion",
174 "Transparent Union Conversion",
175 "Writeback conversion",
176 "OpenCL Zero Event Conversion",
177 "C specific type conversion",
178 "Incompatible pointer conversion"
179 };
180 return Name[Kind];
181}
182
183/// StandardConversionSequence - Set the standard conversion
184/// sequence to the identity conversion.
185void StandardConversionSequence::setAsIdentityConversion() {
186 First = ICK_Identity;
187 Second = ICK_Identity;
188 Third = ICK_Identity;
189 DeprecatedStringLiteralToCharPtr = false;
190 QualificationIncludesObjCLifetime = false;
191 ReferenceBinding = false;
192 DirectBinding = false;
193 IsLvalueReference = true;
194 BindsToFunctionLvalue = false;
195 BindsToRvalue = false;
196 BindsImplicitObjectArgumentWithoutRefQualifier = false;
197 ObjCLifetimeConversionBinding = false;
198 CopyConstructor = nullptr;
199}
200
201/// getRank - Retrieve the rank of this standard conversion sequence
202/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
203/// implicit conversions.
204ImplicitConversionRank StandardConversionSequence::getRank() const {
205 ImplicitConversionRank Rank = ICR_Exact_Match;
206 if (GetConversionRank(First) > Rank)
207 Rank = GetConversionRank(First);
208 if (GetConversionRank(Second) > Rank)
209 Rank = GetConversionRank(Second);
210 if (GetConversionRank(Third) > Rank)
211 Rank = GetConversionRank(Third);
212 return Rank;
213}
214
215/// isPointerConversionToBool - Determines whether this conversion is
216/// a conversion of a pointer or pointer-to-member to bool. This is
217/// used as part of the ranking of standard conversion sequences
218/// (C++ 13.3.3.2p4).
219bool StandardConversionSequence::isPointerConversionToBool() const {
220 // Note that FromType has not necessarily been transformed by the
221 // array-to-pointer or function-to-pointer implicit conversions, so
222 // check for their presence as well as checking whether FromType is
223 // a pointer.
224 if (getToType(1)->isBooleanType() &&
225 (getFromType()->isPointerType() ||
226 getFromType()->isObjCObjectPointerType() ||
227 getFromType()->isBlockPointerType() ||
228 getFromType()->isNullPtrType() ||
229 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
230 return true;
231
232 return false;
233}
234
235/// isPointerConversionToVoidPointer - Determines whether this
236/// conversion is a conversion of a pointer to a void pointer. This is
237/// used as part of the ranking of standard conversion sequences (C++
238/// 13.3.3.2p4).
239bool
240StandardConversionSequence::
241isPointerConversionToVoidPointer(ASTContext& Context) const {
242 QualType FromType = getFromType();
243 QualType ToType = getToType(1);
244
245 // Note that FromType has not necessarily been transformed by the
246 // array-to-pointer implicit conversion, so check for its presence
247 // and redo the conversion to get a pointer.
248 if (First == ICK_Array_To_Pointer)
249 FromType = Context.getArrayDecayedType(FromType);
250
251 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
252 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
253 return ToPtrType->getPointeeType()->isVoidType();
254
255 return false;
256}
257
258/// Skip any implicit casts which could be either part of a narrowing conversion
259/// or after one in an implicit conversion.
260static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
261 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
262 switch (ICE->getCastKind()) {
263 case CK_NoOp:
264 case CK_IntegralCast:
265 case CK_IntegralToBoolean:
266 case CK_IntegralToFloating:
267 case CK_BooleanToSignedIntegral:
268 case CK_FloatingToIntegral:
269 case CK_FloatingToBoolean:
270 case CK_FloatingCast:
271 Converted = ICE->getSubExpr();
272 continue;
273
274 default:
275 return Converted;
276 }
277 }
278
279 return Converted;
280}
281
282/// Check if this standard conversion sequence represents a narrowing
283/// conversion, according to C++11 [dcl.init.list]p7.
284///
285/// \param Ctx The AST context.
286/// \param Converted The result of applying this standard conversion sequence.
287/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
288/// value of the expression prior to the narrowing conversion.
289/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
290/// type of the expression prior to the narrowing conversion.
291NarrowingKind
292StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
293 const Expr *Converted,
294 APValue &ConstantValue,
295 QualType &ConstantType) const {
296 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")(static_cast <bool> (Ctx.getLangOpts().CPlusPlus &&
"narrowing check outside C++") ? void (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 296, __extension__ __PRETTY_FUNCTION__))
;
297
298 // C++11 [dcl.init.list]p7:
299 // A narrowing conversion is an implicit conversion ...
300 QualType FromType = getToType(0);
301 QualType ToType = getToType(1);
302
303 // A conversion to an enumeration type is narrowing if the conversion to
304 // the underlying type is narrowing. This only arises for expressions of
305 // the form 'Enum{init}'.
306 if (auto *ET = ToType->getAs<EnumType>())
307 ToType = ET->getDecl()->getIntegerType();
308
309 switch (Second) {
310 // 'bool' is an integral type; dispatch to the right place to handle it.
311 case ICK_Boolean_Conversion:
312 if (FromType->isRealFloatingType())
313 goto FloatingIntegralConversion;
314 if (FromType->isIntegralOrUnscopedEnumerationType())
315 goto IntegralConversion;
316 // Boolean conversions can be from pointers and pointers to members
317 // [conv.bool], and those aren't considered narrowing conversions.
318 return NK_Not_Narrowing;
319
320 // -- from a floating-point type to an integer type, or
321 //
322 // -- from an integer type or unscoped enumeration type to a floating-point
323 // type, except where the source is a constant expression and the actual
324 // value after conversion will fit into the target type and will produce
325 // the original value when converted back to the original type, or
326 case ICK_Floating_Integral:
327 FloatingIntegralConversion:
328 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
329 return NK_Type_Narrowing;
330 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
331 ToType->isRealFloatingType()) {
332 llvm::APSInt IntConstantValue;
333 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
334 assert(Initializer && "Unknown conversion expression")(static_cast <bool> (Initializer && "Unknown conversion expression"
) ? void (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 334, __extension__ __PRETTY_FUNCTION__))
;
335
336 // If it's value-dependent, we can't tell whether it's narrowing.
337 if (Initializer->isValueDependent())
338 return NK_Dependent_Narrowing;
339
340 if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
341 // Convert the integer to the floating type.
342 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
343 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
344 llvm::APFloat::rmNearestTiesToEven);
345 // And back.
346 llvm::APSInt ConvertedValue = IntConstantValue;
347 bool ignored;
348 Result.convertToInteger(ConvertedValue,
349 llvm::APFloat::rmTowardZero, &ignored);
350 // If the resulting value is different, this was a narrowing conversion.
351 if (IntConstantValue != ConvertedValue) {
352 ConstantValue = APValue(IntConstantValue);
353 ConstantType = Initializer->getType();
354 return NK_Constant_Narrowing;
355 }
356 } else {
357 // Variables are always narrowings.
358 return NK_Variable_Narrowing;
359 }
360 }
361 return NK_Not_Narrowing;
362
363 // -- from long double to double or float, or from double to float, except
364 // where the source is a constant expression and the actual value after
365 // conversion is within the range of values that can be represented (even
366 // if it cannot be represented exactly), or
367 case ICK_Floating_Conversion:
368 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
369 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
370 // FromType is larger than ToType.
371 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
372
373 // If it's value-dependent, we can't tell whether it's narrowing.
374 if (Initializer->isValueDependent())
375 return NK_Dependent_Narrowing;
376
377 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
378 // Constant!
379 assert(ConstantValue.isFloat())(static_cast <bool> (ConstantValue.isFloat()) ? void (0
) : __assert_fail ("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 379, __extension__ __PRETTY_FUNCTION__))
;
380 llvm::APFloat FloatVal = ConstantValue.getFloat();
381 // Convert the source value into the target type.
382 bool ignored;
383 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
384 Ctx.getFloatTypeSemantics(ToType),
385 llvm::APFloat::rmNearestTiesToEven, &ignored);
386 // If there was no overflow, the source value is within the range of
387 // values that can be represented.
388 if (ConvertStatus & llvm::APFloat::opOverflow) {
389 ConstantType = Initializer->getType();
390 return NK_Constant_Narrowing;
391 }
392 } else {
393 return NK_Variable_Narrowing;
394 }
395 }
396 return NK_Not_Narrowing;
397
398 // -- from an integer type or unscoped enumeration type to an integer type
399 // that cannot represent all the values of the original type, except where
400 // the source is a constant expression and the actual value after
401 // conversion will fit into the target type and will produce the original
402 // value when converted back to the original type.
403 case ICK_Integral_Conversion:
404 IntegralConversion: {
405 assert(FromType->isIntegralOrUnscopedEnumerationType())(static_cast <bool> (FromType->isIntegralOrUnscopedEnumerationType
()) ? void (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 405, __extension__ __PRETTY_FUNCTION__))
;
406 assert(ToType->isIntegralOrUnscopedEnumerationType())(static_cast <bool> (ToType->isIntegralOrUnscopedEnumerationType
()) ? void (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 406, __extension__ __PRETTY_FUNCTION__))
;
407 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
408 const unsigned FromWidth = Ctx.getIntWidth(FromType);
409 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
410 const unsigned ToWidth = Ctx.getIntWidth(ToType);
411
412 if (FromWidth > ToWidth ||
413 (FromWidth == ToWidth && FromSigned != ToSigned) ||
414 (FromSigned && !ToSigned)) {
415 // Not all values of FromType can be represented in ToType.
416 llvm::APSInt InitializerValue;
417 const Expr *Initializer = IgnoreNarrowingConversion(Converted);
418
419 // If it's value-dependent, we can't tell whether it's narrowing.
420 if (Initializer->isValueDependent())
421 return NK_Dependent_Narrowing;
422
423 if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
424 // Such conversions on variables are always narrowing.
425 return NK_Variable_Narrowing;
426 }
427 bool Narrowing = false;
428 if (FromWidth < ToWidth) {
429 // Negative -> unsigned is narrowing. Otherwise, more bits is never
430 // narrowing.
431 if (InitializerValue.isSigned() && InitializerValue.isNegative())
432 Narrowing = true;
433 } else {
434 // Add a bit to the InitializerValue so we don't have to worry about
435 // signed vs. unsigned comparisons.
436 InitializerValue = InitializerValue.extend(
437 InitializerValue.getBitWidth() + 1);
438 // Convert the initializer to and from the target width and signed-ness.
439 llvm::APSInt ConvertedValue = InitializerValue;
440 ConvertedValue = ConvertedValue.trunc(ToWidth);
441 ConvertedValue.setIsSigned(ToSigned);
442 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
443 ConvertedValue.setIsSigned(InitializerValue.isSigned());
444 // If the result is different, this was a narrowing conversion.
445 if (ConvertedValue != InitializerValue)
446 Narrowing = true;
447 }
448 if (Narrowing) {
449 ConstantType = Initializer->getType();
450 ConstantValue = APValue(InitializerValue);
451 return NK_Constant_Narrowing;
452 }
453 }
454 return NK_Not_Narrowing;
455 }
456
457 default:
458 // Other kinds of conversions are not narrowings.
459 return NK_Not_Narrowing;
460 }
461}
462
463/// dump - Print this standard conversion sequence to standard
464/// error. Useful for debugging overloading issues.
465LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
466 raw_ostream &OS = llvm::errs();
467 bool PrintedSomething = false;
468 if (First != ICK_Identity) {
469 OS << GetImplicitConversionName(First);
470 PrintedSomething = true;
471 }
472
473 if (Second != ICK_Identity) {
474 if (PrintedSomething) {
475 OS << " -> ";
476 }
477 OS << GetImplicitConversionName(Second);
478
479 if (CopyConstructor) {
480 OS << " (by copy constructor)";
481 } else if (DirectBinding) {
482 OS << " (direct reference binding)";
483 } else if (ReferenceBinding) {
484 OS << " (reference binding)";
485 }
486 PrintedSomething = true;
487 }
488
489 if (Third != ICK_Identity) {
490 if (PrintedSomething) {
491 OS << " -> ";
492 }
493 OS << GetImplicitConversionName(Third);
494 PrintedSomething = true;
495 }
496
497 if (!PrintedSomething) {
498 OS << "No conversions required";
499 }
500}
501
502/// dump - Print this user-defined conversion sequence to standard
503/// error. Useful for debugging overloading issues.
504void UserDefinedConversionSequence::dump() const {
505 raw_ostream &OS = llvm::errs();
506 if (Before.First || Before.Second || Before.Third) {
507 Before.dump();
508 OS << " -> ";
509 }
510 if (ConversionFunction)
511 OS << '\'' << *ConversionFunction << '\'';
512 else
513 OS << "aggregate initialization";
514 if (After.First || After.Second || After.Third) {
515 OS << " -> ";
516 After.dump();
517 }
518}
519
520/// dump - Print this implicit conversion sequence to standard
521/// error. Useful for debugging overloading issues.
522void ImplicitConversionSequence::dump() const {
523 raw_ostream &OS = llvm::errs();
524 if (isStdInitializerListElement())
525 OS << "Worst std::initializer_list element conversion: ";
526 switch (ConversionKind) {
527 case StandardConversion:
528 OS << "Standard conversion: ";
529 Standard.dump();
530 break;
531 case UserDefinedConversion:
532 OS << "User-defined conversion: ";
533 UserDefined.dump();
534 break;
535 case EllipsisConversion:
536 OS << "Ellipsis conversion";
537 break;
538 case AmbiguousConversion:
539 OS << "Ambiguous conversion";
540 break;
541 case BadConversion:
542 OS << "Bad conversion";
543 break;
544 }
545
546 OS << "\n";
547}
548
549void AmbiguousConversionSequence::construct() {
550 new (&conversions()) ConversionSet();
551}
552
553void AmbiguousConversionSequence::destruct() {
554 conversions().~ConversionSet();
555}
556
557void
558AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
559 FromTypePtr = O.FromTypePtr;
560 ToTypePtr = O.ToTypePtr;
561 new (&conversions()) ConversionSet(O.conversions());
562}
563
564namespace {
565 // Structure used by DeductionFailureInfo to store
566 // template argument information.
567 struct DFIArguments {
568 TemplateArgument FirstArg;
569 TemplateArgument SecondArg;
570 };
571 // Structure used by DeductionFailureInfo to store
572 // template parameter and template argument information.
573 struct DFIParamWithArguments : DFIArguments {
574 TemplateParameter Param;
575 };
576 // Structure used by DeductionFailureInfo to store template argument
577 // information and the index of the problematic call argument.
578 struct DFIDeducedMismatchArgs : DFIArguments {
579 TemplateArgumentList *TemplateArgs;
580 unsigned CallArgIndex;
581 };
582}
583
584/// \brief Convert from Sema's representation of template deduction information
585/// to the form used in overload-candidate information.
586DeductionFailureInfo
587clang::MakeDeductionFailureInfo(ASTContext &Context,
588 Sema::TemplateDeductionResult TDK,
589 TemplateDeductionInfo &Info) {
590 DeductionFailureInfo Result;
591 Result.Result = static_cast<unsigned>(TDK);
592 Result.HasDiagnostic = false;
593 switch (TDK) {
594 case Sema::TDK_Invalid:
595 case Sema::TDK_InstantiationDepth:
596 case Sema::TDK_TooManyArguments:
597 case Sema::TDK_TooFewArguments:
598 case Sema::TDK_MiscellaneousDeductionFailure:
599 case Sema::TDK_CUDATargetMismatch:
600 Result.Data = nullptr;
601 break;
602
603 case Sema::TDK_Incomplete:
604 case Sema::TDK_InvalidExplicitArguments:
605 Result.Data = Info.Param.getOpaqueValue();
606 break;
607
608 case Sema::TDK_DeducedMismatch:
609 case Sema::TDK_DeducedMismatchNested: {
610 // FIXME: Should allocate from normal heap so that we can free this later.
611 auto *Saved = new (Context) DFIDeducedMismatchArgs;
612 Saved->FirstArg = Info.FirstArg;
613 Saved->SecondArg = Info.SecondArg;
614 Saved->TemplateArgs = Info.take();
615 Saved->CallArgIndex = Info.CallArgIndex;
616 Result.Data = Saved;
617 break;
618 }
619
620 case Sema::TDK_NonDeducedMismatch: {
621 // FIXME: Should allocate from normal heap so that we can free this later.
622 DFIArguments *Saved = new (Context) DFIArguments;
623 Saved->FirstArg = Info.FirstArg;
624 Saved->SecondArg = Info.SecondArg;
625 Result.Data = Saved;
626 break;
627 }
628
629 case Sema::TDK_Inconsistent:
630 case Sema::TDK_Underqualified: {
631 // FIXME: Should allocate from normal heap so that we can free this later.
632 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
633 Saved->Param = Info.Param;
634 Saved->FirstArg = Info.FirstArg;
635 Saved->SecondArg = Info.SecondArg;
636 Result.Data = Saved;
637 break;
638 }
639
640 case Sema::TDK_SubstitutionFailure:
641 Result.Data = Info.take();
642 if (Info.hasSFINAEDiagnostic()) {
643 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
644 SourceLocation(), PartialDiagnostic::NullDiagnostic());
645 Info.takeSFINAEDiagnostic(*Diag);
646 Result.HasDiagnostic = true;
647 }
648 break;
649
650 case Sema::TDK_Success:
651 case Sema::TDK_NonDependentConversionFailure:
652 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 652)
;
653 }
654
655 return Result;
656}
657
658void DeductionFailureInfo::Destroy() {
659 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
660 case Sema::TDK_Success:
661 case Sema::TDK_Invalid:
662 case Sema::TDK_InstantiationDepth:
663 case Sema::TDK_Incomplete:
664 case Sema::TDK_TooManyArguments:
665 case Sema::TDK_TooFewArguments:
666 case Sema::TDK_InvalidExplicitArguments:
667 case Sema::TDK_CUDATargetMismatch:
668 case Sema::TDK_NonDependentConversionFailure:
669 break;
670
671 case Sema::TDK_Inconsistent:
672 case Sema::TDK_Underqualified:
673 case Sema::TDK_DeducedMismatch:
674 case Sema::TDK_DeducedMismatchNested:
675 case Sema::TDK_NonDeducedMismatch:
676 // FIXME: Destroy the data?
677 Data = nullptr;
678 break;
679
680 case Sema::TDK_SubstitutionFailure:
681 // FIXME: Destroy the template argument list?
682 Data = nullptr;
683 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
684 Diag->~PartialDiagnosticAt();
685 HasDiagnostic = false;
686 }
687 break;
688
689 // Unhandled
690 case Sema::TDK_MiscellaneousDeductionFailure:
691 break;
692 }
693}
694
695PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
696 if (HasDiagnostic)
697 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
698 return nullptr;
699}
700
701TemplateParameter DeductionFailureInfo::getTemplateParameter() {
702 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
703 case Sema::TDK_Success:
704 case Sema::TDK_Invalid:
705 case Sema::TDK_InstantiationDepth:
706 case Sema::TDK_TooManyArguments:
707 case Sema::TDK_TooFewArguments:
708 case Sema::TDK_SubstitutionFailure:
709 case Sema::TDK_DeducedMismatch:
710 case Sema::TDK_DeducedMismatchNested:
711 case Sema::TDK_NonDeducedMismatch:
712 case Sema::TDK_CUDATargetMismatch:
713 case Sema::TDK_NonDependentConversionFailure:
714 return TemplateParameter();
715
716 case Sema::TDK_Incomplete:
717 case Sema::TDK_InvalidExplicitArguments:
718 return TemplateParameter::getFromOpaqueValue(Data);
719
720 case Sema::TDK_Inconsistent:
721 case Sema::TDK_Underqualified:
722 return static_cast<DFIParamWithArguments*>(Data)->Param;
723
724 // Unhandled
725 case Sema::TDK_MiscellaneousDeductionFailure:
726 break;
727 }
728
729 return TemplateParameter();
730}
731
732TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
733 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
734 case Sema::TDK_Success:
735 case Sema::TDK_Invalid:
736 case Sema::TDK_InstantiationDepth:
737 case Sema::TDK_TooManyArguments:
738 case Sema::TDK_TooFewArguments:
739 case Sema::TDK_Incomplete:
740 case Sema::TDK_InvalidExplicitArguments:
741 case Sema::TDK_Inconsistent:
742 case Sema::TDK_Underqualified:
743 case Sema::TDK_NonDeducedMismatch:
744 case Sema::TDK_CUDATargetMismatch:
745 case Sema::TDK_NonDependentConversionFailure:
746 return nullptr;
747
748 case Sema::TDK_DeducedMismatch:
749 case Sema::TDK_DeducedMismatchNested:
750 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
751
752 case Sema::TDK_SubstitutionFailure:
753 return static_cast<TemplateArgumentList*>(Data);
754
755 // Unhandled
756 case Sema::TDK_MiscellaneousDeductionFailure:
757 break;
758 }
759
760 return nullptr;
761}
762
763const TemplateArgument *DeductionFailureInfo::getFirstArg() {
764 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
765 case Sema::TDK_Success:
766 case Sema::TDK_Invalid:
767 case Sema::TDK_InstantiationDepth:
768 case Sema::TDK_Incomplete:
769 case Sema::TDK_TooManyArguments:
770 case Sema::TDK_TooFewArguments:
771 case Sema::TDK_InvalidExplicitArguments:
772 case Sema::TDK_SubstitutionFailure:
773 case Sema::TDK_CUDATargetMismatch:
774 case Sema::TDK_NonDependentConversionFailure:
775 return nullptr;
776
777 case Sema::TDK_Inconsistent:
778 case Sema::TDK_Underqualified:
779 case Sema::TDK_DeducedMismatch:
780 case Sema::TDK_DeducedMismatchNested:
781 case Sema::TDK_NonDeducedMismatch:
782 return &static_cast<DFIArguments*>(Data)->FirstArg;
783
784 // Unhandled
785 case Sema::TDK_MiscellaneousDeductionFailure:
786 break;
787 }
788
789 return nullptr;
790}
791
792const TemplateArgument *DeductionFailureInfo::getSecondArg() {
793 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
794 case Sema::TDK_Success:
795 case Sema::TDK_Invalid:
796 case Sema::TDK_InstantiationDepth:
797 case Sema::TDK_Incomplete:
798 case Sema::TDK_TooManyArguments:
799 case Sema::TDK_TooFewArguments:
800 case Sema::TDK_InvalidExplicitArguments:
801 case Sema::TDK_SubstitutionFailure:
802 case Sema::TDK_CUDATargetMismatch:
803 case Sema::TDK_NonDependentConversionFailure:
804 return nullptr;
805
806 case Sema::TDK_Inconsistent:
807 case Sema::TDK_Underqualified:
808 case Sema::TDK_DeducedMismatch:
809 case Sema::TDK_DeducedMismatchNested:
810 case Sema::TDK_NonDeducedMismatch:
811 return &static_cast<DFIArguments*>(Data)->SecondArg;
812
813 // Unhandled
814 case Sema::TDK_MiscellaneousDeductionFailure:
815 break;
816 }
817
818 return nullptr;
819}
820
821llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
822 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
823 case Sema::TDK_DeducedMismatch:
824 case Sema::TDK_DeducedMismatchNested:
825 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
826
827 default:
828 return llvm::None;
829 }
830}
831
832void OverloadCandidateSet::destroyCandidates() {
833 for (iterator i = begin(), e = end(); i != e; ++i) {
834 for (auto &C : i->Conversions)
835 C.~ImplicitConversionSequence();
836 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
837 i->DeductionFailure.Destroy();
838 }
839}
840
841void OverloadCandidateSet::clear(CandidateSetKind CSK) {
842 destroyCandidates();
843 SlabAllocator.Reset();
844 NumInlineBytesUsed = 0;
845 Candidates.clear();
846 Functions.clear();
847 Kind = CSK;
848}
849
850namespace {
851 class UnbridgedCastsSet {
852 struct Entry {
853 Expr **Addr;
854 Expr *Saved;
855 };
856 SmallVector<Entry, 2> Entries;
857
858 public:
859 void save(Sema &S, Expr *&E) {
860 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))(static_cast <bool> (E->hasPlaceholderType(BuiltinType
::ARCUnbridgedCast)) ? void (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 860, __extension__ __PRETTY_FUNCTION__))
;
861 Entry entry = { &E, E };
862 Entries.push_back(entry);
863 E = S.stripARCUnbridgedCast(E);
864 }
865
866 void restore() {
867 for (SmallVectorImpl<Entry>::iterator
868 i = Entries.begin(), e = Entries.end(); i != e; ++i)
869 *i->Addr = i->Saved;
870 }
871 };
872}
873
874/// checkPlaceholderForOverload - Do any interesting placeholder-like
875/// preprocessing on the given expression.
876///
877/// \param unbridgedCasts a collection to which to add unbridged casts;
878/// without this, they will be immediately diagnosed as errors
879///
880/// Return true on unrecoverable error.
881static bool
882checkPlaceholderForOverload(Sema &S, Expr *&E,
883 UnbridgedCastsSet *unbridgedCasts = nullptr) {
884 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
885 // We can't handle overloaded expressions here because overload
886 // resolution might reasonably tweak them.
887 if (placeholder->getKind() == BuiltinType::Overload) return false;
888
889 // If the context potentially accepts unbridged ARC casts, strip
890 // the unbridged cast and add it to the collection for later restoration.
891 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
892 unbridgedCasts) {
893 unbridgedCasts->save(S, E);
894 return false;
895 }
896
897 // Go ahead and check everything else.
898 ExprResult result = S.CheckPlaceholderExpr(E);
899 if (result.isInvalid())
900 return true;
901
902 E = result.get();
903 return false;
904 }
905
906 // Nothing to do.
907 return false;
908}
909
910/// checkArgPlaceholdersForOverload - Check a set of call operands for
911/// placeholders.
912static bool checkArgPlaceholdersForOverload(Sema &S,
913 MultiExprArg Args,
914 UnbridgedCastsSet &unbridged) {
915 for (unsigned i = 0, e = Args.size(); i != e; ++i)
916 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
917 return true;
918
919 return false;
920}
921
922/// Determine whether the given New declaration is an overload of the
923/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
924/// New and Old cannot be overloaded, e.g., if New has the same signature as
925/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
926/// functions (or function templates) at all. When it does return Ovl_Match or
927/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
928/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
929/// declaration.
930///
931/// Example: Given the following input:
932///
933/// void f(int, float); // #1
934/// void f(int, int); // #2
935/// int f(int, int); // #3
936///
937/// When we process #1, there is no previous declaration of "f", so IsOverload
938/// will not be used.
939///
940/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
941/// the parameter types, we see that #1 and #2 are overloaded (since they have
942/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
943/// unchanged.
944///
945/// When we process #3, Old is an overload set containing #1 and #2. We compare
946/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
947/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
948/// functions are not part of the signature), IsOverload returns Ovl_Match and
949/// MatchedDecl will be set to point to the FunctionDecl for #2.
950///
951/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
952/// by a using declaration. The rules for whether to hide shadow declarations
953/// ignore some properties which otherwise figure into a function template's
954/// signature.
955Sema::OverloadKind
956Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
957 NamedDecl *&Match, bool NewIsUsingDecl) {
958 for (LookupResult::iterator I = Old.begin(), E = Old.end();
959 I != E; ++I) {
960 NamedDecl *OldD = *I;
961
962 bool OldIsUsingDecl = false;
963 if (isa<UsingShadowDecl>(OldD)) {
964 OldIsUsingDecl = true;
965
966 // We can always introduce two using declarations into the same
967 // context, even if they have identical signatures.
968 if (NewIsUsingDecl) continue;
969
970 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
971 }
972
973 // A using-declaration does not conflict with another declaration
974 // if one of them is hidden.
975 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
976 continue;
977
978 // If either declaration was introduced by a using declaration,
979 // we'll need to use slightly different rules for matching.
980 // Essentially, these rules are the normal rules, except that
981 // function templates hide function templates with different
982 // return types or template parameter lists.
983 bool UseMemberUsingDeclRules =
984 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
985 !New->getFriendObjectKind();
986
987 if (FunctionDecl *OldF = OldD->getAsFunction()) {
988 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
989 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
990 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
991 continue;
992 }
993
994 if (!isa<FunctionTemplateDecl>(OldD) &&
995 !shouldLinkPossiblyHiddenDecl(*I, New))
996 continue;
997
998 Match = *I;
999 return Ovl_Match;
1000 }
1001 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1002 // We can overload with these, which can show up when doing
1003 // redeclaration checks for UsingDecls.
1004 assert(Old.getLookupKind() == LookupUsingDeclName)(static_cast <bool> (Old.getLookupKind() == LookupUsingDeclName
) ? void (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1004, __extension__ __PRETTY_FUNCTION__))
;
1005 } else if (isa<TagDecl>(OldD)) {
1006 // We can always overload with tags by hiding them.
1007 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1008 // Optimistically assume that an unresolved using decl will
1009 // overload; if it doesn't, we'll have to diagnose during
1010 // template instantiation.
1011 //
1012 // Exception: if the scope is dependent and this is not a class
1013 // member, the using declaration can only introduce an enumerator.
1014 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1015 Match = *I;
1016 return Ovl_NonFunction;
1017 }
1018 } else {
1019 // (C++ 13p1):
1020 // Only function declarations can be overloaded; object and type
1021 // declarations cannot be overloaded.
1022 Match = *I;
1023 return Ovl_NonFunction;
1024 }
1025 }
1026
1027 return Ovl_Overload;
1028}
1029
1030bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1031 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
1032 // C++ [basic.start.main]p2: This function shall not be overloaded.
1033 if (New->isMain())
1034 return false;
1035
1036 // MSVCRT user defined entry points cannot be overloaded.
1037 if (New->isMSVCRTEntryPoint())
1038 return false;
1039
1040 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1041 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1042
1043 // C++ [temp.fct]p2:
1044 // A function template can be overloaded with other function templates
1045 // and with normal (non-template) functions.
1046 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1047 return true;
1048
1049 // Is the function New an overload of the function Old?
1050 QualType OldQType = Context.getCanonicalType(Old->getType());
1051 QualType NewQType = Context.getCanonicalType(New->getType());
1052
1053 // Compare the signatures (C++ 1.3.10) of the two functions to
1054 // determine whether they are overloads. If we find any mismatch
1055 // in the signature, they are overloads.
1056
1057 // If either of these functions is a K&R-style function (no
1058 // prototype), then we consider them to have matching signatures.
1059 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1060 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1061 return false;
1062
1063 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1064 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1065
1066 // The signature of a function includes the types of its
1067 // parameters (C++ 1.3.10), which includes the presence or absence
1068 // of the ellipsis; see C++ DR 357).
1069 if (OldQType != NewQType &&
1070 (OldType->getNumParams() != NewType->getNumParams() ||
1071 OldType->isVariadic() != NewType->isVariadic() ||
1072 !FunctionParamTypesAreEqual(OldType, NewType)))
1073 return true;
1074
1075 // C++ [temp.over.link]p4:
1076 // The signature of a function template consists of its function
1077 // signature, its return type and its template parameter list. The names
1078 // of the template parameters are significant only for establishing the
1079 // relationship between the template parameters and the rest of the
1080 // signature.
1081 //
1082 // We check the return type and template parameter lists for function
1083 // templates first; the remaining checks follow.
1084 //
1085 // However, we don't consider either of these when deciding whether
1086 // a member introduced by a shadow declaration is hidden.
1087 if (!UseMemberUsingDeclRules && NewTemplate &&
1088 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1089 OldTemplate->getTemplateParameters(),
1090 false, TPL_TemplateMatch) ||
1091 OldType->getReturnType() != NewType->getReturnType()))
1092 return true;
1093
1094 // If the function is a class member, its signature includes the
1095 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1096 //
1097 // As part of this, also check whether one of the member functions
1098 // is static, in which case they are not overloads (C++
1099 // 13.1p2). While not part of the definition of the signature,
1100 // this check is important to determine whether these functions
1101 // can be overloaded.
1102 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1103 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1104 if (OldMethod && NewMethod &&
1105 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1106 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1107 if (!UseMemberUsingDeclRules &&
1108 (OldMethod->getRefQualifier() == RQ_None ||
1109 NewMethod->getRefQualifier() == RQ_None)) {
1110 // C++0x [over.load]p2:
1111 // - Member function declarations with the same name and the same
1112 // parameter-type-list as well as member function template
1113 // declarations with the same name, the same parameter-type-list, and
1114 // the same template parameter lists cannot be overloaded if any of
1115 // them, but not all, have a ref-qualifier (8.3.5).
1116 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1117 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1118 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1119 }
1120 return true;
1121 }
1122
1123 // We may not have applied the implicit const for a constexpr member
1124 // function yet (because we haven't yet resolved whether this is a static
1125 // or non-static member function). Add it now, on the assumption that this
1126 // is a redeclaration of OldMethod.
1127 unsigned OldQuals = OldMethod->getTypeQualifiers();
1128 unsigned NewQuals = NewMethod->getTypeQualifiers();
1129 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1130 !isa<CXXConstructorDecl>(NewMethod))
1131 NewQuals |= Qualifiers::Const;
1132
1133 // We do not allow overloading based off of '__restrict'.
1134 OldQuals &= ~Qualifiers::Restrict;
1135 NewQuals &= ~Qualifiers::Restrict;
1136 if (OldQuals != NewQuals)
1137 return true;
1138 }
1139
1140 // Though pass_object_size is placed on parameters and takes an argument, we
1141 // consider it to be a function-level modifier for the sake of function
1142 // identity. Either the function has one or more parameters with
1143 // pass_object_size or it doesn't.
1144 if (functionHasPassObjectSizeParams(New) !=
1145 functionHasPassObjectSizeParams(Old))
1146 return true;
1147
1148 // enable_if attributes are an order-sensitive part of the signature.
1149 for (specific_attr_iterator<EnableIfAttr>
1150 NewI = New->specific_attr_begin<EnableIfAttr>(),
1151 NewE = New->specific_attr_end<EnableIfAttr>(),
1152 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1153 OldE = Old->specific_attr_end<EnableIfAttr>();
1154 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1155 if (NewI == NewE || OldI == OldE)
1156 return true;
1157 llvm::FoldingSetNodeID NewID, OldID;
1158 NewI->getCond()->Profile(NewID, Context, true);
1159 OldI->getCond()->Profile(OldID, Context, true);
1160 if (NewID != OldID)
1161 return true;
1162 }
1163
1164 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1165 // Don't allow overloading of destructors. (In theory we could, but it
1166 // would be a giant change to clang.)
1167 if (isa<CXXDestructorDecl>(New))
1168 return false;
1169
1170 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1171 OldTarget = IdentifyCUDATarget(Old);
1172 if (NewTarget == CFT_InvalidTarget)
1173 return false;
1174
1175 assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.")(static_cast <bool> ((OldTarget != CFT_InvalidTarget) &&
"Unexpected invalid target.") ? void (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1175, __extension__ __PRETTY_FUNCTION__))
;
1176
1177 // Allow overloading of functions with same signature and different CUDA
1178 // target attributes.
1179 return NewTarget != OldTarget;
1180 }
1181
1182 // The signatures match; this is not an overload.
1183 return false;
1184}
1185
1186/// \brief Checks availability of the function depending on the current
1187/// function context. Inside an unavailable function, unavailability is ignored.
1188///
1189/// \returns true if \arg FD is unavailable and current context is inside
1190/// an available function, false otherwise.
1191bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1192 if (!FD->isUnavailable())
1193 return false;
1194
1195 // Walk up the context of the caller.
1196 Decl *C = cast<Decl>(CurContext);
1197 do {
1198 if (C->isUnavailable())
1199 return false;
1200 } while ((C = cast_or_null<Decl>(C->getDeclContext())));
1201 return true;
1202}
1203
1204/// \brief Tries a user-defined conversion from From to ToType.
1205///
1206/// Produces an implicit conversion sequence for when a standard conversion
1207/// is not an option. See TryImplicitConversion for more information.
1208static ImplicitConversionSequence
1209TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1210 bool SuppressUserConversions,
1211 bool AllowExplicit,
1212 bool InOverloadResolution,
1213 bool CStyle,
1214 bool AllowObjCWritebackConversion,
1215 bool AllowObjCConversionOnExplicit) {
1216 ImplicitConversionSequence ICS;
1217
1218 if (SuppressUserConversions) {
1219 // We're not in the case above, so there is no conversion that
1220 // we can perform.
1221 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1222 return ICS;
1223 }
1224
1225 // Attempt user-defined conversion.
1226 OverloadCandidateSet Conversions(From->getExprLoc(),
1227 OverloadCandidateSet::CSK_Normal);
1228 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1229 Conversions, AllowExplicit,
1230 AllowObjCConversionOnExplicit)) {
1231 case OR_Success:
1232 case OR_Deleted:
1233 ICS.setUserDefined();
1234 // C++ [over.ics.user]p4:
1235 // A conversion of an expression of class type to the same class
1236 // type is given Exact Match rank, and a conversion of an
1237 // expression of class type to a base class of that type is
1238 // given Conversion rank, in spite of the fact that a copy
1239 // constructor (i.e., a user-defined conversion function) is
1240 // called for those cases.
1241 if (CXXConstructorDecl *Constructor
1242 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1243 QualType FromCanon
1244 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1245 QualType ToCanon
1246 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1247 if (Constructor->isCopyConstructor() &&
1248 (FromCanon == ToCanon ||
1249 S.IsDerivedFrom(From->getLocStart(), FromCanon, ToCanon))) {
1250 // Turn this into a "standard" conversion sequence, so that it
1251 // gets ranked with standard conversion sequences.
1252 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1253 ICS.setStandard();
1254 ICS.Standard.setAsIdentityConversion();
1255 ICS.Standard.setFromType(From->getType());
1256 ICS.Standard.setAllToTypes(ToType);
1257 ICS.Standard.CopyConstructor = Constructor;
1258 ICS.Standard.FoundCopyConstructor = Found;
1259 if (ToCanon != FromCanon)
1260 ICS.Standard.Second = ICK_Derived_To_Base;
1261 }
1262 }
1263 break;
1264
1265 case OR_Ambiguous:
1266 ICS.setAmbiguous();
1267 ICS.Ambiguous.setFromType(From->getType());
1268 ICS.Ambiguous.setToType(ToType);
1269 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1270 Cand != Conversions.end(); ++Cand)
1271 if (Cand->Viable)
1272 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1273 break;
1274
1275 // Fall through.
1276 case OR_No_Viable_Function:
1277 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1278 break;
1279 }
1280
1281 return ICS;
1282}
1283
1284/// TryImplicitConversion - Attempt to perform an implicit conversion
1285/// from the given expression (Expr) to the given type (ToType). This
1286/// function returns an implicit conversion sequence that can be used
1287/// to perform the initialization. Given
1288///
1289/// void f(float f);
1290/// void g(int i) { f(i); }
1291///
1292/// this routine would produce an implicit conversion sequence to
1293/// describe the initialization of f from i, which will be a standard
1294/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1295/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1296//
1297/// Note that this routine only determines how the conversion can be
1298/// performed; it does not actually perform the conversion. As such,
1299/// it will not produce any diagnostics if no conversion is available,
1300/// but will instead return an implicit conversion sequence of kind
1301/// "BadConversion".
1302///
1303/// If @p SuppressUserConversions, then user-defined conversions are
1304/// not permitted.
1305/// If @p AllowExplicit, then explicit user-defined conversions are
1306/// permitted.
1307///
1308/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1309/// writeback conversion, which allows __autoreleasing id* parameters to
1310/// be initialized with __strong id* or __weak id* arguments.
1311static ImplicitConversionSequence
1312TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1313 bool SuppressUserConversions,
1314 bool AllowExplicit,
1315 bool InOverloadResolution,
1316 bool CStyle,
1317 bool AllowObjCWritebackConversion,
1318 bool AllowObjCConversionOnExplicit) {
1319 ImplicitConversionSequence ICS;
1320 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1321 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1322 ICS.setStandard();
1323 return ICS;
1324 }
1325
1326 if (!S.getLangOpts().CPlusPlus) {
1327 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1328 return ICS;
1329 }
1330
1331 // C++ [over.ics.user]p4:
1332 // A conversion of an expression of class type to the same class
1333 // type is given Exact Match rank, and a conversion of an
1334 // expression of class type to a base class of that type is
1335 // given Conversion rank, in spite of the fact that a copy/move
1336 // constructor (i.e., a user-defined conversion function) is
1337 // called for those cases.
1338 QualType FromType = From->getType();
1339 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1340 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1341 S.IsDerivedFrom(From->getLocStart(), FromType, ToType))) {
1342 ICS.setStandard();
1343 ICS.Standard.setAsIdentityConversion();
1344 ICS.Standard.setFromType(FromType);
1345 ICS.Standard.setAllToTypes(ToType);
1346
1347 // We don't actually check at this point whether there is a valid
1348 // copy/move constructor, since overloading just assumes that it
1349 // exists. When we actually perform initialization, we'll find the
1350 // appropriate constructor to copy the returned object, if needed.
1351 ICS.Standard.CopyConstructor = nullptr;
1352
1353 // Determine whether this is considered a derived-to-base conversion.
1354 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1355 ICS.Standard.Second = ICK_Derived_To_Base;
1356
1357 return ICS;
1358 }
1359
1360 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1361 AllowExplicit, InOverloadResolution, CStyle,
1362 AllowObjCWritebackConversion,
1363 AllowObjCConversionOnExplicit);
1364}
1365
1366ImplicitConversionSequence
1367Sema::TryImplicitConversion(Expr *From, QualType ToType,
1368 bool SuppressUserConversions,
1369 bool AllowExplicit,
1370 bool InOverloadResolution,
1371 bool CStyle,
1372 bool AllowObjCWritebackConversion) {
1373 return ::TryImplicitConversion(*this, From, ToType,
1374 SuppressUserConversions, AllowExplicit,
1375 InOverloadResolution, CStyle,
1376 AllowObjCWritebackConversion,
1377 /*AllowObjCConversionOnExplicit=*/false);
1378}
1379
1380/// PerformImplicitConversion - Perform an implicit conversion of the
1381/// expression From to the type ToType. Returns the
1382/// converted expression. Flavor is the kind of conversion we're
1383/// performing, used in the error message. If @p AllowExplicit,
1384/// explicit user-defined conversions are permitted.
1385ExprResult
1386Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1387 AssignmentAction Action, bool AllowExplicit) {
1388 ImplicitConversionSequence ICS;
1389 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1390}
1391
1392ExprResult
1393Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1394 AssignmentAction Action, bool AllowExplicit,
1395 ImplicitConversionSequence& ICS) {
1396 if (checkPlaceholderForOverload(*this, From))
1397 return ExprError();
1398
1399 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1400 bool AllowObjCWritebackConversion
1401 = getLangOpts().ObjCAutoRefCount &&
1402 (Action == AA_Passing || Action == AA_Sending);
1403 if (getLangOpts().ObjC1)
1404 CheckObjCBridgeRelatedConversions(From->getLocStart(),
1405 ToType, From->getType(), From);
1406 ICS = ::TryImplicitConversion(*this, From, ToType,
1407 /*SuppressUserConversions=*/false,
1408 AllowExplicit,
1409 /*InOverloadResolution=*/false,
1410 /*CStyle=*/false,
1411 AllowObjCWritebackConversion,
1412 /*AllowObjCConversionOnExplicit=*/false);
1413 return PerformImplicitConversion(From, ToType, ICS, Action);
1414}
1415
1416/// \brief Determine whether the conversion from FromType to ToType is a valid
1417/// conversion that strips "noexcept" or "noreturn" off the nested function
1418/// type.
1419bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1420 QualType &ResultTy) {
1421 if (Context.hasSameUnqualifiedType(FromType, ToType))
1422 return false;
1423
1424 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1425 // or F(t noexcept) -> F(t)
1426 // where F adds one of the following at most once:
1427 // - a pointer
1428 // - a member pointer
1429 // - a block pointer
1430 // Changes here need matching changes in FindCompositePointerType.
1431 CanQualType CanTo = Context.getCanonicalType(ToType);
1432 CanQualType CanFrom = Context.getCanonicalType(FromType);
1433 Type::TypeClass TyClass = CanTo->getTypeClass();
1434 if (TyClass != CanFrom->getTypeClass()) return false;
1435 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1436 if (TyClass == Type::Pointer) {
1437 CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1438 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1439 } else if (TyClass == Type::BlockPointer) {
1440 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1441 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1442 } else if (TyClass == Type::MemberPointer) {
1443 auto ToMPT = CanTo.getAs<MemberPointerType>();
1444 auto FromMPT = CanFrom.getAs<MemberPointerType>();
1445 // A function pointer conversion cannot change the class of the function.
1446 if (ToMPT->getClass() != FromMPT->getClass())
1447 return false;
1448 CanTo = ToMPT->getPointeeType();
1449 CanFrom = FromMPT->getPointeeType();
1450 } else {
1451 return false;
1452 }
1453
1454 TyClass = CanTo->getTypeClass();
1455 if (TyClass != CanFrom->getTypeClass()) return false;
1456 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1457 return false;
1458 }
1459
1460 const auto *FromFn = cast<FunctionType>(CanFrom);
1461 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1462
1463 const auto *ToFn = cast<FunctionType>(CanTo);
1464 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1465
1466 bool Changed = false;
1467
1468 // Drop 'noreturn' if not present in target type.
1469 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1470 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1471 Changed = true;
1472 }
1473
1474 // Drop 'noexcept' if not present in target type.
1475 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1476 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1477 if (FromFPT->isNothrow(Context) && !ToFPT->isNothrow(Context)) {
1478 FromFn = cast<FunctionType>(
1479 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1480 EST_None)
1481 .getTypePtr());
1482 Changed = true;
1483 }
1484
1485 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1486 // only if the ExtParameterInfo lists of the two function prototypes can be
1487 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1488 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1489 bool CanUseToFPT, CanUseFromFPT;
1490 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1491 CanUseFromFPT, NewParamInfos) &&
1492 CanUseToFPT && !CanUseFromFPT) {
1493 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1494 ExtInfo.ExtParameterInfos =
1495 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1496 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1497 FromFPT->getParamTypes(), ExtInfo);
1498 FromFn = QT->getAs<FunctionType>();
1499 Changed = true;
1500 }
1501 }
1502
1503 if (!Changed)
1504 return false;
1505
1506 assert(QualType(FromFn, 0).isCanonical())(static_cast <bool> (QualType(FromFn, 0).isCanonical())
? void (0) : __assert_fail ("QualType(FromFn, 0).isCanonical()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1506, __extension__ __PRETTY_FUNCTION__))
;
1507 if (QualType(FromFn, 0) != CanTo) return false;
1508
1509 ResultTy = ToType;
1510 return true;
1511}
1512
1513/// \brief Determine whether the conversion from FromType to ToType is a valid
1514/// vector conversion.
1515///
1516/// \param ICK Will be set to the vector conversion kind, if this is a vector
1517/// conversion.
1518static bool IsVectorConversion(Sema &S, QualType FromType,
1519 QualType ToType, ImplicitConversionKind &ICK) {
1520 // We need at least one of these types to be a vector type to have a vector
1521 // conversion.
1522 if (!ToType->isVectorType() && !FromType->isVectorType())
1523 return false;
1524
1525 // Identical types require no conversions.
1526 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1527 return false;
1528
1529 // There are no conversions between extended vector types, only identity.
1530 if (ToType->isExtVectorType()) {
1531 // There are no conversions between extended vector types other than the
1532 // identity conversion.
1533 if (FromType->isExtVectorType())
1534 return false;
1535
1536 // Vector splat from any arithmetic type to a vector.
1537 if (FromType->isArithmeticType()) {
1538 ICK = ICK_Vector_Splat;
1539 return true;
1540 }
1541 }
1542
1543 // We can perform the conversion between vector types in the following cases:
1544 // 1)vector types are equivalent AltiVec and GCC vector types
1545 // 2)lax vector conversions are permitted and the vector types are of the
1546 // same size
1547 if (ToType->isVectorType() && FromType->isVectorType()) {
1548 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1549 S.isLaxVectorConversion(FromType, ToType)) {
1550 ICK = ICK_Vector_Conversion;
1551 return true;
1552 }
1553 }
1554
1555 return false;
1556}
1557
1558static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1559 bool InOverloadResolution,
1560 StandardConversionSequence &SCS,
1561 bool CStyle);
1562
1563/// IsStandardConversion - Determines whether there is a standard
1564/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1565/// expression From to the type ToType. Standard conversion sequences
1566/// only consider non-class types; for conversions that involve class
1567/// types, use TryImplicitConversion. If a conversion exists, SCS will
1568/// contain the standard conversion sequence required to perform this
1569/// conversion and this routine will return true. Otherwise, this
1570/// routine will return false and the value of SCS is unspecified.
1571static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1572 bool InOverloadResolution,
1573 StandardConversionSequence &SCS,
1574 bool CStyle,
1575 bool AllowObjCWritebackConversion) {
1576 QualType FromType = From->getType();
1577
1578 // Standard conversions (C++ [conv])
1579 SCS.setAsIdentityConversion();
1580 SCS.IncompatibleObjC = false;
1581 SCS.setFromType(FromType);
1582 SCS.CopyConstructor = nullptr;
1583
1584 // There are no standard conversions for class types in C++, so
1585 // abort early. When overloading in C, however, we do permit them.
1586 if (S.getLangOpts().CPlusPlus &&
1587 (FromType->isRecordType() || ToType->isRecordType()))
1588 return false;
1589
1590 // The first conversion can be an lvalue-to-rvalue conversion,
1591 // array-to-pointer conversion, or function-to-pointer conversion
1592 // (C++ 4p1).
1593
1594 if (FromType == S.Context.OverloadTy) {
1595 DeclAccessPair AccessPair;
1596 if (FunctionDecl *Fn
1597 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1598 AccessPair)) {
1599 // We were able to resolve the address of the overloaded function,
1600 // so we can convert to the type of that function.
1601 FromType = Fn->getType();
1602 SCS.setFromType(FromType);
1603
1604 // we can sometimes resolve &foo<int> regardless of ToType, so check
1605 // if the type matches (identity) or we are converting to bool
1606 if (!S.Context.hasSameUnqualifiedType(
1607 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1608 QualType resultTy;
1609 // if the function type matches except for [[noreturn]], it's ok
1610 if (!S.IsFunctionConversion(FromType,
1611 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1612 // otherwise, only a boolean conversion is standard
1613 if (!ToType->isBooleanType())
1614 return false;
1615 }
1616
1617 // Check if the "from" expression is taking the address of an overloaded
1618 // function and recompute the FromType accordingly. Take advantage of the
1619 // fact that non-static member functions *must* have such an address-of
1620 // expression.
1621 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1622 if (Method && !Method->isStatic()) {
1623 assert(isa<UnaryOperator>(From->IgnoreParens()) &&(static_cast <bool> (isa<UnaryOperator>(From->
IgnoreParens()) && "Non-unary operator on non-static member address"
) ? void (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1624, __extension__ __PRETTY_FUNCTION__))
1624 "Non-unary operator on non-static member address")(static_cast <bool> (isa<UnaryOperator>(From->
IgnoreParens()) && "Non-unary operator on non-static member address"
) ? void (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1624, __extension__ __PRETTY_FUNCTION__))
;
1625 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1627, __extension__ __PRETTY_FUNCTION__))
1626 == UO_AddrOf &&(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1627, __extension__ __PRETTY_FUNCTION__))
1627 "Non-address-of operator on non-static member address")(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1627, __extension__ __PRETTY_FUNCTION__))
;
1628 const Type *ClassType
1629 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1630 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1631 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1632 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1634, __extension__ __PRETTY_FUNCTION__))
1633 UO_AddrOf &&(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1634, __extension__ __PRETTY_FUNCTION__))
1634 "Non-address-of operator for overloaded function expression")(static_cast <bool> (cast<UnaryOperator>(From->
IgnoreParens())->getOpcode() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? void (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1634, __extension__ __PRETTY_FUNCTION__))
;
1635 FromType = S.Context.getPointerType(FromType);
1636 }
1637
1638 // Check that we've computed the proper type after overload resolution.
1639 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1640 // be calling it from within an NDEBUG block.
1641 assert(S.Context.hasSameType((static_cast <bool> (S.Context.hasSameType( FromType, S
.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType
())) ? void (0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1643, __extension__ __PRETTY_FUNCTION__))
1642 FromType,(static_cast <bool> (S.Context.hasSameType( FromType, S
.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType
())) ? void (0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1643, __extension__ __PRETTY_FUNCTION__))
1643 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))(static_cast <bool> (S.Context.hasSameType( FromType, S
.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType
())) ? void (0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 1643, __extension__ __PRETTY_FUNCTION__))
;
1644 } else {
1645 return false;
1646 }
1647 }
1648 // Lvalue-to-rvalue conversion (C++11 4.1):
1649 // A glvalue (3.10) of a non-function, non-array type T can
1650 // be converted to a prvalue.
1651 bool argIsLValue = From->isGLValue();
1652 if (argIsLValue &&
1653 !FromType->isFunctionType() && !FromType->isArrayType() &&
1654 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1655 SCS.First = ICK_Lvalue_To_Rvalue;
1656
1657 // C11 6.3.2.1p2:
1658 // ... if the lvalue has atomic type, the value has the non-atomic version
1659 // of the type of the lvalue ...
1660 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1661 FromType = Atomic->getValueType();
1662
1663 // If T is a non-class type, the type of the rvalue is the
1664 // cv-unqualified version of T. Otherwise, the type of the rvalue
1665 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1666 // just strip the qualifiers because they don't matter.
1667 FromType = FromType.getUnqualifiedType();
1668 } else if (FromType->isArrayType()) {
1669 // Array-to-pointer conversion (C++ 4.2)
1670 SCS.First = ICK_Array_To_Pointer;
1671
1672 // An lvalue or rvalue of type "array of N T" or "array of unknown
1673 // bound of T" can be converted to an rvalue of type "pointer to
1674 // T" (C++ 4.2p1).
1675 FromType = S.Context.getArrayDecayedType(FromType);
1676
1677 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1678 // This conversion is deprecated in C++03 (D.4)
1679 SCS.DeprecatedStringLiteralToCharPtr = true;
1680
1681 // For the purpose of ranking in overload resolution
1682 // (13.3.3.1.1), this conversion is considered an
1683 // array-to-pointer conversion followed by a qualification
1684 // conversion (4.4). (C++ 4.2p2)
1685 SCS.Second = ICK_Identity;
1686 SCS.Third = ICK_Qualification;
1687 SCS.QualificationIncludesObjCLifetime = false;
1688 SCS.setAllToTypes(FromType);
1689 return true;
1690 }
1691 } else if (FromType->isFunctionType() && argIsLValue) {
1692 // Function-to-pointer conversion (C++ 4.3).
1693 SCS.First = ICK_Function_To_Pointer;
1694
1695 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1696 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1697 if (!S.checkAddressOfFunctionIsAvailable(FD))
1698 return false;
1699
1700 // An lvalue of function type T can be converted to an rvalue of
1701 // type "pointer to T." The result is a pointer to the
1702 // function. (C++ 4.3p1).
1703 FromType = S.Context.getPointerType(FromType);
1704 } else {
1705 // We don't require any conversions for the first step.
1706 SCS.First = ICK_Identity;
1707 }
1708 SCS.setToType(0, FromType);
1709
1710 // The second conversion can be an integral promotion, floating
1711 // point promotion, integral conversion, floating point conversion,
1712 // floating-integral conversion, pointer conversion,
1713 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1714 // For overloading in C, this can also be a "compatible-type"
1715 // conversion.
1716 bool IncompatibleObjC = false;
1717 ImplicitConversionKind SecondICK = ICK_Identity;
1718 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1719 // The unqualified versions of the types are the same: there's no
1720 // conversion to do.
1721 SCS.Second = ICK_Identity;
1722 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1723 // Integral promotion (C++ 4.5).
1724 SCS.Second = ICK_Integral_Promotion;
1725 FromType = ToType.getUnqualifiedType();
1726 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1727 // Floating point promotion (C++ 4.6).
1728 SCS.Second = ICK_Floating_Promotion;
1729 FromType = ToType.getUnqualifiedType();
1730 } else if (S.IsComplexPromotion(FromType, ToType)) {
1731 // Complex promotion (Clang extension)
1732 SCS.Second = ICK_Complex_Promotion;
1733 FromType = ToType.getUnqualifiedType();
1734 } else if (ToType->isBooleanType() &&
1735 (FromType->isArithmeticType() ||
1736 FromType->isAnyPointerType() ||
1737 FromType->isBlockPointerType() ||
1738 FromType->isMemberPointerType() ||
1739 FromType->isNullPtrType())) {
1740 // Boolean conversions (C++ 4.12).
1741 SCS.Second = ICK_Boolean_Conversion;
1742 FromType = S.Context.BoolTy;
1743 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1744 ToType->isIntegralType(S.Context)) {
1745 // Integral conversions (C++ 4.7).
1746 SCS.Second = ICK_Integral_Conversion;
1747 FromType = ToType.getUnqualifiedType();
1748 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1749 // Complex conversions (C99 6.3.1.6)
1750 SCS.Second = ICK_Complex_Conversion;
1751 FromType = ToType.getUnqualifiedType();
1752 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1753 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1754 // Complex-real conversions (C99 6.3.1.7)
1755 SCS.Second = ICK_Complex_Real;
1756 FromType = ToType.getUnqualifiedType();
1757 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1758 // FIXME: disable conversions between long double and __float128 if
1759 // their representation is different until there is back end support
1760 // We of course allow this conversion if long double is really double.
1761 if (&S.Context.getFloatTypeSemantics(FromType) !=
1762 &S.Context.getFloatTypeSemantics(ToType)) {
1763 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1764 ToType == S.Context.LongDoubleTy) ||
1765 (FromType == S.Context.LongDoubleTy &&
1766 ToType == S.Context.Float128Ty));
1767 if (Float128AndLongDouble &&
1768 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1769 &llvm::APFloat::PPCDoubleDouble()))
1770 return false;
1771 }
1772 // Floating point conversions (C++ 4.8).
1773 SCS.Second = ICK_Floating_Conversion;
1774 FromType = ToType.getUnqualifiedType();
1775 } else if ((FromType->isRealFloatingType() &&
1776 ToType->isIntegralType(S.Context)) ||
1777 (FromType->isIntegralOrUnscopedEnumerationType() &&
1778 ToType->isRealFloatingType())) {
1779 // Floating-integral conversions (C++ 4.9).
1780 SCS.Second = ICK_Floating_Integral;
1781 FromType = ToType.getUnqualifiedType();
1782 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1783 SCS.Second = ICK_Block_Pointer_Conversion;
1784 } else if (AllowObjCWritebackConversion &&
1785 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1786 SCS.Second = ICK_Writeback_Conversion;
1787 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1788 FromType, IncompatibleObjC)) {
1789 // Pointer conversions (C++ 4.10).
1790 SCS.Second = ICK_Pointer_Conversion;
1791 SCS.IncompatibleObjC = IncompatibleObjC;
1792 FromType = FromType.getUnqualifiedType();
1793 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1794 InOverloadResolution, FromType)) {
1795 // Pointer to member conversions (4.11).
1796 SCS.Second = ICK_Pointer_Member;
1797 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1798 SCS.Second = SecondICK;
1799 FromType = ToType.getUnqualifiedType();
1800 } else if (!S.getLangOpts().CPlusPlus &&
1801 S.Context.typesAreCompatible(ToType, FromType)) {
1802 // Compatible conversions (Clang extension for C function overloading)
1803 SCS.Second = ICK_Compatible_Conversion;
1804 FromType = ToType.getUnqualifiedType();
1805 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1806 InOverloadResolution,
1807 SCS, CStyle)) {
1808 SCS.Second = ICK_TransparentUnionConversion;
1809 FromType = ToType;
1810 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1811 CStyle)) {
1812 // tryAtomicConversion has updated the standard conversion sequence
1813 // appropriately.
1814 return true;
1815 } else if (ToType->isEventT() &&
1816 From->isIntegerConstantExpr(S.getASTContext()) &&
1817 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1818 SCS.Second = ICK_Zero_Event_Conversion;
1819 FromType = ToType;
1820 } else if (ToType->isQueueT() &&
1821 From->isIntegerConstantExpr(S.getASTContext()) &&
1822 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1823 SCS.Second = ICK_Zero_Queue_Conversion;
1824 FromType = ToType;
1825 } else {
1826 // No second conversion required.
1827 SCS.Second = ICK_Identity;
1828 }
1829 SCS.setToType(1, FromType);
1830
1831 // The third conversion can be a function pointer conversion or a
1832 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1833 bool ObjCLifetimeConversion;
1834 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1835 // Function pointer conversions (removing 'noexcept') including removal of
1836 // 'noreturn' (Clang extension).
1837 SCS.Third = ICK_Function_Conversion;
1838 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1839 ObjCLifetimeConversion)) {
1840 SCS.Third = ICK_Qualification;
1841 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1842 FromType = ToType;
1843 } else {
1844 // No conversion required
1845 SCS.Third = ICK_Identity;
1846 }
1847
1848 // C++ [over.best.ics]p6:
1849 // [...] Any difference in top-level cv-qualification is
1850 // subsumed by the initialization itself and does not constitute
1851 // a conversion. [...]
1852 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1853 QualType CanonTo = S.Context.getCanonicalType(ToType);
1854 if (CanonFrom.getLocalUnqualifiedType()
1855 == CanonTo.getLocalUnqualifiedType() &&
1856 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1857 FromType = ToType;
1858 CanonFrom = CanonTo;
1859 }
1860
1861 SCS.setToType(2, FromType);
1862
1863 if (CanonFrom == CanonTo)
1864 return true;
1865
1866 // If we have not converted the argument type to the parameter type,
1867 // this is a bad conversion sequence, unless we're resolving an overload in C.
1868 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1869 return false;
1870
1871 ExprResult ER = ExprResult{From};
1872 Sema::AssignConvertType Conv =
1873 S.CheckSingleAssignmentConstraints(ToType, ER,
1874 /*Diagnose=*/false,
1875 /*DiagnoseCFAudited=*/false,
1876 /*ConvertRHS=*/false);
1877 ImplicitConversionKind SecondConv;
1878 switch (Conv) {
1879 case Sema::Compatible:
1880 SecondConv = ICK_C_Only_Conversion;
1881 break;
1882 // For our purposes, discarding qualifiers is just as bad as using an
1883 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
1884 // qualifiers, as well.
1885 case Sema::CompatiblePointerDiscardsQualifiers:
1886 case Sema::IncompatiblePointer:
1887 case Sema::IncompatiblePointerSign:
1888 SecondConv = ICK_Incompatible_Pointer_Conversion;
1889 break;
1890 default:
1891 return false;
1892 }
1893
1894 // First can only be an lvalue conversion, so we pretend that this was the
1895 // second conversion. First should already be valid from earlier in the
1896 // function.
1897 SCS.Second = SecondConv;
1898 SCS.setToType(1, ToType);
1899
1900 // Third is Identity, because Second should rank us worse than any other
1901 // conversion. This could also be ICK_Qualification, but it's simpler to just
1902 // lump everything in with the second conversion, and we don't gain anything
1903 // from making this ICK_Qualification.
1904 SCS.Third = ICK_Identity;
1905 SCS.setToType(2, ToType);
1906 return true;
1907}
1908
1909static bool
1910IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1911 QualType &ToType,
1912 bool InOverloadResolution,
1913 StandardConversionSequence &SCS,
1914 bool CStyle) {
1915
1916 const RecordType *UT = ToType->getAsUnionType();
1917 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1918 return false;
1919 // The field to initialize within the transparent union.
1920 RecordDecl *UD = UT->getDecl();
1921 // It's compatible if the expression matches any of the fields.
1922 for (const auto *it : UD->fields()) {
1923 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1924 CStyle, /*ObjCWritebackConversion=*/false)) {
1925 ToType = it->getType();
1926 return true;
1927 }
1928 }
1929 return false;
1930}
1931
1932/// IsIntegralPromotion - Determines whether the conversion from the
1933/// expression From (whose potentially-adjusted type is FromType) to
1934/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1935/// sets PromotedType to the promoted type.
1936bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1937 const BuiltinType *To = ToType->getAs<BuiltinType>();
1938 // All integers are built-in.
1939 if (!To) {
1940 return false;
1941 }
1942
1943 // An rvalue of type char, signed char, unsigned char, short int, or
1944 // unsigned short int can be converted to an rvalue of type int if
1945 // int can represent all the values of the source type; otherwise,
1946 // the source rvalue can be converted to an rvalue of type unsigned
1947 // int (C++ 4.5p1).
1948 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1949 !FromType->isEnumeralType()) {
1950 if (// We can promote any signed, promotable integer type to an int
1951 (FromType->isSignedIntegerType() ||
1952 // We can promote any unsigned integer type whose size is
1953 // less than int to an int.
1954 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
1955 return To->getKind() == BuiltinType::Int;
1956 }
1957
1958 return To->getKind() == BuiltinType::UInt;
1959 }
1960
1961 // C++11 [conv.prom]p3:
1962 // A prvalue of an unscoped enumeration type whose underlying type is not
1963 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1964 // following types that can represent all the values of the enumeration
1965 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
1966 // unsigned int, long int, unsigned long int, long long int, or unsigned
1967 // long long int. If none of the types in that list can represent all the
1968 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1969 // type can be converted to an rvalue a prvalue of the extended integer type
1970 // with lowest integer conversion rank (4.13) greater than the rank of long
1971 // long in which all the values of the enumeration can be represented. If
1972 // there are two such extended types, the signed one is chosen.
1973 // C++11 [conv.prom]p4:
1974 // A prvalue of an unscoped enumeration type whose underlying type is fixed
1975 // can be converted to a prvalue of its underlying type. Moreover, if
1976 // integral promotion can be applied to its underlying type, a prvalue of an
1977 // unscoped enumeration type whose underlying type is fixed can also be
1978 // converted to a prvalue of the promoted underlying type.
1979 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1980 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1981 // provided for a scoped enumeration.
1982 if (FromEnumType->getDecl()->isScoped())
1983 return false;
1984
1985 // We can perform an integral promotion to the underlying type of the enum,
1986 // even if that's not the promoted type. Note that the check for promoting
1987 // the underlying type is based on the type alone, and does not consider
1988 // the bitfield-ness of the actual source expression.
1989 if (FromEnumType->getDecl()->isFixed()) {
1990 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1991 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1992 IsIntegralPromotion(nullptr, Underlying, ToType);
1993 }
1994
1995 // We have already pre-calculated the promotion type, so this is trivial.
1996 if (ToType->isIntegerType() &&
1997 isCompleteType(From->getLocStart(), FromType))
1998 return Context.hasSameUnqualifiedType(
1999 ToType, FromEnumType->getDecl()->getPromotionType());
2000 }
2001
2002 // C++0x [conv.prom]p2:
2003 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2004 // to an rvalue a prvalue of the first of the following types that can
2005 // represent all the values of its underlying type: int, unsigned int,
2006 // long int, unsigned long int, long long int, or unsigned long long int.
2007 // If none of the types in that list can represent all the values of its
2008 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2009 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2010 // type.
2011 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2012 ToType->isIntegerType()) {
2013 // Determine whether the type we're converting from is signed or
2014 // unsigned.
2015 bool FromIsSigned = FromType->isSignedIntegerType();
2016 uint64_t FromSize = Context.getTypeSize(FromType);
2017
2018 // The types we'll try to promote to, in the appropriate
2019 // order. Try each of these types.
2020 QualType PromoteTypes[6] = {
2021 Context.IntTy, Context.UnsignedIntTy,
2022 Context.LongTy, Context.UnsignedLongTy ,
2023 Context.LongLongTy, Context.UnsignedLongLongTy
2024 };
2025 for (int Idx = 0; Idx < 6; ++Idx) {
2026 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2027 if (FromSize < ToSize ||
2028 (FromSize == ToSize &&
2029 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2030 // We found the type that we can promote to. If this is the
2031 // type we wanted, we have a promotion. Otherwise, no
2032 // promotion.
2033 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2034 }
2035 }
2036 }
2037
2038 // An rvalue for an integral bit-field (9.6) can be converted to an
2039 // rvalue of type int if int can represent all the values of the
2040 // bit-field; otherwise, it can be converted to unsigned int if
2041 // unsigned int can represent all the values of the bit-field. If
2042 // the bit-field is larger yet, no integral promotion applies to
2043 // it. If the bit-field has an enumerated type, it is treated as any
2044 // other value of that type for promotion purposes (C++ 4.5p3).
2045 // FIXME: We should delay checking of bit-fields until we actually perform the
2046 // conversion.
2047 if (From) {
2048 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2049 llvm::APSInt BitWidth;
2050 if (FromType->isIntegralType(Context) &&
2051 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
2052 llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
2053 ToSize = Context.getTypeSize(ToType);
2054
2055 // Are we promoting to an int from a bitfield that fits in an int?
2056 if (BitWidth < ToSize ||
2057 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
2058 return To->getKind() == BuiltinType::Int;
2059 }
2060
2061 // Are we promoting to an unsigned int from an unsigned bitfield
2062 // that fits into an unsigned int?
2063 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
2064 return To->getKind() == BuiltinType::UInt;
2065 }
2066
2067 return false;
2068 }
2069 }
2070 }
2071
2072 // An rvalue of type bool can be converted to an rvalue of type int,
2073 // with false becoming zero and true becoming one (C++ 4.5p4).
2074 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2075 return true;
2076 }
2077
2078 return false;
2079}
2080
2081/// IsFloatingPointPromotion - Determines whether the conversion from
2082/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2083/// returns true and sets PromotedType to the promoted type.
2084bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2085 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2086 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2087 /// An rvalue of type float can be converted to an rvalue of type
2088 /// double. (C++ 4.6p1).
2089 if (FromBuiltin->getKind() == BuiltinType::Float &&
2090 ToBuiltin->getKind() == BuiltinType::Double)
2091 return true;
2092
2093 // C99 6.3.1.5p1:
2094 // When a float is promoted to double or long double, or a
2095 // double is promoted to long double [...].
2096 if (!getLangOpts().CPlusPlus &&
2097 (FromBuiltin->getKind() == BuiltinType::Float ||
2098 FromBuiltin->getKind() == BuiltinType::Double) &&
2099 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2100 ToBuiltin->getKind() == BuiltinType::Float128))
2101 return true;
2102
2103 // Half can be promoted to float.
2104 if (!getLangOpts().NativeHalfType &&
2105 FromBuiltin->getKind() == BuiltinType::Half &&
2106 ToBuiltin->getKind() == BuiltinType::Float)
2107 return true;
2108 }
2109
2110 return false;
2111}
2112
2113/// \brief Determine if a conversion is a complex promotion.
2114///
2115/// A complex promotion is defined as a complex -> complex conversion
2116/// where the conversion between the underlying real types is a
2117/// floating-point or integral promotion.
2118bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2119 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2120 if (!FromComplex)
2121 return false;
2122
2123 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2124 if (!ToComplex)
2125 return false;
2126
2127 return IsFloatingPointPromotion(FromComplex->getElementType(),
2128 ToComplex->getElementType()) ||
2129 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2130 ToComplex->getElementType());
2131}
2132
2133/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2134/// the pointer type FromPtr to a pointer to type ToPointee, with the
2135/// same type qualifiers as FromPtr has on its pointee type. ToType,
2136/// if non-empty, will be a pointer to ToType that may or may not have
2137/// the right set of qualifiers on its pointee.
2138///
2139static QualType
2140BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2141 QualType ToPointee, QualType ToType,
2142 ASTContext &Context,
2143 bool StripObjCLifetime = false) {
2144 assert((FromPtr->getTypeClass() == Type::Pointer ||(static_cast <bool> ((FromPtr->getTypeClass() == Type
::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer
) && "Invalid similarly-qualified pointer type") ? void
(0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2146, __extension__ __PRETTY_FUNCTION__))
2145 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(static_cast <bool> ((FromPtr->getTypeClass() == Type
::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer
) && "Invalid similarly-qualified pointer type") ? void
(0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2146, __extension__ __PRETTY_FUNCTION__))
2146 "Invalid similarly-qualified pointer type")(static_cast <bool> ((FromPtr->getTypeClass() == Type
::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer
) && "Invalid similarly-qualified pointer type") ? void
(0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2146, __extension__ __PRETTY_FUNCTION__))
;
2147
2148 /// Conversions to 'id' subsume cv-qualifier conversions.
2149 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2150 return ToType.getUnqualifiedType();
2151
2152 QualType CanonFromPointee
2153 = Context.getCanonicalType(FromPtr->getPointeeType());
2154 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2155 Qualifiers Quals = CanonFromPointee.getQualifiers();
2156
2157 if (StripObjCLifetime)
2158 Quals.removeObjCLifetime();
2159
2160 // Exact qualifier match -> return the pointer type we're converting to.
2161 if (CanonToPointee.getLocalQualifiers() == Quals) {
2162 // ToType is exactly what we need. Return it.
2163 if (!ToType.isNull())
2164 return ToType.getUnqualifiedType();
2165
2166 // Build a pointer to ToPointee. It has the right qualifiers
2167 // already.
2168 if (isa<ObjCObjectPointerType>(ToType))
2169 return Context.getObjCObjectPointerType(ToPointee);
2170 return Context.getPointerType(ToPointee);
2171 }
2172
2173 // Just build a canonical type that has the right qualifiers.
2174 QualType QualifiedCanonToPointee
2175 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2176
2177 if (isa<ObjCObjectPointerType>(ToType))
2178 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2179 return Context.getPointerType(QualifiedCanonToPointee);
2180}
2181
2182static bool isNullPointerConstantForConversion(Expr *Expr,
2183 bool InOverloadResolution,
2184 ASTContext &Context) {
2185 // Handle value-dependent integral null pointer constants correctly.
2186 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2187 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2188 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2189 return !InOverloadResolution;
2190
2191 return Expr->isNullPointerConstant(Context,
2192 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2193 : Expr::NPC_ValueDependentIsNull);
2194}
2195
2196/// IsPointerConversion - Determines whether the conversion of the
2197/// expression From, which has the (possibly adjusted) type FromType,
2198/// can be converted to the type ToType via a pointer conversion (C++
2199/// 4.10). If so, returns true and places the converted type (that
2200/// might differ from ToType in its cv-qualifiers at some level) into
2201/// ConvertedType.
2202///
2203/// This routine also supports conversions to and from block pointers
2204/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2205/// pointers to interfaces. FIXME: Once we've determined the
2206/// appropriate overloading rules for Objective-C, we may want to
2207/// split the Objective-C checks into a different routine; however,
2208/// GCC seems to consider all of these conversions to be pointer
2209/// conversions, so for now they live here. IncompatibleObjC will be
2210/// set if the conversion is an allowed Objective-C conversion that
2211/// should result in a warning.
2212bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2213 bool InOverloadResolution,
2214 QualType& ConvertedType,
2215 bool &IncompatibleObjC) {
2216 IncompatibleObjC = false;
2217 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2218 IncompatibleObjC))
2219 return true;
2220
2221 // Conversion from a null pointer constant to any Objective-C pointer type.
2222 if (ToType->isObjCObjectPointerType() &&
2223 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2224 ConvertedType = ToType;
2225 return true;
2226 }
2227
2228 // Blocks: Block pointers can be converted to void*.
2229 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2230 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2231 ConvertedType = ToType;
2232 return true;
2233 }
2234 // Blocks: A null pointer constant can be converted to a block
2235 // pointer type.
2236 if (ToType->isBlockPointerType() &&
2237 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2238 ConvertedType = ToType;
2239 return true;
2240 }
2241
2242 // If the left-hand-side is nullptr_t, the right side can be a null
2243 // pointer constant.
2244 if (ToType->isNullPtrType() &&
2245 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2246 ConvertedType = ToType;
2247 return true;
2248 }
2249
2250 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2251 if (!ToTypePtr)
2252 return false;
2253
2254 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2255 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2256 ConvertedType = ToType;
2257 return true;
2258 }
2259
2260 // Beyond this point, both types need to be pointers
2261 // , including objective-c pointers.
2262 QualType ToPointeeType = ToTypePtr->getPointeeType();
2263 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2264 !getLangOpts().ObjCAutoRefCount) {
2265 ConvertedType = BuildSimilarlyQualifiedPointerType(
2266 FromType->getAs<ObjCObjectPointerType>(),
2267 ToPointeeType,
2268 ToType, Context);
2269 return true;
2270 }
2271 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2272 if (!FromTypePtr)
2273 return false;
2274
2275 QualType FromPointeeType = FromTypePtr->getPointeeType();
2276
2277 // If the unqualified pointee types are the same, this can't be a
2278 // pointer conversion, so don't do all of the work below.
2279 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2280 return false;
2281
2282 // An rvalue of type "pointer to cv T," where T is an object type,
2283 // can be converted to an rvalue of type "pointer to cv void" (C++
2284 // 4.10p2).
2285 if (FromPointeeType->isIncompleteOrObjectType() &&
2286 ToPointeeType->isVoidType()) {
2287 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2288 ToPointeeType,
2289 ToType, Context,
2290 /*StripObjCLifetime=*/true);
2291 return true;
2292 }
2293
2294 // MSVC allows implicit function to void* type conversion.
2295 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2296 ToPointeeType->isVoidType()) {
2297 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2298 ToPointeeType,
2299 ToType, Context);
2300 return true;
2301 }
2302
2303 // When we're overloading in C, we allow a special kind of pointer
2304 // conversion for compatible-but-not-identical pointee types.
2305 if (!getLangOpts().CPlusPlus &&
2306 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2307 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2308 ToPointeeType,
2309 ToType, Context);
2310 return true;
2311 }
2312
2313 // C++ [conv.ptr]p3:
2314 //
2315 // An rvalue of type "pointer to cv D," where D is a class type,
2316 // can be converted to an rvalue of type "pointer to cv B," where
2317 // B is a base class (clause 10) of D. If B is an inaccessible
2318 // (clause 11) or ambiguous (10.2) base class of D, a program that
2319 // necessitates this conversion is ill-formed. The result of the
2320 // conversion is a pointer to the base class sub-object of the
2321 // derived class object. The null pointer value is converted to
2322 // the null pointer value of the destination type.
2323 //
2324 // Note that we do not check for ambiguity or inaccessibility
2325 // here. That is handled by CheckPointerConversion.
2326 if (getLangOpts().CPlusPlus &&
2327 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2328 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2329 IsDerivedFrom(From->getLocStart(), FromPointeeType, ToPointeeType)) {
2330 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2331 ToPointeeType,
2332 ToType, Context);
2333 return true;
2334 }
2335
2336 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2337 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2338 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2339 ToPointeeType,
2340 ToType, Context);
2341 return true;
2342 }
2343
2344 return false;
2345}
2346
2347/// \brief Adopt the given qualifiers for the given type.
2348static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2349 Qualifiers TQs = T.getQualifiers();
2350
2351 // Check whether qualifiers already match.
2352 if (TQs == Qs)
2353 return T;
2354
2355 if (Qs.compatiblyIncludes(TQs))
2356 return Context.getQualifiedType(T, Qs);
2357
2358 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2359}
2360
2361/// isObjCPointerConversion - Determines whether this is an
2362/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2363/// with the same arguments and return values.
2364bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2365 QualType& ConvertedType,
2366 bool &IncompatibleObjC) {
2367 if (!getLangOpts().ObjC1)
2368 return false;
2369
2370 // The set of qualifiers on the type we're converting from.
2371 Qualifiers FromQualifiers = FromType.getQualifiers();
2372
2373 // First, we handle all conversions on ObjC object pointer types.
2374 const ObjCObjectPointerType* ToObjCPtr =
2375 ToType->getAs<ObjCObjectPointerType>();
2376 const ObjCObjectPointerType *FromObjCPtr =
2377 FromType->getAs<ObjCObjectPointerType>();
2378
2379 if (ToObjCPtr && FromObjCPtr) {
2380 // If the pointee types are the same (ignoring qualifications),
2381 // then this is not a pointer conversion.
2382 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2383 FromObjCPtr->getPointeeType()))
2384 return false;
2385
2386 // Conversion between Objective-C pointers.
2387 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2388 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2389 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2390 if (getLangOpts().CPlusPlus && LHS && RHS &&
2391 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2392 FromObjCPtr->getPointeeType()))
2393 return false;
2394 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2395 ToObjCPtr->getPointeeType(),
2396 ToType, Context);
2397 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2398 return true;
2399 }
2400
2401 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2402 // Okay: this is some kind of implicit downcast of Objective-C
2403 // interfaces, which is permitted. However, we're going to
2404 // complain about it.
2405 IncompatibleObjC = true;
2406 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2407 ToObjCPtr->getPointeeType(),
2408 ToType, Context);
2409 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2410 return true;
2411 }
2412 }
2413 // Beyond this point, both types need to be C pointers or block pointers.
2414 QualType ToPointeeType;
2415 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2416 ToPointeeType = ToCPtr->getPointeeType();
2417 else if (const BlockPointerType *ToBlockPtr =
2418 ToType->getAs<BlockPointerType>()) {
2419 // Objective C++: We're able to convert from a pointer to any object
2420 // to a block pointer type.
2421 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2422 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2423 return true;
2424 }
2425 ToPointeeType = ToBlockPtr->getPointeeType();
2426 }
2427 else if (FromType->getAs<BlockPointerType>() &&
2428 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2429 // Objective C++: We're able to convert from a block pointer type to a
2430 // pointer to any object.
2431 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2432 return true;
2433 }
2434 else
2435 return false;
2436
2437 QualType FromPointeeType;
2438 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2439 FromPointeeType = FromCPtr->getPointeeType();
2440 else if (const BlockPointerType *FromBlockPtr =
2441 FromType->getAs<BlockPointerType>())
2442 FromPointeeType = FromBlockPtr->getPointeeType();
2443 else
2444 return false;
2445
2446 // If we have pointers to pointers, recursively check whether this
2447 // is an Objective-C conversion.
2448 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2449 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2450 IncompatibleObjC)) {
2451 // We always complain about this conversion.
2452 IncompatibleObjC = true;
2453 ConvertedType = Context.getPointerType(ConvertedType);
2454 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2455 return true;
2456 }
2457 // Allow conversion of pointee being objective-c pointer to another one;
2458 // as in I* to id.
2459 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2460 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2461 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2462 IncompatibleObjC)) {
2463
2464 ConvertedType = Context.getPointerType(ConvertedType);
2465 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2466 return true;
2467 }
2468
2469 // If we have pointers to functions or blocks, check whether the only
2470 // differences in the argument and result types are in Objective-C
2471 // pointer conversions. If so, we permit the conversion (but
2472 // complain about it).
2473 const FunctionProtoType *FromFunctionType
2474 = FromPointeeType->getAs<FunctionProtoType>();
2475 const FunctionProtoType *ToFunctionType
2476 = ToPointeeType->getAs<FunctionProtoType>();
2477 if (FromFunctionType && ToFunctionType) {
2478 // If the function types are exactly the same, this isn't an
2479 // Objective-C pointer conversion.
2480 if (Context.getCanonicalType(FromPointeeType)
2481 == Context.getCanonicalType(ToPointeeType))
2482 return false;
2483
2484 // Perform the quick checks that will tell us whether these
2485 // function types are obviously different.
2486 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2487 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2488 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2489 return false;
2490
2491 bool HasObjCConversion = false;
2492 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2493 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2494 // Okay, the types match exactly. Nothing to do.
2495 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2496 ToFunctionType->getReturnType(),
2497 ConvertedType, IncompatibleObjC)) {
2498 // Okay, we have an Objective-C pointer conversion.
2499 HasObjCConversion = true;
2500 } else {
2501 // Function types are too different. Abort.
2502 return false;
2503 }
2504
2505 // Check argument types.
2506 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2507 ArgIdx != NumArgs; ++ArgIdx) {
2508 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2509 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2510 if (Context.getCanonicalType(FromArgType)
2511 == Context.getCanonicalType(ToArgType)) {
2512 // Okay, the types match exactly. Nothing to do.
2513 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2514 ConvertedType, IncompatibleObjC)) {
2515 // Okay, we have an Objective-C pointer conversion.
2516 HasObjCConversion = true;
2517 } else {
2518 // Argument types are too different. Abort.
2519 return false;
2520 }
2521 }
2522
2523 if (HasObjCConversion) {
2524 // We had an Objective-C conversion. Allow this pointer
2525 // conversion, but complain about it.
2526 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2527 IncompatibleObjC = true;
2528 return true;
2529 }
2530 }
2531
2532 return false;
2533}
2534
2535/// \brief Determine whether this is an Objective-C writeback conversion,
2536/// used for parameter passing when performing automatic reference counting.
2537///
2538/// \param FromType The type we're converting form.
2539///
2540/// \param ToType The type we're converting to.
2541///
2542/// \param ConvertedType The type that will be produced after applying
2543/// this conversion.
2544bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2545 QualType &ConvertedType) {
2546 if (!getLangOpts().ObjCAutoRefCount ||
2547 Context.hasSameUnqualifiedType(FromType, ToType))
2548 return false;
2549
2550 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2551 QualType ToPointee;
2552 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2553 ToPointee = ToPointer->getPointeeType();
2554 else
2555 return false;
2556
2557 Qualifiers ToQuals = ToPointee.getQualifiers();
2558 if (!ToPointee->isObjCLifetimeType() ||
2559 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2560 !ToQuals.withoutObjCLifetime().empty())
2561 return false;
2562
2563 // Argument must be a pointer to __strong to __weak.
2564 QualType FromPointee;
2565 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2566 FromPointee = FromPointer->getPointeeType();
2567 else
2568 return false;
2569
2570 Qualifiers FromQuals = FromPointee.getQualifiers();
2571 if (!FromPointee->isObjCLifetimeType() ||
2572 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2573 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2574 return false;
2575
2576 // Make sure that we have compatible qualifiers.
2577 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2578 if (!ToQuals.compatiblyIncludes(FromQuals))
2579 return false;
2580
2581 // Remove qualifiers from the pointee type we're converting from; they
2582 // aren't used in the compatibility check belong, and we'll be adding back
2583 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2584 FromPointee = FromPointee.getUnqualifiedType();
2585
2586 // The unqualified form of the pointee types must be compatible.
2587 ToPointee = ToPointee.getUnqualifiedType();
2588 bool IncompatibleObjC;
2589 if (Context.typesAreCompatible(FromPointee, ToPointee))
2590 FromPointee = ToPointee;
2591 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2592 IncompatibleObjC))
2593 return false;
2594
2595 /// \brief Construct the type we're converting to, which is a pointer to
2596 /// __autoreleasing pointee.
2597 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2598 ConvertedType = Context.getPointerType(FromPointee);
2599 return true;
2600}
2601
2602bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2603 QualType& ConvertedType) {
2604 QualType ToPointeeType;
2605 if (const BlockPointerType *ToBlockPtr =
2606 ToType->getAs<BlockPointerType>())
2607 ToPointeeType = ToBlockPtr->getPointeeType();
2608 else
2609 return false;
2610
2611 QualType FromPointeeType;
2612 if (const BlockPointerType *FromBlockPtr =
2613 FromType->getAs<BlockPointerType>())
2614 FromPointeeType = FromBlockPtr->getPointeeType();
2615 else
2616 return false;
2617 // We have pointer to blocks, check whether the only
2618 // differences in the argument and result types are in Objective-C
2619 // pointer conversions. If so, we permit the conversion.
2620
2621 const FunctionProtoType *FromFunctionType
2622 = FromPointeeType->getAs<FunctionProtoType>();
2623 const FunctionProtoType *ToFunctionType
2624 = ToPointeeType->getAs<FunctionProtoType>();
2625
2626 if (!FromFunctionType || !ToFunctionType)
2627 return false;
2628
2629 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2630 return true;
2631
2632 // Perform the quick checks that will tell us whether these
2633 // function types are obviously different.
2634 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2635 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2636 return false;
2637
2638 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2639 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2640 if (FromEInfo != ToEInfo)
2641 return false;
2642
2643 bool IncompatibleObjC = false;
2644 if (Context.hasSameType(FromFunctionType->getReturnType(),
2645 ToFunctionType->getReturnType())) {
2646 // Okay, the types match exactly. Nothing to do.
2647 } else {
2648 QualType RHS = FromFunctionType->getReturnType();
2649 QualType LHS = ToFunctionType->getReturnType();
2650 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2651 !RHS.hasQualifiers() && LHS.hasQualifiers())
2652 LHS = LHS.getUnqualifiedType();
2653
2654 if (Context.hasSameType(RHS,LHS)) {
2655 // OK exact match.
2656 } else if (isObjCPointerConversion(RHS, LHS,
2657 ConvertedType, IncompatibleObjC)) {
2658 if (IncompatibleObjC)
2659 return false;
2660 // Okay, we have an Objective-C pointer conversion.
2661 }
2662 else
2663 return false;
2664 }
2665
2666 // Check argument types.
2667 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2668 ArgIdx != NumArgs; ++ArgIdx) {
2669 IncompatibleObjC = false;
2670 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2671 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2672 if (Context.hasSameType(FromArgType, ToArgType)) {
2673 // Okay, the types match exactly. Nothing to do.
2674 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2675 ConvertedType, IncompatibleObjC)) {
2676 if (IncompatibleObjC)
2677 return false;
2678 // Okay, we have an Objective-C pointer conversion.
2679 } else
2680 // Argument types are too different. Abort.
2681 return false;
2682 }
2683
2684 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2685 bool CanUseToFPT, CanUseFromFPT;
2686 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2687 CanUseToFPT, CanUseFromFPT,
2688 NewParamInfos))
2689 return false;
2690
2691 ConvertedType = ToType;
2692 return true;
2693}
2694
2695enum {
2696 ft_default,
2697 ft_different_class,
2698 ft_parameter_arity,
2699 ft_parameter_mismatch,
2700 ft_return_type,
2701 ft_qualifer_mismatch,
2702 ft_noexcept
2703};
2704
2705/// Attempts to get the FunctionProtoType from a Type. Handles
2706/// MemberFunctionPointers properly.
2707static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2708 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2709 return FPT;
2710
2711 if (auto *MPT = FromType->getAs<MemberPointerType>())
2712 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2713
2714 return nullptr;
2715}
2716
2717/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2718/// function types. Catches different number of parameter, mismatch in
2719/// parameter types, and different return types.
2720void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2721 QualType FromType, QualType ToType) {
2722 // If either type is not valid, include no extra info.
2723 if (FromType.isNull() || ToType.isNull()) {
2724 PDiag << ft_default;
2725 return;
2726 }
2727
2728 // Get the function type from the pointers.
2729 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2730 const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2731 *ToMember = ToType->getAs<MemberPointerType>();
2732 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2733 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2734 << QualType(FromMember->getClass(), 0);
2735 return;
2736 }
2737 FromType = FromMember->getPointeeType();
2738 ToType = ToMember->getPointeeType();
2739 }
2740
2741 if (FromType->isPointerType())
2742 FromType = FromType->getPointeeType();
2743 if (ToType->isPointerType())
2744 ToType = ToType->getPointeeType();
2745
2746 // Remove references.
2747 FromType = FromType.getNonReferenceType();
2748 ToType = ToType.getNonReferenceType();
2749
2750 // Don't print extra info for non-specialized template functions.
2751 if (FromType->isInstantiationDependentType() &&
2752 !FromType->getAs<TemplateSpecializationType>()) {
2753 PDiag << ft_default;
2754 return;
2755 }
2756
2757 // No extra info for same types.
2758 if (Context.hasSameType(FromType, ToType)) {
2759 PDiag << ft_default;
2760 return;
2761 }
2762
2763 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2764 *ToFunction = tryGetFunctionProtoType(ToType);
2765
2766 // Both types need to be function types.
2767 if (!FromFunction || !ToFunction) {
2768 PDiag << ft_default;
2769 return;
2770 }
2771
2772 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2773 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2774 << FromFunction->getNumParams();
2775 return;
2776 }
2777
2778 // Handle different parameter types.
2779 unsigned ArgPos;
2780 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2781 PDiag << ft_parameter_mismatch << ArgPos + 1
2782 << ToFunction->getParamType(ArgPos)
2783 << FromFunction->getParamType(ArgPos);
2784 return;
2785 }
2786
2787 // Handle different return type.
2788 if (!Context.hasSameType(FromFunction->getReturnType(),
2789 ToFunction->getReturnType())) {
2790 PDiag << ft_return_type << ToFunction->getReturnType()
2791 << FromFunction->getReturnType();
2792 return;
2793 }
2794
2795 unsigned FromQuals = FromFunction->getTypeQuals(),
2796 ToQuals = ToFunction->getTypeQuals();
2797 if (FromQuals != ToQuals) {
2798 PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2799 return;
2800 }
2801
2802 // Handle exception specification differences on canonical type (in C++17
2803 // onwards).
2804 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2805 ->isNothrow(Context) !=
2806 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2807 ->isNothrow(Context)) {
2808 PDiag << ft_noexcept;
2809 return;
2810 }
2811
2812 // Unable to find a difference, so add no extra info.
2813 PDiag << ft_default;
2814}
2815
2816/// FunctionParamTypesAreEqual - This routine checks two function proto types
2817/// for equality of their argument types. Caller has already checked that
2818/// they have same number of arguments. If the parameters are different,
2819/// ArgPos will have the parameter index of the first different parameter.
2820bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2821 const FunctionProtoType *NewType,
2822 unsigned *ArgPos) {
2823 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2824 N = NewType->param_type_begin(),
2825 E = OldType->param_type_end();
2826 O && (O != E); ++O, ++N) {
2827 if (!Context.hasSameType(O->getUnqualifiedType(),
2828 N->getUnqualifiedType())) {
2829 if (ArgPos)
2830 *ArgPos = O - OldType->param_type_begin();
2831 return false;
2832 }
2833 }
2834 return true;
2835}
2836
2837/// CheckPointerConversion - Check the pointer conversion from the
2838/// expression From to the type ToType. This routine checks for
2839/// ambiguous or inaccessible derived-to-base pointer
2840/// conversions for which IsPointerConversion has already returned
2841/// true. It returns true and produces a diagnostic if there was an
2842/// error, or returns false otherwise.
2843bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2844 CastKind &Kind,
2845 CXXCastPath& BasePath,
2846 bool IgnoreBaseAccess,
2847 bool Diagnose) {
2848 QualType FromType = From->getType();
2849 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2850
2851 Kind = CK_BitCast;
2852
2853 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2854 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2855 Expr::NPCK_ZeroExpression) {
2856 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2857 DiagRuntimeBehavior(From->getExprLoc(), From,
2858 PDiag(diag::warn_impcast_bool_to_null_pointer)
2859 << ToType << From->getSourceRange());
2860 else if (!isUnevaluatedContext())
2861 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2862 << ToType << From->getSourceRange();
2863 }
2864 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2865 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2866 QualType FromPointeeType = FromPtrType->getPointeeType(),
2867 ToPointeeType = ToPtrType->getPointeeType();
2868
2869 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2870 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2871 // We must have a derived-to-base conversion. Check an
2872 // ambiguous or inaccessible conversion.
2873 unsigned InaccessibleID = 0;
2874 unsigned AmbigiousID = 0;
2875 if (Diagnose) {
2876 InaccessibleID = diag::err_upcast_to_inaccessible_base;
2877 AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2878 }
2879 if (CheckDerivedToBaseConversion(
2880 FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2881 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2882 &BasePath, IgnoreBaseAccess))
2883 return true;
2884
2885 // The conversion was successful.
2886 Kind = CK_DerivedToBase;
2887 }
2888
2889 if (Diagnose && !IsCStyleOrFunctionalCast &&
2890 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
2891 assert(getLangOpts().MSVCCompat &&(static_cast <bool> (getLangOpts().MSVCCompat &&
"this should only be possible with MSVCCompat!") ? void (0) :
__assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2892, __extension__ __PRETTY_FUNCTION__))
2892 "this should only be possible with MSVCCompat!")(static_cast <bool> (getLangOpts().MSVCCompat &&
"this should only be possible with MSVCCompat!") ? void (0) :
__assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2892, __extension__ __PRETTY_FUNCTION__))
;
2893 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2894 << From->getSourceRange();
2895 }
2896 }
2897 } else if (const ObjCObjectPointerType *ToPtrType =
2898 ToType->getAs<ObjCObjectPointerType>()) {
2899 if (const ObjCObjectPointerType *FromPtrType =
2900 FromType->getAs<ObjCObjectPointerType>()) {
2901 // Objective-C++ conversions are always okay.
2902 // FIXME: We should have a different class of conversions for the
2903 // Objective-C++ implicit conversions.
2904 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2905 return false;
2906 } else if (FromType->isBlockPointerType()) {
2907 Kind = CK_BlockPointerToObjCPointerCast;
2908 } else {
2909 Kind = CK_CPointerToObjCPointerCast;
2910 }
2911 } else if (ToType->isBlockPointerType()) {
2912 if (!FromType->isBlockPointerType())
2913 Kind = CK_AnyPointerToBlockPointerCast;
2914 }
2915
2916 // We shouldn't fall into this case unless it's valid for other
2917 // reasons.
2918 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2919 Kind = CK_NullToPointer;
2920
2921 return false;
2922}
2923
2924/// IsMemberPointerConversion - Determines whether the conversion of the
2925/// expression From, which has the (possibly adjusted) type FromType, can be
2926/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2927/// If so, returns true and places the converted type (that might differ from
2928/// ToType in its cv-qualifiers at some level) into ConvertedType.
2929bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2930 QualType ToType,
2931 bool InOverloadResolution,
2932 QualType &ConvertedType) {
2933 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2934 if (!ToTypePtr)
2935 return false;
2936
2937 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2938 if (From->isNullPointerConstant(Context,
2939 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2940 : Expr::NPC_ValueDependentIsNull)) {
2941 ConvertedType = ToType;
2942 return true;
2943 }
2944
2945 // Otherwise, both types have to be member pointers.
2946 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2947 if (!FromTypePtr)
2948 return false;
2949
2950 // A pointer to member of B can be converted to a pointer to member of D,
2951 // where D is derived from B (C++ 4.11p2).
2952 QualType FromClass(FromTypePtr->getClass(), 0);
2953 QualType ToClass(ToTypePtr->getClass(), 0);
2954
2955 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2956 IsDerivedFrom(From->getLocStart(), ToClass, FromClass)) {
2957 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2958 ToClass.getTypePtr());
2959 return true;
2960 }
2961
2962 return false;
2963}
2964
2965/// CheckMemberPointerConversion - Check the member pointer conversion from the
2966/// expression From to the type ToType. This routine checks for ambiguous or
2967/// virtual or inaccessible base-to-derived member pointer conversions
2968/// for which IsMemberPointerConversion has already returned true. It returns
2969/// true and produces a diagnostic if there was an error, or returns false
2970/// otherwise.
2971bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2972 CastKind &Kind,
2973 CXXCastPath &BasePath,
2974 bool IgnoreBaseAccess) {
2975 QualType FromType = From->getType();
2976 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2977 if (!FromPtrType) {
2978 // This must be a null pointer to member pointer conversion
2979 assert(From->isNullPointerConstant(Context,(static_cast <bool> (From->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!"
) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2981, __extension__ __PRETTY_FUNCTION__))
2980 Expr::NPC_ValueDependentIsNull) &&(static_cast <bool> (From->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!"
) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2981, __extension__ __PRETTY_FUNCTION__))
2981 "Expr must be null pointer constant!")(static_cast <bool> (From->isNullPointerConstant(Context
, Expr::NPC_ValueDependentIsNull) && "Expr must be null pointer constant!"
) ? void (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2981, __extension__ __PRETTY_FUNCTION__))
;
2982 Kind = CK_NullToMemberPointer;
2983 return false;
2984 }
2985
2986 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2987 assert(ToPtrType && "No member pointer cast has a target type "(static_cast <bool> (ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? void (0) : __assert_fail (
"ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2988, __extension__ __PRETTY_FUNCTION__))
2988 "that is not a member pointer.")(static_cast <bool> (ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? void (0) : __assert_fail (
"ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2988, __extension__ __PRETTY_FUNCTION__))
;
2989
2990 QualType FromClass = QualType(FromPtrType->getClass(), 0);
2991 QualType ToClass = QualType(ToPtrType->getClass(), 0);
2992
2993 // FIXME: What about dependent types?
2994 assert(FromClass->isRecordType() && "Pointer into non-class.")(static_cast <bool> (FromClass->isRecordType() &&
"Pointer into non-class.") ? void (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2994, __extension__ __PRETTY_FUNCTION__))
;
2995 assert(ToClass->isRecordType() && "Pointer into non-class.")(static_cast <bool> (ToClass->isRecordType() &&
"Pointer into non-class.") ? void (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 2995, __extension__ __PRETTY_FUNCTION__))
;
2996
2997 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2998 /*DetectVirtual=*/true);
2999 bool DerivationOkay =
3000 IsDerivedFrom(From->getLocStart(), ToClass, FromClass, Paths);
3001 assert(DerivationOkay &&(static_cast <bool> (DerivationOkay && "Should not have been called if derivation isn't OK."
) ? void (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 3002, __extension__ __PRETTY_FUNCTION__))
3002 "Should not have been called if derivation isn't OK.")(static_cast <bool> (DerivationOkay && "Should not have been called if derivation isn't OK."
) ? void (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 3002, __extension__ __PRETTY_FUNCTION__))
;
3003 (void)DerivationOkay;
3004
3005 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3006 getUnqualifiedType())) {
3007 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3008 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3009 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3010 return true;
3011 }
3012
3013 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3014 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3015 << FromClass << ToClass << QualType(VBase, 0)
3016 << From->getSourceRange();
3017 return true;
3018 }
3019
3020 if (!IgnoreBaseAccess)
3021 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3022 Paths.front(),
3023 diag::err_downcast_from_inaccessible_base);
3024
3025 // Must be a base to derived member conversion.
3026 BuildBasePathArray(Paths, BasePath);
3027 Kind = CK_BaseToDerivedMemberPointer;
3028 return false;
3029}
3030
3031/// Determine whether the lifetime conversion between the two given
3032/// qualifiers sets is nontrivial.
3033static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3034 Qualifiers ToQuals) {
3035 // Converting anything to const __unsafe_unretained is trivial.
3036 if (ToQuals.hasConst() &&
3037 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3038 return false;
3039
3040 return true;
3041}
3042
3043/// IsQualificationConversion - Determines whether the conversion from
3044/// an rvalue of type FromType to ToType is a qualification conversion
3045/// (C++ 4.4).
3046///
3047/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3048/// when the qualification conversion involves a change in the Objective-C
3049/// object lifetime.
3050bool
3051Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3052 bool CStyle, bool &ObjCLifetimeConversion) {
3053 FromType = Context.getCanonicalType(FromType);
3054 ToType = Context.getCanonicalType(ToType);
3055 ObjCLifetimeConversion = false;
3056
3057 // If FromType and ToType are the same type, this is not a
3058 // qualification conversion.
3059 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3060 return false;
3061
3062 // (C++ 4.4p4):
3063 // A conversion can add cv-qualifiers at levels other than the first
3064 // in multi-level pointers, subject to the following rules: [...]
3065 bool PreviousToQualsIncludeConst = true;
3066 bool UnwrappedAnyPointer = false;
3067 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
3068 // Within each iteration of the loop, we check the qualifiers to
3069 // determine if this still looks like a qualification
3070 // conversion. Then, if all is well, we unwrap one more level of
3071 // pointers or pointers-to-members and do it all again
3072 // until there are no more pointers or pointers-to-members left to
3073 // unwrap.
3074 UnwrappedAnyPointer = true;
3075
3076 Qualifiers FromQuals = FromType.getQualifiers();
3077 Qualifiers ToQuals = ToType.getQualifiers();
3078
3079 // Ignore __unaligned qualifier if this type is void.
3080 if (ToType.getUnqualifiedType()->isVoidType())
3081 FromQuals.removeUnaligned();
3082
3083 // Objective-C ARC:
3084 // Check Objective-C lifetime conversions.
3085 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
3086 UnwrappedAnyPointer) {
3087 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3088 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3089 ObjCLifetimeConversion = true;
3090 FromQuals.removeObjCLifetime();
3091 ToQuals.removeObjCLifetime();
3092 } else {
3093 // Qualification conversions cannot cast between different
3094 // Objective-C lifetime qualifiers.
3095 return false;
3096 }
3097 }
3098
3099 // Allow addition/removal of GC attributes but not changing GC attributes.
3100 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3101 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3102 FromQuals.removeObjCGCAttr();
3103 ToQuals.removeObjCGCAttr();
3104 }
3105
3106 // -- for every j > 0, if const is in cv 1,j then const is in cv
3107 // 2,j, and similarly for volatile.
3108 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3109 return false;
3110
3111 // -- if the cv 1,j and cv 2,j are different, then const is in
3112 // every cv for 0 < k < j.
3113 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
3114 && !PreviousToQualsIncludeConst)
3115 return false;
3116
3117 // Keep track of whether all prior cv-qualifiers in the "to" type
3118 // include const.
3119 PreviousToQualsIncludeConst
3120 = PreviousToQualsIncludeConst && ToQuals.hasConst();
3121 }
3122
3123 // We are left with FromType and ToType being the pointee types
3124 // after unwrapping the original FromType and ToType the same number
3125 // of types. If we unwrapped any pointers, and if FromType and
3126 // ToType have the same unqualified type (since we checked
3127 // qualifiers above), then this is a qualification conversion.
3128 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3129}
3130
3131/// \brief - Determine whether this is a conversion from a scalar type to an
3132/// atomic type.
3133///
3134/// If successful, updates \c SCS's second and third steps in the conversion
3135/// sequence to finish the conversion.
3136static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3137 bool InOverloadResolution,
3138 StandardConversionSequence &SCS,
3139 bool CStyle) {
3140 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3141 if (!ToAtomic)
3142 return false;
3143
3144 StandardConversionSequence InnerSCS;
3145 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3146 InOverloadResolution, InnerSCS,
3147 CStyle, /*AllowObjCWritebackConversion=*/false))
3148 return false;
3149
3150 SCS.Second = InnerSCS.Second;
3151 SCS.setToType(1, InnerSCS.getToType(1));
3152 SCS.Third = InnerSCS.Third;
3153 SCS.QualificationIncludesObjCLifetime
3154 = InnerSCS.QualificationIncludesObjCLifetime;
3155 SCS.setToType(2, InnerSCS.getToType(2));
3156 return true;
3157}
3158
3159static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3160 CXXConstructorDecl *Constructor,
3161 QualType Type) {
3162 const FunctionProtoType *CtorType =
3163 Constructor->getType()->getAs<FunctionProtoType>();
3164 if (CtorType->getNumParams() > 0) {
3165 QualType FirstArg = CtorType->getParamType(0);
3166 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3167 return true;
3168 }
3169 return false;
3170}
3171
3172static OverloadingResult
3173IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3174 CXXRecordDecl *To,
3175 UserDefinedConversionSequence &User,
3176 OverloadCandidateSet &CandidateSet,
3177 bool AllowExplicit) {
3178 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3179 for (auto *D : S.LookupConstructors(To)) {
3180 auto Info = getConstructorInfo(D);
3181 if (!Info)
3182 continue;
3183
3184 bool Usable = !Info.Constructor->isInvalidDecl() &&
3185 S.isInitListConstructor(Info.Constructor) &&
3186 (AllowExplicit || !Info.Constructor->isExplicit());
3187 if (Usable) {
3188 // If the first argument is (a reference to) the target type,
3189 // suppress conversions.
3190 bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3191 S.Context, Info.Constructor, ToType);
3192 if (Info.ConstructorTmpl)
3193 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3194 /*ExplicitArgs*/ nullptr, From,
3195 CandidateSet, SuppressUserConversions);
3196 else
3197 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3198 CandidateSet, SuppressUserConversions);
3199 }
3200 }
3201
3202 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3203
3204 OverloadCandidateSet::iterator Best;
3205 switch (auto Result =
3206 CandidateSet.BestViableFunction(S, From->getLocStart(),
3207 Best)) {
3208 case OR_Deleted:
3209 case OR_Success: {
3210 // Record the standard conversion we used and the conversion function.
3211 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3212 QualType ThisType = Constructor->getThisType(S.Context);
3213 // Initializer lists don't have conversions as such.
3214 User.Before.setAsIdentityConversion();
3215 User.HadMultipleCandidates = HadMultipleCandidates;
3216 User.ConversionFunction = Constructor;
3217 User.FoundConversionFunction = Best->FoundDecl;
3218 User.After.setAsIdentityConversion();
3219 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3220 User.After.setAllToTypes(ToType);
3221 return Result;
3222 }
3223
3224 case OR_No_Viable_Function:
3225 return OR_No_Viable_Function;
3226 case OR_Ambiguous:
3227 return OR_Ambiguous;
3228 }
3229
3230 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 3230)
;
3231}
3232
3233/// Determines whether there is a user-defined conversion sequence
3234/// (C++ [over.ics.user]) that converts expression From to the type
3235/// ToType. If such a conversion exists, User will contain the
3236/// user-defined conversion sequence that performs such a conversion
3237/// and this routine will return true. Otherwise, this routine returns
3238/// false and User is unspecified.
3239///
3240/// \param AllowExplicit true if the conversion should consider C++0x
3241/// "explicit" conversion functions as well as non-explicit conversion
3242/// functions (C++0x [class.conv.fct]p2).
3243///
3244/// \param AllowObjCConversionOnExplicit true if the conversion should
3245/// allow an extra Objective-C pointer conversion on uses of explicit
3246/// constructors. Requires \c AllowExplicit to also be set.
3247static OverloadingResult
3248IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3249 UserDefinedConversionSequence &User,
3250 OverloadCandidateSet &CandidateSet,
3251 bool AllowExplicit,
3252 bool AllowObjCConversionOnExplicit) {
3253 assert(AllowExplicit || !AllowObjCConversionOnExplicit)(static_cast <bool> (AllowExplicit || !AllowObjCConversionOnExplicit
) ? void (0) : __assert_fail ("AllowExplicit || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 3253, __extension__ __PRETTY_FUNCTION__))
;
3254 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3255
3256 // Whether we will only visit constructors.
3257 bool ConstructorsOnly = false;
3258
3259 // If the type we are conversion to is a class type, enumerate its
3260 // constructors.
3261 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3262 // C++ [over.match.ctor]p1:
3263 // When objects of class type are direct-initialized (8.5), or
3264 // copy-initialized from an expression of the same or a
3265 // derived class type (8.5), overload resolution selects the
3266 // constructor. [...] For copy-initialization, the candidate
3267 // functions are all the converting constructors (12.3.1) of
3268 // that class. The argument list is the expression-list within
3269 // the parentheses of the initializer.
3270 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3271 (From->getType()->getAs<RecordType>() &&
3272 S.IsDerivedFrom(From->getLocStart(), From->getType(), ToType)))
3273 ConstructorsOnly = true;
3274
3275 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3276 // We're not going to find any constructors.
3277 } else if (CXXRecordDecl *ToRecordDecl
3278 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3279
3280 Expr **Args = &From;
3281 unsigned NumArgs = 1;
3282 bool ListInitializing = false;
3283 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3284 // But first, see if there is an init-list-constructor that will work.
3285 OverloadingResult Result = IsInitializerListConstructorConversion(
3286 S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3287 if (Result != OR_No_Viable_Function)
3288 return Result;
3289 // Never mind.
3290 CandidateSet.clear(
3291 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3292
3293 // If we're list-initializing, we pass the individual elements as
3294 // arguments, not the entire list.
3295 Args = InitList->getInits();
3296 NumArgs = InitList->getNumInits();
3297 ListInitializing = true;
3298 }
3299
3300 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3301 auto Info = getConstructorInfo(D);
3302 if (!Info)
3303 continue;
3304
3305 bool Usable = !Info.Constructor->isInvalidDecl();
3306 if (ListInitializing)
3307 Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3308 else
3309 Usable = Usable &&
3310 Info.Constructor->isConvertingConstructor(AllowExplicit);
3311 if (Usable) {
3312 bool SuppressUserConversions = !ConstructorsOnly;
3313 if (SuppressUserConversions && ListInitializing) {
3314 SuppressUserConversions = false;
3315 if (NumArgs == 1) {
3316 // If the first argument is (a reference to) the target type,
3317 // suppress conversions.
3318 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3319 S.Context, Info.Constructor, ToType);
3320 }
3321 }
3322 if (Info.ConstructorTmpl)
3323 S.AddTemplateOverloadCandidate(
3324 Info.ConstructorTmpl, Info.FoundDecl,
3325 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3326 CandidateSet, SuppressUserConversions);
3327 else
3328 // Allow one user-defined conversion when user specifies a
3329 // From->ToType conversion via an static cast (c-style, etc).
3330 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3331 llvm::makeArrayRef(Args, NumArgs),
3332 CandidateSet, SuppressUserConversions);
3333 }
3334 }
3335 }
3336 }
3337
3338 // Enumerate conversion functions, if we're allowed to.
3339 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3340 } else if (!S.isCompleteType(From->getLocStart(), From->getType())) {
3341 // No conversion functions from incomplete types.
3342 } else if (const RecordType *FromRecordType
3343 = From->getType()->getAs<RecordType>()) {
3344 if (CXXRecordDecl *FromRecordDecl
3345 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3346 // Add all of the conversion functions as candidates.
3347 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3348 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3349 DeclAccessPair FoundDecl = I.getPair();
3350 NamedDecl *D = FoundDecl.getDecl();
3351 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3352 if (isa<UsingShadowDecl>(D))
3353 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3354
3355 CXXConversionDecl *Conv;
3356 FunctionTemplateDecl *ConvTemplate;
3357 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3358 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3359 else
3360 Conv = cast<CXXConversionDecl>(D);
3361
3362 if (AllowExplicit || !Conv->isExplicit()) {
3363 if (ConvTemplate)
3364 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3365 ActingContext, From, ToType,
3366 CandidateSet,
3367 AllowObjCConversionOnExplicit);
3368 else
3369 S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3370 From, ToType, CandidateSet,
3371 AllowObjCConversionOnExplicit);
3372 }
3373 }
3374 }
3375 }
3376
3377 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3378
3379 OverloadCandidateSet::iterator Best;
3380 switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(),
3381 Best)) {
3382 case OR_Success:
3383 case OR_Deleted:
3384 // Record the standard conversion we used and the conversion function.
3385 if (CXXConstructorDecl *Constructor
3386 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3387 // C++ [over.ics.user]p1:
3388 // If the user-defined conversion is specified by a
3389 // constructor (12.3.1), the initial standard conversion
3390 // sequence converts the source type to the type required by
3391 // the argument of the constructor.
3392 //
3393 QualType ThisType = Constructor->getThisType(S.Context);
3394 if (isa<InitListExpr>(From)) {
3395 // Initializer lists don't have conversions as such.
3396 User.Before.setAsIdentityConversion();
3397 } else {
3398 if (Best->Conversions[0].isEllipsis())
3399 User.EllipsisConversion = true;
3400 else {
3401 User.Before = Best->Conversions[0].Standard;
3402 User.EllipsisConversion = false;
3403 }
3404 }
3405 User.HadMultipleCandidates = HadMultipleCandidates;
3406 User.ConversionFunction = Constructor;
3407 User.FoundConversionFunction = Best->FoundDecl;
3408 User.After.setAsIdentityConversion();
3409 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3410 User.After.setAllToTypes(ToType);
3411 return Result;
3412 }
3413 if (CXXConversionDecl *Conversion
3414 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3415 // C++ [over.ics.user]p1:
3416 //
3417 // [...] If the user-defined conversion is specified by a
3418 // conversion function (12.3.2), the initial standard
3419 // conversion sequence converts the source type to the
3420 // implicit object parameter of the conversion function.
3421 User.Before = Best->Conversions[0].Standard;
3422 User.HadMultipleCandidates = HadMultipleCandidates;
3423 User.ConversionFunction = Conversion;
3424 User.FoundConversionFunction = Best->FoundDecl;
3425 User.EllipsisConversion = false;
3426
3427 // C++ [over.ics.user]p2:
3428 // The second standard conversion sequence converts the
3429 // result of the user-defined conversion to the target type
3430 // for the sequence. Since an implicit conversion sequence
3431 // is an initialization, the special rules for
3432 // initialization by user-defined conversion apply when
3433 // selecting the best user-defined conversion for a
3434 // user-defined conversion sequence (see 13.3.3 and
3435 // 13.3.3.1).
3436 User.After = Best->FinalConversion;
3437 return Result;
3438 }
3439 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 3439)
;
3440
3441 case OR_No_Viable_Function:
3442 return OR_No_Viable_Function;
3443
3444 case OR_Ambiguous:
3445 return OR_Ambiguous;
3446 }
3447
3448 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 3448)
;
3449}
3450
3451bool
3452Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3453 ImplicitConversionSequence ICS;
3454 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3455 OverloadCandidateSet::CSK_Normal);
3456 OverloadingResult OvResult =
3457 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3458 CandidateSet, false, false);
3459 if (OvResult == OR_Ambiguous)
3460 Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
3461 << From->getType() << ToType << From->getSourceRange();
3462 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3463 if (!RequireCompleteType(From->getLocStart(), ToType,
3464 diag::err_typecheck_nonviable_condition_incomplete,
3465 From->getType(), From->getSourceRange()))
3466 Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
3467 << false << From->getType() << From->getSourceRange() << ToType;
3468 } else
3469 return false;
3470 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3471 return true;
3472}
3473
3474/// \brief Compare the user-defined conversion functions or constructors
3475/// of two user-defined conversion sequences to determine whether any ordering
3476/// is possible.
3477static ImplicitConversionSequence::CompareKind
3478compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3479 FunctionDecl *Function2) {
3480 if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
3481 return ImplicitConversionSequence::Indistinguishable;
3482
3483 // Objective-C++:
3484 // If both conversion functions are implicitly-declared conversions from
3485 // a lambda closure type to a function pointer and a block pointer,
3486 // respectively, always prefer the conversion to a function pointer,
3487 // because the function pointer is more lightweight and is more likely
3488 // to keep code working.
3489 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3490 if (!Conv1)
3491 return ImplicitConversionSequence::Indistinguishable;
3492
3493 CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3494 if (!Conv2)
3495 return ImplicitConversionSequence::Indistinguishable;
3496
3497 if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3498 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3499 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3500 if (Block1 != Block2)
3501 return Block1 ? ImplicitConversionSequence::Worse
3502 : ImplicitConversionSequence::Better;
3503 }
3504
3505 return ImplicitConversionSequence::Indistinguishable;
3506}
3507
3508static bool hasDeprecatedStringLiteralToCharPtrConversion(
3509 const ImplicitConversionSequence &ICS) {
3510 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3511 (ICS.isUserDefined() &&
3512 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3513}
3514
3515/// CompareImplicitConversionSequences - Compare two implicit
3516/// conversion sequences to determine whether one is better than the
3517/// other or if they are indistinguishable (C++ 13.3.3.2).
3518static ImplicitConversionSequence::CompareKind
3519CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3520 const ImplicitConversionSequence& ICS1,
3521 const ImplicitConversionSequence& ICS2)
3522{
3523 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3524 // conversion sequences (as defined in 13.3.3.1)
3525 // -- a standard conversion sequence (13.3.3.1.1) is a better
3526 // conversion sequence than a user-defined conversion sequence or
3527 // an ellipsis conversion sequence, and
3528 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3529 // conversion sequence than an ellipsis conversion sequence
3530 // (13.3.3.1.3).
3531 //
3532 // C++0x [over.best.ics]p10:
3533 // For the purpose of ranking implicit conversion sequences as
3534 // described in 13.3.3.2, the ambiguous conversion sequence is
3535 // treated as a user-defined sequence that is indistinguishable
3536 // from any other user-defined conversion sequence.
3537
3538 // String literal to 'char *' conversion has been deprecated in C++03. It has
3539 // been removed from C++11. We still accept this conversion, if it happens at
3540 // the best viable function. Otherwise, this conversion is considered worse
3541 // than ellipsis conversion. Consider this as an extension; this is not in the
3542 // standard. For example:
3543 //
3544 // int &f(...); // #1
3545 // void f(char*); // #2
3546 // void g() { int &r = f("foo"); }
3547 //
3548 // In C++03, we pick #2 as the best viable function.
3549 // In C++11, we pick #1 as the best viable function, because ellipsis
3550 // conversion is better than string-literal to char* conversion (since there
3551 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3552 // convert arguments, #2 would be the best viable function in C++11.
3553 // If the best viable function has this conversion, a warning will be issued
3554 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3555
3556 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3557 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3558 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3559 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3560 ? ImplicitConversionSequence::Worse
3561 : ImplicitConversionSequence::Better;
3562
3563 if (ICS1.getKindRank() < ICS2.getKindRank())
3564 return ImplicitConversionSequence::Better;
3565 if (ICS2.getKindRank() < ICS1.getKindRank())
3566 return ImplicitConversionSequence::Worse;
3567
3568 // The following checks require both conversion sequences to be of
3569 // the same kind.
3570 if (ICS1.getKind() != ICS2.getKind())
3571 return ImplicitConversionSequence::Indistinguishable;
3572
3573 ImplicitConversionSequence::CompareKind Result =
3574 ImplicitConversionSequence::Indistinguishable;
3575
3576 // Two implicit conversion sequences of the same form are
3577 // indistinguishable conversion sequences unless one of the
3578 // following rules apply: (C++ 13.3.3.2p3):
3579
3580 // List-initialization sequence L1 is a better conversion sequence than
3581 // list-initialization sequence L2 if:
3582 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3583 // if not that,
3584 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3585 // and N1 is smaller than N2.,
3586 // even if one of the other rules in this paragraph would otherwise apply.
3587 if (!ICS1.isBad()) {
3588 if (ICS1.isStdInitializerListElement() &&
3589 !ICS2.isStdInitializerListElement())
3590 return ImplicitConversionSequence::Better;
3591 if (!ICS1.isStdInitializerListElement() &&
3592 ICS2.isStdInitializerListElement())
3593 return ImplicitConversionSequence::Worse;
3594 }
3595
3596 if (ICS1.isStandard())
3597 // Standard conversion sequence S1 is a better conversion sequence than
3598 // standard conversion sequence S2 if [...]
3599 Result = CompareStandardConversionSequences(S, Loc,
3600 ICS1.Standard, ICS2.Standard);
3601 else if (ICS1.isUserDefined()) {
3602 // User-defined conversion sequence U1 is a better conversion
3603 // sequence than another user-defined conversion sequence U2 if
3604 // they contain the same user-defined conversion function or
3605 // constructor and if the second standard conversion sequence of
3606 // U1 is better than the second standard conversion sequence of
3607 // U2 (C++ 13.3.3.2p3).
3608 if (ICS1.UserDefined.ConversionFunction ==
3609 ICS2.UserDefined.ConversionFunction)
3610 Result = CompareStandardConversionSequences(S, Loc,
3611 ICS1.UserDefined.After,
3612 ICS2.UserDefined.After);
3613 else
3614 Result = compareConversionFunctions(S,
3615 ICS1.UserDefined.ConversionFunction,
3616 ICS2.UserDefined.ConversionFunction);
3617 }
3618
3619 return Result;
3620}
3621
3622static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3623 while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3624 Qualifiers Quals;
3625 T1 = Context.getUnqualifiedArrayType(T1, Quals);
3626 T2 = Context.getUnqualifiedArrayType(T2, Quals);
3627 }
3628
3629 return Context.hasSameUnqualifiedType(T1, T2);
3630}
3631
3632// Per 13.3.3.2p3, compare the given standard conversion sequences to
3633// determine if one is a proper subset of the other.
3634static ImplicitConversionSequence::CompareKind
3635compareStandardConversionSubsets(ASTContext &Context,
3636 const StandardConversionSequence& SCS1,
3637 const StandardConversionSequence& SCS2) {
3638 ImplicitConversionSequence::CompareKind Result
3639 = ImplicitConversionSequence::Indistinguishable;
3640
3641 // the identity conversion sequence is considered to be a subsequence of
3642 // any non-identity conversion sequence
3643 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3644 return ImplicitConversionSequence::Better;
3645 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3646 return ImplicitConversionSequence::Worse;
3647
3648 if (SCS1.Second != SCS2.Second) {
3649 if (SCS1.Second == ICK_Identity)
3650 Result = ImplicitConversionSequence::Better;
3651 else if (SCS2.Second == ICK_Identity)
3652 Result = ImplicitConversionSequence::Worse;
3653 else
3654 return ImplicitConversionSequence::Indistinguishable;
3655 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3656 return ImplicitConversionSequence::Indistinguishable;
3657
3658 if (SCS1.Third == SCS2.Third) {
3659 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3660 : ImplicitConversionSequence::Indistinguishable;
3661 }
3662
3663 if (SCS1.Third == ICK_Identity)
3664 return Result == ImplicitConversionSequence::Worse
3665 ? ImplicitConversionSequence::Indistinguishable
3666 : ImplicitConversionSequence::Better;
3667
3668 if (SCS2.Third == ICK_Identity)
3669 return Result == ImplicitConversionSequence::Better
3670 ? ImplicitConversionSequence::Indistinguishable
3671 : ImplicitConversionSequence::Worse;
3672
3673 return ImplicitConversionSequence::Indistinguishable;
3674}
3675
3676/// \brief Determine whether one of the given reference bindings is better
3677/// than the other based on what kind of bindings they are.
3678static bool
3679isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3680 const StandardConversionSequence &SCS2) {
3681 // C++0x [over.ics.rank]p3b4:
3682 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3683 // implicit object parameter of a non-static member function declared
3684 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3685 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3686 // lvalue reference to a function lvalue and S2 binds an rvalue
3687 // reference*.
3688 //
3689 // FIXME: Rvalue references. We're going rogue with the above edits,
3690 // because the semantics in the current C++0x working paper (N3225 at the
3691 // time of this writing) break the standard definition of std::forward
3692 // and std::reference_wrapper when dealing with references to functions.
3693 // Proposed wording changes submitted to CWG for consideration.
3694 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3695 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3696 return false;
3697
3698 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3699 SCS2.IsLvalueReference) ||
3700 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3701 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3702}
3703
3704/// CompareStandardConversionSequences - Compare two standard
3705/// conversion sequences to determine whether one is better than the
3706/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3707static ImplicitConversionSequence::CompareKind
3708CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3709 const StandardConversionSequence& SCS1,
3710 const StandardConversionSequence& SCS2)
3711{
3712 // Standard conversion sequence S1 is a better conversion sequence
3713 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3714
3715 // -- S1 is a proper subsequence of S2 (comparing the conversion
3716 // sequences in the canonical form defined by 13.3.3.1.1,
3717 // excluding any Lvalue Transformation; the identity conversion
3718 // sequence is considered to be a subsequence of any
3719 // non-identity conversion sequence) or, if not that,
3720 if (ImplicitConversionSequence::CompareKind CK
3721 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3722 return CK;
3723
3724 // -- the rank of S1 is better than the rank of S2 (by the rules
3725 // defined below), or, if not that,
3726 ImplicitConversionRank Rank1 = SCS1.getRank();
3727 ImplicitConversionRank Rank2 = SCS2.getRank();
3728 if (Rank1 < Rank2)
3729 return ImplicitConversionSequence::Better;
3730 else if (Rank2 < Rank1)
3731 return ImplicitConversionSequence::Worse;
3732
3733 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3734 // are indistinguishable unless one of the following rules
3735 // applies:
3736
3737 // A conversion that is not a conversion of a pointer, or
3738 // pointer to member, to bool is better than another conversion
3739 // that is such a conversion.
3740 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3741 return SCS2.isPointerConversionToBool()
3742 ? ImplicitConversionSequence::Better
3743 : ImplicitConversionSequence::Worse;
3744
3745 // C++ [over.ics.rank]p4b2:
3746 //
3747 // If class B is derived directly or indirectly from class A,
3748 // conversion of B* to A* is better than conversion of B* to
3749 // void*, and conversion of A* to void* is better than conversion
3750 // of B* to void*.
3751 bool SCS1ConvertsToVoid
3752 = SCS1.isPointerConversionToVoidPointer(S.Context);
3753 bool SCS2ConvertsToVoid
3754 = SCS2.isPointerConversionToVoidPointer(S.Context);
3755 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3756 // Exactly one of the conversion sequences is a conversion to
3757 // a void pointer; it's the worse conversion.
3758 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3759 : ImplicitConversionSequence::Worse;
3760 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3761 // Neither conversion sequence converts to a void pointer; compare
3762 // their derived-to-base conversions.
3763 if (ImplicitConversionSequence::CompareKind DerivedCK
3764 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3765 return DerivedCK;
3766 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3767 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3768 // Both conversion sequences are conversions to void
3769 // pointers. Compare the source types to determine if there's an
3770 // inheritance relationship in their sources.
3771 QualType FromType1 = SCS1.getFromType();
3772 QualType FromType2 = SCS2.getFromType();
3773
3774 // Adjust the types we're converting from via the array-to-pointer
3775 // conversion, if we need to.
3776 if (SCS1.First == ICK_Array_To_Pointer)
3777 FromType1 = S.Context.getArrayDecayedType(FromType1);
3778 if (SCS2.First == ICK_Array_To_Pointer)
3779 FromType2 = S.Context.getArrayDecayedType(FromType2);
3780
3781 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3782 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3783
3784 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3785 return ImplicitConversionSequence::Better;
3786 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3787 return ImplicitConversionSequence::Worse;
3788
3789 // Objective-C++: If one interface is more specific than the
3790 // other, it is the better one.
3791 const ObjCObjectPointerType* FromObjCPtr1
3792 = FromType1->getAs<ObjCObjectPointerType>();
3793 const ObjCObjectPointerType* FromObjCPtr2
3794 = FromType2->getAs<ObjCObjectPointerType>();
3795 if (FromObjCPtr1 && FromObjCPtr2) {
3796 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3797 FromObjCPtr2);
3798 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3799 FromObjCPtr1);
3800 if (AssignLeft != AssignRight) {
3801 return AssignLeft? ImplicitConversionSequence::Better
3802 : ImplicitConversionSequence::Worse;
3803 }
3804 }
3805 }
3806
3807 // Compare based on qualification conversions (C++ 13.3.3.2p3,
3808 // bullet 3).
3809 if (ImplicitConversionSequence::CompareKind QualCK
3810 = CompareQualificationConversions(S, SCS1, SCS2))
3811 return QualCK;
3812
3813 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3814 // Check for a better reference binding based on the kind of bindings.
3815 if (isBetterReferenceBindingKind(SCS1, SCS2))
3816 return ImplicitConversionSequence::Better;
3817 else if (isBetterReferenceBindingKind(SCS2, SCS1))
3818 return ImplicitConversionSequence::Worse;
3819
3820 // C++ [over.ics.rank]p3b4:
3821 // -- S1 and S2 are reference bindings (8.5.3), and the types to
3822 // which the references refer are the same type except for
3823 // top-level cv-qualifiers, and the type to which the reference
3824 // initialized by S2 refers is more cv-qualified than the type
3825 // to which the reference initialized by S1 refers.
3826 QualType T1 = SCS1.getToType(2);
3827 QualType T2 = SCS2.getToType(2);
3828 T1 = S.Context.getCanonicalType(T1);
3829 T2 = S.Context.getCanonicalType(T2);
3830 Qualifiers T1Quals, T2Quals;
3831 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3832 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3833 if (UnqualT1 == UnqualT2) {
3834 // Objective-C++ ARC: If the references refer to objects with different
3835 // lifetimes, prefer bindings that don't change lifetime.
3836 if (SCS1.ObjCLifetimeConversionBinding !=
3837 SCS2.ObjCLifetimeConversionBinding) {
3838 return SCS1.ObjCLifetimeConversionBinding
3839 ? ImplicitConversionSequence::Worse
3840 : ImplicitConversionSequence::Better;
3841 }
3842
3843 // If the type is an array type, promote the element qualifiers to the
3844 // type for comparison.
3845 if (isa<ArrayType>(T1) && T1Quals)
3846 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3847 if (isa<ArrayType>(T2) && T2Quals)
3848 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3849 if (T2.isMoreQualifiedThan(T1))
3850 return ImplicitConversionSequence::Better;
3851 else if (T1.isMoreQualifiedThan(T2))
3852 return ImplicitConversionSequence::Worse;
3853 }
3854 }
3855
3856 // In Microsoft mode, prefer an integral conversion to a
3857 // floating-to-integral conversion if the integral conversion
3858 // is between types of the same size.
3859 // For example:
3860 // void f(float);
3861 // void f(int);
3862 // int main {
3863 // long a;
3864 // f(a);
3865 // }
3866 // Here, MSVC will call f(int) instead of generating a compile error
3867 // as clang will do in standard mode.
3868 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3869 SCS2.Second == ICK_Floating_Integral &&
3870 S.Context.getTypeSize(SCS1.getFromType()) ==
3871 S.Context.getTypeSize(SCS1.getToType(2)))
3872 return ImplicitConversionSequence::Better;
3873
3874 return ImplicitConversionSequence::Indistinguishable;
3875}
3876
3877/// CompareQualificationConversions - Compares two standard conversion
3878/// sequences to determine whether they can be ranked based on their
3879/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3880static ImplicitConversionSequence::CompareKind
3881CompareQualificationConversions(Sema &S,
3882 const StandardConversionSequence& SCS1,
3883 const StandardConversionSequence& SCS2) {
3884 // C++ 13.3.3.2p3:
3885 // -- S1 and S2 differ only in their qualification conversion and
3886 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
3887 // cv-qualification signature of type T1 is a proper subset of
3888 // the cv-qualification signature of type T2, and S1 is not the
3889 // deprecated string literal array-to-pointer conversion (4.2).
3890 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3891 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3892 return ImplicitConversionSequence::Indistinguishable;
3893
3894 // FIXME: the example in the standard doesn't use a qualification
3895 // conversion (!)
3896 QualType T1 = SCS1.getToType(2);
3897 QualType T2 = SCS2.getToType(2);
3898 T1 = S.Context.getCanonicalType(T1);
3899 T2 = S.Context.getCanonicalType(T2);
3900 Qualifiers T1Quals, T2Quals;
3901 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3902 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3903
3904 // If the types are the same, we won't learn anything by unwrapped
3905 // them.
3906 if (UnqualT1 == UnqualT2)
3907 return ImplicitConversionSequence::Indistinguishable;
3908
3909 // If the type is an array type, promote the element qualifiers to the type
3910 // for comparison.
3911 if (isa<ArrayType>(T1) && T1Quals)
3912 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3913 if (isa<ArrayType>(T2) && T2Quals)
3914 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3915
3916 ImplicitConversionSequence::CompareKind Result
3917 = ImplicitConversionSequence::Indistinguishable;
3918
3919 // Objective-C++ ARC:
3920 // Prefer qualification conversions not involving a change in lifetime
3921 // to qualification conversions that do not change lifetime.
3922 if (SCS1.QualificationIncludesObjCLifetime !=
3923 SCS2.QualificationIncludesObjCLifetime) {
3924 Result = SCS1.QualificationIncludesObjCLifetime
3925 ? ImplicitConversionSequence::Worse
3926 : ImplicitConversionSequence::Better;
3927 }
3928
3929 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3930 // Within each iteration of the loop, we check the qualifiers to
3931 // determine if this still looks like a qualification
3932 // conversion. Then, if all is well, we unwrap one more level of
3933 // pointers or pointers-to-members and do it all again
3934 // until there are no more pointers or pointers-to-members left
3935 // to unwrap. This essentially mimics what
3936 // IsQualificationConversion does, but here we're checking for a
3937 // strict subset of qualifiers.
3938 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3939 // The qualifiers are the same, so this doesn't tell us anything
3940 // about how the sequences rank.
3941 ;
3942 else if (T2.isMoreQualifiedThan(T1)) {
3943 // T1 has fewer qualifiers, so it could be the better sequence.
3944 if (Result == ImplicitConversionSequence::Worse)
3945 // Neither has qualifiers that are a subset of the other's
3946 // qualifiers.
3947 return ImplicitConversionSequence::Indistinguishable;
3948
3949 Result = ImplicitConversionSequence::Better;
3950 } else if (T1.isMoreQualifiedThan(T2)) {
3951 // T2 has fewer qualifiers, so it could be the better sequence.
3952 if (Result == ImplicitConversionSequence::Better)
3953 // Neither has qualifiers that are a subset of the other's
3954 // qualifiers.
3955 return ImplicitConversionSequence::Indistinguishable;
3956
3957 Result = ImplicitConversionSequence::Worse;
3958 } else {
3959 // Qualifiers are disjoint.
3960 return ImplicitConversionSequence::Indistinguishable;
3961 }
3962
3963 // If the types after this point are equivalent, we're done.
3964 if (S.Context.hasSameUnqualifiedType(T1, T2))
3965 break;
3966 }
3967
3968 // Check that the winning standard conversion sequence isn't using
3969 // the deprecated string literal array to pointer conversion.
3970 switch (Result) {
3971 case ImplicitConversionSequence::Better:
3972 if (SCS1.DeprecatedStringLiteralToCharPtr)
3973 Result = ImplicitConversionSequence::Indistinguishable;
3974 break;
3975
3976 case ImplicitConversionSequence::Indistinguishable:
3977 break;
3978
3979 case ImplicitConversionSequence::Worse:
3980 if (SCS2.DeprecatedStringLiteralToCharPtr)
3981 Result = ImplicitConversionSequence::Indistinguishable;
3982 break;
3983 }
3984
3985 return Result;
3986}
3987
3988/// CompareDerivedToBaseConversions - Compares two standard conversion
3989/// sequences to determine whether they can be ranked based on their
3990/// various kinds of derived-to-base conversions (C++
3991/// [over.ics.rank]p4b3). As part of these checks, we also look at
3992/// conversions between Objective-C interface types.
3993static ImplicitConversionSequence::CompareKind
3994CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
3995 const StandardConversionSequence& SCS1,
3996 const StandardConversionSequence& SCS2) {
3997 QualType FromType1 = SCS1.getFromType();
3998 QualType ToType1 = SCS1.getToType(1);
3999 QualType FromType2 = SCS2.getFromType();
4000 QualType ToType2 = SCS2.getToType(1);
4001
4002 // Adjust the types we're converting from via the array-to-pointer
4003 // conversion, if we need to.
4004 if (SCS1.First == ICK_Array_To_Pointer)
4005 FromType1 = S.Context.getArrayDecayedType(FromType1);
4006 if (SCS2.First == ICK_Array_To_Pointer)
4007 FromType2 = S.Context.getArrayDecayedType(FromType2);
4008
4009 // Canonicalize all of the types.
4010 FromType1 = S.Context.getCanonicalType(FromType1);
4011 ToType1 = S.Context.getCanonicalType(ToType1);
4012 FromType2 = S.Context.getCanonicalType(FromType2);
4013 ToType2 = S.Context.getCanonicalType(ToType2);
4014
4015 // C++ [over.ics.rank]p4b3:
4016 //
4017 // If class B is derived directly or indirectly from class A and
4018 // class C is derived directly or indirectly from B,
4019 //
4020 // Compare based on pointer conversions.
4021 if (SCS1.Second == ICK_Pointer_Conversion &&
4022 SCS2.Second == ICK_Pointer_Conversion &&
4023 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4024 FromType1->isPointerType() && FromType2->isPointerType() &&
4025 ToType1->isPointerType() && ToType2->isPointerType()) {
4026 QualType FromPointee1
4027 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4028 QualType ToPointee1
4029 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4030 QualType FromPointee2
4031 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4032 QualType ToPointee2
4033 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
4034
4035 // -- conversion of C* to B* is better than conversion of C* to A*,
4036 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4037 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4038 return ImplicitConversionSequence::Better;
4039 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4040 return ImplicitConversionSequence::Worse;
4041 }
4042
4043 // -- conversion of B* to A* is better than conversion of C* to A*,
4044 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4045 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4046 return ImplicitConversionSequence::Better;
4047 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4048 return ImplicitConversionSequence::Worse;
4049 }
4050 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4051 SCS2.Second == ICK_Pointer_Conversion) {
4052 const ObjCObjectPointerType *FromPtr1
4053 = FromType1->getAs<ObjCObjectPointerType>();
4054 const ObjCObjectPointerType *FromPtr2
4055 = FromType2->getAs<ObjCObjectPointerType>();
4056 const ObjCObjectPointerType *ToPtr1
4057 = ToType1->getAs<ObjCObjectPointerType>();
4058 const ObjCObjectPointerType *ToPtr2
4059 = ToType2->getAs<ObjCObjectPointerType>();
4060
4061 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4062 // Apply the same conversion ranking rules for Objective-C pointer types
4063 // that we do for C++ pointers to class types. However, we employ the
4064 // Objective-C pseudo-subtyping relationship used for assignment of
4065 // Objective-C pointer types.
4066 bool FromAssignLeft
4067 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4068 bool FromAssignRight
4069 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4070 bool ToAssignLeft
4071 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4072 bool ToAssignRight
4073 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4074
4075 // A conversion to an a non-id object pointer type or qualified 'id'
4076 // type is better than a conversion to 'id'.
4077 if (ToPtr1->isObjCIdType() &&
4078 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4079 return ImplicitConversionSequence::Worse;
4080 if (ToPtr2->isObjCIdType() &&
4081 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4082 return ImplicitConversionSequence::Better;
4083
4084 // A conversion to a non-id object pointer type is better than a
4085 // conversion to a qualified 'id' type
4086 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4087 return ImplicitConversionSequence::Worse;
4088 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4089 return ImplicitConversionSequence::Better;
4090
4091 // A conversion to an a non-Class object pointer type or qualified 'Class'
4092 // type is better than a conversion to 'Class'.
4093 if (ToPtr1->isObjCClassType() &&
4094 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4095 return ImplicitConversionSequence::Worse;
4096 if (ToPtr2->isObjCClassType() &&
4097 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4098 return ImplicitConversionSequence::Better;
4099
4100 // A conversion to a non-Class object pointer type is better than a
4101 // conversion to a qualified 'Class' type.
4102 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4103 return ImplicitConversionSequence::Worse;
4104 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4105 return ImplicitConversionSequence::Better;
4106
4107 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4108 if (S.Context.hasSameType(FromType1, FromType2) &&
4109 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4110 (ToAssignLeft != ToAssignRight)) {
4111 if (FromPtr1->isSpecialized()) {
4112 // "conversion of B<A> * to B * is better than conversion of B * to
4113 // C *.
4114 bool IsFirstSame =
4115 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4116 bool IsSecondSame =
4117 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4118 if (IsFirstSame) {
4119 if (!IsSecondSame)
4120 return ImplicitConversionSequence::Better;
4121 } else if (IsSecondSame)
4122 return ImplicitConversionSequence::Worse;
4123 }
4124 return ToAssignLeft? ImplicitConversionSequence::Worse
4125 : ImplicitConversionSequence::Better;
4126 }
4127
4128 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4129 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4130 (FromAssignLeft != FromAssignRight))
4131 return FromAssignLeft? ImplicitConversionSequence::Better
4132 : ImplicitConversionSequence::Worse;
4133 }
4134 }
4135
4136 // Ranking of member-pointer types.
4137 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4138 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4139 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4140 const MemberPointerType * FromMemPointer1 =
4141 FromType1->getAs<MemberPointerType>();
4142 const MemberPointerType * ToMemPointer1 =
4143 ToType1->getAs<MemberPointerType>();
4144 const MemberPointerType * FromMemPointer2 =
4145 FromType2->getAs<MemberPointerType>();
4146 const MemberPointerType * ToMemPointer2 =
4147 ToType2->getAs<MemberPointerType>();
4148 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4149 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4150 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4151 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4152 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4153 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4154 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4155 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4156 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4157 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4158 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4159 return ImplicitConversionSequence::Worse;
4160 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4161 return ImplicitConversionSequence::Better;
4162 }
4163 // conversion of B::* to C::* is better than conversion of A::* to C::*
4164 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4165 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4166 return ImplicitConversionSequence::Better;
4167 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4168 return ImplicitConversionSequence::Worse;
4169 }
4170 }
4171
4172 if (SCS1.Second == ICK_Derived_To_Base) {
4173 // -- conversion of C to B is better than conversion of C to A,
4174 // -- binding of an expression of type C to a reference of type
4175 // B& is better than binding an expression of type C to a
4176 // reference of type A&,
4177 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4178 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4179 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4180 return ImplicitConversionSequence::Better;
4181 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4182 return ImplicitConversionSequence::Worse;
4183 }
4184
4185 // -- conversion of B to A is better than conversion of C to A.
4186 // -- binding of an expression of type B to a reference of type
4187 // A& is better than binding an expression of type C to a
4188 // reference of type A&,
4189 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4190 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4191 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4192 return ImplicitConversionSequence::Better;
4193 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4194 return ImplicitConversionSequence::Worse;
4195 }
4196 }
4197
4198 return ImplicitConversionSequence::Indistinguishable;
4199}
4200
4201/// \brief Determine whether the given type is valid, e.g., it is not an invalid
4202/// C++ class.
4203static bool isTypeValid(QualType T) {
4204 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4205 return !Record->isInvalidDecl();
4206
4207 return true;
4208}
4209
4210/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4211/// determine whether they are reference-related,
4212/// reference-compatible, reference-compatible with added
4213/// qualification, or incompatible, for use in C++ initialization by
4214/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4215/// type, and the first type (T1) is the pointee type of the reference
4216/// type being initialized.
4217Sema::ReferenceCompareResult
4218Sema::CompareReferenceRelationship(SourceLocation Loc,
4219 QualType OrigT1, QualType OrigT2,
4220 bool &DerivedToBase,
4221 bool &ObjCConversion,
4222 bool &ObjCLifetimeConversion) {
4223 assert(!OrigT1->isReferenceType() &&(static_cast <bool> (!OrigT1->isReferenceType() &&
"T1 must be the pointee type of the reference type") ? void (
0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4224, __extension__ __PRETTY_FUNCTION__))
4224 "T1 must be the pointee type of the reference type")(static_cast <bool> (!OrigT1->isReferenceType() &&
"T1 must be the pointee type of the reference type") ? void (
0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4224, __extension__ __PRETTY_FUNCTION__))
;
4225 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")(static_cast <bool> (!OrigT2->isReferenceType() &&
"T2 cannot be a reference type") ? void (0) : __assert_fail (
"!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4225, __extension__ __PRETTY_FUNCTION__))
;
4226
4227 QualType T1 = Context.getCanonicalType(OrigT1);
4228 QualType T2 = Context.getCanonicalType(OrigT2);
4229 Qualifiers T1Quals, T2Quals;
4230 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4231 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4232
4233 // C++ [dcl.init.ref]p4:
4234 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4235 // reference-related to "cv2 T2" if T1 is the same type as T2, or
4236 // T1 is a base class of T2.
4237 DerivedToBase = false;
4238 ObjCConversion = false;
4239 ObjCLifetimeConversion = false;
4240 QualType ConvertedT2;
4241 if (UnqualT1 == UnqualT2) {
4242 // Nothing to do.
4243 } else if (isCompleteType(Loc, OrigT2) &&
4244 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4245 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4246 DerivedToBase = true;
4247 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4248 UnqualT2->isObjCObjectOrInterfaceType() &&
4249 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4250 ObjCConversion = true;
4251 else if (UnqualT2->isFunctionType() &&
4252 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2))
4253 // C++1z [dcl.init.ref]p4:
4254 // cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept
4255 // function" and T1 is "function"
4256 //
4257 // We extend this to also apply to 'noreturn', so allow any function
4258 // conversion between function types.
4259 return Ref_Compatible;
4260 else
4261 return Ref_Incompatible;
4262
4263 // At this point, we know that T1 and T2 are reference-related (at
4264 // least).
4265
4266 // If the type is an array type, promote the element qualifiers to the type
4267 // for comparison.
4268 if (isa<ArrayType>(T1) && T1Quals)
4269 T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4270 if (isa<ArrayType>(T2) && T2Quals)
4271 T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4272
4273 // C++ [dcl.init.ref]p4:
4274 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4275 // reference-related to T2 and cv1 is the same cv-qualification
4276 // as, or greater cv-qualification than, cv2. For purposes of
4277 // overload resolution, cases for which cv1 is greater
4278 // cv-qualification than cv2 are identified as
4279 // reference-compatible with added qualification (see 13.3.3.2).
4280 //
4281 // Note that we also require equivalence of Objective-C GC and address-space
4282 // qualifiers when performing these computations, so that e.g., an int in
4283 // address space 1 is not reference-compatible with an int in address
4284 // space 2.
4285 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4286 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4287 if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4288 ObjCLifetimeConversion = true;
4289
4290 T1Quals.removeObjCLifetime();
4291 T2Quals.removeObjCLifetime();
4292 }
4293
4294 // MS compiler ignores __unaligned qualifier for references; do the same.
4295 T1Quals.removeUnaligned();
4296 T2Quals.removeUnaligned();
4297
4298 if (T1Quals.compatiblyIncludes(T2Quals))
4299 return Ref_Compatible;
4300 else
4301 return Ref_Related;
4302}
4303
4304/// \brief Look for a user-defined conversion to a value reference-compatible
4305/// with DeclType. Return true if something definite is found.
4306static bool
4307FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4308 QualType DeclType, SourceLocation DeclLoc,
4309 Expr *Init, QualType T2, bool AllowRvalues,
4310 bool AllowExplicit) {
4311 assert(T2->isRecordType() && "Can only find conversions of record types.")(static_cast <bool> (T2->isRecordType() && "Can only find conversions of record types."
) ? void (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4311, __extension__ __PRETTY_FUNCTION__))
;
4312 CXXRecordDecl *T2RecordDecl
4313 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4314
4315 OverloadCandidateSet CandidateSet(
4316 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4317 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4318 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4319 NamedDecl *D = *I;
4320 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4321 if (isa<UsingShadowDecl>(D))
4322 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4323
4324 FunctionTemplateDecl *ConvTemplate
4325 = dyn_cast<FunctionTemplateDecl>(D);
4326 CXXConversionDecl *Conv;
4327 if (ConvTemplate)
4328 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4329 else
4330 Conv = cast<CXXConversionDecl>(D);
4331
4332 // If this is an explicit conversion, and we're not allowed to consider
4333 // explicit conversions, skip it.
4334 if (!AllowExplicit && Conv->isExplicit())
4335 continue;
4336
4337 if (AllowRvalues) {
4338 bool DerivedToBase = false;
4339 bool ObjCConversion = false;
4340 bool ObjCLifetimeConversion = false;
4341
4342 // If we are initializing an rvalue reference, don't permit conversion
4343 // functions that return lvalues.
4344 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4345 const ReferenceType *RefType
4346 = Conv->getConversionType()->getAs<LValueReferenceType>();
4347 if (RefType && !RefType->getPointeeType()->isFunctionType())
4348 continue;
4349 }
4350
4351 if (!ConvTemplate &&
4352 S.CompareReferenceRelationship(
4353 DeclLoc,
4354 Conv->getConversionType().getNonReferenceType()
4355 .getUnqualifiedType(),
4356 DeclType.getNonReferenceType().getUnqualifiedType(),
4357 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4358 Sema::Ref_Incompatible)
4359 continue;
4360 } else {
4361 // If the conversion function doesn't return a reference type,
4362 // it can't be considered for this conversion. An rvalue reference
4363 // is only acceptable if its referencee is a function type.
4364
4365 const ReferenceType *RefType =
4366 Conv->getConversionType()->getAs<ReferenceType>();
4367 if (!RefType ||
4368 (!RefType->isLValueReferenceType() &&
4369 !RefType->getPointeeType()->isFunctionType()))
4370 continue;
4371 }
4372
4373 if (ConvTemplate)
4374 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4375 Init, DeclType, CandidateSet,
4376 /*AllowObjCConversionOnExplicit=*/false);
4377 else
4378 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4379 DeclType, CandidateSet,
4380 /*AllowObjCConversionOnExplicit=*/false);
4381 }
4382
4383 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4384
4385 OverloadCandidateSet::iterator Best;
4386 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4387 case OR_Success:
4388 // C++ [over.ics.ref]p1:
4389 //
4390 // [...] If the parameter binds directly to the result of
4391 // applying a conversion function to the argument
4392 // expression, the implicit conversion sequence is a
4393 // user-defined conversion sequence (13.3.3.1.2), with the
4394 // second standard conversion sequence either an identity
4395 // conversion or, if the conversion function returns an
4396 // entity of a type that is a derived class of the parameter
4397 // type, a derived-to-base Conversion.
4398 if (!Best->FinalConversion.DirectBinding)
4399 return false;
4400
4401 ICS.setUserDefined();
4402 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4403 ICS.UserDefined.After = Best->FinalConversion;
4404 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4405 ICS.UserDefined.ConversionFunction = Best->Function;
4406 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4407 ICS.UserDefined.EllipsisConversion = false;
4408 assert(ICS.UserDefined.After.ReferenceBinding &&(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding
&& ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!"
) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4410, __extension__ __PRETTY_FUNCTION__))
4409 ICS.UserDefined.After.DirectBinding &&(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding
&& ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!"
) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4410, __extension__ __PRETTY_FUNCTION__))
4410 "Expected a direct reference binding!")(static_cast <bool> (ICS.UserDefined.After.ReferenceBinding
&& ICS.UserDefined.After.DirectBinding && "Expected a direct reference binding!"
) ? void (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4410, __extension__ __PRETTY_FUNCTION__))
;
4411 return true;
4412
4413 case OR_Ambiguous:
4414 ICS.setAmbiguous();
4415 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4416 Cand != CandidateSet.end(); ++Cand)
4417 if (Cand->Viable)
4418 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4419 return true;
4420
4421 case OR_No_Viable_Function:
4422 case OR_Deleted:
4423 // There was no suitable conversion, or we found a deleted
4424 // conversion; continue with other checks.
4425 return false;
4426 }
4427
4428 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4428)
;
4429}
4430
4431/// \brief Compute an implicit conversion sequence for reference
4432/// initialization.
4433static ImplicitConversionSequence
4434TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4435 SourceLocation DeclLoc,
4436 bool SuppressUserConversions,
4437 bool AllowExplicit) {
4438 assert(DeclType->isReferenceType() && "Reference init needs a reference")(static_cast <bool> (DeclType->isReferenceType() &&
"Reference init needs a reference") ? void (0) : __assert_fail
("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4438, __extension__ __PRETTY_FUNCTION__))
;
4439
4440 // Most paths end in a failed conversion.
4441 ImplicitConversionSequence ICS;
4442 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4443
4444 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4445 QualType T2 = Init->getType();
4446
4447 // If the initializer is the address of an overloaded function, try
4448 // to resolve the overloaded function. If all goes well, T2 is the
4449 // type of the resulting function.
4450 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4451 DeclAccessPair Found;
4452 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4453 false, Found))
4454 T2 = Fn->getType();
4455 }
4456
4457 // Compute some basic properties of the types and the initializer.
4458 bool isRValRef = DeclType->isRValueReferenceType();
4459 bool DerivedToBase = false;
4460 bool ObjCConversion = false;
4461 bool ObjCLifetimeConversion = false;
4462 Expr::Classification InitCategory = Init->Classify(S.Context);
4463 Sema::ReferenceCompareResult RefRelationship
4464 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4465 ObjCConversion, ObjCLifetimeConversion);
4466
4467
4468 // C++0x [dcl.init.ref]p5:
4469 // A reference to type "cv1 T1" is initialized by an expression
4470 // of type "cv2 T2" as follows:
4471
4472 // -- If reference is an lvalue reference and the initializer expression
4473 if (!isRValRef) {
4474 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4475 // reference-compatible with "cv2 T2," or
4476 //
4477 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4478 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4479 // C++ [over.ics.ref]p1:
4480 // When a parameter of reference type binds directly (8.5.3)
4481 // to an argument expression, the implicit conversion sequence
4482 // is the identity conversion, unless the argument expression
4483 // has a type that is a derived class of the parameter type,
4484 // in which case the implicit conversion sequence is a
4485 // derived-to-base Conversion (13.3.3.1).
4486 ICS.setStandard();
4487 ICS.Standard.First = ICK_Identity;
4488 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4489 : ObjCConversion? ICK_Compatible_Conversion
4490 : ICK_Identity;
4491 ICS.Standard.Third = ICK_Identity;
4492 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4493 ICS.Standard.setToType(0, T2);
4494 ICS.Standard.setToType(1, T1);
4495 ICS.Standard.setToType(2, T1);
4496 ICS.Standard.ReferenceBinding = true;
4497 ICS.Standard.DirectBinding = true;
4498 ICS.Standard.IsLvalueReference = !isRValRef;
4499 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4500 ICS.Standard.BindsToRvalue = false;
4501 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4502 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4503 ICS.Standard.CopyConstructor = nullptr;
4504 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4505
4506 // Nothing more to do: the inaccessibility/ambiguity check for
4507 // derived-to-base conversions is suppressed when we're
4508 // computing the implicit conversion sequence (C++
4509 // [over.best.ics]p2).
4510 return ICS;
4511 }
4512
4513 // -- has a class type (i.e., T2 is a class type), where T1 is
4514 // not reference-related to T2, and can be implicitly
4515 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4516 // is reference-compatible with "cv3 T3" 92) (this
4517 // conversion is selected by enumerating the applicable
4518 // conversion functions (13.3.1.6) and choosing the best
4519 // one through overload resolution (13.3)),
4520 if (!SuppressUserConversions && T2->isRecordType() &&
4521 S.isCompleteType(DeclLoc, T2) &&
4522 RefRelationship == Sema::Ref_Incompatible) {
4523 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4524 Init, T2, /*AllowRvalues=*/false,
4525 AllowExplicit))
4526 return ICS;
4527 }
4528 }
4529
4530 // -- Otherwise, the reference shall be an lvalue reference to a
4531 // non-volatile const type (i.e., cv1 shall be const), or the reference
4532 // shall be an rvalue reference.
4533 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4534 return ICS;
4535
4536 // -- If the initializer expression
4537 //
4538 // -- is an xvalue, class prvalue, array prvalue or function
4539 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4540 if (RefRelationship == Sema::Ref_Compatible &&
4541 (InitCategory.isXValue() ||
4542 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4543 (InitCategory.isLValue() && T2->isFunctionType()))) {
4544 ICS.setStandard();
4545 ICS.Standard.First = ICK_Identity;
4546 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4547 : ObjCConversion? ICK_Compatible_Conversion
4548 : ICK_Identity;
4549 ICS.Standard.Third = ICK_Identity;
4550 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4551 ICS.Standard.setToType(0, T2);
4552 ICS.Standard.setToType(1, T1);
4553 ICS.Standard.setToType(2, T1);
4554 ICS.Standard.ReferenceBinding = true;
4555 // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4556 // binding unless we're binding to a class prvalue.
4557 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4558 // allow the use of rvalue references in C++98/03 for the benefit of
4559 // standard library implementors; therefore, we need the xvalue check here.
4560 ICS.Standard.DirectBinding =
4561 S.getLangOpts().CPlusPlus11 ||
4562 !(InitCategory.isPRValue() || T2->isRecordType());
4563 ICS.Standard.IsLvalueReference = !isRValRef;
4564 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4565 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4566 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4567 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4568 ICS.Standard.CopyConstructor = nullptr;
4569 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4570 return ICS;
4571 }
4572
4573 // -- has a class type (i.e., T2 is a class type), where T1 is not
4574 // reference-related to T2, and can be implicitly converted to
4575 // an xvalue, class prvalue, or function lvalue of type
4576 // "cv3 T3", where "cv1 T1" is reference-compatible with
4577 // "cv3 T3",
4578 //
4579 // then the reference is bound to the value of the initializer
4580 // expression in the first case and to the result of the conversion
4581 // in the second case (or, in either case, to an appropriate base
4582 // class subobject).
4583 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4584 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4585 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4586 Init, T2, /*AllowRvalues=*/true,
4587 AllowExplicit)) {
4588 // In the second case, if the reference is an rvalue reference
4589 // and the second standard conversion sequence of the
4590 // user-defined conversion sequence includes an lvalue-to-rvalue
4591 // conversion, the program is ill-formed.
4592 if (ICS.isUserDefined() && isRValRef &&
4593 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4594 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4595
4596 return ICS;
4597 }
4598
4599 // A temporary of function type cannot be created; don't even try.
4600 if (T1->isFunctionType())
4601 return ICS;
4602
4603 // -- Otherwise, a temporary of type "cv1 T1" is created and
4604 // initialized from the initializer expression using the
4605 // rules for a non-reference copy initialization (8.5). The
4606 // reference is then bound to the temporary. If T1 is
4607 // reference-related to T2, cv1 must be the same
4608 // cv-qualification as, or greater cv-qualification than,
4609 // cv2; otherwise, the program is ill-formed.
4610 if (RefRelationship == Sema::Ref_Related) {
4611 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4612 // we would be reference-compatible or reference-compatible with
4613 // added qualification. But that wasn't the case, so the reference
4614 // initialization fails.
4615 //
4616 // Note that we only want to check address spaces and cvr-qualifiers here.
4617 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4618 Qualifiers T1Quals = T1.getQualifiers();
4619 Qualifiers T2Quals = T2.getQualifiers();
4620 T1Quals.removeObjCGCAttr();
4621 T1Quals.removeObjCLifetime();
4622 T2Quals.removeObjCGCAttr();
4623 T2Quals.removeObjCLifetime();
4624 // MS compiler ignores __unaligned qualifier for references; do the same.
4625 T1Quals.removeUnaligned();
4626 T2Quals.removeUnaligned();
4627 if (!T1Quals.compatiblyIncludes(T2Quals))
4628 return ICS;
4629 }
4630
4631 // If at least one of the types is a class type, the types are not
4632 // related, and we aren't allowed any user conversions, the
4633 // reference binding fails. This case is important for breaking
4634 // recursion, since TryImplicitConversion below will attempt to
4635 // create a temporary through the use of a copy constructor.
4636 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4637 (T1->isRecordType() || T2->isRecordType()))
4638 return ICS;
4639
4640 // If T1 is reference-related to T2 and the reference is an rvalue
4641 // reference, the initializer expression shall not be an lvalue.
4642 if (RefRelationship >= Sema::Ref_Related &&
4643 isRValRef && Init->Classify(S.Context).isLValue())
4644 return ICS;
4645
4646 // C++ [over.ics.ref]p2:
4647 // When a parameter of reference type is not bound directly to
4648 // an argument expression, the conversion sequence is the one
4649 // required to convert the argument expression to the
4650 // underlying type of the reference according to
4651 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4652 // to copy-initializing a temporary of the underlying type with
4653 // the argument expression. Any difference in top-level
4654 // cv-qualification is subsumed by the initialization itself
4655 // and does not constitute a conversion.
4656 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4657 /*AllowExplicit=*/false,
4658 /*InOverloadResolution=*/false,
4659 /*CStyle=*/false,
4660 /*AllowObjCWritebackConversion=*/false,
4661 /*AllowObjCConversionOnExplicit=*/false);
4662
4663 // Of course, that's still a reference binding.
4664 if (ICS.isStandard()) {
4665 ICS.Standard.ReferenceBinding = true;
4666 ICS.Standard.IsLvalueReference = !isRValRef;
4667 ICS.Standard.BindsToFunctionLvalue = false;
4668 ICS.Standard.BindsToRvalue = true;
4669 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4670 ICS.Standard.ObjCLifetimeConversionBinding = false;
4671 } else if (ICS.isUserDefined()) {
4672 const ReferenceType *LValRefType =
4673 ICS.UserDefined.ConversionFunction->getReturnType()
4674 ->getAs<LValueReferenceType>();
4675
4676 // C++ [over.ics.ref]p3:
4677 // Except for an implicit object parameter, for which see 13.3.1, a
4678 // standard conversion sequence cannot be formed if it requires [...]
4679 // binding an rvalue reference to an lvalue other than a function
4680 // lvalue.
4681 // Note that the function case is not possible here.
4682 if (DeclType->isRValueReferenceType() && LValRefType) {
4683 // FIXME: This is the wrong BadConversionSequence. The problem is binding
4684 // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4685 // reference to an rvalue!
4686 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4687 return ICS;
4688 }
4689
4690 ICS.UserDefined.After.ReferenceBinding = true;
4691 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4692 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4693 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4694 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4695 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4696 }
4697
4698 return ICS;
4699}
4700
4701static ImplicitConversionSequence
4702TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4703 bool SuppressUserConversions,
4704 bool InOverloadResolution,
4705 bool AllowObjCWritebackConversion,
4706 bool AllowExplicit = false);
4707
4708/// TryListConversion - Try to copy-initialize a value of type ToType from the
4709/// initializer list From.
4710static ImplicitConversionSequence
4711TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4712 bool SuppressUserConversions,
4713 bool InOverloadResolution,
4714 bool AllowObjCWritebackConversion) {
4715 // C++11 [over.ics.list]p1:
4716 // When an argument is an initializer list, it is not an expression and
4717 // special rules apply for converting it to a parameter type.
4718
4719 ImplicitConversionSequence Result;
4720 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4721
4722 // We need a complete type for what follows. Incomplete types can never be
4723 // initialized from init lists.
4724 if (!S.isCompleteType(From->getLocStart(), ToType))
4725 return Result;
4726
4727 // Per DR1467:
4728 // If the parameter type is a class X and the initializer list has a single
4729 // element of type cv U, where U is X or a class derived from X, the
4730 // implicit conversion sequence is the one required to convert the element
4731 // to the parameter type.
4732 //
4733 // Otherwise, if the parameter type is a character array [... ]
4734 // and the initializer list has a single element that is an
4735 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4736 // implicit conversion sequence is the identity conversion.
4737 if (From->getNumInits() == 1) {
4738 if (ToType->isRecordType()) {
4739 QualType InitType = From->getInit(0)->getType();
4740 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4741 S.IsDerivedFrom(From->getLocStart(), InitType, ToType))
4742 return TryCopyInitialization(S, From->getInit(0), ToType,
4743 SuppressUserConversions,
4744 InOverloadResolution,
4745 AllowObjCWritebackConversion);
4746 }
4747 // FIXME: Check the other conditions here: array of character type,
4748 // initializer is a string literal.
4749 if (ToType->isArrayType()) {
4750 InitializedEntity Entity =
4751 InitializedEntity::InitializeParameter(S.Context, ToType,
4752 /*Consumed=*/false);
4753 if (S.CanPerformCopyInitialization(Entity, From)) {
4754 Result.setStandard();
4755 Result.Standard.setAsIdentityConversion();
4756 Result.Standard.setFromType(ToType);
4757 Result.Standard.setAllToTypes(ToType);
4758 return Result;
4759 }
4760 }
4761 }
4762
4763 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4764 // C++11 [over.ics.list]p2:
4765 // If the parameter type is std::initializer_list<X> or "array of X" and
4766 // all the elements can be implicitly converted to X, the implicit
4767 // conversion sequence is the worst conversion necessary to convert an
4768 // element of the list to X.
4769 //
4770 // C++14 [over.ics.list]p3:
4771 // Otherwise, if the parameter type is "array of N X", if the initializer
4772 // list has exactly N elements or if it has fewer than N elements and X is
4773 // default-constructible, and if all the elements of the initializer list
4774 // can be implicitly converted to X, the implicit conversion sequence is
4775 // the worst conversion necessary to convert an element of the list to X.
4776 //
4777 // FIXME: We're missing a lot of these checks.
4778 bool toStdInitializerList = false;
4779 QualType X;
4780 if (ToType->isArrayType())
4781 X = S.Context.getAsArrayType(ToType)->getElementType();
4782 else
4783 toStdInitializerList = S.isStdInitializerList(ToType, &X);
4784 if (!X.isNull()) {
4785 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4786 Expr *Init = From->getInit(i);
4787 ImplicitConversionSequence ICS =
4788 TryCopyInitialization(S, Init, X, SuppressUserConversions,
4789 InOverloadResolution,
4790 AllowObjCWritebackConversion);
4791 // If a single element isn't convertible, fail.
4792 if (ICS.isBad()) {
4793 Result = ICS;
4794 break;
4795 }
4796 // Otherwise, look for the worst conversion.
4797 if (Result.isBad() ||
4798 CompareImplicitConversionSequences(S, From->getLocStart(), ICS,
4799 Result) ==
4800 ImplicitConversionSequence::Worse)
4801 Result = ICS;
4802 }
4803
4804 // For an empty list, we won't have computed any conversion sequence.
4805 // Introduce the identity conversion sequence.
4806 if (From->getNumInits() == 0) {
4807 Result.setStandard();
4808 Result.Standard.setAsIdentityConversion();
4809 Result.Standard.setFromType(ToType);
4810 Result.Standard.setAllToTypes(ToType);
4811 }
4812
4813 Result.setStdInitializerListElement(toStdInitializerList);
4814 return Result;
4815 }
4816
4817 // C++14 [over.ics.list]p4:
4818 // C++11 [over.ics.list]p3:
4819 // Otherwise, if the parameter is a non-aggregate class X and overload
4820 // resolution chooses a single best constructor [...] the implicit
4821 // conversion sequence is a user-defined conversion sequence. If multiple
4822 // constructors are viable but none is better than the others, the
4823 // implicit conversion sequence is a user-defined conversion sequence.
4824 if (ToType->isRecordType() && !ToType->isAggregateType()) {
4825 // This function can deal with initializer lists.
4826 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4827 /*AllowExplicit=*/false,
4828 InOverloadResolution, /*CStyle=*/false,
4829 AllowObjCWritebackConversion,
4830 /*AllowObjCConversionOnExplicit=*/false);
4831 }
4832
4833 // C++14 [over.ics.list]p5:
4834 // C++11 [over.ics.list]p4:
4835 // Otherwise, if the parameter has an aggregate type which can be
4836 // initialized from the initializer list [...] the implicit conversion
4837 // sequence is a user-defined conversion sequence.
4838 if (ToType->isAggregateType()) {
4839 // Type is an aggregate, argument is an init list. At this point it comes
4840 // down to checking whether the initialization works.
4841 // FIXME: Find out whether this parameter is consumed or not.
4842 // FIXME: Expose SemaInit's aggregate initialization code so that we don't
4843 // need to call into the initialization code here; overload resolution
4844 // should not be doing that.
4845 InitializedEntity Entity =
4846 InitializedEntity::InitializeParameter(S.Context, ToType,
4847 /*Consumed=*/false);
4848 if (S.CanPerformCopyInitialization(Entity, From)) {
4849 Result.setUserDefined();
4850 Result.UserDefined.Before.setAsIdentityConversion();
4851 // Initializer lists don't have a type.
4852 Result.UserDefined.Before.setFromType(QualType());
4853 Result.UserDefined.Before.setAllToTypes(QualType());
4854
4855 Result.UserDefined.After.setAsIdentityConversion();
4856 Result.UserDefined.After.setFromType(ToType);
4857 Result.UserDefined.After.setAllToTypes(ToType);
4858 Result.UserDefined.ConversionFunction = nullptr;
4859 }
4860 return Result;
4861 }
4862
4863 // C++14 [over.ics.list]p6:
4864 // C++11 [over.ics.list]p5:
4865 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4866 if (ToType->isReferenceType()) {
4867 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4868 // mention initializer lists in any way. So we go by what list-
4869 // initialization would do and try to extrapolate from that.
4870
4871 QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4872
4873 // If the initializer list has a single element that is reference-related
4874 // to the parameter type, we initialize the reference from that.
4875 if (From->getNumInits() == 1) {
4876 Expr *Init = From->getInit(0);
4877
4878 QualType T2 = Init->getType();
4879
4880 // If the initializer is the address of an overloaded function, try
4881 // to resolve the overloaded function. If all goes well, T2 is the
4882 // type of the resulting function.
4883 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4884 DeclAccessPair Found;
4885 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4886 Init, ToType, false, Found))
4887 T2 = Fn->getType();
4888 }
4889
4890 // Compute some basic properties of the types and the initializer.
4891 bool dummy1 = false;
4892 bool dummy2 = false;
4893 bool dummy3 = false;
4894 Sema::ReferenceCompareResult RefRelationship
4895 = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4896 dummy2, dummy3);
4897
4898 if (RefRelationship >= Sema::Ref_Related) {
4899 return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
4900 SuppressUserConversions,
4901 /*AllowExplicit=*/false);
4902 }
4903 }
4904
4905 // Otherwise, we bind the reference to a temporary created from the
4906 // initializer list.
4907 Result = TryListConversion(S, From, T1, SuppressUserConversions,
4908 InOverloadResolution,
4909 AllowObjCWritebackConversion);
4910 if (Result.isFailure())
4911 return Result;
4912 assert(!Result.isEllipsis() &&(static_cast <bool> (!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? void (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4913, __extension__ __PRETTY_FUNCTION__))
4913 "Sub-initialization cannot result in ellipsis conversion.")(static_cast <bool> (!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? void (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 4913, __extension__ __PRETTY_FUNCTION__))
;
4914
4915 // Can we even bind to a temporary?
4916 if (ToType->isRValueReferenceType() ||
4917 (T1.isConstQualified() && !T1.isVolatileQualified())) {
4918 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4919 Result.UserDefined.After;
4920 SCS.ReferenceBinding = true;
4921 SCS.IsLvalueReference = ToType->isLValueReferenceType();
4922 SCS.BindsToRvalue = true;
4923 SCS.BindsToFunctionLvalue = false;
4924 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4925 SCS.ObjCLifetimeConversionBinding = false;
4926 } else
4927 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4928 From, ToType);
4929 return Result;
4930 }
4931
4932 // C++14 [over.ics.list]p7:
4933 // C++11 [over.ics.list]p6:
4934 // Otherwise, if the parameter type is not a class:
4935 if (!ToType->isRecordType()) {
4936 // - if the initializer list has one element that is not itself an
4937 // initializer list, the implicit conversion sequence is the one
4938 // required to convert the element to the parameter type.
4939 unsigned NumInits = From->getNumInits();
4940 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
4941 Result = TryCopyInitialization(S, From->getInit(0), ToType,
4942 SuppressUserConversions,
4943 InOverloadResolution,
4944 AllowObjCWritebackConversion);
4945 // - if the initializer list has no elements, the implicit conversion
4946 // sequence is the identity conversion.
4947 else if (NumInits == 0) {
4948 Result.setStandard();
4949 Result.Standard.setAsIdentityConversion();
4950 Result.Standard.setFromType(ToType);
4951 Result.Standard.setAllToTypes(ToType);
4952 }
4953 return Result;
4954 }
4955
4956 // C++14 [over.ics.list]p8:
4957 // C++11 [over.ics.list]p7:
4958 // In all cases other than those enumerated above, no conversion is possible
4959 return Result;
4960}
4961
4962/// TryCopyInitialization - Try to copy-initialize a value of type
4963/// ToType from the expression From. Return the implicit conversion
4964/// sequence required to pass this argument, which may be a bad
4965/// conversion sequence (meaning that the argument cannot be passed to
4966/// a parameter of this type). If @p SuppressUserConversions, then we
4967/// do not permit any user-defined conversion sequences.
4968static ImplicitConversionSequence
4969TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4970 bool SuppressUserConversions,
4971 bool InOverloadResolution,
4972 bool AllowObjCWritebackConversion,
4973 bool AllowExplicit) {
4974 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4975 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4976 InOverloadResolution,AllowObjCWritebackConversion);
4977
4978 if (ToType->isReferenceType())
4979 return TryReferenceInit(S, From, ToType,
4980 /*FIXME:*/From->getLocStart(),
4981 SuppressUserConversions,
4982 AllowExplicit);
4983
4984 return TryImplicitConversion(S, From, ToType,
4985 SuppressUserConversions,
4986 /*AllowExplicit=*/false,
4987 InOverloadResolution,
4988 /*CStyle=*/false,
4989 AllowObjCWritebackConversion,
4990 /*AllowObjCConversionOnExplicit=*/false);
4991}
4992
4993static bool TryCopyInitialization(const CanQualType FromQTy,
4994 const CanQualType ToQTy,
4995 Sema &S,
4996 SourceLocation Loc,
4997 ExprValueKind FromVK) {
4998 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4999 ImplicitConversionSequence ICS =
5000 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5001
5002 return !ICS.isBad();
5003}
5004
5005/// TryObjectArgumentInitialization - Try to initialize the object
5006/// parameter of the given member function (@c Method) from the
5007/// expression @p From.
5008static ImplicitConversionSequence
5009TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5010 Expr::Classification FromClassification,
5011 CXXMethodDecl *Method,
5012 CXXRecordDecl *ActingContext) {
5013 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5014 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5015 // const volatile object.
5016 unsigned Quals = isa<CXXDestructorDecl>(Method) ?
5017 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
5018 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals);
5019
5020 // Set up the conversion sequence as a "bad" conversion, to allow us
5021 // to exit early.
5022 ImplicitConversionSequence ICS;
5023
5024 // We need to have an object of class type.
5025 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5026 FromType = PT->getPointeeType();
5027
5028 // When we had a pointer, it's implicitly dereferenced, so we
5029 // better have an lvalue.
5030 assert(FromClassification.isLValue())(static_cast <bool> (FromClassification.isLValue()) ? void
(0) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5030, __extension__ __PRETTY_FUNCTION__))
;
5031 }
5032
5033 assert(FromType->isRecordType())(static_cast <bool> (FromType->isRecordType()) ? void
(0) : __assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5033, __extension__ __PRETTY_FUNCTION__))
;
5034
5035 // C++0x [over.match.funcs]p4:
5036 // For non-static member functions, the type of the implicit object
5037 // parameter is
5038 //
5039 // - "lvalue reference to cv X" for functions declared without a
5040 // ref-qualifier or with the & ref-qualifier
5041 // - "rvalue reference to cv X" for functions declared with the &&
5042 // ref-qualifier
5043 //
5044 // where X is the class of which the function is a member and cv is the
5045 // cv-qualification on the member function declaration.
5046 //
5047 // However, when finding an implicit conversion sequence for the argument, we
5048 // are not allowed to perform user-defined conversions
5049 // (C++ [over.match.funcs]p5). We perform a simplified version of
5050 // reference binding here, that allows class rvalues to bind to
5051 // non-constant references.
5052
5053 // First check the qualifiers.
5054 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5055 if (ImplicitParamType.getCVRQualifiers()
5056 != FromTypeCanon.getLocalCVRQualifiers() &&
5057 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5058 ICS.setBad(BadConversionSequence::bad_qualifiers,
5059 FromType, ImplicitParamType);
5060 return ICS;
5061 }
5062
5063 // Check that we have either the same type or a derived type. It
5064 // affects the conversion rank.
5065 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5066 ImplicitConversionKind SecondKind;
5067 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5068 SecondKind = ICK_Identity;
5069 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5070 SecondKind = ICK_Derived_To_Base;
5071 else {
5072 ICS.setBad(BadConversionSequence::unrelated_class,
5073 FromType, ImplicitParamType);
5074 return ICS;
5075 }
5076
5077 // Check the ref-qualifier.
5078 switch (Method->getRefQualifier()) {
5079 case RQ_None:
5080 // Do nothing; we don't care about lvalueness or rvalueness.
5081 break;
5082
5083 case RQ_LValue:
5084 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
5085 // non-const lvalue reference cannot bind to an rvalue
5086 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5087 ImplicitParamType);
5088 return ICS;
5089 }
5090 break;
5091
5092 case RQ_RValue:
5093 if (!FromClassification.isRValue()) {
5094 // rvalue reference cannot bind to an lvalue
5095 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5096 ImplicitParamType);
5097 return ICS;
5098 }
5099 break;
5100 }
5101
5102 // Success. Mark this as a reference binding.
5103 ICS.setStandard();
5104 ICS.Standard.setAsIdentityConversion();
5105 ICS.Standard.Second = SecondKind;
5106 ICS.Standard.setFromType(FromType);
5107 ICS.Standard.setAllToTypes(ImplicitParamType);
5108 ICS.Standard.ReferenceBinding = true;
5109 ICS.Standard.DirectBinding = true;
5110 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5111 ICS.Standard.BindsToFunctionLvalue = false;
5112 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5113 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5114 = (Method->getRefQualifier() == RQ_None);
5115 return ICS;
5116}
5117
5118/// PerformObjectArgumentInitialization - Perform initialization of
5119/// the implicit object parameter for the given Method with the given
5120/// expression.
5121ExprResult
5122Sema::PerformObjectArgumentInitialization(Expr *From,
5123 NestedNameSpecifier *Qualifier,
5124 NamedDecl *FoundDecl,
5125 CXXMethodDecl *Method) {
5126 QualType FromRecordType, DestType;
5127 QualType ImplicitParamRecordType =
5128 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
5129
5130 Expr::Classification FromClassification;
5131 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5132 FromRecordType = PT->getPointeeType();
5133 DestType = Method->getThisType(Context);
5134 FromClassification = Expr::Classification::makeSimpleLValue();
5135 } else {
5136 FromRecordType = From->getType();
5137 DestType = ImplicitParamRecordType;
5138 FromClassification = From->Classify(Context);
5139 }
5140
5141 // Note that we always use the true parent context when performing
5142 // the actual argument initialization.
5143 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5144 *this, From->getLocStart(), From->getType(), FromClassification, Method,
5145 Method->getParent());
5146 if (ICS.isBad()) {
5147 switch (ICS.Bad.Kind) {
5148 case BadConversionSequence::bad_qualifiers: {
5149 Qualifiers FromQs = FromRecordType.getQualifiers();
5150 Qualifiers ToQs = DestType.getQualifiers();
5151 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5152 if (CVR) {
5153 Diag(From->getLocStart(),
5154 diag::err_member_function_call_bad_cvr)
5155 << Method->getDeclName() << FromRecordType << (CVR - 1)
5156 << From->getSourceRange();
5157 Diag(Method->getLocation(), diag::note_previous_decl)
5158 << Method->getDeclName();
5159 return ExprError();
5160 }
5161 break;
5162 }
5163
5164 case BadConversionSequence::lvalue_ref_to_rvalue:
5165 case BadConversionSequence::rvalue_ref_to_lvalue: {
5166 bool IsRValueQualified =
5167 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5168 Diag(From->getLocStart(), diag::err_member_function_call_bad_ref)
5169 << Method->getDeclName() << FromClassification.isRValue()
5170 << IsRValueQualified;
5171 Diag(Method->getLocation(), diag::note_previous_decl)
5172 << Method->getDeclName();
5173 return ExprError();
5174 }
5175
5176 case BadConversionSequence::no_conversion:
5177 case BadConversionSequence::unrelated_class:
5178 break;
5179 }
5180
5181 return Diag(From->getLocStart(),
5182 diag::err_member_function_call_bad_type)
5183 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
5184 }
5185
5186 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5187 ExprResult FromRes =
5188 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5189 if (FromRes.isInvalid())
5190 return ExprError();
5191 From = FromRes.get();
5192 }
5193
5194 if (!Context.hasSameType(From->getType(), DestType))
5195 From = ImpCastExprToType(From, DestType, CK_NoOp,
5196 From->getValueKind()).get();
5197 return From;
5198}
5199
5200/// TryContextuallyConvertToBool - Attempt to contextually convert the
5201/// expression From to bool (C++0x [conv]p3).
5202static ImplicitConversionSequence
5203TryContextuallyConvertToBool(Sema &S, Expr *From) {
5204 return TryImplicitConversion(S, From, S.Context.BoolTy,
5205 /*SuppressUserConversions=*/false,
5206 /*AllowExplicit=*/true,
5207 /*InOverloadResolution=*/false,
5208 /*CStyle=*/false,
5209 /*AllowObjCWritebackConversion=*/false,
5210 /*AllowObjCConversionOnExplicit=*/false);
5211}
5212
5213/// PerformContextuallyConvertToBool - Perform a contextual conversion
5214/// of the expression From to bool (C++0x [conv]p3).
5215ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5216 if (checkPlaceholderForOverload(*this, From))
5217 return ExprError();
5218
5219 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5220 if (!ICS.isBad())
5221 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5222
5223 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5224 return Diag(From->getLocStart(),
5225 diag::err_typecheck_bool_condition)
5226 << From->getType() << From->getSourceRange();
5227 return ExprError();
5228}
5229
5230/// Check that the specified conversion is permitted in a converted constant
5231/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5232/// is acceptable.
5233static bool CheckConvertedConstantConversions(Sema &S,
5234 StandardConversionSequence &SCS) {
5235 // Since we know that the target type is an integral or unscoped enumeration
5236 // type, most conversion kinds are impossible. All possible First and Third
5237 // conversions are fine.
5238 switch (SCS.Second) {
5239 case ICK_Identity:
5240 case ICK_Function_Conversion:
5241 case ICK_Integral_Promotion:
5242 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5243 case ICK_Zero_Queue_Conversion:
5244 return true;
5245
5246 case ICK_Boolean_Conversion:
5247 // Conversion from an integral or unscoped enumeration type to bool is
5248 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5249 // conversion, so we allow it in a converted constant expression.
5250 //
5251 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5252 // a lot of popular code. We should at least add a warning for this
5253 // (non-conforming) extension.
5254 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5255 SCS.getToType(2)->isBooleanType();
5256
5257 case ICK_Pointer_Conversion:
5258 case ICK_Pointer_Member:
5259 // C++1z: null pointer conversions and null member pointer conversions are
5260 // only permitted if the source type is std::nullptr_t.
5261 return SCS.getFromType()->isNullPtrType();
5262
5263 case ICK_Floating_Promotion:
5264 case ICK_Complex_Promotion:
5265 case ICK_Floating_Conversion:
5266 case ICK_Complex_Conversion:
5267 case ICK_Floating_Integral:
5268 case ICK_Compatible_Conversion:
5269 case ICK_Derived_To_Base:
5270 case ICK_Vector_Conversion:
5271 case ICK_Vector_Splat:
5272 case ICK_Complex_Real:
5273 case ICK_Block_Pointer_Conversion:
5274 case ICK_TransparentUnionConversion:
5275 case ICK_Writeback_Conversion:
5276 case ICK_Zero_Event_Conversion:
5277 case ICK_C_Only_Conversion:
5278 case ICK_Incompatible_Pointer_Conversion:
5279 return false;
5280
5281 case ICK_Lvalue_To_Rvalue:
5282 case ICK_Array_To_Pointer:
5283 case ICK_Function_To_Pointer:
5284 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5284)
;
5285
5286 case ICK_Qualification:
5287 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5287)
;
5288
5289 case ICK_Num_Conversion_Kinds:
5290 break;
5291 }
5292
5293 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5293)
;
5294}
5295
5296/// CheckConvertedConstantExpression - Check that the expression From is a
5297/// converted constant expression of type T, perform the conversion and produce
5298/// the converted expression, per C++11 [expr.const]p3.
5299static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5300 QualType T, APValue &Value,
5301 Sema::CCEKind CCE,
5302 bool RequireInt) {
5303 assert(S.getLangOpts().CPlusPlus11 &&(static_cast <bool> (S.getLangOpts().CPlusPlus11 &&
"converted constant expression outside C++11") ? void (0) : __assert_fail
("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5304, __extension__ __PRETTY_FUNCTION__))
5304 "converted constant expression outside C++11")(static_cast <bool> (S.getLangOpts().CPlusPlus11 &&
"converted constant expression outside C++11") ? void (0) : __assert_fail
("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5304, __extension__ __PRETTY_FUNCTION__))
;
5305
5306 if (checkPlaceholderForOverload(S, From))
5307 return ExprError();
5308
5309 // C++1z [expr.const]p3:
5310 // A converted constant expression of type T is an expression,
5311 // implicitly converted to type T, where the converted
5312 // expression is a constant expression and the implicit conversion
5313 // sequence contains only [... list of conversions ...].
5314 // C++1z [stmt.if]p2:
5315 // If the if statement is of the form if constexpr, the value of the
5316 // condition shall be a contextually converted constant expression of type
5317 // bool.
5318 ImplicitConversionSequence ICS =
5319 CCE == Sema::CCEK_ConstexprIf
5320 ? TryContextuallyConvertToBool(S, From)
5321 : TryCopyInitialization(S, From, T,
5322 /*SuppressUserConversions=*/false,
5323 /*InOverloadResolution=*/false,
5324 /*AllowObjcWritebackConversion=*/false,
5325 /*AllowExplicit=*/false);
5326 StandardConversionSequence *SCS = nullptr;
5327 switch (ICS.getKind()) {
5328 case ImplicitConversionSequence::StandardConversion:
5329 SCS = &ICS.Standard;
5330 break;
5331 case ImplicitConversionSequence::UserDefinedConversion:
5332 // We are converting to a non-class type, so the Before sequence
5333 // must be trivial.
5334 SCS = &ICS.UserDefined.After;
5335 break;
5336 case ImplicitConversionSequence::AmbiguousConversion:
5337 case ImplicitConversionSequence::BadConversion:
5338 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5339 return S.Diag(From->getLocStart(),
5340 diag::err_typecheck_converted_constant_expression)
5341 << From->getType() << From->getSourceRange() << T;
5342 return ExprError();
5343
5344 case ImplicitConversionSequence::EllipsisConversion:
5345 llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5345)
;
5346 }
5347
5348 // Check that we would only use permitted conversions.
5349 if (!CheckConvertedConstantConversions(S, *SCS)) {
5350 return S.Diag(From->getLocStart(),
5351 diag::err_typecheck_converted_constant_expression_disallowed)
5352 << From->getType() << From->getSourceRange() << T;
5353 }
5354 // [...] and where the reference binding (if any) binds directly.
5355 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5356 return S.Diag(From->getLocStart(),
5357 diag::err_typecheck_converted_constant_expression_indirect)
5358 << From->getType() << From->getSourceRange() << T;
5359 }
5360
5361 ExprResult Result =
5362 S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5363 if (Result.isInvalid())
5364 return Result;
5365
5366 // Check for a narrowing implicit conversion.
5367 APValue PreNarrowingValue;
5368 QualType PreNarrowingType;
5369 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5370 PreNarrowingType)) {
5371 case NK_Dependent_Narrowing:
5372 // Implicit conversion to a narrower type, but the expression is
5373 // value-dependent so we can't tell whether it's actually narrowing.
5374 case NK_Variable_Narrowing:
5375 // Implicit conversion to a narrower type, and the value is not a constant
5376 // expression. We'll diagnose this in a moment.
5377 case NK_Not_Narrowing:
5378 break;
5379
5380 case NK_Constant_Narrowing:
5381 S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5382 << CCE << /*Constant*/1
5383 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5384 break;
5385
5386 case NK_Type_Narrowing:
5387 S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5388 << CCE << /*Constant*/0 << From->getType() << T;
5389 break;
5390 }
5391
5392 if (Result.get()->isValueDependent()) {
5393 Value = APValue();
5394 return Result;
5395 }
5396
5397 // Check the expression is a constant expression.
5398 SmallVector<PartialDiagnosticAt, 8> Notes;
5399 Expr::EvalResult Eval;
5400 Eval.Diag = &Notes;
5401
5402 if ((T->isReferenceType()
5403 ? !Result.get()->EvaluateAsLValue(Eval, S.Context)
5404 : !Result.get()->EvaluateAsRValue(Eval, S.Context)) ||
5405 (RequireInt && !Eval.Val.isInt())) {
5406 // The expression can't be folded, so we can't keep it at this position in
5407 // the AST.
5408 Result = ExprError();
5409 } else {
5410 Value = Eval.Val;
5411
5412 if (Notes.empty()) {
5413 // It's a constant expression.
5414 return Result;
5415 }
5416 }
5417
5418 // It's not a constant expression. Produce an appropriate diagnostic.
5419 if (Notes.size() == 1 &&
5420 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5421 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5422 else {
5423 S.Diag(From->getLocStart(), diag::err_expr_not_cce)
5424 << CCE << From->getSourceRange();
5425 for (unsigned I = 0; I < Notes.size(); ++I)
5426 S.Diag(Notes[I].first, Notes[I].second);
5427 }
5428 return ExprError();
5429}
5430
5431ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5432 APValue &Value, CCEKind CCE) {
5433 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5434}
5435
5436ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5437 llvm::APSInt &Value,
5438 CCEKind CCE) {
5439 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")(static_cast <bool> (T->isIntegralOrEnumerationType(
) && "unexpected converted const type") ? void (0) : __assert_fail
("T->isIntegralOrEnumerationType() && \"unexpected converted const type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5439, __extension__ __PRETTY_FUNCTION__))
;
5440
5441 APValue V;
5442 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5443 if (!R.isInvalid() && !R.get()->isValueDependent())
5444 Value = V.getInt();
5445 return R;
5446}
5447
5448
5449/// dropPointerConversions - If the given standard conversion sequence
5450/// involves any pointer conversions, remove them. This may change
5451/// the result type of the conversion sequence.
5452static void dropPointerConversion(StandardConversionSequence &SCS) {
5453 if (SCS.Second == ICK_Pointer_Conversion) {
5454 SCS.Second = ICK_Identity;
5455 SCS.Third = ICK_Identity;
5456 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5457 }
5458}
5459
5460/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5461/// convert the expression From to an Objective-C pointer type.
5462static ImplicitConversionSequence
5463TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5464 // Do an implicit conversion to 'id'.
5465 QualType Ty = S.Context.getObjCIdType();
5466 ImplicitConversionSequence ICS
5467 = TryImplicitConversion(S, From, Ty,
5468 // FIXME: Are these flags correct?
5469 /*SuppressUserConversions=*/false,
5470 /*AllowExplicit=*/true,
5471 /*InOverloadResolution=*/false,
5472 /*CStyle=*/false,
5473 /*AllowObjCWritebackConversion=*/false,
5474 /*AllowObjCConversionOnExplicit=*/true);
5475
5476 // Strip off any final conversions to 'id'.
5477 switch (ICS.getKind()) {
5478 case ImplicitConversionSequence::BadConversion:
5479 case ImplicitConversionSequence::AmbiguousConversion:
5480 case ImplicitConversionSequence::EllipsisConversion:
5481 break;
5482
5483 case ImplicitConversionSequence::UserDefinedConversion:
5484 dropPointerConversion(ICS.UserDefined.After);
5485 break;
5486
5487 case ImplicitConversionSequence::StandardConversion:
5488 dropPointerConversion(ICS.Standard);
5489 break;
5490 }
5491
5492 return ICS;
5493}
5494
5495/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5496/// conversion of the expression From to an Objective-C pointer type.
5497/// Returns a valid but null ExprResult if no conversion sequence exists.
5498ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5499 if (checkPlaceholderForOverload(*this, From))
5500 return ExprError();
5501
5502 QualType Ty = Context.getObjCIdType();
5503 ImplicitConversionSequence ICS =
5504 TryContextuallyConvertToObjCPointer(*this, From);
5505 if (!ICS.isBad())
5506 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5507 return ExprResult();
5508}
5509
5510/// Determine whether the provided type is an integral type, or an enumeration
5511/// type of a permitted flavor.
5512bool Sema::ICEConvertDiagnoser::match(QualType T) {
5513 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5514 : T->isIntegralOrUnscopedEnumerationType();
5515}
5516
5517static ExprResult
5518diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5519 Sema::ContextualImplicitConverter &Converter,
5520 QualType T, UnresolvedSetImpl &ViableConversions) {
5521
5522 if (Converter.Suppress)
5523 return ExprError();
5524
5525 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5526 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5527 CXXConversionDecl *Conv =
5528 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5529 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5530 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5531 }
5532 return From;
5533}
5534
5535static bool
5536diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5537 Sema::ContextualImplicitConverter &Converter,
5538 QualType T, bool HadMultipleCandidates,
5539 UnresolvedSetImpl &ExplicitConversions) {
5540 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5541 DeclAccessPair Found = ExplicitConversions[0];
5542 CXXConversionDecl *Conversion =
5543 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5544
5545 // The user probably meant to invoke the given explicit
5546 // conversion; use it.
5547 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5548 std::string TypeStr;
5549 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5550
5551 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5552 << FixItHint::CreateInsertion(From->getLocStart(),
5553 "static_cast<" + TypeStr + ">(")
5554 << FixItHint::CreateInsertion(
5555 SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
5556 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5557
5558 // If we aren't in a SFINAE context, build a call to the
5559 // explicit conversion function.
5560 if (SemaRef.isSFINAEContext())
5561 return true;
5562
5563 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5564 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5565 HadMultipleCandidates);
5566 if (Result.isInvalid())
5567 return true;
5568 // Record usage of conversion in an implicit cast.
5569 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5570 CK_UserDefinedConversion, Result.get(),
5571 nullptr, Result.get()->getValueKind());
5572 }
5573 return false;
5574}
5575
5576static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5577 Sema::ContextualImplicitConverter &Converter,
5578 QualType T, bool HadMultipleCandidates,
5579 DeclAccessPair &Found) {
5580 CXXConversionDecl *Conversion =
5581 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5582 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5583
5584 QualType ToType = Conversion->getConversionType().getNonReferenceType();
5585 if (!Converter.SuppressConversion) {
5586 if (SemaRef.isSFINAEContext())
5587 return true;
5588
5589 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5590 << From->getSourceRange();
5591 }
5592
5593 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5594 HadMultipleCandidates);
5595 if (Result.isInvalid())
5596 return true;
5597 // Record usage of conversion in an implicit cast.
5598 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5599 CK_UserDefinedConversion, Result.get(),
5600 nullptr, Result.get()->getValueKind());
5601 return false;
5602}
5603
5604static ExprResult finishContextualImplicitConversion(
5605 Sema &SemaRef, SourceLocation Loc, Expr *From,
5606 Sema::ContextualImplicitConverter &Converter) {
5607 if (!Converter.match(From->getType()) && !Converter.Suppress)
5608 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5609 << From->getSourceRange();
5610
5611 return SemaRef.DefaultLvalueConversion(From);
5612}
5613
5614static void
5615collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5616 UnresolvedSetImpl &ViableConversions,
5617 OverloadCandidateSet &CandidateSet) {
5618 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5619 DeclAccessPair FoundDecl = ViableConversions[I];
5620 NamedDecl *D = FoundDecl.getDecl();
5621 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5622 if (isa<UsingShadowDecl>(D))
5623 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5624
5625 CXXConversionDecl *Conv;
5626 FunctionTemplateDecl *ConvTemplate;
5627 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5628 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5629 else
5630 Conv = cast<CXXConversionDecl>(D);
5631
5632 if (ConvTemplate)
5633 SemaRef.AddTemplateConversionCandidate(
5634 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5635 /*AllowObjCConversionOnExplicit=*/false);
5636 else
5637 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5638 ToType, CandidateSet,
5639 /*AllowObjCConversionOnExplicit=*/false);
5640 }
5641}
5642
5643/// \brief Attempt to convert the given expression to a type which is accepted
5644/// by the given converter.
5645///
5646/// This routine will attempt to convert an expression of class type to a
5647/// type accepted by the specified converter. In C++11 and before, the class
5648/// must have a single non-explicit conversion function converting to a matching
5649/// type. In C++1y, there can be multiple such conversion functions, but only
5650/// one target type.
5651///
5652/// \param Loc The source location of the construct that requires the
5653/// conversion.
5654///
5655/// \param From The expression we're converting from.
5656///
5657/// \param Converter Used to control and diagnose the conversion process.
5658///
5659/// \returns The expression, converted to an integral or enumeration type if
5660/// successful.
5661ExprResult Sema::PerformContextualImplicitConversion(
5662 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5663 // We can't perform any more checking for type-dependent expressions.
5664 if (From->isTypeDependent())
5665 return From;
5666
5667 // Process placeholders immediately.
5668 if (From->hasPlaceholderType()) {
5669 ExprResult result = CheckPlaceholderExpr(From);
5670 if (result.isInvalid())
5671 return result;
5672 From = result.get();
5673 }
5674
5675 // If the expression already has a matching type, we're golden.
5676 QualType T = From->getType();
5677 if (Converter.match(T))
5678 return DefaultLvalueConversion(From);
5679
5680 // FIXME: Check for missing '()' if T is a function type?
5681
5682 // We can only perform contextual implicit conversions on objects of class
5683 // type.
5684 const RecordType *RecordTy = T->getAs<RecordType>();
5685 if (!RecordTy || !getLangOpts().CPlusPlus) {
5686 if (!Converter.Suppress)
5687 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5688 return From;
5689 }
5690
5691 // We must have a complete class type.
5692 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5693 ContextualImplicitConverter &Converter;
5694 Expr *From;
5695
5696 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5697 : Converter(Converter), From(From) {}
5698
5699 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5700 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5701 }
5702 } IncompleteDiagnoser(Converter, From);
5703
5704 if (Converter.Suppress ? !isCompleteType(Loc, T)
5705 : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5706 return From;
5707
5708 // Look for a conversion to an integral or enumeration type.
5709 UnresolvedSet<4>
5710 ViableConversions; // These are *potentially* viable in C++1y.
5711 UnresolvedSet<4> ExplicitConversions;
5712 const auto &Conversions =
5713 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5714
5715 bool HadMultipleCandidates =
5716 (std::distance(Conversions.begin(), Conversions.end()) > 1);
5717
5718 // To check that there is only one target type, in C++1y:
5719 QualType ToType;
5720 bool HasUniqueTargetType = true;
5721
5722 // Collect explicit or viable (potentially in C++1y) conversions.
5723 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5724 NamedDecl *D = (*I)->getUnderlyingDecl();
5725 CXXConversionDecl *Conversion;
5726 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5727 if (ConvTemplate) {
5728 if (getLangOpts().CPlusPlus14)
5729 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5730 else
5731 continue; // C++11 does not consider conversion operator templates(?).
5732 } else
5733 Conversion = cast<CXXConversionDecl>(D);
5734
5735 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&(static_cast <bool> ((!ConvTemplate || getLangOpts().CPlusPlus14
) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? void (0) : __assert_fail ("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5737, __extension__ __PRETTY_FUNCTION__))
5736 "Conversion operator templates are considered potentially "(static_cast <bool> ((!ConvTemplate || getLangOpts().CPlusPlus14
) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? void (0) : __assert_fail ("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5737, __extension__ __PRETTY_FUNCTION__))
5737 "viable in C++1y")(static_cast <bool> ((!ConvTemplate || getLangOpts().CPlusPlus14
) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? void (0) : __assert_fail ("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5737, __extension__ __PRETTY_FUNCTION__))
;
5738
5739 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5740 if (Converter.match(CurToType) || ConvTemplate) {
5741
5742 if (Conversion->isExplicit()) {
5743 // FIXME: For C++1y, do we need this restriction?
5744 // cf. diagnoseNoViableConversion()
5745 if (!ConvTemplate)
5746 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5747 } else {
5748 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5749 if (ToType.isNull())
5750 ToType = CurToType.getUnqualifiedType();
5751 else if (HasUniqueTargetType &&
5752 (CurToType.getUnqualifiedType() != ToType))
5753 HasUniqueTargetType = false;
5754 }
5755 ViableConversions.addDecl(I.getDecl(), I.getAccess());
5756 }
5757 }
5758 }
5759
5760 if (getLangOpts().CPlusPlus14) {
5761 // C++1y [conv]p6:
5762 // ... An expression e of class type E appearing in such a context
5763 // is said to be contextually implicitly converted to a specified
5764 // type T and is well-formed if and only if e can be implicitly
5765 // converted to a type T that is determined as follows: E is searched
5766 // for conversion functions whose return type is cv T or reference to
5767 // cv T such that T is allowed by the context. There shall be
5768 // exactly one such T.
5769
5770 // If no unique T is found:
5771 if (ToType.isNull()) {
5772 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5773 HadMultipleCandidates,
5774 ExplicitConversions))
5775 return ExprError();
5776 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5777 }
5778
5779 // If more than one unique Ts are found:
5780 if (!HasUniqueTargetType)
5781 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5782 ViableConversions);
5783
5784 // If one unique T is found:
5785 // First, build a candidate set from the previously recorded
5786 // potentially viable conversions.
5787 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5788 collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5789 CandidateSet);
5790
5791 // Then, perform overload resolution over the candidate set.
5792 OverloadCandidateSet::iterator Best;
5793 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5794 case OR_Success: {
5795 // Apply this conversion.
5796 DeclAccessPair Found =
5797 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5798 if (recordConversion(*this, Loc, From, Converter, T,
5799 HadMultipleCandidates, Found))
5800 return ExprError();
5801 break;
5802 }
5803 case OR_Ambiguous:
5804 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5805 ViableConversions);
5806 case OR_No_Viable_Function:
5807 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5808 HadMultipleCandidates,
5809 ExplicitConversions))
5810 return ExprError();
5811 LLVM_FALLTHROUGH[[clang::fallthrough]];
5812 case OR_Deleted:
5813 // We'll complain below about a non-integral condition type.
5814 break;
5815 }
5816 } else {
5817 switch (ViableConversions.size()) {
5818 case 0: {
5819 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5820 HadMultipleCandidates,
5821 ExplicitConversions))
5822 return ExprError();
5823
5824 // We'll complain below about a non-integral condition type.
5825 break;
5826 }
5827 case 1: {
5828 // Apply this conversion.
5829 DeclAccessPair Found = ViableConversions[0];
5830 if (recordConversion(*this, Loc, From, Converter, T,
5831 HadMultipleCandidates, Found))
5832 return ExprError();
5833 break;
5834 }
5835 default:
5836 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5837 ViableConversions);
5838 }
5839 }
5840
5841 return finishContextualImplicitConversion(*this, Loc, From, Converter);
5842}
5843
5844/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5845/// an acceptable non-member overloaded operator for a call whose
5846/// arguments have types T1 (and, if non-empty, T2). This routine
5847/// implements the check in C++ [over.match.oper]p3b2 concerning
5848/// enumeration types.
5849static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5850 FunctionDecl *Fn,
5851 ArrayRef<Expr *> Args) {
5852 QualType T1 = Args[0]->getType();
5853 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5854
5855 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5856 return true;
5857
5858 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5859 return true;
5860
5861 const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5862 if (Proto->getNumParams() < 1)
5863 return false;
5864
5865 if (T1->isEnumeralType()) {
5866 QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5867 if (Context.hasSameUnqualifiedType(T1, ArgType))
5868 return true;
5869 }
5870
5871 if (Proto->getNumParams() < 2)
5872 return false;
5873
5874 if (!T2.isNull() && T2->isEnumeralType()) {
5875 QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5876 if (Context.hasSameUnqualifiedType(T2, ArgType))
5877 return true;
5878 }
5879
5880 return false;
5881}
5882
5883/// AddOverloadCandidate - Adds the given function to the set of
5884/// candidate functions, using the given function call arguments. If
5885/// @p SuppressUserConversions, then don't allow user-defined
5886/// conversions via constructors or conversion operators.
5887///
5888/// \param PartialOverloading true if we are performing "partial" overloading
5889/// based on an incomplete set of function arguments. This feature is used by
5890/// code completion.
5891void
5892Sema::AddOverloadCandidate(FunctionDecl *Function,
5893 DeclAccessPair FoundDecl,
5894 ArrayRef<Expr *> Args,
5895 OverloadCandidateSet &CandidateSet,
5896 bool SuppressUserConversions,
5897 bool PartialOverloading,
5898 bool AllowExplicit,
5899 ConversionSequenceList EarlyConversions) {
5900 const FunctionProtoType *Proto
5901 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5902 assert(Proto && "Functions without a prototype cannot be overloaded")(static_cast <bool> (Proto && "Functions without a prototype cannot be overloaded"
) ? void (0) : __assert_fail ("Proto && \"Functions without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5902, __extension__ __PRETTY_FUNCTION__))
;
5903 assert(!Function->getDescribedFunctionTemplate() &&(static_cast <bool> (!Function->getDescribedFunctionTemplate
() && "Use AddTemplateOverloadCandidate for function templates"
) ? void (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5904, __extension__ __PRETTY_FUNCTION__))
5904 "Use AddTemplateOverloadCandidate for function templates")(static_cast <bool> (!Function->getDescribedFunctionTemplate
() && "Use AddTemplateOverloadCandidate for function templates"
) ? void (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 5904, __extension__ __PRETTY_FUNCTION__))
;
5905
5906 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5907 if (!isa<CXXConstructorDecl>(Method)) {
5908 // If we get here, it's because we're calling a member function
5909 // that is named without a member access expression (e.g.,
5910 // "this->f") that was either written explicitly or created
5911 // implicitly. This can happen with a qualified call to a member
5912 // function, e.g., X::f(). We use an empty type for the implied
5913 // object argument (C++ [over.call.func]p3), and the acting context
5914 // is irrelevant.
5915 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
5916 Expr::Classification::makeSimpleLValue(), Args,
5917 CandidateSet, SuppressUserConversions,
5918 PartialOverloading, EarlyConversions);
5919 return;
5920 }
5921 // We treat a constructor like a non-member function, since its object
5922 // argument doesn't participate in overload resolution.
5923 }
5924
5925 if (!CandidateSet.isNewCandidate(Function))
5926 return;
5927
5928 // C++ [over.match.oper]p3:
5929 // if no operand has a class type, only those non-member functions in the
5930 // lookup set that have a first parameter of type T1 or "reference to
5931 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
5932 // is a right operand) a second parameter of type T2 or "reference to
5933 // (possibly cv-qualified) T2", when T2 is an enumeration type, are
5934 // candidate functions.
5935 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
5936 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
5937 return;
5938
5939 // C++11 [class.copy]p11: [DR1402]
5940 // A defaulted move constructor that is defined as deleted is ignored by
5941 // overload resolution.
5942 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
5943 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
5944 Constructor->isMoveConstructor())
5945 return;
5946
5947 // Overload resolution is always an unevaluated context.
5948 EnterExpressionEvaluationContext Unevaluated(
5949 *this, Sema::ExpressionEvaluationContext::Unevaluated);
5950
5951 // Add this candidate
5952 OverloadCandidate &Candidate =
5953 CandidateSet.addCandidate(Args.size(), EarlyConversions);
5954 Candidate.FoundDecl = FoundDecl;
5955 Candidate.Function = Function;
5956 Candidate.Viable = true;
5957 Candidate.IsSurrogate = false;
5958 Candidate.IgnoreObjectArgument = false;
5959 Candidate.ExplicitCallArguments = Args.size();
5960
5961 if (Function->isMultiVersion() &&
5962 !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
5963 Candidate.Viable = false;
5964 Candidate.FailureKind = ovl_non_default_multiversion_function;
5965 return;
5966 }
5967
5968 if (Constructor) {
5969 // C++ [class.copy]p3:
5970 // A member function template is never instantiated to perform the copy
5971 // of a class object to an object of its class type.
5972 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5973 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
5974 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5975 IsDerivedFrom(Args[0]->getLocStart(), Args[0]->getType(),
5976 ClassType))) {
5977 Candidate.Viable = false;
5978 Candidate.FailureKind = ovl_fail_illegal_constructor;
5979 return;
5980 }
5981
5982 // C++ [over.match.funcs]p8: (proposed DR resolution)
5983 // A constructor inherited from class type C that has a first parameter
5984 // of type "reference to P" (including such a constructor instantiated
5985 // from a template) is excluded from the set of candidate functions when
5986 // constructing an object of type cv D if the argument list has exactly
5987 // one argument and D is reference-related to P and P is reference-related
5988 // to C.
5989 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
5990 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
5991 Constructor->getParamDecl(0)->getType()->isReferenceType()) {
5992 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
5993 QualType C = Context.getRecordType(Constructor->getParent());
5994 QualType D = Context.getRecordType(Shadow->getParent());
5995 SourceLocation Loc = Args.front()->getExprLoc();
5996 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
5997 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
5998 Candidate.Viable = false;
5999 Candidate.FailureKind = ovl_fail_inhctor_slice;
6000 return;
6001 }
6002 }
6003 }
6004
6005 unsigned NumParams = Proto->getNumParams();
6006
6007 // (C++ 13.3.2p2): A candidate function having fewer than m
6008 // parameters is viable only if it has an ellipsis in its parameter
6009 // list (8.3.5).
6010 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6011 !Proto->isVariadic()) {
6012 Candidate.Viable = false;
6013 Candidate.FailureKind = ovl_fail_too_many_arguments;
6014 return;
6015 }
6016
6017 // (C++ 13.3.2p2): A candidate function having more than m parameters
6018 // is viable only if the (m+1)st parameter has a default argument
6019 // (8.3.6). For the purposes of overload resolution, the
6020 // parameter list is truncated on the right, so that there are
6021 // exactly m parameters.
6022 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6023 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6024 // Not enough arguments.
6025 Candidate.Viable = false;
6026 Candidate.FailureKind = ovl_fail_too_few_arguments;
6027 return;
6028 }
6029
6030 // (CUDA B.1): Check for invalid calls between targets.
6031 if (getLangOpts().CUDA)
6032 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6033 // Skip the check for callers that are implicit members, because in this
6034 // case we may not yet know what the member's target is; the target is
6035 // inferred for the member automatically, based on the bases and fields of
6036 // the class.
6037 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6038 Candidate.Viable = false;
6039 Candidate.FailureKind = ovl_fail_bad_target;
6040 return;
6041 }
6042
6043 // Determine the implicit conversion sequences for each of the
6044 // arguments.
6045 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6046 if (Candidate.Conversions[ArgIdx].isInitialized()) {
6047 // We already formed a conversion sequence for this parameter during
6048 // template argument deduction.
6049 } else if (ArgIdx < NumParams) {
6050 // (C++ 13.3.2p3): for F to be a viable function, there shall
6051 // exist for each argument an implicit conversion sequence
6052 // (13.3.3.1) that converts that argument to the corresponding
6053 // parameter of F.
6054 QualType ParamType = Proto->getParamType(ArgIdx);
6055 Candidate.Conversions[ArgIdx]
6056 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6057 SuppressUserConversions,
6058 /*InOverloadResolution=*/true,
6059 /*AllowObjCWritebackConversion=*/
6060 getLangOpts().ObjCAutoRefCount,
6061 AllowExplicit);
6062 if (Candidate.Conversions[ArgIdx].isBad()) {
6063 Candidate.Viable = false;
6064 Candidate.FailureKind = ovl_fail_bad_conversion;
6065 return;
6066 }
6067 } else {
6068 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6069 // argument for which there is no corresponding parameter is
6070 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6071 Candidate.Conversions[ArgIdx].setEllipsis();
6072 }
6073 }
6074
6075 if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
6076 Candidate.Viable = false;
6077 Candidate.FailureKind = ovl_fail_enable_if;
6078 Candidate.DeductionFailure.Data = FailedAttr;
6079 return;
6080 }
6081
6082 if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
6083 Candidate.Viable = false;
6084 Candidate.FailureKind = ovl_fail_ext_disabled;
6085 return;
6086 }
6087}
6088
6089ObjCMethodDecl *
6090Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6091 SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6092 if (Methods.size() <= 1)
6093 return nullptr;
6094
6095 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6096 bool Match = true;
6097 ObjCMethodDecl *Method = Methods[b];
6098 unsigned NumNamedArgs = Sel.getNumArgs();
6099 // Method might have more arguments than selector indicates. This is due
6100 // to addition of c-style arguments in method.
6101 if (Method->param_size() > NumNamedArgs)
6102 NumNamedArgs = Method->param_size();
6103 if (Args.size() < NumNamedArgs)
6104 continue;
6105
6106 for (unsigned i = 0; i < NumNamedArgs; i++) {
6107 // We can't do any type-checking on a type-dependent argument.
6108 if (Args[i]->isTypeDependent()) {
6109 Match = false;
6110 break;
6111 }
6112
6113 ParmVarDecl *param = Method->parameters()[i];
6114 Expr *argExpr = Args[i];
6115 assert(argExpr && "SelectBestMethod(): missing expression")(static_cast <bool> (argExpr && "SelectBestMethod(): missing expression"
) ? void (0) : __assert_fail ("argExpr && \"SelectBestMethod(): missing expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6115, __extension__ __PRETTY_FUNCTION__))
;
6116
6117 // Strip the unbridged-cast placeholder expression off unless it's
6118 // a consumed argument.
6119 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6120 !param->hasAttr<CFConsumedAttr>())
6121 argExpr = stripARCUnbridgedCast(argExpr);
6122
6123 // If the parameter is __unknown_anytype, move on to the next method.
6124 if (param->getType() == Context.UnknownAnyTy) {
6125 Match = false;
6126 break;
6127 }
6128
6129 ImplicitConversionSequence ConversionState
6130 = TryCopyInitialization(*this, argExpr, param->getType(),
6131 /*SuppressUserConversions*/false,
6132 /*InOverloadResolution=*/true,
6133 /*AllowObjCWritebackConversion=*/
6134 getLangOpts().ObjCAutoRefCount,
6135 /*AllowExplicit*/false);
6136 // This function looks for a reasonably-exact match, so we consider
6137 // incompatible pointer conversions to be a failure here.
6138 if (ConversionState.isBad() ||
6139 (ConversionState.isStandard() &&
6140 ConversionState.Standard.Second ==
6141 ICK_Incompatible_Pointer_Conversion)) {
6142 Match = false;
6143 break;
6144 }
6145 }
6146 // Promote additional arguments to variadic methods.
6147 if (Match && Method->isVariadic()) {
6148 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6149 if (Args[i]->isTypeDependent()) {
6150 Match = false;
6151 break;
6152 }
6153 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6154 nullptr);
6155 if (Arg.isInvalid()) {
6156 Match = false;
6157 break;
6158 }
6159 }
6160 } else {
6161 // Check for extra arguments to non-variadic methods.
6162 if (Args.size() != NumNamedArgs)
6163 Match = false;
6164 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6165 // Special case when selectors have no argument. In this case, select
6166 // one with the most general result type of 'id'.
6167 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6168 QualType ReturnT = Methods[b]->getReturnType();
6169 if (ReturnT->isObjCIdType())
6170 return Methods[b];
6171 }
6172 }
6173 }
6174
6175 if (Match)
6176 return Method;
6177 }
6178 return nullptr;
6179}
6180
6181// specific_attr_iterator iterates over enable_if attributes in reverse, and
6182// enable_if is order-sensitive. As a result, we need to reverse things
6183// sometimes. Size of 4 elements is arbitrary.
6184static SmallVector<EnableIfAttr *, 4>
6185getOrderedEnableIfAttrs(const FunctionDecl *Function) {
6186 SmallVector<EnableIfAttr *, 4> Result;
6187 if (!Function->hasAttrs())
6188 return Result;
6189
6190 const auto &FuncAttrs = Function->getAttrs();
6191 for (Attr *Attr : FuncAttrs)
6192 if (auto *EnableIf = dyn_cast<EnableIfAttr>(Attr))
6193 Result.push_back(EnableIf);
6194
6195 std::reverse(Result.begin(), Result.end());
6196 return Result;
6197}
6198
6199static bool
6200convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg,
6201 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap,
6202 bool MissingImplicitThis, Expr *&ConvertedThis,
6203 SmallVectorImpl<Expr *> &ConvertedArgs) {
6204 if (ThisArg) {
6205 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6206 assert(!isa<CXXConstructorDecl>(Method) &&(static_cast <bool> (!isa<CXXConstructorDecl>(Method
) && "Shouldn't have `this` for ctors!") ? void (0) :
__assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6207, __extension__ __PRETTY_FUNCTION__))
6207 "Shouldn't have `this` for ctors!")(static_cast <bool> (!isa<CXXConstructorDecl>(Method
) && "Shouldn't have `this` for ctors!") ? void (0) :
__assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6207, __extension__ __PRETTY_FUNCTION__))
;
6208 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!")(static_cast <bool> (!Method->isStatic() && "Shouldn't have `this` for static methods!"
) ? void (0) : __assert_fail ("!Method->isStatic() && \"Shouldn't have `this` for static methods!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6208, __extension__ __PRETTY_FUNCTION__))
;
6209 ExprResult R = S.PerformObjectArgumentInitialization(
6210 ThisArg, /*Qualifier=*/nullptr, Method, Method);
6211 if (R.isInvalid())
6212 return false;
6213 ConvertedThis = R.get();
6214 } else {
6215 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6216 (void)MD;
6217 assert((MissingImplicitThis || MD->isStatic() ||(static_cast <bool> ((MissingImplicitThis || MD->isStatic
() || isa<CXXConstructorDecl>(MD)) && "Expected `this` for non-ctor instance methods"
) ? void (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6219, __extension__ __PRETTY_FUNCTION__))
6218 isa<CXXConstructorDecl>(MD)) &&(static_cast <bool> ((MissingImplicitThis || MD->isStatic
() || isa<CXXConstructorDecl>(MD)) && "Expected `this` for non-ctor instance methods"
) ? void (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6219, __extension__ __PRETTY_FUNCTION__))
6219 "Expected `this` for non-ctor instance methods")(static_cast <bool> ((MissingImplicitThis || MD->isStatic
() || isa<CXXConstructorDecl>(MD)) && "Expected `this` for non-ctor instance methods"
) ? void (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6219, __extension__ __PRETTY_FUNCTION__))
;
6220 }
6221 ConvertedThis = nullptr;
6222 }
6223
6224 // Ignore any variadic arguments. Converting them is pointless, since the
6225 // user can't refer to them in the function condition.
6226 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6227
6228 // Convert the arguments.
6229 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6230 ExprResult R;
6231 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6232 S.Context, Function->getParamDecl(I)),
6233 SourceLocation(), Args[I]);
6234
6235 if (R.isInvalid())
6236 return false;
6237
6238 ConvertedArgs.push_back(R.get());
6239 }
6240
6241 if (Trap.hasErrorOccurred())
6242 return false;
6243
6244 // Push default arguments if needed.
6245 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6246 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6247 ParmVarDecl *P = Function->getParamDecl(i);
6248 Expr *DefArg = P->hasUninstantiatedDefaultArg()
6249 ? P->getUninstantiatedDefaultArg()
6250 : P->getDefaultArg();
6251 // This can only happen in code completion, i.e. when PartialOverloading
6252 // is true.
6253 if (!DefArg)
6254 return false;
6255 ExprResult R =
6256 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6257 S.Context, Function->getParamDecl(i)),
6258 SourceLocation(), DefArg);
6259 if (R.isInvalid())
6260 return false;
6261 ConvertedArgs.push_back(R.get());
6262 }
6263
6264 if (Trap.hasErrorOccurred())
6265 return false;
6266 }
6267 return true;
6268}
6269
6270EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
6271 bool MissingImplicitThis) {
6272 SmallVector<EnableIfAttr *, 4> EnableIfAttrs =
6273 getOrderedEnableIfAttrs(Function);
6274 if (EnableIfAttrs.empty())
6275 return nullptr;
6276
6277 SFINAETrap Trap(*this);
6278 SmallVector<Expr *, 16> ConvertedArgs;
6279 // FIXME: We should look into making enable_if late-parsed.
6280 Expr *DiscardedThis;
6281 if (!convertArgsForAvailabilityChecks(
6282 *this, Function, /*ThisArg=*/nullptr, Args, Trap,
6283 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6284 return EnableIfAttrs[0];
6285
6286 for (auto *EIA : EnableIfAttrs) {
6287 APValue Result;
6288 // FIXME: This doesn't consider value-dependent cases, because doing so is
6289 // very difficult. Ideally, we should handle them more gracefully.
6290 if (!EIA->getCond()->EvaluateWithSubstitution(
6291 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6292 return EIA;
6293
6294 if (!Result.isInt() || !Result.getInt().getBoolValue())
6295 return EIA;
6296 }
6297 return nullptr;
6298}
6299
6300template <typename CheckFn>
6301static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6302 bool ArgDependent, SourceLocation Loc,
6303 CheckFn &&IsSuccessful) {
6304 SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6305 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6306 if (ArgDependent == DIA->getArgDependent())
6307 Attrs.push_back(DIA);
6308 }
6309
6310 // Common case: No diagnose_if attributes, so we can quit early.
6311 if (Attrs.empty())
6312 return false;
6313
6314 auto WarningBegin = std::stable_partition(
6315 Attrs.begin(), Attrs.end(),
6316 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6317
6318 // Note that diagnose_if attributes are late-parsed, so they appear in the
6319 // correct order (unlike enable_if attributes).
6320 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6321 IsSuccessful);
6322 if (ErrAttr != WarningBegin) {
6323 const DiagnoseIfAttr *DIA = *ErrAttr;
6324 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6325 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6326 << DIA->getParent() << DIA->getCond()->getSourceRange();
6327 return true;
6328 }
6329
6330 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6331 if (IsSuccessful(DIA)) {
6332 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6333 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6334 << DIA->getParent() << DIA->getCond()->getSourceRange();
6335 }
6336
6337 return false;
6338}
6339
6340bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6341 const Expr *ThisArg,
6342 ArrayRef<const Expr *> Args,
6343 SourceLocation Loc) {
6344 return diagnoseDiagnoseIfAttrsWith(
6345 *this, Function, /*ArgDependent=*/true, Loc,
6346 [&](const DiagnoseIfAttr *DIA) {
6347 APValue Result;
6348 // It's sane to use the same Args for any redecl of this function, since
6349 // EvaluateWithSubstitution only cares about the position of each
6350 // argument in the arg list, not the ParmVarDecl* it maps to.
6351 if (!DIA->getCond()->EvaluateWithSubstitution(
6352 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6353 return false;
6354 return Result.isInt() && Result.getInt().getBoolValue();
6355 });
6356}
6357
6358bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6359 SourceLocation Loc) {
6360 return diagnoseDiagnoseIfAttrsWith(
6361 *this, ND, /*ArgDependent=*/false, Loc,
6362 [&](const DiagnoseIfAttr *DIA) {
6363 bool Result;
6364 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6365 Result;
6366 });
6367}
6368
6369/// \brief Add all of the function declarations in the given function set to
6370/// the overload candidate set.
6371void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6372 ArrayRef<Expr *> Args,
6373 OverloadCandidateSet& CandidateSet,
6374 TemplateArgumentListInfo *ExplicitTemplateArgs,
6375 bool SuppressUserConversions,
6376 bool PartialOverloading,
6377 bool FirstArgumentIsBase) {
6378 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6379 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6380 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6381 ArrayRef<Expr *> FunctionArgs = Args;
6382 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6383 QualType ObjectType;
6384 Expr::Classification ObjectClassification;
6385 if (Args.size() > 0) {
6386 if (Expr *E = Args[0]) {
6387 // Use the explicit base to restrict the lookup:
6388 ObjectType = E->getType();
6389 ObjectClassification = E->Classify(Context);
6390 } // .. else there is an implit base.
6391 FunctionArgs = Args.slice(1);
6392 }
6393 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6394 cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6395 ObjectClassification, FunctionArgs, CandidateSet,
6396 SuppressUserConversions, PartialOverloading);
6397 } else {
6398 // Slice the first argument (which is the base) when we access
6399 // static method as non-static
6400 if (Args.size() > 0 && (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6401 !isa<CXXConstructorDecl>(FD)))) {
6402 assert(cast<CXXMethodDecl>(FD)->isStatic())(static_cast <bool> (cast<CXXMethodDecl>(FD)->
isStatic()) ? void (0) : __assert_fail ("cast<CXXMethodDecl>(FD)->isStatic()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6402, __extension__ __PRETTY_FUNCTION__))
;
6403 FunctionArgs = Args.slice(1);
6404 }
6405 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6406 SuppressUserConversions, PartialOverloading);
6407 }
6408 } else {
6409 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
6410 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
6411 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) {
6412 QualType ObjectType;
6413 Expr::Classification ObjectClassification;
6414 if (Expr *E = Args[0]) {
6415 // Use the explicit base to restrict the lookup:
6416 ObjectType = E->getType();
6417 ObjectClassification = E->Classify(Context);
6418 } // .. else there is an implit base.
6419 AddMethodTemplateCandidate(
6420 FunTmpl, F.getPair(),
6421 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6422 ExplicitTemplateArgs, ObjectType, ObjectClassification,
6423 Args.slice(1), CandidateSet, SuppressUserConversions,
6424 PartialOverloading);
6425 } else {
6426 AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6427 ExplicitTemplateArgs, Args,
6428 CandidateSet, SuppressUserConversions,
6429 PartialOverloading);
6430 }
6431 }
6432 }
6433}
6434
6435/// AddMethodCandidate - Adds a named decl (which is some kind of
6436/// method) as a method candidate to the given overload set.
6437void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
6438 QualType ObjectType,
6439 Expr::Classification ObjectClassification,
6440 ArrayRef<Expr *> Args,
6441 OverloadCandidateSet& CandidateSet,
6442 bool SuppressUserConversions) {
6443 NamedDecl *Decl = FoundDecl.getDecl();
6444 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6445
6446 if (isa<UsingShadowDecl>(Decl))
6447 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6448
6449 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6450 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&(static_cast <bool> (isa<CXXMethodDecl>(TD->getTemplatedDecl
()) && "Expected a member function template") ? void (
0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6451, __extension__ __PRETTY_FUNCTION__))
6451 "Expected a member function template")(static_cast <bool> (isa<CXXMethodDecl>(TD->getTemplatedDecl
()) && "Expected a member function template") ? void (
0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6451, __extension__ __PRETTY_FUNCTION__))
;
6452 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6453 /*ExplicitArgs*/ nullptr, ObjectType,
6454 ObjectClassification, Args, CandidateSet,
6455 SuppressUserConversions);
6456 } else {
6457 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6458 ObjectType, ObjectClassification, Args, CandidateSet,
6459 SuppressUserConversions);
6460 }
6461}
6462
6463/// AddMethodCandidate - Adds the given C++ member function to the set
6464/// of candidate functions, using the given function call arguments
6465/// and the object argument (@c Object). For example, in a call
6466/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6467/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6468/// allow user-defined conversions via constructors or conversion
6469/// operators.
6470void
6471Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6472 CXXRecordDecl *ActingContext, QualType ObjectType,
6473 Expr::Classification ObjectClassification,
6474 ArrayRef<Expr *> Args,
6475 OverloadCandidateSet &CandidateSet,
6476 bool SuppressUserConversions,
6477 bool PartialOverloading,
6478 ConversionSequenceList EarlyConversions) {
6479 const FunctionProtoType *Proto
6480 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6481 assert(Proto && "Methods without a prototype cannot be overloaded")(static_cast <bool> (Proto && "Methods without a prototype cannot be overloaded"
) ? void (0) : __assert_fail ("Proto && \"Methods without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6481, __extension__ __PRETTY_FUNCTION__))
;
6482 assert(!isa<CXXConstructorDecl>(Method) &&(static_cast <bool> (!isa<CXXConstructorDecl>(Method
) && "Use AddOverloadCandidate for constructors") ? void
(0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6483, __extension__ __PRETTY_FUNCTION__))
6483 "Use AddOverloadCandidate for constructors")(static_cast <bool> (!isa<CXXConstructorDecl>(Method
) && "Use AddOverloadCandidate for constructors") ? void
(0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6483, __extension__ __PRETTY_FUNCTION__))
;
6484
6485 if (!CandidateSet.isNewCandidate(Method))
6486 return;
6487
6488 // C++11 [class.copy]p23: [DR1402]
6489 // A defaulted move assignment operator that is defined as deleted is
6490 // ignored by overload resolution.
6491 if (Method->isDefaulted() && Method->isDeleted() &&
6492 Method->isMoveAssignmentOperator())
6493 return;
6494
6495 // Overload resolution is always an unevaluated context.
6496 EnterExpressionEvaluationContext Unevaluated(
6497 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6498
6499 // Add this candidate
6500 OverloadCandidate &Candidate =
6501 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6502 Candidate.FoundDecl = FoundDecl;
6503 Candidate.Function = Method;
6504 Candidate.IsSurrogate = false;
6505 Candidate.IgnoreObjectArgument = false;
6506 Candidate.ExplicitCallArguments = Args.size();
6507
6508 unsigned NumParams = Proto->getNumParams();
6509
6510 // (C++ 13.3.2p2): A candidate function having fewer than m
6511 // parameters is viable only if it has an ellipsis in its parameter
6512 // list (8.3.5).
6513 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6514 !Proto->isVariadic()) {
6515 Candidate.Viable = false;
6516 Candidate.FailureKind = ovl_fail_too_many_arguments;
6517 return;
6518 }
6519
6520 // (C++ 13.3.2p2): A candidate function having more than m parameters
6521 // is viable only if the (m+1)st parameter has a default argument
6522 // (8.3.6). For the purposes of overload resolution, the
6523 // parameter list is truncated on the right, so that there are
6524 // exactly m parameters.
6525 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6526 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6527 // Not enough arguments.
6528 Candidate.Viable = false;
6529 Candidate.FailureKind = ovl_fail_too_few_arguments;
6530 return;
6531 }
6532
6533 Candidate.Viable = true;
6534
6535 if (Method->isStatic() || ObjectType.isNull())
6536 // The implicit object argument is ignored.
6537 Candidate.IgnoreObjectArgument = true;
6538 else {
6539 // Determine the implicit conversion sequence for the object
6540 // parameter.
6541 Candidate.Conversions[0] = TryObjectArgumentInitialization(
6542 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6543 Method, ActingContext);
6544 if (Candidate.Conversions[0].isBad()) {
6545 Candidate.Viable = false;
6546 Candidate.FailureKind = ovl_fail_bad_conversion;
6547 return;
6548 }
6549 }
6550
6551 // (CUDA B.1): Check for invalid calls between targets.
6552 if (getLangOpts().CUDA)
6553 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6554 if (!IsAllowedCUDACall(Caller, Method)) {
6555 Candidate.Viable = false;
6556 Candidate.FailureKind = ovl_fail_bad_target;
6557 return;
6558 }
6559
6560 // Determine the implicit conversion sequences for each of the
6561 // arguments.
6562 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6563 if (Candidate.Conversions[ArgIdx + 1].isInitialized()) {
6564 // We already formed a conversion sequence for this parameter during
6565 // template argument deduction.
6566 } else if (ArgIdx < NumParams) {
6567 // (C++ 13.3.2p3): for F to be a viable function, there shall
6568 // exist for each argument an implicit conversion sequence
6569 // (13.3.3.1) that converts that argument to the corresponding
6570 // parameter of F.
6571 QualType ParamType = Proto->getParamType(ArgIdx);
6572 Candidate.Conversions[ArgIdx + 1]
6573 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6574 SuppressUserConversions,
6575 /*InOverloadResolution=*/true,
6576 /*AllowObjCWritebackConversion=*/
6577 getLangOpts().ObjCAutoRefCount);
6578 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6579 Candidate.Viable = false;
6580 Candidate.FailureKind = ovl_fail_bad_conversion;
6581 return;
6582 }
6583 } else {
6584 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6585 // argument for which there is no corresponding parameter is
6586 // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6587 Candidate.Conversions[ArgIdx + 1].setEllipsis();
6588 }
6589 }
6590
6591 if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6592 Candidate.Viable = false;
6593 Candidate.FailureKind = ovl_fail_enable_if;
6594 Candidate.DeductionFailure.Data = FailedAttr;
6595 return;
6596 }
6597
6598 if (Method->isMultiVersion() &&
6599 !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6600 Candidate.Viable = false;
6601 Candidate.FailureKind = ovl_non_default_multiversion_function;
6602 }
6603}
6604
6605/// \brief Add a C++ member function template as a candidate to the candidate
6606/// set, using template argument deduction to produce an appropriate member
6607/// function template specialization.
6608void
6609Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6610 DeclAccessPair FoundDecl,
6611 CXXRecordDecl *ActingContext,
6612 TemplateArgumentListInfo *ExplicitTemplateArgs,
6613 QualType ObjectType,
6614 Expr::Classification ObjectClassification,
6615 ArrayRef<Expr *> Args,
6616 OverloadCandidateSet& CandidateSet,
6617 bool SuppressUserConversions,
6618 bool PartialOverloading) {
6619 if (!CandidateSet.isNewCandidate(MethodTmpl))
6620 return;
6621
6622 // C++ [over.match.funcs]p7:
6623 // In each case where a candidate is a function template, candidate
6624 // function template specializations are generated using template argument
6625 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6626 // candidate functions in the usual way.113) A given name can refer to one
6627 // or more function templates and also to a set of overloaded non-template
6628 // functions. In such a case, the candidate functions generated from each
6629 // function template are combined with the set of non-template candidate
6630 // functions.
6631 TemplateDeductionInfo Info(CandidateSet.getLocation());
6632 FunctionDecl *Specialization = nullptr;
6633 ConversionSequenceList Conversions;
6634 if (TemplateDeductionResult Result = DeduceTemplateArguments(
6635 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
6636 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6637 return CheckNonDependentConversions(
6638 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
6639 SuppressUserConversions, ActingContext, ObjectType,
6640 ObjectClassification);
6641 })) {
6642 OverloadCandidate &Candidate =
6643 CandidateSet.addCandidate(Conversions.size(), Conversions);
6644 Candidate.FoundDecl = FoundDecl;
6645 Candidate.Function = MethodTmpl->getTemplatedDecl();
6646 Candidate.Viable = false;
6647 Candidate.IsSurrogate = false;
6648 Candidate.IgnoreObjectArgument =
6649 cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
6650 ObjectType.isNull();
6651 Candidate.ExplicitCallArguments = Args.size();
6652 if (Result == TDK_NonDependentConversionFailure)
6653 Candidate.FailureKind = ovl_fail_bad_conversion;
6654 else {
6655 Candidate.FailureKind = ovl_fail_bad_deduction;
6656 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6657 Info);
6658 }
6659 return;
6660 }
6661
6662 // Add the function template specialization produced by template argument
6663 // deduction as a candidate.
6664 assert(Specialization && "Missing member function template specialization?")(static_cast <bool> (Specialization && "Missing member function template specialization?"
) ? void (0) : __assert_fail ("Specialization && \"Missing member function template specialization?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6664, __extension__ __PRETTY_FUNCTION__))
;
6665 assert(isa<CXXMethodDecl>(Specialization) &&(static_cast <bool> (isa<CXXMethodDecl>(Specialization
) && "Specialization is not a member function?") ? void
(0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6666, __extension__ __PRETTY_FUNCTION__))
6666 "Specialization is not a member function?")(static_cast <bool> (isa<CXXMethodDecl>(Specialization
) && "Specialization is not a member function?") ? void
(0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6666, __extension__ __PRETTY_FUNCTION__))
;
6667 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6668 ActingContext, ObjectType, ObjectClassification, Args,
6669 CandidateSet, SuppressUserConversions, PartialOverloading,
6670 Conversions);
6671}
6672
6673/// \brief Add a C++ function template specialization as a candidate
6674/// in the candidate set, using template argument deduction to produce
6675/// an appropriate function template specialization.
6676void
6677Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
6678 DeclAccessPair FoundDecl,
6679 TemplateArgumentListInfo *ExplicitTemplateArgs,
6680 ArrayRef<Expr *> Args,
6681 OverloadCandidateSet& CandidateSet,
6682 bool SuppressUserConversions,
6683 bool PartialOverloading) {
6684 if (!CandidateSet.isNewCandidate(FunctionTemplate))
6685 return;
6686
6687 // C++ [over.match.funcs]p7:
6688 // In each case where a candidate is a function template, candidate
6689 // function template specializations are generated using template argument
6690 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6691 // candidate functions in the usual way.113) A given name can refer to one
6692 // or more function templates and also to a set of overloaded non-template
6693 // functions. In such a case, the candidate functions generated from each
6694 // function template are combined with the set of non-template candidate
6695 // functions.
6696 TemplateDeductionInfo Info(CandidateSet.getLocation());
6697 FunctionDecl *Specialization = nullptr;
6698 ConversionSequenceList Conversions;
6699 if (TemplateDeductionResult Result = DeduceTemplateArguments(
6700 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
6701 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
6702 return CheckNonDependentConversions(FunctionTemplate, ParamTypes,
6703 Args, CandidateSet, Conversions,
6704 SuppressUserConversions);
6705 })) {
6706 OverloadCandidate &Candidate =
6707 CandidateSet.addCandidate(Conversions.size(), Conversions);
6708 Candidate.FoundDecl = FoundDecl;
6709 Candidate.Function = FunctionTemplate->getTemplatedDecl();
6710 Candidate.Viable = false;
6711 Candidate.IsSurrogate = false;
6712 // Ignore the object argument if there is one, since we don't have an object
6713 // type.
6714 Candidate.IgnoreObjectArgument =
6715 isa<CXXMethodDecl>(Candidate.Function) &&
6716 !isa<CXXConstructorDecl>(Candidate.Function);
6717 Candidate.ExplicitCallArguments = Args.size();
6718 if (Result == TDK_NonDependentConversionFailure)
6719 Candidate.FailureKind = ovl_fail_bad_conversion;
6720 else {
6721 Candidate.FailureKind = ovl_fail_bad_deduction;
6722 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6723 Info);
6724 }
6725 return;
6726 }
6727
6728 // Add the function template specialization produced by template argument
6729 // deduction as a candidate.
6730 assert(Specialization && "Missing function template specialization?")(static_cast <bool> (Specialization && "Missing function template specialization?"
) ? void (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6730, __extension__ __PRETTY_FUNCTION__))
;
6731 AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
6732 SuppressUserConversions, PartialOverloading,
6733 /*AllowExplicit*/false, Conversions);
6734}
6735
6736/// Check that implicit conversion sequences can be formed for each argument
6737/// whose corresponding parameter has a non-dependent type, per DR1391's
6738/// [temp.deduct.call]p10.
6739bool Sema::CheckNonDependentConversions(
6740 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
6741 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
6742 ConversionSequenceList &Conversions, bool SuppressUserConversions,
6743 CXXRecordDecl *ActingContext, QualType ObjectType,
6744 Expr::Classification ObjectClassification) {
6745 // FIXME: The cases in which we allow explicit conversions for constructor
6746 // arguments never consider calling a constructor template. It's not clear
6747 // that is correct.
6748 const bool AllowExplicit = false;
6749
6750 auto *FD = FunctionTemplate->getTemplatedDecl();
6751 auto *Method = dyn_cast<CXXMethodDecl>(FD);
6752 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
6753 unsigned ThisConversions = HasThisConversion ? 1 : 0;
6754
6755 Conversions =
6756 CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
6757
6758 // Overload resolution is always an unevaluated context.
6759 EnterExpressionEvaluationContext Unevaluated(
6760 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6761
6762 // For a method call, check the 'this' conversion here too. DR1391 doesn't
6763 // require that, but this check should never result in a hard error, and
6764 // overload resolution is permitted to sidestep instantiations.
6765 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
6766 !ObjectType.isNull()) {
6767 Conversions[0] = TryObjectArgumentInitialization(
6768 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6769 Method, ActingContext);
6770 if (Conversions[0].isBad())
6771 return true;
6772 }
6773
6774 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
6775 ++I) {
6776 QualType ParamType = ParamTypes[I];
6777 if (!ParamType->isDependentType()) {
6778 Conversions[ThisConversions + I]
6779 = TryCopyInitialization(*this, Args[I], ParamType,
6780 SuppressUserConversions,
6781 /*InOverloadResolution=*/true,
6782 /*AllowObjCWritebackConversion=*/
6783 getLangOpts().ObjCAutoRefCount,
6784 AllowExplicit);
6785 if (Conversions[ThisConversions + I].isBad())
6786 return true;
6787 }
6788 }
6789
6790 return false;
6791}
6792
6793/// Determine whether this is an allowable conversion from the result
6794/// of an explicit conversion operator to the expected type, per C++
6795/// [over.match.conv]p1 and [over.match.ref]p1.
6796///
6797/// \param ConvType The return type of the conversion function.
6798///
6799/// \param ToType The type we are converting to.
6800///
6801/// \param AllowObjCPointerConversion Allow a conversion from one
6802/// Objective-C pointer to another.
6803///
6804/// \returns true if the conversion is allowable, false otherwise.
6805static bool isAllowableExplicitConversion(Sema &S,
6806 QualType ConvType, QualType ToType,
6807 bool AllowObjCPointerConversion) {
6808 QualType ToNonRefType = ToType.getNonReferenceType();
6809
6810 // Easy case: the types are the same.
6811 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6812 return true;
6813
6814 // Allow qualification conversions.
6815 bool ObjCLifetimeConversion;
6816 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6817 ObjCLifetimeConversion))
6818 return true;
6819
6820 // If we're not allowed to consider Objective-C pointer conversions,
6821 // we're done.
6822 if (!AllowObjCPointerConversion)
6823 return false;
6824
6825 // Is this an Objective-C pointer conversion?
6826 bool IncompatibleObjC = false;
6827 QualType ConvertedType;
6828 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6829 IncompatibleObjC);
6830}
6831
6832/// AddConversionCandidate - Add a C++ conversion function as a
6833/// candidate in the candidate set (C++ [over.match.conv],
6834/// C++ [over.match.copy]). From is the expression we're converting from,
6835/// and ToType is the type that we're eventually trying to convert to
6836/// (which may or may not be the same type as the type that the
6837/// conversion function produces).
6838void
6839Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
6840 DeclAccessPair FoundDecl,
6841 CXXRecordDecl *ActingContext,
6842 Expr *From, QualType ToType,
6843 OverloadCandidateSet& CandidateSet,
6844 bool AllowObjCConversionOnExplicit,
6845 bool AllowResultConversion) {
6846 assert(!Conversion->getDescribedFunctionTemplate() &&(static_cast <bool> (!Conversion->getDescribedFunctionTemplate
() && "Conversion function templates use AddTemplateConversionCandidate"
) ? void (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6847, __extension__ __PRETTY_FUNCTION__))
6847 "Conversion function templates use AddTemplateConversionCandidate")(static_cast <bool> (!Conversion->getDescribedFunctionTemplate
() && "Conversion function templates use AddTemplateConversionCandidate"
) ? void (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6847, __extension__ __PRETTY_FUNCTION__))
;
6848 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6849 if (!CandidateSet.isNewCandidate(Conversion))
6850 return;
6851
6852 // If the conversion function has an undeduced return type, trigger its
6853 // deduction now.
6854 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6855 if (DeduceReturnType(Conversion, From->getExprLoc()))
6856 return;
6857 ConvType = Conversion->getConversionType().getNonReferenceType();
6858 }
6859
6860 // If we don't allow any conversion of the result type, ignore conversion
6861 // functions that don't convert to exactly (possibly cv-qualified) T.
6862 if (!AllowResultConversion &&
6863 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
6864 return;
6865
6866 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6867 // operator is only a candidate if its return type is the target type or
6868 // can be converted to the target type with a qualification conversion.
6869 if (Conversion->isExplicit() &&
6870 !isAllowableExplicitConversion(*this, ConvType, ToType,
6871 AllowObjCConversionOnExplicit))
6872 return;
6873
6874 // Overload resolution is always an unevaluated context.
6875 EnterExpressionEvaluationContext Unevaluated(
6876 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6877
6878 // Add this candidate
6879 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6880 Candidate.FoundDecl = FoundDecl;
6881 Candidate.Function = Conversion;
6882 Candidate.IsSurrogate = false;
6883 Candidate.IgnoreObjectArgument = false;
6884 Candidate.FinalConversion.setAsIdentityConversion();
6885 Candidate.FinalConversion.setFromType(ConvType);
6886 Candidate.FinalConversion.setAllToTypes(ToType);
6887 Candidate.Viable = true;
6888 Candidate.ExplicitCallArguments = 1;
6889
6890 // C++ [over.match.funcs]p4:
6891 // For conversion functions, the function is considered to be a member of
6892 // the class of the implicit implied object argument for the purpose of
6893 // defining the type of the implicit object parameter.
6894 //
6895 // Determine the implicit conversion sequence for the implicit
6896 // object parameter.
6897 QualType ImplicitParamType = From->getType();
6898 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
6899 ImplicitParamType = FromPtrType->getPointeeType();
6900 CXXRecordDecl *ConversionContext
6901 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
6902
6903 Candidate.Conversions[0] = TryObjectArgumentInitialization(
6904 *this, CandidateSet.getLocation(), From->getType(),
6905 From->Classify(Context), Conversion, ConversionContext);
6906
6907 if (Candidate.Conversions[0].isBad()) {
6908 Candidate.Viable = false;
6909 Candidate.FailureKind = ovl_fail_bad_conversion;
6910 return;
6911 }
6912
6913 // We won't go through a user-defined type conversion function to convert a
6914 // derived to base as such conversions are given Conversion Rank. They only
6915 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
6916 QualType FromCanon
6917 = Context.getCanonicalType(From->getType().getUnqualifiedType());
6918 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
6919 if (FromCanon == ToCanon ||
6920 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
6921 Candidate.Viable = false;
6922 Candidate.FailureKind = ovl_fail_trivial_conversion;
6923 return;
6924 }
6925
6926 // To determine what the conversion from the result of calling the
6927 // conversion function to the type we're eventually trying to
6928 // convert to (ToType), we need to synthesize a call to the
6929 // conversion function and attempt copy initialization from it. This
6930 // makes sure that we get the right semantics with respect to
6931 // lvalues/rvalues and the type. Fortunately, we can allocate this
6932 // call on the stack and we don't need its arguments to be
6933 // well-formed.
6934 DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
6935 VK_LValue, From->getLocStart());
6936 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
6937 Context.getPointerType(Conversion->getType()),
6938 CK_FunctionToPointerDecay,
6939 &ConversionRef, VK_RValue);
6940
6941 QualType ConversionType = Conversion->getConversionType();
6942 if (!isCompleteType(From->getLocStart(), ConversionType)) {
6943 Candidate.Viable = false;
6944 Candidate.FailureKind = ovl_fail_bad_final_conversion;
6945 return;
6946 }
6947
6948 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
6949
6950 // Note that it is safe to allocate CallExpr on the stack here because
6951 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
6952 // allocator).
6953 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
6954 CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
6955 From->getLocStart());
6956 ImplicitConversionSequence ICS =
6957 TryCopyInitialization(*this, &Call, ToType,
6958 /*SuppressUserConversions=*/true,
6959 /*InOverloadResolution=*/false,
6960 /*AllowObjCWritebackConversion=*/false);
6961
6962 switch (ICS.getKind()) {
6963 case ImplicitConversionSequence::StandardConversion:
6964 Candidate.FinalConversion = ICS.Standard;
6965
6966 // C++ [over.ics.user]p3:
6967 // If the user-defined conversion is specified by a specialization of a
6968 // conversion function template, the second standard conversion sequence
6969 // shall have exact match rank.
6970 if (Conversion->getPrimaryTemplate() &&
6971 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
6972 Candidate.Viable = false;
6973 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
6974 return;
6975 }
6976
6977 // C++0x [dcl.init.ref]p5:
6978 // In the second case, if the reference is an rvalue reference and
6979 // the second standard conversion sequence of the user-defined
6980 // conversion sequence includes an lvalue-to-rvalue conversion, the
6981 // program is ill-formed.
6982 if (ToType->isRValueReferenceType() &&
6983 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6984 Candidate.Viable = false;
6985 Candidate.FailureKind = ovl_fail_bad_final_conversion;
6986 return;
6987 }
6988 break;
6989
6990 case ImplicitConversionSequence::BadConversion:
6991 Candidate.Viable = false;
6992 Candidate.FailureKind = ovl_fail_bad_final_conversion;
6993 return;
6994
6995 default:
6996 llvm_unreachable(::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6997)
6997 "Can only end up with a standard conversion sequence or failure")::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 6997)
;
6998 }
6999
7000 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7001 Candidate.Viable = false;
7002 Candidate.FailureKind = ovl_fail_enable_if;
7003 Candidate.DeductionFailure.Data = FailedAttr;
7004 return;
7005 }
7006
7007 if (Conversion->isMultiVersion() &&
7008 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7009 Candidate.Viable = false;
7010 Candidate.FailureKind = ovl_non_default_multiversion_function;
7011 }
7012}
7013
7014/// \brief Adds a conversion function template specialization
7015/// candidate to the overload set, using template argument deduction
7016/// to deduce the template arguments of the conversion function
7017/// template from the type that we are converting to (C++
7018/// [temp.deduct.conv]).
7019void
7020Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
7021 DeclAccessPair FoundDecl,
7022 CXXRecordDecl *ActingDC,
7023 Expr *From, QualType ToType,
7024 OverloadCandidateSet &CandidateSet,
7025 bool AllowObjCConversionOnExplicit,
7026 bool AllowResultConversion) {
7027 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&(static_cast <bool> (isa<CXXConversionDecl>(FunctionTemplate
->getTemplatedDecl()) && "Only conversion function templates permitted here"
) ? void (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 7028, __extension__ __PRETTY_FUNCTION__))
7028 "Only conversion function templates permitted here")(static_cast <bool> (isa<CXXConversionDecl>(FunctionTemplate
->getTemplatedDecl()) && "Only conversion function templates permitted here"
) ? void (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 7028, __extension__ __PRETTY_FUNCTION__))
;
7029
7030 if (!CandidateSet.isNewCandidate(FunctionTemplate))
7031 return;
7032
7033 TemplateDeductionInfo Info(CandidateSet.getLocation());
7034 CXXConversionDecl *Specialization = nullptr;
7035 if (TemplateDeductionResult Result
7036 = DeduceTemplateArguments(FunctionTemplate, ToType,
7037 Specialization, Info)) {
7038 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7039 Candidate.FoundDecl = FoundDecl;
7040 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7041 Candidate.Viable = false;
7042 Candidate.FailureKind = ovl_fail_bad_deduction;
7043 Candidate.IsSurrogate = false;
7044 Candidate.IgnoreObjectArgument = false;
7045 Candidate.ExplicitCallArguments = 1;
7046 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7047 Info);
7048 return;
7049 }
7050
7051 // Add the conversion function template specialization produced by
7052 // template argument deduction as a candidate.
7053 assert(Specialization && "Missing function template specialization?")(static_cast <bool> (Specialization && "Missing function template specialization?"
) ? void (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 7053, __extension__ __PRETTY_FUNCTION__))
;
7054 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7055 CandidateSet, AllowObjCConversionOnExplicit,
7056 AllowResultConversion);
7057}
7058
7059/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7060/// converts the given @c Object to a function pointer via the
7061/// conversion function @c Conversion, and then attempts to call it
7062/// with the given arguments (C++ [over.call.object]p2-4). Proto is
7063/// the type of function that we'll eventually be calling.
7064void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7065 DeclAccessPair FoundDecl,
7066 CXXRecordDecl *ActingContext,
7067 const FunctionProtoType *Proto,
7068 Expr *Object,
7069 ArrayRef<Expr *> Args,
7070 OverloadCandidateSet& CandidateSet) {
7071 if (!CandidateSet.isNewCandidate(Conversion))
7072 return;
7073
7074 // Overload resolution is always an unevaluated context.
7075 EnterExpressionEvaluationContext Unevaluated(
7076 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7077
7078 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7079 Candidate.FoundDecl = FoundDecl;
7080 Candidate.Function = nullptr;
7081 Candidate.Surrogate = Conversion;
7082 Candidate.Viable = true;
7083 Candidate.IsSurrogate = true;
7084 Candidate.IgnoreObjectArgument = false;
7085 Candidate.ExplicitCallArguments = Args.size();
7086
7087 // Determine the implicit conversion sequence for the implicit
7088 // object parameter.
7089 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7090 *this, CandidateSet.getLocation(), Object->getType(),
7091 Object->Classify(Context), Conversion, ActingContext);
7092 if (ObjectInit.isBad()) {
7093 Candidate.Viable = false;
7094 Candidate.FailureKind = ovl_fail_bad_conversion;
7095 Candidate.Conversions[0] = ObjectInit;
7096 return;
7097 }
7098
7099 // The first conversion is actually a user-defined conversion whose
7100 // first conversion is ObjectInit's standard conversion (which is
7101 // effectively a reference binding). Record it as such.
7102 Candidate.Conversions[0].setUserDefined();
7103 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7104 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7105 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7106 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7107 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7108 Candidate.Conversions[0].UserDefined.After
7109 = Candidate.Conversions[0].UserDefined.Before;
7110 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7111
7112 // Find the
7113 unsigned NumParams = Proto->getNumParams();
7114
7115 // (C++ 13.3.2p2): A candidate function having fewer than m
7116 // parameters is viable only if it has an ellipsis in its parameter
7117 // list (8.3.5).
7118 if (Args.size() > NumParams && !Proto->isVariadic()) {
7119 Candidate.Viable = false;
7120 Candidate.FailureKind = ovl_fail_too_many_arguments;
7121 return;
7122 }
7123
7124 // Function types don't have any default arguments, so just check if
7125 // we have enough arguments.
7126 if (Args.size() < NumParams) {
7127 // Not enough arguments.
7128 Candidate.Viable = false;
7129 Candidate.FailureKind = ovl_fail_too_few_arguments;
7130 return;
7131 }
7132
7133 // Determine the implicit conversion sequences for each of the
7134 // arguments.
7135 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7136 if (ArgIdx < NumParams) {
7137 // (C++ 13.3.2p3): for F to be a viable function, there shall
7138 // exist for each argument an implicit conversion sequence
7139 // (13.3.3.1) that converts that argument to the corresponding
7140 // parameter of F.
7141 QualType ParamType = Proto->getParamType(ArgIdx);
7142 Candidate.Conversions[ArgIdx + 1]
7143 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7144 /*SuppressUserConversions=*/false,
7145 /*InOverloadResolution=*/false,
7146 /*AllowObjCWritebackConversion=*/
7147 getLangOpts().ObjCAutoRefCount);
7148 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7149 Candidate.Viable = false;
7150 Candidate.FailureKind = ovl_fail_bad_conversion;
7151 return;
7152 }
7153 } else {
7154 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7155 // argument for which there is no corresponding parameter is
7156 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7157 Candidate.Conversions[ArgIdx + 1].setEllipsis();
7158 }
7159 }
7160
7161 if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
7162 Candidate.Viable = false;
7163 Candidate.FailureKind = ovl_fail_enable_if;
7164 Candidate.DeductionFailure.Data = FailedAttr;
7165 return;
7166 }
7167}
7168
7169/// \brief Add overload candidates for overloaded operators that are
7170/// member functions.
7171///
7172/// Add the overloaded operator candidates that are member functions
7173/// for the operator Op that was used in an operator expression such
7174/// as "x Op y". , Args/NumArgs provides the operator arguments, and
7175/// CandidateSet will store the added overload candidates. (C++
7176/// [over.match.oper]).
7177void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7178 SourceLocation OpLoc,
7179 ArrayRef<Expr *> Args,
7180 OverloadCandidateSet& CandidateSet,
7181 SourceRange OpRange) {
7182 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7183
7184 // C++ [over.match.oper]p3:
7185 // For a unary operator @ with an operand of a type whose
7186 // cv-unqualified version is T1, and for a binary operator @ with
7187 // a left operand of a type whose cv-unqualified version is T1 and
7188 // a right operand of a type whose cv-unqualified version is T2,
7189 // three sets of candidate functions, designated member
7190 // candidates, non-member candidates and built-in candidates, are
7191 // constructed as follows:
7192 QualType T1 = Args[0]->getType();
7193
7194 // -- If T1 is a complete class type or a class currently being
7195 // defined, the set of member candidates is the result of the
7196 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7197 // the set of member candidates is empty.
7198 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7199 // Complete the type if it can be completed.
7200 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7201 return;
7202 // If the type is neither complete nor being defined, bail out now.
7203 if (!T1Rec->getDecl()->getDefinition())
7204 return;
7205
7206 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7207 LookupQualifiedName(Operators, T1Rec->getDecl());
7208 Operators.suppressDiagnostics();
7209
7210 for (LookupResult::iterator Oper = Operators.begin(),
7211 OperEnd = Operators.end();
7212 Oper != OperEnd;
7213 ++Oper)
7214 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7215 Args[0]->Classify(Context), Args.slice(1),
7216 CandidateSet, /*SuppressUserConversions=*/false);
7217 }
7218}
7219
7220/// AddBuiltinCandidate - Add a candidate for a built-in
7221/// operator. ResultTy and ParamTys are the result and parameter types
7222/// of the built-in candidate, respectively. Args and NumArgs are the
7223/// arguments being passed to the candidate. IsAssignmentOperator
7224/// should be true when this built-in candidate is an assignment
7225/// operator. NumContextualBoolArguments is the number of arguments
7226/// (at the beginning of the argument list) that will be contextually
7227/// converted to bool.
7228void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7229 OverloadCandidateSet& CandidateSet,
7230 bool IsAssignmentOperator,
7231 unsigned NumContextualBoolArguments) {
7232 // Overload resolution is always an unevaluated context.
7233 EnterExpressionEvaluationContext Unevaluated(
7234 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7235
7236 // Add this candidate
7237 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7238 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7239 Candidate.Function = nullptr;
7240 Candidate.IsSurrogate = false;
7241 Candidate.IgnoreObjectArgument = false;
7242 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7243
7244 // Determine the implicit conversion sequences for each of the
7245 // arguments.
7246 Candidate.Viable = true;
7247 Candidate.ExplicitCallArguments = Args.size();
7248 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7249 // C++ [over.match.oper]p4:
7250 // For the built-in assignment operators, conversions of the
7251 // left operand are restricted as follows:
7252 // -- no temporaries are introduced to hold the left operand, and
7253 // -- no user-defined conversions are applied to the left
7254 // operand to achieve a type match with the left-most
7255 // parameter of a built-in candidate.
7256 //
7257 // We block these conversions by turning off user-defined
7258 // conversions, since that is the only way that initialization of
7259 // a reference to a non-class type can occur from something that
7260 // is not of the same type.
7261 if (ArgIdx < NumContextualBoolArguments) {
7262 assert(ParamTys[ArgIdx] == Context.BoolTy &&(static_cast <bool> (ParamTys[ArgIdx] == Context.BoolTy
&& "Contextual conversion to bool requires bool type"
) ? void (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 7263, __extension__ __PRETTY_FUNCTION__))
7263 "Contextual conversion to bool requires bool type")(static_cast <bool> (ParamTys[ArgIdx] == Context.BoolTy
&& "Contextual conversion to bool requires bool type"
) ? void (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 7263, __extension__ __PRETTY_FUNCTION__))
;
7264 Candidate.Conversions[ArgIdx]
7265 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7266 } else {
7267 Candidate.Conversions[ArgIdx]
7268 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7269 ArgIdx == 0 && IsAssignmentOperator,
7270 /*InOverloadResolution=*/false,
7271 /*AllowObjCWritebackConversion=*/
7272 getLangOpts().ObjCAutoRefCount);
7273 }
7274 if (Candidate.Conversions[ArgIdx].isBad()) {
7275 Candidate.Viable = false;
7276 Candidate.FailureKind = ovl_fail_bad_conversion;
7277 break;
7278 }
7279 }
7280}
7281
7282namespace {
7283
7284/// BuiltinCandidateTypeSet - A set of types that will be used for the
7285/// candidate operator functions for built-in operators (C++
7286/// [over.built]). The types are separated into pointer types and
7287/// enumeration types.
7288class BuiltinCandidateTypeSet {
7289 /// TypeSet - A set of types.
7290 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7291 llvm::SmallPtrSet<QualType, 8>> TypeSet;
7292
7293 /// PointerTypes - The set of pointer types that will be used in the
7294 /// built-in candidates.
7295 TypeSet PointerTypes;
7296
7297 /// MemberPointerTypes - The set of member pointer types that will be
7298 /// used in the built-in candidates.
7299 TypeSet MemberPointerTypes;
7300
7301 /// EnumerationTypes - The set of enumeration types that will be
7302 /// used in the built-in candidates.
7303 TypeSet EnumerationTypes;
7304
7305 /// \brief The set of vector types that will be used in the built-in
7306 /// candidates.
7307 TypeSet VectorTypes;
7308
7309 /// \brief A flag indicating non-record types are viable candidates
7310 bool HasNonRecordTypes;
7311
7312 /// \brief A flag indicating whether either arithmetic or enumeration types
7313 /// were present in the candidate set.
7314 bool HasArithmeticOrEnumeralTypes;
7315
7316 /// \brief A flag indicating whether the nullptr type was present in the
7317 /// candidate set.
7318 bool HasNullPtrType;
7319
7320 /// Sema - The semantic analysis instance where we are building the
7321 /// candidate type set.
7322 Sema &SemaRef;
7323
7324 /// Context - The AST context in which we will build the type sets.
7325 ASTContext &Context;
7326
7327 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7328 const Qualifiers &VisibleQuals);
7329 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7330
7331public:
7332 /// iterator - Iterates through the types that are part of the set.
7333 typedef TypeSet::iterator iterator;
7334
7335 BuiltinCandidateTypeSet(Sema &SemaRef)
7336 : HasNonRecordTypes(false),
7337 HasArithmeticOrEnumeralTypes(false),
7338 HasNullPtrType(false),
7339 SemaRef(SemaRef),
7340 Context(SemaRef.Context) { }
7341
7342 void AddTypesConvertedFrom(QualType Ty,
7343 SourceLocation Loc,
7344 bool AllowUserConversions,
7345 bool AllowExplicitConversions,
7346 const Qualifiers &VisibleTypeConversionsQuals);
7347
7348 /// pointer_begin - First pointer type found;
7349 iterator pointer_begin() { return PointerTypes.begin(); }
7350
7351 /// pointer_end - Past the last pointer type found;
7352 iterator pointer_end() { return PointerTypes.end(); }
7353
7354 /// member_pointer_begin - First member pointer type found;
7355 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
7356
7357 /// member_pointer_end - Past the last member pointer type found;
7358 iterator member_pointer_end() { return MemberPointerTypes.end(); }
7359
7360 /// enumeration_begin - First enumeration type found;
7361 iterator enumeration_begin() { return EnumerationTypes.begin(); }
7362
7363 /// enumeration_end - Past the last enumeration type found;
7364 iterator enumeration_end() { return EnumerationTypes.end(); }
7365
7366 iterator vector_begin() { return VectorTypes.begin(); }
7367 iterator vector_end() { return VectorTypes.end(); }
7368
7369 bool hasNonRecordTypes() { return HasNonRecordTypes; }
7370 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7371 bool hasNullPtrType() const { return HasNullPtrType; }
7372};
7373
7374} // end anonymous namespace
7375
7376/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7377/// the set of pointer types along with any more-qualified variants of
7378/// that type. For example, if @p Ty is "int const *", this routine
7379/// will add "int const *", "int const volatile *", "int const
7380/// restrict *", and "int const volatile restrict *" to the set of
7381/// pointer types. Returns true if the add of @p Ty itself succeeded,
7382/// false otherwise.
7383///
7384/// FIXME: what to do about extended qualifiers?
7385bool
7386BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7387 const Qualifiers &VisibleQuals) {
7388
7389 // Insert this type.
7390 if (!PointerTypes.insert(Ty))
7391 return false;
7392
7393 QualType PointeeTy;
7394 const PointerType *PointerTy = Ty->getAs<PointerType>();
7395 bool buildObjCPtr = false;
7396 if (!PointerTy) {
7397 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7398 PointeeTy = PTy->getPointeeType();
7399 buildObjCPtr = true;
7400 } else {
7401 PointeeTy = PointerTy->getPointeeType();
7402 }
7403
7404 // Don't add qualified variants of arrays. For one, they're not allowed
7405 // (the qualifier would sink to the element type), and for another, the
7406 // only overload situation where it matters is subscript or pointer +- int,
7407 // and those shouldn't have qualifier variants anyway.
7408 if (PointeeTy->isArrayType())
7409 return true;
7410
7411 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7412 bool hasVolatile = VisibleQuals.hasVolatile();
7413 bool hasRestrict = VisibleQuals.hasRestrict();
7414
7415 // Iterate through all strict supersets of BaseCVR.
7416 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7417 if ((CVR | BaseCVR) != CVR) continue;
7418 // Skip over volatile if no volatile found anywhere in the types.
7419 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7420
7421 // Skip over restrict if no restrict found anywhere in the types, or if
7422 // the type cannot be restrict-qualified.
7423 if ((CVR & Qualifiers::Restrict) &&
7424 (!hasRestrict ||
7425 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7426 continue;
7427
7428 // Build qualified pointee type.
7429 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7430
7431 // Build qualified pointer type.
7432 QualType QPointerTy;
7433 if (!buildObjCPtr)
7434 QPointerTy = Context.getPointerType(QPointeeTy);
7435 else
7436 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7437
7438 // Insert qualified pointer type.
7439 PointerTypes.insert(QPointerTy);
7440 }
7441
7442 return true;
7443}
7444
7445/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7446/// to the set of pointer types along with any more-qualified variants of
7447/// that type. For example, if @p Ty is "int const *", this routine
7448/// will add "int const *", "int const volatile *", "int const
7449/// restrict *", and "int const volatile restrict *" to the set of
7450/// pointer types. Returns true if the add of @p Ty itself succeeded,
7451/// false otherwise.
7452///
7453/// FIXME: what to do about extended qualifiers?
7454bool
7455BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7456 QualType Ty) {
7457 // Insert this type.
7458 if (!MemberPointerTypes.insert(Ty))
7459 return false;
7460
7461 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7462 assert(PointerTy && "type was not a member pointer type!")(static_cast <bool> (PointerTy && "type was not a member pointer type!"
) ? void (0) : __assert_fail ("PointerTy && \"type was not a member pointer type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 7462, __extension__ __PRETTY_FUNCTION__))
;
7463
7464 QualType PointeeTy = PointerTy->getPointeeType();
7465 // Don't add qualified variants of arrays. For one, they're not allowed
7466 // (the qualifier would sink to the element type), and for another, the
7467 // only overload situation where it matters is subscript or pointer +- int,
7468 // and those shouldn't have qualifier variants anyway.
7469 if (PointeeTy->isArrayType())
7470 return true;
7471 const Type *ClassTy = PointerTy->getClass();
7472
7473 // Iterate through all strict supersets of the pointee type's CVR
7474 // qualifiers.
7475 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7476 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7477 if ((CVR | BaseCVR) != CVR) continue;
7478
7479 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7480 MemberPointerTypes.insert(
7481 Context.getMemberPointerType(QPointeeTy, ClassTy));
7482 }
7483
7484 return true;
7485}
7486
7487/// AddTypesConvertedFrom - Add each of the types to which the type @p
7488/// Ty can be implicit converted to the given set of @p Types. We're
7489/// primarily interested in pointer types and enumeration types. We also
7490/// take member pointer types, for the conditional operator.
7491/// AllowUserConversions is true if we should look at the conversion
7492/// functions of a class type, and AllowExplicitConversions if we
7493/// should also include the explicit conversion functions of a class
7494/// type.
7495void
7496BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7497 SourceLocation Loc,
7498 bool AllowUserConversions,
7499 bool AllowExplicitConversions,
7500 const Qualifiers &VisibleQuals) {
7501 // Only deal with canonical types.
7502 Ty = Context.getCanonicalType(Ty);
7503
7504 // Look through reference types; they aren't part of the type of an
7505 // expression for the purposes of conversions.
7506 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7507 Ty = RefTy->getPointeeType();
7508
7509 // If we're dealing with an array type, decay to the pointer.
7510 if (Ty->isArrayType())
7511 Ty = SemaRef.Context.getArrayDecayedType(Ty);
7512
7513 // Otherwise, we don't care about qualifiers on the type.
7514 Ty = Ty.getLocalUnqualifiedType();
7515
7516 // Flag if we ever add a non-record type.
7517 const RecordType *TyRec = Ty->getAs<RecordType>();
7518 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7519
7520 // Flag if we encounter an arithmetic type.
7521 HasArithmeticOrEnumeralTypes =
7522 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7523
7524 if (Ty->isObjCIdType() || Ty->isObjCClassType())
7525 PointerTypes.insert(Ty);
7526 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7527 // Insert our type, and its more-qualified variants, into the set
7528 // of types.
7529 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7530 return;
7531 } else if (Ty->isMemberPointerType()) {
7532 // Member pointers are far easier, since the pointee can't be converted.
7533 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7534 return;
7535 } else if (Ty->isEnumeralType()) {
7536 HasArithmeticOrEnumeralTypes = true;
7537 EnumerationTypes.insert(Ty);
7538 } else if (Ty->isVectorType()) {
7539 // We treat vector types as arithmetic types in many contexts as an
7540 // extension.
7541 HasArithmeticOrEnumeralTypes = true;
7542 VectorTypes.insert(Ty);
7543 } else if (Ty->isNullPtrType()) {
7544 HasNullPtrType = true;
7545 } else if (AllowUserConversions && TyRec) {
7546 // No conversion functions in incomplete types.
7547 if (!SemaRef.isCompleteType(Loc, Ty))
7548 return;
7549
7550 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7551 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7552 if (isa<UsingShadowDecl>(D))
7553 D = cast<UsingShadowDecl>(D)->getTargetDecl();
7554
7555 // Skip conversion function templates; they don't tell us anything
7556 // about which builtin types we can convert to.
7557 if (isa<FunctionTemplateDecl>(D))
7558 continue;
7559
7560 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7561 if (AllowExplicitConversions || !Conv->isExplicit()) {
7562 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7563 VisibleQuals);
7564 }
7565 }
7566 }
7567}
7568
7569/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
7570/// the volatile- and non-volatile-qualified assignment operators for the
7571/// given type to the candidate set.
7572static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7573 QualType T,
7574 ArrayRef<Expr *> Args,
7575 OverloadCandidateSet &CandidateSet) {
7576 QualType ParamTypes[2];
7577
7578 // T& operator=(T&, T)
7579 ParamTypes[0] = S.Context.getLValueReferenceType(T);
7580 ParamTypes[1] = T;
7581 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7582 /*IsAssignmentOperator=*/true);
7583
7584 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7585 // volatile T& operator=(volatile T&, T)
7586 ParamTypes[0]
7587 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
7588 ParamTypes[1] = T;
7589 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
7590 /*IsAssignmentOperator=*/true);
7591 }
7592}
7593
7594/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7595/// if any, found in visible type conversion functions found in ArgExpr's type.
7596static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7597 Qualifiers VRQuals;
7598 const RecordType *TyRec;
7599 if (const MemberPointerType *RHSMPType =
7600 ArgExpr->getType()->getAs<MemberPointerType>())
7601 TyRec = RHSMPType->getClass()->getAs<RecordType>();
7602 else
7603 TyRec = ArgExpr->getType()->getAs<RecordType>();
7604 if (!TyRec) {
7605 // Just to be safe, assume the worst case.
7606 VRQuals.addVolatile();
7607 VRQuals.addRestrict();
7608 return VRQuals;
7609 }
7610
7611 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7612 if (!ClassDecl->hasDefinition())
7613 return VRQuals;
7614
7615 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7616 if (isa<UsingShadowDecl>(D))
7617 D = cast<UsingShadowDecl>(D)->getTargetDecl();
7618 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7619 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7620 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7621 CanTy = ResTypeRef->getPointeeType();
7622 // Need to go down the pointer/mempointer chain and add qualifiers
7623 // as see them.
7624 bool done = false;
7625 while (!done) {
7626 if (CanTy.isRestrictQualified())
7627 VRQuals.addRestrict();
7628 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7629 CanTy = ResTypePtr->getPointeeType();
7630 else if (const MemberPointerType *ResTypeMPtr =
7631 CanTy->getAs<MemberPointerType>())
7632 CanTy = ResTypeMPtr->getPointeeType();
7633 else
7634 done = true;
7635 if (CanTy.isVolatileQualified())
7636 VRQuals.addVolatile();
7637 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7638 return VRQuals;
7639 }
7640 }
7641 }
7642 return VRQuals;
7643}
7644
7645namespace {
7646
7647/// \brief Helper class to manage the addition of builtin operator overload
7648/// candidates. It provides shared state and utility methods used throughout
7649/// the process, as well as a helper method to add each group of builtin
7650/// operator overloads from the standard to a candidate set.
7651class BuiltinOperatorOverloadBuilder {
7652 // Common instance state available to all overload candidate addition methods.
7653 Sema &S;
7654 ArrayRef<Expr *> Args;
7655 Qualifiers VisibleTypeConversionsQuals;
7656 bool HasArithmeticOrEnumeralCandidateType;
7657 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7658 OverloadCandidateSet &CandidateSet;
7659
7660 static constexpr int ArithmeticTypesCap = 24;
7661 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
7662
7663 // Define some indices used to iterate over the arithemetic types in
7664 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
7665 // types are that preserved by promotion (C++ [over.built]p2).
7666 unsigned FirstIntegralType,
7667 LastIntegralType;
7668 unsigned FirstPromotedIntegralType,
7669 LastPromotedIntegralType;
7670 unsigned FirstPromotedArithmeticType,
7671 LastPromotedArithmeticType;
7672 unsigned NumArithmeticTypes;
7673
7674 void InitArithmeticTypes() {
7675 // Start of promoted types.
7676 FirstPromotedArithmeticType = 0;
7677 ArithmeticTypes.push_back(S.Context.FloatTy);
7678 ArithmeticTypes.push_back(S.Context.DoubleTy);
7679 ArithmeticTypes.push_back(S.Context.LongDoubleTy);
7680 if (S.Context.getTargetInfo().hasFloat128Type())
7681 ArithmeticTypes.push_back(S.Context.Float128Ty);
7682
7683 // Start of integral types.
7684 FirstIntegralType = ArithmeticTypes.size();
7685 FirstPromotedIntegralType = ArithmeticTypes.size();
7686 ArithmeticTypes.push_back(S.Context.IntTy);
7687 ArithmeticTypes.push_back(S.Context.LongTy);
7688 ArithmeticTypes.push_back(S.Context.LongLongTy);
7689 if (S.Context.getTargetInfo().hasInt128Type())
7690 ArithmeticTypes.push_back(S.Context.Int128Ty);
7691 ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
7692 ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
7693 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
7694 if (S.Context.getTargetInfo().hasInt128Type())
7695 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
7696 LastPromotedIntegralType = ArithmeticTypes.size();
7697 LastPromotedArithmeticType = ArithmeticTypes.size();
7698 // End of promoted types.
7699
7700 ArithmeticTypes.push_back(S.Context.BoolTy);
7701 ArithmeticTypes.push_back(S.Context.CharTy);
7702 ArithmeticTypes.push_back(S.Context.WCharTy);
7703 ArithmeticTypes.push_back(S.Context.Char16Ty);
7704 ArithmeticTypes.push_back(S.Context.Char32Ty);
7705 ArithmeticTypes.push_back(S.Context.SignedCharTy);
7706 ArithmeticTypes.push_back(S.Context.ShortTy);
7707 ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
7708 ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
7709 LastIntegralType = ArithmeticTypes.size();
7710 NumArithmeticTypes = ArithmeticTypes.size();
7711 // End of integral types.
7712 // FIXME: What about complex? What about half?
7713
7714 assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&(static_cast <bool> (ArithmeticTypes.size() <= ArithmeticTypesCap
&& "Enough inline storage for all arithmetic types."
) ? void (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 7715, __extension__ __PRETTY_FUNCTION__))
7715 "Enough inline storage for all arithmetic types.")(static_cast <bool> (ArithmeticTypes.size() <= ArithmeticTypesCap
&& "Enough inline storage for all arithmetic types."
) ? void (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 7715, __extension__ __PRETTY_FUNCTION__))
;
7716 }
7717
7718 /// \brief Helper method to factor out the common pattern of adding overloads
7719 /// for '++' and '--' builtin operators.
7720 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7721 bool HasVolatile,
7722 bool HasRestrict) {
7723 QualType ParamTypes[2] = {
7724 S.Context.getLValueReferenceType(CandidateTy),
7725 S.Context.IntTy
7726 };
7727
7728 // Non-volatile version.
7729 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7730
7731 // Use a heuristic to reduce number of builtin candidates in the set:
7732 // add volatile version only if there are conversions to a volatile type.
7733 if (HasVolatile) {
7734 ParamTypes[0] =
7735 S.Context.getLValueReferenceType(
7736 S.Context.getVolatileType(CandidateTy));
7737 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7738 }
7739
7740 // Add restrict version only if there are conversions to a restrict type
7741 // and our candidate type is a non-restrict-qualified pointer.
7742 if (HasRestrict && CandidateTy->isAnyPointerType() &&
7743 !CandidateTy.isRestrictQualified()) {
7744 ParamTypes[0]
7745 = S.Context.getLValueReferenceType(
7746 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7747 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7748
7749 if (HasVolatile) {
7750 ParamTypes[0]
7751 = S.Context.getLValueReferenceType(
7752 S.Context.getCVRQualifiedType(CandidateTy,
7753 (Qualifiers::Volatile |
7754 Qualifiers::Restrict)));
7755 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7756 }
7757 }
7758
7759 }
7760
7761public:
7762 BuiltinOperatorOverloadBuilder(
7763 Sema &S, ArrayRef<Expr *> Args,
7764 Qualifiers VisibleTypeConversionsQuals,
7765 bool HasArithmeticOrEnumeralCandidateType,
7766 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7767 OverloadCandidateSet &CandidateSet)
7768 : S(S), Args(Args),
7769 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7770 HasArithmeticOrEnumeralCandidateType(
7771 HasArithmeticOrEnumeralCandidateType),
7772 CandidateTypes(CandidateTypes),
7773 CandidateSet(CandidateSet) {
7774
7775 InitArithmeticTypes();
7776 }
7777
7778 // C++ [over.built]p3:
7779 //
7780 // For every pair (T, VQ), where T is an arithmetic type, and VQ
7781 // is either volatile or empty, there exist candidate operator
7782 // functions of the form
7783 //
7784 // VQ T& operator++(VQ T&);
7785 // T operator++(VQ T&, int);
7786 //
7787 // C++ [over.built]p4:
7788 //
7789 // For every pair (T, VQ), where T is an arithmetic type other
7790 // than bool, and VQ is either volatile or empty, there exist
7791 // candidate operator functions of the form
7792 //
7793 // VQ T& operator--(VQ T&);
7794 // T operator--(VQ T&, int);
7795 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7796 if (!HasArithmeticOrEnumeralCandidateType)
7797 return;
7798
7799 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
7800 Arith < NumArithmeticTypes; ++Arith) {
7801 addPlusPlusMinusMinusStyleOverloads(
7802 ArithmeticTypes[Arith],
7803 VisibleTypeConversionsQuals.hasVolatile(),
7804 VisibleTypeConversionsQuals.hasRestrict());
7805 }
7806 }
7807
7808 // C++ [over.built]p5:
7809 //
7810 // For every pair (T, VQ), where T is a cv-qualified or
7811 // cv-unqualified object type, and VQ is either volatile or
7812 // empty, there exist candidate operator functions of the form
7813 //
7814 // T*VQ& operator++(T*VQ&);
7815 // T*VQ& operator--(T*VQ&);
7816 // T* operator++(T*VQ&, int);
7817 // T* operator--(T*VQ&, int);
7818 void addPlusPlusMinusMinusPointerOverloads() {
7819 for (BuiltinCandidateTypeSet::iterator
7820 Ptr = CandidateTypes[0].pointer_begin(),
7821 PtrEnd = CandidateTypes[0].pointer_end();
7822 Ptr != PtrEnd; ++Ptr) {
7823 // Skip pointer types that aren't pointers to object types.
7824 if (!(*Ptr)->getPointeeType()->isObjectType())
7825 continue;
7826
7827 addPlusPlusMinusMinusStyleOverloads(*Ptr,
7828 (!(*Ptr).isVolatileQualified() &&
7829 VisibleTypeConversionsQuals.hasVolatile()),
7830 (!(*Ptr).isRestrictQualified() &&
7831 VisibleTypeConversionsQuals.hasRestrict()));
7832 }
7833 }
7834
7835 // C++ [over.built]p6:
7836 // For every cv-qualified or cv-unqualified object type T, there
7837 // exist candidate operator functions of the form
7838 //
7839 // T& operator*(T*);
7840 //
7841 // C++ [over.built]p7:
7842 // For every function type T that does not have cv-qualifiers or a
7843 // ref-qualifier, there exist candidate operator functions of the form
7844 // T& operator*(T*);
7845 void addUnaryStarPointerOverloads() {
7846 for (BuiltinCandidateTypeSet::iterator
7847 Ptr = CandidateTypes[0].pointer_begin(),
7848 PtrEnd = CandidateTypes[0].pointer_end();
7849 Ptr != PtrEnd; ++Ptr) {
7850 QualType ParamTy = *Ptr;
7851 QualType PointeeTy = ParamTy->getPointeeType();
7852 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7853 continue;
7854
7855 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7856 if (Proto->getTypeQuals() || Proto->getRefQualifier())
7857 continue;
7858
7859 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
7860 }
7861 }
7862
7863 // C++ [over.built]p9:
7864 // For every promoted arithmetic type T, there exist candidate
7865 // operator functions of the form
7866 //
7867 // T operator+(T);
7868 // T operator-(T);
7869 void addUnaryPlusOrMinusArithmeticOverloads() {
7870 if (!HasArithmeticOrEnumeralCandidateType)
7871 return;
7872
7873 for (unsigned Arith = FirstPromotedArithmeticType;
7874 Arith < LastPromotedArithmeticType; ++Arith) {
7875 QualType ArithTy = ArithmeticTypes[Arith];
7876 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
7877 }
7878
7879 // Extension: We also add these operators for vector types.
7880 for (BuiltinCandidateTypeSet::iterator
7881 Vec = CandidateTypes[0].vector_begin(),
7882 VecEnd = CandidateTypes[0].vector_end();
7883 Vec != VecEnd; ++Vec) {
7884 QualType VecTy = *Vec;
7885 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
7886 }
7887 }
7888
7889 // C++ [over.built]p8:
7890 // For every type T, there exist candidate operator functions of
7891 // the form
7892 //
7893 // T* operator+(T*);
7894 void addUnaryPlusPointerOverloads() {
7895 for (BuiltinCandidateTypeSet::iterator
7896 Ptr = CandidateTypes[0].pointer_begin(),
7897 PtrEnd = CandidateTypes[0].pointer_end();
7898 Ptr != PtrEnd; ++Ptr) {
7899 QualType ParamTy = *Ptr;
7900 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
7901 }
7902 }
7903
7904 // C++ [over.built]p10:
7905 // For every promoted integral type T, there exist candidate
7906 // operator functions of the form
7907 //
7908 // T operator~(T);
7909 void addUnaryTildePromotedIntegralOverloads() {
7910 if (!HasArithmeticOrEnumeralCandidateType)
7911 return;
7912
7913 for (unsigned Int = FirstPromotedIntegralType;
7914 Int < LastPromotedIntegralType; ++Int) {
7915 QualType IntTy = ArithmeticTypes[Int];
7916 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
7917 }
7918
7919 // Extension: We also add this operator for vector types.
7920 for (BuiltinCandidateTypeSet::iterator
7921 Vec = CandidateTypes[0].vector_begin(),
7922 VecEnd = CandidateTypes[0].vector_end();
7923 Vec != VecEnd; ++Vec) {
7924 QualType VecTy = *Vec;
7925 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
7926 }
7927 }
7928
7929 // C++ [over.match.oper]p16:
7930 // For every pointer to member type T or type std::nullptr_t, there
7931 // exist candidate operator functions of the form
7932 //
7933 // bool operator==(T,T);
7934 // bool operator!=(T,T);
7935 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
7936 /// Set of (canonical) types that we've already handled.
7937 llvm::SmallPtrSet<QualType, 8> AddedTypes;
7938
7939 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7940 for (BuiltinCandidateTypeSet::iterator
7941 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7942 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7943 MemPtr != MemPtrEnd;
7944 ++MemPtr) {
7945 // Don't add the same builtin candidate twice.
7946 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7947 continue;
7948
7949 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7950 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7951 }
7952
7953 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
7954 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
7955 if (AddedTypes.insert(NullPtrTy).second) {
7956 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
7957 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
7958 }
7959 }
7960 }
7961 }
7962
7963 // C++ [over.built]p15:
7964 //
7965 // For every T, where T is an enumeration type or a pointer type,
7966 // there exist candidate operator functions of the form
7967 //
7968 // bool operator<(T, T);
7969 // bool operator>(T, T);
7970 // bool operator<=(T, T);
7971 // bool operator>=(T, T);
7972 // bool operator==(T, T);
7973 // bool operator!=(T, T);
7974 void addRelationalPointerOrEnumeralOverloads() {
7975 // C++ [over.match.oper]p3:
7976 // [...]the built-in candidates include all of the candidate operator
7977 // functions defined in 13.6 that, compared to the given operator, [...]
7978 // do not have the same parameter-type-list as any non-template non-member
7979 // candidate.
7980 //
7981 // Note that in practice, this only affects enumeration types because there
7982 // aren't any built-in candidates of record type, and a user-defined operator
7983 // must have an operand of record or enumeration type. Also, the only other
7984 // overloaded operator with enumeration arguments, operator=,
7985 // cannot be overloaded for enumeration types, so this is the only place
7986 // where we must suppress candidates like this.
7987 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
7988 UserDefinedBinaryOperators;
7989
7990 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7991 if (CandidateTypes[ArgIdx].enumeration_begin() !=
7992 CandidateTypes[ArgIdx].enumeration_end()) {
7993 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
7994 CEnd = CandidateSet.end();
7995 C != CEnd; ++C) {
7996 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
7997 continue;
7998
7999 if (C->Function->isFunctionTemplateSpecialization())
8000 continue;
8001
8002 QualType FirstParamType =
8003 C->Function->getParamDecl(0)->getType().getUnqualifiedType();
8004 QualType SecondParamType =
8005 C->Function->getParamDecl(1)->getType().getUnqualifiedType();
8006
8007 // Skip if either parameter isn't of enumeral type.
8008 if (!FirstParamType->isEnumeralType() ||
8009 !SecondParamType->isEnumeralType())
8010 continue;
8011
8012 // Add this operator to the set of known user-defined operators.
8013 UserDefinedBinaryOperators.insert(
8014 std::make_pair(S.Context.getCanonicalType(FirstParamType),
8015 S.Context.getCanonicalType(SecondParamType)));
8016 }
8017 }
8018 }
8019
8020 /// Set of (canonical) types that we've already handled.
8021 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8022
8023 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8024 for (BuiltinCandidateTypeSet::iterator
8025 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8026 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8027 Ptr != PtrEnd; ++Ptr) {
8028 // Don't add the same builtin candidate twice.
8029 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8030 continue;
8031
8032 QualType ParamTypes[2] = { *Ptr, *Ptr };
8033 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8034 }
8035 for (BuiltinCandidateTypeSet::iterator
8036 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8037 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8038 Enum != EnumEnd; ++Enum) {
8039 CanQualType CanonType = S.Context.getCanonicalType(*Enum);
8040
8041 // Don't add the same builtin candidate twice, or if a user defined
8042 // candidate exists.
8043 if (!AddedTypes.insert(CanonType).second ||
8044 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8045 CanonType)))
8046 continue;
8047
8048 QualType ParamTypes[2] = { *Enum, *Enum };
8049 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8050 }
8051 }
8052 }
8053
8054 // C++ [over.built]p13:
8055 //
8056 // For every cv-qualified or cv-unqualified object type T
8057 // there exist candidate operator functions of the form
8058 //
8059 // T* operator+(T*, ptrdiff_t);
8060 // T& operator[](T*, ptrdiff_t); [BELOW]
8061 // T* operator-(T*, ptrdiff_t);
8062 // T* operator+(ptrdiff_t, T*);
8063 // T& operator[](ptrdiff_t, T*); [BELOW]
8064 //
8065 // C++ [over.built]p14:
8066 //
8067 // For every T, where T is a pointer to object type, there
8068 // exist candidate operator functions of the form
8069 //
8070 // ptrdiff_t operator-(T, T);
8071 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8072 /// Set of (canonical) types that we've already handled.
8073 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8074
8075 for (int Arg = 0; Arg < 2; ++Arg) {
8076 QualType AsymmetricParamTypes[2] = {
8077 S.Context.getPointerDiffType(),
8078 S.Context.getPointerDiffType(),
8079 };
8080 for (BuiltinCandidateTypeSet::iterator
8081 Ptr = CandidateTypes[Arg].pointer_begin(),
8082 PtrEnd = CandidateTypes[Arg].pointer_end();
8083 Ptr != PtrEnd; ++Ptr) {
8084 QualType PointeeTy = (*Ptr)->getPointeeType();
8085 if (!PointeeTy->isObjectType())
8086 continue;
8087
8088 AsymmetricParamTypes[Arg] = *Ptr;
8089 if (Arg == 0 || Op == OO_Plus) {
8090 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8091 // T* operator+(ptrdiff_t, T*);
8092 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8093 }
8094 if (Op == OO_Minus) {
8095 // ptrdiff_t operator-(T, T);
8096 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8097 continue;
8098
8099 QualType ParamTypes[2] = { *Ptr, *Ptr };
8100 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8101 }
8102 }
8103 }
8104 }
8105
8106 // C++ [over.built]p12:
8107 //
8108 // For every pair of promoted arithmetic types L and R, there
8109 // exist candidate operator functions of the form
8110 //
8111 // LR operator*(L, R);
8112 // LR operator/(L, R);
8113 // LR operator+(L, R);
8114 // LR operator-(L, R);
8115 // bool operator<(L, R);
8116 // bool operator>(L, R);
8117 // bool operator<=(L, R);
8118 // bool operator>=(L, R);
8119 // bool operator==(L, R);
8120 // bool operator!=(L, R);
8121 //
8122 // where LR is the result of the usual arithmetic conversions
8123 // between types L and R.
8124 //
8125 // C++ [over.built]p24:
8126 //
8127 // For every pair of promoted arithmetic types L and R, there exist
8128 // candidate operator functions of the form
8129 //
8130 // LR operator?(bool, L, R);
8131 //
8132 // where LR is the result of the usual arithmetic conversions
8133 // between types L and R.
8134 // Our candidates ignore the first parameter.
8135 void addGenericBinaryArithmeticOverloads() {
8136 if (!HasArithmeticOrEnumeralCandidateType)
8137 return;
8138
8139 for (unsigned Left = FirstPromotedArithmeticType;
8140 Left < LastPromotedArithmeticType; ++Left) {
8141 for (unsigned Right = FirstPromotedArithmeticType;
8142 Right < LastPromotedArithmeticType; ++Right) {
8143 QualType LandR[2] = { ArithmeticTypes[Left],
8144 ArithmeticTypes[Right] };
8145 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8146 }
8147 }
8148
8149 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8150 // conditional operator for vector types.
8151 for (BuiltinCandidateTypeSet::iterator
8152 Vec1 = CandidateTypes[0].vector_begin(),
8153 Vec1End = CandidateTypes[0].vector_end();
8154 Vec1 != Vec1End; ++Vec1) {
8155 for (BuiltinCandidateTypeSet::iterator
8156 Vec2 = CandidateTypes[1].vector_begin(),
8157 Vec2End = CandidateTypes[1].vector_end();
8158 Vec2 != Vec2End; ++Vec2) {
8159 QualType LandR[2] = { *Vec1, *Vec2 };
8160 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8161 }
8162 }
8163 }
8164
8165 // C++ [over.built]p17:
8166 //
8167 // For every pair of promoted integral types L and R, there
8168 // exist candidate operator functions of the form
8169 //
8170 // LR operator%(L, R);
8171 // LR operator&(L, R);
8172 // LR operator^(L, R);
8173 // LR operator|(L, R);
8174 // L operator<<(L, R);
8175 // L operator>>(L, R);
8176 //
8177 // where LR is the result of the usual arithmetic conversions
8178 // between types L and R.
8179 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
8180 if (!HasArithmeticOrEnumeralCandidateType)
8181 return;
8182
8183 for (unsigned Left = FirstPromotedIntegralType;
8184 Left < LastPromotedIntegralType; ++Left) {
8185 for (unsigned Right = FirstPromotedIntegralType;
8186 Right < LastPromotedIntegralType; ++Right) {
8187 QualType LandR[2] = { ArithmeticTypes[Left],
8188 ArithmeticTypes[Right] };
8189 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8190 }
8191 }
8192 }
8193
8194 // C++ [over.built]p20:
8195 //
8196 // For every pair (T, VQ), where T is an enumeration or
8197 // pointer to member type and VQ is either volatile or
8198 // empty, there exist candidate operator functions of the form
8199 //
8200 // VQ T& operator=(VQ T&, T);
8201 void addAssignmentMemberPointerOrEnumeralOverloads() {
8202 /// Set of (canonical) types that we've already handled.
8203 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8204
8205 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8206 for (BuiltinCandidateTypeSet::iterator
8207 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8208 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8209 Enum != EnumEnd; ++Enum) {
8210 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8211 continue;
8212
8213 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
8214 }
8215
8216 for (BuiltinCandidateTypeSet::iterator
8217 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8218 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8219 MemPtr != MemPtrEnd; ++MemPtr) {
8220 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8221 continue;
8222
8223 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
8224 }
8225 }
8226 }
8227
8228 // C++ [over.built]p19:
8229 //
8230 // For every pair (T, VQ), where T is any type and VQ is either
8231 // volatile or empty, there exist candidate operator functions
8232 // of the form
8233 //
8234 // T*VQ& operator=(T*VQ&, T*);
8235 //
8236 // C++ [over.built]p21:
8237 //
8238 // For every pair (T, VQ), where T is a cv-qualified or
8239 // cv-unqualified object type and VQ is either volatile or
8240 // empty, there exist candidate operator functions of the form
8241 //
8242 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
8243 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
8244 void addAssignmentPointerOverloads(bool isEqualOp) {
8245 /// Set of (canonical) types that we've already handled.
8246 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8247
8248 for (BuiltinCandidateTypeSet::iterator
8249 Ptr = CandidateTypes[0].pointer_begin(),
8250 PtrEnd = CandidateTypes[0].pointer_end();
8251 Ptr != PtrEnd; ++Ptr) {
8252 // If this is operator=, keep track of the builtin candidates we added.
8253 if (isEqualOp)
8254 AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
8255 else if (!(*Ptr)->getPointeeType()->isObjectType())
8256 continue;
8257
8258 // non-volatile version
8259 QualType ParamTypes[2] = {
8260 S.Context.getLValueReferenceType(*Ptr),
8261 isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
8262 };
8263 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8264 /*IsAssigmentOperator=*/ isEqualOp);
8265
8266 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8267 VisibleTypeConversionsQuals.hasVolatile();
8268 if (NeedVolatile) {
8269 // volatile version
8270 ParamTypes[0] =
8271 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8272 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8273 /*IsAssigmentOperator=*/isEqualOp);
8274 }
8275
8276 if (!(*Ptr).isRestrictQualified() &&
8277 VisibleTypeConversionsQuals.hasRestrict()) {
8278 // restrict version
8279 ParamTypes[0]
8280 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8281 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8282 /*IsAssigmentOperator=*/isEqualOp);
8283
8284 if (NeedVolatile) {
8285 // volatile restrict version
8286 ParamTypes[0]
8287 = S.Context.getLValueReferenceType(
8288 S.Context.getCVRQualifiedType(*Ptr,
8289 (Qualifiers::Volatile |
8290 Qualifiers::Restrict)));
8291 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8292 /*IsAssigmentOperator=*/isEqualOp);
8293 }
8294 }
8295 }
8296
8297 if (isEqualOp) {
8298 for (BuiltinCandidateTypeSet::iterator
8299 Ptr = CandidateTypes[1].pointer_begin(),
8300 PtrEnd = CandidateTypes[1].pointer_end();
8301 Ptr != PtrEnd; ++Ptr) {
8302 // Make sure we don't add the same candidate twice.
8303 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8304 continue;
8305
8306 QualType ParamTypes[2] = {
8307 S.Context.getLValueReferenceType(*Ptr),
8308 *Ptr,
8309 };
8310
8311 // non-volatile version
8312 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8313 /*IsAssigmentOperator=*/true);
8314
8315 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8316 VisibleTypeConversionsQuals.hasVolatile();
8317 if (NeedVolatile) {
8318 // volatile version
8319 ParamTypes[0] =
8320 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8321 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8322 /*IsAssigmentOperator=*/true);
8323 }
8324
8325 if (!(*Ptr).isRestrictQualified() &&
8326 VisibleTypeConversionsQuals.hasRestrict()) {
8327 // restrict version
8328 ParamTypes[0]
8329 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8330 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8331 /*IsAssigmentOperator=*/true);
8332
8333 if (NeedVolatile) {
8334 // volatile restrict version
8335 ParamTypes[0]
8336 = S.Context.getLValueReferenceType(
8337 S.Context.getCVRQualifiedType(*Ptr,
8338 (Qualifiers::Volatile |
8339 Qualifiers::Restrict)));
8340 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8341 /*IsAssigmentOperator=*/true);
8342 }
8343 }
8344 }
8345 }
8346 }
8347
8348 // C++ [over.built]p18:
8349 //
8350 // For every triple (L, VQ, R), where L is an arithmetic type,
8351 // VQ is either volatile or empty, and R is a promoted
8352 // arithmetic type, there exist candidate operator functions of
8353 // the form
8354 //
8355 // VQ L& operator=(VQ L&, R);
8356 // VQ L& operator*=(VQ L&, R);
8357 // VQ L& operator/=(VQ L&, R);
8358 // VQ L& operator+=(VQ L&, R);
8359 // VQ L& operator-=(VQ L&, R);
8360 void addAssignmentArithmeticOverloads(bool isEqualOp) {
8361 if (!HasArithmeticOrEnumeralCandidateType)
8362 return;
8363
8364 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8365 for (unsigned Right = FirstPromotedArithmeticType;
8366 Right < LastPromotedArithmeticType; ++Right) {
8367 QualType ParamTypes[2];
8368 ParamTypes[1] = ArithmeticTypes[Right];
8369
8370 // Add this built-in operator as a candidate (VQ is empty).
8371 ParamTypes[0] =
8372 S.Context.getLValueReferenceType(ArithmeticTypes[Left]);
8373 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8374 /*IsAssigmentOperator=*/isEqualOp);
8375
8376 // Add this built-in operator as a candidate (VQ is 'volatile').
8377 if (VisibleTypeConversionsQuals.hasVolatile()) {
8378 ParamTypes[0] =
8379 S.Context.getVolatileType(ArithmeticTypes[Left]);
8380 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8381 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8382 /*IsAssigmentOperator=*/isEqualOp);
8383 }
8384 }
8385 }
8386
8387 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8388 for (BuiltinCandidateTypeSet::iterator
8389 Vec1 = CandidateTypes[0].vector_begin(),
8390 Vec1End = CandidateTypes[0].vector_end();
8391 Vec1 != Vec1End; ++Vec1) {
8392 for (BuiltinCandidateTypeSet::iterator
8393 Vec2 = CandidateTypes[1].vector_begin(),
8394 Vec2End = CandidateTypes[1].vector_end();
8395 Vec2 != Vec2End; ++Vec2) {
8396 QualType ParamTypes[2];
8397 ParamTypes[1] = *Vec2;
8398 // Add this built-in operator as a candidate (VQ is empty).
8399 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
8400 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8401 /*IsAssigmentOperator=*/isEqualOp);
8402
8403 // Add this built-in operator as a candidate (VQ is 'volatile').
8404 if (VisibleTypeConversionsQuals.hasVolatile()) {
8405 ParamTypes[0] = S.Context.getVolatileType(*Vec1);
8406 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8407 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8408 /*IsAssigmentOperator=*/isEqualOp);
8409 }
8410 }
8411 }
8412 }
8413
8414 // C++ [over.built]p22:
8415 //
8416 // For every triple (L, VQ, R), where L is an integral type, VQ
8417 // is either volatile or empty, and R is a promoted integral
8418 // type, there exist candidate operator functions of the form
8419 //
8420 // VQ L& operator%=(VQ L&, R);
8421 // VQ L& operator<<=(VQ L&, R);
8422 // VQ L& operator>>=(VQ L&, R);
8423 // VQ L& operator&=(VQ L&, R);
8424 // VQ L& operator^=(VQ L&, R);
8425 // VQ L& operator|=(VQ L&, R);
8426 void addAssignmentIntegralOverloads() {
8427 if (!HasArithmeticOrEnumeralCandidateType)
8428 return;
8429
8430 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8431 for (unsigned Right = FirstPromotedIntegralType;
8432 Right < LastPromotedIntegralType; ++Right) {
8433 QualType ParamTypes[2];
8434 ParamTypes[1] = ArithmeticTypes[Right];
8435
8436 // Add this built-in operator as a candidate (VQ is empty).
8437 ParamTypes[0] =
8438 S.Context.getLValueReferenceType(ArithmeticTypes[Left]);
8439 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8440 if (VisibleTypeConversionsQuals.hasVolatile()) {
8441 // Add this built-in operator as a candidate (VQ is 'volatile').
8442 ParamTypes[0] = ArithmeticTypes[Left];
8443 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8444 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8445 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8446 }
8447 }
8448 }
8449 }
8450
8451 // C++ [over.operator]p23:
8452 //
8453 // There also exist candidate operator functions of the form
8454 //
8455 // bool operator!(bool);
8456 // bool operator&&(bool, bool);
8457 // bool operator||(bool, bool);
8458 void addExclaimOverload() {
8459 QualType ParamTy = S.Context.BoolTy;
8460 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
8461 /*IsAssignmentOperator=*/false,
8462 /*NumContextualBoolArguments=*/1);
8463 }
8464 void addAmpAmpOrPipePipeOverload() {
8465 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8466 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8467 /*IsAssignmentOperator=*/false,
8468 /*NumContextualBoolArguments=*/2);
8469 }
8470
8471 // C++ [over.built]p13:
8472 //
8473 // For every cv-qualified or cv-unqualified object type T there
8474 // exist candidate operator functions of the form
8475 //
8476 // T* operator+(T*, ptrdiff_t); [ABOVE]
8477 // T& operator[](T*, ptrdiff_t);
8478 // T* operator-(T*, ptrdiff_t); [ABOVE]
8479 // T* operator+(ptrdiff_t, T*); [ABOVE]
8480 // T& operator[](ptrdiff_t, T*);
8481 void addSubscriptOverloads() {
8482 for (BuiltinCandidateTypeSet::iterator
8483 Ptr = CandidateTypes[0].pointer_begin(),
8484 PtrEnd = CandidateTypes[0].pointer_end();
8485 Ptr != PtrEnd; ++Ptr) {
8486 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8487 QualType PointeeType = (*Ptr)->getPointeeType();
8488 if (!PointeeType->isObjectType())
8489 continue;
8490
8491 // T& operator[](T*, ptrdiff_t)
8492 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8493 }
8494
8495 for (BuiltinCandidateTypeSet::iterator
8496 Ptr = CandidateTypes[1].pointer_begin(),
8497 PtrEnd = CandidateTypes[1].pointer_end();
8498 Ptr != PtrEnd; ++Ptr) {
8499 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8500 QualType PointeeType = (*Ptr)->getPointeeType();
8501 if (!PointeeType->isObjectType())
8502 continue;
8503
8504 // T& operator[](ptrdiff_t, T*)
8505 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8506 }
8507 }
8508
8509 // C++ [over.built]p11:
8510 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8511 // C1 is the same type as C2 or is a derived class of C2, T is an object
8512 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8513 // there exist candidate operator functions of the form
8514 //
8515 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8516 //
8517 // where CV12 is the union of CV1 and CV2.
8518 void addArrowStarOverloads() {
8519 for (BuiltinCandidateTypeSet::iterator
8520 Ptr = CandidateTypes[0].pointer_begin(),
8521 PtrEnd = CandidateTypes[0].pointer_end();
8522 Ptr != PtrEnd; ++Ptr) {
8523 QualType C1Ty = (*Ptr);
8524 QualType C1;
8525 QualifierCollector Q1;
8526 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8527 if (!isa<RecordType>(C1))
8528 continue;
8529 // heuristic to reduce number of builtin candidates in the set.
8530 // Add volatile/restrict version only if there are conversions to a
8531 // volatile/restrict type.
8532 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8533 continue;
8534 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8535 continue;
8536 for (BuiltinCandidateTypeSet::iterator
8537 MemPtr = CandidateTypes[1].member_pointer_begin(),
8538 MemPtrEnd = CandidateTypes[1].member_pointer_end();
8539 MemPtr != MemPtrEnd; ++MemPtr) {
8540 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8541 QualType C2 = QualType(mptr->getClass(), 0);
8542 C2 = C2.getUnqualifiedType();
8543 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8544 break;
8545 QualType ParamTypes[2] = { *Ptr, *MemPtr };
8546 // build CV12 T&
8547 QualType T = mptr->getPointeeType();
8548 if (!VisibleTypeConversionsQuals.hasVolatile() &&
8549 T.isVolatileQualified())
8550 continue;
8551 if (!VisibleTypeConversionsQuals.hasRestrict() &&
8552 T.isRestrictQualified())
8553 continue;
8554 T = Q1.apply(S.Context, T);
8555 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8556 }
8557 }
8558 }
8559
8560 // Note that we don't consider the first argument, since it has been
8561 // contextually converted to bool long ago. The candidates below are
8562 // therefore added as binary.
8563 //
8564 // C++ [over.built]p25:
8565 // For every type T, where T is a pointer, pointer-to-member, or scoped
8566 // enumeration type, there exist candidate operator functions of the form
8567 //
8568 // T operator?(bool, T, T);
8569 //
8570 void addConditionalOperatorOverloads() {
8571 /// Set of (canonical) types that we've already handled.
8572 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8573
8574 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8575 for (BuiltinCandidateTypeSet::iterator
8576 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8577 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8578 Ptr != PtrEnd; ++Ptr) {
8579 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8580 continue;
8581
8582 QualType ParamTypes[2] = { *Ptr, *Ptr };
8583 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8584 }
8585
8586 for (BuiltinCandidateTypeSet::iterator
8587 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8588 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8589 MemPtr != MemPtrEnd; ++MemPtr) {
8590 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8591 continue;
8592
8593 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8594 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8595 }
8596
8597 if (S.getLangOpts().CPlusPlus11) {
8598 for (BuiltinCandidateTypeSet::iterator
8599 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8600 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8601 Enum != EnumEnd; ++Enum) {
8602 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
8603 continue;
8604
8605 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8606 continue;
8607
8608 QualType ParamTypes[2] = { *Enum, *Enum };
8609 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8610 }
8611 }
8612 }
8613 }
8614};
8615
8616} // end anonymous namespace
8617
8618/// AddBuiltinOperatorCandidates - Add the appropriate built-in
8619/// operator overloads to the candidate set (C++ [over.built]), based
8620/// on the operator @p Op and the arguments given. For example, if the
8621/// operator is a binary '+', this routine might add "int
8622/// operator+(int, int)" to cover integer addition.
8623void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8624 SourceLocation OpLoc,
8625 ArrayRef<Expr *> Args,
8626 OverloadCandidateSet &CandidateSet) {
8627 // Find all of the types that the arguments can convert to, but only
8628 // if the operator we're looking at has built-in operator candidates
8629 // that make use of these types. Also record whether we encounter non-record
8630 // candidate types or either arithmetic or enumeral candidate types.
8631 Qualifiers VisibleTypeConversionsQuals;
8632 VisibleTypeConversionsQuals.addConst();
8633 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8634 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8635
8636 bool HasNonRecordCandidateType = false;
8637 bool HasArithmeticOrEnumeralCandidateType = false;
8638 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8639 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8640 CandidateTypes.emplace_back(*this);
8641 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8642 OpLoc,
8643 true,
8644 (Op == OO_Exclaim ||
8645 Op == OO_AmpAmp ||
8646 Op == OO_PipePipe),
8647 VisibleTypeConversionsQuals);
8648 HasNonRecordCandidateType = HasNonRecordCandidateType ||
8649 CandidateTypes[ArgIdx].hasNonRecordTypes();
8650 HasArithmeticOrEnumeralCandidateType =
8651 HasArithmeticOrEnumeralCandidateType ||
8652 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8653 }
8654
8655 // Exit early when no non-record types have been added to the candidate set
8656 // for any of the arguments to the operator.
8657 //
8658 // We can't exit early for !, ||, or &&, since there we have always have
8659 // 'bool' overloads.
8660 if (!HasNonRecordCandidateType &&
8661 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8662 return;
8663
8664 // Setup an object to manage the common state for building overloads.
8665 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8666 VisibleTypeConversionsQuals,
8667 HasArithmeticOrEnumeralCandidateType,
8668 CandidateTypes, CandidateSet);
8669
8670 // Dispatch over the operation to add in only those overloads which apply.
8671 switch (Op) {
8672 case OO_None:
8673 case NUM_OVERLOADED_OPERATORS:
8674 llvm_unreachable("Expected an overloaded operator")::llvm::llvm_unreachable_internal("Expected an overloaded operator"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 8674)
;
8675
8676 case OO_New:
8677 case OO_Delete:
8678 case OO_Array_New:
8679 case OO_Array_Delete:
8680 case OO_Call:
8681 llvm_unreachable(::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 8682)
8682 "Special operators don't use AddBuiltinOperatorCandidates")::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 8682)
;
8683
8684 case OO_Comma:
8685 case OO_Arrow:
8686 case OO_Coawait:
8687 // C++ [over.match.oper]p3:
8688 // -- For the operator ',', the unary operator '&', the
8689 // operator '->', or the operator 'co_await', the
8690 // built-in candidates set is empty.
8691 break;
8692
8693 case OO_Plus: // '+' is either unary or binary
8694 if (Args.size() == 1)
8695 OpBuilder.addUnaryPlusPointerOverloads();
8696 LLVM_FALLTHROUGH[[clang::fallthrough]];
8697
8698 case OO_Minus: // '-' is either unary or binary
8699 if (Args.size() == 1) {
8700 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8701 } else {
8702 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8703 OpBuilder.addGenericBinaryArithmeticOverloads();
8704 }
8705 break;
8706
8707 case OO_Star: // '*' is either unary or binary
8708 if (Args.size() == 1)
8709 OpBuilder.addUnaryStarPointerOverloads();
8710 else
8711 OpBuilder.addGenericBinaryArithmeticOverloads();
8712 break;
8713
8714 case OO_Slash:
8715 OpBuilder.addGenericBinaryArithmeticOverloads();
8716 break;
8717
8718 case OO_PlusPlus:
8719 case OO_MinusMinus:
8720 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8721 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8722 break;
8723
8724 case OO_EqualEqual:
8725 case OO_ExclaimEqual:
8726 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
8727 LLVM_FALLTHROUGH[[clang::fallthrough]];
8728
8729 case OO_Less:
8730 case OO_Greater:
8731 case OO_LessEqual:
8732 case OO_GreaterEqual:
8733 OpBuilder.addRelationalPointerOrEnumeralOverloads();
8734 OpBuilder.addGenericBinaryArithmeticOverloads();
8735 break;
8736
8737 case OO_Spaceship:
8738 llvm_unreachable("<=> expressions not supported yet")::llvm::llvm_unreachable_internal("<=> expressions not supported yet"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 8738)
;
8739
8740 case OO_Percent:
8741 case OO_Caret:
8742 case OO_Pipe:
8743 case OO_LessLess:
8744 case OO_GreaterGreater:
8745 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8746 break;
8747
8748 case OO_Amp: // '&' is either unary or binary
8749 if (Args.size() == 1)
8750 // C++ [over.match.oper]p3:
8751 // -- For the operator ',', the unary operator '&', or the
8752 // operator '->', the built-in candidates set is empty.
8753 break;
8754
8755 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8756 break;
8757
8758 case OO_Tilde:
8759 OpBuilder.addUnaryTildePromotedIntegralOverloads();
8760 break;
8761
8762 case OO_Equal:
8763 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8764 LLVM_FALLTHROUGH[[clang::fallthrough]];
8765
8766 case OO_PlusEqual:
8767 case OO_MinusEqual:
8768 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8769 LLVM_FALLTHROUGH[[clang::fallthrough]];
8770
8771 case OO_StarEqual:
8772 case OO_SlashEqual:
8773 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8774 break;
8775
8776 case OO_PercentEqual:
8777 case OO_LessLessEqual:
8778 case OO_GreaterGreaterEqual:
8779 case OO_AmpEqual:
8780 case OO_CaretEqual:
8781 case OO_PipeEqual:
8782 OpBuilder.addAssignmentIntegralOverloads();
8783 break;
8784
8785 case OO_Exclaim:
8786 OpBuilder.addExclaimOverload();
8787 break;
8788
8789 case OO_AmpAmp:
8790 case OO_PipePipe:
8791 OpBuilder.addAmpAmpOrPipePipeOverload();
8792 break;
8793
8794 case OO_Subscript:
8795 OpBuilder.addSubscriptOverloads();
8796 break;
8797
8798 case OO_ArrowStar:
8799 OpBuilder.addArrowStarOverloads();
8800 break;
8801
8802 case OO_Conditional:
8803 OpBuilder.addConditionalOperatorOverloads();
8804 OpBuilder.addGenericBinaryArithmeticOverloads();
8805 break;
8806 }
8807}
8808
8809/// \brief Add function candidates found via argument-dependent lookup
8810/// to the set of overloading candidates.
8811///
8812/// This routine performs argument-dependent name lookup based on the
8813/// given function name (which may also be an operator name) and adds
8814/// all of the overload candidates found by ADL to the overload
8815/// candidate set (C++ [basic.lookup.argdep]).
8816void
8817Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8818 SourceLocation Loc,
8819 ArrayRef<Expr *> Args,
8820 TemplateArgumentListInfo *ExplicitTemplateArgs,
8821 OverloadCandidateSet& CandidateSet,
8822 bool PartialOverloading) {
8823 ADLResult Fns;
8824
8825 // FIXME: This approach for uniquing ADL results (and removing
8826 // redundant candidates from the set) relies on pointer-equality,
8827 // which means we need to key off the canonical decl. However,
8828 // always going back to the canonical decl might not get us the
8829 // right set of default arguments. What default arguments are
8830 // we supposed to consider on ADL candidates, anyway?
8831
8832 // FIXME: Pass in the explicit template arguments?
8833 ArgumentDependentLookup(Name, Loc, Args, Fns);
8834
8835 // Erase all of the candidates we already knew about.
8836 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
8837 CandEnd = CandidateSet.end();
8838 Cand != CandEnd; ++Cand)
8839 if (Cand->Function) {
8840 Fns.erase(Cand->Function);
8841 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
8842 Fns.erase(FunTmpl);
8843 }
8844
8845 // For each of the ADL candidates we found, add it to the overload
8846 // set.
8847 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
8848 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
8849 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
8850 if (ExplicitTemplateArgs)
8851 continue;
8852
8853 AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
8854 PartialOverloading);
8855 } else
8856 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
8857 FoundDecl, ExplicitTemplateArgs,
8858 Args, CandidateSet, PartialOverloading);
8859 }
8860}
8861
8862namespace {
8863enum class Comparison { Equal, Better, Worse };
8864}
8865
8866/// Compares the enable_if attributes of two FunctionDecls, for the purposes of
8867/// overload resolution.
8868///
8869/// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
8870/// Cand1's first N enable_if attributes have precisely the same conditions as
8871/// Cand2's first N enable_if attributes (where N = the number of enable_if
8872/// attributes on Cand2), and Cand1 has more than N enable_if attributes.
8873///
8874/// Note that you can have a pair of candidates such that Cand1's enable_if
8875/// attributes are worse than Cand2's, and Cand2's enable_if attributes are
8876/// worse than Cand1's.
8877static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
8878 const FunctionDecl *Cand2) {
8879 // Common case: One (or both) decls don't have enable_if attrs.
8880 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
8881 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
8882 if (!Cand1Attr || !Cand2Attr) {
8883 if (Cand1Attr == Cand2Attr)
8884 return Comparison::Equal;
8885 return Cand1Attr ? Comparison::Better : Comparison::Worse;
8886 }
8887
8888 // FIXME: The next several lines are just
8889 // specific_attr_iterator<EnableIfAttr> but going in declaration order,
8890 // instead of reverse order which is how they're stored in the AST.
8891 auto Cand1Attrs = getOrderedEnableIfAttrs(Cand1);
8892 auto Cand2Attrs = getOrderedEnableIfAttrs(Cand2);
8893
8894 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
8895 // has fewer enable_if attributes than Cand2.
8896 if (Cand1Attrs.size() < Cand2Attrs.size())
8897 return Comparison::Worse;
8898
8899 auto Cand1I = Cand1Attrs.begin();
8900 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
8901 for (auto &Cand2A : Cand2Attrs) {
8902 Cand1ID.clear();
8903 Cand2ID.clear();
8904
8905 auto &Cand1A = *Cand1I++;
8906 Cand1A->getCond()->Profile(Cand1ID, S.getASTContext(), true);
8907 Cand2A->getCond()->Profile(Cand2ID, S.getASTContext(), true);
8908 if (Cand1ID != Cand2ID)
8909 return Comparison::Worse;
8910 }
8911
8912 return Cand1I == Cand1Attrs.end() ? Comparison::Equal : Comparison::Better;
8913}
8914
8915/// isBetterOverloadCandidate - Determines whether the first overload
8916/// candidate is a better candidate than the second (C++ 13.3.3p1).
8917bool clang::isBetterOverloadCandidate(
8918 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
8919 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
8920 // Define viable functions to be better candidates than non-viable
8921 // functions.
8922 if (!Cand2.Viable)
8923 return Cand1.Viable;
8924 else if (!Cand1.Viable)
8925 return false;
8926
8927 // C++ [over.match.best]p1:
8928 //
8929 // -- if F is a static member function, ICS1(F) is defined such
8930 // that ICS1(F) is neither better nor worse than ICS1(G) for
8931 // any function G, and, symmetrically, ICS1(G) is neither
8932 // better nor worse than ICS1(F).
8933 unsigned StartArg = 0;
8934 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
8935 StartArg = 1;
8936
8937 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
8938 // We don't allow incompatible pointer conversions in C++.
8939 if (!S.getLangOpts().CPlusPlus)
8940 return ICS.isStandard() &&
8941 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
8942
8943 // The only ill-formed conversion we allow in C++ is the string literal to
8944 // char* conversion, which is only considered ill-formed after C++11.
8945 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
8946 hasDeprecatedStringLiteralToCharPtrConversion(ICS);
8947 };
8948
8949 // Define functions that don't require ill-formed conversions for a given
8950 // argument to be better candidates than functions that do.
8951 unsigned NumArgs = Cand1.Conversions.size();
8952 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch")(static_cast <bool> (Cand2.Conversions.size() == NumArgs
&& "Overload candidate mismatch") ? void (0) : __assert_fail
("Cand2.Conversions.size() == NumArgs && \"Overload candidate mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 8952, __extension__ __PRETTY_FUNCTION__))
;
8953 bool HasBetterConversion = false;
8954 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
8955 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
8956 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
8957 if (Cand1Bad != Cand2Bad) {
8958 if (Cand1Bad)
8959 return false;
8960 HasBetterConversion = true;
8961 }
8962 }
8963
8964 if (HasBetterConversion)
8965 return true;
8966
8967 // C++ [over.match.best]p1:
8968 // A viable function F1 is defined to be a better function than another
8969 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
8970 // conversion sequence than ICSi(F2), and then...
8971 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
8972 switch (CompareImplicitConversionSequences(S, Loc,
8973 Cand1.Conversions[ArgIdx],
8974 Cand2.Conversions[ArgIdx])) {
8975 case ImplicitConversionSequence::Better:
8976 // Cand1 has a better conversion sequence.
8977 HasBetterConversion = true;
8978 break;
8979
8980 case ImplicitConversionSequence::Worse:
8981 // Cand1 can't be better than Cand2.
8982 return false;
8983
8984 case ImplicitConversionSequence::Indistinguishable:
8985 // Do nothing.
8986 break;
8987 }
8988 }
8989
8990 // -- for some argument j, ICSj(F1) is a better conversion sequence than
8991 // ICSj(F2), or, if not that,
8992 if (HasBetterConversion)
8993 return true;
8994
8995 // -- the context is an initialization by user-defined conversion
8996 // (see 8.5, 13.3.1.5) and the standard conversion sequence
8997 // from the return type of F1 to the destination type (i.e.,
8998 // the type of the entity being initialized) is a better
8999 // conversion sequence than the standard conversion sequence
9000 // from the return type of F2 to the destination type.
9001 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9002 Cand1.Function && Cand2.Function &&
9003 isa<CXXConversionDecl>(Cand1.Function) &&
9004 isa<CXXConversionDecl>(Cand2.Function)) {
9005 // First check whether we prefer one of the conversion functions over the
9006 // other. This only distinguishes the results in non-standard, extension
9007 // cases such as the conversion from a lambda closure type to a function
9008 // pointer or block.
9009 ImplicitConversionSequence::CompareKind Result =
9010 compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9011 if (Result == ImplicitConversionSequence::Indistinguishable)
9012 Result = CompareStandardConversionSequences(S, Loc,
9013 Cand1.FinalConversion,
9014 Cand2.FinalConversion);
9015
9016 if (Result != ImplicitConversionSequence::Indistinguishable)
9017 return Result == ImplicitConversionSequence::Better;
9018
9019 // FIXME: Compare kind of reference binding if conversion functions
9020 // convert to a reference type used in direct reference binding, per
9021 // C++14 [over.match.best]p1 section 2 bullet 3.
9022 }
9023
9024 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9025 // as combined with the resolution to CWG issue 243.
9026 //
9027 // When the context is initialization by constructor ([over.match.ctor] or
9028 // either phase of [over.match.list]), a constructor is preferred over
9029 // a conversion function.
9030 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9031 Cand1.Function && Cand2.Function &&
9032 isa<CXXConstructorDecl>(Cand1.Function) !=
9033 isa<CXXConstructorDecl>(Cand2.Function))
9034 return isa<CXXConstructorDecl>(Cand1.Function);
9035
9036 // -- F1 is a non-template function and F2 is a function template
9037 // specialization, or, if not that,
9038 bool Cand1IsSpecialization = Cand1.Function &&
9039 Cand1.Function->getPrimaryTemplate();
9040 bool Cand2IsSpecialization = Cand2.Function &&
9041 Cand2.Function->getPrimaryTemplate();
9042 if (Cand1IsSpecialization != Cand2IsSpecialization)
9043 return Cand2IsSpecialization;
9044
9045 // -- F1 and F2 are function template specializations, and the function
9046 // template for F1 is more specialized than the template for F2
9047 // according to the partial ordering rules described in 14.5.5.2, or,
9048 // if not that,
9049 if (Cand1IsSpecialization && Cand2IsSpecialization) {
9050 if (FunctionTemplateDecl *BetterTemplate
9051 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
9052 Cand2.Function->getPrimaryTemplate(),
9053 Loc,
9054 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
9055 : TPOC_Call,
9056 Cand1.ExplicitCallArguments,
9057 Cand2.ExplicitCallArguments))
9058 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9059 }
9060
9061 // FIXME: Work around a defect in the C++17 inheriting constructor wording.
9062 // A derived-class constructor beats an (inherited) base class constructor.
9063 bool Cand1IsInherited =
9064 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9065 bool Cand2IsInherited =
9066 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9067 if (Cand1IsInherited != Cand2IsInherited)
9068 return Cand2IsInherited;
9069 else if (Cand1IsInherited) {
9070 assert(Cand2IsInherited)(static_cast <bool> (Cand2IsInherited) ? void (0) : __assert_fail
("Cand2IsInherited", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9070, __extension__ __PRETTY_FUNCTION__))
;
9071 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9072 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9073 if (Cand1Class->isDerivedFrom(Cand2Class))
9074 return true;
9075 if (Cand2Class->isDerivedFrom(Cand1Class))
9076 return false;
9077 // Inherited from sibling base classes: still ambiguous.
9078 }
9079
9080 // Check C++17 tie-breakers for deduction guides.
9081 {
9082 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9083 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9084 if (Guide1 && Guide2) {
9085 // -- F1 is generated from a deduction-guide and F2 is not
9086 if (Guide1->isImplicit() != Guide2->isImplicit())
9087 return Guide2->isImplicit();
9088
9089 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9090 if (Guide1->isCopyDeductionCandidate())
9091 return true;
9092 }
9093 }
9094
9095 // Check for enable_if value-based overload resolution.
9096 if (Cand1.Function && Cand2.Function) {
9097 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9098 if (Cmp != Comparison::Equal)
9099 return Cmp == Comparison::Better;
9100 }
9101
9102 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9103 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9104 return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9105 S.IdentifyCUDAPreference(Caller, Cand2.Function);
9106 }
9107
9108 bool HasPS1 = Cand1.Function != nullptr &&
9109 functionHasPassObjectSizeParams(Cand1.Function);
9110 bool HasPS2 = Cand2.Function != nullptr &&
9111 functionHasPassObjectSizeParams(Cand2.Function);
9112 return HasPS1 != HasPS2 && HasPS1;
9113}
9114
9115/// Determine whether two declarations are "equivalent" for the purposes of
9116/// name lookup and overload resolution. This applies when the same internal/no
9117/// linkage entity is defined by two modules (probably by textually including
9118/// the same header). In such a case, we don't consider the declarations to
9119/// declare the same entity, but we also don't want lookups with both
9120/// declarations visible to be ambiguous in some cases (this happens when using
9121/// a modularized libstdc++).
9122bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9123 const NamedDecl *B) {
9124 auto *VA = dyn_cast_or_null<ValueDecl>(A);
9125 auto *VB = dyn_cast_or_null<ValueDecl>(B);
9126 if (!VA || !VB)
9127 return false;
9128
9129 // The declarations must be declaring the same name as an internal linkage
9130 // entity in different modules.
9131 if (!VA->getDeclContext()->getRedeclContext()->Equals(
9132 VB->getDeclContext()->getRedeclContext()) ||
9133 getOwningModule(const_cast<ValueDecl *>(VA)) ==
9134 getOwningModule(const_cast<ValueDecl *>(VB)) ||
9135 VA->isExternallyVisible() || VB->isExternallyVisible())
9136 return false;
9137
9138 // Check that the declarations appear to be equivalent.
9139 //
9140 // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9141 // For constants and functions, we should check the initializer or body is
9142 // the same. For non-constant variables, we shouldn't allow it at all.
9143 if (Context.hasSameType(VA->getType(), VB->getType()))
9144 return true;
9145
9146 // Enum constants within unnamed enumerations will have different types, but
9147 // may still be similar enough to be interchangeable for our purposes.
9148 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9149 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9150 // Only handle anonymous enums. If the enumerations were named and
9151 // equivalent, they would have been merged to the same type.
9152 auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9153 auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9154 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9155 !Context.hasSameType(EnumA->getIntegerType(),
9156 EnumB->getIntegerType()))
9157 return false;
9158 // Allow this only if the value is the same for both enumerators.
9159 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9160 }
9161 }
9162
9163 // Nothing else is sufficiently similar.
9164 return false;
9165}
9166
9167void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9168 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9169 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9170
9171 Module *M = getOwningModule(const_cast<NamedDecl*>(D));
9172 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9173 << !M << (M ? M->getFullModuleName() : "");
9174
9175 for (auto *E : Equiv) {
9176 Module *M = getOwningModule(const_cast<NamedDecl*>(E));
9177 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9178 << !M << (M ? M->getFullModuleName() : "");
9179 }
9180}
9181
9182/// \brief Computes the best viable function (C++ 13.3.3)
9183/// within an overload candidate set.
9184///
9185/// \param Loc The location of the function name (or operator symbol) for
9186/// which overload resolution occurs.
9187///
9188/// \param Best If overload resolution was successful or found a deleted
9189/// function, \p Best points to the candidate function found.
9190///
9191/// \returns The result of overload resolution.
9192OverloadingResult
9193OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9194 iterator &Best) {
9195 llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9196 std::transform(begin(), end(), std::back_inserter(Candidates),
9197 [](OverloadCandidate &Cand) { return &Cand; });
9198
9199 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9200 // are accepted by both clang and NVCC. However, during a particular
9201 // compilation mode only one call variant is viable. We need to
9202 // exclude non-viable overload candidates from consideration based
9203 // only on their host/device attributes. Specifically, if one
9204 // candidate call is WrongSide and the other is SameSide, we ignore
9205 // the WrongSide candidate.
9206 if (S.getLangOpts().CUDA) {
9207 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9208 bool ContainsSameSideCandidate =
9209 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9210 return Cand->Function &&
9211 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9212 Sema::CFP_SameSide;
9213 });
9214 if (ContainsSameSideCandidate) {
9215 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9216 return Cand->Function &&
9217 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9218 Sema::CFP_WrongSide;
9219 };
9220 llvm::erase_if(Candidates, IsWrongSideCandidate);
9221 }
9222 }
9223
9224 // Find the best viable function.
9225 Best = end();
9226 for (auto *Cand : Candidates)
9227 if (Cand->Viable)
9228 if (Best == end() ||
9229 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
9230 Best = Cand;
9231
9232 // If we didn't find any viable functions, abort.
9233 if (Best == end())
9234 return OR_No_Viable_Function;
9235
9236 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
9237
9238 // Make sure that this function is better than every other viable
9239 // function. If not, we have an ambiguity.
9240 for (auto *Cand : Candidates) {
9241 if (Cand->Viable && Cand != Best &&
9242 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, Kind)) {
9243 if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
9244 Cand->Function)) {
9245 EquivalentCands.push_back(Cand->Function);
9246 continue;
9247 }
9248
9249 Best = end();
9250 return OR_Ambiguous;
9251 }
9252 }
9253
9254 // Best is the best viable function.
9255 if (Best->Function &&
9256 (Best->Function->isDeleted() ||
9257 S.isFunctionConsideredUnavailable(Best->Function)))
9258 return OR_Deleted;
9259
9260 if (!EquivalentCands.empty())
9261 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
9262 EquivalentCands);
9263
9264 return OR_Success;
9265}
9266
9267namespace {
9268
9269enum OverloadCandidateKind {
9270 oc_function,
9271 oc_method,
9272 oc_constructor,
9273 oc_function_template,
9274 oc_method_template,
9275 oc_constructor_template,
9276 oc_implicit_default_constructor,
9277 oc_implicit_copy_constructor,
9278 oc_implicit_move_constructor,
9279 oc_implicit_copy_assignment,
9280 oc_implicit_move_assignment,
9281 oc_inherited_constructor,
9282 oc_inherited_constructor_template
9283};
9284
9285static OverloadCandidateKind
9286ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
9287 std::string &Description) {
9288 bool isTemplate = false;
9289
9290 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
9291 isTemplate = true;
9292 Description = S.getTemplateArgumentBindingsText(
9293 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
9294 }
9295
9296 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
9297 if (!Ctor->isImplicit()) {
9298 if (isa<ConstructorUsingShadowDecl>(Found))
9299 return isTemplate ? oc_inherited_constructor_template
9300 : oc_inherited_constructor;
9301 else
9302 return isTemplate ? oc_constructor_template : oc_constructor;
9303 }
9304
9305 if (Ctor->isDefaultConstructor())
9306 return oc_implicit_default_constructor;
9307
9308 if (Ctor->isMoveConstructor())
9309 return oc_implicit_move_constructor;
9310
9311 assert(Ctor->isCopyConstructor() &&(static_cast <bool> (Ctor->isCopyConstructor() &&
"unexpected sort of implicit constructor") ? void (0) : __assert_fail
("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9312, __extension__ __PRETTY_FUNCTION__))
9312 "unexpected sort of implicit constructor")(static_cast <bool> (Ctor->isCopyConstructor() &&
"unexpected sort of implicit constructor") ? void (0) : __assert_fail
("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9312, __extension__ __PRETTY_FUNCTION__))
;
9313 return oc_implicit_copy_constructor;
9314 }
9315
9316 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
9317 // This actually gets spelled 'candidate function' for now, but
9318 // it doesn't hurt to split it out.
9319 if (!Meth->isImplicit())
9320 return isTemplate ? oc_method_template : oc_method;
9321
9322 if (Meth->isMoveAssignmentOperator())
9323 return oc_implicit_move_assignment;
9324
9325 if (Meth->isCopyAssignmentOperator())
9326 return oc_implicit_copy_assignment;
9327
9328 assert(isa<CXXConversionDecl>(Meth) && "expected conversion")(static_cast <bool> (isa<CXXConversionDecl>(Meth)
&& "expected conversion") ? void (0) : __assert_fail
("isa<CXXConversionDecl>(Meth) && \"expected conversion\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9328, __extension__ __PRETTY_FUNCTION__))
;
9329 return oc_method;
9330 }
9331
9332 return isTemplate ? oc_function_template : oc_function;
9333}
9334
9335void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
9336 // FIXME: It'd be nice to only emit a note once per using-decl per overload
9337 // set.
9338 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
9339 S.Diag(FoundDecl->getLocation(),
9340 diag::note_ovl_candidate_inherited_constructor)
9341 << Shadow->getNominatedBaseClass();
9342}
9343
9344} // end anonymous namespace
9345
9346static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
9347 const FunctionDecl *FD) {
9348 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
9349 bool AlwaysTrue;
9350 if (!EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
9351 return false;
9352 if (!AlwaysTrue)
9353 return false;
9354 }
9355 return true;
9356}
9357
9358/// \brief Returns true if we can take the address of the function.
9359///
9360/// \param Complain - If true, we'll emit a diagnostic
9361/// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
9362/// we in overload resolution?
9363/// \param Loc - The location of the statement we're complaining about. Ignored
9364/// if we're not complaining, or if we're in overload resolution.
9365static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
9366 bool Complain,
9367 bool InOverloadResolution,
9368 SourceLocation Loc) {
9369 if (!isFunctionAlwaysEnabled(S.Context, FD)) {
9370 if (Complain) {
9371 if (InOverloadResolution)
9372 S.Diag(FD->getLocStart(),
9373 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
9374 else
9375 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
9376 }
9377 return false;
9378 }
9379
9380 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
9381 return P->hasAttr<PassObjectSizeAttr>();
9382 });
9383 if (I == FD->param_end())
9384 return true;
9385
9386 if (Complain) {
9387 // Add one to ParamNo because it's user-facing
9388 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
9389 if (InOverloadResolution)
9390 S.Diag(FD->getLocation(),
9391 diag::note_ovl_candidate_has_pass_object_size_params)
9392 << ParamNo;
9393 else
9394 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
9395 << FD << ParamNo;
9396 }
9397 return false;
9398}
9399
9400static bool checkAddressOfCandidateIsAvailable(Sema &S,
9401 const FunctionDecl *FD) {
9402 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
9403 /*InOverloadResolution=*/true,
9404 /*Loc=*/SourceLocation());
9405}
9406
9407bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
9408 bool Complain,
9409 SourceLocation Loc) {
9410 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
9411 /*InOverloadResolution=*/false,
9412 Loc);
9413}
9414
9415// Notes the location of an overload candidate.
9416void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
9417 QualType DestType, bool TakingAddress) {
9418 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
9419 return;
9420 if (Fn->isMultiVersion() && !Fn->getAttr<TargetAttr>()->isDefaultVersion())
9421 return;
9422
9423 std::string FnDesc;
9424 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Found, Fn, FnDesc);
9425 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
9426 << (unsigned) K << Fn << FnDesc;
9427
9428 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
9429 Diag(Fn->getLocation(), PD);
9430 MaybeEmitInheritedConstructorNote(*this, Found);
9431}
9432
9433// Notes the location of all overload candidates designated through
9434// OverloadedExpr
9435void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
9436 bool TakingAddress) {
9437 assert(OverloadedExpr->getType() == Context.OverloadTy)(static_cast <bool> (OverloadedExpr->getType() == Context
.OverloadTy) ? void (0) : __assert_fail ("OverloadedExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9437, __extension__ __PRETTY_FUNCTION__))
;
9438
9439 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
9440 OverloadExpr *OvlExpr = Ovl.Expression;
9441
9442 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9443 IEnd = OvlExpr->decls_end();
9444 I != IEnd; ++I) {
9445 if (FunctionTemplateDecl *FunTmpl =
9446 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
9447 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), DestType,
9448 TakingAddress);
9449 } else if (FunctionDecl *Fun
9450 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
9451 NoteOverloadCandidate(*I, Fun, DestType, TakingAddress);
9452 }
9453 }
9454}
9455
9456/// Diagnoses an ambiguous conversion. The partial diagnostic is the
9457/// "lead" diagnostic; it will be given two arguments, the source and
9458/// target types of the conversion.
9459void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
9460 Sema &S,
9461 SourceLocation CaretLoc,
9462 const PartialDiagnostic &PDiag) const {
9463 S.Diag(CaretLoc, PDiag)
9464 << Ambiguous.getFromType() << Ambiguous.getToType();
9465 // FIXME: The note limiting machinery is borrowed from
9466 // OverloadCandidateSet::NoteCandidates; there's an opportunity for
9467 // refactoring here.
9468 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9469 unsigned CandsShown = 0;
9470 AmbiguousConversionSequence::const_iterator I, E;
9471 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
9472 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9473 break;
9474 ++CandsShown;
9475 S.NoteOverloadCandidate(I->first, I->second);
9476 }
9477 if (I != E)
9478 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
9479}
9480
9481static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
9482 unsigned I, bool TakingCandidateAddress) {
9483 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
9484 assert(Conv.isBad())(static_cast <bool> (Conv.isBad()) ? void (0) : __assert_fail
("Conv.isBad()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9484, __extension__ __PRETTY_FUNCTION__))
;
9485 assert(Cand->Function && "for now, candidate must be a function")(static_cast <bool> (Cand->Function && "for now, candidate must be a function"
) ? void (0) : __assert_fail ("Cand->Function && \"for now, candidate must be a function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9485, __extension__ __PRETTY_FUNCTION__))
;
9486 FunctionDecl *Fn = Cand->Function;
9487
9488 // There's a conversion slot for the object argument if this is a
9489 // non-constructor method. Note that 'I' corresponds the
9490 // conversion-slot index.
9491 bool isObjectArgument = false;
9492 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
9493 if (I == 0)
9494 isObjectArgument = true;
9495 else
9496 I--;
9497 }
9498
9499 std::string FnDesc;
9500 OverloadCandidateKind FnKind =
9501 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
9502
9503 Expr *FromExpr = Conv.Bad.FromExpr;
1
'FromExpr' initialized here
9504 QualType FromTy = Conv.Bad.getFromType();
9505 QualType ToTy = Conv.Bad.getToType();
9506
9507 if (FromTy == S.Context.OverloadTy) {
2
Taking false branch
9508 assert(FromExpr && "overload set argument came from implicit argument?")(static_cast <bool> (FromExpr && "overload set argument came from implicit argument?"
) ? void (0) : __assert_fail ("FromExpr && \"overload set argument came from implicit argument?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9508, __extension__ __PRETTY_FUNCTION__))
;
9509 Expr *E = FromExpr->IgnoreParens();
9510 if (isa<UnaryOperator>(E))
9511 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
9512 DeclarationName Name = cast<OverloadExpr>(E)->getName();
9513
9514 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
9515 << (unsigned) FnKind << FnDesc
9516 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9517 << ToTy << Name << I+1;
9518 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9519 return;
9520 }
9521
9522 // Do some hand-waving analysis to see if the non-viability is due
9523 // to a qualifier mismatch.
9524 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
9525 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
9526 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
3
Taking false branch
9527 CToTy = RT->getPointeeType();
9528 else {
9529 // TODO: detect and diagnose the full richness of const mismatches.
9530 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4
Taking false branch
9531 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
9532 CFromTy = FromPT->getPointeeType();
9533 CToTy = ToPT->getPointeeType();
9534 }
9535 }
9536
9537 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
5
Taking false branch
9538 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
9539 Qualifiers FromQs = CFromTy.getQualifiers();
9540 Qualifiers ToQs = CToTy.getQualifiers();
9541
9542 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
9543 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
9544 << (unsigned) FnKind << FnDesc
9545 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9546 << FromTy
9547 << FromQs.getAddressSpaceAttributePrintValue()
9548 << ToQs.getAddressSpaceAttributePrintValue()
9549 << (unsigned) isObjectArgument << I+1;
9550 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9551 return;
9552 }
9553
9554 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9555 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
9556 << (unsigned) FnKind << FnDesc
9557 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9558 << FromTy
9559 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
9560 << (unsigned) isObjectArgument << I+1;
9561 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9562 return;
9563 }
9564
9565 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
9566 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
9567 << (unsigned) FnKind << FnDesc
9568 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9569 << FromTy
9570 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
9571 << (unsigned) isObjectArgument << I+1;
9572 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9573 return;
9574 }
9575
9576 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
9577 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
9578 << (unsigned) FnKind << FnDesc
9579 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9580 << FromTy << FromQs.hasUnaligned() << I+1;
9581 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9582 return;
9583 }
9584
9585 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
9586 assert(CVR && "unexpected qualifiers mismatch")(static_cast <bool> (CVR && "unexpected qualifiers mismatch"
) ? void (0) : __assert_fail ("CVR && \"unexpected qualifiers mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9586, __extension__ __PRETTY_FUNCTION__))
;
9587
9588 if (isObjectArgument) {
9589 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
9590 << (unsigned) FnKind << FnDesc
9591 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9592 << FromTy << (CVR - 1);
9593 } else {
9594 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
9595 << (unsigned) FnKind << FnDesc
9596 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9597 << FromTy << (CVR - 1) << I+1;
9598 }
9599 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9600 return;
9601 }
9602
9603 // Special diagnostic for failure to convert an initializer list, since
9604 // telling the user that it has type void is not useful.
9605 if (FromExpr && isa<InitListExpr>(FromExpr)) {
6
Assuming 'FromExpr' is null
9606 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
9607 << (unsigned) FnKind << FnDesc
9608 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9609 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
9610 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9611 return;
9612 }
9613
9614 // Diagnose references or pointers to incomplete types differently,
9615 // since it's far from impossible that the incompleteness triggered
9616 // the failure.
9617 QualType TempFromTy = FromTy.getNonReferenceType();
9618 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
7
Taking true branch
9619 TempFromTy = PTy->getPointeeType();
9620 if (TempFromTy->isIncompleteType()) {
8
Assuming the condition is false
9
Taking false branch
9621 // Emit the generic diagnostic and, optionally, add the hints to it.
9622 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
9623 << (unsigned) FnKind << FnDesc
9624 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9625 << FromTy << ToTy << (unsigned) isObjectArgument << I+1
9626 << (unsigned) (Cand->Fix.Kind);
9627
9628 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9629 return;
9630 }
9631
9632 // Diagnose base -> derived pointer conversions.
9633 unsigned BaseToDerivedConversion = 0;
9634 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10
Taking false branch
9635 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
9636 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9637 FromPtrTy->getPointeeType()) &&
9638 !FromPtrTy->getPointeeType()->isIncompleteType() &&
9639 !ToPtrTy->getPointeeType()->isIncompleteType() &&
9640 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
9641 FromPtrTy->getPointeeType()))
9642 BaseToDerivedConversion = 1;
9643 }
9644 } else if (const ObjCObjectPointerType *FromPtrTy
11
Taking false branch
9645 = FromTy->getAs<ObjCObjectPointerType>()) {
9646 if (const ObjCObjectPointerType *ToPtrTy
9647 = ToTy->getAs<ObjCObjectPointerType>())
9648 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
9649 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
9650 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9651 FromPtrTy->getPointeeType()) &&
9652 FromIface->isSuperClassOf(ToIface))
9653 BaseToDerivedConversion = 2;
9654 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
12
Taking true branch
9655 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
13
Taking false branch
9656 !FromTy->isIncompleteType() &&
9657 !ToRefTy->getPointeeType()->isIncompleteType() &&
9658 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
9659 BaseToDerivedConversion = 3;
9660 } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
14
Called C++ object pointer is null
9661 ToTy.getNonReferenceType().getCanonicalType() ==
9662 FromTy.getNonReferenceType().getCanonicalType()) {
9663 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
9664 << (unsigned) FnKind << FnDesc
9665 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9666 << (unsigned) isObjectArgument << I + 1;
9667 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9668 return;
9669 }
9670 }
9671
9672 if (BaseToDerivedConversion) {
9673 S.Diag(Fn->getLocation(),
9674 diag::note_ovl_candidate_bad_base_to_derived_conv)
9675 << (unsigned) FnKind << FnDesc
9676 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9677 << (BaseToDerivedConversion - 1)
9678 << FromTy << ToTy << I+1;
9679 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9680 return;
9681 }
9682
9683 if (isa<ObjCObjectPointerType>(CFromTy) &&
9684 isa<PointerType>(CToTy)) {
9685 Qualifiers FromQs = CFromTy.getQualifiers();
9686 Qualifiers ToQs = CToTy.getQualifiers();
9687 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9688 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
9689 << (unsigned) FnKind << FnDesc
9690 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9691 << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
9692 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9693 return;
9694 }
9695 }
9696
9697 if (TakingCandidateAddress &&
9698 !checkAddressOfCandidateIsAvailable(S, Cand->Function))
9699 return;
9700
9701 // Emit the generic diagnostic and, optionally, add the hints to it.
9702 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
9703 FDiag << (unsigned) FnKind << FnDesc
9704 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9705 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
9706 << (unsigned) (Cand->Fix.Kind);
9707
9708 // If we can fix the conversion, suggest the FixIts.
9709 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
9710 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
9711 FDiag << *HI;
9712 S.Diag(Fn->getLocation(), FDiag);
9713
9714 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9715}
9716
9717/// Additional arity mismatch diagnosis specific to a function overload
9718/// candidates. This is not covered by the more general DiagnoseArityMismatch()
9719/// over a candidate in any candidate set.
9720static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
9721 unsigned NumArgs) {
9722 FunctionDecl *Fn = Cand->Function;
9723 unsigned MinParams = Fn->getMinRequiredArguments();
9724
9725 // With invalid overloaded operators, it's possible that we think we
9726 // have an arity mismatch when in fact it looks like we have the
9727 // right number of arguments, because only overloaded operators have
9728 // the weird behavior of overloading member and non-member functions.
9729 // Just don't report anything.
9730 if (Fn->isInvalidDecl() &&
9731 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
9732 return true;
9733
9734 if (NumArgs < MinParams) {
9735 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||(static_cast <bool> ((Cand->FailureKind == ovl_fail_too_few_arguments
) || (Cand->FailureKind == ovl_fail_bad_deduction &&
Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments
)) ? void (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9737, __extension__ __PRETTY_FUNCTION__))
9736 (Cand->FailureKind == ovl_fail_bad_deduction &&(static_cast <bool> ((Cand->FailureKind == ovl_fail_too_few_arguments
) || (Cand->FailureKind == ovl_fail_bad_deduction &&
Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments
)) ? void (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9737, __extension__ __PRETTY_FUNCTION__))
9737 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments))(static_cast <bool> ((Cand->FailureKind == ovl_fail_too_few_arguments
) || (Cand->FailureKind == ovl_fail_bad_deduction &&
Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments
)) ? void (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9737, __extension__ __PRETTY_FUNCTION__))
;
9738 } else {
9739 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||(static_cast <bool> ((Cand->FailureKind == ovl_fail_too_many_arguments
) || (Cand->FailureKind == ovl_fail_bad_deduction &&
Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments
)) ? void (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9741, __extension__ __PRETTY_FUNCTION__))
9740 (Cand->FailureKind == ovl_fail_bad_deduction &&(static_cast <bool> ((Cand->FailureKind == ovl_fail_too_many_arguments
) || (Cand->FailureKind == ovl_fail_bad_deduction &&
Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments
)) ? void (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9741, __extension__ __PRETTY_FUNCTION__))
9741 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments))(static_cast <bool> ((Cand->FailureKind == ovl_fail_too_many_arguments
) || (Cand->FailureKind == ovl_fail_bad_deduction &&
Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments
)) ? void (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9741, __extension__ __PRETTY_FUNCTION__))
;
9742 }
9743
9744 return false;
9745}
9746
9747/// General arity mismatch diagnosis over a candidate in a candidate set.
9748static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
9749 unsigned NumFormalArgs) {
9750 assert(isa<FunctionDecl>(D) &&(static_cast <bool> (isa<FunctionDecl>(D) &&
"The templated declaration should at least be a function" " when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? void (0) : __assert_fail ("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9753, __extension__ __PRETTY_FUNCTION__))
9751 "The templated declaration should at least be a function"(static_cast <bool> (isa<FunctionDecl>(D) &&
"The templated declaration should at least be a function" " when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? void (0) : __assert_fail ("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9753, __extension__ __PRETTY_FUNCTION__))
9752 " when diagnosing bad template argument deduction due to too many"(static_cast <bool> (isa<FunctionDecl>(D) &&
"The templated declaration should at least be a function" " when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? void (0) : __assert_fail ("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9753, __extension__ __PRETTY_FUNCTION__))
9753 " or too few arguments")(static_cast <bool> (isa<FunctionDecl>(D) &&
"The templated declaration should at least be a function" " when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? void (0) : __assert_fail ("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9753, __extension__ __PRETTY_FUNCTION__))
;
9754
9755 FunctionDecl *Fn = cast<FunctionDecl>(D);
9756
9757 // TODO: treat calls to a missing default constructor as a special case
9758 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
9759 unsigned MinParams = Fn->getMinRequiredArguments();
9760
9761 // at least / at most / exactly
9762 unsigned mode, modeCount;
9763 if (NumFormalArgs < MinParams) {
9764 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
9765 FnTy->isTemplateVariadic())
9766 mode = 0; // "at least"
9767 else
9768 mode = 2; // "exactly"
9769 modeCount = MinParams;
9770 } else {
9771 if (MinParams != FnTy->getNumParams())
9772 mode = 1; // "at most"
9773 else
9774 mode = 2; // "exactly"
9775 modeCount = FnTy->getNumParams();
9776 }
9777
9778 std::string Description;
9779 OverloadCandidateKind FnKind =
9780 ClassifyOverloadCandidate(S, Found, Fn, Description);
9781
9782 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
9783 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
9784 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
9785 << mode << Fn->getParamDecl(0) << NumFormalArgs;
9786 else
9787 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
9788 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
9789 << mode << modeCount << NumFormalArgs;
9790 MaybeEmitInheritedConstructorNote(S, Found);
9791}
9792
9793/// Arity mismatch diagnosis specific to a function overload candidate.
9794static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
9795 unsigned NumFormalArgs) {
9796 if (!CheckArityMismatch(S, Cand, NumFormalArgs))
9797 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
9798}
9799
9800static TemplateDecl *getDescribedTemplate(Decl *Templated) {
9801 if (TemplateDecl *TD = Templated->getDescribedTemplate())
9802 return TD;
9803 llvm_unreachable("Unsupported: Getting the described template declaration"::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9804)
9804 " for bad deduction diagnosis")::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9804)
;
9805}
9806
9807/// Diagnose a failed template-argument deduction.
9808static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
9809 DeductionFailureInfo &DeductionFailure,
9810 unsigned NumArgs,
9811 bool TakingCandidateAddress) {
9812 TemplateParameter Param = DeductionFailure.getTemplateParameter();
9813 NamedDecl *ParamD;
9814 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
9815 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
9816 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
9817 switch (DeductionFailure.Result) {
9818 case Sema::TDK_Success:
9819 llvm_unreachable("TDK_success while diagnosing bad deduction")::llvm::llvm_unreachable_internal("TDK_success while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9819)
;
9820
9821 case Sema::TDK_Incomplete: {
9822 assert(ParamD && "no parameter found for incomplete deduction result")(static_cast <bool> (ParamD && "no parameter found for incomplete deduction result"
) ? void (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9822, __extension__ __PRETTY_FUNCTION__))
;
9823 S.Diag(Templated->getLocation(),
9824 diag::note_ovl_candidate_incomplete_deduction)
9825 << ParamD->getDeclName();
9826 MaybeEmitInheritedConstructorNote(S, Found);
9827 return;
9828 }
9829
9830 case Sema::TDK_Underqualified: {
9831 assert(ParamD && "no parameter found for bad qualifiers deduction result")(static_cast <bool> (ParamD && "no parameter found for bad qualifiers deduction result"
) ? void (0) : __assert_fail ("ParamD && \"no parameter found for bad qualifiers deduction result\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9831, __extension__ __PRETTY_FUNCTION__))
;
9832 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
9833
9834 QualType Param = DeductionFailure.getFirstArg()->getAsType();
9835
9836 // Param will have been canonicalized, but it should just be a
9837 // qualified version of ParamD, so move the qualifiers to that.
9838 QualifierCollector Qs;
9839 Qs.strip(Param);
9840 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
9841 assert(S.Context.hasSameType(Param, NonCanonParam))(static_cast <bool> (S.Context.hasSameType(Param, NonCanonParam
)) ? void (0) : __assert_fail ("S.Context.hasSameType(Param, NonCanonParam)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9841, __extension__ __PRETTY_FUNCTION__))
;
9842
9843 // Arg has also been canonicalized, but there's nothing we can do
9844 // about that. It also doesn't matter as much, because it won't
9845 // have any template parameters in it (because deduction isn't
9846 // done on dependent types).
9847 QualType Arg = DeductionFailure.getSecondArg()->getAsType();
9848
9849 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
9850 << ParamD->getDeclName() << Arg << NonCanonParam;
9851 MaybeEmitInheritedConstructorNote(S, Found);
9852 return;
9853 }
9854
9855 case Sema::TDK_Inconsistent: {
9856 assert(ParamD && "no parameter found for inconsistent deduction result")(static_cast <bool> (ParamD && "no parameter found for inconsistent deduction result"
) ? void (0) : __assert_fail ("ParamD && \"no parameter found for inconsistent deduction result\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9856, __extension__ __PRETTY_FUNCTION__))
;
9857 int which = 0;
9858 if (isa<TemplateTypeParmDecl>(ParamD))
9859 which = 0;
9860 else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
9861 // Deduction might have failed because we deduced arguments of two
9862 // different types for a non-type template parameter.
9863 // FIXME: Use a different TDK value for this.
9864 QualType T1 =
9865 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
9866 QualType T2 =
9867 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
9868 if (!S.Context.hasSameType(T1, T2)) {
9869 S.Diag(Templated->getLocation(),
9870 diag::note_ovl_candidate_inconsistent_deduction_types)
9871 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
9872 << *DeductionFailure.getSecondArg() << T2;
9873 MaybeEmitInheritedConstructorNote(S, Found);
9874 return;
9875 }
9876
9877 which = 1;
9878 } else {
9879 which = 2;
9880 }
9881
9882 S.Diag(Templated->getLocation(),
9883 diag::note_ovl_candidate_inconsistent_deduction)
9884 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
9885 << *DeductionFailure.getSecondArg();
9886 MaybeEmitInheritedConstructorNote(S, Found);
9887 return;
9888 }
9889
9890 case Sema::TDK_InvalidExplicitArguments:
9891 assert(ParamD && "no parameter found for invalid explicit arguments")(static_cast <bool> (ParamD && "no parameter found for invalid explicit arguments"
) ? void (0) : __assert_fail ("ParamD && \"no parameter found for invalid explicit arguments\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 9891, __extension__ __PRETTY_FUNCTION__))
;
9892 if (ParamD->getDeclName())
9893 S.Diag(Templated->getLocation(),
9894 diag::note_ovl_candidate_explicit_arg_mismatch_named)
9895 << ParamD->getDeclName();
9896 else {
9897 int index = 0;
9898 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
9899 index = TTP->getIndex();
9900 else if (NonTypeTemplateParmDecl *NTTP
9901 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
9902 index = NTTP->getIndex();
9903 else
9904 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
9905 S.Diag(Templated->getLocation(),
9906 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
9907 << (index + 1);
9908 }
9909 MaybeEmitInheritedConstructorNote(S, Found);
9910 return;
9911
9912 case Sema::TDK_TooManyArguments:
9913 case Sema::TDK_TooFewArguments:
9914 DiagnoseArityMismatch(S, Found, Templated, NumArgs);
9915 return;
9916
9917 case Sema::TDK_InstantiationDepth:
9918 S.Diag(Templated->getLocation(),
9919 diag::note_ovl_candidate_instantiation_depth);
9920 MaybeEmitInheritedConstructorNote(S, Found);
9921 return;
9922
9923 case Sema::TDK_SubstitutionFailure: {
9924 // Format the template argument list into the argument string.
9925 SmallString<128> TemplateArgString;
9926 if (TemplateArgumentList *Args =
9927 DeductionFailure.getTemplateArgumentList()) {
9928 TemplateArgString = " ";
9929 TemplateArgString += S.getTemplateArgumentBindingsText(
9930 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
9931 }
9932
9933 // If this candidate was disabled by enable_if, say so.
9934 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
9935 if (PDiag && PDiag->second.getDiagID() ==
9936 diag::err_typename_nested_not_found_enable_if) {
9937 // FIXME: Use the source range of the condition, and the fully-qualified
9938 // name of the enable_if template. These are both present in PDiag.
9939 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
9940 << "'enable_if'" << TemplateArgString;
9941 return;
9942 }
9943
9944 // We found a specific requirement that disabled the enable_if.
9945 if (PDiag && PDiag->second.getDiagID() ==
9946 diag::err_typename_nested_not_found_requirement) {
9947 S.Diag(Templated->getLocation(),
9948 diag::note_ovl_candidate_disabled_by_requirement)
9949 << PDiag->second.getStringArg(0) << TemplateArgString;
9950 return;
9951 }
9952
9953 // Format the SFINAE diagnostic into the argument string.
9954 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
9955 // formatted message in another diagnostic.
9956 SmallString<128> SFINAEArgString;
9957 SourceRange R;
9958 if (PDiag) {
9959 SFINAEArgString = ": ";
9960 R = SourceRange(PDiag->first, PDiag->first);
9961 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
9962 }
9963
9964 S.Diag(Templated->getLocation(),
9965 diag::note_ovl_candidate_substitution_failure)
9966 << TemplateArgString << SFINAEArgString << R;
9967 MaybeEmitInheritedConstructorNote(S, Found);
9968 return;
9969 }
9970
9971 case Sema::TDK_DeducedMismatch:
9972 case Sema::TDK_DeducedMismatchNested: {
9973 // Format the template argument list into the argument string.
9974 SmallString<128> TemplateArgString;
9975 if (TemplateArgumentList *Args =
9976 DeductionFailure.getTemplateArgumentList()) {
9977 TemplateArgString = " ";
9978 TemplateArgString += S.getTemplateArgumentBindingsText(
9979 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
9980 }
9981
9982 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
9983 << (*DeductionFailure.getCallArgIndex() + 1)
9984 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
9985 << TemplateArgString
9986 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
9987 break;
9988 }
9989
9990 case Sema::TDK_NonDeducedMismatch: {
9991 // FIXME: Provide a source location to indicate what we couldn't match.
9992 TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
9993 TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
9994 if (FirstTA.getKind() == TemplateArgument::Template &&
9995 SecondTA.getKind() == TemplateArgument::Template) {
9996 TemplateName FirstTN = FirstTA.getAsTemplate();
9997 TemplateName SecondTN = SecondTA.getAsTemplate();
9998 if (FirstTN.getKind() == TemplateName::Template &&
9999 SecondTN.getKind() == TemplateName::Template) {
10000 if (FirstTN.getAsTemplateDecl()->getName() ==
10001 SecondTN.getAsTemplateDecl()->getName()) {
10002 // FIXME: This fixes a bad diagnostic where both templates are named
10003 // the same. This particular case is a bit difficult since:
10004 // 1) It is passed as a string to the diagnostic printer.
10005 // 2) The diagnostic printer only attempts to find a better
10006 // name for types, not decls.
10007 // Ideally, this should folded into the diagnostic printer.
10008 S.Diag(Templated->getLocation(),
10009 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10010 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10011 return;
10012 }
10013 }
10014 }
10015
10016 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10017 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10018 return;
10019
10020 // FIXME: For generic lambda parameters, check if the function is a lambda
10021 // call operator, and if so, emit a prettier and more informative
10022 // diagnostic that mentions 'auto' and lambda in addition to
10023 // (or instead of?) the canonical template type parameters.
10024 S.Diag(Templated->getLocation(),
10025 diag::note_ovl_candidate_non_deduced_mismatch)
10026 << FirstTA << SecondTA;
10027 return;
10028 }
10029 // TODO: diagnose these individually, then kill off
10030 // note_ovl_candidate_bad_deduction, which is uselessly vague.
10031 case Sema::TDK_MiscellaneousDeductionFailure:
10032 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10033 MaybeEmitInheritedConstructorNote(S, Found);
10034 return;
10035 case Sema::TDK_CUDATargetMismatch:
10036 S.Diag(Templated->getLocation(),
10037 diag::note_cuda_ovl_candidate_target_mismatch);
10038 return;
10039 }
10040}
10041
10042/// Diagnose a failed template-argument deduction, for function calls.
10043static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10044 unsigned NumArgs,
10045 bool TakingCandidateAddress) {
10046 unsigned TDK = Cand->DeductionFailure.Result;
10047 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10048 if (CheckArityMismatch(S, Cand, NumArgs))
10049 return;
10050 }
10051 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
10052 Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
10053}
10054
10055/// CUDA: diagnose an invalid call across targets.
10056static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
10057 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
10058 FunctionDecl *Callee = Cand->Function;
10059
10060 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
10061 CalleeTarget = S.IdentifyCUDATarget(Callee);
10062
10063 std::string FnDesc;
10064 OverloadCandidateKind FnKind =
10065 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, FnDesc);
10066
10067 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
10068 << (unsigned)FnKind << CalleeTarget << CallerTarget;
10069
10070 // This could be an implicit constructor for which we could not infer the
10071 // target due to a collsion. Diagnose that case.
10072 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
10073 if (Meth != nullptr && Meth->isImplicit()) {
10074 CXXRecordDecl *ParentClass = Meth->getParent();
10075 Sema::CXXSpecialMember CSM;
10076
10077 switch (FnKind) {
10078 default:
10079 return;
10080 case oc_implicit_default_constructor:
10081 CSM = Sema::CXXDefaultConstructor;
10082 break;
10083 case oc_implicit_copy_constructor:
10084 CSM = Sema::CXXCopyConstructor;
10085 break;
10086 case oc_implicit_move_constructor:
10087 CSM = Sema::CXXMoveConstructor;
10088 break;
10089 case oc_implicit_copy_assignment:
10090 CSM = Sema::CXXCopyAssignment;
10091 break;
10092 case oc_implicit_move_assignment:
10093 CSM = Sema::CXXMoveAssignment;
10094 break;
10095 };
10096
10097 bool ConstRHS = false;
10098 if (Meth->getNumParams()) {
10099 if (const ReferenceType *RT =
10100 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
10101 ConstRHS = RT->getPointeeType().isConstQualified();
10102 }
10103 }
10104
10105 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
10106 /* ConstRHS */ ConstRHS,
10107 /* Diagnose */ true);
10108 }
10109}
10110
10111static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
10112 FunctionDecl *Callee = Cand->Function;
10113 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
10114
10115 S.Diag(Callee->getLocation(),
10116 diag::note_ovl_candidate_disabled_by_function_cond_attr)
10117 << Attr->getCond()->getSourceRange() << Attr->getMessage();
10118}
10119
10120static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
10121 FunctionDecl *Callee = Cand->Function;
10122
10123 S.Diag(Callee->getLocation(),
10124 diag::note_ovl_candidate_disabled_by_extension);
10125}
10126
10127/// Generates a 'note' diagnostic for an overload candidate. We've
10128/// already generated a primary error at the call site.
10129///
10130/// It really does need to be a single diagnostic with its caret
10131/// pointed at the candidate declaration. Yes, this creates some
10132/// major challenges of technical writing. Yes, this makes pointing
10133/// out problems with specific arguments quite awkward. It's still
10134/// better than generating twenty screens of text for every failed
10135/// overload.
10136///
10137/// It would be great to be able to express per-candidate problems
10138/// more richly for those diagnostic clients that cared, but we'd
10139/// still have to be just as careful with the default diagnostics.
10140static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
10141 unsigned NumArgs,
10142 bool TakingCandidateAddress) {
10143 FunctionDecl *Fn = Cand->Function;
10144
10145 // Note deleted candidates, but only if they're viable.
10146 if (Cand->Viable) {
10147 if (Fn->isDeleted() || S.isFunctionConsideredUnavailable(Fn)) {
10148 std::string FnDesc;
10149 OverloadCandidateKind FnKind =
10150 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
10151
10152 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
10153 << FnKind << FnDesc
10154 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
10155 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10156 return;
10157 }
10158
10159 // We don't really have anything else to say about viable candidates.
10160 S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10161 return;
10162 }
10163
10164 switch (Cand->FailureKind) {
10165 case ovl_fail_too_many_arguments:
10166 case ovl_fail_too_few_arguments:
10167 return DiagnoseArityMismatch(S, Cand, NumArgs);
10168
10169 case ovl_fail_bad_deduction:
10170 return DiagnoseBadDeduction(S, Cand, NumArgs,
10171 TakingCandidateAddress);
10172
10173 case ovl_fail_illegal_constructor: {
10174 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
10175 << (Fn->getPrimaryTemplate() ? 1 : 0);
10176 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10177 return;
10178 }
10179
10180 case ovl_fail_trivial_conversion:
10181 case ovl_fail_bad_final_conversion:
10182 case ovl_fail_final_conversion_not_exact:
10183 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10184
10185 case ovl_fail_bad_conversion: {
10186 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
10187 for (unsigned N = Cand->Conversions.size(); I != N; ++I)
10188 if (Cand->Conversions[I].isBad())
10189 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
10190
10191 // FIXME: this currently happens when we're called from SemaInit
10192 // when user-conversion overload fails. Figure out how to handle
10193 // those conditions and diagnose them well.
10194 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
10195 }
10196
10197 case ovl_fail_bad_target:
10198 return DiagnoseBadTarget(S, Cand);
10199
10200 case ovl_fail_enable_if:
10201 return DiagnoseFailedEnableIfAttr(S, Cand);
10202
10203 case ovl_fail_ext_disabled:
10204 return DiagnoseOpenCLExtensionDisabled(S, Cand);
10205
10206 case ovl_fail_inhctor_slice:
10207 // It's generally not interesting to note copy/move constructors here.
10208 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
10209 return;
10210 S.Diag(Fn->getLocation(),
10211 diag::note_ovl_candidate_inherited_constructor_slice)
10212 << (Fn->getPrimaryTemplate() ? 1 : 0)
10213 << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
10214 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10215 return;
10216
10217 case ovl_fail_addr_not_available: {
10218 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
10219 (void)Available;
10220 assert(!Available)(static_cast <bool> (!Available) ? void (0) : __assert_fail
("!Available", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10220, __extension__ __PRETTY_FUNCTION__))
;
10221 break;
10222 }
10223 case ovl_non_default_multiversion_function:
10224 // Do nothing, these should simply be ignored.
10225 break;
10226 }
10227}
10228
10229static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
10230 // Desugar the type of the surrogate down to a function type,
10231 // retaining as many typedefs as possible while still showing
10232 // the function type (and, therefore, its parameter types).
10233 QualType FnType = Cand->Surrogate->getConversionType();
10234 bool isLValueReference = false;
10235 bool isRValueReference = false;
10236 bool isPointer = false;
10237 if (const LValueReferenceType *FnTypeRef =
10238 FnType->getAs<LValueReferenceType>()) {
10239 FnType = FnTypeRef->getPointeeType();
10240 isLValueReference = true;
10241 } else if (const RValueReferenceType *FnTypeRef =
10242 FnType->getAs<RValueReferenceType>()) {
10243 FnType = FnTypeRef->getPointeeType();
10244 isRValueReference = true;
10245 }
10246 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
10247 FnType = FnTypePtr->getPointeeType();
10248 isPointer = true;
10249 }
10250 // Desugar down to a function type.
10251 FnType = QualType(FnType->getAs<FunctionType>(), 0);
10252 // Reconstruct the pointer/reference as appropriate.
10253 if (isPointer) FnType = S.Context.getPointerType(FnType);
10254 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
10255 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
10256
10257 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
10258 << FnType;
10259}
10260
10261static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
10262 SourceLocation OpLoc,
10263 OverloadCandidate *Cand) {
10264 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary")(static_cast <bool> (Cand->Conversions.size() <= 2
&& "builtin operator is not binary") ? void (0) : __assert_fail
("Cand->Conversions.size() <= 2 && \"builtin operator is not binary\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10264, __extension__ __PRETTY_FUNCTION__))
;
10265 std::string TypeStr("operator");
10266 TypeStr += Opc;
10267 TypeStr += "(";
10268 TypeStr += Cand->BuiltinParamTypes[0].getAsString();
10269 if (Cand->Conversions.size() == 1) {
10270 TypeStr += ")";
10271 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
10272 } else {
10273 TypeStr += ", ";
10274 TypeStr += Cand->BuiltinParamTypes[1].getAsString();
10275 TypeStr += ")";
10276 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
10277 }
10278}
10279
10280static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
10281 OverloadCandidate *Cand) {
10282 for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
10283 if (ICS.isBad()) break; // all meaningless after first invalid
10284 if (!ICS.isAmbiguous()) continue;
10285
10286 ICS.DiagnoseAmbiguousConversion(
10287 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
10288 }
10289}
10290
10291static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
10292 if (Cand->Function)
10293 return Cand->Function->getLocation();
10294 if (Cand->IsSurrogate)
10295 return Cand->Surrogate->getLocation();
10296 return SourceLocation();
10297}
10298
10299static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
10300 switch ((Sema::TemplateDeductionResult)DFI.Result) {
10301 case Sema::TDK_Success:
10302 case Sema::TDK_NonDependentConversionFailure:
10303 llvm_unreachable("non-deduction failure while diagnosing bad deduction")::llvm::llvm_unreachable_internal("non-deduction failure while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10303)
;
10304
10305 case Sema::TDK_Invalid:
10306 case Sema::TDK_Incomplete:
10307 return 1;
10308
10309 case Sema::TDK_Underqualified:
10310 case Sema::TDK_Inconsistent:
10311 return 2;
10312
10313 case Sema::TDK_SubstitutionFailure:
10314 case Sema::TDK_DeducedMismatch:
10315 case Sema::TDK_DeducedMismatchNested:
10316 case Sema::TDK_NonDeducedMismatch:
10317 case Sema::TDK_MiscellaneousDeductionFailure:
10318 case Sema::TDK_CUDATargetMismatch:
10319 return 3;
10320
10321 case Sema::TDK_InstantiationDepth:
10322 return 4;
10323
10324 case Sema::TDK_InvalidExplicitArguments:
10325 return 5;
10326
10327 case Sema::TDK_TooManyArguments:
10328 case Sema::TDK_TooFewArguments:
10329 return 6;
10330 }
10331 llvm_unreachable("Unhandled deduction result")::llvm::llvm_unreachable_internal("Unhandled deduction result"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10331)
;
10332}
10333
10334namespace {
10335struct CompareOverloadCandidatesForDisplay {
10336 Sema &S;
10337 SourceLocation Loc;
10338 size_t NumArgs;
10339 OverloadCandidateSet::CandidateSetKind CSK;
10340
10341 CompareOverloadCandidatesForDisplay(
10342 Sema &S, SourceLocation Loc, size_t NArgs,
10343 OverloadCandidateSet::CandidateSetKind CSK)
10344 : S(S), NumArgs(NArgs), CSK(CSK) {}
10345
10346 bool operator()(const OverloadCandidate *L,
10347 const OverloadCandidate *R) {
10348 // Fast-path this check.
10349 if (L == R) return false;
10350
10351 // Order first by viability.
10352 if (L->Viable) {
10353 if (!R->Viable) return true;
10354
10355 // TODO: introduce a tri-valued comparison for overload
10356 // candidates. Would be more worthwhile if we had a sort
10357 // that could exploit it.
10358 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
10359 return true;
10360 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
10361 return false;
10362 } else if (R->Viable)
10363 return false;
10364
10365 assert(L->Viable == R->Viable)(static_cast <bool> (L->Viable == R->Viable) ? void
(0) : __assert_fail ("L->Viable == R->Viable", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10365, __extension__ __PRETTY_FUNCTION__))
;
10366
10367 // Criteria by which we can sort non-viable candidates:
10368 if (!L->Viable) {
10369 // 1. Arity mismatches come after other candidates.
10370 if (L->FailureKind == ovl_fail_too_many_arguments ||
10371 L->FailureKind == ovl_fail_too_few_arguments) {
10372 if (R->FailureKind == ovl_fail_too_many_arguments ||
10373 R->FailureKind == ovl_fail_too_few_arguments) {
10374 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
10375 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
10376 if (LDist == RDist) {
10377 if (L->FailureKind == R->FailureKind)
10378 // Sort non-surrogates before surrogates.
10379 return !L->IsSurrogate && R->IsSurrogate;
10380 // Sort candidates requiring fewer parameters than there were
10381 // arguments given after candidates requiring more parameters
10382 // than there were arguments given.
10383 return L->FailureKind == ovl_fail_too_many_arguments;
10384 }
10385 return LDist < RDist;
10386 }
10387 return false;
10388 }
10389 if (R->FailureKind == ovl_fail_too_many_arguments ||
10390 R->FailureKind == ovl_fail_too_few_arguments)
10391 return true;
10392
10393 // 2. Bad conversions come first and are ordered by the number
10394 // of bad conversions and quality of good conversions.
10395 if (L->FailureKind == ovl_fail_bad_conversion) {
10396 if (R->FailureKind != ovl_fail_bad_conversion)
10397 return true;
10398
10399 // The conversion that can be fixed with a smaller number of changes,
10400 // comes first.
10401 unsigned numLFixes = L->Fix.NumConversionsFixed;
10402 unsigned numRFixes = R->Fix.NumConversionsFixed;
10403 numLFixes = (numLFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numLFixes;
10404 numRFixes = (numRFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numRFixes;
10405 if (numLFixes != numRFixes) {
10406 return numLFixes < numRFixes;
10407 }
10408
10409 // If there's any ordering between the defined conversions...
10410 // FIXME: this might not be transitive.
10411 assert(L->Conversions.size() == R->Conversions.size())(static_cast <bool> (L->Conversions.size() == R->
Conversions.size()) ? void (0) : __assert_fail ("L->Conversions.size() == R->Conversions.size()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10411, __extension__ __PRETTY_FUNCTION__))
;
10412
10413 int leftBetter = 0;
10414 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
10415 for (unsigned E = L->Conversions.size(); I != E; ++I) {
10416 switch (CompareImplicitConversionSequences(S, Loc,
10417 L->Conversions[I],
10418 R->Conversions[I])) {
10419 case ImplicitConversionSequence::Better:
10420 leftBetter++;
10421 break;
10422
10423 case ImplicitConversionSequence::Worse:
10424 leftBetter--;
10425 break;
10426
10427 case ImplicitConversionSequence::Indistinguishable:
10428 break;
10429 }
10430 }
10431 if (leftBetter > 0) return true;
10432 if (leftBetter < 0) return false;
10433
10434 } else if (R->FailureKind == ovl_fail_bad_conversion)
10435 return false;
10436
10437 if (L->FailureKind == ovl_fail_bad_deduction) {
10438 if (R->FailureKind != ovl_fail_bad_deduction)
10439 return true;
10440
10441 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10442 return RankDeductionFailure(L->DeductionFailure)
10443 < RankDeductionFailure(R->DeductionFailure);
10444 } else if (R->FailureKind == ovl_fail_bad_deduction)
10445 return false;
10446
10447 // TODO: others?
10448 }
10449
10450 // Sort everything else by location.
10451 SourceLocation LLoc = GetLocationForCandidate(L);
10452 SourceLocation RLoc = GetLocationForCandidate(R);
10453
10454 // Put candidates without locations (e.g. builtins) at the end.
10455 if (LLoc.isInvalid()) return false;
10456 if (RLoc.isInvalid()) return true;
10457
10458 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10459 }
10460};
10461}
10462
10463/// CompleteNonViableCandidate - Normally, overload resolution only
10464/// computes up to the first bad conversion. Produces the FixIt set if
10465/// possible.
10466static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
10467 ArrayRef<Expr *> Args) {
10468 assert(!Cand->Viable)(static_cast <bool> (!Cand->Viable) ? void (0) : __assert_fail
("!Cand->Viable", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10468, __extension__ __PRETTY_FUNCTION__))
;
10469
10470 // Don't do anything on failures other than bad conversion.
10471 if (Cand->FailureKind != ovl_fail_bad_conversion) return;
10472
10473 // We only want the FixIts if all the arguments can be corrected.
10474 bool Unfixable = false;
10475 // Use a implicit copy initialization to check conversion fixes.
10476 Cand->Fix.setConversionChecker(TryCopyInitialization);
10477
10478 // Attempt to fix the bad conversion.
10479 unsigned ConvCount = Cand->Conversions.size();
10480 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
10481 ++ConvIdx) {
10482 assert(ConvIdx != ConvCount && "no bad conversion in candidate")(static_cast <bool> (ConvIdx != ConvCount && "no bad conversion in candidate"
) ? void (0) : __assert_fail ("ConvIdx != ConvCount && \"no bad conversion in candidate\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10482, __extension__ __PRETTY_FUNCTION__))
;
10483 if (Cand->Conversions[ConvIdx].isInitialized() &&
10484 Cand->Conversions[ConvIdx].isBad()) {
10485 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10486 break;
10487 }
10488 }
10489
10490 // FIXME: this should probably be preserved from the overload
10491 // operation somehow.
10492 bool SuppressUserConversions = false;
10493
10494 unsigned ConvIdx = 0;
10495 ArrayRef<QualType> ParamTypes;
10496
10497 if (Cand->IsSurrogate) {
10498 QualType ConvType
10499 = Cand->Surrogate->getConversionType().getNonReferenceType();
10500 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10501 ConvType = ConvPtrType->getPointeeType();
10502 ParamTypes = ConvType->getAs<FunctionProtoType>()->getParamTypes();
10503 // Conversion 0 is 'this', which doesn't have a corresponding argument.
10504 ConvIdx = 1;
10505 } else if (Cand->Function) {
10506 ParamTypes =
10507 Cand->Function->getType()->getAs<FunctionProtoType>()->getParamTypes();
10508 if (isa<CXXMethodDecl>(Cand->Function) &&
10509 !isa<CXXConstructorDecl>(Cand->Function)) {
10510 // Conversion 0 is 'this', which doesn't have a corresponding argument.
10511 ConvIdx = 1;
10512 }
10513 } else {
10514 // Builtin operator.
10515 assert(ConvCount <= 3)(static_cast <bool> (ConvCount <= 3) ? void (0) : __assert_fail
("ConvCount <= 3", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10515, __extension__ __PRETTY_FUNCTION__))
;
10516 ParamTypes = Cand->BuiltinParamTypes;
10517 }
10518
10519 // Fill in the rest of the conversions.
10520 for (unsigned ArgIdx = 0; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
10521 if (Cand->Conversions[ConvIdx].isInitialized()) {
10522 // We've already checked this conversion.
10523 } else if (ArgIdx < ParamTypes.size()) {
10524 if (ParamTypes[ArgIdx]->isDependentType())
10525 Cand->Conversions[ConvIdx].setAsIdentityConversion(
10526 Args[ArgIdx]->getType());
10527 else {
10528 Cand->Conversions[ConvIdx] =
10529 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ArgIdx],
10530 SuppressUserConversions,
10531 /*InOverloadResolution=*/true,
10532 /*AllowObjCWritebackConversion=*/
10533 S.getLangOpts().ObjCAutoRefCount);
10534 // Store the FixIt in the candidate if it exists.
10535 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
10536 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10537 }
10538 } else
10539 Cand->Conversions[ConvIdx].setEllipsis();
10540 }
10541}
10542
10543/// When overload resolution fails, prints diagnostic messages containing the
10544/// candidates in the candidate set.
10545void OverloadCandidateSet::NoteCandidates(
10546 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
10547 StringRef Opc, SourceLocation OpLoc,
10548 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
10549 // Sort the candidates by viability and position. Sorting directly would
10550 // be prohibitive, so we make a set of pointers and sort those.
10551 SmallVector<OverloadCandidate*, 32> Cands;
10552 if (OCD == OCD_AllCandidates) Cands.reserve(size());
10553 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10554 if (!Filter(*Cand))
10555 continue;
10556 if (Cand->Viable)
10557 Cands.push_back(Cand);
10558 else if (OCD == OCD_AllCandidates) {
10559 CompleteNonViableCandidate(S, Cand, Args);
10560 if (Cand->Function || Cand->IsSurrogate)
10561 Cands.push_back(Cand);
10562 // Otherwise, this a non-viable builtin candidate. We do not, in general,
10563 // want to list every possible builtin candidate.
10564 }
10565 }
10566
10567 std::stable_sort(Cands.begin(), Cands.end(),
10568 CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
10569
10570 bool ReportedAmbiguousConversions = false;
10571
10572 SmallVectorImpl<OverloadCandidate*>::iterator I, E;
10573 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10574 unsigned CandsShown = 0;
10575 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10576 OverloadCandidate *Cand = *I;
10577
10578 // Set an arbitrary limit on the number of candidate functions we'll spam
10579 // the user with. FIXME: This limit should depend on details of the
10580 // candidate list.
10581 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
10582 break;
10583 }
10584 ++CandsShown;
10585
10586 if (Cand->Function)
10587 NoteFunctionCandidate(S, Cand, Args.size(),
10588 /*TakingCandidateAddress=*/false);
10589 else if (Cand->IsSurrogate)
10590 NoteSurrogateCandidate(S, Cand);
10591 else {
10592 assert(Cand->Viable &&(static_cast <bool> (Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? void (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10593, __extension__ __PRETTY_FUNCTION__))
10593 "Non-viable built-in candidates are not added to Cands.")(static_cast <bool> (Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? void (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10593, __extension__ __PRETTY_FUNCTION__))
;
10594 // Generally we only see ambiguities including viable builtin
10595 // operators if overload resolution got screwed up by an
10596 // ambiguous user-defined conversion.
10597 //
10598 // FIXME: It's quite possible for different conversions to see
10599 // different ambiguities, though.
10600 if (!ReportedAmbiguousConversions) {
10601 NoteAmbiguousUserConversions(S, OpLoc, Cand);
10602 ReportedAmbiguousConversions = true;
10603 }
10604
10605 // If this is a viable builtin, print it.
10606 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
10607 }
10608 }
10609
10610 if (I != E)
10611 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
10612}
10613
10614static SourceLocation
10615GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
10616 return Cand->Specialization ? Cand->Specialization->getLocation()
10617 : SourceLocation();
10618}
10619
10620namespace {
10621struct CompareTemplateSpecCandidatesForDisplay {
10622 Sema &S;
10623 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
10624
10625 bool operator()(const TemplateSpecCandidate *L,
10626 const TemplateSpecCandidate *R) {
10627 // Fast-path this check.
10628 if (L == R)
10629 return false;
10630
10631 // Assuming that both candidates are not matches...
10632
10633 // Sort by the ranking of deduction failures.
10634 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10635 return RankDeductionFailure(L->DeductionFailure) <
10636 RankDeductionFailure(R->DeductionFailure);
10637
10638 // Sort everything else by location.
10639 SourceLocation LLoc = GetLocationForCandidate(L);
10640 SourceLocation RLoc = GetLocationForCandidate(R);
10641
10642 // Put candidates without locations (e.g. builtins) at the end.
10643 if (LLoc.isInvalid())
10644 return false;
10645 if (RLoc.isInvalid())
10646 return true;
10647
10648 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10649 }
10650};
10651}
10652
10653/// Diagnose a template argument deduction failure.
10654/// We are treating these failures as overload failures due to bad
10655/// deductions.
10656void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
10657 bool ForTakingAddress) {
10658 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
10659 DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
10660}
10661
10662void TemplateSpecCandidateSet::destroyCandidates() {
10663 for (iterator i = begin(), e = end(); i != e; ++i) {
10664 i->DeductionFailure.Destroy();
10665 }
10666}
10667
10668void TemplateSpecCandidateSet::clear() {
10669 destroyCandidates();
10670 Candidates.clear();
10671}
10672
10673/// NoteCandidates - When no template specialization match is found, prints
10674/// diagnostic messages containing the non-matching specializations that form
10675/// the candidate set.
10676/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
10677/// OCD == OCD_AllCandidates and Cand->Viable == false.
10678void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
10679 // Sort the candidates by position (assuming no candidate is a match).
10680 // Sorting directly would be prohibitive, so we make a set of pointers
10681 // and sort those.
10682 SmallVector<TemplateSpecCandidate *, 32> Cands;
10683 Cands.reserve(size());
10684 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10685 if (Cand->Specialization)
10686 Cands.push_back(Cand);
10687 // Otherwise, this is a non-matching builtin candidate. We do not,
10688 // in general, want to list every possible builtin candidate.
10689 }
10690
10691 llvm::sort(Cands.begin(), Cands.end(),
10692 CompareTemplateSpecCandidatesForDisplay(S));
10693
10694 // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
10695 // for generalization purposes (?).
10696 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10697
10698 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
10699 unsigned CandsShown = 0;
10700 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10701 TemplateSpecCandidate *Cand = *I;
10702
10703 // Set an arbitrary limit on the number of candidates we'll spam
10704 // the user with. FIXME: This limit should depend on details of the
10705 // candidate list.
10706 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
10707 break;
10708 ++CandsShown;
10709
10710 assert(Cand->Specialization &&(static_cast <bool> (Cand->Specialization &&
"Non-matching built-in candidates are not added to Cands.") ?
void (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10711, __extension__ __PRETTY_FUNCTION__))
10711 "Non-matching built-in candidates are not added to Cands.")(static_cast <bool> (Cand->Specialization &&
"Non-matching built-in candidates are not added to Cands.") ?
void (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10711, __extension__ __PRETTY_FUNCTION__))
;
10712 Cand->NoteDeductionFailure(S, ForTakingAddress);
10713 }
10714
10715 if (I != E)
10716 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
10717}
10718
10719// [PossiblyAFunctionType] --> [Return]
10720// NonFunctionType --> NonFunctionType
10721// R (A) --> R(A)
10722// R (*)(A) --> R (A)
10723// R (&)(A) --> R (A)
10724// R (S::*)(A) --> R (A)
10725QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
10726 QualType Ret = PossiblyAFunctionType;
10727 if (const PointerType *ToTypePtr =
10728 PossiblyAFunctionType->getAs<PointerType>())
10729 Ret = ToTypePtr->getPointeeType();
10730 else if (const ReferenceType *ToTypeRef =
10731 PossiblyAFunctionType->getAs<ReferenceType>())
10732 Ret = ToTypeRef->getPointeeType();
10733 else if (const MemberPointerType *MemTypePtr =
10734 PossiblyAFunctionType->getAs<MemberPointerType>())
10735 Ret = MemTypePtr->getPointeeType();
10736 Ret =
10737 Context.getCanonicalType(Ret).getUnqualifiedType();
10738 return Ret;
10739}
10740
10741static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
10742 bool Complain = true) {
10743 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
10744 S.DeduceReturnType(FD, Loc, Complain))
10745 return true;
10746
10747 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
10748 if (S.getLangOpts().CPlusPlus17 &&
10749 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
10750 !S.ResolveExceptionSpec(Loc, FPT))
10751 return true;
10752
10753 return false;
10754}
10755
10756namespace {
10757// A helper class to help with address of function resolution
10758// - allows us to avoid passing around all those ugly parameters
10759class AddressOfFunctionResolver {
10760 Sema& S;
10761 Expr* SourceExpr;
10762 const QualType& TargetType;
10763 QualType TargetFunctionType; // Extracted function type from target type
10764
10765 bool Complain;
10766 //DeclAccessPair& ResultFunctionAccessPair;
10767 ASTContext& Context;
10768
10769 bool TargetTypeIsNonStaticMemberFunction;
10770 bool FoundNonTemplateFunction;
10771 bool StaticMemberFunctionFromBoundPointer;
10772 bool HasComplained;
10773
10774 OverloadExpr::FindResult OvlExprInfo;
10775 OverloadExpr *OvlExpr;
10776 TemplateArgumentListInfo OvlExplicitTemplateArgs;
10777 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
10778 TemplateSpecCandidateSet FailedCandidates;
10779
10780public:
10781 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
10782 const QualType &TargetType, bool Complain)
10783 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
10784 Complain(Complain), Context(S.getASTContext()),
10785 TargetTypeIsNonStaticMemberFunction(
10786 !!TargetType->getAs<MemberPointerType>()),
10787 FoundNonTemplateFunction(false),
10788 StaticMemberFunctionFromBoundPointer(false),
10789 HasComplained(false),
10790 OvlExprInfo(OverloadExpr::find(SourceExpr)),
10791 OvlExpr(OvlExprInfo.Expression),
10792 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
10793 ExtractUnqualifiedFunctionTypeFromTargetType();
10794
10795 if (TargetFunctionType->isFunctionType()) {
10796 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
10797 if (!UME->isImplicitAccess() &&
10798 !S.ResolveSingleFunctionTemplateSpecialization(UME))
10799 StaticMemberFunctionFromBoundPointer = true;
10800 } else if (OvlExpr->hasExplicitTemplateArgs()) {
10801 DeclAccessPair dap;
10802 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
10803 OvlExpr, false, &dap)) {
10804 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
10805 if (!Method->isStatic()) {
10806 // If the target type is a non-function type and the function found
10807 // is a non-static member function, pretend as if that was the
10808 // target, it's the only possible type to end up with.
10809 TargetTypeIsNonStaticMemberFunction = true;
10810
10811 // And skip adding the function if its not in the proper form.
10812 // We'll diagnose this due to an empty set of functions.
10813 if (!OvlExprInfo.HasFormOfMemberPointer)
10814 return;
10815 }
10816
10817 Matches.push_back(std::make_pair(dap, Fn));
10818 }
10819 return;
10820 }
10821
10822 if (OvlExpr->hasExplicitTemplateArgs())
10823 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
10824
10825 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
10826 // C++ [over.over]p4:
10827 // If more than one function is selected, [...]
10828 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
10829 if (FoundNonTemplateFunction)
10830 EliminateAllTemplateMatches();
10831 else
10832 EliminateAllExceptMostSpecializedTemplate();
10833 }
10834 }
10835
10836 if (S.getLangOpts().CUDA && Matches.size() > 1)
10837 EliminateSuboptimalCudaMatches();
10838 }
10839
10840 bool hasComplained() const { return HasComplained; }
10841
10842private:
10843 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
10844 QualType Discard;
10845 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
10846 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
10847 }
10848
10849 /// \return true if A is considered a better overload candidate for the
10850 /// desired type than B.
10851 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
10852 // If A doesn't have exactly the correct type, we don't want to classify it
10853 // as "better" than anything else. This way, the user is required to
10854 // disambiguate for us if there are multiple candidates and no exact match.
10855 return candidateHasExactlyCorrectType(A) &&
10856 (!candidateHasExactlyCorrectType(B) ||
10857 compareEnableIfAttrs(S, A, B) == Comparison::Better);
10858 }
10859
10860 /// \return true if we were able to eliminate all but one overload candidate,
10861 /// false otherwise.
10862 bool eliminiateSuboptimalOverloadCandidates() {
10863 // Same algorithm as overload resolution -- one pass to pick the "best",
10864 // another pass to be sure that nothing is better than the best.
10865 auto Best = Matches.begin();
10866 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
10867 if (isBetterCandidate(I->second, Best->second))
10868 Best = I;
10869
10870 const FunctionDecl *BestFn = Best->second;
10871 auto IsBestOrInferiorToBest = [this, BestFn](
10872 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
10873 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
10874 };
10875
10876 // Note: We explicitly leave Matches unmodified if there isn't a clear best
10877 // option, so we can potentially give the user a better error
10878 if (!std::all_of(Matches.begin(), Matches.end(), IsBestOrInferiorToBest))
10879 return false;
10880 Matches[0] = *Best;
10881 Matches.resize(1);
10882 return true;
10883 }
10884
10885 bool isTargetTypeAFunction() const {
10886 return TargetFunctionType->isFunctionType();
10887 }
10888
10889 // [ToType] [Return]
10890
10891 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
10892 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
10893 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
10894 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
10895 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
10896 }
10897
10898 // return true if any matching specializations were found
10899 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
10900 const DeclAccessPair& CurAccessFunPair) {
10901 if (CXXMethodDecl *Method
10902 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
10903 // Skip non-static function templates when converting to pointer, and
10904 // static when converting to member pointer.
10905 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
10906 return false;
10907 }
10908 else if (TargetTypeIsNonStaticMemberFunction)
10909 return false;
10910
10911 // C++ [over.over]p2:
10912 // If the name is a function template, template argument deduction is
10913 // done (14.8.2.2), and if the argument deduction succeeds, the
10914 // resulting template argument list is used to generate a single
10915 // function template specialization, which is added to the set of
10916 // overloaded functions considered.
10917 FunctionDecl *Specialization = nullptr;
10918 TemplateDeductionInfo Info(FailedCandidates.getLocation());
10919 if (Sema::TemplateDeductionResult Result
10920 = S.DeduceTemplateArguments(FunctionTemplate,
10921 &OvlExplicitTemplateArgs,
10922 TargetFunctionType, Specialization,
10923 Info, /*IsAddressOfFunction*/true)) {
10924 // Make a note of the failed deduction for diagnostics.
10925 FailedCandidates.addCandidate()
10926 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
10927 MakeDeductionFailureInfo(Context, Result, Info));
10928 return false;
10929 }
10930
10931 // Template argument deduction ensures that we have an exact match or
10932 // compatible pointer-to-function arguments that would be adjusted by ICS.
10933 // This function template specicalization works.
10934 assert(S.isSameOrCompatibleFunctionType((static_cast <bool> (S.isSameOrCompatibleFunctionType( Context
.getCanonicalType(Specialization->getType()), Context.getCanonicalType
(TargetFunctionType))) ? void (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10936, __extension__ __PRETTY_FUNCTION__))
10935 Context.getCanonicalType(Specialization->getType()),(static_cast <bool> (S.isSameOrCompatibleFunctionType( Context
.getCanonicalType(Specialization->getType()), Context.getCanonicalType
(TargetFunctionType))) ? void (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10936, __extension__ __PRETTY_FUNCTION__))
10936 Context.getCanonicalType(TargetFunctionType)))(static_cast <bool> (S.isSameOrCompatibleFunctionType( Context
.getCanonicalType(Specialization->getType()), Context.getCanonicalType
(TargetFunctionType))) ? void (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10936, __extension__ __PRETTY_FUNCTION__))
;
10937
10938 if (!S.checkAddressOfFunctionIsAvailable(Specialization))
10939 return false;
10940
10941 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
10942 return true;
10943 }
10944
10945 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
10946 const DeclAccessPair& CurAccessFunPair) {
10947 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
10948 // Skip non-static functions when converting to pointer, and static
10949 // when converting to member pointer.
10950 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
10951 return false;
10952 }
10953 else if (TargetTypeIsNonStaticMemberFunction)
10954 return false;
10955
10956 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
10957 if (S.getLangOpts().CUDA)
10958 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
10959 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
10960 return false;
10961 if (FunDecl->isMultiVersion()) {
10962 const auto *TA = FunDecl->getAttr<TargetAttr>();
10963 assert(TA && "Multiversioned functions require a target attribute")(static_cast <bool> (TA && "Multiversioned functions require a target attribute"
) ? void (0) : __assert_fail ("TA && \"Multiversioned functions require a target attribute\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 10963, __extension__ __PRETTY_FUNCTION__))
;
10964 if (!TA->isDefaultVersion())
10965 return false;
10966 }
10967
10968 // If any candidate has a placeholder return type, trigger its deduction
10969 // now.
10970 if (completeFunctionType(S, FunDecl, SourceExpr->getLocStart(),
10971 Complain)) {
10972 HasComplained |= Complain;
10973 return false;
10974 }
10975
10976 if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
10977 return false;
10978
10979 // If we're in C, we need to support types that aren't exactly identical.
10980 if (!S.getLangOpts().CPlusPlus ||
10981 candidateHasExactlyCorrectType(FunDecl)) {
10982 Matches.push_back(std::make_pair(
10983 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
10984 FoundNonTemplateFunction = true;
10985 return true;
10986 }
10987 }
10988
10989 return false;
10990 }
10991
10992 bool FindAllFunctionsThatMatchTargetTypeExactly() {
10993 bool Ret = false;
10994
10995 // If the overload expression doesn't have the form of a pointer to
10996 // member, don't try to convert it to a pointer-to-member type.
10997 if (IsInvalidFormOfPointerToMemberFunction())
10998 return false;
10999
11000 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11001 E = OvlExpr->decls_end();
11002 I != E; ++I) {
11003 // Look through any using declarations to find the underlying function.
11004 NamedDecl *Fn = (*I)->getUnderlyingDecl();
11005
11006 // C++ [over.over]p3:
11007 // Non-member functions and static member functions match
11008 // targets of type "pointer-to-function" or "reference-to-function."
11009 // Nonstatic member functions match targets of
11010 // type "pointer-to-member-function."
11011 // Note that according to DR 247, the containing class does not matter.
11012 if (FunctionTemplateDecl *FunctionTemplate
11013 = dyn_cast<FunctionTemplateDecl>(Fn)) {
11014 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
11015 Ret = true;
11016 }
11017 // If we have explicit template arguments supplied, skip non-templates.
11018 else if (!OvlExpr->hasExplicitTemplateArgs() &&
11019 AddMatchingNonTemplateFunction(Fn, I.getPair()))
11020 Ret = true;
11021 }
11022 assert(Ret || Matches.empty())(static_cast <bool> (Ret || Matches.empty()) ? void (0)
: __assert_fail ("Ret || Matches.empty()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11022, __extension__ __PRETTY_FUNCTION__))
;
11023 return Ret;
11024 }
11025
11026 void EliminateAllExceptMostSpecializedTemplate() {
11027 // [...] and any given function template specialization F1 is
11028 // eliminated if the set contains a second function template
11029 // specialization whose function template is more specialized
11030 // than the function template of F1 according to the partial
11031 // ordering rules of 14.5.5.2.
11032
11033 // The algorithm specified above is quadratic. We instead use a
11034 // two-pass algorithm (similar to the one used to identify the
11035 // best viable function in an overload set) that identifies the
11036 // best function template (if it exists).
11037
11038 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
11039 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
11040 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
11041
11042 // TODO: It looks like FailedCandidates does not serve much purpose
11043 // here, since the no_viable diagnostic has index 0.
11044 UnresolvedSetIterator Result = S.getMostSpecialized(
11045 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
11046 SourceExpr->getLocStart(), S.PDiag(),
11047 S.PDiag(diag::err_addr_ovl_ambiguous)
11048 << Matches[0].second->getDeclName(),
11049 S.PDiag(diag::note_ovl_candidate)
11050 << (unsigned)oc_function_template,
11051 Complain, TargetFunctionType);
11052
11053 if (Result != MatchesCopy.end()) {
11054 // Make it the first and only element
11055 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
11056 Matches[0].second = cast<FunctionDecl>(*Result);
11057 Matches.resize(1);
11058 } else
11059 HasComplained |= Complain;
11060 }
11061
11062 void EliminateAllTemplateMatches() {
11063 // [...] any function template specializations in the set are
11064 // eliminated if the set also contains a non-template function, [...]
11065 for (unsigned I = 0, N = Matches.size(); I != N; ) {
11066 if (Matches[I].second->getPrimaryTemplate() == nullptr)
11067 ++I;
11068 else {
11069 Matches[I] = Matches[--N];
11070 Matches.resize(N);
11071 }
11072 }
11073 }
11074
11075 void EliminateSuboptimalCudaMatches() {
11076 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
11077 }
11078
11079public:
11080 void ComplainNoMatchesFound() const {
11081 assert(Matches.empty())(static_cast <bool> (Matches.empty()) ? void (0) : __assert_fail
("Matches.empty()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11081, __extension__ __PRETTY_FUNCTION__))
;
11082 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
11083 << OvlExpr->getName() << TargetFunctionType
11084 << OvlExpr->getSourceRange();
11085 if (FailedCandidates.empty())
11086 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11087 /*TakingAddress=*/true);
11088 else {
11089 // We have some deduction failure messages. Use them to diagnose
11090 // the function templates, and diagnose the non-template candidates
11091 // normally.
11092 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
11093 IEnd = OvlExpr->decls_end();
11094 I != IEnd; ++I)
11095 if (FunctionDecl *Fun =
11096 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
11097 if (!functionHasPassObjectSizeParams(Fun))
11098 S.NoteOverloadCandidate(*I, Fun, TargetFunctionType,
11099 /*TakingAddress=*/true);
11100 FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
11101 }
11102 }
11103
11104 bool IsInvalidFormOfPointerToMemberFunction() const {
11105 return TargetTypeIsNonStaticMemberFunction &&
11106 !OvlExprInfo.HasFormOfMemberPointer;
11107 }
11108
11109 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
11110 // TODO: Should we condition this on whether any functions might
11111 // have matched, or is it more appropriate to do that in callers?
11112 // TODO: a fixit wouldn't hurt.
11113 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
11114 << TargetType << OvlExpr->getSourceRange();
11115 }
11116
11117 bool IsStaticMemberFunctionFromBoundPointer() const {
11118 return StaticMemberFunctionFromBoundPointer;
11119 }
11120
11121 void ComplainIsStaticMemberFunctionFromBoundPointer() const {
11122 S.Diag(OvlExpr->getLocStart(),
11123 diag::err_invalid_form_pointer_member_function)
11124 << OvlExpr->getSourceRange();
11125 }
11126
11127 void ComplainOfInvalidConversion() const {
11128 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
11129 << OvlExpr->getName() << TargetType;
11130 }
11131
11132 void ComplainMultipleMatchesFound() const {
11133 assert(Matches.size() > 1)(static_cast <bool> (Matches.size() > 1) ? void (0) :
__assert_fail ("Matches.size() > 1", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11133, __extension__ __PRETTY_FUNCTION__))
;
11134 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
11135 << OvlExpr->getName()
11136 << OvlExpr->getSourceRange();
11137 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
11138 /*TakingAddress=*/true);
11139 }
11140
11141 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
11142
11143 int getNumMatches() const { return Matches.size(); }
11144
11145 FunctionDecl* getMatchingFunctionDecl() const {
11146 if (Matches.size() != 1) return nullptr;
11147 return Matches[0].second;
11148 }
11149
11150 const DeclAccessPair* getMatchingFunctionAccessPair() const {
11151 if (Matches.size() != 1) return nullptr;
11152 return &Matches[0].first;
11153 }
11154};
11155}
11156
11157/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
11158/// an overloaded function (C++ [over.over]), where @p From is an
11159/// expression with overloaded function type and @p ToType is the type
11160/// we're trying to resolve to. For example:
11161///
11162/// @code
11163/// int f(double);
11164/// int f(int);
11165///
11166/// int (*pfd)(double) = f; // selects f(double)
11167/// @endcode
11168///
11169/// This routine returns the resulting FunctionDecl if it could be
11170/// resolved, and NULL otherwise. When @p Complain is true, this
11171/// routine will emit diagnostics if there is an error.
11172FunctionDecl *
11173Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
11174 QualType TargetType,
11175 bool Complain,
11176 DeclAccessPair &FoundResult,
11177 bool *pHadMultipleCandidates) {
11178 assert(AddressOfExpr->getType() == Context.OverloadTy)(static_cast <bool> (AddressOfExpr->getType() == Context
.OverloadTy) ? void (0) : __assert_fail ("AddressOfExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11178, __extension__ __PRETTY_FUNCTION__))
;
11179
11180 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
11181 Complain);
11182 int NumMatches = Resolver.getNumMatches();
11183 FunctionDecl *Fn = nullptr;
11184 bool ShouldComplain = Complain && !Resolver.hasComplained();
11185 if (NumMatches == 0 && ShouldComplain) {
11186 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
11187 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
11188 else
11189 Resolver.ComplainNoMatchesFound();
11190 }
11191 else if (NumMatches > 1 && ShouldComplain)
11192 Resolver.ComplainMultipleMatchesFound();
11193 else if (NumMatches == 1) {
11194 Fn = Resolver.getMatchingFunctionDecl();
11195 assert(Fn)(static_cast <bool> (Fn) ? void (0) : __assert_fail ("Fn"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11195, __extension__ __PRETTY_FUNCTION__))
;
11196 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
11197 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
11198 FoundResult = *Resolver.getMatchingFunctionAccessPair();
11199 if (Complain) {
11200 if (Resolver.IsStaticMemberFunctionFromBoundPointer())
11201 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
11202 else
11203 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
11204 }
11205 }
11206
11207 if (pHadMultipleCandidates)
11208 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
11209 return Fn;
11210}
11211
11212/// \brief Given an expression that refers to an overloaded function, try to
11213/// resolve that function to a single function that can have its address taken.
11214/// This will modify `Pair` iff it returns non-null.
11215///
11216/// This routine can only realistically succeed if all but one candidates in the
11217/// overload set for SrcExpr cannot have their addresses taken.
11218FunctionDecl *
11219Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
11220 DeclAccessPair &Pair) {
11221 OverloadExpr::FindResult R = OverloadExpr::find(E);
11222 OverloadExpr *Ovl = R.Expression;
11223 FunctionDecl *Result = nullptr;
11224 DeclAccessPair DAP;
11225 // Don't use the AddressOfResolver because we're specifically looking for
11226 // cases where we have one overload candidate that lacks
11227 // enable_if/pass_object_size/...
11228 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
11229 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
11230 if (!FD)
11231 return nullptr;
11232
11233 if (!checkAddressOfFunctionIsAvailable(FD))
11234 continue;
11235
11236 // We have more than one result; quit.
11237 if (Result)
11238 return nullptr;
11239 DAP = I.getPair();
11240 Result = FD;
11241 }
11242
11243 if (Result)
11244 Pair = DAP;
11245 return Result;
11246}
11247
11248/// \brief Given an overloaded function, tries to turn it into a non-overloaded
11249/// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
11250/// will perform access checks, diagnose the use of the resultant decl, and, if
11251/// requested, potentially perform a function-to-pointer decay.
11252///
11253/// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
11254/// Otherwise, returns true. This may emit diagnostics and return true.
11255bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
11256 ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
11257 Expr *E = SrcExpr.get();
11258 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload")(static_cast <bool> (E->getType() == Context.OverloadTy
&& "SrcExpr must be an overload") ? void (0) : __assert_fail
("E->getType() == Context.OverloadTy && \"SrcExpr must be an overload\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11258, __extension__ __PRETTY_FUNCTION__))
;
11259
11260 DeclAccessPair DAP;
11261 FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
11262 if (!Found)
11263 return false;
11264
11265 // Emitting multiple diagnostics for a function that is both inaccessible and
11266 // unavailable is consistent with our behavior elsewhere. So, always check
11267 // for both.
11268 DiagnoseUseOfDecl(Found, E->getExprLoc());
11269 CheckAddressOfMemberAccess(E, DAP);
11270 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
11271 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
11272 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
11273 else
11274 SrcExpr = Fixed;
11275 return true;
11276}
11277
11278/// \brief Given an expression that refers to an overloaded function, try to
11279/// resolve that overloaded function expression down to a single function.
11280///
11281/// This routine can only resolve template-ids that refer to a single function
11282/// template, where that template-id refers to a single template whose template
11283/// arguments are either provided by the template-id or have defaults,
11284/// as described in C++0x [temp.arg.explicit]p3.
11285///
11286/// If no template-ids are found, no diagnostics are emitted and NULL is
11287/// returned.
11288FunctionDecl *
11289Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
11290 bool Complain,
11291 DeclAccessPair *FoundResult) {
11292 // C++ [over.over]p1:
11293 // [...] [Note: any redundant set of parentheses surrounding the
11294 // overloaded function name is ignored (5.1). ]
11295 // C++ [over.over]p1:
11296 // [...] The overloaded function name can be preceded by the &
11297 // operator.
11298
11299 // If we didn't actually find any template-ids, we're done.
11300 if (!ovl->hasExplicitTemplateArgs())
11301 return nullptr;
11302
11303 TemplateArgumentListInfo ExplicitTemplateArgs;
11304 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
11305 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
11306
11307 // Look through all of the overloaded functions, searching for one
11308 // whose type matches exactly.
11309 FunctionDecl *Matched = nullptr;
11310 for (UnresolvedSetIterator I = ovl->decls_begin(),
11311 E = ovl->decls_end(); I != E; ++I) {
11312 // C++0x [temp.arg.explicit]p3:
11313 // [...] In contexts where deduction is done and fails, or in contexts
11314 // where deduction is not done, if a template argument list is
11315 // specified and it, along with any default template arguments,
11316 // identifies a single function template specialization, then the
11317 // template-id is an lvalue for the function template specialization.
11318 FunctionTemplateDecl *FunctionTemplate
11319 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
11320
11321 // C++ [over.over]p2:
11322 // If the name is a function template, template argument deduction is
11323 // done (14.8.2.2), and if the argument deduction succeeds, the
11324 // resulting template argument list is used to generate a single
11325 // function template specialization, which is added to the set of
11326 // overloaded functions considered.
11327 FunctionDecl *Specialization = nullptr;
11328 TemplateDeductionInfo Info(FailedCandidates.getLocation());
11329 if (TemplateDeductionResult Result
11330 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
11331 Specialization, Info,
11332 /*IsAddressOfFunction*/true)) {
11333 // Make a note of the failed deduction for diagnostics.
11334 // TODO: Actually use the failed-deduction info?
11335 FailedCandidates.addCandidate()
11336 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
11337 MakeDeductionFailureInfo(Context, Result, Info));
11338 continue;
11339 }
11340
11341 assert(Specialization && "no specialization and no error?")(static_cast <bool> (Specialization && "no specialization and no error?"
) ? void (0) : __assert_fail ("Specialization && \"no specialization and no error?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11341, __extension__ __PRETTY_FUNCTION__))
;
11342
11343 // Multiple matches; we can't resolve to a single declaration.
11344 if (Matched) {
11345 if (Complain) {
11346 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
11347 << ovl->getName();
11348 NoteAllOverloadCandidates(ovl);
11349 }
11350 return nullptr;
11351 }
11352
11353 Matched = Specialization;
11354 if (FoundResult) *FoundResult = I.getPair();
11355 }
11356
11357 if (Matched &&
11358 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
11359 return nullptr;
11360
11361 return Matched;
11362}
11363
11364// Resolve and fix an overloaded expression that can be resolved
11365// because it identifies a single function template specialization.
11366//
11367// Last three arguments should only be supplied if Complain = true
11368//
11369// Return true if it was logically possible to so resolve the
11370// expression, regardless of whether or not it succeeded. Always
11371// returns true if 'complain' is set.
11372bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
11373 ExprResult &SrcExpr, bool doFunctionPointerConverion,
11374 bool complain, SourceRange OpRangeForComplaining,
11375 QualType DestTypeForComplaining,
11376 unsigned DiagIDForComplaining) {
11377 assert(SrcExpr.get()->getType() == Context.OverloadTy)(static_cast <bool> (SrcExpr.get()->getType() == Context
.OverloadTy) ? void (0) : __assert_fail ("SrcExpr.get()->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11377, __extension__ __PRETTY_FUNCTION__))
;
11378
11379 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
11380
11381 DeclAccessPair found;
11382 ExprResult SingleFunctionExpression;
11383 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
11384 ovl.Expression, /*complain*/ false, &found)) {
11385 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
11386 SrcExpr = ExprError();
11387 return true;
11388 }
11389
11390 // It is only correct to resolve to an instance method if we're
11391 // resolving a form that's permitted to be a pointer to member.
11392 // Otherwise we'll end up making a bound member expression, which
11393 // is illegal in all the contexts we resolve like this.
11394 if (!ovl.HasFormOfMemberPointer &&
11395 isa<CXXMethodDecl>(fn) &&
11396 cast<CXXMethodDecl>(fn)->isInstance()) {
11397 if (!complain) return false;
11398
11399 Diag(ovl.Expression->getExprLoc(),
11400 diag::err_bound_member_function)
11401 << 0 << ovl.Expression->getSourceRange();
11402
11403 // TODO: I believe we only end up here if there's a mix of
11404 // static and non-static candidates (otherwise the expression
11405 // would have 'bound member' type, not 'overload' type).
11406 // Ideally we would note which candidate was chosen and why
11407 // the static candidates were rejected.
11408 SrcExpr = ExprError();
11409 return true;
11410 }
11411
11412 // Fix the expression to refer to 'fn'.
11413 SingleFunctionExpression =
11414 FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
11415
11416 // If desired, do function-to-pointer decay.
11417 if (doFunctionPointerConverion) {
11418 SingleFunctionExpression =
11419 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
11420 if (SingleFunctionExpression.isInvalid()) {
11421 SrcExpr = ExprError();
11422 return true;
11423 }
11424 }
11425 }
11426
11427 if (!SingleFunctionExpression.isUsable()) {
11428 if (complain) {
11429 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
11430 << ovl.Expression->getName()
11431 << DestTypeForComplaining
11432 << OpRangeForComplaining
11433 << ovl.Expression->getQualifierLoc().getSourceRange();
11434 NoteAllOverloadCandidates(SrcExpr.get());
11435
11436 SrcExpr = ExprError();
11437 return true;
11438 }
11439
11440 return false;
11441 }
11442
11443 SrcExpr = SingleFunctionExpression;
11444 return true;
11445}
11446
11447/// \brief Add a single candidate to the overload set.
11448static void AddOverloadedCallCandidate(Sema &S,
11449 DeclAccessPair FoundDecl,
11450 TemplateArgumentListInfo *ExplicitTemplateArgs,
11451 ArrayRef<Expr *> Args,
11452 OverloadCandidateSet &CandidateSet,
11453 bool PartialOverloading,
11454 bool KnownValid) {
11455 NamedDecl *Callee = FoundDecl.getDecl();
11456 if (isa<UsingShadowDecl>(Callee))
11457 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
11458
11459 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
11460 if (ExplicitTemplateArgs) {
11461 assert(!KnownValid && "Explicit template arguments?")(static_cast <bool> (!KnownValid && "Explicit template arguments?"
) ? void (0) : __assert_fail ("!KnownValid && \"Explicit template arguments?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11461, __extension__ __PRETTY_FUNCTION__))
;
11462 return;
11463 }
11464 // Prevent ill-formed function decls to be added as overload candidates.
11465 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
11466 return;
11467
11468 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
11469 /*SuppressUsedConversions=*/false,
11470 PartialOverloading);
11471 return;
11472 }
11473
11474 if (FunctionTemplateDecl *FuncTemplate
11475 = dyn_cast<FunctionTemplateDecl>(Callee)) {
11476 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
11477 ExplicitTemplateArgs, Args, CandidateSet,
11478 /*SuppressUsedConversions=*/false,
11479 PartialOverloading);
11480 return;
11481 }
11482
11483 assert(!KnownValid && "unhandled case in overloaded call candidate")(static_cast <bool> (!KnownValid && "unhandled case in overloaded call candidate"
) ? void (0) : __assert_fail ("!KnownValid && \"unhandled case in overloaded call candidate\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11483, __extension__ __PRETTY_FUNCTION__))
;
11484}
11485
11486/// \brief Add the overload candidates named by callee and/or found by argument
11487/// dependent lookup to the given overload set.
11488void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
11489 ArrayRef<Expr *> Args,
11490 OverloadCandidateSet &CandidateSet,
11491 bool PartialOverloading) {
11492
11493#ifndef NDEBUG
11494 // Verify that ArgumentDependentLookup is consistent with the rules
11495 // in C++0x [basic.lookup.argdep]p3:
11496 //
11497 // Let X be the lookup set produced by unqualified lookup (3.4.1)
11498 // and let Y be the lookup set produced by argument dependent
11499 // lookup (defined as follows). If X contains
11500 //
11501 // -- a declaration of a class member, or
11502 //
11503 // -- a block-scope function declaration that is not a
11504 // using-declaration, or
11505 //
11506 // -- a declaration that is neither a function or a function
11507 // template
11508 //
11509 // then Y is empty.
11510
11511 if (ULE->requiresADL()) {
11512 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11513 E = ULE->decls_end(); I != E; ++I) {
11514 assert(!(*I)->getDeclContext()->isRecord())(static_cast <bool> (!(*I)->getDeclContext()->isRecord
()) ? void (0) : __assert_fail ("!(*I)->getDeclContext()->isRecord()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11514, __extension__ __PRETTY_FUNCTION__))
;
11515 assert(isa<UsingShadowDecl>(*I) ||(static_cast <bool> (isa<UsingShadowDecl>(*I) || !
(*I)->getDeclContext()->isFunctionOrMethod()) ? void (0
) : __assert_fail ("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11516, __extension__ __PRETTY_FUNCTION__))
11516 !(*I)->getDeclContext()->isFunctionOrMethod())(static_cast <bool> (isa<UsingShadowDecl>(*I) || !
(*I)->getDeclContext()->isFunctionOrMethod()) ? void (0
) : __assert_fail ("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11516, __extension__ __PRETTY_FUNCTION__))
;
11517 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate())(static_cast <bool> ((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate
()) ? void (0) : __assert_fail ("(*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11517, __extension__ __PRETTY_FUNCTION__))
;
11518 }
11519 }
11520#endif
11521
11522 // It would be nice to avoid this copy.
11523 TemplateArgumentListInfo TABuffer;
11524 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11525 if (ULE->hasExplicitTemplateArgs()) {
11526 ULE->copyTemplateArgumentsInto(TABuffer);
11527 ExplicitTemplateArgs = &TABuffer;
11528 }
11529
11530 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11531 E = ULE->decls_end(); I != E; ++I)
11532 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
11533 CandidateSet, PartialOverloading,
11534 /*KnownValid*/ true);
11535
11536 if (ULE->requiresADL())
11537 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
11538 Args, ExplicitTemplateArgs,
11539 CandidateSet, PartialOverloading);
11540}
11541
11542/// Determine whether a declaration with the specified name could be moved into
11543/// a different namespace.
11544static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
11545 switch (Name.getCXXOverloadedOperator()) {
11546 case OO_New: case OO_Array_New:
11547 case OO_Delete: case OO_Array_Delete:
11548 return false;
11549
11550 default:
11551 return true;
11552 }
11553}
11554
11555/// Attempt to recover from an ill-formed use of a non-dependent name in a
11556/// template, where the non-dependent name was declared after the template
11557/// was defined. This is common in code written for a compilers which do not
11558/// correctly implement two-stage name lookup.
11559///
11560/// Returns true if a viable candidate was found and a diagnostic was issued.
11561static bool
11562DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
11563 const CXXScopeSpec &SS, LookupResult &R,
11564 OverloadCandidateSet::CandidateSetKind CSK,
11565 TemplateArgumentListInfo *ExplicitTemplateArgs,
11566 ArrayRef<Expr *> Args,
11567 bool *DoDiagnoseEmptyLookup = nullptr) {
11568 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
11569 return false;
11570
11571 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
11572 if (DC->isTransparentContext())
11573 continue;
11574
11575 SemaRef.LookupQualifiedName(R, DC);
11576
11577 if (!R.empty()) {
11578 R.suppressDiagnostics();
11579
11580 if (isa<CXXRecordDecl>(DC)) {
11581 // Don't diagnose names we find in classes; we get much better
11582 // diagnostics for these from DiagnoseEmptyLookup.
11583 R.clear();
11584 if (DoDiagnoseEmptyLookup)
11585 *DoDiagnoseEmptyLookup = true;
11586 return false;
11587 }
11588
11589 OverloadCandidateSet Candidates(FnLoc, CSK);
11590 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
11591 AddOverloadedCallCandidate(SemaRef, I.getPair(),
11592 ExplicitTemplateArgs, Args,
11593 Candidates, false, /*KnownValid*/ false);
11594
11595 OverloadCandidateSet::iterator Best;
11596 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
11597 // No viable functions. Don't bother the user with notes for functions
11598 // which don't work and shouldn't be found anyway.
11599 R.clear();
11600 return false;
11601 }
11602
11603 // Find the namespaces where ADL would have looked, and suggest
11604 // declaring the function there instead.
11605 Sema::AssociatedNamespaceSet AssociatedNamespaces;
11606 Sema::AssociatedClassSet AssociatedClasses;
11607 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
11608 AssociatedNamespaces,
11609 AssociatedClasses);
11610 Sema::AssociatedNamespaceSet SuggestedNamespaces;
11611 if (canBeDeclaredInNamespace(R.getLookupName())) {
11612 DeclContext *Std = SemaRef.getStdNamespace();
11613 for (Sema::AssociatedNamespaceSet::iterator
11614 it = AssociatedNamespaces.begin(),
11615 end = AssociatedNamespaces.end(); it != end; ++it) {
11616 // Never suggest declaring a function within namespace 'std'.
11617 if (Std && Std->Encloses(*it))
11618 continue;
11619
11620 // Never suggest declaring a function within a namespace with a
11621 // reserved name, like __gnu_cxx.
11622 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
11623 if (NS &&
11624 NS->getQualifiedNameAsString().find("__") != std::string::npos)
11625 continue;
11626
11627 SuggestedNamespaces.insert(*it);
11628 }
11629 }
11630
11631 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
11632 << R.getLookupName();
11633 if (SuggestedNamespaces.empty()) {
11634 SemaRef.Diag(Best->Function->getLocation(),
11635 diag::note_not_found_by_two_phase_lookup)
11636 << R.getLookupName() << 0;
11637 } else if (SuggestedNamespaces.size() == 1) {
11638 SemaRef.Diag(Best->Function->getLocation(),
11639 diag::note_not_found_by_two_phase_lookup)
11640 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
11641 } else {
11642 // FIXME: It would be useful to list the associated namespaces here,
11643 // but the diagnostics infrastructure doesn't provide a way to produce
11644 // a localized representation of a list of items.
11645 SemaRef.Diag(Best->Function->getLocation(),
11646 diag::note_not_found_by_two_phase_lookup)
11647 << R.getLookupName() << 2;
11648 }
11649
11650 // Try to recover by calling this function.
11651 return true;
11652 }
11653
11654 R.clear();
11655 }
11656
11657 return false;
11658}
11659
11660/// Attempt to recover from ill-formed use of a non-dependent operator in a
11661/// template, where the non-dependent operator was declared after the template
11662/// was defined.
11663///
11664/// Returns true if a viable candidate was found and a diagnostic was issued.
11665static bool
11666DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
11667 SourceLocation OpLoc,
11668 ArrayRef<Expr *> Args) {
11669 DeclarationName OpName =
11670 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
11671 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
11672 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
11673 OverloadCandidateSet::CSK_Operator,
11674 /*ExplicitTemplateArgs=*/nullptr, Args);
11675}
11676
11677namespace {
11678class BuildRecoveryCallExprRAII {
11679 Sema &SemaRef;
11680public:
11681 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
11682 assert(SemaRef.IsBuildingRecoveryCallExpr == false)(static_cast <bool> (SemaRef.IsBuildingRecoveryCallExpr
== false) ? void (0) : __assert_fail ("SemaRef.IsBuildingRecoveryCallExpr == false"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11682, __extension__ __PRETTY_FUNCTION__))
;
11683 SemaRef.IsBuildingRecoveryCallExpr = true;
11684 }
11685
11686 ~BuildRecoveryCallExprRAII() {
11687 SemaRef.IsBuildingRecoveryCallExpr = false;
11688 }
11689};
11690
11691}
11692
11693static std::unique_ptr<CorrectionCandidateCallback>
11694MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs,
11695 bool HasTemplateArgs, bool AllowTypoCorrection) {
11696 if (!AllowTypoCorrection)
11697 return llvm::make_unique<NoTypoCorrectionCCC>();
11698 return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs,
11699 HasTemplateArgs, ME);
11700}
11701
11702/// Attempts to recover from a call where no functions were found.
11703///
11704/// Returns true if new candidates were found.
11705static ExprResult
11706BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11707 UnresolvedLookupExpr *ULE,
11708 SourceLocation LParenLoc,
11709 MutableArrayRef<Expr *> Args,
11710 SourceLocation RParenLoc,
11711 bool EmptyLookup, bool AllowTypoCorrection) {
11712 // Do not try to recover if it is already building a recovery call.
11713 // This stops infinite loops for template instantiations like
11714 //
11715 // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
11716 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
11717 //
11718 if (SemaRef.IsBuildingRecoveryCallExpr)
11719 return ExprError();
11720 BuildRecoveryCallExprRAII RCE(SemaRef);
11721
11722 CXXScopeSpec SS;
11723 SS.Adopt(ULE->getQualifierLoc());
11724 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
11725
11726 TemplateArgumentListInfo TABuffer;
11727 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11728 if (ULE->hasExplicitTemplateArgs()) {
11729 ULE->copyTemplateArgumentsInto(TABuffer);
11730 ExplicitTemplateArgs = &TABuffer;
11731 }
11732
11733 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
11734 Sema::LookupOrdinaryName);
11735 bool DoDiagnoseEmptyLookup = EmptyLookup;
11736 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
11737 OverloadCandidateSet::CSK_Normal,
11738 ExplicitTemplateArgs, Args,
11739 &DoDiagnoseEmptyLookup) &&
11740 (!DoDiagnoseEmptyLookup || SemaRef.DiagnoseEmptyLookup(
11741 S, SS, R,
11742 MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(),
11743 ExplicitTemplateArgs != nullptr, AllowTypoCorrection),
11744 ExplicitTemplateArgs, Args)))
11745 return ExprError();
11746
11747 assert(!R.empty() && "lookup results empty despite recovery")(static_cast <bool> (!R.empty() && "lookup results empty despite recovery"
) ? void (0) : __assert_fail ("!R.empty() && \"lookup results empty despite recovery\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11747, __extension__ __PRETTY_FUNCTION__))
;
11748
11749 // If recovery created an ambiguity, just bail out.
11750 if (R.isAmbiguous()) {
11751 R.suppressDiagnostics();
11752 return ExprError();
11753 }
11754
11755 // Build an implicit member call if appropriate. Just drop the
11756 // casts and such from the call, we don't really care.
11757 ExprResult NewFn = ExprError();
11758 if ((*R.begin())->isCXXClassMember())
11759 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
11760 ExplicitTemplateArgs, S);
11761 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
11762 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
11763 ExplicitTemplateArgs);
11764 else
11765 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
11766
11767 if (NewFn.isInvalid())
11768 return ExprError();
11769
11770 // This shouldn't cause an infinite loop because we're giving it
11771 // an expression with viable lookup results, which should never
11772 // end up here.
11773 return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
11774 MultiExprArg(Args.data(), Args.size()),
11775 RParenLoc);
11776}
11777
11778/// \brief Constructs and populates an OverloadedCandidateSet from
11779/// the given function.
11780/// \returns true when an the ExprResult output parameter has been set.
11781bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
11782 UnresolvedLookupExpr *ULE,
11783 MultiExprArg Args,
11784 SourceLocation RParenLoc,
11785 OverloadCandidateSet *CandidateSet,
11786 ExprResult *Result) {
11787#ifndef NDEBUG
11788 if (ULE->requiresADL()) {
11789 // To do ADL, we must have found an unqualified name.
11790 assert(!ULE->getQualifier() && "qualified name with ADL")(static_cast <bool> (!ULE->getQualifier() &&
"qualified name with ADL") ? void (0) : __assert_fail ("!ULE->getQualifier() && \"qualified name with ADL\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11790, __extension__ __PRETTY_FUNCTION__))
;
11791
11792 // We don't perform ADL for implicit declarations of builtins.
11793 // Verify that this was correctly set up.
11794 FunctionDecl *F;
11795 if (ULE->decls_begin() + 1 == ULE->decls_end() &&
11796 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
11797 F->getBuiltinID() && F->isImplicit())
11798 llvm_unreachable("performing ADL for builtin")::llvm::llvm_unreachable_internal("performing ADL for builtin"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11798)
;
11799
11800 // We don't perform ADL in C.
11801 assert(getLangOpts().CPlusPlus && "ADL enabled in C")(static_cast <bool> (getLangOpts().CPlusPlus &&
"ADL enabled in C") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL enabled in C\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 11801, __extension__ __PRETTY_FUNCTION__))
;
11802 }
11803#endif
11804
11805 UnbridgedCastsSet UnbridgedCasts;
11806 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
11807 *Result = ExprError();
11808 return true;
11809 }
11810
11811 // Add the functions denoted by the callee to the set of candidate
11812 // functions, including those from argument-dependent lookup.
11813 AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
11814
11815 if (getLangOpts().MSVCCompat &&
11816 CurContext->isDependentContext() && !isSFINAEContext() &&
11817 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
11818
11819 OverloadCandidateSet::iterator Best;
11820 if (CandidateSet->empty() ||
11821 CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best) ==
11822 OR_No_Viable_Function) {
11823 // In Microsoft mode, if we are inside a template class member function then
11824 // create a type dependent CallExpr. The goal is to postpone name lookup
11825 // to instantiation time to be able to search into type dependent base
11826 // classes.
11827 CallExpr *CE = new (Context) CallExpr(
11828 Context, Fn, Args, Context.DependentTy, VK_RValue, RParenLoc);
11829 CE->setTypeDependent(true);
11830 CE->setValueDependent(true);
11831 CE->setInstantiationDependent(true);
11832 *Result = CE;
11833 return true;
11834 }
11835 }
11836
11837 if (CandidateSet->empty())
11838 return false;
11839
11840 UnbridgedCasts.restore();
11841 return false;
11842}
11843
11844/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
11845/// the completed call expression. If overload resolution fails, emits
11846/// diagnostics and returns ExprError()
11847static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11848 UnresolvedLookupExpr *ULE,
11849 SourceLocation LParenLoc,
11850 MultiExprArg Args,
11851 SourceLocation RParenLoc,
11852 Expr *ExecConfig,
11853 OverloadCandidateSet *CandidateSet,
11854 OverloadCandidateSet::iterator *Best,
11855 OverloadingResult OverloadResult,
11856 bool AllowTypoCorrection) {
11857 if (CandidateSet->empty())
11858 return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
11859 RParenLoc, /*EmptyLookup=*/true,
11860 AllowTypoCorrection);
11861
11862 switch (OverloadResult) {
11863 case OR_Success: {
11864 FunctionDecl *FDecl = (*Best)->Function;
11865 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
11866 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
11867 return ExprError();
11868 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
11869 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
11870 ExecConfig);
11871 }
11872
11873 case OR_No_Viable_Function: {
11874 // Try to recover by looking for viable functions which the user might
11875 // have meant to call.
11876 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
11877 Args, RParenLoc,
11878 /*EmptyLookup=*/false,
11879 AllowTypoCorrection);
11880 if (!Recovery.isInvalid())
11881 return Recovery;
11882
11883 // If the user passes in a function that we can't take the address of, we
11884 // generally end up emitting really bad error messages. Here, we attempt to
11885 // emit better ones.
11886 for (const Expr *Arg : Args) {
11887 if (!Arg->getType()->isFunctionType())
11888 continue;
11889 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
11890 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
11891 if (FD &&
11892 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
11893 Arg->getExprLoc()))
11894 return ExprError();
11895 }
11896 }
11897
11898 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_no_viable_function_in_call)
11899 << ULE->getName() << Fn->getSourceRange();
11900 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
11901 break;
11902 }
11903
11904 case OR_Ambiguous:
11905 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
11906 << ULE->getName() << Fn->getSourceRange();
11907 CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
11908 break;
11909
11910 case OR_Deleted: {
11911 SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
11912 << (*Best)->Function->isDeleted()
11913 << ULE->getName()
11914 << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
11915 << Fn->getSourceRange();
11916 CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
11917
11918 // We emitted an error for the unavailable/deleted function call but keep
11919 // the call in the AST.
11920 FunctionDecl *FDecl = (*Best)->Function;
11921 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
11922 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
11923 ExecConfig);
11924 }
11925 }
11926
11927 // Overload resolution failed.
11928 return ExprError();
11929}
11930
11931static void markUnaddressableCandidatesUnviable(Sema &S,
11932 OverloadCandidateSet &CS) {
11933 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
11934 if (I->Viable &&
11935 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
11936 I->Viable = false;
11937 I->FailureKind = ovl_fail_addr_not_available;
11938 }
11939 }
11940}
11941
11942/// BuildOverloadedCallExpr - Given the call expression that calls Fn
11943/// (which eventually refers to the declaration Func) and the call
11944/// arguments Args/NumArgs, attempt to resolve the function call down
11945/// to a specific function. If overload resolution succeeds, returns
11946/// the call expression produced by overload resolution.
11947/// Otherwise, emits diagnostics and returns ExprError.
11948ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
11949 UnresolvedLookupExpr *ULE,
11950 SourceLocation LParenLoc,
11951 MultiExprArg Args,
11952 SourceLocation RParenLoc,
11953 Expr *ExecConfig,
11954 bool AllowTypoCorrection,
11955 bool CalleesAddressIsTaken) {
11956 OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
11957 OverloadCandidateSet::CSK_Normal);
11958 ExprResult result;
11959
11960 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
11961 &result))
11962 return result;
11963
11964 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
11965 // functions that aren't addressible are considered unviable.
11966 if (CalleesAddressIsTaken)
11967 markUnaddressableCandidatesUnviable(*this, CandidateSet);
11968
11969 OverloadCandidateSet::iterator Best;
11970 OverloadingResult OverloadResult =
11971 CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
11972
11973 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
11974 RParenLoc, ExecConfig, &CandidateSet,
11975 &Best, OverloadResult,
11976 AllowTypoCorrection);
11977}
11978
11979static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
11980 return Functions.size() > 1 ||
11981 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
11982}
11983
11984/// \brief Create a unary operation that may resolve to an overloaded
11985/// operator.
11986///
11987/// \param OpLoc The location of the operator itself (e.g., '*').
11988///
11989/// \param Opc The UnaryOperatorKind that describes this operator.
11990///
11991/// \param Fns The set of non-member functions that will be
11992/// considered by overload resolution. The caller needs to build this
11993/// set based on the context using, e.g.,
11994/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
11995/// set should not contain any member functions; those will be added
11996/// by CreateOverloadedUnaryOp().
11997///
11998/// \param Input The input argument.
11999ExprResult
12000Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
12001 const UnresolvedSetImpl &Fns,
12002 Expr *Input, bool PerformADL) {
12003 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
12004 assert(Op != OO_None && "Invalid opcode for overloaded unary operator")(static_cast <bool> (Op != OO_None && "Invalid opcode for overloaded unary operator"
) ? void (0) : __assert_fail ("Op != OO_None && \"Invalid opcode for overloaded unary operator\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12004, __extension__ __PRETTY_FUNCTION__))
;
12005 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12006 // TODO: provide better source location info.
12007 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12008
12009 if (checkPlaceholderForOverload(*this, Input))
12010 return ExprError();
12011
12012 Expr *Args[2] = { Input, nullptr };
12013 unsigned NumArgs = 1;
12014
12015 // For post-increment and post-decrement, add the implicit '0' as
12016 // the second argument, so that we know this is a post-increment or
12017 // post-decrement.
12018 if (Opc == UO_PostInc || Opc == UO_PostDec) {
12019 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
12020 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
12021 SourceLocation());
12022 NumArgs = 2;
12023 }
12024
12025 ArrayRef<Expr *> ArgsArray(Args, NumArgs);
12026
12027 if (Input->isTypeDependent()) {
12028 if (Fns.empty())
12029 return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
12030 VK_RValue, OK_Ordinary, OpLoc, false);
12031
12032 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12033 UnresolvedLookupExpr *Fn
12034 = UnresolvedLookupExpr::Create(Context, NamingClass,
12035 NestedNameSpecifierLoc(), OpNameInfo,
12036 /*ADL*/ true, IsOverloaded(Fns),
12037 Fns.begin(), Fns.end());
12038 return new (Context)
12039 CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
12040 VK_RValue, OpLoc, FPOptions());
12041 }
12042
12043 // Build an empty overload set.
12044 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12045
12046 // Add the candidates from the given function set.
12047 AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
12048
12049 // Add operator candidates that are member functions.
12050 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12051
12052 // Add candidates from ADL.
12053 if (PerformADL) {
12054 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
12055 /*ExplicitTemplateArgs*/nullptr,
12056 CandidateSet);
12057 }
12058
12059 // Add builtin operator candidates.
12060 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
12061
12062 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12063
12064 // Perform overload resolution.
12065 OverloadCandidateSet::iterator Best;
12066 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12067 case OR_Success: {
12068 // We found a built-in operator or an overloaded operator.
12069 FunctionDecl *FnDecl = Best->Function;
12070
12071 if (FnDecl) {
12072 Expr *Base = nullptr;
12073 // We matched an overloaded operator. Build a call to that
12074 // operator.
12075
12076 // Convert the arguments.
12077 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12078 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
12079
12080 ExprResult InputRes =
12081 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
12082 Best->FoundDecl, Method);
12083 if (InputRes.isInvalid())
12084 return ExprError();
12085 Base = Input = InputRes.get();
12086 } else {
12087 // Convert the arguments.
12088 ExprResult InputInit
12089 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12090 Context,
12091 FnDecl->getParamDecl(0)),
12092 SourceLocation(),
12093 Input);
12094 if (InputInit.isInvalid())
12095 return ExprError();
12096 Input = InputInit.get();
12097 }
12098
12099 // Build the actual expression node.
12100 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
12101 Base, HadMultipleCandidates,
12102 OpLoc);
12103 if (FnExpr.isInvalid())
12104 return ExprError();
12105
12106 // Determine the result type.
12107 QualType ResultTy = FnDecl->getReturnType();
12108 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12109 ResultTy = ResultTy.getNonLValueExprType(Context);
12110
12111 Args[0] = Input;
12112 CallExpr *TheCall =
12113 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
12114 ResultTy, VK, OpLoc, FPOptions());
12115
12116 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
12117 return ExprError();
12118
12119 if (CheckFunctionCall(FnDecl, TheCall,
12120 FnDecl->getType()->castAs<FunctionProtoType>()))
12121 return ExprError();
12122
12123 return MaybeBindToTemporary(TheCall);
12124 } else {
12125 // We matched a built-in operator. Convert the arguments, then
12126 // break out so that we will build the appropriate built-in
12127 // operator node.
12128 ExprResult InputRes = PerformImplicitConversion(
12129 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing);
12130 if (InputRes.isInvalid())
12131 return ExprError();
12132 Input = InputRes.get();
12133 break;
12134 }
12135 }
12136
12137 case OR_No_Viable_Function:
12138 // This is an erroneous use of an operator which can be overloaded by
12139 // a non-member function. Check for non-member operators which were
12140 // defined too late to be candidates.
12141 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
12142 // FIXME: Recover by calling the found function.
12143 return ExprError();
12144
12145 // No viable function; fall through to handling this as a
12146 // built-in operator, which will produce an error message for us.
12147 break;
12148
12149 case OR_Ambiguous:
12150 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
12151 << UnaryOperator::getOpcodeStr(Opc)
12152 << Input->getType()
12153 << Input->getSourceRange();
12154 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
12155 UnaryOperator::getOpcodeStr(Opc), OpLoc);
12156 return ExprError();
12157
12158 case OR_Deleted:
12159 Diag(OpLoc, diag::err_ovl_deleted_oper)
12160 << Best->Function->isDeleted()
12161 << UnaryOperator::getOpcodeStr(Opc)
12162 << getDeletedOrUnavailableSuffix(Best->Function)
12163 << Input->getSourceRange();
12164 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
12165 UnaryOperator::getOpcodeStr(Opc), OpLoc);
12166 return ExprError();
12167 }
12168
12169 // Either we found no viable overloaded operator or we matched a
12170 // built-in operator. In either case, fall through to trying to
12171 // build a built-in operation.
12172 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
12173}
12174
12175/// \brief Create a binary operation that may resolve to an overloaded
12176/// operator.
12177///
12178/// \param OpLoc The location of the operator itself (e.g., '+').
12179///
12180/// \param Opc The BinaryOperatorKind that describes this operator.
12181///
12182/// \param Fns The set of non-member functions that will be
12183/// considered by overload resolution. The caller needs to build this
12184/// set based on the context using, e.g.,
12185/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
12186/// set should not contain any member functions; those will be added
12187/// by CreateOverloadedBinOp().
12188///
12189/// \param LHS Left-hand argument.
12190/// \param RHS Right-hand argument.
12191ExprResult
12192Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
12193 BinaryOperatorKind Opc,
12194 const UnresolvedSetImpl &Fns,
12195 Expr *LHS, Expr *RHS, bool PerformADL) {
12196 Expr *Args[2] = { LHS, RHS };
12197 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
12198
12199 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
12200 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
12201
12202 // If either side is type-dependent, create an appropriate dependent
12203 // expression.
12204 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12205 if (Fns.empty()) {
12206 // If there are no functions to store, just build a dependent
12207 // BinaryOperator or CompoundAssignment.
12208 if (Opc <= BO_Assign || Opc > BO_OrAssign)
12209 return new (Context) BinaryOperator(
12210 Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
12211 OpLoc, FPFeatures);
12212
12213 return new (Context) CompoundAssignOperator(
12214 Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
12215 Context.DependentTy, Context.DependentTy, OpLoc,
12216 FPFeatures);
12217 }
12218
12219 // FIXME: save results of ADL from here?
12220 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12221 // TODO: provide better source location info in DNLoc component.
12222 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
12223 UnresolvedLookupExpr *Fn
12224 = UnresolvedLookupExpr::Create(Context, NamingClass,
12225 NestedNameSpecifierLoc(), OpNameInfo,
12226 /*ADL*/PerformADL, IsOverloaded(Fns),
12227 Fns.begin(), Fns.end());
12228 return new (Context)
12229 CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
12230 VK_RValue, OpLoc, FPFeatures);
12231 }
12232
12233 // Always do placeholder-like conversions on the RHS.
12234 if (checkPlaceholderForOverload(*this, Args[1]))
12235 return ExprError();
12236
12237 // Do placeholder-like conversion on the LHS; note that we should
12238 // not get here with a PseudoObject LHS.
12239 assert(Args[0]->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (Args[0]->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("Args[0]->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12239, __extension__ __PRETTY_FUNCTION__))
;
12240 if (checkPlaceholderForOverload(*this, Args[0]))
12241 return ExprError();
12242
12243 // If this is the assignment operator, we only perform overload resolution
12244 // if the left-hand side is a class or enumeration type. This is actually
12245 // a hack. The standard requires that we do overload resolution between the
12246 // various built-in candidates, but as DR507 points out, this can lead to
12247 // problems. So we do it this way, which pretty much follows what GCC does.
12248 // Note that we go the traditional code path for compound assignment forms.
12249 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
12250 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12251
12252 // If this is the .* operator, which is not overloadable, just
12253 // create a built-in binary operator.
12254 if (Opc == BO_PtrMemD)
12255 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12256
12257 // Build an empty overload set.
12258 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
12259
12260 // Add the candidates from the given function set.
12261 AddFunctionCandidates(Fns, Args, CandidateSet);
12262
12263 // Add operator candidates that are member functions.
12264 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12265
12266 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
12267 // performed for an assignment operator (nor for operator[] nor operator->,
12268 // which don't get here).
12269 if (Opc != BO_Assign && PerformADL)
12270 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
12271 /*ExplicitTemplateArgs*/ nullptr,
12272 CandidateSet);
12273
12274 // Add builtin operator candidates.
12275 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
12276
12277 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12278
12279 // Perform overload resolution.
12280 OverloadCandidateSet::iterator Best;
12281 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12282 case OR_Success: {
12283 // We found a built-in operator or an overloaded operator.
12284 FunctionDecl *FnDecl = Best->Function;
12285
12286 if (FnDecl) {
12287 Expr *Base = nullptr;
12288 // We matched an overloaded operator. Build a call to that
12289 // operator.
12290
12291 // Convert the arguments.
12292 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
12293 // Best->Access is only meaningful for class members.
12294 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
12295
12296 ExprResult Arg1 =
12297 PerformCopyInitialization(
12298 InitializedEntity::InitializeParameter(Context,
12299 FnDecl->getParamDecl(0)),
12300 SourceLocation(), Args[1]);
12301 if (Arg1.isInvalid())
12302 return ExprError();
12303
12304 ExprResult Arg0 =
12305 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12306 Best->FoundDecl, Method);
12307 if (Arg0.isInvalid())
12308 return ExprError();
12309 Base = Args[0] = Arg0.getAs<Expr>();
12310 Args[1] = RHS = Arg1.getAs<Expr>();
12311 } else {
12312 // Convert the arguments.
12313 ExprResult Arg0 = PerformCopyInitialization(
12314 InitializedEntity::InitializeParameter(Context,
12315 FnDecl->getParamDecl(0)),
12316 SourceLocation(), Args[0]);
12317 if (Arg0.isInvalid())
12318 return ExprError();
12319
12320 ExprResult Arg1 =
12321 PerformCopyInitialization(
12322 InitializedEntity::InitializeParameter(Context,
12323 FnDecl->getParamDecl(1)),
12324 SourceLocation(), Args[1]);
12325 if (Arg1.isInvalid())
12326 return ExprError();
12327 Args[0] = LHS = Arg0.getAs<Expr>();
12328 Args[1] = RHS = Arg1.getAs<Expr>();
12329 }
12330
12331 // Build the actual expression node.
12332 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12333 Best->FoundDecl, Base,
12334 HadMultipleCandidates, OpLoc);
12335 if (FnExpr.isInvalid())
12336 return ExprError();
12337
12338 // Determine the result type.
12339 QualType ResultTy = FnDecl->getReturnType();
12340 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12341 ResultTy = ResultTy.getNonLValueExprType(Context);
12342
12343 CXXOperatorCallExpr *TheCall =
12344 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
12345 Args, ResultTy, VK, OpLoc,
12346 FPFeatures);
12347
12348 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
12349 FnDecl))
12350 return ExprError();
12351
12352 ArrayRef<const Expr *> ArgsArray(Args, 2);
12353 const Expr *ImplicitThis = nullptr;
12354 // Cut off the implicit 'this'.
12355 if (isa<CXXMethodDecl>(FnDecl)) {
12356 ImplicitThis = ArgsArray[0];
12357 ArgsArray = ArgsArray.slice(1);
12358 }
12359
12360 // Check for a self move.
12361 if (Op == OO_Equal)
12362 DiagnoseSelfMove(Args[0], Args[1], OpLoc);
12363
12364 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
12365 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
12366 VariadicDoesNotApply);
12367
12368 return MaybeBindToTemporary(TheCall);
12369 } else {
12370 // We matched a built-in operator. Convert the arguments, then
12371 // break out so that we will build the appropriate built-in
12372 // operator node.
12373 ExprResult ArgsRes0 =
12374 PerformImplicitConversion(Args[0], Best->BuiltinParamTypes[0],
12375 Best->Conversions[0], AA_Passing);
12376 if (ArgsRes0.isInvalid())
12377 return ExprError();
12378 Args[0] = ArgsRes0.get();
12379
12380 ExprResult ArgsRes1 =
12381 PerformImplicitConversion(Args[1], Best->BuiltinParamTypes[1],
12382 Best->Conversions[1], AA_Passing);
12383 if (ArgsRes1.isInvalid())
12384 return ExprError();
12385 Args[1] = ArgsRes1.get();
12386 break;
12387 }
12388 }
12389
12390 case OR_No_Viable_Function: {
12391 // C++ [over.match.oper]p9:
12392 // If the operator is the operator , [...] and there are no
12393 // viable functions, then the operator is assumed to be the
12394 // built-in operator and interpreted according to clause 5.
12395 if (Opc == BO_Comma)
12396 break;
12397
12398 // For class as left operand for assignment or compound assignment
12399 // operator do not fall through to handling in built-in, but report that
12400 // no overloaded assignment operator found
12401 ExprResult Result = ExprError();
12402 if (Args[0]->getType()->isRecordType() &&
12403 Opc >= BO_Assign && Opc <= BO_OrAssign) {
12404 Diag(OpLoc, diag::err_ovl_no_viable_oper)
12405 << BinaryOperator::getOpcodeStr(Opc)
12406 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12407 if (Args[0]->getType()->isIncompleteType()) {
12408 Diag(OpLoc, diag::note_assign_lhs_incomplete)
12409 << Args[0]->getType()
12410 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12411 }
12412 } else {
12413 // This is an erroneous use of an operator which can be overloaded by
12414 // a non-member function. Check for non-member operators which were
12415 // defined too late to be candidates.
12416 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
12417 // FIXME: Recover by calling the found function.
12418 return ExprError();
12419
12420 // No viable function; try to create a built-in operation, which will
12421 // produce an error. Then, show the non-viable candidates.
12422 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12423 }
12424 assert(Result.isInvalid() &&(static_cast <bool> (Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? void (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12425, __extension__ __PRETTY_FUNCTION__))
12425 "C++ binary operator overloading is missing candidates!")(static_cast <bool> (Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? void (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12425, __extension__ __PRETTY_FUNCTION__))
;
12426 if (Result.isInvalid())
12427 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12428 BinaryOperator::getOpcodeStr(Opc), OpLoc);
12429 return Result;
12430 }
12431
12432 case OR_Ambiguous:
12433 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary)
12434 << BinaryOperator::getOpcodeStr(Opc)
12435 << Args[0]->getType() << Args[1]->getType()
12436 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12437 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
12438 BinaryOperator::getOpcodeStr(Opc), OpLoc);
12439 return ExprError();
12440
12441 case OR_Deleted:
12442 if (isImplicitlyDeleted(Best->Function)) {
12443 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12444 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
12445 << Context.getRecordType(Method->getParent())
12446 << getSpecialMember(Method);
12447
12448 // The user probably meant to call this special member. Just
12449 // explain why it's deleted.
12450 NoteDeletedFunction(Method);
12451 return ExprError();
12452 } else {
12453 Diag(OpLoc, diag::err_ovl_deleted_oper)
12454 << Best->Function->isDeleted()
12455 << BinaryOperator::getOpcodeStr(Opc)
12456 << getDeletedOrUnavailableSuffix(Best->Function)
12457 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12458 }
12459 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12460 BinaryOperator::getOpcodeStr(Opc), OpLoc);
12461 return ExprError();
12462 }
12463
12464 // We matched a built-in operator; build it.
12465 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
12466}
12467
12468ExprResult
12469Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
12470 SourceLocation RLoc,
12471 Expr *Base, Expr *Idx) {
12472 Expr *Args[2] = { Base, Idx };
12473 DeclarationName OpName =
12474 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
12475
12476 // If either side is type-dependent, create an appropriate dependent
12477 // expression.
12478 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
12479
12480 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
12481 // CHECKME: no 'operator' keyword?
12482 DeclarationNameInfo OpNameInfo(OpName, LLoc);
12483 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12484 UnresolvedLookupExpr *Fn
12485 = UnresolvedLookupExpr::Create(Context, NamingClass,
12486 NestedNameSpecifierLoc(), OpNameInfo,
12487 /*ADL*/ true, /*Overloaded*/ false,
12488 UnresolvedSetIterator(),
12489 UnresolvedSetIterator());
12490 // Can't add any actual overloads yet
12491
12492 return new (Context)
12493 CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
12494 Context.DependentTy, VK_RValue, RLoc, FPOptions());
12495 }
12496
12497 // Handle placeholders on both operands.
12498 if (checkPlaceholderForOverload(*this, Args[0]))
12499 return ExprError();
12500 if (checkPlaceholderForOverload(*this, Args[1]))
12501 return ExprError();
12502
12503 // Build an empty overload set.
12504 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
12505
12506 // Subscript can only be overloaded as a member function.
12507
12508 // Add operator candidates that are member functions.
12509 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12510
12511 // Add builtin operator candidates.
12512 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12513
12514 bool HadMultipleCandidates = (CandidateSet.size() > 1);
12515
12516 // Perform overload resolution.
12517 OverloadCandidateSet::iterator Best;
12518 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
12519 case OR_Success: {
12520 // We found a built-in operator or an overloaded operator.
12521 FunctionDecl *FnDecl = Best->Function;
12522
12523 if (FnDecl) {
12524 // We matched an overloaded operator. Build a call to that
12525 // operator.
12526
12527 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
12528
12529 // Convert the arguments.
12530 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
12531 ExprResult Arg0 =
12532 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12533 Best->FoundDecl, Method);
12534 if (Arg0.isInvalid())
12535 return ExprError();
12536 Args[0] = Arg0.get();
12537
12538 // Convert the arguments.
12539 ExprResult InputInit
12540 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12541 Context,
12542 FnDecl->getParamDecl(0)),
12543 SourceLocation(),
12544 Args[1]);
12545 if (InputInit.isInvalid())
12546 return ExprError();
12547
12548 Args[1] = InputInit.getAs<Expr>();
12549
12550 // Build the actual expression node.
12551 DeclarationNameInfo OpLocInfo(OpName, LLoc);
12552 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12553 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12554 Best->FoundDecl,
12555 Base,
12556 HadMultipleCandidates,
12557 OpLocInfo.getLoc(),
12558 OpLocInfo.getInfo());
12559 if (FnExpr.isInvalid())
12560 return ExprError();
12561
12562 // Determine the result type
12563 QualType ResultTy = FnDecl->getReturnType();
12564 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12565 ResultTy = ResultTy.getNonLValueExprType(Context);
12566
12567 CXXOperatorCallExpr *TheCall =
12568 new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
12569 FnExpr.get(), Args,
12570 ResultTy, VK, RLoc,
12571 FPOptions());
12572
12573 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
12574 return ExprError();
12575
12576 if (CheckFunctionCall(Method, TheCall,
12577 Method->getType()->castAs<FunctionProtoType>()))
12578 return ExprError();
12579
12580 return MaybeBindToTemporary(TheCall);
12581 } else {
12582 // We matched a built-in operator. Convert the arguments, then
12583 // break out so that we will build the appropriate built-in
12584 // operator node.
12585 ExprResult ArgsRes0 =
12586 PerformImplicitConversion(Args[0], Best->BuiltinParamTypes[0],
12587 Best->Conversions[0], AA_Passing);
12588 if (ArgsRes0.isInvalid())
12589 return ExprError();
12590 Args[0] = ArgsRes0.get();
12591
12592 ExprResult ArgsRes1 =
12593 PerformImplicitConversion(Args[1], Best->BuiltinParamTypes[1],
12594 Best->Conversions[1], AA_Passing);
12595 if (ArgsRes1.isInvalid())
12596 return ExprError();
12597 Args[1] = ArgsRes1.get();
12598
12599 break;
12600 }
12601 }
12602
12603 case OR_No_Viable_Function: {
12604 if (CandidateSet.empty())
12605 Diag(LLoc, diag::err_ovl_no_oper)
12606 << Args[0]->getType() << /*subscript*/ 0
12607 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12608 else
12609 Diag(LLoc, diag::err_ovl_no_viable_subscript)
12610 << Args[0]->getType()
12611 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12612 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12613 "[]", LLoc);
12614 return ExprError();
12615 }
12616
12617 case OR_Ambiguous:
12618 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary)
12619 << "[]"
12620 << Args[0]->getType() << Args[1]->getType()
12621 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12622 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
12623 "[]", LLoc);
12624 return ExprError();
12625
12626 case OR_Deleted:
12627 Diag(LLoc, diag::err_ovl_deleted_oper)
12628 << Best->Function->isDeleted() << "[]"
12629 << getDeletedOrUnavailableSuffix(Best->Function)
12630 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12631 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12632 "[]", LLoc);
12633 return ExprError();
12634 }
12635
12636 // We matched a built-in operator; build it.
12637 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
12638}
12639
12640/// BuildCallToMemberFunction - Build a call to a member
12641/// function. MemExpr is the expression that refers to the member
12642/// function (and includes the object parameter), Args/NumArgs are the
12643/// arguments to the function call (not including the object
12644/// parameter). The caller needs to validate that the member
12645/// expression refers to a non-static member function or an overloaded
12646/// member function.
12647ExprResult
12648Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
12649 SourceLocation LParenLoc,
12650 MultiExprArg Args,
12651 SourceLocation RParenLoc) {
12652 assert(MemExprE->getType() == Context.BoundMemberTy ||(static_cast <bool> (MemExprE->getType() == Context.
BoundMemberTy || MemExprE->getType() == Context.OverloadTy
) ? void (0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12653, __extension__ __PRETTY_FUNCTION__))
12653 MemExprE->getType() == Context.OverloadTy)(static_cast <bool> (MemExprE->getType() == Context.
BoundMemberTy || MemExprE->getType() == Context.OverloadTy
) ? void (0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12653, __extension__ __PRETTY_FUNCTION__))
;
12654
12655 // Dig out the member expression. This holds both the object
12656 // argument and the member function we're referring to.
12657 Expr *NakedMemExpr = MemExprE->IgnoreParens();
12658
12659 // Determine whether this is a call to a pointer-to-member function.
12660 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
12661 assert(op->getType() == Context.BoundMemberTy)(static_cast <bool> (op->getType() == Context.BoundMemberTy
) ? void (0) : __assert_fail ("op->getType() == Context.BoundMemberTy"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12661, __extension__ __PRETTY_FUNCTION__))
;
12662 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI)(static_cast <bool> (op->getOpcode() == BO_PtrMemD ||
op->getOpcode() == BO_PtrMemI) ? void (0) : __assert_fail
("op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12662, __extension__ __PRETTY_FUNCTION__))
;
12663
12664 QualType fnType =
12665 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
12666
12667 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
12668 QualType resultType = proto->getCallResultType(Context);
12669 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
12670
12671 // Check that the object type isn't more qualified than the
12672 // member function we're calling.
12673 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
12674
12675 QualType objectType = op->getLHS()->getType();
12676 if (op->getOpcode() == BO_PtrMemI)
12677 objectType = objectType->castAs<PointerType>()->getPointeeType();
12678 Qualifiers objectQuals = objectType.getQualifiers();
12679
12680 Qualifiers difference = objectQuals - funcQuals;
12681 difference.removeObjCGCAttr();
12682 difference.removeAddressSpace();
12683 if (difference) {
12684 std::string qualsString = difference.getAsString();
12685 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
12686 << fnType.getUnqualifiedType()
12687 << qualsString
12688 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
12689 }
12690
12691 CXXMemberCallExpr *call
12692 = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
12693 resultType, valueKind, RParenLoc);
12694
12695 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
12696 call, nullptr))
12697 return ExprError();
12698
12699 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
12700 return ExprError();
12701
12702 if (CheckOtherCall(call, proto))
12703 return ExprError();
12704
12705 return MaybeBindToTemporary(call);
12706 }
12707
12708 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
12709 return new (Context)
12710 CallExpr(Context, MemExprE, Args, Context.VoidTy, VK_RValue, RParenLoc);
12711
12712 UnbridgedCastsSet UnbridgedCasts;
12713 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
12714 return ExprError();
12715
12716 MemberExpr *MemExpr;
12717 CXXMethodDecl *Method = nullptr;
12718 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
12719 NestedNameSpecifier *Qualifier = nullptr;
12720 if (isa<MemberExpr>(NakedMemExpr)) {
12721 MemExpr = cast<MemberExpr>(NakedMemExpr);
12722 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
12723 FoundDecl = MemExpr->getFoundDecl();
12724 Qualifier = MemExpr->getQualifier();
12725 UnbridgedCasts.restore();
12726 } else {
12727 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
12728 Qualifier = UnresExpr->getQualifier();
12729
12730 QualType ObjectType = UnresExpr->getBaseType();
12731 Expr::Classification ObjectClassification
12732 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
12733 : UnresExpr->getBase()->Classify(Context);
12734
12735 // Add overload candidates
12736 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
12737 OverloadCandidateSet::CSK_Normal);
12738
12739 // FIXME: avoid copy.
12740 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
12741 if (UnresExpr->hasExplicitTemplateArgs()) {
12742 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
12743 TemplateArgs = &TemplateArgsBuffer;
12744 }
12745
12746 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
12747 E = UnresExpr->decls_end(); I != E; ++I) {
12748
12749 NamedDecl *Func = *I;
12750 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
12751 if (isa<UsingShadowDecl>(Func))
12752 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
12753
12754
12755 // Microsoft supports direct constructor calls.
12756 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
12757 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
12758 Args, CandidateSet);
12759 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
12760 // If explicit template arguments were provided, we can't call a
12761 // non-template member function.
12762 if (TemplateArgs)
12763 continue;
12764
12765 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
12766 ObjectClassification, Args, CandidateSet,
12767 /*SuppressUserConversions=*/false);
12768 } else {
12769 AddMethodTemplateCandidate(
12770 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
12771 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
12772 /*SuppressUsedConversions=*/false);
12773 }
12774 }
12775
12776 DeclarationName DeclName = UnresExpr->getMemberName();
12777
12778 UnbridgedCasts.restore();
12779
12780 OverloadCandidateSet::iterator Best;
12781 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
12782 Best)) {
12783 case OR_Success:
12784 Method = cast<CXXMethodDecl>(Best->Function);
12785 FoundDecl = Best->FoundDecl;
12786 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
12787 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
12788 return ExprError();
12789 // If FoundDecl is different from Method (such as if one is a template
12790 // and the other a specialization), make sure DiagnoseUseOfDecl is
12791 // called on both.
12792 // FIXME: This would be more comprehensively addressed by modifying
12793 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
12794 // being used.
12795 if (Method != FoundDecl.getDecl() &&
12796 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
12797 return ExprError();
12798 break;
12799
12800 case OR_No_Viable_Function:
12801 Diag(UnresExpr->getMemberLoc(),
12802 diag::err_ovl_no_viable_member_function_in_call)
12803 << DeclName << MemExprE->getSourceRange();
12804 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12805 // FIXME: Leaking incoming expressions!
12806 return ExprError();
12807
12808 case OR_Ambiguous:
12809 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
12810 << DeclName << MemExprE->getSourceRange();
12811 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12812 // FIXME: Leaking incoming expressions!
12813 return ExprError();
12814
12815 case OR_Deleted:
12816 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
12817 << Best->Function->isDeleted()
12818 << DeclName
12819 << getDeletedOrUnavailableSuffix(Best->Function)
12820 << MemExprE->getSourceRange();
12821 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12822 // FIXME: Leaking incoming expressions!
12823 return ExprError();
12824 }
12825
12826 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
12827
12828 // If overload resolution picked a static member, build a
12829 // non-member call based on that function.
12830 if (Method->isStatic()) {
12831 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
12832 RParenLoc);
12833 }
12834
12835 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
12836 }
12837
12838 QualType ResultType = Method->getReturnType();
12839 ExprValueKind VK = Expr::getValueKindForType(ResultType);
12840 ResultType = ResultType.getNonLValueExprType(Context);
12841
12842 assert(Method && "Member call to something that isn't a method?")(static_cast <bool> (Method && "Member call to something that isn't a method?"
) ? void (0) : __assert_fail ("Method && \"Member call to something that isn't a method?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12842, __extension__ __PRETTY_FUNCTION__))
;
12843 CXXMemberCallExpr *TheCall =
12844 new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
12845 ResultType, VK, RParenLoc);
12846
12847 // Check for a valid return type.
12848 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
12849 TheCall, Method))
12850 return ExprError();
12851
12852 // Convert the object argument (for a non-static member function call).
12853 // We only need to do this if there was actually an overload; otherwise
12854 // it was done at lookup.
12855 if (!Method->isStatic()) {
12856 ExprResult ObjectArg =
12857 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
12858 FoundDecl, Method);
12859 if (ObjectArg.isInvalid())
12860 return ExprError();
12861 MemExpr->setBase(ObjectArg.get());
12862 }
12863
12864 // Convert the rest of the arguments
12865 const FunctionProtoType *Proto =
12866 Method->getType()->getAs<FunctionProtoType>();
12867 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
12868 RParenLoc))
12869 return ExprError();
12870
12871 DiagnoseSentinelCalls(Method, LParenLoc, Args);
12872
12873 if (CheckFunctionCall(Method, TheCall, Proto))
12874 return ExprError();
12875
12876 // In the case the method to call was not selected by the overloading
12877 // resolution process, we still need to handle the enable_if attribute. Do
12878 // that here, so it will not hide previous -- and more relevant -- errors.
12879 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
12880 if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
12881 Diag(MemE->getMemberLoc(),
12882 diag::err_ovl_no_viable_member_function_in_call)
12883 << Method << Method->getSourceRange();
12884 Diag(Method->getLocation(),
12885 diag::note_ovl_candidate_disabled_by_function_cond_attr)
12886 << Attr->getCond()->getSourceRange() << Attr->getMessage();
12887 return ExprError();
12888 }
12889 }
12890
12891 if ((isa<CXXConstructorDecl>(CurContext) ||
12892 isa<CXXDestructorDecl>(CurContext)) &&
12893 TheCall->getMethodDecl()->isPure()) {
12894 const CXXMethodDecl *MD = TheCall->getMethodDecl();
12895
12896 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
12897 MemExpr->performsVirtualDispatch(getLangOpts())) {
12898 Diag(MemExpr->getLocStart(),
12899 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
12900 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
12901 << MD->getParent()->getDeclName();
12902
12903 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
12904 if (getLangOpts().AppleKext)
12905 Diag(MemExpr->getLocStart(),
12906 diag::note_pure_qualified_call_kext)
12907 << MD->getParent()->getDeclName()
12908 << MD->getDeclName();
12909 }
12910 }
12911
12912 if (CXXDestructorDecl *DD =
12913 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
12914 // a->A::f() doesn't go through the vtable, except in AppleKext mode.
12915 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
12916 CheckVirtualDtorCall(DD, MemExpr->getLocStart(), /*IsDelete=*/false,
12917 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
12918 MemExpr->getMemberLoc());
12919 }
12920
12921 return MaybeBindToTemporary(TheCall);
12922}
12923
12924/// BuildCallToObjectOfClassType - Build a call to an object of class
12925/// type (C++ [over.call.object]), which can end up invoking an
12926/// overloaded function call operator (@c operator()) or performing a
12927/// user-defined conversion on the object argument.
12928ExprResult
12929Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
12930 SourceLocation LParenLoc,
12931 MultiExprArg Args,
12932 SourceLocation RParenLoc) {
12933 if (checkPlaceholderForOverload(*this, Obj))
12934 return ExprError();
12935 ExprResult Object = Obj;
12936
12937 UnbridgedCastsSet UnbridgedCasts;
12938 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
12939 return ExprError();
12940
12941 assert(Object.get()->getType()->isRecordType() &&(static_cast <bool> (Object.get()->getType()->isRecordType
() && "Requires object type argument") ? void (0) : __assert_fail
("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12942, __extension__ __PRETTY_FUNCTION__))
12942 "Requires object type argument")(static_cast <bool> (Object.get()->getType()->isRecordType
() && "Requires object type argument") ? void (0) : __assert_fail
("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 12942, __extension__ __PRETTY_FUNCTION__))
;
12943 const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
12944
12945 // C++ [over.call.object]p1:
12946 // If the primary-expression E in the function call syntax
12947 // evaluates to a class object of type "cv T", then the set of
12948 // candidate functions includes at least the function call
12949 // operators of T. The function call operators of T are obtained by
12950 // ordinary lookup of the name operator() in the context of
12951 // (E).operator().
12952 OverloadCandidateSet CandidateSet(LParenLoc,
12953 OverloadCandidateSet::CSK_Operator);
12954 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
12955
12956 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
12957 diag::err_incomplete_object_call, Object.get()))
12958 return true;
12959
12960 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
12961 LookupQualifiedName(R, Record->getDecl());
12962 R.suppressDiagnostics();
12963
12964 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
12965 Oper != OperEnd; ++Oper) {
12966 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
12967 Object.get()->Classify(Context), Args, CandidateSet,
12968 /*SuppressUserConversions=*/false);
12969 }
12970
12971 // C++ [over.call.object]p2:
12972 // In addition, for each (non-explicit in C++0x) conversion function
12973 // declared in T of the form
12974 //
12975 // operator conversion-type-id () cv-qualifier;
12976 //
12977 // where cv-qualifier is the same cv-qualification as, or a
12978 // greater cv-qualification than, cv, and where conversion-type-id
12979 // denotes the type "pointer to function of (P1,...,Pn) returning
12980 // R", or the type "reference to pointer to function of
12981 // (P1,...,Pn) returning R", or the type "reference to function
12982 // of (P1,...,Pn) returning R", a surrogate call function [...]
12983 // is also considered as a candidate function. Similarly,
12984 // surrogate call functions are added to the set of candidate
12985 // functions for each conversion function declared in an
12986 // accessible base class provided the function is not hidden
12987 // within T by another intervening declaration.
12988 const auto &Conversions =
12989 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
12990 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
12991 NamedDecl *D = *I;
12992 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
12993 if (isa<UsingShadowDecl>(D))
12994 D = cast<UsingShadowDecl>(D)->getTargetDecl();
12995
12996 // Skip over templated conversion functions; they aren't
12997 // surrogates.
12998 if (isa<FunctionTemplateDecl>(D))
12999 continue;
13000
13001 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
13002 if (!Conv->isExplicit()) {
13003 // Strip the reference type (if any) and then the pointer type (if
13004 // any) to get down to what might be a function type.
13005 QualType ConvType = Conv->getConversionType().getNonReferenceType();
13006 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
13007 ConvType = ConvPtrType->getPointeeType();
13008
13009 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
13010 {
13011 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
13012 Object.get(), Args, CandidateSet);
13013 }
13014 }
13015 }
13016
13017 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13018
13019 // Perform overload resolution.
13020 OverloadCandidateSet::iterator Best;
13021 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
13022 Best)) {
13023 case OR_Success:
13024 // Overload resolution succeeded; we'll build the appropriate call
13025 // below.
13026 break;
13027
13028 case OR_No_Viable_Function:
13029 if (CandidateSet.empty())
13030 Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
13031 << Object.get()->getType() << /*call*/ 1
13032 << Object.get()->getSourceRange();
13033 else
13034 Diag(Object.get()->getLocStart(),
13035 diag::err_ovl_no_viable_object_call)
13036 << Object.get()->getType() << Object.get()->getSourceRange();
13037 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
13038 break;
13039
13040 case OR_Ambiguous:
13041 Diag(Object.get()->getLocStart(),
13042 diag::err_ovl_ambiguous_object_call)
13043 << Object.get()->getType() << Object.get()->getSourceRange();
13044 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
13045 break;
13046
13047 case OR_Deleted:
13048 Diag(Object.get()->getLocStart(),
13049 diag::err_ovl_deleted_object_call)
13050 << Best->Function->isDeleted()
13051 << Object.get()->getType()
13052 << getDeletedOrUnavailableSuffix(Best->Function)
13053 << Object.get()->getSourceRange();
13054 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
13055 break;
13056 }
13057
13058 if (Best == CandidateSet.end())
13059 return true;
13060
13061 UnbridgedCasts.restore();
13062
13063 if (Best->Function == nullptr) {
13064 // Since there is no function declaration, this is one of the
13065 // surrogate candidates. Dig out the conversion function.
13066 CXXConversionDecl *Conv
13067 = cast<CXXConversionDecl>(
13068 Best->Conversions[0].UserDefined.ConversionFunction);
13069
13070 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
13071 Best->FoundDecl);
13072 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
13073 return ExprError();
13074 assert(Conv == Best->FoundDecl.getDecl() &&(static_cast <bool> (Conv == Best->FoundDecl.getDecl
() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? void (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13075, __extension__ __PRETTY_FUNCTION__))
13075 "Found Decl & conversion-to-functionptr should be same, right?!")(static_cast <bool> (Conv == Best->FoundDecl.getDecl
() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? void (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13075, __extension__ __PRETTY_FUNCTION__))
;
13076 // We selected one of the surrogate functions that converts the
13077 // object parameter to a function pointer. Perform the conversion
13078 // on the object argument, then let ActOnCallExpr finish the job.
13079
13080 // Create an implicit member expr to refer to the conversion operator.
13081 // and then call it.
13082 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
13083 Conv, HadMultipleCandidates);
13084 if (Call.isInvalid())
13085 return ExprError();
13086 // Record usage of conversion in an implicit cast.
13087 Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
13088 CK_UserDefinedConversion, Call.get(),
13089 nullptr, VK_RValue);
13090
13091 return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
13092 }
13093
13094 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
13095
13096 // We found an overloaded operator(). Build a CXXOperatorCallExpr
13097 // that calls this method, using Object for the implicit object
13098 // parameter and passing along the remaining arguments.
13099 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13100
13101 // An error diagnostic has already been printed when parsing the declaration.
13102 if (Method->isInvalidDecl())
13103 return ExprError();
13104
13105 const FunctionProtoType *Proto =
13106 Method->getType()->getAs<FunctionProtoType>();
13107
13108 unsigned NumParams = Proto->getNumParams();
13109
13110 DeclarationNameInfo OpLocInfo(
13111 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
13112 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
13113 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13114 Obj, HadMultipleCandidates,
13115 OpLocInfo.getLoc(),
13116 OpLocInfo.getInfo());
13117 if (NewFn.isInvalid())
13118 return true;
13119
13120 // Build the full argument list for the method call (the implicit object
13121 // parameter is placed at the beginning of the list).
13122 SmallVector<Expr *, 8> MethodArgs(Args.size() + 1);
13123 MethodArgs[0] = Object.get();
13124 std::copy(Args.begin(), Args.end(), MethodArgs.begin() + 1);
13125
13126 // Once we've built TheCall, all of the expressions are properly
13127 // owned.
13128 QualType ResultTy = Method->getReturnType();
13129 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13130 ResultTy = ResultTy.getNonLValueExprType(Context);
13131
13132 CXXOperatorCallExpr *TheCall = new (Context)
13133 CXXOperatorCallExpr(Context, OO_Call, NewFn.get(), MethodArgs, ResultTy,
13134 VK, RParenLoc, FPOptions());
13135
13136 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
13137 return true;
13138
13139 // We may have default arguments. If so, we need to allocate more
13140 // slots in the call for them.
13141 if (Args.size() < NumParams)
13142 TheCall->setNumArgs(Context, NumParams + 1);
13143
13144 bool IsError = false;
13145
13146 // Initialize the implicit object parameter.
13147 ExprResult ObjRes =
13148 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
13149 Best->FoundDecl, Method);
13150 if (ObjRes.isInvalid())
13151 IsError = true;
13152 else
13153 Object = ObjRes;
13154 TheCall->setArg(0, Object.get());
13155
13156 // Check the argument types.
13157 for (unsigned i = 0; i != NumParams; i++) {
13158 Expr *Arg;
13159 if (i < Args.size()) {
13160 Arg = Args[i];
13161
13162 // Pass the argument.
13163
13164 ExprResult InputInit
13165 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13166 Context,
13167 Method->getParamDecl(i)),
13168 SourceLocation(), Arg);
13169
13170 IsError |= InputInit.isInvalid();
13171 Arg = InputInit.getAs<Expr>();
13172 } else {
13173 ExprResult DefArg
13174 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
13175 if (DefArg.isInvalid()) {
13176 IsError = true;
13177 break;
13178 }
13179
13180 Arg = DefArg.getAs<Expr>();
13181 }
13182
13183 TheCall->setArg(i + 1, Arg);
13184 }
13185
13186 // If this is a variadic call, handle args passed through "...".
13187 if (Proto->isVariadic()) {
13188 // Promote the arguments (C99 6.5.2.2p7).
13189 for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
13190 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
13191 nullptr);
13192 IsError |= Arg.isInvalid();
13193 TheCall->setArg(i + 1, Arg.get());
13194 }
13195 }
13196
13197 if (IsError) return true;
13198
13199 DiagnoseSentinelCalls(Method, LParenLoc, Args);
13200
13201 if (CheckFunctionCall(Method, TheCall, Proto))
13202 return true;
13203
13204 return MaybeBindToTemporary(TheCall);
13205}
13206
13207/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
13208/// (if one exists), where @c Base is an expression of class type and
13209/// @c Member is the name of the member we're trying to find.
13210ExprResult
13211Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
13212 bool *NoArrowOperatorFound) {
13213 assert(Base->getType()->isRecordType() &&(static_cast <bool> (Base->getType()->isRecordType
() && "left-hand side must have class type") ? void (
0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13214, __extension__ __PRETTY_FUNCTION__))
13214 "left-hand side must have class type")(static_cast <bool> (Base->getType()->isRecordType
() && "left-hand side must have class type") ? void (
0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13214, __extension__ __PRETTY_FUNCTION__))
;
13215
13216 if (checkPlaceholderForOverload(*this, Base))
13217 return ExprError();
13218
13219 SourceLocation Loc = Base->getExprLoc();
13220
13221 // C++ [over.ref]p1:
13222 //
13223 // [...] An expression x->m is interpreted as (x.operator->())->m
13224 // for a class object x of type T if T::operator->() exists and if
13225 // the operator is selected as the best match function by the
13226 // overload resolution mechanism (13.3).
13227 DeclarationName OpName =
13228 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
13229 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
13230 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
13231
13232 if (RequireCompleteType(Loc, Base->getType(),
13233 diag::err_typecheck_incomplete_tag, Base))
13234 return ExprError();
13235
13236 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
13237 LookupQualifiedName(R, BaseRecord->getDecl());
13238 R.suppressDiagnostics();
13239
13240 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
13241 Oper != OperEnd; ++Oper) {
13242 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
13243 None, CandidateSet, /*SuppressUserConversions=*/false);
13244 }
13245
13246 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13247
13248 // Perform overload resolution.
13249 OverloadCandidateSet::iterator Best;
13250 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13251 case OR_Success:
13252 // Overload resolution succeeded; we'll build the call below.
13253 break;
13254
13255 case OR_No_Viable_Function:
13256 if (CandidateSet.empty()) {
13257 QualType BaseType = Base->getType();
13258 if (NoArrowOperatorFound) {
13259 // Report this specific error to the caller instead of emitting a
13260 // diagnostic, as requested.
13261 *NoArrowOperatorFound = true;
13262 return ExprError();
13263 }
13264 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
13265 << BaseType << Base->getSourceRange();
13266 if (BaseType->isRecordType() && !BaseType->isPointerType()) {
13267 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
13268 << FixItHint::CreateReplacement(OpLoc, ".");
13269 }
13270 } else
13271 Diag(OpLoc, diag::err_ovl_no_viable_oper)
13272 << "operator->" << Base->getSourceRange();
13273 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
13274 return ExprError();
13275
13276 case OR_Ambiguous:
13277 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
13278 << "->" << Base->getType() << Base->getSourceRange();
13279 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
13280 return ExprError();
13281
13282 case OR_Deleted:
13283 Diag(OpLoc, diag::err_ovl_deleted_oper)
13284 << Best->Function->isDeleted()
13285 << "->"
13286 << getDeletedOrUnavailableSuffix(Best->Function)
13287 << Base->getSourceRange();
13288 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
13289 return ExprError();
13290 }
13291
13292 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
13293
13294 // Convert the object parameter.
13295 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
13296 ExprResult BaseResult =
13297 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
13298 Best->FoundDecl, Method);
13299 if (BaseResult.isInvalid())
13300 return ExprError();
13301 Base = BaseResult.get();
13302
13303 // Build the operator call.
13304 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
13305 Base, HadMultipleCandidates, OpLoc);
13306 if (FnExpr.isInvalid())
13307 return ExprError();
13308
13309 QualType ResultTy = Method->getReturnType();
13310 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13311 ResultTy = ResultTy.getNonLValueExprType(Context);
13312 CXXOperatorCallExpr *TheCall =
13313 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
13314 Base, ResultTy, VK, OpLoc, FPOptions());
13315
13316 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
13317 return ExprError();
13318
13319 if (CheckFunctionCall(Method, TheCall,
13320 Method->getType()->castAs<FunctionProtoType>()))
13321 return ExprError();
13322
13323 return MaybeBindToTemporary(TheCall);
13324}
13325
13326/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
13327/// a literal operator described by the provided lookup results.
13328ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
13329 DeclarationNameInfo &SuffixInfo,
13330 ArrayRef<Expr*> Args,
13331 SourceLocation LitEndLoc,
13332 TemplateArgumentListInfo *TemplateArgs) {
13333 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
13334
13335 OverloadCandidateSet CandidateSet(UDSuffixLoc,
13336 OverloadCandidateSet::CSK_Normal);
13337 AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
13338 /*SuppressUserConversions=*/true);
13339
13340 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13341
13342 // Perform overload resolution. This will usually be trivial, but might need
13343 // to perform substitutions for a literal operator template.
13344 OverloadCandidateSet::iterator Best;
13345 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
13346 case OR_Success:
13347 case OR_Deleted:
13348 break;
13349
13350 case OR_No_Viable_Function:
13351 Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
13352 << R.getLookupName();
13353 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
13354 return ExprError();
13355
13356 case OR_Ambiguous:
13357 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
13358 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
13359 return ExprError();
13360 }
13361
13362 FunctionDecl *FD = Best->Function;
13363 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
13364 nullptr, HadMultipleCandidates,
13365 SuffixInfo.getLoc(),
13366 SuffixInfo.getInfo());
13367 if (Fn.isInvalid())
13368 return true;
13369
13370 // Check the argument types. This should almost always be a no-op, except
13371 // that array-to-pointer decay is applied to string literals.
13372 Expr *ConvArgs[2];
13373 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
13374 ExprResult InputInit = PerformCopyInitialization(
13375 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
13376 SourceLocation(), Args[ArgIdx]);
13377 if (InputInit.isInvalid())
13378 return true;
13379 ConvArgs[ArgIdx] = InputInit.get();
13380 }
13381
13382 QualType ResultTy = FD->getReturnType();
13383 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13384 ResultTy = ResultTy.getNonLValueExprType(Context);
13385
13386 UserDefinedLiteral *UDL =
13387 new (Context) UserDefinedLiteral(Context, Fn.get(),
13388 llvm::makeArrayRef(ConvArgs, Args.size()),
13389 ResultTy, VK, LitEndLoc, UDSuffixLoc);
13390
13391 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
13392 return ExprError();
13393
13394 if (CheckFunctionCall(FD, UDL, nullptr))
13395 return ExprError();
13396
13397 return MaybeBindToTemporary(UDL);
13398}
13399
13400/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
13401/// given LookupResult is non-empty, it is assumed to describe a member which
13402/// will be invoked. Otherwise, the function will be found via argument
13403/// dependent lookup.
13404/// CallExpr is set to a valid expression and FRS_Success returned on success,
13405/// otherwise CallExpr is set to ExprError() and some non-success value
13406/// is returned.
13407Sema::ForRangeStatus
13408Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
13409 SourceLocation RangeLoc,
13410 const DeclarationNameInfo &NameInfo,
13411 LookupResult &MemberLookup,
13412 OverloadCandidateSet *CandidateSet,
13413 Expr *Range, ExprResult *CallExpr) {
13414 Scope *S = nullptr;
13415
13416 CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
13417 if (!MemberLookup.empty()) {
13418 ExprResult MemberRef =
13419 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
13420 /*IsPtr=*/false, CXXScopeSpec(),
13421 /*TemplateKWLoc=*/SourceLocation(),
13422 /*FirstQualifierInScope=*/nullptr,
13423 MemberLookup,
13424 /*TemplateArgs=*/nullptr, S);
13425 if (MemberRef.isInvalid()) {
13426 *CallExpr = ExprError();
13427 return FRS_DiagnosticIssued;
13428 }
13429 *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
13430 if (CallExpr->isInvalid()) {
13431 *CallExpr = ExprError();
13432 return FRS_DiagnosticIssued;
13433 }
13434 } else {
13435 UnresolvedSet<0> FoundNames;
13436 UnresolvedLookupExpr *Fn =
13437 UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
13438 NestedNameSpecifierLoc(), NameInfo,
13439 /*NeedsADL=*/true, /*Overloaded=*/false,
13440 FoundNames.begin(), FoundNames.end());
13441
13442 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
13443 CandidateSet, CallExpr);
13444 if (CandidateSet->empty() || CandidateSetError) {
13445 *CallExpr = ExprError();
13446 return FRS_NoViableFunction;
13447 }
13448 OverloadCandidateSet::iterator Best;
13449 OverloadingResult OverloadResult =
13450 CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
13451
13452 if (OverloadResult == OR_No_Viable_Function) {
13453 *CallExpr = ExprError();
13454 return FRS_NoViableFunction;
13455 }
13456 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
13457 Loc, nullptr, CandidateSet, &Best,
13458 OverloadResult,
13459 /*AllowTypoCorrection=*/false);
13460 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
13461 *CallExpr = ExprError();
13462 return FRS_DiagnosticIssued;
13463 }
13464 }
13465 return FRS_Success;
13466}
13467
13468
13469/// FixOverloadedFunctionReference - E is an expression that refers to
13470/// a C++ overloaded function (possibly with some parentheses and
13471/// perhaps a '&' around it). We have resolved the overloaded function
13472/// to the function declaration Fn, so patch up the expression E to
13473/// refer (possibly indirectly) to Fn. Returns the new expr.
13474Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
13475 FunctionDecl *Fn) {
13476 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
13477 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
13478 Found, Fn);
13479 if (SubExpr == PE->getSubExpr())
13480 return PE;
13481
13482 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
13483 }
13484
13485 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
13486 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
13487 Found, Fn);
13488 assert(Context.hasSameType(ICE->getSubExpr()->getType(),(static_cast <bool> (Context.hasSameType(ICE->getSubExpr
()->getType(), SubExpr->getType()) && "Implicit cast type cannot be determined from overload"
) ? void (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13490, __extension__ __PRETTY_FUNCTION__))
13489 SubExpr->getType()) &&(static_cast <bool> (Context.hasSameType(ICE->getSubExpr
()->getType(), SubExpr->getType()) && "Implicit cast type cannot be determined from overload"
) ? void (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13490, __extension__ __PRETTY_FUNCTION__))
13490 "Implicit cast type cannot be determined from overload")(static_cast <bool> (Context.hasSameType(ICE->getSubExpr
()->getType(), SubExpr->getType()) && "Implicit cast type cannot be determined from overload"
) ? void (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13490, __extension__ __PRETTY_FUNCTION__))
;
13491 assert(ICE->path_empty() && "fixing up hierarchy conversion?")(static_cast <bool> (ICE->path_empty() && "fixing up hierarchy conversion?"
) ? void (0) : __assert_fail ("ICE->path_empty() && \"fixing up hierarchy conversion?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13491, __extension__ __PRETTY_FUNCTION__))
;
13492 if (SubExpr == ICE->getSubExpr())
13493 return ICE;
13494
13495 return ImplicitCastExpr::Create(Context, ICE->getType(),
13496 ICE->getCastKind(),
13497 SubExpr, nullptr,
13498 ICE->getValueKind());
13499 }
13500
13501 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
13502 if (!GSE->isResultDependent()) {
13503 Expr *SubExpr =
13504 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
13505 if (SubExpr == GSE->getResultExpr())
13506 return GSE;
13507
13508 // Replace the resulting type information before rebuilding the generic
13509 // selection expression.
13510 ArrayRef<Expr *> A = GSE->getAssocExprs();
13511 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
13512 unsigned ResultIdx = GSE->getResultIndex();
13513 AssocExprs[ResultIdx] = SubExpr;
13514
13515 return new (Context) GenericSelectionExpr(
13516 Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
13517 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
13518 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
13519 ResultIdx);
13520 }
13521 // Rather than fall through to the unreachable, return the original generic
13522 // selection expression.
13523 return GSE;
13524 }
13525
13526 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
13527 assert(UnOp->getOpcode() == UO_AddrOf &&(static_cast <bool> (UnOp->getOpcode() == UO_AddrOf &&
"Can only take the address of an overloaded function") ? void
(0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13528, __extension__ __PRETTY_FUNCTION__))
13528 "Can only take the address of an overloaded function")(static_cast <bool> (UnOp->getOpcode() == UO_AddrOf &&
"Can only take the address of an overloaded function") ? void
(0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13528, __extension__ __PRETTY_FUNCTION__))
;
13529 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
13530 if (Method->isStatic()) {
13531 // Do nothing: static member functions aren't any different
13532 // from non-member functions.
13533 } else {
13534 // Fix the subexpression, which really has to be an
13535 // UnresolvedLookupExpr holding an overloaded member function
13536 // or template.
13537 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13538 Found, Fn);
13539 if (SubExpr == UnOp->getSubExpr())
13540 return UnOp;
13541
13542 assert(isa<DeclRefExpr>(SubExpr)(static_cast <bool> (isa<DeclRefExpr>(SubExpr) &&
"fixed to something other than a decl ref") ? void (0) : __assert_fail
("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13543, __extension__ __PRETTY_FUNCTION__))
13543 && "fixed to something other than a decl ref")(static_cast <bool> (isa<DeclRefExpr>(SubExpr) &&
"fixed to something other than a decl ref") ? void (0) : __assert_fail
("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13543, __extension__ __PRETTY_FUNCTION__))
;
13544 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()(static_cast <bool> (cast<DeclRefExpr>(SubExpr)->
getQualifier() && "fixed to a member ref with no nested name qualifier"
) ? void (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13545, __extension__ __PRETTY_FUNCTION__))
13545 && "fixed to a member ref with no nested name qualifier")(static_cast <bool> (cast<DeclRefExpr>(SubExpr)->
getQualifier() && "fixed to a member ref with no nested name qualifier"
) ? void (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13545, __extension__ __PRETTY_FUNCTION__))
;
13546
13547 // We have taken the address of a pointer to member
13548 // function. Perform the computation here so that we get the
13549 // appropriate pointer to member type.
13550 QualType ClassType
13551 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
13552 QualType MemPtrType
13553 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
13554 // Under the MS ABI, lock down the inheritance model now.
13555 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13556 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
13557
13558 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
13559 VK_RValue, OK_Ordinary,
13560 UnOp->getOperatorLoc(), false);
13561 }
13562 }
13563 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13564 Found, Fn);
13565 if (SubExpr == UnOp->getSubExpr())
13566 return UnOp;
13567
13568 return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
13569 Context.getPointerType(SubExpr->getType()),
13570 VK_RValue, OK_Ordinary,
13571 UnOp->getOperatorLoc(), false);
13572 }
13573
13574 // C++ [except.spec]p17:
13575 // An exception-specification is considered to be needed when:
13576 // - in an expression the function is the unique lookup result or the
13577 // selected member of a set of overloaded functions
13578 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
13579 ResolveExceptionSpec(E->getExprLoc(), FPT);
13580
13581 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13582 // FIXME: avoid copy.
13583 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13584 if (ULE->hasExplicitTemplateArgs()) {
13585 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
13586 TemplateArgs = &TemplateArgsBuffer;
13587 }
13588
13589 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13590 ULE->getQualifierLoc(),
13591 ULE->getTemplateKeywordLoc(),
13592 Fn,
13593 /*enclosing*/ false, // FIXME?
13594 ULE->getNameLoc(),
13595 Fn->getType(),
13596 VK_LValue,
13597 Found.getDecl(),
13598 TemplateArgs);
13599 MarkDeclRefReferenced(DRE);
13600 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
13601 return DRE;
13602 }
13603
13604 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
13605 // FIXME: avoid copy.
13606 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13607 if (MemExpr->hasExplicitTemplateArgs()) {
13608 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13609 TemplateArgs = &TemplateArgsBuffer;
13610 }
13611
13612 Expr *Base;
13613
13614 // If we're filling in a static method where we used to have an
13615 // implicit member access, rewrite to a simple decl ref.
13616 if (MemExpr->isImplicitAccess()) {
13617 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13618 DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13619 MemExpr->getQualifierLoc(),
13620 MemExpr->getTemplateKeywordLoc(),
13621 Fn,
13622 /*enclosing*/ false,
13623 MemExpr->getMemberLoc(),
13624 Fn->getType(),
13625 VK_LValue,
13626 Found.getDecl(),
13627 TemplateArgs);
13628 MarkDeclRefReferenced(DRE);
13629 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
13630 return DRE;
13631 } else {
13632 SourceLocation Loc = MemExpr->getMemberLoc();
13633 if (MemExpr->getQualifier())
13634 Loc = MemExpr->getQualifierLoc().getBeginLoc();
13635 CheckCXXThisCapture(Loc);
13636 Base = new (Context) CXXThisExpr(Loc,
13637 MemExpr->getBaseType(),
13638 /*isImplicit=*/true);
13639 }
13640 } else
13641 Base = MemExpr->getBase();
13642
13643 ExprValueKind valueKind;
13644 QualType type;
13645 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13646 valueKind = VK_LValue;
13647 type = Fn->getType();
13648 } else {
13649 valueKind = VK_RValue;
13650 type = Context.BoundMemberTy;
13651 }
13652
13653 MemberExpr *ME = MemberExpr::Create(
13654 Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
13655 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
13656 MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
13657 OK_Ordinary);
13658 ME->setHadMultipleCandidates(true);
13659 MarkMemberReferenced(ME);
13660 return ME;
13661 }
13662
13663 llvm_unreachable("Invalid reference to overloaded function")::llvm::llvm_unreachable_internal("Invalid reference to overloaded function"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaOverload.cpp"
, 13663)
;
13664}
13665
13666ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
13667 DeclAccessPair Found,
13668 FunctionDecl *Fn) {
13669 return FixOverloadedFunctionReference(E.get(), Found, Fn);
13670}