Bug Summary

File:clang/lib/Sema/SemaOverload.cpp
Warning:line 10234, column 9
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaOverload.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/build-llvm/include -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-11-21-121427-42170-1 -x c++ /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp

/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp

1//===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ overloading.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/CXXInheritance.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/DependenceFlags.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/DiagnosticOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Sema/Initialization.h"
27#include "clang/Sema/Lookup.h"
28#include "clang/Sema/Overload.h"
29#include "clang/Sema/SemaInternal.h"
30#include "clang/Sema/Template.h"
31#include "clang/Sema/TemplateDeduction.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/Optional.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include <algorithm>
38#include <cstdlib>
39
40using namespace clang;
41using namespace sema;
42
43using AllowedExplicit = Sema::AllowedExplicit;
44
45static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
46 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
47 return P->hasAttr<PassObjectSizeAttr>();
48 });
49}
50
51/// A convenience routine for creating a decayed reference to a function.
52static ExprResult
53CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
54 const Expr *Base, bool HadMultipleCandidates,
55 SourceLocation Loc = SourceLocation(),
56 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
57 if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
58 return ExprError();
59 // If FoundDecl is different from Fn (such as if one is a template
60 // and the other a specialization), make sure DiagnoseUseOfDecl is
61 // called on both.
62 // FIXME: This would be more comprehensively addressed by modifying
63 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
64 // being used.
65 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
66 return ExprError();
67 DeclRefExpr *DRE = new (S.Context)
68 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
69 if (HadMultipleCandidates)
70 DRE->setHadMultipleCandidates(true);
71
72 S.MarkDeclRefReferenced(DRE, Base);
73 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) {
74 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
75 S.ResolveExceptionSpec(Loc, FPT);
76 DRE->setType(Fn->getType());
77 }
78 }
79 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
80 CK_FunctionToPointerDecay);
81}
82
83static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
84 bool InOverloadResolution,
85 StandardConversionSequence &SCS,
86 bool CStyle,
87 bool AllowObjCWritebackConversion);
88
89static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
90 QualType &ToType,
91 bool InOverloadResolution,
92 StandardConversionSequence &SCS,
93 bool CStyle);
94static OverloadingResult
95IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
96 UserDefinedConversionSequence& User,
97 OverloadCandidateSet& Conversions,
98 AllowedExplicit AllowExplicit,
99 bool AllowObjCConversionOnExplicit);
100
101static ImplicitConversionSequence::CompareKind
102CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
103 const StandardConversionSequence& SCS1,
104 const StandardConversionSequence& SCS2);
105
106static ImplicitConversionSequence::CompareKind
107CompareQualificationConversions(Sema &S,
108 const StandardConversionSequence& SCS1,
109 const StandardConversionSequence& SCS2);
110
111static ImplicitConversionSequence::CompareKind
112CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
113 const StandardConversionSequence& SCS1,
114 const StandardConversionSequence& SCS2);
115
116/// GetConversionRank - Retrieve the implicit conversion rank
117/// corresponding to the given implicit conversion kind.
118ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
119 static const ImplicitConversionRank
120 Rank[(int)ICK_Num_Conversion_Kinds] = {
121 ICR_Exact_Match,
122 ICR_Exact_Match,
123 ICR_Exact_Match,
124 ICR_Exact_Match,
125 ICR_Exact_Match,
126 ICR_Exact_Match,
127 ICR_Promotion,
128 ICR_Promotion,
129 ICR_Promotion,
130 ICR_Conversion,
131 ICR_Conversion,
132 ICR_Conversion,
133 ICR_Conversion,
134 ICR_Conversion,
135 ICR_Conversion,
136 ICR_Conversion,
137 ICR_Conversion,
138 ICR_Conversion,
139 ICR_Conversion,
140 ICR_Conversion,
141 ICR_OCL_Scalar_Widening,
142 ICR_Complex_Real_Conversion,
143 ICR_Conversion,
144 ICR_Conversion,
145 ICR_Writeback_Conversion,
146 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
147 // it was omitted by the patch that added
148 // ICK_Zero_Event_Conversion
149 ICR_C_Conversion,
150 ICR_C_Conversion_Extension
151 };
152 return Rank[(int)Kind];
153}
154
155/// GetImplicitConversionName - Return the name of this kind of
156/// implicit conversion.
157static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
158 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
159 "No conversion",
160 "Lvalue-to-rvalue",
161 "Array-to-pointer",
162 "Function-to-pointer",
163 "Function pointer conversion",
164 "Qualification",
165 "Integral promotion",
166 "Floating point promotion",
167 "Complex promotion",
168 "Integral conversion",
169 "Floating conversion",
170 "Complex conversion",
171 "Floating-integral conversion",
172 "Pointer conversion",
173 "Pointer-to-member conversion",
174 "Boolean conversion",
175 "Compatible-types conversion",
176 "Derived-to-base conversion",
177 "Vector conversion",
178 "SVE Vector conversion",
179 "Vector splat",
180 "Complex-real conversion",
181 "Block Pointer conversion",
182 "Transparent Union Conversion",
183 "Writeback conversion",
184 "OpenCL Zero Event Conversion",
185 "C specific type conversion",
186 "Incompatible pointer conversion"
187 };
188 return Name[Kind];
189}
190
191/// StandardConversionSequence - Set the standard conversion
192/// sequence to the identity conversion.
193void StandardConversionSequence::setAsIdentityConversion() {
194 First = ICK_Identity;
195 Second = ICK_Identity;
196 Third = ICK_Identity;
197 DeprecatedStringLiteralToCharPtr = false;
198 QualificationIncludesObjCLifetime = false;
199 ReferenceBinding = false;
200 DirectBinding = false;
201 IsLvalueReference = true;
202 BindsToFunctionLvalue = false;
203 BindsToRvalue = false;
204 BindsImplicitObjectArgumentWithoutRefQualifier = false;
205 ObjCLifetimeConversionBinding = false;
206 CopyConstructor = nullptr;
207}
208
209/// getRank - Retrieve the rank of this standard conversion sequence
210/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
211/// implicit conversions.
212ImplicitConversionRank StandardConversionSequence::getRank() const {
213 ImplicitConversionRank Rank = ICR_Exact_Match;
214 if (GetConversionRank(First) > Rank)
215 Rank = GetConversionRank(First);
216 if (GetConversionRank(Second) > Rank)
217 Rank = GetConversionRank(Second);
218 if (GetConversionRank(Third) > Rank)
219 Rank = GetConversionRank(Third);
220 return Rank;
221}
222
223/// isPointerConversionToBool - Determines whether this conversion is
224/// a conversion of a pointer or pointer-to-member to bool. This is
225/// used as part of the ranking of standard conversion sequences
226/// (C++ 13.3.3.2p4).
227bool StandardConversionSequence::isPointerConversionToBool() const {
228 // Note that FromType has not necessarily been transformed by the
229 // array-to-pointer or function-to-pointer implicit conversions, so
230 // check for their presence as well as checking whether FromType is
231 // a pointer.
232 if (getToType(1)->isBooleanType() &&
233 (getFromType()->isPointerType() ||
234 getFromType()->isMemberPointerType() ||
235 getFromType()->isObjCObjectPointerType() ||
236 getFromType()->isBlockPointerType() ||
237 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
238 return true;
239
240 return false;
241}
242
243/// isPointerConversionToVoidPointer - Determines whether this
244/// conversion is a conversion of a pointer to a void pointer. This is
245/// used as part of the ranking of standard conversion sequences (C++
246/// 13.3.3.2p4).
247bool
248StandardConversionSequence::
249isPointerConversionToVoidPointer(ASTContext& Context) const {
250 QualType FromType = getFromType();
251 QualType ToType = getToType(1);
252
253 // Note that FromType has not necessarily been transformed by the
254 // array-to-pointer implicit conversion, so check for its presence
255 // and redo the conversion to get a pointer.
256 if (First == ICK_Array_To_Pointer)
257 FromType = Context.getArrayDecayedType(FromType);
258
259 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
260 if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
261 return ToPtrType->getPointeeType()->isVoidType();
262
263 return false;
264}
265
266/// Skip any implicit casts which could be either part of a narrowing conversion
267/// or after one in an implicit conversion.
268static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
269 const Expr *Converted) {
270 // We can have cleanups wrapping the converted expression; these need to be
271 // preserved so that destructors run if necessary.
272 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
273 Expr *Inner =
274 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
275 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
276 EWC->getObjects());
277 }
278
279 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
280 switch (ICE->getCastKind()) {
281 case CK_NoOp:
282 case CK_IntegralCast:
283 case CK_IntegralToBoolean:
284 case CK_IntegralToFloating:
285 case CK_BooleanToSignedIntegral:
286 case CK_FloatingToIntegral:
287 case CK_FloatingToBoolean:
288 case CK_FloatingCast:
289 Converted = ICE->getSubExpr();
290 continue;
291
292 default:
293 return Converted;
294 }
295 }
296
297 return Converted;
298}
299
300/// Check if this standard conversion sequence represents a narrowing
301/// conversion, according to C++11 [dcl.init.list]p7.
302///
303/// \param Ctx The AST context.
304/// \param Converted The result of applying this standard conversion sequence.
305/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
306/// value of the expression prior to the narrowing conversion.
307/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
308/// type of the expression prior to the narrowing conversion.
309/// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
310/// from floating point types to integral types should be ignored.
311NarrowingKind StandardConversionSequence::getNarrowingKind(
312 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
313 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
314 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"
) ? static_cast<void> (0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus && \"narrowing check outside C++\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 314, __PRETTY_FUNCTION__))
;
315
316 // C++11 [dcl.init.list]p7:
317 // A narrowing conversion is an implicit conversion ...
318 QualType FromType = getToType(0);
319 QualType ToType = getToType(1);
320
321 // A conversion to an enumeration type is narrowing if the conversion to
322 // the underlying type is narrowing. This only arises for expressions of
323 // the form 'Enum{init}'.
324 if (auto *ET = ToType->getAs<EnumType>())
325 ToType = ET->getDecl()->getIntegerType();
326
327 switch (Second) {
328 // 'bool' is an integral type; dispatch to the right place to handle it.
329 case ICK_Boolean_Conversion:
330 if (FromType->isRealFloatingType())
331 goto FloatingIntegralConversion;
332 if (FromType->isIntegralOrUnscopedEnumerationType())
333 goto IntegralConversion;
334 // -- from a pointer type or pointer-to-member type to bool, or
335 return NK_Type_Narrowing;
336
337 // -- from a floating-point type to an integer type, or
338 //
339 // -- from an integer type or unscoped enumeration type to a floating-point
340 // type, except where the source is a constant expression and the actual
341 // value after conversion will fit into the target type and will produce
342 // the original value when converted back to the original type, or
343 case ICK_Floating_Integral:
344 FloatingIntegralConversion:
345 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
346 return NK_Type_Narrowing;
347 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
348 ToType->isRealFloatingType()) {
349 if (IgnoreFloatToIntegralConversion)
350 return NK_Not_Narrowing;
351 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
352 assert(Initializer && "Unknown conversion expression")((Initializer && "Unknown conversion expression") ? static_cast
<void> (0) : __assert_fail ("Initializer && \"Unknown conversion expression\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 352, __PRETTY_FUNCTION__))
;
353
354 // If it's value-dependent, we can't tell whether it's narrowing.
355 if (Initializer->isValueDependent())
356 return NK_Dependent_Narrowing;
357
358 if (Optional<llvm::APSInt> IntConstantValue =
359 Initializer->getIntegerConstantExpr(Ctx)) {
360 // Convert the integer to the floating type.
361 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
362 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(),
363 llvm::APFloat::rmNearestTiesToEven);
364 // And back.
365 llvm::APSInt ConvertedValue = *IntConstantValue;
366 bool ignored;
367 Result.convertToInteger(ConvertedValue,
368 llvm::APFloat::rmTowardZero, &ignored);
369 // If the resulting value is different, this was a narrowing conversion.
370 if (*IntConstantValue != ConvertedValue) {
371 ConstantValue = APValue(*IntConstantValue);
372 ConstantType = Initializer->getType();
373 return NK_Constant_Narrowing;
374 }
375 } else {
376 // Variables are always narrowings.
377 return NK_Variable_Narrowing;
378 }
379 }
380 return NK_Not_Narrowing;
381
382 // -- from long double to double or float, or from double to float, except
383 // where the source is a constant expression and the actual value after
384 // conversion is within the range of values that can be represented (even
385 // if it cannot be represented exactly), or
386 case ICK_Floating_Conversion:
387 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
388 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
389 // FromType is larger than ToType.
390 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
391
392 // If it's value-dependent, we can't tell whether it's narrowing.
393 if (Initializer->isValueDependent())
394 return NK_Dependent_Narrowing;
395
396 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
397 // Constant!
398 assert(ConstantValue.isFloat())((ConstantValue.isFloat()) ? static_cast<void> (0) : __assert_fail
("ConstantValue.isFloat()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 398, __PRETTY_FUNCTION__))
;
399 llvm::APFloat FloatVal = ConstantValue.getFloat();
400 // Convert the source value into the target type.
401 bool ignored;
402 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
403 Ctx.getFloatTypeSemantics(ToType),
404 llvm::APFloat::rmNearestTiesToEven, &ignored);
405 // If there was no overflow, the source value is within the range of
406 // values that can be represented.
407 if (ConvertStatus & llvm::APFloat::opOverflow) {
408 ConstantType = Initializer->getType();
409 return NK_Constant_Narrowing;
410 }
411 } else {
412 return NK_Variable_Narrowing;
413 }
414 }
415 return NK_Not_Narrowing;
416
417 // -- from an integer type or unscoped enumeration type to an integer type
418 // that cannot represent all the values of the original type, except where
419 // the source is a constant expression and the actual value after
420 // conversion will fit into the target type and will produce the original
421 // value when converted back to the original type.
422 case ICK_Integral_Conversion:
423 IntegralConversion: {
424 assert(FromType->isIntegralOrUnscopedEnumerationType())((FromType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("FromType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 424, __PRETTY_FUNCTION__))
;
425 assert(ToType->isIntegralOrUnscopedEnumerationType())((ToType->isIntegralOrUnscopedEnumerationType()) ? static_cast
<void> (0) : __assert_fail ("ToType->isIntegralOrUnscopedEnumerationType()"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 425, __PRETTY_FUNCTION__))
;
426 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
427 const unsigned FromWidth = Ctx.getIntWidth(FromType);
428 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
429 const unsigned ToWidth = Ctx.getIntWidth(ToType);
430
431 if (FromWidth > ToWidth ||
432 (FromWidth == ToWidth && FromSigned != ToSigned) ||
433 (FromSigned && !ToSigned)) {
434 // Not all values of FromType can be represented in ToType.
435 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
436
437 // If it's value-dependent, we can't tell whether it's narrowing.
438 if (Initializer->isValueDependent())
439 return NK_Dependent_Narrowing;
440
441 Optional<llvm::APSInt> OptInitializerValue;
442 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) {
443 // Such conversions on variables are always narrowing.
444 return NK_Variable_Narrowing;
445 }
446 llvm::APSInt &InitializerValue = *OptInitializerValue;
447 bool Narrowing = false;
448 if (FromWidth < ToWidth) {
449 // Negative -> unsigned is narrowing. Otherwise, more bits is never
450 // narrowing.
451 if (InitializerValue.isSigned() && InitializerValue.isNegative())
452 Narrowing = true;
453 } else {
454 // Add a bit to the InitializerValue so we don't have to worry about
455 // signed vs. unsigned comparisons.
456 InitializerValue = InitializerValue.extend(
457 InitializerValue.getBitWidth() + 1);
458 // Convert the initializer to and from the target width and signed-ness.
459 llvm::APSInt ConvertedValue = InitializerValue;
460 ConvertedValue = ConvertedValue.trunc(ToWidth);
461 ConvertedValue.setIsSigned(ToSigned);
462 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
463 ConvertedValue.setIsSigned(InitializerValue.isSigned());
464 // If the result is different, this was a narrowing conversion.
465 if (ConvertedValue != InitializerValue)
466 Narrowing = true;
467 }
468 if (Narrowing) {
469 ConstantType = Initializer->getType();
470 ConstantValue = APValue(InitializerValue);
471 return NK_Constant_Narrowing;
472 }
473 }
474 return NK_Not_Narrowing;
475 }
476
477 default:
478 // Other kinds of conversions are not narrowings.
479 return NK_Not_Narrowing;
480 }
481}
482
483/// dump - Print this standard conversion sequence to standard
484/// error. Useful for debugging overloading issues.
485LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void StandardConversionSequence::dump() const {
486 raw_ostream &OS = llvm::errs();
487 bool PrintedSomething = false;
488 if (First != ICK_Identity) {
489 OS << GetImplicitConversionName(First);
490 PrintedSomething = true;
491 }
492
493 if (Second != ICK_Identity) {
494 if (PrintedSomething) {
495 OS << " -> ";
496 }
497 OS << GetImplicitConversionName(Second);
498
499 if (CopyConstructor) {
500 OS << " (by copy constructor)";
501 } else if (DirectBinding) {
502 OS << " (direct reference binding)";
503 } else if (ReferenceBinding) {
504 OS << " (reference binding)";
505 }
506 PrintedSomething = true;
507 }
508
509 if (Third != ICK_Identity) {
510 if (PrintedSomething) {
511 OS << " -> ";
512 }
513 OS << GetImplicitConversionName(Third);
514 PrintedSomething = true;
515 }
516
517 if (!PrintedSomething) {
518 OS << "No conversions required";
519 }
520}
521
522/// dump - Print this user-defined conversion sequence to standard
523/// error. Useful for debugging overloading issues.
524void UserDefinedConversionSequence::dump() const {
525 raw_ostream &OS = llvm::errs();
526 if (Before.First || Before.Second || Before.Third) {
527 Before.dump();
528 OS << " -> ";
529 }
530 if (ConversionFunction)
531 OS << '\'' << *ConversionFunction << '\'';
532 else
533 OS << "aggregate initialization";
534 if (After.First || After.Second || After.Third) {
535 OS << " -> ";
536 After.dump();
537 }
538}
539
540/// dump - Print this implicit conversion sequence to standard
541/// error. Useful for debugging overloading issues.
542void ImplicitConversionSequence::dump() const {
543 raw_ostream &OS = llvm::errs();
544 if (isStdInitializerListElement())
545 OS << "Worst std::initializer_list element conversion: ";
546 switch (ConversionKind) {
547 case StandardConversion:
548 OS << "Standard conversion: ";
549 Standard.dump();
550 break;
551 case UserDefinedConversion:
552 OS << "User-defined conversion: ";
553 UserDefined.dump();
554 break;
555 case EllipsisConversion:
556 OS << "Ellipsis conversion";
557 break;
558 case AmbiguousConversion:
559 OS << "Ambiguous conversion";
560 break;
561 case BadConversion:
562 OS << "Bad conversion";
563 break;
564 }
565
566 OS << "\n";
567}
568
569void AmbiguousConversionSequence::construct() {
570 new (&conversions()) ConversionSet();
571}
572
573void AmbiguousConversionSequence::destruct() {
574 conversions().~ConversionSet();
575}
576
577void
578AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
579 FromTypePtr = O.FromTypePtr;
580 ToTypePtr = O.ToTypePtr;
581 new (&conversions()) ConversionSet(O.conversions());
582}
583
584namespace {
585 // Structure used by DeductionFailureInfo to store
586 // template argument information.
587 struct DFIArguments {
588 TemplateArgument FirstArg;
589 TemplateArgument SecondArg;
590 };
591 // Structure used by DeductionFailureInfo to store
592 // template parameter and template argument information.
593 struct DFIParamWithArguments : DFIArguments {
594 TemplateParameter Param;
595 };
596 // Structure used by DeductionFailureInfo to store template argument
597 // information and the index of the problematic call argument.
598 struct DFIDeducedMismatchArgs : DFIArguments {
599 TemplateArgumentList *TemplateArgs;
600 unsigned CallArgIndex;
601 };
602 // Structure used by DeductionFailureInfo to store information about
603 // unsatisfied constraints.
604 struct CNSInfo {
605 TemplateArgumentList *TemplateArgs;
606 ConstraintSatisfaction Satisfaction;
607 };
608}
609
610/// Convert from Sema's representation of template deduction information
611/// to the form used in overload-candidate information.
612DeductionFailureInfo
613clang::MakeDeductionFailureInfo(ASTContext &Context,
614 Sema::TemplateDeductionResult TDK,
615 TemplateDeductionInfo &Info) {
616 DeductionFailureInfo Result;
617 Result.Result = static_cast<unsigned>(TDK);
618 Result.HasDiagnostic = false;
619 switch (TDK) {
620 case Sema::TDK_Invalid:
621 case Sema::TDK_InstantiationDepth:
622 case Sema::TDK_TooManyArguments:
623 case Sema::TDK_TooFewArguments:
624 case Sema::TDK_MiscellaneousDeductionFailure:
625 case Sema::TDK_CUDATargetMismatch:
626 Result.Data = nullptr;
627 break;
628
629 case Sema::TDK_Incomplete:
630 case Sema::TDK_InvalidExplicitArguments:
631 Result.Data = Info.Param.getOpaqueValue();
632 break;
633
634 case Sema::TDK_DeducedMismatch:
635 case Sema::TDK_DeducedMismatchNested: {
636 // FIXME: Should allocate from normal heap so that we can free this later.
637 auto *Saved = new (Context) DFIDeducedMismatchArgs;
638 Saved->FirstArg = Info.FirstArg;
639 Saved->SecondArg = Info.SecondArg;
640 Saved->TemplateArgs = Info.take();
641 Saved->CallArgIndex = Info.CallArgIndex;
642 Result.Data = Saved;
643 break;
644 }
645
646 case Sema::TDK_NonDeducedMismatch: {
647 // FIXME: Should allocate from normal heap so that we can free this later.
648 DFIArguments *Saved = new (Context) DFIArguments;
649 Saved->FirstArg = Info.FirstArg;
650 Saved->SecondArg = Info.SecondArg;
651 Result.Data = Saved;
652 break;
653 }
654
655 case Sema::TDK_IncompletePack:
656 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
657 case Sema::TDK_Inconsistent:
658 case Sema::TDK_Underqualified: {
659 // FIXME: Should allocate from normal heap so that we can free this later.
660 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
661 Saved->Param = Info.Param;
662 Saved->FirstArg = Info.FirstArg;
663 Saved->SecondArg = Info.SecondArg;
664 Result.Data = Saved;
665 break;
666 }
667
668 case Sema::TDK_SubstitutionFailure:
669 Result.Data = Info.take();
670 if (Info.hasSFINAEDiagnostic()) {
671 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
672 SourceLocation(), PartialDiagnostic::NullDiagnostic());
673 Info.takeSFINAEDiagnostic(*Diag);
674 Result.HasDiagnostic = true;
675 }
676 break;
677
678 case Sema::TDK_ConstraintsNotSatisfied: {
679 CNSInfo *Saved = new (Context) CNSInfo;
680 Saved->TemplateArgs = Info.take();
681 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction;
682 Result.Data = Saved;
683 break;
684 }
685
686 case Sema::TDK_Success:
687 case Sema::TDK_NonDependentConversionFailure:
688 llvm_unreachable("not a deduction failure")::llvm::llvm_unreachable_internal("not a deduction failure", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 688)
;
689 }
690
691 return Result;
692}
693
694void DeductionFailureInfo::Destroy() {
695 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
696 case Sema::TDK_Success:
697 case Sema::TDK_Invalid:
698 case Sema::TDK_InstantiationDepth:
699 case Sema::TDK_Incomplete:
700 case Sema::TDK_TooManyArguments:
701 case Sema::TDK_TooFewArguments:
702 case Sema::TDK_InvalidExplicitArguments:
703 case Sema::TDK_CUDATargetMismatch:
704 case Sema::TDK_NonDependentConversionFailure:
705 break;
706
707 case Sema::TDK_IncompletePack:
708 case Sema::TDK_Inconsistent:
709 case Sema::TDK_Underqualified:
710 case Sema::TDK_DeducedMismatch:
711 case Sema::TDK_DeducedMismatchNested:
712 case Sema::TDK_NonDeducedMismatch:
713 // FIXME: Destroy the data?
714 Data = nullptr;
715 break;
716
717 case Sema::TDK_SubstitutionFailure:
718 // FIXME: Destroy the template argument list?
719 Data = nullptr;
720 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
721 Diag->~PartialDiagnosticAt();
722 HasDiagnostic = false;
723 }
724 break;
725
726 case Sema::TDK_ConstraintsNotSatisfied:
727 // FIXME: Destroy the template argument list?
728 Data = nullptr;
729 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
730 Diag->~PartialDiagnosticAt();
731 HasDiagnostic = false;
732 }
733 break;
734
735 // Unhandled
736 case Sema::TDK_MiscellaneousDeductionFailure:
737 break;
738 }
739}
740
741PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
742 if (HasDiagnostic)
743 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
744 return nullptr;
745}
746
747TemplateParameter DeductionFailureInfo::getTemplateParameter() {
748 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
749 case Sema::TDK_Success:
750 case Sema::TDK_Invalid:
751 case Sema::TDK_InstantiationDepth:
752 case Sema::TDK_TooManyArguments:
753 case Sema::TDK_TooFewArguments:
754 case Sema::TDK_SubstitutionFailure:
755 case Sema::TDK_DeducedMismatch:
756 case Sema::TDK_DeducedMismatchNested:
757 case Sema::TDK_NonDeducedMismatch:
758 case Sema::TDK_CUDATargetMismatch:
759 case Sema::TDK_NonDependentConversionFailure:
760 case Sema::TDK_ConstraintsNotSatisfied:
761 return TemplateParameter();
762
763 case Sema::TDK_Incomplete:
764 case Sema::TDK_InvalidExplicitArguments:
765 return TemplateParameter::getFromOpaqueValue(Data);
766
767 case Sema::TDK_IncompletePack:
768 case Sema::TDK_Inconsistent:
769 case Sema::TDK_Underqualified:
770 return static_cast<DFIParamWithArguments*>(Data)->Param;
771
772 // Unhandled
773 case Sema::TDK_MiscellaneousDeductionFailure:
774 break;
775 }
776
777 return TemplateParameter();
778}
779
780TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
781 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
782 case Sema::TDK_Success:
783 case Sema::TDK_Invalid:
784 case Sema::TDK_InstantiationDepth:
785 case Sema::TDK_TooManyArguments:
786 case Sema::TDK_TooFewArguments:
787 case Sema::TDK_Incomplete:
788 case Sema::TDK_IncompletePack:
789 case Sema::TDK_InvalidExplicitArguments:
790 case Sema::TDK_Inconsistent:
791 case Sema::TDK_Underqualified:
792 case Sema::TDK_NonDeducedMismatch:
793 case Sema::TDK_CUDATargetMismatch:
794 case Sema::TDK_NonDependentConversionFailure:
795 return nullptr;
796
797 case Sema::TDK_DeducedMismatch:
798 case Sema::TDK_DeducedMismatchNested:
799 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
800
801 case Sema::TDK_SubstitutionFailure:
802 return static_cast<TemplateArgumentList*>(Data);
803
804 case Sema::TDK_ConstraintsNotSatisfied:
805 return static_cast<CNSInfo*>(Data)->TemplateArgs;
806
807 // Unhandled
808 case Sema::TDK_MiscellaneousDeductionFailure:
809 break;
810 }
811
812 return nullptr;
813}
814
815const TemplateArgument *DeductionFailureInfo::getFirstArg() {
816 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
817 case Sema::TDK_Success:
818 case Sema::TDK_Invalid:
819 case Sema::TDK_InstantiationDepth:
820 case Sema::TDK_Incomplete:
821 case Sema::TDK_TooManyArguments:
822 case Sema::TDK_TooFewArguments:
823 case Sema::TDK_InvalidExplicitArguments:
824 case Sema::TDK_SubstitutionFailure:
825 case Sema::TDK_CUDATargetMismatch:
826 case Sema::TDK_NonDependentConversionFailure:
827 case Sema::TDK_ConstraintsNotSatisfied:
828 return nullptr;
829
830 case Sema::TDK_IncompletePack:
831 case Sema::TDK_Inconsistent:
832 case Sema::TDK_Underqualified:
833 case Sema::TDK_DeducedMismatch:
834 case Sema::TDK_DeducedMismatchNested:
835 case Sema::TDK_NonDeducedMismatch:
836 return &static_cast<DFIArguments*>(Data)->FirstArg;
837
838 // Unhandled
839 case Sema::TDK_MiscellaneousDeductionFailure:
840 break;
841 }
842
843 return nullptr;
844}
845
846const TemplateArgument *DeductionFailureInfo::getSecondArg() {
847 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
848 case Sema::TDK_Success:
849 case Sema::TDK_Invalid:
850 case Sema::TDK_InstantiationDepth:
851 case Sema::TDK_Incomplete:
852 case Sema::TDK_IncompletePack:
853 case Sema::TDK_TooManyArguments:
854 case Sema::TDK_TooFewArguments:
855 case Sema::TDK_InvalidExplicitArguments:
856 case Sema::TDK_SubstitutionFailure:
857 case Sema::TDK_CUDATargetMismatch:
858 case Sema::TDK_NonDependentConversionFailure:
859 case Sema::TDK_ConstraintsNotSatisfied:
860 return nullptr;
861
862 case Sema::TDK_Inconsistent:
863 case Sema::TDK_Underqualified:
864 case Sema::TDK_DeducedMismatch:
865 case Sema::TDK_DeducedMismatchNested:
866 case Sema::TDK_NonDeducedMismatch:
867 return &static_cast<DFIArguments*>(Data)->SecondArg;
868
869 // Unhandled
870 case Sema::TDK_MiscellaneousDeductionFailure:
871 break;
872 }
873
874 return nullptr;
875}
876
877llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
878 switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
879 case Sema::TDK_DeducedMismatch:
880 case Sema::TDK_DeducedMismatchNested:
881 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
882
883 default:
884 return llvm::None;
885 }
886}
887
888bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
889 OverloadedOperatorKind Op) {
890 if (!AllowRewrittenCandidates)
891 return false;
892 return Op == OO_EqualEqual || Op == OO_Spaceship;
893}
894
895bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
896 ASTContext &Ctx, const FunctionDecl *FD) {
897 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
898 return false;
899 // Don't bother adding a reversed candidate that can never be a better
900 // match than the non-reversed version.
901 return FD->getNumParams() != 2 ||
902 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
903 FD->getParamDecl(1)->getType()) ||
904 FD->hasAttr<EnableIfAttr>();
905}
906
907void OverloadCandidateSet::destroyCandidates() {
908 for (iterator i = begin(), e = end(); i != e; ++i) {
909 for (auto &C : i->Conversions)
910 C.~ImplicitConversionSequence();
911 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
912 i->DeductionFailure.Destroy();
913 }
914}
915
916void OverloadCandidateSet::clear(CandidateSetKind CSK) {
917 destroyCandidates();
918 SlabAllocator.Reset();
919 NumInlineBytesUsed = 0;
920 Candidates.clear();
921 Functions.clear();
922 Kind = CSK;
923}
924
925namespace {
926 class UnbridgedCastsSet {
927 struct Entry {
928 Expr **Addr;
929 Expr *Saved;
930 };
931 SmallVector<Entry, 2> Entries;
932
933 public:
934 void save(Sema &S, Expr *&E) {
935 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)) ? static_cast
<void> (0) : __assert_fail ("E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 935, __PRETTY_FUNCTION__))
;
936 Entry entry = { &E, E };
937 Entries.push_back(entry);
938 E = S.stripARCUnbridgedCast(E);
939 }
940
941 void restore() {
942 for (SmallVectorImpl<Entry>::iterator
943 i = Entries.begin(), e = Entries.end(); i != e; ++i)
944 *i->Addr = i->Saved;
945 }
946 };
947}
948
949/// checkPlaceholderForOverload - Do any interesting placeholder-like
950/// preprocessing on the given expression.
951///
952/// \param unbridgedCasts a collection to which to add unbridged casts;
953/// without this, they will be immediately diagnosed as errors
954///
955/// Return true on unrecoverable error.
956static bool
957checkPlaceholderForOverload(Sema &S, Expr *&E,
958 UnbridgedCastsSet *unbridgedCasts = nullptr) {
959 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
960 // We can't handle overloaded expressions here because overload
961 // resolution might reasonably tweak them.
962 if (placeholder->getKind() == BuiltinType::Overload) return false;
963
964 // If the context potentially accepts unbridged ARC casts, strip
965 // the unbridged cast and add it to the collection for later restoration.
966 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
967 unbridgedCasts) {
968 unbridgedCasts->save(S, E);
969 return false;
970 }
971
972 // Go ahead and check everything else.
973 ExprResult result = S.CheckPlaceholderExpr(E);
974 if (result.isInvalid())
975 return true;
976
977 E = result.get();
978 return false;
979 }
980
981 // Nothing to do.
982 return false;
983}
984
985/// checkArgPlaceholdersForOverload - Check a set of call operands for
986/// placeholders.
987static bool checkArgPlaceholdersForOverload(Sema &S,
988 MultiExprArg Args,
989 UnbridgedCastsSet &unbridged) {
990 for (unsigned i = 0, e = Args.size(); i != e; ++i)
991 if (checkPlaceholderForOverload(S, Args[i], &unbridged))
992 return true;
993
994 return false;
995}
996
997/// Determine whether the given New declaration is an overload of the
998/// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
999/// New and Old cannot be overloaded, e.g., if New has the same signature as
1000/// some function in Old (C++ 1.3.10) or if the Old declarations aren't
1001/// functions (or function templates) at all. When it does return Ovl_Match or
1002/// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
1003/// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
1004/// declaration.
1005///
1006/// Example: Given the following input:
1007///
1008/// void f(int, float); // #1
1009/// void f(int, int); // #2
1010/// int f(int, int); // #3
1011///
1012/// When we process #1, there is no previous declaration of "f", so IsOverload
1013/// will not be used.
1014///
1015/// When we process #2, Old contains only the FunctionDecl for #1. By comparing
1016/// the parameter types, we see that #1 and #2 are overloaded (since they have
1017/// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
1018/// unchanged.
1019///
1020/// When we process #3, Old is an overload set containing #1 and #2. We compare
1021/// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
1022/// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
1023/// functions are not part of the signature), IsOverload returns Ovl_Match and
1024/// MatchedDecl will be set to point to the FunctionDecl for #2.
1025///
1026/// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
1027/// by a using declaration. The rules for whether to hide shadow declarations
1028/// ignore some properties which otherwise figure into a function template's
1029/// signature.
1030Sema::OverloadKind
1031Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
1032 NamedDecl *&Match, bool NewIsUsingDecl) {
1033 for (LookupResult::iterator I = Old.begin(), E = Old.end();
1034 I != E; ++I) {
1035 NamedDecl *OldD = *I;
1036
1037 bool OldIsUsingDecl = false;
1038 if (isa<UsingShadowDecl>(OldD)) {
1039 OldIsUsingDecl = true;
1040
1041 // We can always introduce two using declarations into the same
1042 // context, even if they have identical signatures.
1043 if (NewIsUsingDecl) continue;
1044
1045 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
1046 }
1047
1048 // A using-declaration does not conflict with another declaration
1049 // if one of them is hidden.
1050 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
1051 continue;
1052
1053 // If either declaration was introduced by a using declaration,
1054 // we'll need to use slightly different rules for matching.
1055 // Essentially, these rules are the normal rules, except that
1056 // function templates hide function templates with different
1057 // return types or template parameter lists.
1058 bool UseMemberUsingDeclRules =
1059 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
1060 !New->getFriendObjectKind();
1061
1062 if (FunctionDecl *OldF = OldD->getAsFunction()) {
1063 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
1064 if (UseMemberUsingDeclRules && OldIsUsingDecl) {
1065 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
1066 continue;
1067 }
1068
1069 if (!isa<FunctionTemplateDecl>(OldD) &&
1070 !shouldLinkPossiblyHiddenDecl(*I, New))
1071 continue;
1072
1073 Match = *I;
1074 return Ovl_Match;
1075 }
1076
1077 // Builtins that have custom typechecking or have a reference should
1078 // not be overloadable or redeclarable.
1079 if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
1080 Match = *I;
1081 return Ovl_NonFunction;
1082 }
1083 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
1084 // We can overload with these, which can show up when doing
1085 // redeclaration checks for UsingDecls.
1086 assert(Old.getLookupKind() == LookupUsingDeclName)((Old.getLookupKind() == LookupUsingDeclName) ? static_cast<
void> (0) : __assert_fail ("Old.getLookupKind() == LookupUsingDeclName"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1086, __PRETTY_FUNCTION__))
;
1087 } else if (isa<TagDecl>(OldD)) {
1088 // We can always overload with tags by hiding them.
1089 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
1090 // Optimistically assume that an unresolved using decl will
1091 // overload; if it doesn't, we'll have to diagnose during
1092 // template instantiation.
1093 //
1094 // Exception: if the scope is dependent and this is not a class
1095 // member, the using declaration can only introduce an enumerator.
1096 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
1097 Match = *I;
1098 return Ovl_NonFunction;
1099 }
1100 } else {
1101 // (C++ 13p1):
1102 // Only function declarations can be overloaded; object and type
1103 // declarations cannot be overloaded.
1104 Match = *I;
1105 return Ovl_NonFunction;
1106 }
1107 }
1108
1109 // C++ [temp.friend]p1:
1110 // For a friend function declaration that is not a template declaration:
1111 // -- if the name of the friend is a qualified or unqualified template-id,
1112 // [...], otherwise
1113 // -- if the name of the friend is a qualified-id and a matching
1114 // non-template function is found in the specified class or namespace,
1115 // the friend declaration refers to that function, otherwise,
1116 // -- if the name of the friend is a qualified-id and a matching function
1117 // template is found in the specified class or namespace, the friend
1118 // declaration refers to the deduced specialization of that function
1119 // template, otherwise
1120 // -- the name shall be an unqualified-id [...]
1121 // If we get here for a qualified friend declaration, we've just reached the
1122 // third bullet. If the type of the friend is dependent, skip this lookup
1123 // until instantiation.
1124 if (New->getFriendObjectKind() && New->getQualifier() &&
1125 !New->getDescribedFunctionTemplate() &&
1126 !New->getDependentSpecializationInfo() &&
1127 !New->getType()->isDependentType()) {
1128 LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
1129 TemplateSpecResult.addAllDecls(Old);
1130 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
1131 /*QualifiedFriend*/true)) {
1132 New->setInvalidDecl();
1133 return Ovl_Overload;
1134 }
1135
1136 Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
1137 return Ovl_Match;
1138 }
1139
1140 return Ovl_Overload;
1141}
1142
1143bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
1144 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs,
1145 bool ConsiderRequiresClauses) {
1146 // C++ [basic.start.main]p2: This function shall not be overloaded.
1147 if (New->isMain())
1148 return false;
1149
1150 // MSVCRT user defined entry points cannot be overloaded.
1151 if (New->isMSVCRTEntryPoint())
1152 return false;
1153
1154 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1155 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1156
1157 // C++ [temp.fct]p2:
1158 // A function template can be overloaded with other function templates
1159 // and with normal (non-template) functions.
1160 if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1161 return true;
1162
1163 // Is the function New an overload of the function Old?
1164 QualType OldQType = Context.getCanonicalType(Old->getType());
1165 QualType NewQType = Context.getCanonicalType(New->getType());
1166
1167 // Compare the signatures (C++ 1.3.10) of the two functions to
1168 // determine whether they are overloads. If we find any mismatch
1169 // in the signature, they are overloads.
1170
1171 // If either of these functions is a K&R-style function (no
1172 // prototype), then we consider them to have matching signatures.
1173 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1174 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1175 return false;
1176
1177 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1178 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1179
1180 // The signature of a function includes the types of its
1181 // parameters (C++ 1.3.10), which includes the presence or absence
1182 // of the ellipsis; see C++ DR 357).
1183 if (OldQType != NewQType &&
1184 (OldType->getNumParams() != NewType->getNumParams() ||
1185 OldType->isVariadic() != NewType->isVariadic() ||
1186 !FunctionParamTypesAreEqual(OldType, NewType)))
1187 return true;
1188
1189 // C++ [temp.over.link]p4:
1190 // The signature of a function template consists of its function
1191 // signature, its return type and its template parameter list. The names
1192 // of the template parameters are significant only for establishing the
1193 // relationship between the template parameters and the rest of the
1194 // signature.
1195 //
1196 // We check the return type and template parameter lists for function
1197 // templates first; the remaining checks follow.
1198 //
1199 // However, we don't consider either of these when deciding whether
1200 // a member introduced by a shadow declaration is hidden.
1201 if (!UseMemberUsingDeclRules && NewTemplate &&
1202 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1203 OldTemplate->getTemplateParameters(),
1204 false, TPL_TemplateMatch) ||
1205 !Context.hasSameType(Old->getDeclaredReturnType(),
1206 New->getDeclaredReturnType())))
1207 return true;
1208
1209 // If the function is a class member, its signature includes the
1210 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1211 //
1212 // As part of this, also check whether one of the member functions
1213 // is static, in which case they are not overloads (C++
1214 // 13.1p2). While not part of the definition of the signature,
1215 // this check is important to determine whether these functions
1216 // can be overloaded.
1217 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1218 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1219 if (OldMethod && NewMethod &&
1220 !OldMethod->isStatic() && !NewMethod->isStatic()) {
1221 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1222 if (!UseMemberUsingDeclRules &&
1223 (OldMethod->getRefQualifier() == RQ_None ||
1224 NewMethod->getRefQualifier() == RQ_None)) {
1225 // C++0x [over.load]p2:
1226 // - Member function declarations with the same name and the same
1227 // parameter-type-list as well as member function template
1228 // declarations with the same name, the same parameter-type-list, and
1229 // the same template parameter lists cannot be overloaded if any of
1230 // them, but not all, have a ref-qualifier (8.3.5).
1231 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1232 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1233 Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1234 }
1235 return true;
1236 }
1237
1238 // We may not have applied the implicit const for a constexpr member
1239 // function yet (because we haven't yet resolved whether this is a static
1240 // or non-static member function). Add it now, on the assumption that this
1241 // is a redeclaration of OldMethod.
1242 auto OldQuals = OldMethod->getMethodQualifiers();
1243 auto NewQuals = NewMethod->getMethodQualifiers();
1244 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1245 !isa<CXXConstructorDecl>(NewMethod))
1246 NewQuals.addConst();
1247 // We do not allow overloading based off of '__restrict'.
1248 OldQuals.removeRestrict();
1249 NewQuals.removeRestrict();
1250 if (OldQuals != NewQuals)
1251 return true;
1252 }
1253
1254 // Though pass_object_size is placed on parameters and takes an argument, we
1255 // consider it to be a function-level modifier for the sake of function
1256 // identity. Either the function has one or more parameters with
1257 // pass_object_size or it doesn't.
1258 if (functionHasPassObjectSizeParams(New) !=
1259 functionHasPassObjectSizeParams(Old))
1260 return true;
1261
1262 // enable_if attributes are an order-sensitive part of the signature.
1263 for (specific_attr_iterator<EnableIfAttr>
1264 NewI = New->specific_attr_begin<EnableIfAttr>(),
1265 NewE = New->specific_attr_end<EnableIfAttr>(),
1266 OldI = Old->specific_attr_begin<EnableIfAttr>(),
1267 OldE = Old->specific_attr_end<EnableIfAttr>();
1268 NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1269 if (NewI == NewE || OldI == OldE)
1270 return true;
1271 llvm::FoldingSetNodeID NewID, OldID;
1272 NewI->getCond()->Profile(NewID, Context, true);
1273 OldI->getCond()->Profile(OldID, Context, true);
1274 if (NewID != OldID)
1275 return true;
1276 }
1277
1278 if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1279 // Don't allow overloading of destructors. (In theory we could, but it
1280 // would be a giant change to clang.)
1281 if (!isa<CXXDestructorDecl>(New)) {
1282 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1283 OldTarget = IdentifyCUDATarget(Old);
1284 if (NewTarget != CFT_InvalidTarget) {
1285 assert((OldTarget != CFT_InvalidTarget) &&(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1286, __PRETTY_FUNCTION__))
1286 "Unexpected invalid target.")(((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target."
) ? static_cast<void> (0) : __assert_fail ("(OldTarget != CFT_InvalidTarget) && \"Unexpected invalid target.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1286, __PRETTY_FUNCTION__))
;
1287
1288 // Allow overloading of functions with same signature and different CUDA
1289 // target attributes.
1290 if (NewTarget != OldTarget)
1291 return true;
1292 }
1293 }
1294 }
1295
1296 if (ConsiderRequiresClauses) {
1297 Expr *NewRC = New->getTrailingRequiresClause(),
1298 *OldRC = Old->getTrailingRequiresClause();
1299 if ((NewRC != nullptr) != (OldRC != nullptr))
1300 // RC are most certainly different - these are overloads.
1301 return true;
1302
1303 if (NewRC) {
1304 llvm::FoldingSetNodeID NewID, OldID;
1305 NewRC->Profile(NewID, Context, /*Canonical=*/true);
1306 OldRC->Profile(OldID, Context, /*Canonical=*/true);
1307 if (NewID != OldID)
1308 // RCs are not equivalent - these are overloads.
1309 return true;
1310 }
1311 }
1312
1313 // The signatures match; this is not an overload.
1314 return false;
1315}
1316
1317/// Tries a user-defined conversion from From to ToType.
1318///
1319/// Produces an implicit conversion sequence for when a standard conversion
1320/// is not an option. See TryImplicitConversion for more information.
1321static ImplicitConversionSequence
1322TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1323 bool SuppressUserConversions,
1324 AllowedExplicit AllowExplicit,
1325 bool InOverloadResolution,
1326 bool CStyle,
1327 bool AllowObjCWritebackConversion,
1328 bool AllowObjCConversionOnExplicit) {
1329 ImplicitConversionSequence ICS;
1330
1331 if (SuppressUserConversions) {
1332 // We're not in the case above, so there is no conversion that
1333 // we can perform.
1334 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1335 return ICS;
1336 }
1337
1338 // Attempt user-defined conversion.
1339 OverloadCandidateSet Conversions(From->getExprLoc(),
1340 OverloadCandidateSet::CSK_Normal);
1341 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1342 Conversions, AllowExplicit,
1343 AllowObjCConversionOnExplicit)) {
1344 case OR_Success:
1345 case OR_Deleted:
1346 ICS.setUserDefined();
1347 // C++ [over.ics.user]p4:
1348 // A conversion of an expression of class type to the same class
1349 // type is given Exact Match rank, and a conversion of an
1350 // expression of class type to a base class of that type is
1351 // given Conversion rank, in spite of the fact that a copy
1352 // constructor (i.e., a user-defined conversion function) is
1353 // called for those cases.
1354 if (CXXConstructorDecl *Constructor
1355 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1356 QualType FromCanon
1357 = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1358 QualType ToCanon
1359 = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1360 if (Constructor->isCopyConstructor() &&
1361 (FromCanon == ToCanon ||
1362 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
1363 // Turn this into a "standard" conversion sequence, so that it
1364 // gets ranked with standard conversion sequences.
1365 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1366 ICS.setStandard();
1367 ICS.Standard.setAsIdentityConversion();
1368 ICS.Standard.setFromType(From->getType());
1369 ICS.Standard.setAllToTypes(ToType);
1370 ICS.Standard.CopyConstructor = Constructor;
1371 ICS.Standard.FoundCopyConstructor = Found;
1372 if (ToCanon != FromCanon)
1373 ICS.Standard.Second = ICK_Derived_To_Base;
1374 }
1375 }
1376 break;
1377
1378 case OR_Ambiguous:
1379 ICS.setAmbiguous();
1380 ICS.Ambiguous.setFromType(From->getType());
1381 ICS.Ambiguous.setToType(ToType);
1382 for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1383 Cand != Conversions.end(); ++Cand)
1384 if (Cand->Best)
1385 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1386 break;
1387
1388 // Fall through.
1389 case OR_No_Viable_Function:
1390 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1391 break;
1392 }
1393
1394 return ICS;
1395}
1396
1397/// TryImplicitConversion - Attempt to perform an implicit conversion
1398/// from the given expression (Expr) to the given type (ToType). This
1399/// function returns an implicit conversion sequence that can be used
1400/// to perform the initialization. Given
1401///
1402/// void f(float f);
1403/// void g(int i) { f(i); }
1404///
1405/// this routine would produce an implicit conversion sequence to
1406/// describe the initialization of f from i, which will be a standard
1407/// conversion sequence containing an lvalue-to-rvalue conversion (C++
1408/// 4.1) followed by a floating-integral conversion (C++ 4.9).
1409//
1410/// Note that this routine only determines how the conversion can be
1411/// performed; it does not actually perform the conversion. As such,
1412/// it will not produce any diagnostics if no conversion is available,
1413/// but will instead return an implicit conversion sequence of kind
1414/// "BadConversion".
1415///
1416/// If @p SuppressUserConversions, then user-defined conversions are
1417/// not permitted.
1418/// If @p AllowExplicit, then explicit user-defined conversions are
1419/// permitted.
1420///
1421/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1422/// writeback conversion, which allows __autoreleasing id* parameters to
1423/// be initialized with __strong id* or __weak id* arguments.
1424static ImplicitConversionSequence
1425TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1426 bool SuppressUserConversions,
1427 AllowedExplicit AllowExplicit,
1428 bool InOverloadResolution,
1429 bool CStyle,
1430 bool AllowObjCWritebackConversion,
1431 bool AllowObjCConversionOnExplicit) {
1432 ImplicitConversionSequence ICS;
1433 if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1434 ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1435 ICS.setStandard();
1436 return ICS;
1437 }
1438
1439 if (!S.getLangOpts().CPlusPlus) {
1440 ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1441 return ICS;
1442 }
1443
1444 // C++ [over.ics.user]p4:
1445 // A conversion of an expression of class type to the same class
1446 // type is given Exact Match rank, and a conversion of an
1447 // expression of class type to a base class of that type is
1448 // given Conversion rank, in spite of the fact that a copy/move
1449 // constructor (i.e., a user-defined conversion function) is
1450 // called for those cases.
1451 QualType FromType = From->getType();
1452 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1453 (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1454 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
1455 ICS.setStandard();
1456 ICS.Standard.setAsIdentityConversion();
1457 ICS.Standard.setFromType(FromType);
1458 ICS.Standard.setAllToTypes(ToType);
1459
1460 // We don't actually check at this point whether there is a valid
1461 // copy/move constructor, since overloading just assumes that it
1462 // exists. When we actually perform initialization, we'll find the
1463 // appropriate constructor to copy the returned object, if needed.
1464 ICS.Standard.CopyConstructor = nullptr;
1465
1466 // Determine whether this is considered a derived-to-base conversion.
1467 if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1468 ICS.Standard.Second = ICK_Derived_To_Base;
1469
1470 return ICS;
1471 }
1472
1473 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1474 AllowExplicit, InOverloadResolution, CStyle,
1475 AllowObjCWritebackConversion,
1476 AllowObjCConversionOnExplicit);
1477}
1478
1479ImplicitConversionSequence
1480Sema::TryImplicitConversion(Expr *From, QualType ToType,
1481 bool SuppressUserConversions,
1482 AllowedExplicit AllowExplicit,
1483 bool InOverloadResolution,
1484 bool CStyle,
1485 bool AllowObjCWritebackConversion) {
1486 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions,
1487 AllowExplicit, InOverloadResolution, CStyle,
1488 AllowObjCWritebackConversion,
1489 /*AllowObjCConversionOnExplicit=*/false);
1490}
1491
1492/// PerformImplicitConversion - Perform an implicit conversion of the
1493/// expression From to the type ToType. Returns the
1494/// converted expression. Flavor is the kind of conversion we're
1495/// performing, used in the error message. If @p AllowExplicit,
1496/// explicit user-defined conversions are permitted.
1497ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1498 AssignmentAction Action,
1499 bool AllowExplicit) {
1500 if (checkPlaceholderForOverload(*this, From))
1501 return ExprError();
1502
1503 // Objective-C ARC: Determine whether we will allow the writeback conversion.
1504 bool AllowObjCWritebackConversion
1505 = getLangOpts().ObjCAutoRefCount &&
1506 (Action == AA_Passing || Action == AA_Sending);
1507 if (getLangOpts().ObjC)
1508 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
1509 From->getType(), From);
1510 ImplicitConversionSequence ICS = ::TryImplicitConversion(
1511 *this, From, ToType,
1512 /*SuppressUserConversions=*/false,
1513 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None,
1514 /*InOverloadResolution=*/false,
1515 /*CStyle=*/false, AllowObjCWritebackConversion,
1516 /*AllowObjCConversionOnExplicit=*/false);
1517 return PerformImplicitConversion(From, ToType, ICS, Action);
1518}
1519
1520/// Determine whether the conversion from FromType to ToType is a valid
1521/// conversion that strips "noexcept" or "noreturn" off the nested function
1522/// type.
1523bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
1524 QualType &ResultTy) {
1525 if (Context.hasSameUnqualifiedType(FromType, ToType))
1526 return false;
1527
1528 // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1529 // or F(t noexcept) -> F(t)
1530 // where F adds one of the following at most once:
1531 // - a pointer
1532 // - a member pointer
1533 // - a block pointer
1534 // Changes here need matching changes in FindCompositePointerType.
1535 CanQualType CanTo = Context.getCanonicalType(ToType);
1536 CanQualType CanFrom = Context.getCanonicalType(FromType);
1537 Type::TypeClass TyClass = CanTo->getTypeClass();
1538 if (TyClass != CanFrom->getTypeClass()) return false;
1539 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1540 if (TyClass == Type::Pointer) {
1541 CanTo = CanTo.castAs<PointerType>()->getPointeeType();
1542 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
1543 } else if (TyClass == Type::BlockPointer) {
1544 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
1545 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
1546 } else if (TyClass == Type::MemberPointer) {
1547 auto ToMPT = CanTo.castAs<MemberPointerType>();
1548 auto FromMPT = CanFrom.castAs<MemberPointerType>();
1549 // A function pointer conversion cannot change the class of the function.
1550 if (ToMPT->getClass() != FromMPT->getClass())
1551 return false;
1552 CanTo = ToMPT->getPointeeType();
1553 CanFrom = FromMPT->getPointeeType();
1554 } else {
1555 return false;
1556 }
1557
1558 TyClass = CanTo->getTypeClass();
1559 if (TyClass != CanFrom->getTypeClass()) return false;
1560 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1561 return false;
1562 }
1563
1564 const auto *FromFn = cast<FunctionType>(CanFrom);
1565 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
1566
1567 const auto *ToFn = cast<FunctionType>(CanTo);
1568 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
1569
1570 bool Changed = false;
1571
1572 // Drop 'noreturn' if not present in target type.
1573 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
1574 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
1575 Changed = true;
1576 }
1577
1578 // Drop 'noexcept' if not present in target type.
1579 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
1580 const auto *ToFPT = cast<FunctionProtoType>(ToFn);
1581 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
1582 FromFn = cast<FunctionType>(
1583 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
1584 EST_None)
1585 .getTypePtr());
1586 Changed = true;
1587 }
1588
1589 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
1590 // only if the ExtParameterInfo lists of the two function prototypes can be
1591 // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
1592 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
1593 bool CanUseToFPT, CanUseFromFPT;
1594 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
1595 CanUseFromFPT, NewParamInfos) &&
1596 CanUseToFPT && !CanUseFromFPT) {
1597 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
1598 ExtInfo.ExtParameterInfos =
1599 NewParamInfos.empty() ? nullptr : NewParamInfos.data();
1600 QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
1601 FromFPT->getParamTypes(), ExtInfo);
1602 FromFn = QT->getAs<FunctionType>();
1603 Changed = true;
1604 }
1605 }
1606
1607 if (!Changed)
1608 return false;
1609
1610 assert(QualType(FromFn, 0).isCanonical())((QualType(FromFn, 0).isCanonical()) ? static_cast<void>
(0) : __assert_fail ("QualType(FromFn, 0).isCanonical()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1610, __PRETTY_FUNCTION__))
;
1611 if (QualType(FromFn, 0) != CanTo) return false;
1612
1613 ResultTy = ToType;
1614 return true;
1615}
1616
1617/// Determine whether the conversion from FromType to ToType is a valid
1618/// vector conversion.
1619///
1620/// \param ICK Will be set to the vector conversion kind, if this is a vector
1621/// conversion.
1622static bool IsVectorConversion(Sema &S, QualType FromType,
1623 QualType ToType, ImplicitConversionKind &ICK) {
1624 // We need at least one of these types to be a vector type to have a vector
1625 // conversion.
1626 if (!ToType->isVectorType() && !FromType->isVectorType())
1627 return false;
1628
1629 // Identical types require no conversions.
1630 if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1631 return false;
1632
1633 // There are no conversions between extended vector types, only identity.
1634 if (ToType->isExtVectorType()) {
1635 // There are no conversions between extended vector types other than the
1636 // identity conversion.
1637 if (FromType->isExtVectorType())
1638 return false;
1639
1640 // Vector splat from any arithmetic type to a vector.
1641 if (FromType->isArithmeticType()) {
1642 ICK = ICK_Vector_Splat;
1643 return true;
1644 }
1645 }
1646
1647 if ((ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType()) &&
1648 S.Context.areCompatibleSveTypes(FromType, ToType)) {
1649 ICK = ICK_SVE_Vector_Conversion;
1650 return true;
1651 }
1652
1653 // We can perform the conversion between vector types in the following cases:
1654 // 1)vector types are equivalent AltiVec and GCC vector types
1655 // 2)lax vector conversions are permitted and the vector types are of the
1656 // same size
1657 // 3)the destination type does not have the ARM MVE strict-polymorphism
1658 // attribute, which inhibits lax vector conversion for overload resolution
1659 // only
1660 if (ToType->isVectorType() && FromType->isVectorType()) {
1661 if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1662 (S.isLaxVectorConversion(FromType, ToType) &&
1663 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) {
1664 ICK = ICK_Vector_Conversion;
1665 return true;
1666 }
1667 }
1668
1669 return false;
1670}
1671
1672static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1673 bool InOverloadResolution,
1674 StandardConversionSequence &SCS,
1675 bool CStyle);
1676
1677/// IsStandardConversion - Determines whether there is a standard
1678/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1679/// expression From to the type ToType. Standard conversion sequences
1680/// only consider non-class types; for conversions that involve class
1681/// types, use TryImplicitConversion. If a conversion exists, SCS will
1682/// contain the standard conversion sequence required to perform this
1683/// conversion and this routine will return true. Otherwise, this
1684/// routine will return false and the value of SCS is unspecified.
1685static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1686 bool InOverloadResolution,
1687 StandardConversionSequence &SCS,
1688 bool CStyle,
1689 bool AllowObjCWritebackConversion) {
1690 QualType FromType = From->getType();
1691
1692 // Standard conversions (C++ [conv])
1693 SCS.setAsIdentityConversion();
1694 SCS.IncompatibleObjC = false;
1695 SCS.setFromType(FromType);
1696 SCS.CopyConstructor = nullptr;
1697
1698 // There are no standard conversions for class types in C++, so
1699 // abort early. When overloading in C, however, we do permit them.
1700 if (S.getLangOpts().CPlusPlus &&
1701 (FromType->isRecordType() || ToType->isRecordType()))
1702 return false;
1703
1704 // The first conversion can be an lvalue-to-rvalue conversion,
1705 // array-to-pointer conversion, or function-to-pointer conversion
1706 // (C++ 4p1).
1707
1708 if (FromType == S.Context.OverloadTy) {
1709 DeclAccessPair AccessPair;
1710 if (FunctionDecl *Fn
1711 = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1712 AccessPair)) {
1713 // We were able to resolve the address of the overloaded function,
1714 // so we can convert to the type of that function.
1715 FromType = Fn->getType();
1716 SCS.setFromType(FromType);
1717
1718 // we can sometimes resolve &foo<int> regardless of ToType, so check
1719 // if the type matches (identity) or we are converting to bool
1720 if (!S.Context.hasSameUnqualifiedType(
1721 S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1722 QualType resultTy;
1723 // if the function type matches except for [[noreturn]], it's ok
1724 if (!S.IsFunctionConversion(FromType,
1725 S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1726 // otherwise, only a boolean conversion is standard
1727 if (!ToType->isBooleanType())
1728 return false;
1729 }
1730
1731 // Check if the "from" expression is taking the address of an overloaded
1732 // function and recompute the FromType accordingly. Take advantage of the
1733 // fact that non-static member functions *must* have such an address-of
1734 // expression.
1735 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1736 if (Method && !Method->isStatic()) {
1737 assert(isa<UnaryOperator>(From->IgnoreParens()) &&((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1738, __PRETTY_FUNCTION__))
1738 "Non-unary operator on non-static member address")((isa<UnaryOperator>(From->IgnoreParens()) &&
"Non-unary operator on non-static member address") ? static_cast
<void> (0) : __assert_fail ("isa<UnaryOperator>(From->IgnoreParens()) && \"Non-unary operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1738, __PRETTY_FUNCTION__))
;
1739 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1741, __PRETTY_FUNCTION__))
1740 == UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1741, __PRETTY_FUNCTION__))
1741 "Non-address-of operator on non-static member address")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator on non-static member address"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator on non-static member address\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1741, __PRETTY_FUNCTION__))
;
1742 const Type *ClassType
1743 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1744 FromType = S.Context.getMemberPointerType(FromType, ClassType);
1745 } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1746 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1748, __PRETTY_FUNCTION__))
1747 UO_AddrOf &&((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1748, __PRETTY_FUNCTION__))
1748 "Non-address-of operator for overloaded function expression")((cast<UnaryOperator>(From->IgnoreParens())->getOpcode
() == UO_AddrOf && "Non-address-of operator for overloaded function expression"
) ? static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == UO_AddrOf && \"Non-address-of operator for overloaded function expression\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1748, __PRETTY_FUNCTION__))
;
1749 FromType = S.Context.getPointerType(FromType);
1750 }
1751
1752 // Check that we've computed the proper type after overload resolution.
1753 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
1754 // be calling it from within an NDEBUG block.
1755 assert(S.Context.hasSameType(((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1757, __PRETTY_FUNCTION__))
1756 FromType,((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1757, __PRETTY_FUNCTION__))
1757 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference
(From, AccessPair, Fn)->getType())) ? static_cast<void>
(0) : __assert_fail ("S.Context.hasSameType( FromType, S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 1757, __PRETTY_FUNCTION__))
;
1758 } else {
1759 return false;
1760 }
1761 }
1762 // Lvalue-to-rvalue conversion (C++11 4.1):
1763 // A glvalue (3.10) of a non-function, non-array type T can
1764 // be converted to a prvalue.
1765 bool argIsLValue = From->isGLValue();
1766 if (argIsLValue &&
1767 !FromType->isFunctionType() && !FromType->isArrayType() &&
1768 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1769 SCS.First = ICK_Lvalue_To_Rvalue;
1770
1771 // C11 6.3.2.1p2:
1772 // ... if the lvalue has atomic type, the value has the non-atomic version
1773 // of the type of the lvalue ...
1774 if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1775 FromType = Atomic->getValueType();
1776
1777 // If T is a non-class type, the type of the rvalue is the
1778 // cv-unqualified version of T. Otherwise, the type of the rvalue
1779 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1780 // just strip the qualifiers because they don't matter.
1781 FromType = FromType.getUnqualifiedType();
1782 } else if (FromType->isArrayType()) {
1783 // Array-to-pointer conversion (C++ 4.2)
1784 SCS.First = ICK_Array_To_Pointer;
1785
1786 // An lvalue or rvalue of type "array of N T" or "array of unknown
1787 // bound of T" can be converted to an rvalue of type "pointer to
1788 // T" (C++ 4.2p1).
1789 FromType = S.Context.getArrayDecayedType(FromType);
1790
1791 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1792 // This conversion is deprecated in C++03 (D.4)
1793 SCS.DeprecatedStringLiteralToCharPtr = true;
1794
1795 // For the purpose of ranking in overload resolution
1796 // (13.3.3.1.1), this conversion is considered an
1797 // array-to-pointer conversion followed by a qualification
1798 // conversion (4.4). (C++ 4.2p2)
1799 SCS.Second = ICK_Identity;
1800 SCS.Third = ICK_Qualification;
1801 SCS.QualificationIncludesObjCLifetime = false;
1802 SCS.setAllToTypes(FromType);
1803 return true;
1804 }
1805 } else if (FromType->isFunctionType() && argIsLValue) {
1806 // Function-to-pointer conversion (C++ 4.3).
1807 SCS.First = ICK_Function_To_Pointer;
1808
1809 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1810 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1811 if (!S.checkAddressOfFunctionIsAvailable(FD))
1812 return false;
1813
1814 // An lvalue of function type T can be converted to an rvalue of
1815 // type "pointer to T." The result is a pointer to the
1816 // function. (C++ 4.3p1).
1817 FromType = S.Context.getPointerType(FromType);
1818 } else {
1819 // We don't require any conversions for the first step.
1820 SCS.First = ICK_Identity;
1821 }
1822 SCS.setToType(0, FromType);
1823
1824 // The second conversion can be an integral promotion, floating
1825 // point promotion, integral conversion, floating point conversion,
1826 // floating-integral conversion, pointer conversion,
1827 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1828 // For overloading in C, this can also be a "compatible-type"
1829 // conversion.
1830 bool IncompatibleObjC = false;
1831 ImplicitConversionKind SecondICK = ICK_Identity;
1832 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1833 // The unqualified versions of the types are the same: there's no
1834 // conversion to do.
1835 SCS.Second = ICK_Identity;
1836 } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1837 // Integral promotion (C++ 4.5).
1838 SCS.Second = ICK_Integral_Promotion;
1839 FromType = ToType.getUnqualifiedType();
1840 } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1841 // Floating point promotion (C++ 4.6).
1842 SCS.Second = ICK_Floating_Promotion;
1843 FromType = ToType.getUnqualifiedType();
1844 } else if (S.IsComplexPromotion(FromType, ToType)) {
1845 // Complex promotion (Clang extension)
1846 SCS.Second = ICK_Complex_Promotion;
1847 FromType = ToType.getUnqualifiedType();
1848 } else if (ToType->isBooleanType() &&
1849 (FromType->isArithmeticType() ||
1850 FromType->isAnyPointerType() ||
1851 FromType->isBlockPointerType() ||
1852 FromType->isMemberPointerType())) {
1853 // Boolean conversions (C++ 4.12).
1854 SCS.Second = ICK_Boolean_Conversion;
1855 FromType = S.Context.BoolTy;
1856 } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1857 ToType->isIntegralType(S.Context)) {
1858 // Integral conversions (C++ 4.7).
1859 SCS.Second = ICK_Integral_Conversion;
1860 FromType = ToType.getUnqualifiedType();
1861 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1862 // Complex conversions (C99 6.3.1.6)
1863 SCS.Second = ICK_Complex_Conversion;
1864 FromType = ToType.getUnqualifiedType();
1865 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1866 (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1867 // Complex-real conversions (C99 6.3.1.7)
1868 SCS.Second = ICK_Complex_Real;
1869 FromType = ToType.getUnqualifiedType();
1870 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1871 // FIXME: disable conversions between long double and __float128 if
1872 // their representation is different until there is back end support
1873 // We of course allow this conversion if long double is really double.
1874
1875 // Conversions between bfloat and other floats are not permitted.
1876 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty)
1877 return false;
1878 if (&S.Context.getFloatTypeSemantics(FromType) !=
1879 &S.Context.getFloatTypeSemantics(ToType)) {
1880 bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1881 ToType == S.Context.LongDoubleTy) ||
1882 (FromType == S.Context.LongDoubleTy &&
1883 ToType == S.Context.Float128Ty));
1884 if (Float128AndLongDouble &&
1885 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1886 &llvm::APFloat::PPCDoubleDouble()))
1887 return false;
1888 }
1889 // Floating point conversions (C++ 4.8).
1890 SCS.Second = ICK_Floating_Conversion;
1891 FromType = ToType.getUnqualifiedType();
1892 } else if ((FromType->isRealFloatingType() &&
1893 ToType->isIntegralType(S.Context)) ||
1894 (FromType->isIntegralOrUnscopedEnumerationType() &&
1895 ToType->isRealFloatingType())) {
1896 // Conversions between bfloat and int are not permitted.
1897 if (FromType->isBFloat16Type() || ToType->isBFloat16Type())
1898 return false;
1899
1900 // Floating-integral conversions (C++ 4.9).
1901 SCS.Second = ICK_Floating_Integral;
1902 FromType = ToType.getUnqualifiedType();
1903 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1904 SCS.Second = ICK_Block_Pointer_Conversion;
1905 } else if (AllowObjCWritebackConversion &&
1906 S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1907 SCS.Second = ICK_Writeback_Conversion;
1908 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1909 FromType, IncompatibleObjC)) {
1910 // Pointer conversions (C++ 4.10).
1911 SCS.Second = ICK_Pointer_Conversion;
1912 SCS.IncompatibleObjC = IncompatibleObjC;
1913 FromType = FromType.getUnqualifiedType();
1914 } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1915 InOverloadResolution, FromType)) {
1916 // Pointer to member conversions (4.11).
1917 SCS.Second = ICK_Pointer_Member;
1918 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1919 SCS.Second = SecondICK;
1920 FromType = ToType.getUnqualifiedType();
1921 } else if (!S.getLangOpts().CPlusPlus &&
1922 S.Context.typesAreCompatible(ToType, FromType)) {
1923 // Compatible conversions (Clang extension for C function overloading)
1924 SCS.Second = ICK_Compatible_Conversion;
1925 FromType = ToType.getUnqualifiedType();
1926 } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1927 InOverloadResolution,
1928 SCS, CStyle)) {
1929 SCS.Second = ICK_TransparentUnionConversion;
1930 FromType = ToType;
1931 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1932 CStyle)) {
1933 // tryAtomicConversion has updated the standard conversion sequence
1934 // appropriately.
1935 return true;
1936 } else if (ToType->isEventT() &&
1937 From->isIntegerConstantExpr(S.getASTContext()) &&
1938 From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1939 SCS.Second = ICK_Zero_Event_Conversion;
1940 FromType = ToType;
1941 } else if (ToType->isQueueT() &&
1942 From->isIntegerConstantExpr(S.getASTContext()) &&
1943 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
1944 SCS.Second = ICK_Zero_Queue_Conversion;
1945 FromType = ToType;
1946 } else if (ToType->isSamplerT() &&
1947 From->isIntegerConstantExpr(S.getASTContext())) {
1948 SCS.Second = ICK_Compatible_Conversion;
1949 FromType = ToType;
1950 } else {
1951 // No second conversion required.
1952 SCS.Second = ICK_Identity;
1953 }
1954 SCS.setToType(1, FromType);
1955
1956 // The third conversion can be a function pointer conversion or a
1957 // qualification conversion (C++ [conv.fctptr], [conv.qual]).
1958 bool ObjCLifetimeConversion;
1959 if (S.IsFunctionConversion(FromType, ToType, FromType)) {
1960 // Function pointer conversions (removing 'noexcept') including removal of
1961 // 'noreturn' (Clang extension).
1962 SCS.Third = ICK_Function_Conversion;
1963 } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
1964 ObjCLifetimeConversion)) {
1965 SCS.Third = ICK_Qualification;
1966 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1967 FromType = ToType;
1968 } else {
1969 // No conversion required
1970 SCS.Third = ICK_Identity;
1971 }
1972
1973 // C++ [over.best.ics]p6:
1974 // [...] Any difference in top-level cv-qualification is
1975 // subsumed by the initialization itself and does not constitute
1976 // a conversion. [...]
1977 QualType CanonFrom = S.Context.getCanonicalType(FromType);
1978 QualType CanonTo = S.Context.getCanonicalType(ToType);
1979 if (CanonFrom.getLocalUnqualifiedType()
1980 == CanonTo.getLocalUnqualifiedType() &&
1981 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1982 FromType = ToType;
1983 CanonFrom = CanonTo;
1984 }
1985
1986 SCS.setToType(2, FromType);
1987
1988 if (CanonFrom == CanonTo)
1989 return true;
1990
1991 // If we have not converted the argument type to the parameter type,
1992 // this is a bad conversion sequence, unless we're resolving an overload in C.
1993 if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1994 return false;
1995
1996 ExprResult ER = ExprResult{From};
1997 Sema::AssignConvertType Conv =
1998 S.CheckSingleAssignmentConstraints(ToType, ER,
1999 /*Diagnose=*/false,
2000 /*DiagnoseCFAudited=*/false,
2001 /*ConvertRHS=*/false);
2002 ImplicitConversionKind SecondConv;
2003 switch (Conv) {
2004 case Sema::Compatible:
2005 SecondConv = ICK_C_Only_Conversion;
2006 break;
2007 // For our purposes, discarding qualifiers is just as bad as using an
2008 // incompatible pointer. Note that an IncompatiblePointer conversion can drop
2009 // qualifiers, as well.
2010 case Sema::CompatiblePointerDiscardsQualifiers:
2011 case Sema::IncompatiblePointer:
2012 case Sema::IncompatiblePointerSign:
2013 SecondConv = ICK_Incompatible_Pointer_Conversion;
2014 break;
2015 default:
2016 return false;
2017 }
2018
2019 // First can only be an lvalue conversion, so we pretend that this was the
2020 // second conversion. First should already be valid from earlier in the
2021 // function.
2022 SCS.Second = SecondConv;
2023 SCS.setToType(1, ToType);
2024
2025 // Third is Identity, because Second should rank us worse than any other
2026 // conversion. This could also be ICK_Qualification, but it's simpler to just
2027 // lump everything in with the second conversion, and we don't gain anything
2028 // from making this ICK_Qualification.
2029 SCS.Third = ICK_Identity;
2030 SCS.setToType(2, ToType);
2031 return true;
2032}
2033
2034static bool
2035IsTransparentUnionStandardConversion(Sema &S, Expr* From,
2036 QualType &ToType,
2037 bool InOverloadResolution,
2038 StandardConversionSequence &SCS,
2039 bool CStyle) {
2040
2041 const RecordType *UT = ToType->getAsUnionType();
2042 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
2043 return false;
2044 // The field to initialize within the transparent union.
2045 RecordDecl *UD = UT->getDecl();
2046 // It's compatible if the expression matches any of the fields.
2047 for (const auto *it : UD->fields()) {
2048 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
2049 CStyle, /*AllowObjCWritebackConversion=*/false)) {
2050 ToType = it->getType();
2051 return true;
2052 }
2053 }
2054 return false;
2055}
2056
2057/// IsIntegralPromotion - Determines whether the conversion from the
2058/// expression From (whose potentially-adjusted type is FromType) to
2059/// ToType is an integral promotion (C++ 4.5). If so, returns true and
2060/// sets PromotedType to the promoted type.
2061bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
2062 const BuiltinType *To = ToType->getAs<BuiltinType>();
2063 // All integers are built-in.
2064 if (!To) {
2065 return false;
2066 }
2067
2068 // An rvalue of type char, signed char, unsigned char, short int, or
2069 // unsigned short int can be converted to an rvalue of type int if
2070 // int can represent all the values of the source type; otherwise,
2071 // the source rvalue can be converted to an rvalue of type unsigned
2072 // int (C++ 4.5p1).
2073 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
2074 !FromType->isEnumeralType()) {
2075 if (// We can promote any signed, promotable integer type to an int
2076 (FromType->isSignedIntegerType() ||
2077 // We can promote any unsigned integer type whose size is
2078 // less than int to an int.
2079 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
2080 return To->getKind() == BuiltinType::Int;
2081 }
2082
2083 return To->getKind() == BuiltinType::UInt;
2084 }
2085
2086 // C++11 [conv.prom]p3:
2087 // A prvalue of an unscoped enumeration type whose underlying type is not
2088 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
2089 // following types that can represent all the values of the enumeration
2090 // (i.e., the values in the range bmin to bmax as described in 7.2): int,
2091 // unsigned int, long int, unsigned long int, long long int, or unsigned
2092 // long long int. If none of the types in that list can represent all the
2093 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
2094 // type can be converted to an rvalue a prvalue of the extended integer type
2095 // with lowest integer conversion rank (4.13) greater than the rank of long
2096 // long in which all the values of the enumeration can be represented. If
2097 // there are two such extended types, the signed one is chosen.
2098 // C++11 [conv.prom]p4:
2099 // A prvalue of an unscoped enumeration type whose underlying type is fixed
2100 // can be converted to a prvalue of its underlying type. Moreover, if
2101 // integral promotion can be applied to its underlying type, a prvalue of an
2102 // unscoped enumeration type whose underlying type is fixed can also be
2103 // converted to a prvalue of the promoted underlying type.
2104 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
2105 // C++0x 7.2p9: Note that this implicit enum to int conversion is not
2106 // provided for a scoped enumeration.
2107 if (FromEnumType->getDecl()->isScoped())
2108 return false;
2109
2110 // We can perform an integral promotion to the underlying type of the enum,
2111 // even if that's not the promoted type. Note that the check for promoting
2112 // the underlying type is based on the type alone, and does not consider
2113 // the bitfield-ness of the actual source expression.
2114 if (FromEnumType->getDecl()->isFixed()) {
2115 QualType Underlying = FromEnumType->getDecl()->getIntegerType();
2116 return Context.hasSameUnqualifiedType(Underlying, ToType) ||
2117 IsIntegralPromotion(nullptr, Underlying, ToType);
2118 }
2119
2120 // We have already pre-calculated the promotion type, so this is trivial.
2121 if (ToType->isIntegerType() &&
2122 isCompleteType(From->getBeginLoc(), FromType))
2123 return Context.hasSameUnqualifiedType(
2124 ToType, FromEnumType->getDecl()->getPromotionType());
2125
2126 // C++ [conv.prom]p5:
2127 // If the bit-field has an enumerated type, it is treated as any other
2128 // value of that type for promotion purposes.
2129 //
2130 // ... so do not fall through into the bit-field checks below in C++.
2131 if (getLangOpts().CPlusPlus)
2132 return false;
2133 }
2134
2135 // C++0x [conv.prom]p2:
2136 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
2137 // to an rvalue a prvalue of the first of the following types that can
2138 // represent all the values of its underlying type: int, unsigned int,
2139 // long int, unsigned long int, long long int, or unsigned long long int.
2140 // If none of the types in that list can represent all the values of its
2141 // underlying type, an rvalue a prvalue of type char16_t, char32_t,
2142 // or wchar_t can be converted to an rvalue a prvalue of its underlying
2143 // type.
2144 if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
2145 ToType->isIntegerType()) {
2146 // Determine whether the type we're converting from is signed or
2147 // unsigned.
2148 bool FromIsSigned = FromType->isSignedIntegerType();
2149 uint64_t FromSize = Context.getTypeSize(FromType);
2150
2151 // The types we'll try to promote to, in the appropriate
2152 // order. Try each of these types.
2153 QualType PromoteTypes[6] = {
2154 Context.IntTy, Context.UnsignedIntTy,
2155 Context.LongTy, Context.UnsignedLongTy ,
2156 Context.LongLongTy, Context.UnsignedLongLongTy
2157 };
2158 for (int Idx = 0; Idx < 6; ++Idx) {
2159 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
2160 if (FromSize < ToSize ||
2161 (FromSize == ToSize &&
2162 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
2163 // We found the type that we can promote to. If this is the
2164 // type we wanted, we have a promotion. Otherwise, no
2165 // promotion.
2166 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
2167 }
2168 }
2169 }
2170
2171 // An rvalue for an integral bit-field (9.6) can be converted to an
2172 // rvalue of type int if int can represent all the values of the
2173 // bit-field; otherwise, it can be converted to unsigned int if
2174 // unsigned int can represent all the values of the bit-field. If
2175 // the bit-field is larger yet, no integral promotion applies to
2176 // it. If the bit-field has an enumerated type, it is treated as any
2177 // other value of that type for promotion purposes (C++ 4.5p3).
2178 // FIXME: We should delay checking of bit-fields until we actually perform the
2179 // conversion.
2180 //
2181 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
2182 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
2183 // bit-fields and those whose underlying type is larger than int) for GCC
2184 // compatibility.
2185 if (From) {
2186 if (FieldDecl *MemberDecl = From->getSourceBitField()) {
2187 Optional<llvm::APSInt> BitWidth;
2188 if (FromType->isIntegralType(Context) &&
2189 (BitWidth =
2190 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) {
2191 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned());
2192 ToSize = Context.getTypeSize(ToType);
2193
2194 // Are we promoting to an int from a bitfield that fits in an int?
2195 if (*BitWidth < ToSize ||
2196 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) {
2197 return To->getKind() == BuiltinType::Int;
2198 }
2199
2200 // Are we promoting to an unsigned int from an unsigned bitfield
2201 // that fits into an unsigned int?
2202 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) {
2203 return To->getKind() == BuiltinType::UInt;
2204 }
2205
2206 return false;
2207 }
2208 }
2209 }
2210
2211 // An rvalue of type bool can be converted to an rvalue of type int,
2212 // with false becoming zero and true becoming one (C++ 4.5p4).
2213 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
2214 return true;
2215 }
2216
2217 return false;
2218}
2219
2220/// IsFloatingPointPromotion - Determines whether the conversion from
2221/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
2222/// returns true and sets PromotedType to the promoted type.
2223bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
2224 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
2225 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
2226 /// An rvalue of type float can be converted to an rvalue of type
2227 /// double. (C++ 4.6p1).
2228 if (FromBuiltin->getKind() == BuiltinType::Float &&
2229 ToBuiltin->getKind() == BuiltinType::Double)
2230 return true;
2231
2232 // C99 6.3.1.5p1:
2233 // When a float is promoted to double or long double, or a
2234 // double is promoted to long double [...].
2235 if (!getLangOpts().CPlusPlus &&
2236 (FromBuiltin->getKind() == BuiltinType::Float ||
2237 FromBuiltin->getKind() == BuiltinType::Double) &&
2238 (ToBuiltin->getKind() == BuiltinType::LongDouble ||
2239 ToBuiltin->getKind() == BuiltinType::Float128))
2240 return true;
2241
2242 // Half can be promoted to float.
2243 if (!getLangOpts().NativeHalfType &&
2244 FromBuiltin->getKind() == BuiltinType::Half &&
2245 ToBuiltin->getKind() == BuiltinType::Float)
2246 return true;
2247 }
2248
2249 return false;
2250}
2251
2252/// Determine if a conversion is a complex promotion.
2253///
2254/// A complex promotion is defined as a complex -> complex conversion
2255/// where the conversion between the underlying real types is a
2256/// floating-point or integral promotion.
2257bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2258 const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2259 if (!FromComplex)
2260 return false;
2261
2262 const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2263 if (!ToComplex)
2264 return false;
2265
2266 return IsFloatingPointPromotion(FromComplex->getElementType(),
2267 ToComplex->getElementType()) ||
2268 IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2269 ToComplex->getElementType());
2270}
2271
2272/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2273/// the pointer type FromPtr to a pointer to type ToPointee, with the
2274/// same type qualifiers as FromPtr has on its pointee type. ToType,
2275/// if non-empty, will be a pointer to ToType that may or may not have
2276/// the right set of qualifiers on its pointee.
2277///
2278static QualType
2279BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2280 QualType ToPointee, QualType ToType,
2281 ASTContext &Context,
2282 bool StripObjCLifetime = false) {
2283 assert((FromPtr->getTypeClass() == Type::Pointer ||(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 2285, __PRETTY_FUNCTION__))
2284 FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 2285, __PRETTY_FUNCTION__))
2285 "Invalid similarly-qualified pointer type")(((FromPtr->getTypeClass() == Type::Pointer || FromPtr->
getTypeClass() == Type::ObjCObjectPointer) && "Invalid similarly-qualified pointer type"
) ? static_cast<void> (0) : __assert_fail ("(FromPtr->getTypeClass() == Type::Pointer || FromPtr->getTypeClass() == Type::ObjCObjectPointer) && \"Invalid similarly-qualified pointer type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 2285, __PRETTY_FUNCTION__))
;
2286
2287 /// Conversions to 'id' subsume cv-qualifier conversions.
2288 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2289 return ToType.getUnqualifiedType();
2290
2291 QualType CanonFromPointee
2292 = Context.getCanonicalType(FromPtr->getPointeeType());
2293 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2294 Qualifiers Quals = CanonFromPointee.getQualifiers();
2295
2296 if (StripObjCLifetime)
2297 Quals.removeObjCLifetime();
2298
2299 // Exact qualifier match -> return the pointer type we're converting to.
2300 if (CanonToPointee.getLocalQualifiers() == Quals) {
2301 // ToType is exactly what we need. Return it.
2302 if (!ToType.isNull())
2303 return ToType.getUnqualifiedType();
2304
2305 // Build a pointer to ToPointee. It has the right qualifiers
2306 // already.
2307 if (isa<ObjCObjectPointerType>(ToType))
2308 return Context.getObjCObjectPointerType(ToPointee);
2309 return Context.getPointerType(ToPointee);
2310 }
2311
2312 // Just build a canonical type that has the right qualifiers.
2313 QualType QualifiedCanonToPointee
2314 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2315
2316 if (isa<ObjCObjectPointerType>(ToType))
2317 return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2318 return Context.getPointerType(QualifiedCanonToPointee);
2319}
2320
2321static bool isNullPointerConstantForConversion(Expr *Expr,
2322 bool InOverloadResolution,
2323 ASTContext &Context) {
2324 // Handle value-dependent integral null pointer constants correctly.
2325 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2326 if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2327 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2328 return !InOverloadResolution;
2329
2330 return Expr->isNullPointerConstant(Context,
2331 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2332 : Expr::NPC_ValueDependentIsNull);
2333}
2334
2335/// IsPointerConversion - Determines whether the conversion of the
2336/// expression From, which has the (possibly adjusted) type FromType,
2337/// can be converted to the type ToType via a pointer conversion (C++
2338/// 4.10). If so, returns true and places the converted type (that
2339/// might differ from ToType in its cv-qualifiers at some level) into
2340/// ConvertedType.
2341///
2342/// This routine also supports conversions to and from block pointers
2343/// and conversions with Objective-C's 'id', 'id<protocols...>', and
2344/// pointers to interfaces. FIXME: Once we've determined the
2345/// appropriate overloading rules for Objective-C, we may want to
2346/// split the Objective-C checks into a different routine; however,
2347/// GCC seems to consider all of these conversions to be pointer
2348/// conversions, so for now they live here. IncompatibleObjC will be
2349/// set if the conversion is an allowed Objective-C conversion that
2350/// should result in a warning.
2351bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2352 bool InOverloadResolution,
2353 QualType& ConvertedType,
2354 bool &IncompatibleObjC) {
2355 IncompatibleObjC = false;
2356 if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2357 IncompatibleObjC))
2358 return true;
2359
2360 // Conversion from a null pointer constant to any Objective-C pointer type.
2361 if (ToType->isObjCObjectPointerType() &&
2362 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2363 ConvertedType = ToType;
2364 return true;
2365 }
2366
2367 // Blocks: Block pointers can be converted to void*.
2368 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2369 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
2370 ConvertedType = ToType;
2371 return true;
2372 }
2373 // Blocks: A null pointer constant can be converted to a block
2374 // pointer type.
2375 if (ToType->isBlockPointerType() &&
2376 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2377 ConvertedType = ToType;
2378 return true;
2379 }
2380
2381 // If the left-hand-side is nullptr_t, the right side can be a null
2382 // pointer constant.
2383 if (ToType->isNullPtrType() &&
2384 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2385 ConvertedType = ToType;
2386 return true;
2387 }
2388
2389 const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2390 if (!ToTypePtr)
2391 return false;
2392
2393 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2394 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2395 ConvertedType = ToType;
2396 return true;
2397 }
2398
2399 // Beyond this point, both types need to be pointers
2400 // , including objective-c pointers.
2401 QualType ToPointeeType = ToTypePtr->getPointeeType();
2402 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2403 !getLangOpts().ObjCAutoRefCount) {
2404 ConvertedType = BuildSimilarlyQualifiedPointerType(
2405 FromType->getAs<ObjCObjectPointerType>(),
2406 ToPointeeType,
2407 ToType, Context);
2408 return true;
2409 }
2410 const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2411 if (!FromTypePtr)
2412 return false;
2413
2414 QualType FromPointeeType = FromTypePtr->getPointeeType();
2415
2416 // If the unqualified pointee types are the same, this can't be a
2417 // pointer conversion, so don't do all of the work below.
2418 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2419 return false;
2420
2421 // An rvalue of type "pointer to cv T," where T is an object type,
2422 // can be converted to an rvalue of type "pointer to cv void" (C++
2423 // 4.10p2).
2424 if (FromPointeeType->isIncompleteOrObjectType() &&
2425 ToPointeeType->isVoidType()) {
2426 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2427 ToPointeeType,
2428 ToType, Context,
2429 /*StripObjCLifetime=*/true);
2430 return true;
2431 }
2432
2433 // MSVC allows implicit function to void* type conversion.
2434 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2435 ToPointeeType->isVoidType()) {
2436 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2437 ToPointeeType,
2438 ToType, Context);
2439 return true;
2440 }
2441
2442 // When we're overloading in C, we allow a special kind of pointer
2443 // conversion for compatible-but-not-identical pointee types.
2444 if (!getLangOpts().CPlusPlus &&
2445 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2446 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2447 ToPointeeType,
2448 ToType, Context);
2449 return true;
2450 }
2451
2452 // C++ [conv.ptr]p3:
2453 //
2454 // An rvalue of type "pointer to cv D," where D is a class type,
2455 // can be converted to an rvalue of type "pointer to cv B," where
2456 // B is a base class (clause 10) of D. If B is an inaccessible
2457 // (clause 11) or ambiguous (10.2) base class of D, a program that
2458 // necessitates this conversion is ill-formed. The result of the
2459 // conversion is a pointer to the base class sub-object of the
2460 // derived class object. The null pointer value is converted to
2461 // the null pointer value of the destination type.
2462 //
2463 // Note that we do not check for ambiguity or inaccessibility
2464 // here. That is handled by CheckPointerConversion.
2465 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
2466 ToPointeeType->isRecordType() &&
2467 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2468 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
2469 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2470 ToPointeeType,
2471 ToType, Context);
2472 return true;
2473 }
2474
2475 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2476 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2477 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2478 ToPointeeType,
2479 ToType, Context);
2480 return true;
2481 }
2482
2483 return false;
2484}
2485
2486/// Adopt the given qualifiers for the given type.
2487static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2488 Qualifiers TQs = T.getQualifiers();
2489
2490 // Check whether qualifiers already match.
2491 if (TQs == Qs)
2492 return T;
2493
2494 if (Qs.compatiblyIncludes(TQs))
2495 return Context.getQualifiedType(T, Qs);
2496
2497 return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2498}
2499
2500/// isObjCPointerConversion - Determines whether this is an
2501/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2502/// with the same arguments and return values.
2503bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2504 QualType& ConvertedType,
2505 bool &IncompatibleObjC) {
2506 if (!getLangOpts().ObjC)
2507 return false;
2508
2509 // The set of qualifiers on the type we're converting from.
2510 Qualifiers FromQualifiers = FromType.getQualifiers();
2511
2512 // First, we handle all conversions on ObjC object pointer types.
2513 const ObjCObjectPointerType* ToObjCPtr =
2514 ToType->getAs<ObjCObjectPointerType>();
2515 const ObjCObjectPointerType *FromObjCPtr =
2516 FromType->getAs<ObjCObjectPointerType>();
2517
2518 if (ToObjCPtr && FromObjCPtr) {
2519 // If the pointee types are the same (ignoring qualifications),
2520 // then this is not a pointer conversion.
2521 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2522 FromObjCPtr->getPointeeType()))
2523 return false;
2524
2525 // Conversion between Objective-C pointers.
2526 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2527 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2528 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2529 if (getLangOpts().CPlusPlus && LHS && RHS &&
2530 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2531 FromObjCPtr->getPointeeType()))
2532 return false;
2533 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2534 ToObjCPtr->getPointeeType(),
2535 ToType, Context);
2536 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2537 return true;
2538 }
2539
2540 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2541 // Okay: this is some kind of implicit downcast of Objective-C
2542 // interfaces, which is permitted. However, we're going to
2543 // complain about it.
2544 IncompatibleObjC = true;
2545 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2546 ToObjCPtr->getPointeeType(),
2547 ToType, Context);
2548 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2549 return true;
2550 }
2551 }
2552 // Beyond this point, both types need to be C pointers or block pointers.
2553 QualType ToPointeeType;
2554 if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2555 ToPointeeType = ToCPtr->getPointeeType();
2556 else if (const BlockPointerType *ToBlockPtr =
2557 ToType->getAs<BlockPointerType>()) {
2558 // Objective C++: We're able to convert from a pointer to any object
2559 // to a block pointer type.
2560 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2561 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2562 return true;
2563 }
2564 ToPointeeType = ToBlockPtr->getPointeeType();
2565 }
2566 else if (FromType->getAs<BlockPointerType>() &&
2567 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2568 // Objective C++: We're able to convert from a block pointer type to a
2569 // pointer to any object.
2570 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2571 return true;
2572 }
2573 else
2574 return false;
2575
2576 QualType FromPointeeType;
2577 if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2578 FromPointeeType = FromCPtr->getPointeeType();
2579 else if (const BlockPointerType *FromBlockPtr =
2580 FromType->getAs<BlockPointerType>())
2581 FromPointeeType = FromBlockPtr->getPointeeType();
2582 else
2583 return false;
2584
2585 // If we have pointers to pointers, recursively check whether this
2586 // is an Objective-C conversion.
2587 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2588 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2589 IncompatibleObjC)) {
2590 // We always complain about this conversion.
2591 IncompatibleObjC = true;
2592 ConvertedType = Context.getPointerType(ConvertedType);
2593 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2594 return true;
2595 }
2596 // Allow conversion of pointee being objective-c pointer to another one;
2597 // as in I* to id.
2598 if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2599 ToPointeeType->getAs<ObjCObjectPointerType>() &&
2600 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2601 IncompatibleObjC)) {
2602
2603 ConvertedType = Context.getPointerType(ConvertedType);
2604 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2605 return true;
2606 }
2607
2608 // If we have pointers to functions or blocks, check whether the only
2609 // differences in the argument and result types are in Objective-C
2610 // pointer conversions. If so, we permit the conversion (but
2611 // complain about it).
2612 const FunctionProtoType *FromFunctionType
2613 = FromPointeeType->getAs<FunctionProtoType>();
2614 const FunctionProtoType *ToFunctionType
2615 = ToPointeeType->getAs<FunctionProtoType>();
2616 if (FromFunctionType && ToFunctionType) {
2617 // If the function types are exactly the same, this isn't an
2618 // Objective-C pointer conversion.
2619 if (Context.getCanonicalType(FromPointeeType)
2620 == Context.getCanonicalType(ToPointeeType))
2621 return false;
2622
2623 // Perform the quick checks that will tell us whether these
2624 // function types are obviously different.
2625 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2626 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2627 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
2628 return false;
2629
2630 bool HasObjCConversion = false;
2631 if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2632 Context.getCanonicalType(ToFunctionType->getReturnType())) {
2633 // Okay, the types match exactly. Nothing to do.
2634 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2635 ToFunctionType->getReturnType(),
2636 ConvertedType, IncompatibleObjC)) {
2637 // Okay, we have an Objective-C pointer conversion.
2638 HasObjCConversion = true;
2639 } else {
2640 // Function types are too different. Abort.
2641 return false;
2642 }
2643
2644 // Check argument types.
2645 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2646 ArgIdx != NumArgs; ++ArgIdx) {
2647 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2648 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2649 if (Context.getCanonicalType(FromArgType)
2650 == Context.getCanonicalType(ToArgType)) {
2651 // Okay, the types match exactly. Nothing to do.
2652 } else if (isObjCPointerConversion(FromArgType, ToArgType,
2653 ConvertedType, IncompatibleObjC)) {
2654 // Okay, we have an Objective-C pointer conversion.
2655 HasObjCConversion = true;
2656 } else {
2657 // Argument types are too different. Abort.
2658 return false;
2659 }
2660 }
2661
2662 if (HasObjCConversion) {
2663 // We had an Objective-C conversion. Allow this pointer
2664 // conversion, but complain about it.
2665 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2666 IncompatibleObjC = true;
2667 return true;
2668 }
2669 }
2670
2671 return false;
2672}
2673
2674/// Determine whether this is an Objective-C writeback conversion,
2675/// used for parameter passing when performing automatic reference counting.
2676///
2677/// \param FromType The type we're converting form.
2678///
2679/// \param ToType The type we're converting to.
2680///
2681/// \param ConvertedType The type that will be produced after applying
2682/// this conversion.
2683bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2684 QualType &ConvertedType) {
2685 if (!getLangOpts().ObjCAutoRefCount ||
2686 Context.hasSameUnqualifiedType(FromType, ToType))
2687 return false;
2688
2689 // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2690 QualType ToPointee;
2691 if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2692 ToPointee = ToPointer->getPointeeType();
2693 else
2694 return false;
2695
2696 Qualifiers ToQuals = ToPointee.getQualifiers();
2697 if (!ToPointee->isObjCLifetimeType() ||
2698 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2699 !ToQuals.withoutObjCLifetime().empty())
2700 return false;
2701
2702 // Argument must be a pointer to __strong to __weak.
2703 QualType FromPointee;
2704 if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2705 FromPointee = FromPointer->getPointeeType();
2706 else
2707 return false;
2708
2709 Qualifiers FromQuals = FromPointee.getQualifiers();
2710 if (!FromPointee->isObjCLifetimeType() ||
2711 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2712 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2713 return false;
2714
2715 // Make sure that we have compatible qualifiers.
2716 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2717 if (!ToQuals.compatiblyIncludes(FromQuals))
2718 return false;
2719
2720 // Remove qualifiers from the pointee type we're converting from; they
2721 // aren't used in the compatibility check belong, and we'll be adding back
2722 // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2723 FromPointee = FromPointee.getUnqualifiedType();
2724
2725 // The unqualified form of the pointee types must be compatible.
2726 ToPointee = ToPointee.getUnqualifiedType();
2727 bool IncompatibleObjC;
2728 if (Context.typesAreCompatible(FromPointee, ToPointee))
2729 FromPointee = ToPointee;
2730 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2731 IncompatibleObjC))
2732 return false;
2733
2734 /// Construct the type we're converting to, which is a pointer to
2735 /// __autoreleasing pointee.
2736 FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2737 ConvertedType = Context.getPointerType(FromPointee);
2738 return true;
2739}
2740
2741bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2742 QualType& ConvertedType) {
2743 QualType ToPointeeType;
2744 if (const BlockPointerType *ToBlockPtr =
2745 ToType->getAs<BlockPointerType>())
2746 ToPointeeType = ToBlockPtr->getPointeeType();
2747 else
2748 return false;
2749
2750 QualType FromPointeeType;
2751 if (const BlockPointerType *FromBlockPtr =
2752 FromType->getAs<BlockPointerType>())
2753 FromPointeeType = FromBlockPtr->getPointeeType();
2754 else
2755 return false;
2756 // We have pointer to blocks, check whether the only
2757 // differences in the argument and result types are in Objective-C
2758 // pointer conversions. If so, we permit the conversion.
2759
2760 const FunctionProtoType *FromFunctionType
2761 = FromPointeeType->getAs<FunctionProtoType>();
2762 const FunctionProtoType *ToFunctionType
2763 = ToPointeeType->getAs<FunctionProtoType>();
2764
2765 if (!FromFunctionType || !ToFunctionType)
2766 return false;
2767
2768 if (Context.hasSameType(FromPointeeType, ToPointeeType))
2769 return true;
2770
2771 // Perform the quick checks that will tell us whether these
2772 // function types are obviously different.
2773 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2774 FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2775 return false;
2776
2777 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2778 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2779 if (FromEInfo != ToEInfo)
2780 return false;
2781
2782 bool IncompatibleObjC = false;
2783 if (Context.hasSameType(FromFunctionType->getReturnType(),
2784 ToFunctionType->getReturnType())) {
2785 // Okay, the types match exactly. Nothing to do.
2786 } else {
2787 QualType RHS = FromFunctionType->getReturnType();
2788 QualType LHS = ToFunctionType->getReturnType();
2789 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2790 !RHS.hasQualifiers() && LHS.hasQualifiers())
2791 LHS = LHS.getUnqualifiedType();
2792
2793 if (Context.hasSameType(RHS,LHS)) {
2794 // OK exact match.
2795 } else if (isObjCPointerConversion(RHS, LHS,
2796 ConvertedType, IncompatibleObjC)) {
2797 if (IncompatibleObjC)
2798 return false;
2799 // Okay, we have an Objective-C pointer conversion.
2800 }
2801 else
2802 return false;
2803 }
2804
2805 // Check argument types.
2806 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2807 ArgIdx != NumArgs; ++ArgIdx) {
2808 IncompatibleObjC = false;
2809 QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2810 QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2811 if (Context.hasSameType(FromArgType, ToArgType)) {
2812 // Okay, the types match exactly. Nothing to do.
2813 } else if (isObjCPointerConversion(ToArgType, FromArgType,
2814 ConvertedType, IncompatibleObjC)) {
2815 if (IncompatibleObjC)
2816 return false;
2817 // Okay, we have an Objective-C pointer conversion.
2818 } else
2819 // Argument types are too different. Abort.
2820 return false;
2821 }
2822
2823 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
2824 bool CanUseToFPT, CanUseFromFPT;
2825 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
2826 CanUseToFPT, CanUseFromFPT,
2827 NewParamInfos))
2828 return false;
2829
2830 ConvertedType = ToType;
2831 return true;
2832}
2833
2834enum {
2835 ft_default,
2836 ft_different_class,
2837 ft_parameter_arity,
2838 ft_parameter_mismatch,
2839 ft_return_type,
2840 ft_qualifer_mismatch,
2841 ft_noexcept
2842};
2843
2844/// Attempts to get the FunctionProtoType from a Type. Handles
2845/// MemberFunctionPointers properly.
2846static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2847 if (auto *FPT = FromType->getAs<FunctionProtoType>())
2848 return FPT;
2849
2850 if (auto *MPT = FromType->getAs<MemberPointerType>())
2851 return MPT->getPointeeType()->getAs<FunctionProtoType>();
2852
2853 return nullptr;
2854}
2855
2856/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2857/// function types. Catches different number of parameter, mismatch in
2858/// parameter types, and different return types.
2859void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2860 QualType FromType, QualType ToType) {
2861 // If either type is not valid, include no extra info.
2862 if (FromType.isNull() || ToType.isNull()) {
2863 PDiag << ft_default;
2864 return;
2865 }
2866
2867 // Get the function type from the pointers.
2868 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2869 const auto *FromMember = FromType->castAs<MemberPointerType>(),
2870 *ToMember = ToType->castAs<MemberPointerType>();
2871 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2872 PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2873 << QualType(FromMember->getClass(), 0);
2874 return;
2875 }
2876 FromType = FromMember->getPointeeType();
2877 ToType = ToMember->getPointeeType();
2878 }
2879
2880 if (FromType->isPointerType())
2881 FromType = FromType->getPointeeType();
2882 if (ToType->isPointerType())
2883 ToType = ToType->getPointeeType();
2884
2885 // Remove references.
2886 FromType = FromType.getNonReferenceType();
2887 ToType = ToType.getNonReferenceType();
2888
2889 // Don't print extra info for non-specialized template functions.
2890 if (FromType->isInstantiationDependentType() &&
2891 !FromType->getAs<TemplateSpecializationType>()) {
2892 PDiag << ft_default;
2893 return;
2894 }
2895
2896 // No extra info for same types.
2897 if (Context.hasSameType(FromType, ToType)) {
2898 PDiag << ft_default;
2899 return;
2900 }
2901
2902 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2903 *ToFunction = tryGetFunctionProtoType(ToType);
2904
2905 // Both types need to be function types.
2906 if (!FromFunction || !ToFunction) {
2907 PDiag << ft_default;
2908 return;
2909 }
2910
2911 if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2912 PDiag << ft_parameter_arity << ToFunction->getNumParams()
2913 << FromFunction->getNumParams();
2914 return;
2915 }
2916
2917 // Handle different parameter types.
2918 unsigned ArgPos;
2919 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2920 PDiag << ft_parameter_mismatch << ArgPos + 1
2921 << ToFunction->getParamType(ArgPos)
2922 << FromFunction->getParamType(ArgPos);
2923 return;
2924 }
2925
2926 // Handle different return type.
2927 if (!Context.hasSameType(FromFunction->getReturnType(),
2928 ToFunction->getReturnType())) {
2929 PDiag << ft_return_type << ToFunction->getReturnType()
2930 << FromFunction->getReturnType();
2931 return;
2932 }
2933
2934 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
2935 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
2936 << FromFunction->getMethodQuals();
2937 return;
2938 }
2939
2940 // Handle exception specification differences on canonical type (in C++17
2941 // onwards).
2942 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
2943 ->isNothrow() !=
2944 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
2945 ->isNothrow()) {
2946 PDiag << ft_noexcept;
2947 return;
2948 }
2949
2950 // Unable to find a difference, so add no extra info.
2951 PDiag << ft_default;
2952}
2953
2954/// FunctionParamTypesAreEqual - This routine checks two function proto types
2955/// for equality of their argument types. Caller has already checked that
2956/// they have same number of arguments. If the parameters are different,
2957/// ArgPos will have the parameter index of the first different parameter.
2958bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2959 const FunctionProtoType *NewType,
2960 unsigned *ArgPos) {
2961 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2962 N = NewType->param_type_begin(),
2963 E = OldType->param_type_end();
2964 O && (O != E); ++O, ++N) {
2965 // Ignore address spaces in pointee type. This is to disallow overloading
2966 // on __ptr32/__ptr64 address spaces.
2967 QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType());
2968 QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType());
2969
2970 if (!Context.hasSameType(Old, New)) {
2971 if (ArgPos)
2972 *ArgPos = O - OldType->param_type_begin();
2973 return false;
2974 }
2975 }
2976 return true;
2977}
2978
2979/// CheckPointerConversion - Check the pointer conversion from the
2980/// expression From to the type ToType. This routine checks for
2981/// ambiguous or inaccessible derived-to-base pointer
2982/// conversions for which IsPointerConversion has already returned
2983/// true. It returns true and produces a diagnostic if there was an
2984/// error, or returns false otherwise.
2985bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2986 CastKind &Kind,
2987 CXXCastPath& BasePath,
2988 bool IgnoreBaseAccess,
2989 bool Diagnose) {
2990 QualType FromType = From->getType();
2991 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2992
2993 Kind = CK_BitCast;
2994
2995 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2996 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2997 Expr::NPCK_ZeroExpression) {
2998 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2999 DiagRuntimeBehavior(From->getExprLoc(), From,
3000 PDiag(diag::warn_impcast_bool_to_null_pointer)
3001 << ToType << From->getSourceRange());
3002 else if (!isUnevaluatedContext())
3003 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
3004 << ToType << From->getSourceRange();
3005 }
3006 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
3007 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
3008 QualType FromPointeeType = FromPtrType->getPointeeType(),
3009 ToPointeeType = ToPtrType->getPointeeType();
3010
3011 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
3012 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
3013 // We must have a derived-to-base conversion. Check an
3014 // ambiguous or inaccessible conversion.
3015 unsigned InaccessibleID = 0;
3016 unsigned AmbiguousID = 0;
3017 if (Diagnose) {
3018 InaccessibleID = diag::err_upcast_to_inaccessible_base;
3019 AmbiguousID = diag::err_ambiguous_derived_to_base_conv;
3020 }
3021 if (CheckDerivedToBaseConversion(
3022 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID,
3023 From->getExprLoc(), From->getSourceRange(), DeclarationName(),
3024 &BasePath, IgnoreBaseAccess))
3025 return true;
3026
3027 // The conversion was successful.
3028 Kind = CK_DerivedToBase;
3029 }
3030
3031 if (Diagnose && !IsCStyleOrFunctionalCast &&
3032 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
3033 assert(getLangOpts().MSVCCompat &&((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3034, __PRETTY_FUNCTION__))
3034 "this should only be possible with MSVCCompat!")((getLangOpts().MSVCCompat && "this should only be possible with MSVCCompat!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"this should only be possible with MSVCCompat!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3034, __PRETTY_FUNCTION__))
;
3035 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
3036 << From->getSourceRange();
3037 }
3038 }
3039 } else if (const ObjCObjectPointerType *ToPtrType =
3040 ToType->getAs<ObjCObjectPointerType>()) {
3041 if (const ObjCObjectPointerType *FromPtrType =
3042 FromType->getAs<ObjCObjectPointerType>()) {
3043 // Objective-C++ conversions are always okay.
3044 // FIXME: We should have a different class of conversions for the
3045 // Objective-C++ implicit conversions.
3046 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
3047 return false;
3048 } else if (FromType->isBlockPointerType()) {
3049 Kind = CK_BlockPointerToObjCPointerCast;
3050 } else {
3051 Kind = CK_CPointerToObjCPointerCast;
3052 }
3053 } else if (ToType->isBlockPointerType()) {
3054 if (!FromType->isBlockPointerType())
3055 Kind = CK_AnyPointerToBlockPointerCast;
3056 }
3057
3058 // We shouldn't fall into this case unless it's valid for other
3059 // reasons.
3060 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
3061 Kind = CK_NullToPointer;
3062
3063 return false;
3064}
3065
3066/// IsMemberPointerConversion - Determines whether the conversion of the
3067/// expression From, which has the (possibly adjusted) type FromType, can be
3068/// converted to the type ToType via a member pointer conversion (C++ 4.11).
3069/// If so, returns true and places the converted type (that might differ from
3070/// ToType in its cv-qualifiers at some level) into ConvertedType.
3071bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
3072 QualType ToType,
3073 bool InOverloadResolution,
3074 QualType &ConvertedType) {
3075 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
3076 if (!ToTypePtr)
3077 return false;
3078
3079 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
3080 if (From->isNullPointerConstant(Context,
3081 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
3082 : Expr::NPC_ValueDependentIsNull)) {
3083 ConvertedType = ToType;
3084 return true;
3085 }
3086
3087 // Otherwise, both types have to be member pointers.
3088 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
3089 if (!FromTypePtr)
3090 return false;
3091
3092 // A pointer to member of B can be converted to a pointer to member of D,
3093 // where D is derived from B (C++ 4.11p2).
3094 QualType FromClass(FromTypePtr->getClass(), 0);
3095 QualType ToClass(ToTypePtr->getClass(), 0);
3096
3097 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
3098 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
3099 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
3100 ToClass.getTypePtr());
3101 return true;
3102 }
3103
3104 return false;
3105}
3106
3107/// CheckMemberPointerConversion - Check the member pointer conversion from the
3108/// expression From to the type ToType. This routine checks for ambiguous or
3109/// virtual or inaccessible base-to-derived member pointer conversions
3110/// for which IsMemberPointerConversion has already returned true. It returns
3111/// true and produces a diagnostic if there was an error, or returns false
3112/// otherwise.
3113bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
3114 CastKind &Kind,
3115 CXXCastPath &BasePath,
3116 bool IgnoreBaseAccess) {
3117 QualType FromType = From->getType();
3118 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
3119 if (!FromPtrType) {
3120 // This must be a null pointer to member pointer conversion
3121 assert(From->isNullPointerConstant(Context,((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3123, __PRETTY_FUNCTION__))
3122 Expr::NPC_ValueDependentIsNull) &&((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3123, __PRETTY_FUNCTION__))
3123 "Expr must be null pointer constant!")((From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull
) && "Expr must be null pointer constant!") ? static_cast
<void> (0) : __assert_fail ("From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull) && \"Expr must be null pointer constant!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3123, __PRETTY_FUNCTION__))
;
3124 Kind = CK_NullToMemberPointer;
3125 return false;
3126 }
3127
3128 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
3129 assert(ToPtrType && "No member pointer cast has a target type "((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3130, __PRETTY_FUNCTION__))
3130 "that is not a member pointer.")((ToPtrType && "No member pointer cast has a target type "
"that is not a member pointer.") ? static_cast<void> (
0) : __assert_fail ("ToPtrType && \"No member pointer cast has a target type \" \"that is not a member pointer.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3130, __PRETTY_FUNCTION__))
;
3131
3132 QualType FromClass = QualType(FromPtrType->getClass(), 0);
3133 QualType ToClass = QualType(ToPtrType->getClass(), 0);
3134
3135 // FIXME: What about dependent types?
3136 assert(FromClass->isRecordType() && "Pointer into non-class.")((FromClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("FromClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3136, __PRETTY_FUNCTION__))
;
3137 assert(ToClass->isRecordType() && "Pointer into non-class.")((ToClass->isRecordType() && "Pointer into non-class."
) ? static_cast<void> (0) : __assert_fail ("ToClass->isRecordType() && \"Pointer into non-class.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3137, __PRETTY_FUNCTION__))
;
3138
3139 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3140 /*DetectVirtual=*/true);
3141 bool DerivationOkay =
3142 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
3143 assert(DerivationOkay &&((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3144, __PRETTY_FUNCTION__))
3144 "Should not have been called if derivation isn't OK.")((DerivationOkay && "Should not have been called if derivation isn't OK."
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Should not have been called if derivation isn't OK.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3144, __PRETTY_FUNCTION__))
;
3145 (void)DerivationOkay;
3146
3147 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
3148 getUnqualifiedType())) {
3149 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3150 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
3151 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
3152 return true;
3153 }
3154
3155 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
3156 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
3157 << FromClass << ToClass << QualType(VBase, 0)
3158 << From->getSourceRange();
3159 return true;
3160 }
3161
3162 if (!IgnoreBaseAccess)
3163 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
3164 Paths.front(),
3165 diag::err_downcast_from_inaccessible_base);
3166
3167 // Must be a base to derived member conversion.
3168 BuildBasePathArray(Paths, BasePath);
3169 Kind = CK_BaseToDerivedMemberPointer;
3170 return false;
3171}
3172
3173/// Determine whether the lifetime conversion between the two given
3174/// qualifiers sets is nontrivial.
3175static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
3176 Qualifiers ToQuals) {
3177 // Converting anything to const __unsafe_unretained is trivial.
3178 if (ToQuals.hasConst() &&
3179 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
3180 return false;
3181
3182 return true;
3183}
3184
3185/// Perform a single iteration of the loop for checking if a qualification
3186/// conversion is valid.
3187///
3188/// Specifically, check whether any change between the qualifiers of \p
3189/// FromType and \p ToType is permissible, given knowledge about whether every
3190/// outer layer is const-qualified.
3191static bool isQualificationConversionStep(QualType FromType, QualType ToType,
3192 bool CStyle, bool IsTopLevel,
3193 bool &PreviousToQualsIncludeConst,
3194 bool &ObjCLifetimeConversion) {
3195 Qualifiers FromQuals = FromType.getQualifiers();
3196 Qualifiers ToQuals = ToType.getQualifiers();
3197
3198 // Ignore __unaligned qualifier if this type is void.
3199 if (ToType.getUnqualifiedType()->isVoidType())
3200 FromQuals.removeUnaligned();
3201
3202 // Objective-C ARC:
3203 // Check Objective-C lifetime conversions.
3204 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) {
3205 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
3206 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
3207 ObjCLifetimeConversion = true;
3208 FromQuals.removeObjCLifetime();
3209 ToQuals.removeObjCLifetime();
3210 } else {
3211 // Qualification conversions cannot cast between different
3212 // Objective-C lifetime qualifiers.
3213 return false;
3214 }
3215 }
3216
3217 // Allow addition/removal of GC attributes but not changing GC attributes.
3218 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
3219 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
3220 FromQuals.removeObjCGCAttr();
3221 ToQuals.removeObjCGCAttr();
3222 }
3223
3224 // -- for every j > 0, if const is in cv 1,j then const is in cv
3225 // 2,j, and similarly for volatile.
3226 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
3227 return false;
3228
3229 // If address spaces mismatch:
3230 // - in top level it is only valid to convert to addr space that is a
3231 // superset in all cases apart from C-style casts where we allow
3232 // conversions between overlapping address spaces.
3233 // - in non-top levels it is not a valid conversion.
3234 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() &&
3235 (!IsTopLevel ||
3236 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) ||
3237 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals)))))
3238 return false;
3239
3240 // -- if the cv 1,j and cv 2,j are different, then const is in
3241 // every cv for 0 < k < j.
3242 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() &&
3243 !PreviousToQualsIncludeConst)
3244 return false;
3245
3246 // Keep track of whether all prior cv-qualifiers in the "to" type
3247 // include const.
3248 PreviousToQualsIncludeConst =
3249 PreviousToQualsIncludeConst && ToQuals.hasConst();
3250 return true;
3251}
3252
3253/// IsQualificationConversion - Determines whether the conversion from
3254/// an rvalue of type FromType to ToType is a qualification conversion
3255/// (C++ 4.4).
3256///
3257/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
3258/// when the qualification conversion involves a change in the Objective-C
3259/// object lifetime.
3260bool
3261Sema::IsQualificationConversion(QualType FromType, QualType ToType,
3262 bool CStyle, bool &ObjCLifetimeConversion) {
3263 FromType = Context.getCanonicalType(FromType);
3264 ToType = Context.getCanonicalType(ToType);
3265 ObjCLifetimeConversion = false;
3266
3267 // If FromType and ToType are the same type, this is not a
3268 // qualification conversion.
3269 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
3270 return false;
3271
3272 // (C++ 4.4p4):
3273 // A conversion can add cv-qualifiers at levels other than the first
3274 // in multi-level pointers, subject to the following rules: [...]
3275 bool PreviousToQualsIncludeConst = true;
3276 bool UnwrappedAnyPointer = false;
3277 while (Context.UnwrapSimilarTypes(FromType, ToType)) {
3278 if (!isQualificationConversionStep(
3279 FromType, ToType, CStyle, !UnwrappedAnyPointer,
3280 PreviousToQualsIncludeConst, ObjCLifetimeConversion))
3281 return false;
3282 UnwrappedAnyPointer = true;
3283 }
3284
3285 // We are left with FromType and ToType being the pointee types
3286 // after unwrapping the original FromType and ToType the same number
3287 // of times. If we unwrapped any pointers, and if FromType and
3288 // ToType have the same unqualified type (since we checked
3289 // qualifiers above), then this is a qualification conversion.
3290 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3291}
3292
3293/// - Determine whether this is a conversion from a scalar type to an
3294/// atomic type.
3295///
3296/// If successful, updates \c SCS's second and third steps in the conversion
3297/// sequence to finish the conversion.
3298static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3299 bool InOverloadResolution,
3300 StandardConversionSequence &SCS,
3301 bool CStyle) {
3302 const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3303 if (!ToAtomic)
3304 return false;
3305
3306 StandardConversionSequence InnerSCS;
3307 if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3308 InOverloadResolution, InnerSCS,
3309 CStyle, /*AllowObjCWritebackConversion=*/false))
3310 return false;
3311
3312 SCS.Second = InnerSCS.Second;
3313 SCS.setToType(1, InnerSCS.getToType(1));
3314 SCS.Third = InnerSCS.Third;
3315 SCS.QualificationIncludesObjCLifetime
3316 = InnerSCS.QualificationIncludesObjCLifetime;
3317 SCS.setToType(2, InnerSCS.getToType(2));
3318 return true;
3319}
3320
3321static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3322 CXXConstructorDecl *Constructor,
3323 QualType Type) {
3324 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>();
3325 if (CtorType->getNumParams() > 0) {
3326 QualType FirstArg = CtorType->getParamType(0);
3327 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3328 return true;
3329 }
3330 return false;
3331}
3332
3333static OverloadingResult
3334IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3335 CXXRecordDecl *To,
3336 UserDefinedConversionSequence &User,
3337 OverloadCandidateSet &CandidateSet,
3338 bool AllowExplicit) {
3339 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3340 for (auto *D : S.LookupConstructors(To)) {
3341 auto Info = getConstructorInfo(D);
3342 if (!Info)
3343 continue;
3344
3345 bool Usable = !Info.Constructor->isInvalidDecl() &&
3346 S.isInitListConstructor(Info.Constructor);
3347 if (Usable) {
3348 // If the first argument is (a reference to) the target type,
3349 // suppress conversions.
3350 bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3351 S.Context, Info.Constructor, ToType);
3352 if (Info.ConstructorTmpl)
3353 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3354 /*ExplicitArgs*/ nullptr, From,
3355 CandidateSet, SuppressUserConversions,
3356 /*PartialOverloading*/ false,
3357 AllowExplicit);
3358 else
3359 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3360 CandidateSet, SuppressUserConversions,
3361 /*PartialOverloading*/ false, AllowExplicit);
3362 }
3363 }
3364
3365 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3366
3367 OverloadCandidateSet::iterator Best;
3368 switch (auto Result =
3369 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3370 case OR_Deleted:
3371 case OR_Success: {
3372 // Record the standard conversion we used and the conversion function.
3373 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3374 QualType ThisType = Constructor->getThisType();
3375 // Initializer lists don't have conversions as such.
3376 User.Before.setAsIdentityConversion();
3377 User.HadMultipleCandidates = HadMultipleCandidates;
3378 User.ConversionFunction = Constructor;
3379 User.FoundConversionFunction = Best->FoundDecl;
3380 User.After.setAsIdentityConversion();
3381 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3382 User.After.setAllToTypes(ToType);
3383 return Result;
3384 }
3385
3386 case OR_No_Viable_Function:
3387 return OR_No_Viable_Function;
3388 case OR_Ambiguous:
3389 return OR_Ambiguous;
3390 }
3391
3392 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3392)
;
3393}
3394
3395/// Determines whether there is a user-defined conversion sequence
3396/// (C++ [over.ics.user]) that converts expression From to the type
3397/// ToType. If such a conversion exists, User will contain the
3398/// user-defined conversion sequence that performs such a conversion
3399/// and this routine will return true. Otherwise, this routine returns
3400/// false and User is unspecified.
3401///
3402/// \param AllowExplicit true if the conversion should consider C++0x
3403/// "explicit" conversion functions as well as non-explicit conversion
3404/// functions (C++0x [class.conv.fct]p2).
3405///
3406/// \param AllowObjCConversionOnExplicit true if the conversion should
3407/// allow an extra Objective-C pointer conversion on uses of explicit
3408/// constructors. Requires \c AllowExplicit to also be set.
3409static OverloadingResult
3410IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3411 UserDefinedConversionSequence &User,
3412 OverloadCandidateSet &CandidateSet,
3413 AllowedExplicit AllowExplicit,
3414 bool AllowObjCConversionOnExplicit) {
3415 assert(AllowExplicit != AllowedExplicit::None ||((AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit
) ? static_cast<void> (0) : __assert_fail ("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3416, __PRETTY_FUNCTION__))
3416 !AllowObjCConversionOnExplicit)((AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit
) ? static_cast<void> (0) : __assert_fail ("AllowExplicit != AllowedExplicit::None || !AllowObjCConversionOnExplicit"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3416, __PRETTY_FUNCTION__))
;
3417 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3418
3419 // Whether we will only visit constructors.
3420 bool ConstructorsOnly = false;
3421
3422 // If the type we are conversion to is a class type, enumerate its
3423 // constructors.
3424 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3425 // C++ [over.match.ctor]p1:
3426 // When objects of class type are direct-initialized (8.5), or
3427 // copy-initialized from an expression of the same or a
3428 // derived class type (8.5), overload resolution selects the
3429 // constructor. [...] For copy-initialization, the candidate
3430 // functions are all the converting constructors (12.3.1) of
3431 // that class. The argument list is the expression-list within
3432 // the parentheses of the initializer.
3433 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3434 (From->getType()->getAs<RecordType>() &&
3435 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
3436 ConstructorsOnly = true;
3437
3438 if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3439 // We're not going to find any constructors.
3440 } else if (CXXRecordDecl *ToRecordDecl
3441 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3442
3443 Expr **Args = &From;
3444 unsigned NumArgs = 1;
3445 bool ListInitializing = false;
3446 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3447 // But first, see if there is an init-list-constructor that will work.
3448 OverloadingResult Result = IsInitializerListConstructorConversion(
3449 S, From, ToType, ToRecordDecl, User, CandidateSet,
3450 AllowExplicit == AllowedExplicit::All);
3451 if (Result != OR_No_Viable_Function)
3452 return Result;
3453 // Never mind.
3454 CandidateSet.clear(
3455 OverloadCandidateSet::CSK_InitByUserDefinedConversion);
3456
3457 // If we're list-initializing, we pass the individual elements as
3458 // arguments, not the entire list.
3459 Args = InitList->getInits();
3460 NumArgs = InitList->getNumInits();
3461 ListInitializing = true;
3462 }
3463
3464 for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3465 auto Info = getConstructorInfo(D);
3466 if (!Info)
3467 continue;
3468
3469 bool Usable = !Info.Constructor->isInvalidDecl();
3470 if (!ListInitializing)
3471 Usable = Usable && Info.Constructor->isConvertingConstructor(
3472 /*AllowExplicit*/ true);
3473 if (Usable) {
3474 bool SuppressUserConversions = !ConstructorsOnly;
3475 if (SuppressUserConversions && ListInitializing) {
3476 SuppressUserConversions = false;
3477 if (NumArgs == 1) {
3478 // If the first argument is (a reference to) the target type,
3479 // suppress conversions.
3480 SuppressUserConversions = isFirstArgumentCompatibleWithType(
3481 S.Context, Info.Constructor, ToType);
3482 }
3483 }
3484 if (Info.ConstructorTmpl)
3485 S.AddTemplateOverloadCandidate(
3486 Info.ConstructorTmpl, Info.FoundDecl,
3487 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3488 CandidateSet, SuppressUserConversions,
3489 /*PartialOverloading*/ false,
3490 AllowExplicit == AllowedExplicit::All);
3491 else
3492 // Allow one user-defined conversion when user specifies a
3493 // From->ToType conversion via an static cast (c-style, etc).
3494 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3495 llvm::makeArrayRef(Args, NumArgs),
3496 CandidateSet, SuppressUserConversions,
3497 /*PartialOverloading*/ false,
3498 AllowExplicit == AllowedExplicit::All);
3499 }
3500 }
3501 }
3502 }
3503
3504 // Enumerate conversion functions, if we're allowed to.
3505 if (ConstructorsOnly || isa<InitListExpr>(From)) {
3506 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
3507 // No conversion functions from incomplete types.
3508 } else if (const RecordType *FromRecordType =
3509 From->getType()->getAs<RecordType>()) {
3510 if (CXXRecordDecl *FromRecordDecl
3511 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3512 // Add all of the conversion functions as candidates.
3513 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3514 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3515 DeclAccessPair FoundDecl = I.getPair();
3516 NamedDecl *D = FoundDecl.getDecl();
3517 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3518 if (isa<UsingShadowDecl>(D))
3519 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3520
3521 CXXConversionDecl *Conv;
3522 FunctionTemplateDecl *ConvTemplate;
3523 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3524 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3525 else
3526 Conv = cast<CXXConversionDecl>(D);
3527
3528 if (ConvTemplate)
3529 S.AddTemplateConversionCandidate(
3530 ConvTemplate, FoundDecl, ActingContext, From, ToType,
3531 CandidateSet, AllowObjCConversionOnExplicit,
3532 AllowExplicit != AllowedExplicit::None);
3533 else
3534 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType,
3535 CandidateSet, AllowObjCConversionOnExplicit,
3536 AllowExplicit != AllowedExplicit::None);
3537 }
3538 }
3539 }
3540
3541 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3542
3543 OverloadCandidateSet::iterator Best;
3544 switch (auto Result =
3545 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
3546 case OR_Success:
3547 case OR_Deleted:
3548 // Record the standard conversion we used and the conversion function.
3549 if (CXXConstructorDecl *Constructor
3550 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3551 // C++ [over.ics.user]p1:
3552 // If the user-defined conversion is specified by a
3553 // constructor (12.3.1), the initial standard conversion
3554 // sequence converts the source type to the type required by
3555 // the argument of the constructor.
3556 //
3557 QualType ThisType = Constructor->getThisType();
3558 if (isa<InitListExpr>(From)) {
3559 // Initializer lists don't have conversions as such.
3560 User.Before.setAsIdentityConversion();
3561 } else {
3562 if (Best->Conversions[0].isEllipsis())
3563 User.EllipsisConversion = true;
3564 else {
3565 User.Before = Best->Conversions[0].Standard;
3566 User.EllipsisConversion = false;
3567 }
3568 }
3569 User.HadMultipleCandidates = HadMultipleCandidates;
3570 User.ConversionFunction = Constructor;
3571 User.FoundConversionFunction = Best->FoundDecl;
3572 User.After.setAsIdentityConversion();
3573 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
3574 User.After.setAllToTypes(ToType);
3575 return Result;
3576 }
3577 if (CXXConversionDecl *Conversion
3578 = dyn_cast<CXXConversionDecl>(Best->Function)) {
3579 // C++ [over.ics.user]p1:
3580 //
3581 // [...] If the user-defined conversion is specified by a
3582 // conversion function (12.3.2), the initial standard
3583 // conversion sequence converts the source type to the
3584 // implicit object parameter of the conversion function.
3585 User.Before = Best->Conversions[0].Standard;
3586 User.HadMultipleCandidates = HadMultipleCandidates;
3587 User.ConversionFunction = Conversion;
3588 User.FoundConversionFunction = Best->FoundDecl;
3589 User.EllipsisConversion = false;
3590
3591 // C++ [over.ics.user]p2:
3592 // The second standard conversion sequence converts the
3593 // result of the user-defined conversion to the target type
3594 // for the sequence. Since an implicit conversion sequence
3595 // is an initialization, the special rules for
3596 // initialization by user-defined conversion apply when
3597 // selecting the best user-defined conversion for a
3598 // user-defined conversion sequence (see 13.3.3 and
3599 // 13.3.3.1).
3600 User.After = Best->FinalConversion;
3601 return Result;
3602 }
3603 llvm_unreachable("Not a constructor or conversion function?")::llvm::llvm_unreachable_internal("Not a constructor or conversion function?"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3603)
;
3604
3605 case OR_No_Viable_Function:
3606 return OR_No_Viable_Function;
3607
3608 case OR_Ambiguous:
3609 return OR_Ambiguous;
3610 }
3611
3612 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 3612)
;
3613}
3614
3615bool
3616Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3617 ImplicitConversionSequence ICS;
3618 OverloadCandidateSet CandidateSet(From->getExprLoc(),
3619 OverloadCandidateSet::CSK_Normal);
3620 OverloadingResult OvResult =
3621 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3622 CandidateSet, AllowedExplicit::None, false);
3623
3624 if (!(OvResult == OR_Ambiguous ||
3625 (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
3626 return false;
3627
3628 auto Cands = CandidateSet.CompleteCandidates(
3629 *this,
3630 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates,
3631 From);
3632 if (OvResult == OR_Ambiguous)
3633 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
3634 << From->getType() << ToType << From->getSourceRange();
3635 else { // OR_No_Viable_Function && !CandidateSet.empty()
3636 if (!RequireCompleteType(From->getBeginLoc(), ToType,
3637 diag::err_typecheck_nonviable_condition_incomplete,
3638 From->getType(), From->getSourceRange()))
3639 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
3640 << false << From->getType() << From->getSourceRange() << ToType;
3641 }
3642
3643 CandidateSet.NoteCandidates(
3644 *this, From, Cands);
3645 return true;
3646}
3647
3648// Helper for compareConversionFunctions that gets the FunctionType that the
3649// conversion-operator return value 'points' to, or nullptr.
3650static const FunctionType *
3651getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) {
3652 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>();
3653 const PointerType *RetPtrTy =
3654 ConvFuncTy->getReturnType()->getAs<PointerType>();
3655
3656 if (!RetPtrTy)
3657 return nullptr;
3658
3659 return RetPtrTy->getPointeeType()->getAs<FunctionType>();
3660}
3661
3662/// Compare the user-defined conversion functions or constructors
3663/// of two user-defined conversion sequences to determine whether any ordering
3664/// is possible.
3665static ImplicitConversionSequence::CompareKind
3666compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3667 FunctionDecl *Function2) {
3668 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3669 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2);
3670 if (!Conv1 || !Conv2)
3671 return ImplicitConversionSequence::Indistinguishable;
3672
3673 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda())
3674 return ImplicitConversionSequence::Indistinguishable;
3675
3676 // Objective-C++:
3677 // If both conversion functions are implicitly-declared conversions from
3678 // a lambda closure type to a function pointer and a block pointer,
3679 // respectively, always prefer the conversion to a function pointer,
3680 // because the function pointer is more lightweight and is more likely
3681 // to keep code working.
3682 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) {
3683 bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3684 bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3685 if (Block1 != Block2)
3686 return Block1 ? ImplicitConversionSequence::Worse
3687 : ImplicitConversionSequence::Better;
3688 }
3689
3690 // In order to support multiple calling conventions for the lambda conversion
3691 // operator (such as when the free and member function calling convention is
3692 // different), prefer the 'free' mechanism, followed by the calling-convention
3693 // of operator(). The latter is in place to support the MSVC-like solution of
3694 // defining ALL of the possible conversions in regards to calling-convention.
3695 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1);
3696 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2);
3697
3698 if (Conv1FuncRet && Conv2FuncRet &&
3699 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) {
3700 CallingConv Conv1CC = Conv1FuncRet->getCallConv();
3701 CallingConv Conv2CC = Conv2FuncRet->getCallConv();
3702
3703 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator();
3704 const FunctionProtoType *CallOpProto =
3705 CallOp->getType()->getAs<FunctionProtoType>();
3706
3707 CallingConv CallOpCC =
3708 CallOp->getType()->getAs<FunctionType>()->getCallConv();
3709 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
3710 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
3711 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
3712 CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
3713
3714 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC};
3715 for (CallingConv CC : PrefOrder) {
3716 if (Conv1CC == CC)
3717 return ImplicitConversionSequence::Better;
3718 if (Conv2CC == CC)
3719 return ImplicitConversionSequence::Worse;
3720 }
3721 }
3722
3723 return ImplicitConversionSequence::Indistinguishable;
3724}
3725
3726static bool hasDeprecatedStringLiteralToCharPtrConversion(
3727 const ImplicitConversionSequence &ICS) {
3728 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3729 (ICS.isUserDefined() &&
3730 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3731}
3732
3733/// CompareImplicitConversionSequences - Compare two implicit
3734/// conversion sequences to determine whether one is better than the
3735/// other or if they are indistinguishable (C++ 13.3.3.2).
3736static ImplicitConversionSequence::CompareKind
3737CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3738 const ImplicitConversionSequence& ICS1,
3739 const ImplicitConversionSequence& ICS2)
3740{
3741 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3742 // conversion sequences (as defined in 13.3.3.1)
3743 // -- a standard conversion sequence (13.3.3.1.1) is a better
3744 // conversion sequence than a user-defined conversion sequence or
3745 // an ellipsis conversion sequence, and
3746 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3747 // conversion sequence than an ellipsis conversion sequence
3748 // (13.3.3.1.3).
3749 //
3750 // C++0x [over.best.ics]p10:
3751 // For the purpose of ranking implicit conversion sequences as
3752 // described in 13.3.3.2, the ambiguous conversion sequence is
3753 // treated as a user-defined sequence that is indistinguishable
3754 // from any other user-defined conversion sequence.
3755
3756 // String literal to 'char *' conversion has been deprecated in C++03. It has
3757 // been removed from C++11. We still accept this conversion, if it happens at
3758 // the best viable function. Otherwise, this conversion is considered worse
3759 // than ellipsis conversion. Consider this as an extension; this is not in the
3760 // standard. For example:
3761 //
3762 // int &f(...); // #1
3763 // void f(char*); // #2
3764 // void g() { int &r = f("foo"); }
3765 //
3766 // In C++03, we pick #2 as the best viable function.
3767 // In C++11, we pick #1 as the best viable function, because ellipsis
3768 // conversion is better than string-literal to char* conversion (since there
3769 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3770 // convert arguments, #2 would be the best viable function in C++11.
3771 // If the best viable function has this conversion, a warning will be issued
3772 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3773
3774 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3775 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3776 hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3777 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3778 ? ImplicitConversionSequence::Worse
3779 : ImplicitConversionSequence::Better;
3780
3781 if (ICS1.getKindRank() < ICS2.getKindRank())
3782 return ImplicitConversionSequence::Better;
3783 if (ICS2.getKindRank() < ICS1.getKindRank())
3784 return ImplicitConversionSequence::Worse;
3785
3786 // The following checks require both conversion sequences to be of
3787 // the same kind.
3788 if (ICS1.getKind() != ICS2.getKind())
3789 return ImplicitConversionSequence::Indistinguishable;
3790
3791 ImplicitConversionSequence::CompareKind Result =
3792 ImplicitConversionSequence::Indistinguishable;
3793
3794 // Two implicit conversion sequences of the same form are
3795 // indistinguishable conversion sequences unless one of the
3796 // following rules apply: (C++ 13.3.3.2p3):
3797
3798 // List-initialization sequence L1 is a better conversion sequence than
3799 // list-initialization sequence L2 if:
3800 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3801 // if not that,
3802 // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3803 // and N1 is smaller than N2.,
3804 // even if one of the other rules in this paragraph would otherwise apply.
3805 if (!ICS1.isBad()) {
3806 if (ICS1.isStdInitializerListElement() &&
3807 !ICS2.isStdInitializerListElement())
3808 return ImplicitConversionSequence::Better;
3809 if (!ICS1.isStdInitializerListElement() &&
3810 ICS2.isStdInitializerListElement())
3811 return ImplicitConversionSequence::Worse;
3812 }
3813
3814 if (ICS1.isStandard())
3815 // Standard conversion sequence S1 is a better conversion sequence than
3816 // standard conversion sequence S2 if [...]
3817 Result = CompareStandardConversionSequences(S, Loc,
3818 ICS1.Standard, ICS2.Standard);
3819 else if (ICS1.isUserDefined()) {
3820 // User-defined conversion sequence U1 is a better conversion
3821 // sequence than another user-defined conversion sequence U2 if
3822 // they contain the same user-defined conversion function or
3823 // constructor and if the second standard conversion sequence of
3824 // U1 is better than the second standard conversion sequence of
3825 // U2 (C++ 13.3.3.2p3).
3826 if (ICS1.UserDefined.ConversionFunction ==
3827 ICS2.UserDefined.ConversionFunction)
3828 Result = CompareStandardConversionSequences(S, Loc,
3829 ICS1.UserDefined.After,
3830 ICS2.UserDefined.After);
3831 else
3832 Result = compareConversionFunctions(S,
3833 ICS1.UserDefined.ConversionFunction,
3834 ICS2.UserDefined.ConversionFunction);
3835 }
3836
3837 return Result;
3838}
3839
3840// Per 13.3.3.2p3, compare the given standard conversion sequences to
3841// determine if one is a proper subset of the other.
3842static ImplicitConversionSequence::CompareKind
3843compareStandardConversionSubsets(ASTContext &Context,
3844 const StandardConversionSequence& SCS1,
3845 const StandardConversionSequence& SCS2) {
3846 ImplicitConversionSequence::CompareKind Result
3847 = ImplicitConversionSequence::Indistinguishable;
3848
3849 // the identity conversion sequence is considered to be a subsequence of
3850 // any non-identity conversion sequence
3851 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3852 return ImplicitConversionSequence::Better;
3853 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3854 return ImplicitConversionSequence::Worse;
3855
3856 if (SCS1.Second != SCS2.Second) {
3857 if (SCS1.Second == ICK_Identity)
3858 Result = ImplicitConversionSequence::Better;
3859 else if (SCS2.Second == ICK_Identity)
3860 Result = ImplicitConversionSequence::Worse;
3861 else
3862 return ImplicitConversionSequence::Indistinguishable;
3863 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
3864 return ImplicitConversionSequence::Indistinguishable;
3865
3866 if (SCS1.Third == SCS2.Third) {
3867 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3868 : ImplicitConversionSequence::Indistinguishable;
3869 }
3870
3871 if (SCS1.Third == ICK_Identity)
3872 return Result == ImplicitConversionSequence::Worse
3873 ? ImplicitConversionSequence::Indistinguishable
3874 : ImplicitConversionSequence::Better;
3875
3876 if (SCS2.Third == ICK_Identity)
3877 return Result == ImplicitConversionSequence::Better
3878 ? ImplicitConversionSequence::Indistinguishable
3879 : ImplicitConversionSequence::Worse;
3880
3881 return ImplicitConversionSequence::Indistinguishable;
3882}
3883
3884/// Determine whether one of the given reference bindings is better
3885/// than the other based on what kind of bindings they are.
3886static bool
3887isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3888 const StandardConversionSequence &SCS2) {
3889 // C++0x [over.ics.rank]p3b4:
3890 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3891 // implicit object parameter of a non-static member function declared
3892 // without a ref-qualifier, and *either* S1 binds an rvalue reference
3893 // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3894 // lvalue reference to a function lvalue and S2 binds an rvalue
3895 // reference*.
3896 //
3897 // FIXME: Rvalue references. We're going rogue with the above edits,
3898 // because the semantics in the current C++0x working paper (N3225 at the
3899 // time of this writing) break the standard definition of std::forward
3900 // and std::reference_wrapper when dealing with references to functions.
3901 // Proposed wording changes submitted to CWG for consideration.
3902 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3903 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3904 return false;
3905
3906 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3907 SCS2.IsLvalueReference) ||
3908 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3909 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3910}
3911
3912enum class FixedEnumPromotion {
3913 None,
3914 ToUnderlyingType,
3915 ToPromotedUnderlyingType
3916};
3917
3918/// Returns kind of fixed enum promotion the \a SCS uses.
3919static FixedEnumPromotion
3920getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
3921
3922 if (SCS.Second != ICK_Integral_Promotion)
3923 return FixedEnumPromotion::None;
3924
3925 QualType FromType = SCS.getFromType();
3926 if (!FromType->isEnumeralType())
3927 return FixedEnumPromotion::None;
3928
3929 EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl();
3930 if (!Enum->isFixed())
3931 return FixedEnumPromotion::None;
3932
3933 QualType UnderlyingType = Enum->getIntegerType();
3934 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
3935 return FixedEnumPromotion::ToUnderlyingType;
3936
3937 return FixedEnumPromotion::ToPromotedUnderlyingType;
3938}
3939
3940/// CompareStandardConversionSequences - Compare two standard
3941/// conversion sequences to determine whether one is better than the
3942/// other or if they are indistinguishable (C++ 13.3.3.2p3).
3943static ImplicitConversionSequence::CompareKind
3944CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3945 const StandardConversionSequence& SCS1,
3946 const StandardConversionSequence& SCS2)
3947{
3948 // Standard conversion sequence S1 is a better conversion sequence
3949 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3950
3951 // -- S1 is a proper subsequence of S2 (comparing the conversion
3952 // sequences in the canonical form defined by 13.3.3.1.1,
3953 // excluding any Lvalue Transformation; the identity conversion
3954 // sequence is considered to be a subsequence of any
3955 // non-identity conversion sequence) or, if not that,
3956 if (ImplicitConversionSequence::CompareKind CK
3957 = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3958 return CK;
3959
3960 // -- the rank of S1 is better than the rank of S2 (by the rules
3961 // defined below), or, if not that,
3962 ImplicitConversionRank Rank1 = SCS1.getRank();
3963 ImplicitConversionRank Rank2 = SCS2.getRank();
3964 if (Rank1 < Rank2)
3965 return ImplicitConversionSequence::Better;
3966 else if (Rank2 < Rank1)
3967 return ImplicitConversionSequence::Worse;
3968
3969 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3970 // are indistinguishable unless one of the following rules
3971 // applies:
3972
3973 // A conversion that is not a conversion of a pointer, or
3974 // pointer to member, to bool is better than another conversion
3975 // that is such a conversion.
3976 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3977 return SCS2.isPointerConversionToBool()
3978 ? ImplicitConversionSequence::Better
3979 : ImplicitConversionSequence::Worse;
3980
3981 // C++14 [over.ics.rank]p4b2:
3982 // This is retroactively applied to C++11 by CWG 1601.
3983 //
3984 // A conversion that promotes an enumeration whose underlying type is fixed
3985 // to its underlying type is better than one that promotes to the promoted
3986 // underlying type, if the two are different.
3987 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
3988 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
3989 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
3990 FEP1 != FEP2)
3991 return FEP1 == FixedEnumPromotion::ToUnderlyingType
3992 ? ImplicitConversionSequence::Better
3993 : ImplicitConversionSequence::Worse;
3994
3995 // C++ [over.ics.rank]p4b2:
3996 //
3997 // If class B is derived directly or indirectly from class A,
3998 // conversion of B* to A* is better than conversion of B* to
3999 // void*, and conversion of A* to void* is better than conversion
4000 // of B* to void*.
4001 bool SCS1ConvertsToVoid
4002 = SCS1.isPointerConversionToVoidPointer(S.Context);
4003 bool SCS2ConvertsToVoid
4004 = SCS2.isPointerConversionToVoidPointer(S.Context);
4005 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
4006 // Exactly one of the conversion sequences is a conversion to
4007 // a void pointer; it's the worse conversion.
4008 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
4009 : ImplicitConversionSequence::Worse;
4010 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
4011 // Neither conversion sequence converts to a void pointer; compare
4012 // their derived-to-base conversions.
4013 if (ImplicitConversionSequence::CompareKind DerivedCK
4014 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
4015 return DerivedCK;
4016 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
4017 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
4018 // Both conversion sequences are conversions to void
4019 // pointers. Compare the source types to determine if there's an
4020 // inheritance relationship in their sources.
4021 QualType FromType1 = SCS1.getFromType();
4022 QualType FromType2 = SCS2.getFromType();
4023
4024 // Adjust the types we're converting from via the array-to-pointer
4025 // conversion, if we need to.
4026 if (SCS1.First == ICK_Array_To_Pointer)
4027 FromType1 = S.Context.getArrayDecayedType(FromType1);
4028 if (SCS2.First == ICK_Array_To_Pointer)
4029 FromType2 = S.Context.getArrayDecayedType(FromType2);
4030
4031 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
4032 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
4033
4034 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4035 return ImplicitConversionSequence::Better;
4036 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4037 return ImplicitConversionSequence::Worse;
4038
4039 // Objective-C++: If one interface is more specific than the
4040 // other, it is the better one.
4041 const ObjCObjectPointerType* FromObjCPtr1
4042 = FromType1->getAs<ObjCObjectPointerType>();
4043 const ObjCObjectPointerType* FromObjCPtr2
4044 = FromType2->getAs<ObjCObjectPointerType>();
4045 if (FromObjCPtr1 && FromObjCPtr2) {
4046 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
4047 FromObjCPtr2);
4048 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
4049 FromObjCPtr1);
4050 if (AssignLeft != AssignRight) {
4051 return AssignLeft? ImplicitConversionSequence::Better
4052 : ImplicitConversionSequence::Worse;
4053 }
4054 }
4055 }
4056
4057 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4058 // Check for a better reference binding based on the kind of bindings.
4059 if (isBetterReferenceBindingKind(SCS1, SCS2))
4060 return ImplicitConversionSequence::Better;
4061 else if (isBetterReferenceBindingKind(SCS2, SCS1))
4062 return ImplicitConversionSequence::Worse;
4063 }
4064
4065 // Compare based on qualification conversions (C++ 13.3.3.2p3,
4066 // bullet 3).
4067 if (ImplicitConversionSequence::CompareKind QualCK
4068 = CompareQualificationConversions(S, SCS1, SCS2))
4069 return QualCK;
4070
4071 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
4072 // C++ [over.ics.rank]p3b4:
4073 // -- S1 and S2 are reference bindings (8.5.3), and the types to
4074 // which the references refer are the same type except for
4075 // top-level cv-qualifiers, and the type to which the reference
4076 // initialized by S2 refers is more cv-qualified than the type
4077 // to which the reference initialized by S1 refers.
4078 QualType T1 = SCS1.getToType(2);
4079 QualType T2 = SCS2.getToType(2);
4080 T1 = S.Context.getCanonicalType(T1);
4081 T2 = S.Context.getCanonicalType(T2);
4082 Qualifiers T1Quals, T2Quals;
4083 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4084 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4085 if (UnqualT1 == UnqualT2) {
4086 // Objective-C++ ARC: If the references refer to objects with different
4087 // lifetimes, prefer bindings that don't change lifetime.
4088 if (SCS1.ObjCLifetimeConversionBinding !=
4089 SCS2.ObjCLifetimeConversionBinding) {
4090 return SCS1.ObjCLifetimeConversionBinding
4091 ? ImplicitConversionSequence::Worse
4092 : ImplicitConversionSequence::Better;
4093 }
4094
4095 // If the type is an array type, promote the element qualifiers to the
4096 // type for comparison.
4097 if (isa<ArrayType>(T1) && T1Quals)
4098 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
4099 if (isa<ArrayType>(T2) && T2Quals)
4100 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
4101 if (T2.isMoreQualifiedThan(T1))
4102 return ImplicitConversionSequence::Better;
4103 if (T1.isMoreQualifiedThan(T2))
4104 return ImplicitConversionSequence::Worse;
4105 }
4106 }
4107
4108 // In Microsoft mode, prefer an integral conversion to a
4109 // floating-to-integral conversion if the integral conversion
4110 // is between types of the same size.
4111 // For example:
4112 // void f(float);
4113 // void f(int);
4114 // int main {
4115 // long a;
4116 // f(a);
4117 // }
4118 // Here, MSVC will call f(int) instead of generating a compile error
4119 // as clang will do in standard mode.
4120 if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
4121 SCS2.Second == ICK_Floating_Integral &&
4122 S.Context.getTypeSize(SCS1.getFromType()) ==
4123 S.Context.getTypeSize(SCS1.getToType(2)))
4124 return ImplicitConversionSequence::Better;
4125
4126 // Prefer a compatible vector conversion over a lax vector conversion
4127 // For example:
4128 //
4129 // typedef float __v4sf __attribute__((__vector_size__(16)));
4130 // void f(vector float);
4131 // void f(vector signed int);
4132 // int main() {
4133 // __v4sf a;
4134 // f(a);
4135 // }
4136 // Here, we'd like to choose f(vector float) and not
4137 // report an ambiguous call error
4138 if (SCS1.Second == ICK_Vector_Conversion &&
4139 SCS2.Second == ICK_Vector_Conversion) {
4140 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4141 SCS1.getFromType(), SCS1.getToType(2));
4142 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
4143 SCS2.getFromType(), SCS2.getToType(2));
4144
4145 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
4146 return SCS1IsCompatibleVectorConversion
4147 ? ImplicitConversionSequence::Better
4148 : ImplicitConversionSequence::Worse;
4149 }
4150
4151 if (SCS1.Second == ICK_SVE_Vector_Conversion &&
4152 SCS2.Second == ICK_SVE_Vector_Conversion) {
4153 bool SCS1IsCompatibleSVEVectorConversion =
4154 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2));
4155 bool SCS2IsCompatibleSVEVectorConversion =
4156 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2));
4157
4158 if (SCS1IsCompatibleSVEVectorConversion !=
4159 SCS2IsCompatibleSVEVectorConversion)
4160 return SCS1IsCompatibleSVEVectorConversion
4161 ? ImplicitConversionSequence::Better
4162 : ImplicitConversionSequence::Worse;
4163 }
4164
4165 return ImplicitConversionSequence::Indistinguishable;
4166}
4167
4168/// CompareQualificationConversions - Compares two standard conversion
4169/// sequences to determine whether they can be ranked based on their
4170/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
4171static ImplicitConversionSequence::CompareKind
4172CompareQualificationConversions(Sema &S,
4173 const StandardConversionSequence& SCS1,
4174 const StandardConversionSequence& SCS2) {
4175 // C++ 13.3.3.2p3:
4176 // -- S1 and S2 differ only in their qualification conversion and
4177 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
4178 // cv-qualification signature of type T1 is a proper subset of
4179 // the cv-qualification signature of type T2, and S1 is not the
4180 // deprecated string literal array-to-pointer conversion (4.2).
4181 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
4182 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
4183 return ImplicitConversionSequence::Indistinguishable;
4184
4185 // FIXME: the example in the standard doesn't use a qualification
4186 // conversion (!)
4187 QualType T1 = SCS1.getToType(2);
4188 QualType T2 = SCS2.getToType(2);
4189 T1 = S.Context.getCanonicalType(T1);
4190 T2 = S.Context.getCanonicalType(T2);
4191 assert(!T1->isReferenceType() && !T2->isReferenceType())((!T1->isReferenceType() && !T2->isReferenceType
()) ? static_cast<void> (0) : __assert_fail ("!T1->isReferenceType() && !T2->isReferenceType()"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 4191, __PRETTY_FUNCTION__))
;
4192 Qualifiers T1Quals, T2Quals;
4193 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
4194 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
4195
4196 // If the types are the same, we won't learn anything by unwrapping
4197 // them.
4198 if (UnqualT1 == UnqualT2)
4199 return ImplicitConversionSequence::Indistinguishable;
4200
4201 ImplicitConversionSequence::CompareKind Result
4202 = ImplicitConversionSequence::Indistinguishable;
4203
4204 // Objective-C++ ARC:
4205 // Prefer qualification conversions not involving a change in lifetime
4206 // to qualification conversions that do not change lifetime.
4207 if (SCS1.QualificationIncludesObjCLifetime !=
4208 SCS2.QualificationIncludesObjCLifetime) {
4209 Result = SCS1.QualificationIncludesObjCLifetime
4210 ? ImplicitConversionSequence::Worse
4211 : ImplicitConversionSequence::Better;
4212 }
4213
4214 while (S.Context.UnwrapSimilarTypes(T1, T2)) {
4215 // Within each iteration of the loop, we check the qualifiers to
4216 // determine if this still looks like a qualification
4217 // conversion. Then, if all is well, we unwrap one more level of
4218 // pointers or pointers-to-members and do it all again
4219 // until there are no more pointers or pointers-to-members left
4220 // to unwrap. This essentially mimics what
4221 // IsQualificationConversion does, but here we're checking for a
4222 // strict subset of qualifiers.
4223 if (T1.getQualifiers().withoutObjCLifetime() ==
4224 T2.getQualifiers().withoutObjCLifetime())
4225 // The qualifiers are the same, so this doesn't tell us anything
4226 // about how the sequences rank.
4227 // ObjC ownership quals are omitted above as they interfere with
4228 // the ARC overload rule.
4229 ;
4230 else if (T2.isMoreQualifiedThan(T1)) {
4231 // T1 has fewer qualifiers, so it could be the better sequence.
4232 if (Result == ImplicitConversionSequence::Worse)
4233 // Neither has qualifiers that are a subset of the other's
4234 // qualifiers.
4235 return ImplicitConversionSequence::Indistinguishable;
4236
4237 Result = ImplicitConversionSequence::Better;
4238 } else if (T1.isMoreQualifiedThan(T2)) {
4239 // T2 has fewer qualifiers, so it could be the better sequence.
4240 if (Result == ImplicitConversionSequence::Better)
4241 // Neither has qualifiers that are a subset of the other's
4242 // qualifiers.
4243 return ImplicitConversionSequence::Indistinguishable;
4244
4245 Result = ImplicitConversionSequence::Worse;
4246 } else {
4247 // Qualifiers are disjoint.
4248 return ImplicitConversionSequence::Indistinguishable;
4249 }
4250
4251 // If the types after this point are equivalent, we're done.
4252 if (S.Context.hasSameUnqualifiedType(T1, T2))
4253 break;
4254 }
4255
4256 // Check that the winning standard conversion sequence isn't using
4257 // the deprecated string literal array to pointer conversion.
4258 switch (Result) {
4259 case ImplicitConversionSequence::Better:
4260 if (SCS1.DeprecatedStringLiteralToCharPtr)
4261 Result = ImplicitConversionSequence::Indistinguishable;
4262 break;
4263
4264 case ImplicitConversionSequence::Indistinguishable:
4265 break;
4266
4267 case ImplicitConversionSequence::Worse:
4268 if (SCS2.DeprecatedStringLiteralToCharPtr)
4269 Result = ImplicitConversionSequence::Indistinguishable;
4270 break;
4271 }
4272
4273 return Result;
4274}
4275
4276/// CompareDerivedToBaseConversions - Compares two standard conversion
4277/// sequences to determine whether they can be ranked based on their
4278/// various kinds of derived-to-base conversions (C++
4279/// [over.ics.rank]p4b3). As part of these checks, we also look at
4280/// conversions between Objective-C interface types.
4281static ImplicitConversionSequence::CompareKind
4282CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
4283 const StandardConversionSequence& SCS1,
4284 const StandardConversionSequence& SCS2) {
4285 QualType FromType1 = SCS1.getFromType();
4286 QualType ToType1 = SCS1.getToType(1);
4287 QualType FromType2 = SCS2.getFromType();
4288 QualType ToType2 = SCS2.getToType(1);
4289
4290 // Adjust the types we're converting from via the array-to-pointer
4291 // conversion, if we need to.
4292 if (SCS1.First == ICK_Array_To_Pointer)
4293 FromType1 = S.Context.getArrayDecayedType(FromType1);
4294 if (SCS2.First == ICK_Array_To_Pointer)
4295 FromType2 = S.Context.getArrayDecayedType(FromType2);
4296
4297 // Canonicalize all of the types.
4298 FromType1 = S.Context.getCanonicalType(FromType1);
4299 ToType1 = S.Context.getCanonicalType(ToType1);
4300 FromType2 = S.Context.getCanonicalType(FromType2);
4301 ToType2 = S.Context.getCanonicalType(ToType2);
4302
4303 // C++ [over.ics.rank]p4b3:
4304 //
4305 // If class B is derived directly or indirectly from class A and
4306 // class C is derived directly or indirectly from B,
4307 //
4308 // Compare based on pointer conversions.
4309 if (SCS1.Second == ICK_Pointer_Conversion &&
4310 SCS2.Second == ICK_Pointer_Conversion &&
4311 /*FIXME: Remove if Objective-C id conversions get their own rank*/
4312 FromType1->isPointerType() && FromType2->isPointerType() &&
4313 ToType1->isPointerType() && ToType2->isPointerType()) {
4314 QualType FromPointee1 =
4315 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4316 QualType ToPointee1 =
4317 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4318 QualType FromPointee2 =
4319 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4320 QualType ToPointee2 =
4321 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
4322
4323 // -- conversion of C* to B* is better than conversion of C* to A*,
4324 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4325 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4326 return ImplicitConversionSequence::Better;
4327 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4328 return ImplicitConversionSequence::Worse;
4329 }
4330
4331 // -- conversion of B* to A* is better than conversion of C* to A*,
4332 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
4333 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4334 return ImplicitConversionSequence::Better;
4335 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4336 return ImplicitConversionSequence::Worse;
4337 }
4338 } else if (SCS1.Second == ICK_Pointer_Conversion &&
4339 SCS2.Second == ICK_Pointer_Conversion) {
4340 const ObjCObjectPointerType *FromPtr1
4341 = FromType1->getAs<ObjCObjectPointerType>();
4342 const ObjCObjectPointerType *FromPtr2
4343 = FromType2->getAs<ObjCObjectPointerType>();
4344 const ObjCObjectPointerType *ToPtr1
4345 = ToType1->getAs<ObjCObjectPointerType>();
4346 const ObjCObjectPointerType *ToPtr2
4347 = ToType2->getAs<ObjCObjectPointerType>();
4348
4349 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
4350 // Apply the same conversion ranking rules for Objective-C pointer types
4351 // that we do for C++ pointers to class types. However, we employ the
4352 // Objective-C pseudo-subtyping relationship used for assignment of
4353 // Objective-C pointer types.
4354 bool FromAssignLeft
4355 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
4356 bool FromAssignRight
4357 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
4358 bool ToAssignLeft
4359 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
4360 bool ToAssignRight
4361 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
4362
4363 // A conversion to an a non-id object pointer type or qualified 'id'
4364 // type is better than a conversion to 'id'.
4365 if (ToPtr1->isObjCIdType() &&
4366 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
4367 return ImplicitConversionSequence::Worse;
4368 if (ToPtr2->isObjCIdType() &&
4369 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
4370 return ImplicitConversionSequence::Better;
4371
4372 // A conversion to a non-id object pointer type is better than a
4373 // conversion to a qualified 'id' type
4374 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
4375 return ImplicitConversionSequence::Worse;
4376 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
4377 return ImplicitConversionSequence::Better;
4378
4379 // A conversion to an a non-Class object pointer type or qualified 'Class'
4380 // type is better than a conversion to 'Class'.
4381 if (ToPtr1->isObjCClassType() &&
4382 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
4383 return ImplicitConversionSequence::Worse;
4384 if (ToPtr2->isObjCClassType() &&
4385 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
4386 return ImplicitConversionSequence::Better;
4387
4388 // A conversion to a non-Class object pointer type is better than a
4389 // conversion to a qualified 'Class' type.
4390 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
4391 return ImplicitConversionSequence::Worse;
4392 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
4393 return ImplicitConversionSequence::Better;
4394
4395 // -- "conversion of C* to B* is better than conversion of C* to A*,"
4396 if (S.Context.hasSameType(FromType1, FromType2) &&
4397 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
4398 (ToAssignLeft != ToAssignRight)) {
4399 if (FromPtr1->isSpecialized()) {
4400 // "conversion of B<A> * to B * is better than conversion of B * to
4401 // C *.
4402 bool IsFirstSame =
4403 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
4404 bool IsSecondSame =
4405 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
4406 if (IsFirstSame) {
4407 if (!IsSecondSame)
4408 return ImplicitConversionSequence::Better;
4409 } else if (IsSecondSame)
4410 return ImplicitConversionSequence::Worse;
4411 }
4412 return ToAssignLeft? ImplicitConversionSequence::Worse
4413 : ImplicitConversionSequence::Better;
4414 }
4415
4416 // -- "conversion of B* to A* is better than conversion of C* to A*,"
4417 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
4418 (FromAssignLeft != FromAssignRight))
4419 return FromAssignLeft? ImplicitConversionSequence::Better
4420 : ImplicitConversionSequence::Worse;
4421 }
4422 }
4423
4424 // Ranking of member-pointer types.
4425 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
4426 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4427 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4428 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>();
4429 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>();
4430 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>();
4431 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>();
4432 const Type *FromPointeeType1 = FromMemPointer1->getClass();
4433 const Type *ToPointeeType1 = ToMemPointer1->getClass();
4434 const Type *FromPointeeType2 = FromMemPointer2->getClass();
4435 const Type *ToPointeeType2 = ToMemPointer2->getClass();
4436 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4437 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4438 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4439 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4440 // conversion of A::* to B::* is better than conversion of A::* to C::*,
4441 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4442 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4443 return ImplicitConversionSequence::Worse;
4444 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4445 return ImplicitConversionSequence::Better;
4446 }
4447 // conversion of B::* to C::* is better than conversion of A::* to C::*
4448 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4449 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4450 return ImplicitConversionSequence::Better;
4451 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4452 return ImplicitConversionSequence::Worse;
4453 }
4454 }
4455
4456 if (SCS1.Second == ICK_Derived_To_Base) {
4457 // -- conversion of C to B is better than conversion of C to A,
4458 // -- binding of an expression of type C to a reference of type
4459 // B& is better than binding an expression of type C to a
4460 // reference of type A&,
4461 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4462 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4463 if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4464 return ImplicitConversionSequence::Better;
4465 else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4466 return ImplicitConversionSequence::Worse;
4467 }
4468
4469 // -- conversion of B to A is better than conversion of C to A.
4470 // -- binding of an expression of type B to a reference of type
4471 // A& is better than binding an expression of type C to a
4472 // reference of type A&,
4473 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4474 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4475 if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4476 return ImplicitConversionSequence::Better;
4477 else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4478 return ImplicitConversionSequence::Worse;
4479 }
4480 }
4481
4482 return ImplicitConversionSequence::Indistinguishable;
4483}
4484
4485/// Determine whether the given type is valid, e.g., it is not an invalid
4486/// C++ class.
4487static bool isTypeValid(QualType T) {
4488 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4489 return !Record->isInvalidDecl();
4490
4491 return true;
4492}
4493
4494static QualType withoutUnaligned(ASTContext &Ctx, QualType T) {
4495 if (!T.getQualifiers().hasUnaligned())
4496 return T;
4497
4498 Qualifiers Q;
4499 T = Ctx.getUnqualifiedArrayType(T, Q);
4500 Q.removeUnaligned();
4501 return Ctx.getQualifiedType(T, Q);
4502}
4503
4504/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4505/// determine whether they are reference-compatible,
4506/// reference-related, or incompatible, for use in C++ initialization by
4507/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4508/// type, and the first type (T1) is the pointee type of the reference
4509/// type being initialized.
4510Sema::ReferenceCompareResult
4511Sema::CompareReferenceRelationship(SourceLocation Loc,
4512 QualType OrigT1, QualType OrigT2,
4513 ReferenceConversions *ConvOut) {
4514 assert(!OrigT1->isReferenceType() &&((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 4515, __PRETTY_FUNCTION__))
4515 "T1 must be the pointee type of the reference type")((!OrigT1->isReferenceType() && "T1 must be the pointee type of the reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT1->isReferenceType() && \"T1 must be the pointee type of the reference type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 4515, __PRETTY_FUNCTION__))
;
4516 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((!OrigT2->isReferenceType() && "T2 cannot be a reference type"
) ? static_cast<void> (0) : __assert_fail ("!OrigT2->isReferenceType() && \"T2 cannot be a reference type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 4516, __PRETTY_FUNCTION__))
;
4517
4518 QualType T1 = Context.getCanonicalType(OrigT1);
4519 QualType T2 = Context.getCanonicalType(OrigT2);
4520 Qualifiers T1Quals, T2Quals;
4521 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4522 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4523
4524 ReferenceConversions ConvTmp;
4525 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp;
4526 Conv = ReferenceConversions();
4527
4528 // C++2a [dcl.init.ref]p4:
4529 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4530 // reference-related to "cv2 T2" if T1 is similar to T2, or
4531 // T1 is a base class of T2.
4532 // "cv1 T1" is reference-compatible with "cv2 T2" if
4533 // a prvalue of type "pointer to cv2 T2" can be converted to the type
4534 // "pointer to cv1 T1" via a standard conversion sequence.
4535
4536 // Check for standard conversions we can apply to pointers: derived-to-base
4537 // conversions, ObjC pointer conversions, and function pointer conversions.
4538 // (Qualification conversions are checked last.)
4539 QualType ConvertedT2;
4540 if (UnqualT1 == UnqualT2) {
4541 // Nothing to do.
4542 } else if (isCompleteType(Loc, OrigT2) &&
4543 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4544 IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4545 Conv |= ReferenceConversions::DerivedToBase;
4546 else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4547 UnqualT2->isObjCObjectOrInterfaceType() &&
4548 Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4549 Conv |= ReferenceConversions::ObjC;
4550 else if (UnqualT2->isFunctionType() &&
4551 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
4552 Conv |= ReferenceConversions::Function;
4553 // No need to check qualifiers; function types don't have them.
4554 return Ref_Compatible;
4555 }
4556 bool ConvertedReferent = Conv != 0;
4557
4558 // We can have a qualification conversion. Compute whether the types are
4559 // similar at the same time.
4560 bool PreviousToQualsIncludeConst = true;
4561 bool TopLevel = true;
4562 do {
4563 if (T1 == T2)
4564 break;
4565
4566 // We will need a qualification conversion.
4567 Conv |= ReferenceConversions::Qualification;
4568
4569 // Track whether we performed a qualification conversion anywhere other
4570 // than the top level. This matters for ranking reference bindings in
4571 // overload resolution.
4572 if (!TopLevel)
4573 Conv |= ReferenceConversions::NestedQualification;
4574
4575 // MS compiler ignores __unaligned qualifier for references; do the same.
4576 T1 = withoutUnaligned(Context, T1);
4577 T2 = withoutUnaligned(Context, T2);
4578
4579 // If we find a qualifier mismatch, the types are not reference-compatible,
4580 // but are still be reference-related if they're similar.
4581 bool ObjCLifetimeConversion = false;
4582 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel,
4583 PreviousToQualsIncludeConst,
4584 ObjCLifetimeConversion))
4585 return (ConvertedReferent || Context.hasSimilarType(T1, T2))
4586 ? Ref_Related
4587 : Ref_Incompatible;
4588
4589 // FIXME: Should we track this for any level other than the first?
4590 if (ObjCLifetimeConversion)
4591 Conv |= ReferenceConversions::ObjCLifetime;
4592
4593 TopLevel = false;
4594 } while (Context.UnwrapSimilarTypes(T1, T2));
4595
4596 // At this point, if the types are reference-related, we must either have the
4597 // same inner type (ignoring qualifiers), or must have already worked out how
4598 // to convert the referent.
4599 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2))
4600 ? Ref_Compatible
4601 : Ref_Incompatible;
4602}
4603
4604/// Look for a user-defined conversion to a value reference-compatible
4605/// with DeclType. Return true if something definite is found.
4606static bool
4607FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4608 QualType DeclType, SourceLocation DeclLoc,
4609 Expr *Init, QualType T2, bool AllowRvalues,
4610 bool AllowExplicit) {
4611 assert(T2->isRecordType() && "Can only find conversions of record types.")((T2->isRecordType() && "Can only find conversions of record types."
) ? static_cast<void> (0) : __assert_fail ("T2->isRecordType() && \"Can only find conversions of record types.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 4611, __PRETTY_FUNCTION__))
;
4612 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
4613
4614 OverloadCandidateSet CandidateSet(
4615 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4616 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4617 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4618 NamedDecl *D = *I;
4619 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4620 if (isa<UsingShadowDecl>(D))
4621 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4622
4623 FunctionTemplateDecl *ConvTemplate
4624 = dyn_cast<FunctionTemplateDecl>(D);
4625 CXXConversionDecl *Conv;
4626 if (ConvTemplate)
4627 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4628 else
4629 Conv = cast<CXXConversionDecl>(D);
4630
4631 if (AllowRvalues) {
4632 // If we are initializing an rvalue reference, don't permit conversion
4633 // functions that return lvalues.
4634 if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4635 const ReferenceType *RefType
4636 = Conv->getConversionType()->getAs<LValueReferenceType>();
4637 if (RefType && !RefType->getPointeeType()->isFunctionType())
4638 continue;
4639 }
4640
4641 if (!ConvTemplate &&
4642 S.CompareReferenceRelationship(
4643 DeclLoc,
4644 Conv->getConversionType()
4645 .getNonReferenceType()
4646 .getUnqualifiedType(),
4647 DeclType.getNonReferenceType().getUnqualifiedType()) ==
4648 Sema::Ref_Incompatible)
4649 continue;
4650 } else {
4651 // If the conversion function doesn't return a reference type,
4652 // it can't be considered for this conversion. An rvalue reference
4653 // is only acceptable if its referencee is a function type.
4654
4655 const ReferenceType *RefType =
4656 Conv->getConversionType()->getAs<ReferenceType>();
4657 if (!RefType ||
4658 (!RefType->isLValueReferenceType() &&
4659 !RefType->getPointeeType()->isFunctionType()))
4660 continue;
4661 }
4662
4663 if (ConvTemplate)
4664 S.AddTemplateConversionCandidate(
4665 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4666 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4667 else
4668 S.AddConversionCandidate(
4669 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
4670 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
4671 }
4672
4673 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4674
4675 OverloadCandidateSet::iterator Best;
4676 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4677 case OR_Success:
4678 // C++ [over.ics.ref]p1:
4679 //
4680 // [...] If the parameter binds directly to the result of
4681 // applying a conversion function to the argument
4682 // expression, the implicit conversion sequence is a
4683 // user-defined conversion sequence (13.3.3.1.2), with the
4684 // second standard conversion sequence either an identity
4685 // conversion or, if the conversion function returns an
4686 // entity of a type that is a derived class of the parameter
4687 // type, a derived-to-base Conversion.
4688 if (!Best->FinalConversion.DirectBinding)
4689 return false;
4690
4691 ICS.setUserDefined();
4692 ICS.UserDefined.Before = Best->Conversions[0].Standard;
4693 ICS.UserDefined.After = Best->FinalConversion;
4694 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4695 ICS.UserDefined.ConversionFunction = Best->Function;
4696 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4697 ICS.UserDefined.EllipsisConversion = false;
4698 assert(ICS.UserDefined.After.ReferenceBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 4700, __PRETTY_FUNCTION__))
4699 ICS.UserDefined.After.DirectBinding &&((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 4700, __PRETTY_FUNCTION__))
4700 "Expected a direct reference binding!")((ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined
.After.DirectBinding && "Expected a direct reference binding!"
) ? static_cast<void> (0) : __assert_fail ("ICS.UserDefined.After.ReferenceBinding && ICS.UserDefined.After.DirectBinding && \"Expected a direct reference binding!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 4700, __PRETTY_FUNCTION__))
;
4701 return true;
4702
4703 case OR_Ambiguous:
4704 ICS.setAmbiguous();
4705 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4706 Cand != CandidateSet.end(); ++Cand)
4707 if (Cand->Best)
4708 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4709 return true;
4710
4711 case OR_No_Viable_Function:
4712 case OR_Deleted:
4713 // There was no suitable conversion, or we found a deleted
4714 // conversion; continue with other checks.
4715 return false;
4716 }
4717
4718 llvm_unreachable("Invalid OverloadResult!")::llvm::llvm_unreachable_internal("Invalid OverloadResult!", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 4718)
;
4719}
4720
4721/// Compute an implicit conversion sequence for reference
4722/// initialization.
4723static ImplicitConversionSequence
4724TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4725 SourceLocation DeclLoc,
4726 bool SuppressUserConversions,
4727 bool AllowExplicit) {
4728 assert(DeclType->isReferenceType() && "Reference init needs a reference")((DeclType->isReferenceType() && "Reference init needs a reference"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isReferenceType() && \"Reference init needs a reference\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 4728, __PRETTY_FUNCTION__))
;
4729
4730 // Most paths end in a failed conversion.
4731 ImplicitConversionSequence ICS;
4732 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4733
4734 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
4735 QualType T2 = Init->getType();
4736
4737 // If the initializer is the address of an overloaded function, try
4738 // to resolve the overloaded function. If all goes well, T2 is the
4739 // type of the resulting function.
4740 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4741 DeclAccessPair Found;
4742 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4743 false, Found))
4744 T2 = Fn->getType();
4745 }
4746
4747 // Compute some basic properties of the types and the initializer.
4748 bool isRValRef = DeclType->isRValueReferenceType();
4749 Expr::Classification InitCategory = Init->Classify(S.Context);
4750
4751 Sema::ReferenceConversions RefConv;
4752 Sema::ReferenceCompareResult RefRelationship =
4753 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv);
4754
4755 auto SetAsReferenceBinding = [&](bool BindsDirectly) {
4756 ICS.setStandard();
4757 ICS.Standard.First = ICK_Identity;
4758 // FIXME: A reference binding can be a function conversion too. We should
4759 // consider that when ordering reference-to-function bindings.
4760 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase)
4761 ? ICK_Derived_To_Base
4762 : (RefConv & Sema::ReferenceConversions::ObjC)
4763 ? ICK_Compatible_Conversion
4764 : ICK_Identity;
4765 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank
4766 // a reference binding that performs a non-top-level qualification
4767 // conversion as a qualification conversion, not as an identity conversion.
4768 ICS.Standard.Third = (RefConv &
4769 Sema::ReferenceConversions::NestedQualification)
4770 ? ICK_Qualification
4771 : ICK_Identity;
4772 ICS.Standard.setFromType(T2);
4773 ICS.Standard.setToType(0, T2);
4774 ICS.Standard.setToType(1, T1);
4775 ICS.Standard.setToType(2, T1);
4776 ICS.Standard.ReferenceBinding = true;
4777 ICS.Standard.DirectBinding = BindsDirectly;
4778 ICS.Standard.IsLvalueReference = !isRValRef;
4779 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4780 ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4781 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4782 ICS.Standard.ObjCLifetimeConversionBinding =
4783 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0;
4784 ICS.Standard.CopyConstructor = nullptr;
4785 ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4786 };
4787
4788 // C++0x [dcl.init.ref]p5:
4789 // A reference to type "cv1 T1" is initialized by an expression
4790 // of type "cv2 T2" as follows:
4791
4792 // -- If reference is an lvalue reference and the initializer expression
4793 if (!isRValRef) {
4794 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4795 // reference-compatible with "cv2 T2," or
4796 //
4797 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4798 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
4799 // C++ [over.ics.ref]p1:
4800 // When a parameter of reference type binds directly (8.5.3)
4801 // to an argument expression, the implicit conversion sequence
4802 // is the identity conversion, unless the argument expression
4803 // has a type that is a derived class of the parameter type,
4804 // in which case the implicit conversion sequence is a
4805 // derived-to-base Conversion (13.3.3.1).
4806 SetAsReferenceBinding(/*BindsDirectly=*/true);
4807
4808 // Nothing more to do: the inaccessibility/ambiguity check for
4809 // derived-to-base conversions is suppressed when we're
4810 // computing the implicit conversion sequence (C++
4811 // [over.best.ics]p2).
4812 return ICS;
4813 }
4814
4815 // -- has a class type (i.e., T2 is a class type), where T1 is
4816 // not reference-related to T2, and can be implicitly
4817 // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4818 // is reference-compatible with "cv3 T3" 92) (this
4819 // conversion is selected by enumerating the applicable
4820 // conversion functions (13.3.1.6) and choosing the best
4821 // one through overload resolution (13.3)),
4822 if (!SuppressUserConversions && T2->isRecordType() &&
4823 S.isCompleteType(DeclLoc, T2) &&
4824 RefRelationship == Sema::Ref_Incompatible) {
4825 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4826 Init, T2, /*AllowRvalues=*/false,
4827 AllowExplicit))
4828 return ICS;
4829 }
4830 }
4831
4832 // -- Otherwise, the reference shall be an lvalue reference to a
4833 // non-volatile const type (i.e., cv1 shall be const), or the reference
4834 // shall be an rvalue reference.
4835 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4836 return ICS;
4837
4838 // -- If the initializer expression
4839 //
4840 // -- is an xvalue, class prvalue, array prvalue or function
4841 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4842 if (RefRelationship == Sema::Ref_Compatible &&
4843 (InitCategory.isXValue() ||
4844 (InitCategory.isPRValue() &&
4845 (T2->isRecordType() || T2->isArrayType())) ||
4846 (InitCategory.isLValue() && T2->isFunctionType()))) {
4847 // In C++11, this is always a direct binding. In C++98/03, it's a direct
4848 // binding unless we're binding to a class prvalue.
4849 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4850 // allow the use of rvalue references in C++98/03 for the benefit of
4851 // standard library implementors; therefore, we need the xvalue check here.
4852 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 ||
4853 !(InitCategory.isPRValue() || T2->isRecordType()));
4854 return ICS;
4855 }
4856
4857 // -- has a class type (i.e., T2 is a class type), where T1 is not
4858 // reference-related to T2, and can be implicitly converted to
4859 // an xvalue, class prvalue, or function lvalue of type
4860 // "cv3 T3", where "cv1 T1" is reference-compatible with
4861 // "cv3 T3",
4862 //
4863 // then the reference is bound to the value of the initializer
4864 // expression in the first case and to the result of the conversion
4865 // in the second case (or, in either case, to an appropriate base
4866 // class subobject).
4867 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4868 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4869 FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4870 Init, T2, /*AllowRvalues=*/true,
4871 AllowExplicit)) {
4872 // In the second case, if the reference is an rvalue reference
4873 // and the second standard conversion sequence of the
4874 // user-defined conversion sequence includes an lvalue-to-rvalue
4875 // conversion, the program is ill-formed.
4876 if (ICS.isUserDefined() && isRValRef &&
4877 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4878 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4879
4880 return ICS;
4881 }
4882
4883 // A temporary of function type cannot be created; don't even try.
4884 if (T1->isFunctionType())
4885 return ICS;
4886
4887 // -- Otherwise, a temporary of type "cv1 T1" is created and
4888 // initialized from the initializer expression using the
4889 // rules for a non-reference copy initialization (8.5). The
4890 // reference is then bound to the temporary. If T1 is
4891 // reference-related to T2, cv1 must be the same
4892 // cv-qualification as, or greater cv-qualification than,
4893 // cv2; otherwise, the program is ill-formed.
4894 if (RefRelationship == Sema::Ref_Related) {
4895 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4896 // we would be reference-compatible or reference-compatible with
4897 // added qualification. But that wasn't the case, so the reference
4898 // initialization fails.
4899 //
4900 // Note that we only want to check address spaces and cvr-qualifiers here.
4901 // ObjC GC, lifetime and unaligned qualifiers aren't important.
4902 Qualifiers T1Quals = T1.getQualifiers();
4903 Qualifiers T2Quals = T2.getQualifiers();
4904 T1Quals.removeObjCGCAttr();
4905 T1Quals.removeObjCLifetime();
4906 T2Quals.removeObjCGCAttr();
4907 T2Quals.removeObjCLifetime();
4908 // MS compiler ignores __unaligned qualifier for references; do the same.
4909 T1Quals.removeUnaligned();
4910 T2Quals.removeUnaligned();
4911 if (!T1Quals.compatiblyIncludes(T2Quals))
4912 return ICS;
4913 }
4914
4915 // If at least one of the types is a class type, the types are not
4916 // related, and we aren't allowed any user conversions, the
4917 // reference binding fails. This case is important for breaking
4918 // recursion, since TryImplicitConversion below will attempt to
4919 // create a temporary through the use of a copy constructor.
4920 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4921 (T1->isRecordType() || T2->isRecordType()))
4922 return ICS;
4923
4924 // If T1 is reference-related to T2 and the reference is an rvalue
4925 // reference, the initializer expression shall not be an lvalue.
4926 if (RefRelationship >= Sema::Ref_Related &&
4927 isRValRef && Init->Classify(S.Context).isLValue())
4928 return ICS;
4929
4930 // C++ [over.ics.ref]p2:
4931 // When a parameter of reference type is not bound directly to
4932 // an argument expression, the conversion sequence is the one
4933 // required to convert the argument expression to the
4934 // underlying type of the reference according to
4935 // 13.3.3.1. Conceptually, this conversion sequence corresponds
4936 // to copy-initializing a temporary of the underlying type with
4937 // the argument expression. Any difference in top-level
4938 // cv-qualification is subsumed by the initialization itself
4939 // and does not constitute a conversion.
4940 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4941 AllowedExplicit::None,
4942 /*InOverloadResolution=*/false,
4943 /*CStyle=*/false,
4944 /*AllowObjCWritebackConversion=*/false,
4945 /*AllowObjCConversionOnExplicit=*/false);
4946
4947 // Of course, that's still a reference binding.
4948 if (ICS.isStandard()) {
4949 ICS.Standard.ReferenceBinding = true;
4950 ICS.Standard.IsLvalueReference = !isRValRef;
4951 ICS.Standard.BindsToFunctionLvalue = false;
4952 ICS.Standard.BindsToRvalue = true;
4953 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4954 ICS.Standard.ObjCLifetimeConversionBinding = false;
4955 } else if (ICS.isUserDefined()) {
4956 const ReferenceType *LValRefType =
4957 ICS.UserDefined.ConversionFunction->getReturnType()
4958 ->getAs<LValueReferenceType>();
4959
4960 // C++ [over.ics.ref]p3:
4961 // Except for an implicit object parameter, for which see 13.3.1, a
4962 // standard conversion sequence cannot be formed if it requires [...]
4963 // binding an rvalue reference to an lvalue other than a function
4964 // lvalue.
4965 // Note that the function case is not possible here.
4966 if (DeclType->isRValueReferenceType() && LValRefType) {
4967 // FIXME: This is the wrong BadConversionSequence. The problem is binding
4968 // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4969 // reference to an rvalue!
4970 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4971 return ICS;
4972 }
4973
4974 ICS.UserDefined.After.ReferenceBinding = true;
4975 ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4976 ICS.UserDefined.After.BindsToFunctionLvalue = false;
4977 ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4978 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4979 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4980 }
4981
4982 return ICS;
4983}
4984
4985static ImplicitConversionSequence
4986TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4987 bool SuppressUserConversions,
4988 bool InOverloadResolution,
4989 bool AllowObjCWritebackConversion,
4990 bool AllowExplicit = false);
4991
4992/// TryListConversion - Try to copy-initialize a value of type ToType from the
4993/// initializer list From.
4994static ImplicitConversionSequence
4995TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4996 bool SuppressUserConversions,
4997 bool InOverloadResolution,
4998 bool AllowObjCWritebackConversion) {
4999 // C++11 [over.ics.list]p1:
5000 // When an argument is an initializer list, it is not an expression and
5001 // special rules apply for converting it to a parameter type.
5002
5003 ImplicitConversionSequence Result;
5004 Result.setBad(BadConversionSequence::no_conversion, From, ToType);
5005
5006 // We need a complete type for what follows. Incomplete types can never be
5007 // initialized from init lists.
5008 if (!S.isCompleteType(From->getBeginLoc(), ToType))
5009 return Result;
5010
5011 // Per DR1467:
5012 // If the parameter type is a class X and the initializer list has a single
5013 // element of type cv U, where U is X or a class derived from X, the
5014 // implicit conversion sequence is the one required to convert the element
5015 // to the parameter type.
5016 //
5017 // Otherwise, if the parameter type is a character array [... ]
5018 // and the initializer list has a single element that is an
5019 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
5020 // implicit conversion sequence is the identity conversion.
5021 if (From->getNumInits() == 1) {
5022 if (ToType->isRecordType()) {
5023 QualType InitType = From->getInit(0)->getType();
5024 if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
5025 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
5026 return TryCopyInitialization(S, From->getInit(0), ToType,
5027 SuppressUserConversions,
5028 InOverloadResolution,
5029 AllowObjCWritebackConversion);
5030 }
5031
5032 if (const auto *AT = S.Context.getAsArrayType(ToType)) {
5033 if (S.IsStringInit(From->getInit(0), AT)) {
5034 InitializedEntity Entity =
5035 InitializedEntity::InitializeParameter(S.Context, ToType,
5036 /*Consumed=*/false);
5037 if (S.CanPerformCopyInitialization(Entity, From)) {
5038 Result.setStandard();
5039 Result.Standard.setAsIdentityConversion();
5040 Result.Standard.setFromType(ToType);
5041 Result.Standard.setAllToTypes(ToType);
5042 return Result;
5043 }
5044 }
5045 }
5046 }
5047
5048 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
5049 // C++11 [over.ics.list]p2:
5050 // If the parameter type is std::initializer_list<X> or "array of X" and
5051 // all the elements can be implicitly converted to X, the implicit
5052 // conversion sequence is the worst conversion necessary to convert an
5053 // element of the list to X.
5054 //
5055 // C++14 [over.ics.list]p3:
5056 // Otherwise, if the parameter type is "array of N X", if the initializer
5057 // list has exactly N elements or if it has fewer than N elements and X is
5058 // default-constructible, and if all the elements of the initializer list
5059 // can be implicitly converted to X, the implicit conversion sequence is
5060 // the worst conversion necessary to convert an element of the list to X.
5061 //
5062 // FIXME: We're missing a lot of these checks.
5063 bool toStdInitializerList = false;
5064 QualType X;
5065 if (ToType->isArrayType())
5066 X = S.Context.getAsArrayType(ToType)->getElementType();
5067 else
5068 toStdInitializerList = S.isStdInitializerList(ToType, &X);
5069 if (!X.isNull()) {
5070 for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
5071 Expr *Init = From->getInit(i);
5072 ImplicitConversionSequence ICS =
5073 TryCopyInitialization(S, Init, X, SuppressUserConversions,
5074 InOverloadResolution,
5075 AllowObjCWritebackConversion);
5076 // If a single element isn't convertible, fail.
5077 if (ICS.isBad()) {
5078 Result = ICS;
5079 break;
5080 }
5081 // Otherwise, look for the worst conversion.
5082 if (Result.isBad() || CompareImplicitConversionSequences(
5083 S, From->getBeginLoc(), ICS, Result) ==
5084 ImplicitConversionSequence::Worse)
5085 Result = ICS;
5086 }
5087
5088 // For an empty list, we won't have computed any conversion sequence.
5089 // Introduce the identity conversion sequence.
5090 if (From->getNumInits() == 0) {
5091 Result.setStandard();
5092 Result.Standard.setAsIdentityConversion();
5093 Result.Standard.setFromType(ToType);
5094 Result.Standard.setAllToTypes(ToType);
5095 }
5096
5097 Result.setStdInitializerListElement(toStdInitializerList);
5098 return Result;
5099 }
5100
5101 // C++14 [over.ics.list]p4:
5102 // C++11 [over.ics.list]p3:
5103 // Otherwise, if the parameter is a non-aggregate class X and overload
5104 // resolution chooses a single best constructor [...] the implicit
5105 // conversion sequence is a user-defined conversion sequence. If multiple
5106 // constructors are viable but none is better than the others, the
5107 // implicit conversion sequence is a user-defined conversion sequence.
5108 if (ToType->isRecordType() && !ToType->isAggregateType()) {
5109 // This function can deal with initializer lists.
5110 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
5111 AllowedExplicit::None,
5112 InOverloadResolution, /*CStyle=*/false,
5113 AllowObjCWritebackConversion,
5114 /*AllowObjCConversionOnExplicit=*/false);
5115 }
5116
5117 // C++14 [over.ics.list]p5:
5118 // C++11 [over.ics.list]p4:
5119 // Otherwise, if the parameter has an aggregate type which can be
5120 // initialized from the initializer list [...] the implicit conversion
5121 // sequence is a user-defined conversion sequence.
5122 if (ToType->isAggregateType()) {
5123 // Type is an aggregate, argument is an init list. At this point it comes
5124 // down to checking whether the initialization works.
5125 // FIXME: Find out whether this parameter is consumed or not.
5126 InitializedEntity Entity =
5127 InitializedEntity::InitializeParameter(S.Context, ToType,
5128 /*Consumed=*/false);
5129 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
5130 From)) {
5131 Result.setUserDefined();
5132 Result.UserDefined.Before.setAsIdentityConversion();
5133 // Initializer lists don't have a type.
5134 Result.UserDefined.Before.setFromType(QualType());
5135 Result.UserDefined.Before.setAllToTypes(QualType());
5136
5137 Result.UserDefined.After.setAsIdentityConversion();
5138 Result.UserDefined.After.setFromType(ToType);
5139 Result.UserDefined.After.setAllToTypes(ToType);
5140 Result.UserDefined.ConversionFunction = nullptr;
5141 }
5142 return Result;
5143 }
5144
5145 // C++14 [over.ics.list]p6:
5146 // C++11 [over.ics.list]p5:
5147 // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
5148 if (ToType->isReferenceType()) {
5149 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
5150 // mention initializer lists in any way. So we go by what list-
5151 // initialization would do and try to extrapolate from that.
5152
5153 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
5154
5155 // If the initializer list has a single element that is reference-related
5156 // to the parameter type, we initialize the reference from that.
5157 if (From->getNumInits() == 1) {
5158 Expr *Init = From->getInit(0);
5159
5160 QualType T2 = Init->getType();
5161
5162 // If the initializer is the address of an overloaded function, try
5163 // to resolve the overloaded function. If all goes well, T2 is the
5164 // type of the resulting function.
5165 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
5166 DeclAccessPair Found;
5167 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
5168 Init, ToType, false, Found))
5169 T2 = Fn->getType();
5170 }
5171
5172 // Compute some basic properties of the types and the initializer.
5173 Sema::ReferenceCompareResult RefRelationship =
5174 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2);
5175
5176 if (RefRelationship >= Sema::Ref_Related) {
5177 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
5178 SuppressUserConversions,
5179 /*AllowExplicit=*/false);
5180 }
5181 }
5182
5183 // Otherwise, we bind the reference to a temporary created from the
5184 // initializer list.
5185 Result = TryListConversion(S, From, T1, SuppressUserConversions,
5186 InOverloadResolution,
5187 AllowObjCWritebackConversion);
5188 if (Result.isFailure())
5189 return Result;
5190 assert(!Result.isEllipsis() &&((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5191, __PRETTY_FUNCTION__))
5191 "Sub-initialization cannot result in ellipsis conversion.")((!Result.isEllipsis() && "Sub-initialization cannot result in ellipsis conversion."
) ? static_cast<void> (0) : __assert_fail ("!Result.isEllipsis() && \"Sub-initialization cannot result in ellipsis conversion.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5191, __PRETTY_FUNCTION__))
;
5192
5193 // Can we even bind to a temporary?
5194 if (ToType->isRValueReferenceType() ||
5195 (T1.isConstQualified() && !T1.isVolatileQualified())) {
5196 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
5197 Result.UserDefined.After;
5198 SCS.ReferenceBinding = true;
5199 SCS.IsLvalueReference = ToType->isLValueReferenceType();
5200 SCS.BindsToRvalue = true;
5201 SCS.BindsToFunctionLvalue = false;
5202 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
5203 SCS.ObjCLifetimeConversionBinding = false;
5204 } else
5205 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
5206 From, ToType);
5207 return Result;
5208 }
5209
5210 // C++14 [over.ics.list]p7:
5211 // C++11 [over.ics.list]p6:
5212 // Otherwise, if the parameter type is not a class:
5213 if (!ToType->isRecordType()) {
5214 // - if the initializer list has one element that is not itself an
5215 // initializer list, the implicit conversion sequence is the one
5216 // required to convert the element to the parameter type.
5217 unsigned NumInits = From->getNumInits();
5218 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
5219 Result = TryCopyInitialization(S, From->getInit(0), ToType,
5220 SuppressUserConversions,
5221 InOverloadResolution,
5222 AllowObjCWritebackConversion);
5223 // - if the initializer list has no elements, the implicit conversion
5224 // sequence is the identity conversion.
5225 else if (NumInits == 0) {
5226 Result.setStandard();
5227 Result.Standard.setAsIdentityConversion();
5228 Result.Standard.setFromType(ToType);
5229 Result.Standard.setAllToTypes(ToType);
5230 }
5231 return Result;
5232 }
5233
5234 // C++14 [over.ics.list]p8:
5235 // C++11 [over.ics.list]p7:
5236 // In all cases other than those enumerated above, no conversion is possible
5237 return Result;
5238}
5239
5240/// TryCopyInitialization - Try to copy-initialize a value of type
5241/// ToType from the expression From. Return the implicit conversion
5242/// sequence required to pass this argument, which may be a bad
5243/// conversion sequence (meaning that the argument cannot be passed to
5244/// a parameter of this type). If @p SuppressUserConversions, then we
5245/// do not permit any user-defined conversion sequences.
5246static ImplicitConversionSequence
5247TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
5248 bool SuppressUserConversions,
5249 bool InOverloadResolution,
5250 bool AllowObjCWritebackConversion,
5251 bool AllowExplicit) {
5252 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
5253 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
5254 InOverloadResolution,AllowObjCWritebackConversion);
5255
5256 if (ToType->isReferenceType())
5257 return TryReferenceInit(S, From, ToType,
5258 /*FIXME:*/ From->getBeginLoc(),
5259 SuppressUserConversions, AllowExplicit);
5260
5261 return TryImplicitConversion(S, From, ToType,
5262 SuppressUserConversions,
5263 AllowedExplicit::None,
5264 InOverloadResolution,
5265 /*CStyle=*/false,
5266 AllowObjCWritebackConversion,
5267 /*AllowObjCConversionOnExplicit=*/false);
5268}
5269
5270static bool TryCopyInitialization(const CanQualType FromQTy,
5271 const CanQualType ToQTy,
5272 Sema &S,
5273 SourceLocation Loc,
5274 ExprValueKind FromVK) {
5275 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
5276 ImplicitConversionSequence ICS =
5277 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
5278
5279 return !ICS.isBad();
5280}
5281
5282/// TryObjectArgumentInitialization - Try to initialize the object
5283/// parameter of the given member function (@c Method) from the
5284/// expression @p From.
5285static ImplicitConversionSequence
5286TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
5287 Expr::Classification FromClassification,
5288 CXXMethodDecl *Method,
5289 CXXRecordDecl *ActingContext) {
5290 QualType ClassType = S.Context.getTypeDeclType(ActingContext);
5291 // [class.dtor]p2: A destructor can be invoked for a const, volatile or
5292 // const volatile object.
5293 Qualifiers Quals = Method->getMethodQualifiers();
5294 if (isa<CXXDestructorDecl>(Method)) {
5295 Quals.addConst();
5296 Quals.addVolatile();
5297 }
5298
5299 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
5300
5301 // Set up the conversion sequence as a "bad" conversion, to allow us
5302 // to exit early.
5303 ImplicitConversionSequence ICS;
5304
5305 // We need to have an object of class type.
5306 if (const PointerType *PT = FromType->getAs<PointerType>()) {
5307 FromType = PT->getPointeeType();
5308
5309 // When we had a pointer, it's implicitly dereferenced, so we
5310 // better have an lvalue.
5311 assert(FromClassification.isLValue())((FromClassification.isLValue()) ? static_cast<void> (0
) : __assert_fail ("FromClassification.isLValue()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5311, __PRETTY_FUNCTION__))
;
5312 }
5313
5314 assert(FromType->isRecordType())((FromType->isRecordType()) ? static_cast<void> (0) :
__assert_fail ("FromType->isRecordType()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5314, __PRETTY_FUNCTION__))
;
5315
5316 // C++0x [over.match.funcs]p4:
5317 // For non-static member functions, the type of the implicit object
5318 // parameter is
5319 //
5320 // - "lvalue reference to cv X" for functions declared without a
5321 // ref-qualifier or with the & ref-qualifier
5322 // - "rvalue reference to cv X" for functions declared with the &&
5323 // ref-qualifier
5324 //
5325 // where X is the class of which the function is a member and cv is the
5326 // cv-qualification on the member function declaration.
5327 //
5328 // However, when finding an implicit conversion sequence for the argument, we
5329 // are not allowed to perform user-defined conversions
5330 // (C++ [over.match.funcs]p5). We perform a simplified version of
5331 // reference binding here, that allows class rvalues to bind to
5332 // non-constant references.
5333
5334 // First check the qualifiers.
5335 QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
5336 if (ImplicitParamType.getCVRQualifiers()
5337 != FromTypeCanon.getLocalCVRQualifiers() &&
5338 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
5339 ICS.setBad(BadConversionSequence::bad_qualifiers,
5340 FromType, ImplicitParamType);
5341 return ICS;
5342 }
5343
5344 if (FromTypeCanon.hasAddressSpace()) {
5345 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
5346 Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
5347 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
5348 ICS.setBad(BadConversionSequence::bad_qualifiers,
5349 FromType, ImplicitParamType);
5350 return ICS;
5351 }
5352 }
5353
5354 // Check that we have either the same type or a derived type. It
5355 // affects the conversion rank.
5356 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
5357 ImplicitConversionKind SecondKind;
5358 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
5359 SecondKind = ICK_Identity;
5360 } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
5361 SecondKind = ICK_Derived_To_Base;
5362 else {
5363 ICS.setBad(BadConversionSequence::unrelated_class,
5364 FromType, ImplicitParamType);
5365 return ICS;
5366 }
5367
5368 // Check the ref-qualifier.
5369 switch (Method->getRefQualifier()) {
5370 case RQ_None:
5371 // Do nothing; we don't care about lvalueness or rvalueness.
5372 break;
5373
5374 case RQ_LValue:
5375 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
5376 // non-const lvalue reference cannot bind to an rvalue
5377 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
5378 ImplicitParamType);
5379 return ICS;
5380 }
5381 break;
5382
5383 case RQ_RValue:
5384 if (!FromClassification.isRValue()) {
5385 // rvalue reference cannot bind to an lvalue
5386 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
5387 ImplicitParamType);
5388 return ICS;
5389 }
5390 break;
5391 }
5392
5393 // Success. Mark this as a reference binding.
5394 ICS.setStandard();
5395 ICS.Standard.setAsIdentityConversion();
5396 ICS.Standard.Second = SecondKind;
5397 ICS.Standard.setFromType(FromType);
5398 ICS.Standard.setAllToTypes(ImplicitParamType);
5399 ICS.Standard.ReferenceBinding = true;
5400 ICS.Standard.DirectBinding = true;
5401 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
5402 ICS.Standard.BindsToFunctionLvalue = false;
5403 ICS.Standard.BindsToRvalue = FromClassification.isRValue();
5404 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
5405 = (Method->getRefQualifier() == RQ_None);
5406 return ICS;
5407}
5408
5409/// PerformObjectArgumentInitialization - Perform initialization of
5410/// the implicit object parameter for the given Method with the given
5411/// expression.
5412ExprResult
5413Sema::PerformObjectArgumentInitialization(Expr *From,
5414 NestedNameSpecifier *Qualifier,
5415 NamedDecl *FoundDecl,
5416 CXXMethodDecl *Method) {
5417 QualType FromRecordType, DestType;
5418 QualType ImplicitParamRecordType =
5419 Method->getThisType()->castAs<PointerType>()->getPointeeType();
5420
5421 Expr::Classification FromClassification;
5422 if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
5423 FromRecordType = PT->getPointeeType();
5424 DestType = Method->getThisType();
5425 FromClassification = Expr::Classification::makeSimpleLValue();
5426 } else {
5427 FromRecordType = From->getType();
5428 DestType = ImplicitParamRecordType;
5429 FromClassification = From->Classify(Context);
5430
5431 // When performing member access on an rvalue, materialize a temporary.
5432 if (From->isRValue()) {
5433 From = CreateMaterializeTemporaryExpr(FromRecordType, From,
5434 Method->getRefQualifier() !=
5435 RefQualifierKind::RQ_RValue);
5436 }
5437 }
5438
5439 // Note that we always use the true parent context when performing
5440 // the actual argument initialization.
5441 ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
5442 *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
5443 Method->getParent());
5444 if (ICS.isBad()) {
5445 switch (ICS.Bad.Kind) {
5446 case BadConversionSequence::bad_qualifiers: {
5447 Qualifiers FromQs = FromRecordType.getQualifiers();
5448 Qualifiers ToQs = DestType.getQualifiers();
5449 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5450 if (CVR) {
5451 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
5452 << Method->getDeclName() << FromRecordType << (CVR - 1)
5453 << From->getSourceRange();
5454 Diag(Method->getLocation(), diag::note_previous_decl)
5455 << Method->getDeclName();
5456 return ExprError();
5457 }
5458 break;
5459 }
5460
5461 case BadConversionSequence::lvalue_ref_to_rvalue:
5462 case BadConversionSequence::rvalue_ref_to_lvalue: {
5463 bool IsRValueQualified =
5464 Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
5465 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
5466 << Method->getDeclName() << FromClassification.isRValue()
5467 << IsRValueQualified;
5468 Diag(Method->getLocation(), diag::note_previous_decl)
5469 << Method->getDeclName();
5470 return ExprError();
5471 }
5472
5473 case BadConversionSequence::no_conversion:
5474 case BadConversionSequence::unrelated_class:
5475 break;
5476 }
5477
5478 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
5479 << ImplicitParamRecordType << FromRecordType
5480 << From->getSourceRange();
5481 }
5482
5483 if (ICS.Standard.Second == ICK_Derived_To_Base) {
5484 ExprResult FromRes =
5485 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5486 if (FromRes.isInvalid())
5487 return ExprError();
5488 From = FromRes.get();
5489 }
5490
5491 if (!Context.hasSameType(From->getType(), DestType)) {
5492 CastKind CK;
5493 QualType PteeTy = DestType->getPointeeType();
5494 LangAS DestAS =
5495 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace();
5496 if (FromRecordType.getAddressSpace() != DestAS)
5497 CK = CK_AddressSpaceConversion;
5498 else
5499 CK = CK_NoOp;
5500 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
5501 }
5502 return From;
5503}
5504
5505/// TryContextuallyConvertToBool - Attempt to contextually convert the
5506/// expression From to bool (C++0x [conv]p3).
5507static ImplicitConversionSequence
5508TryContextuallyConvertToBool(Sema &S, Expr *From) {
5509 // C++ [dcl.init]/17.8:
5510 // - Otherwise, if the initialization is direct-initialization, the source
5511 // type is std::nullptr_t, and the destination type is bool, the initial
5512 // value of the object being initialized is false.
5513 if (From->getType()->isNullPtrType())
5514 return ImplicitConversionSequence::getNullptrToBool(From->getType(),
5515 S.Context.BoolTy,
5516 From->isGLValue());
5517
5518 // All other direct-initialization of bool is equivalent to an implicit
5519 // conversion to bool in which explicit conversions are permitted.
5520 return TryImplicitConversion(S, From, S.Context.BoolTy,
5521 /*SuppressUserConversions=*/false,
5522 AllowedExplicit::Conversions,
5523 /*InOverloadResolution=*/false,
5524 /*CStyle=*/false,
5525 /*AllowObjCWritebackConversion=*/false,
5526 /*AllowObjCConversionOnExplicit=*/false);
5527}
5528
5529/// PerformContextuallyConvertToBool - Perform a contextual conversion
5530/// of the expression From to bool (C++0x [conv]p3).
5531ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5532 if (checkPlaceholderForOverload(*this, From))
5533 return ExprError();
5534
5535 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5536 if (!ICS.isBad())
5537 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5538
5539 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5540 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
5541 << From->getType() << From->getSourceRange();
5542 return ExprError();
5543}
5544
5545/// Check that the specified conversion is permitted in a converted constant
5546/// expression, according to C++11 [expr.const]p3. Return true if the conversion
5547/// is acceptable.
5548static bool CheckConvertedConstantConversions(Sema &S,
5549 StandardConversionSequence &SCS) {
5550 // Since we know that the target type is an integral or unscoped enumeration
5551 // type, most conversion kinds are impossible. All possible First and Third
5552 // conversions are fine.
5553 switch (SCS.Second) {
5554 case ICK_Identity:
5555 case ICK_Integral_Promotion:
5556 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5557 case ICK_Zero_Queue_Conversion:
5558 return true;
5559
5560 case ICK_Boolean_Conversion:
5561 // Conversion from an integral or unscoped enumeration type to bool is
5562 // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5563 // conversion, so we allow it in a converted constant expression.
5564 //
5565 // FIXME: Per core issue 1407, we should not allow this, but that breaks
5566 // a lot of popular code. We should at least add a warning for this
5567 // (non-conforming) extension.
5568 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5569 SCS.getToType(2)->isBooleanType();
5570
5571 case ICK_Pointer_Conversion:
5572 case ICK_Pointer_Member:
5573 // C++1z: null pointer conversions and null member pointer conversions are
5574 // only permitted if the source type is std::nullptr_t.
5575 return SCS.getFromType()->isNullPtrType();
5576
5577 case ICK_Floating_Promotion:
5578 case ICK_Complex_Promotion:
5579 case ICK_Floating_Conversion:
5580 case ICK_Complex_Conversion:
5581 case ICK_Floating_Integral:
5582 case ICK_Compatible_Conversion:
5583 case ICK_Derived_To_Base:
5584 case ICK_Vector_Conversion:
5585 case ICK_SVE_Vector_Conversion:
5586 case ICK_Vector_Splat:
5587 case ICK_Complex_Real:
5588 case ICK_Block_Pointer_Conversion:
5589 case ICK_TransparentUnionConversion:
5590 case ICK_Writeback_Conversion:
5591 case ICK_Zero_Event_Conversion:
5592 case ICK_C_Only_Conversion:
5593 case ICK_Incompatible_Pointer_Conversion:
5594 return false;
5595
5596 case ICK_Lvalue_To_Rvalue:
5597 case ICK_Array_To_Pointer:
5598 case ICK_Function_To_Pointer:
5599 llvm_unreachable("found a first conversion kind in Second")::llvm::llvm_unreachable_internal("found a first conversion kind in Second"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5599)
;
5600
5601 case ICK_Function_Conversion:
5602 case ICK_Qualification:
5603 llvm_unreachable("found a third conversion kind in Second")::llvm::llvm_unreachable_internal("found a third conversion kind in Second"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5603)
;
5604
5605 case ICK_Num_Conversion_Kinds:
5606 break;
5607 }
5608
5609 llvm_unreachable("unknown conversion kind")::llvm::llvm_unreachable_internal("unknown conversion kind", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5609)
;
5610}
5611
5612/// CheckConvertedConstantExpression - Check that the expression From is a
5613/// converted constant expression of type T, perform the conversion and produce
5614/// the converted expression, per C++11 [expr.const]p3.
5615static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5616 QualType T, APValue &Value,
5617 Sema::CCEKind CCE,
5618 bool RequireInt,
5619 NamedDecl *Dest) {
5620 assert(S.getLangOpts().CPlusPlus11 &&((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5621, __PRETTY_FUNCTION__))
5621 "converted constant expression outside C++11")((S.getLangOpts().CPlusPlus11 && "converted constant expression outside C++11"
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus11 && \"converted constant expression outside C++11\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5621, __PRETTY_FUNCTION__))
;
5622
5623 if (checkPlaceholderForOverload(S, From))
5624 return ExprError();
5625
5626 // C++1z [expr.const]p3:
5627 // A converted constant expression of type T is an expression,
5628 // implicitly converted to type T, where the converted
5629 // expression is a constant expression and the implicit conversion
5630 // sequence contains only [... list of conversions ...].
5631 // C++1z [stmt.if]p2:
5632 // If the if statement is of the form if constexpr, the value of the
5633 // condition shall be a contextually converted constant expression of type
5634 // bool.
5635 ImplicitConversionSequence ICS =
5636 CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
5637 ? TryContextuallyConvertToBool(S, From)
5638 : TryCopyInitialization(S, From, T,
5639 /*SuppressUserConversions=*/false,
5640 /*InOverloadResolution=*/false,
5641 /*AllowObjCWritebackConversion=*/false,
5642 /*AllowExplicit=*/false);
5643 StandardConversionSequence *SCS = nullptr;
5644 switch (ICS.getKind()) {
5645 case ImplicitConversionSequence::StandardConversion:
5646 SCS = &ICS.Standard;
5647 break;
5648 case ImplicitConversionSequence::UserDefinedConversion:
5649 if (T->isRecordType())
5650 SCS = &ICS.UserDefined.Before;
5651 else
5652 SCS = &ICS.UserDefined.After;
5653 break;
5654 case ImplicitConversionSequence::AmbiguousConversion:
5655 case ImplicitConversionSequence::BadConversion:
5656 if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5657 return S.Diag(From->getBeginLoc(),
5658 diag::err_typecheck_converted_constant_expression)
5659 << From->getType() << From->getSourceRange() << T;
5660 return ExprError();
5661
5662 case ImplicitConversionSequence::EllipsisConversion:
5663 llvm_unreachable("ellipsis conversion in converted constant expression")::llvm::llvm_unreachable_internal("ellipsis conversion in converted constant expression"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5663)
;
5664 }
5665
5666 // Check that we would only use permitted conversions.
5667 if (!CheckConvertedConstantConversions(S, *SCS)) {
5668 return S.Diag(From->getBeginLoc(),
5669 diag::err_typecheck_converted_constant_expression_disallowed)
5670 << From->getType() << From->getSourceRange() << T;
5671 }
5672 // [...] and where the reference binding (if any) binds directly.
5673 if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5674 return S.Diag(From->getBeginLoc(),
5675 diag::err_typecheck_converted_constant_expression_indirect)
5676 << From->getType() << From->getSourceRange() << T;
5677 }
5678
5679 // Usually we can simply apply the ImplicitConversionSequence we formed
5680 // earlier, but that's not guaranteed to work when initializing an object of
5681 // class type.
5682 ExprResult Result;
5683 if (T->isRecordType()) {
5684 assert(CCE == Sema::CCEK_TemplateArg &&((CCE == Sema::CCEK_TemplateArg && "unexpected class type converted constant expr"
) ? static_cast<void> (0) : __assert_fail ("CCE == Sema::CCEK_TemplateArg && \"unexpected class type converted constant expr\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5685, __PRETTY_FUNCTION__))
5685 "unexpected class type converted constant expr")((CCE == Sema::CCEK_TemplateArg && "unexpected class type converted constant expr"
) ? static_cast<void> (0) : __assert_fail ("CCE == Sema::CCEK_TemplateArg && \"unexpected class type converted constant expr\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5685, __PRETTY_FUNCTION__))
;
5686 Result = S.PerformCopyInitialization(
5687 InitializedEntity::InitializeTemplateParameter(
5688 T, cast<NonTypeTemplateParmDecl>(Dest)),
5689 SourceLocation(), From);
5690 } else {
5691 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5692 }
5693 if (Result.isInvalid())
5694 return Result;
5695
5696 // C++2a [intro.execution]p5:
5697 // A full-expression is [...] a constant-expression [...]
5698 Result =
5699 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
5700 /*DiscardedValue=*/false, /*IsConstexpr=*/true);
5701 if (Result.isInvalid())
5702 return Result;
5703
5704 // Check for a narrowing implicit conversion.
5705 bool ReturnPreNarrowingValue = false;
5706 APValue PreNarrowingValue;
5707 QualType PreNarrowingType;
5708 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5709 PreNarrowingType)) {
5710 case NK_Dependent_Narrowing:
5711 // Implicit conversion to a narrower type, but the expression is
5712 // value-dependent so we can't tell whether it's actually narrowing.
5713 case NK_Variable_Narrowing:
5714 // Implicit conversion to a narrower type, and the value is not a constant
5715 // expression. We'll diagnose this in a moment.
5716 case NK_Not_Narrowing:
5717 break;
5718
5719 case NK_Constant_Narrowing:
5720 if (CCE == Sema::CCEK_ArrayBound &&
5721 PreNarrowingType->isIntegralOrEnumerationType() &&
5722 PreNarrowingValue.isInt()) {
5723 // Don't diagnose array bound narrowing here; we produce more precise
5724 // errors by allowing the un-narrowed value through.
5725 ReturnPreNarrowingValue = true;
5726 break;
5727 }
5728 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5729 << CCE << /*Constant*/ 1
5730 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5731 break;
5732
5733 case NK_Type_Narrowing:
5734 // FIXME: It would be better to diagnose that the expression is not a
5735 // constant expression.
5736 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
5737 << CCE << /*Constant*/ 0 << From->getType() << T;
5738 break;
5739 }
5740
5741 if (Result.get()->isValueDependent()) {
5742 Value = APValue();
5743 return Result;
5744 }
5745
5746 // Check the expression is a constant expression.
5747 SmallVector<PartialDiagnosticAt, 8> Notes;
5748 Expr::EvalResult Eval;
5749 Eval.Diag = &Notes;
5750
5751 ConstantExprKind Kind;
5752 if (CCE == Sema::CCEK_TemplateArg && T->isRecordType())
5753 Kind = ConstantExprKind::ClassTemplateArgument;
5754 else if (CCE == Sema::CCEK_TemplateArg)
5755 Kind = ConstantExprKind::NonClassTemplateArgument;
5756 else
5757 Kind = ConstantExprKind::Normal;
5758
5759 if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) ||
5760 (RequireInt && !Eval.Val.isInt())) {
5761 // The expression can't be folded, so we can't keep it at this position in
5762 // the AST.
5763 Result = ExprError();
5764 } else {
5765 Value = Eval.Val;
5766
5767 if (Notes.empty()) {
5768 // It's a constant expression.
5769 Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value);
5770 if (ReturnPreNarrowingValue)
5771 Value = std::move(PreNarrowingValue);
5772 return E;
5773 }
5774 }
5775
5776 // It's not a constant expression. Produce an appropriate diagnostic.
5777 if (Notes.size() == 1 &&
5778 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) {
5779 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5780 } else if (!Notes.empty() && Notes[0].second.getDiagID() ==
5781 diag::note_constexpr_invalid_template_arg) {
5782 Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg);
5783 for (unsigned I = 0; I < Notes.size(); ++I)
5784 S.Diag(Notes[I].first, Notes[I].second);
5785 } else {
5786 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
5787 << CCE << From->getSourceRange();
5788 for (unsigned I = 0; I < Notes.size(); ++I)
5789 S.Diag(Notes[I].first, Notes[I].second);
5790 }
5791 return ExprError();
5792}
5793
5794ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5795 APValue &Value, CCEKind CCE,
5796 NamedDecl *Dest) {
5797 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false,
5798 Dest);
5799}
5800
5801ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5802 llvm::APSInt &Value,
5803 CCEKind CCE) {
5804 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((T->isIntegralOrEnumerationType() && "unexpected converted const type"
) ? static_cast<void> (0) : __assert_fail ("T->isIntegralOrEnumerationType() && \"unexpected converted const type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 5804, __PRETTY_FUNCTION__))
;
5805
5806 APValue V;
5807 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true,
5808 /*Dest=*/nullptr);
5809 if (!R.isInvalid() && !R.get()->isValueDependent())
5810 Value = V.getInt();
5811 return R;
5812}
5813
5814
5815/// dropPointerConversions - If the given standard conversion sequence
5816/// involves any pointer conversions, remove them. This may change
5817/// the result type of the conversion sequence.
5818static void dropPointerConversion(StandardConversionSequence &SCS) {
5819 if (SCS.Second == ICK_Pointer_Conversion) {
5820 SCS.Second = ICK_Identity;
5821 SCS.Third = ICK_Identity;
5822 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5823 }
5824}
5825
5826/// TryContextuallyConvertToObjCPointer - Attempt to contextually
5827/// convert the expression From to an Objective-C pointer type.
5828static ImplicitConversionSequence
5829TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5830 // Do an implicit conversion to 'id'.
5831 QualType Ty = S.Context.getObjCIdType();
5832 ImplicitConversionSequence ICS
5833 = TryImplicitConversion(S, From, Ty,
5834 // FIXME: Are these flags correct?
5835 /*SuppressUserConversions=*/false,
5836 AllowedExplicit::Conversions,
5837 /*InOverloadResolution=*/false,
5838 /*CStyle=*/false,
5839 /*AllowObjCWritebackConversion=*/false,
5840 /*AllowObjCConversionOnExplicit=*/true);
5841
5842 // Strip off any final conversions to 'id'.
5843 switch (ICS.getKind()) {
5844 case ImplicitConversionSequence::BadConversion:
5845 case ImplicitConversionSequence::AmbiguousConversion:
5846 case ImplicitConversionSequence::EllipsisConversion:
5847 break;
5848
5849 case ImplicitConversionSequence::UserDefinedConversion:
5850 dropPointerConversion(ICS.UserDefined.After);
5851 break;
5852
5853 case ImplicitConversionSequence::StandardConversion:
5854 dropPointerConversion(ICS.Standard);
5855 break;
5856 }
5857
5858 return ICS;
5859}
5860
5861/// PerformContextuallyConvertToObjCPointer - Perform a contextual
5862/// conversion of the expression From to an Objective-C pointer type.
5863/// Returns a valid but null ExprResult if no conversion sequence exists.
5864ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5865 if (checkPlaceholderForOverload(*this, From))
5866 return ExprError();
5867
5868 QualType Ty = Context.getObjCIdType();
5869 ImplicitConversionSequence ICS =
5870 TryContextuallyConvertToObjCPointer(*this, From);
5871 if (!ICS.isBad())
5872 return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5873 return ExprResult();
5874}
5875
5876/// Determine whether the provided type is an integral type, or an enumeration
5877/// type of a permitted flavor.
5878bool Sema::ICEConvertDiagnoser::match(QualType T) {
5879 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5880 : T->isIntegralOrUnscopedEnumerationType();
5881}
5882
5883static ExprResult
5884diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5885 Sema::ContextualImplicitConverter &Converter,
5886 QualType T, UnresolvedSetImpl &ViableConversions) {
5887
5888 if (Converter.Suppress)
5889 return ExprError();
5890
5891 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5892 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5893 CXXConversionDecl *Conv =
5894 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5895 QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5896 Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5897 }
5898 return From;
5899}
5900
5901static bool
5902diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5903 Sema::ContextualImplicitConverter &Converter,
5904 QualType T, bool HadMultipleCandidates,
5905 UnresolvedSetImpl &ExplicitConversions) {
5906 if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5907 DeclAccessPair Found = ExplicitConversions[0];
5908 CXXConversionDecl *Conversion =
5909 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5910
5911 // The user probably meant to invoke the given explicit
5912 // conversion; use it.
5913 QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5914 std::string TypeStr;
5915 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5916
5917 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5918 << FixItHint::CreateInsertion(From->getBeginLoc(),
5919 "static_cast<" + TypeStr + ">(")
5920 << FixItHint::CreateInsertion(
5921 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
5922 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5923
5924 // If we aren't in a SFINAE context, build a call to the
5925 // explicit conversion function.
5926 if (SemaRef.isSFINAEContext())
5927 return true;
5928
5929 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5930 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5931 HadMultipleCandidates);
5932 if (Result.isInvalid())
5933 return true;
5934 // Record usage of conversion in an implicit cast.
5935 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5936 CK_UserDefinedConversion, Result.get(),
5937 nullptr, Result.get()->getValueKind(),
5938 SemaRef.CurFPFeatureOverrides());
5939 }
5940 return false;
5941}
5942
5943static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5944 Sema::ContextualImplicitConverter &Converter,
5945 QualType T, bool HadMultipleCandidates,
5946 DeclAccessPair &Found) {
5947 CXXConversionDecl *Conversion =
5948 cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5949 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5950
5951 QualType ToType = Conversion->getConversionType().getNonReferenceType();
5952 if (!Converter.SuppressConversion) {
5953 if (SemaRef.isSFINAEContext())
5954 return true;
5955
5956 Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5957 << From->getSourceRange();
5958 }
5959
5960 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5961 HadMultipleCandidates);
5962 if (Result.isInvalid())
5963 return true;
5964 // Record usage of conversion in an implicit cast.
5965 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5966 CK_UserDefinedConversion, Result.get(),
5967 nullptr, Result.get()->getValueKind(),
5968 SemaRef.CurFPFeatureOverrides());
5969 return false;
5970}
5971
5972static ExprResult finishContextualImplicitConversion(
5973 Sema &SemaRef, SourceLocation Loc, Expr *From,
5974 Sema::ContextualImplicitConverter &Converter) {
5975 if (!Converter.match(From->getType()) && !Converter.Suppress)
5976 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5977 << From->getSourceRange();
5978
5979 return SemaRef.DefaultLvalueConversion(From);
5980}
5981
5982static void
5983collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5984 UnresolvedSetImpl &ViableConversions,
5985 OverloadCandidateSet &CandidateSet) {
5986 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5987 DeclAccessPair FoundDecl = ViableConversions[I];
5988 NamedDecl *D = FoundDecl.getDecl();
5989 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5990 if (isa<UsingShadowDecl>(D))
5991 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5992
5993 CXXConversionDecl *Conv;
5994 FunctionTemplateDecl *ConvTemplate;
5995 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5996 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5997 else
5998 Conv = cast<CXXConversionDecl>(D);
5999
6000 if (ConvTemplate)
6001 SemaRef.AddTemplateConversionCandidate(
6002 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
6003 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
6004 else
6005 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
6006 ToType, CandidateSet,
6007 /*AllowObjCConversionOnExplicit=*/false,
6008 /*AllowExplicit*/ true);
6009 }
6010}
6011
6012/// Attempt to convert the given expression to a type which is accepted
6013/// by the given converter.
6014///
6015/// This routine will attempt to convert an expression of class type to a
6016/// type accepted by the specified converter. In C++11 and before, the class
6017/// must have a single non-explicit conversion function converting to a matching
6018/// type. In C++1y, there can be multiple such conversion functions, but only
6019/// one target type.
6020///
6021/// \param Loc The source location of the construct that requires the
6022/// conversion.
6023///
6024/// \param From The expression we're converting from.
6025///
6026/// \param Converter Used to control and diagnose the conversion process.
6027///
6028/// \returns The expression, converted to an integral or enumeration type if
6029/// successful.
6030ExprResult Sema::PerformContextualImplicitConversion(
6031 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
6032 // We can't perform any more checking for type-dependent expressions.
6033 if (From->isTypeDependent())
6034 return From;
6035
6036 // Process placeholders immediately.
6037 if (From->hasPlaceholderType()) {
6038 ExprResult result = CheckPlaceholderExpr(From);
6039 if (result.isInvalid())
6040 return result;
6041 From = result.get();
6042 }
6043
6044 // If the expression already has a matching type, we're golden.
6045 QualType T = From->getType();
6046 if (Converter.match(T))
6047 return DefaultLvalueConversion(From);
6048
6049 // FIXME: Check for missing '()' if T is a function type?
6050
6051 // We can only perform contextual implicit conversions on objects of class
6052 // type.
6053 const RecordType *RecordTy = T->getAs<RecordType>();
6054 if (!RecordTy || !getLangOpts().CPlusPlus) {
6055 if (!Converter.Suppress)
6056 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
6057 return From;
6058 }
6059
6060 // We must have a complete class type.
6061 struct TypeDiagnoserPartialDiag : TypeDiagnoser {
6062 ContextualImplicitConverter &Converter;
6063 Expr *From;
6064
6065 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
6066 : Converter(Converter), From(From) {}
6067
6068 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
6069 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
6070 }
6071 } IncompleteDiagnoser(Converter, From);
6072
6073 if (Converter.Suppress ? !isCompleteType(Loc, T)
6074 : RequireCompleteType(Loc, T, IncompleteDiagnoser))
6075 return From;
6076
6077 // Look for a conversion to an integral or enumeration type.
6078 UnresolvedSet<4>
6079 ViableConversions; // These are *potentially* viable in C++1y.
6080 UnresolvedSet<4> ExplicitConversions;
6081 const auto &Conversions =
6082 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
6083
6084 bool HadMultipleCandidates =
6085 (std::distance(Conversions.begin(), Conversions.end()) > 1);
6086
6087 // To check that there is only one target type, in C++1y:
6088 QualType ToType;
6089 bool HasUniqueTargetType = true;
6090
6091 // Collect explicit or viable (potentially in C++1y) conversions.
6092 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
6093 NamedDecl *D = (*I)->getUnderlyingDecl();
6094 CXXConversionDecl *Conversion;
6095 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
6096 if (ConvTemplate) {
6097 if (getLangOpts().CPlusPlus14)
6098 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
6099 else
6100 continue; // C++11 does not consider conversion operator templates(?).
6101 } else
6102 Conversion = cast<CXXConversionDecl>(D);
6103
6104 assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6106, __PRETTY_FUNCTION__))
6105 "Conversion operator templates are considered potentially "(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6106, __PRETTY_FUNCTION__))
6106 "viable in C++1y")(((!ConvTemplate || getLangOpts().CPlusPlus14) && "Conversion operator templates are considered potentially "
"viable in C++1y") ? static_cast<void> (0) : __assert_fail
("(!ConvTemplate || getLangOpts().CPlusPlus14) && \"Conversion operator templates are considered potentially \" \"viable in C++1y\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6106, __PRETTY_FUNCTION__))
;
6107
6108 QualType CurToType = Conversion->getConversionType().getNonReferenceType();
6109 if (Converter.match(CurToType) || ConvTemplate) {
6110
6111 if (Conversion->isExplicit()) {
6112 // FIXME: For C++1y, do we need this restriction?
6113 // cf. diagnoseNoViableConversion()
6114 if (!ConvTemplate)
6115 ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
6116 } else {
6117 if (!ConvTemplate && getLangOpts().CPlusPlus14) {
6118 if (ToType.isNull())
6119 ToType = CurToType.getUnqualifiedType();
6120 else if (HasUniqueTargetType &&
6121 (CurToType.getUnqualifiedType() != ToType))
6122 HasUniqueTargetType = false;
6123 }
6124 ViableConversions.addDecl(I.getDecl(), I.getAccess());
6125 }
6126 }
6127 }
6128
6129 if (getLangOpts().CPlusPlus14) {
6130 // C++1y [conv]p6:
6131 // ... An expression e of class type E appearing in such a context
6132 // is said to be contextually implicitly converted to a specified
6133 // type T and is well-formed if and only if e can be implicitly
6134 // converted to a type T that is determined as follows: E is searched
6135 // for conversion functions whose return type is cv T or reference to
6136 // cv T such that T is allowed by the context. There shall be
6137 // exactly one such T.
6138
6139 // If no unique T is found:
6140 if (ToType.isNull()) {
6141 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6142 HadMultipleCandidates,
6143 ExplicitConversions))
6144 return ExprError();
6145 return finishContextualImplicitConversion(*this, Loc, From, Converter);
6146 }
6147
6148 // If more than one unique Ts are found:
6149 if (!HasUniqueTargetType)
6150 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6151 ViableConversions);
6152
6153 // If one unique T is found:
6154 // First, build a candidate set from the previously recorded
6155 // potentially viable conversions.
6156 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6157 collectViableConversionCandidates(*this, From, ToType, ViableConversions,
6158 CandidateSet);
6159
6160 // Then, perform overload resolution over the candidate set.
6161 OverloadCandidateSet::iterator Best;
6162 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
6163 case OR_Success: {
6164 // Apply this conversion.
6165 DeclAccessPair Found =
6166 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
6167 if (recordConversion(*this, Loc, From, Converter, T,
6168 HadMultipleCandidates, Found))
6169 return ExprError();
6170 break;
6171 }
6172 case OR_Ambiguous:
6173 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6174 ViableConversions);
6175 case OR_No_Viable_Function:
6176 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6177 HadMultipleCandidates,
6178 ExplicitConversions))
6179 return ExprError();
6180 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6181 case OR_Deleted:
6182 // We'll complain below about a non-integral condition type.
6183 break;
6184 }
6185 } else {
6186 switch (ViableConversions.size()) {
6187 case 0: {
6188 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
6189 HadMultipleCandidates,
6190 ExplicitConversions))
6191 return ExprError();
6192
6193 // We'll complain below about a non-integral condition type.
6194 break;
6195 }
6196 case 1: {
6197 // Apply this conversion.
6198 DeclAccessPair Found = ViableConversions[0];
6199 if (recordConversion(*this, Loc, From, Converter, T,
6200 HadMultipleCandidates, Found))
6201 return ExprError();
6202 break;
6203 }
6204 default:
6205 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
6206 ViableConversions);
6207 }
6208 }
6209
6210 return finishContextualImplicitConversion(*this, Loc, From, Converter);
6211}
6212
6213/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
6214/// an acceptable non-member overloaded operator for a call whose
6215/// arguments have types T1 (and, if non-empty, T2). This routine
6216/// implements the check in C++ [over.match.oper]p3b2 concerning
6217/// enumeration types.
6218static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
6219 FunctionDecl *Fn,
6220 ArrayRef<Expr *> Args) {
6221 QualType T1 = Args[0]->getType();
6222 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
6223
6224 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
6225 return true;
6226
6227 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
6228 return true;
6229
6230 const auto *Proto = Fn->getType()->castAs<FunctionProtoType>();
6231 if (Proto->getNumParams() < 1)
6232 return false;
6233
6234 if (T1->isEnumeralType()) {
6235 QualType ArgType = Proto->getParamType(0).getNonReferenceType();
6236 if (Context.hasSameUnqualifiedType(T1, ArgType))
6237 return true;
6238 }
6239
6240 if (Proto->getNumParams() < 2)
6241 return false;
6242
6243 if (!T2.isNull() && T2->isEnumeralType()) {
6244 QualType ArgType = Proto->getParamType(1).getNonReferenceType();
6245 if (Context.hasSameUnqualifiedType(T2, ArgType))
6246 return true;
6247 }
6248
6249 return false;
6250}
6251
6252/// AddOverloadCandidate - Adds the given function to the set of
6253/// candidate functions, using the given function call arguments. If
6254/// @p SuppressUserConversions, then don't allow user-defined
6255/// conversions via constructors or conversion operators.
6256///
6257/// \param PartialOverloading true if we are performing "partial" overloading
6258/// based on an incomplete set of function arguments. This feature is used by
6259/// code completion.
6260void Sema::AddOverloadCandidate(
6261 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
6262 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
6263 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
6264 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
6265 OverloadCandidateParamOrder PO) {
6266 const FunctionProtoType *Proto
6267 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
6268 assert(Proto && "Functions without a prototype cannot be overloaded")((Proto && "Functions without a prototype cannot be overloaded"
) ? static_cast<void> (0) : __assert_fail ("Proto && \"Functions without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6268, __PRETTY_FUNCTION__))
;
6269 assert(!Function->getDescribedFunctionTemplate() &&((!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"
) ? static_cast<void> (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6270, __PRETTY_FUNCTION__))
6270 "Use AddTemplateOverloadCandidate for function templates")((!Function->getDescribedFunctionTemplate() && "Use AddTemplateOverloadCandidate for function templates"
) ? static_cast<void> (0) : __assert_fail ("!Function->getDescribedFunctionTemplate() && \"Use AddTemplateOverloadCandidate for function templates\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6270, __PRETTY_FUNCTION__))
;
6271
6272 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
6273 if (!isa<CXXConstructorDecl>(Method)) {
6274 // If we get here, it's because we're calling a member function
6275 // that is named without a member access expression (e.g.,
6276 // "this->f") that was either written explicitly or created
6277 // implicitly. This can happen with a qualified call to a member
6278 // function, e.g., X::f(). We use an empty type for the implied
6279 // object argument (C++ [over.call.func]p3), and the acting context
6280 // is irrelevant.
6281 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
6282 Expr::Classification::makeSimpleLValue(), Args,
6283 CandidateSet, SuppressUserConversions,
6284 PartialOverloading, EarlyConversions, PO);
6285 return;
6286 }
6287 // We treat a constructor like a non-member function, since its object
6288 // argument doesn't participate in overload resolution.
6289 }
6290
6291 if (!CandidateSet.isNewCandidate(Function, PO))
6292 return;
6293
6294 // C++11 [class.copy]p11: [DR1402]
6295 // A defaulted move constructor that is defined as deleted is ignored by
6296 // overload resolution.
6297 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
6298 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
6299 Constructor->isMoveConstructor())
6300 return;
6301
6302 // Overload resolution is always an unevaluated context.
6303 EnterExpressionEvaluationContext Unevaluated(
6304 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6305
6306 // C++ [over.match.oper]p3:
6307 // if no operand has a class type, only those non-member functions in the
6308 // lookup set that have a first parameter of type T1 or "reference to
6309 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
6310 // is a right operand) a second parameter of type T2 or "reference to
6311 // (possibly cv-qualified) T2", when T2 is an enumeration type, are
6312 // candidate functions.
6313 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
6314 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
6315 return;
6316
6317 // Add this candidate
6318 OverloadCandidate &Candidate =
6319 CandidateSet.addCandidate(Args.size(), EarlyConversions);
6320 Candidate.FoundDecl = FoundDecl;
6321 Candidate.Function = Function;
6322 Candidate.Viable = true;
6323 Candidate.RewriteKind =
6324 CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
6325 Candidate.IsSurrogate = false;
6326 Candidate.IsADLCandidate = IsADLCandidate;
6327 Candidate.IgnoreObjectArgument = false;
6328 Candidate.ExplicitCallArguments = Args.size();
6329
6330 // Explicit functions are not actually candidates at all if we're not
6331 // allowing them in this context, but keep them around so we can point
6332 // to them in diagnostics.
6333 if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) {
6334 Candidate.Viable = false;
6335 Candidate.FailureKind = ovl_fail_explicit;
6336 return;
6337 }
6338
6339 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
6340 !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
6341 Candidate.Viable = false;
6342 Candidate.FailureKind = ovl_non_default_multiversion_function;
6343 return;
6344 }
6345
6346 if (Constructor) {
6347 // C++ [class.copy]p3:
6348 // A member function template is never instantiated to perform the copy
6349 // of a class object to an object of its class type.
6350 QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
6351 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
6352 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
6353 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
6354 ClassType))) {
6355 Candidate.Viable = false;
6356 Candidate.FailureKind = ovl_fail_illegal_constructor;
6357 return;
6358 }
6359
6360 // C++ [over.match.funcs]p8: (proposed DR resolution)
6361 // A constructor inherited from class type C that has a first parameter
6362 // of type "reference to P" (including such a constructor instantiated
6363 // from a template) is excluded from the set of candidate functions when
6364 // constructing an object of type cv D if the argument list has exactly
6365 // one argument and D is reference-related to P and P is reference-related
6366 // to C.
6367 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
6368 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
6369 Constructor->getParamDecl(0)->getType()->isReferenceType()) {
6370 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
6371 QualType C = Context.getRecordType(Constructor->getParent());
6372 QualType D = Context.getRecordType(Shadow->getParent());
6373 SourceLocation Loc = Args.front()->getExprLoc();
6374 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
6375 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
6376 Candidate.Viable = false;
6377 Candidate.FailureKind = ovl_fail_inhctor_slice;
6378 return;
6379 }
6380 }
6381
6382 // Check that the constructor is capable of constructing an object in the
6383 // destination address space.
6384 if (!Qualifiers::isAddressSpaceSupersetOf(
6385 Constructor->getMethodQualifiers().getAddressSpace(),
6386 CandidateSet.getDestAS())) {
6387 Candidate.Viable = false;
6388 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
6389 }
6390 }
6391
6392 unsigned NumParams = Proto->getNumParams();
6393
6394 // (C++ 13.3.2p2): A candidate function having fewer than m
6395 // parameters is viable only if it has an ellipsis in its parameter
6396 // list (8.3.5).
6397 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6398 !Proto->isVariadic()) {
6399 Candidate.Viable = false;
6400 Candidate.FailureKind = ovl_fail_too_many_arguments;
6401 return;
6402 }
6403
6404 // (C++ 13.3.2p2): A candidate function having more than m parameters
6405 // is viable only if the (m+1)st parameter has a default argument
6406 // (8.3.6). For the purposes of overload resolution, the
6407 // parameter list is truncated on the right, so that there are
6408 // exactly m parameters.
6409 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
6410 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6411 // Not enough arguments.
6412 Candidate.Viable = false;
6413 Candidate.FailureKind = ovl_fail_too_few_arguments;
6414 return;
6415 }
6416
6417 // (CUDA B.1): Check for invalid calls between targets.
6418 if (getLangOpts().CUDA)
6419 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6420 // Skip the check for callers that are implicit members, because in this
6421 // case we may not yet know what the member's target is; the target is
6422 // inferred for the member automatically, based on the bases and fields of
6423 // the class.
6424 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
6425 Candidate.Viable = false;
6426 Candidate.FailureKind = ovl_fail_bad_target;
6427 return;
6428 }
6429
6430 if (Function->getTrailingRequiresClause()) {
6431 ConstraintSatisfaction Satisfaction;
6432 if (CheckFunctionConstraints(Function, Satisfaction) ||
6433 !Satisfaction.IsSatisfied) {
6434 Candidate.Viable = false;
6435 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6436 return;
6437 }
6438 }
6439
6440 // Determine the implicit conversion sequences for each of the
6441 // arguments.
6442 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6443 unsigned ConvIdx =
6444 PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
6445 if (Candidate.Conversions[ConvIdx].isInitialized()) {
6446 // We already formed a conversion sequence for this parameter during
6447 // template argument deduction.
6448 } else if (ArgIdx < NumParams) {
6449 // (C++ 13.3.2p3): for F to be a viable function, there shall
6450 // exist for each argument an implicit conversion sequence
6451 // (13.3.3.1) that converts that argument to the corresponding
6452 // parameter of F.
6453 QualType ParamType = Proto->getParamType(ArgIdx);
6454 Candidate.Conversions[ConvIdx] = TryCopyInitialization(
6455 *this, Args[ArgIdx], ParamType, SuppressUserConversions,
6456 /*InOverloadResolution=*/true,
6457 /*AllowObjCWritebackConversion=*/
6458 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
6459 if (Candidate.Conversions[ConvIdx].isBad()) {
6460 Candidate.Viable = false;
6461 Candidate.FailureKind = ovl_fail_bad_conversion;
6462 return;
6463 }
6464 } else {
6465 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6466 // argument for which there is no corresponding parameter is
6467 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6468 Candidate.Conversions[ConvIdx].setEllipsis();
6469 }
6470 }
6471
6472 if (EnableIfAttr *FailedAttr =
6473 CheckEnableIf(Function, CandidateSet.getLocation(), Args)) {
6474 Candidate.Viable = false;
6475 Candidate.FailureKind = ovl_fail_enable_if;
6476 Candidate.DeductionFailure.Data = FailedAttr;
6477 return;
6478 }
6479
6480 if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
6481 Candidate.Viable = false;
6482 Candidate.FailureKind = ovl_fail_ext_disabled;
6483 return;
6484 }
6485}
6486
6487ObjCMethodDecl *
6488Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
6489 SmallVectorImpl<ObjCMethodDecl *> &Methods) {
6490 if (Methods.size() <= 1)
6491 return nullptr;
6492
6493 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6494 bool Match = true;
6495 ObjCMethodDecl *Method = Methods[b];
6496 unsigned NumNamedArgs = Sel.getNumArgs();
6497 // Method might have more arguments than selector indicates. This is due
6498 // to addition of c-style arguments in method.
6499 if (Method->param_size() > NumNamedArgs)
6500 NumNamedArgs = Method->param_size();
6501 if (Args.size() < NumNamedArgs)
6502 continue;
6503
6504 for (unsigned i = 0; i < NumNamedArgs; i++) {
6505 // We can't do any type-checking on a type-dependent argument.
6506 if (Args[i]->isTypeDependent()) {
6507 Match = false;
6508 break;
6509 }
6510
6511 ParmVarDecl *param = Method->parameters()[i];
6512 Expr *argExpr = Args[i];
6513 assert(argExpr && "SelectBestMethod(): missing expression")((argExpr && "SelectBestMethod(): missing expression"
) ? static_cast<void> (0) : __assert_fail ("argExpr && \"SelectBestMethod(): missing expression\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6513, __PRETTY_FUNCTION__))
;
6514
6515 // Strip the unbridged-cast placeholder expression off unless it's
6516 // a consumed argument.
6517 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
6518 !param->hasAttr<CFConsumedAttr>())
6519 argExpr = stripARCUnbridgedCast(argExpr);
6520
6521 // If the parameter is __unknown_anytype, move on to the next method.
6522 if (param->getType() == Context.UnknownAnyTy) {
6523 Match = false;
6524 break;
6525 }
6526
6527 ImplicitConversionSequence ConversionState
6528 = TryCopyInitialization(*this, argExpr, param->getType(),
6529 /*SuppressUserConversions*/false,
6530 /*InOverloadResolution=*/true,
6531 /*AllowObjCWritebackConversion=*/
6532 getLangOpts().ObjCAutoRefCount,
6533 /*AllowExplicit*/false);
6534 // This function looks for a reasonably-exact match, so we consider
6535 // incompatible pointer conversions to be a failure here.
6536 if (ConversionState.isBad() ||
6537 (ConversionState.isStandard() &&
6538 ConversionState.Standard.Second ==
6539 ICK_Incompatible_Pointer_Conversion)) {
6540 Match = false;
6541 break;
6542 }
6543 }
6544 // Promote additional arguments to variadic methods.
6545 if (Match && Method->isVariadic()) {
6546 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
6547 if (Args[i]->isTypeDependent()) {
6548 Match = false;
6549 break;
6550 }
6551 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
6552 nullptr);
6553 if (Arg.isInvalid()) {
6554 Match = false;
6555 break;
6556 }
6557 }
6558 } else {
6559 // Check for extra arguments to non-variadic methods.
6560 if (Args.size() != NumNamedArgs)
6561 Match = false;
6562 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
6563 // Special case when selectors have no argument. In this case, select
6564 // one with the most general result type of 'id'.
6565 for (unsigned b = 0, e = Methods.size(); b < e; b++) {
6566 QualType ReturnT = Methods[b]->getReturnType();
6567 if (ReturnT->isObjCIdType())
6568 return Methods[b];
6569 }
6570 }
6571 }
6572
6573 if (Match)
6574 return Method;
6575 }
6576 return nullptr;
6577}
6578
6579static bool convertArgsForAvailabilityChecks(
6580 Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc,
6581 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis,
6582 Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) {
6583 if (ThisArg) {
6584 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
6585 assert(!isa<CXXConstructorDecl>(Method) &&((!isa<CXXConstructorDecl>(Method) && "Shouldn't have `this` for ctors!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6586, __PRETTY_FUNCTION__))
6586 "Shouldn't have `this` for ctors!")((!isa<CXXConstructorDecl>(Method) && "Shouldn't have `this` for ctors!"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Shouldn't have `this` for ctors!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6586, __PRETTY_FUNCTION__))
;
6587 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!")((!Method->isStatic() && "Shouldn't have `this` for static methods!"
) ? static_cast<void> (0) : __assert_fail ("!Method->isStatic() && \"Shouldn't have `this` for static methods!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6587, __PRETTY_FUNCTION__))
;
6588 ExprResult R = S.PerformObjectArgumentInitialization(
6589 ThisArg, /*Qualifier=*/nullptr, Method, Method);
6590 if (R.isInvalid())
6591 return false;
6592 ConvertedThis = R.get();
6593 } else {
6594 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
6595 (void)MD;
6596 assert((MissingImplicitThis || MD->isStatic() ||(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6598, __PRETTY_FUNCTION__))
6597 isa<CXXConstructorDecl>(MD)) &&(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6598, __PRETTY_FUNCTION__))
6598 "Expected `this` for non-ctor instance methods")(((MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl
>(MD)) && "Expected `this` for non-ctor instance methods"
) ? static_cast<void> (0) : __assert_fail ("(MissingImplicitThis || MD->isStatic() || isa<CXXConstructorDecl>(MD)) && \"Expected `this` for non-ctor instance methods\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6598, __PRETTY_FUNCTION__))
;
6599 }
6600 ConvertedThis = nullptr;
6601 }
6602
6603 // Ignore any variadic arguments. Converting them is pointless, since the
6604 // user can't refer to them in the function condition.
6605 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
6606
6607 // Convert the arguments.
6608 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
6609 ExprResult R;
6610 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
6611 S.Context, Function->getParamDecl(I)),
6612 SourceLocation(), Args[I]);
6613
6614 if (R.isInvalid())
6615 return false;
6616
6617 ConvertedArgs.push_back(R.get());
6618 }
6619
6620 if (Trap.hasErrorOccurred())
6621 return false;
6622
6623 // Push default arguments if needed.
6624 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6625 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6626 ParmVarDecl *P = Function->getParamDecl(i);
6627 if (!P->hasDefaultArg())
6628 return false;
6629 ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P);
6630 if (R.isInvalid())
6631 return false;
6632 ConvertedArgs.push_back(R.get());
6633 }
6634
6635 if (Trap.hasErrorOccurred())
6636 return false;
6637 }
6638 return true;
6639}
6640
6641EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function,
6642 SourceLocation CallLoc,
6643 ArrayRef<Expr *> Args,
6644 bool MissingImplicitThis) {
6645 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
6646 if (EnableIfAttrs.begin() == EnableIfAttrs.end())
6647 return nullptr;
6648
6649 SFINAETrap Trap(*this);
6650 SmallVector<Expr *, 16> ConvertedArgs;
6651 // FIXME: We should look into making enable_if late-parsed.
6652 Expr *DiscardedThis;
6653 if (!convertArgsForAvailabilityChecks(
6654 *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap,
6655 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
6656 return *EnableIfAttrs.begin();
6657
6658 for (auto *EIA : EnableIfAttrs) {
6659 APValue Result;
6660 // FIXME: This doesn't consider value-dependent cases, because doing so is
6661 // very difficult. Ideally, we should handle them more gracefully.
6662 if (EIA->getCond()->isValueDependent() ||
6663 !EIA->getCond()->EvaluateWithSubstitution(
6664 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6665 return EIA;
6666
6667 if (!Result.isInt() || !Result.getInt().getBoolValue())
6668 return EIA;
6669 }
6670 return nullptr;
6671}
6672
6673template <typename CheckFn>
6674static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
6675 bool ArgDependent, SourceLocation Loc,
6676 CheckFn &&IsSuccessful) {
6677 SmallVector<const DiagnoseIfAttr *, 8> Attrs;
6678 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
6679 if (ArgDependent == DIA->getArgDependent())
6680 Attrs.push_back(DIA);
6681 }
6682
6683 // Common case: No diagnose_if attributes, so we can quit early.
6684 if (Attrs.empty())
6685 return false;
6686
6687 auto WarningBegin = std::stable_partition(
6688 Attrs.begin(), Attrs.end(),
6689 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
6690
6691 // Note that diagnose_if attributes are late-parsed, so they appear in the
6692 // correct order (unlike enable_if attributes).
6693 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
6694 IsSuccessful);
6695 if (ErrAttr != WarningBegin) {
6696 const DiagnoseIfAttr *DIA = *ErrAttr;
6697 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
6698 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6699 << DIA->getParent() << DIA->getCond()->getSourceRange();
6700 return true;
6701 }
6702
6703 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
6704 if (IsSuccessful(DIA)) {
6705 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
6706 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
6707 << DIA->getParent() << DIA->getCond()->getSourceRange();
6708 }
6709
6710 return false;
6711}
6712
6713bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
6714 const Expr *ThisArg,
6715 ArrayRef<const Expr *> Args,
6716 SourceLocation Loc) {
6717 return diagnoseDiagnoseIfAttrsWith(
6718 *this, Function, /*ArgDependent=*/true, Loc,
6719 [&](const DiagnoseIfAttr *DIA) {
6720 APValue Result;
6721 // It's sane to use the same Args for any redecl of this function, since
6722 // EvaluateWithSubstitution only cares about the position of each
6723 // argument in the arg list, not the ParmVarDecl* it maps to.
6724 if (!DIA->getCond()->EvaluateWithSubstitution(
6725 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
6726 return false;
6727 return Result.isInt() && Result.getInt().getBoolValue();
6728 });
6729}
6730
6731bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
6732 SourceLocation Loc) {
6733 return diagnoseDiagnoseIfAttrsWith(
6734 *this, ND, /*ArgDependent=*/false, Loc,
6735 [&](const DiagnoseIfAttr *DIA) {
6736 bool Result;
6737 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
6738 Result;
6739 });
6740}
6741
6742/// Add all of the function declarations in the given function set to
6743/// the overload candidate set.
6744void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6745 ArrayRef<Expr *> Args,
6746 OverloadCandidateSet &CandidateSet,
6747 TemplateArgumentListInfo *ExplicitTemplateArgs,
6748 bool SuppressUserConversions,
6749 bool PartialOverloading,
6750 bool FirstArgumentIsBase) {
6751 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6752 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6753 ArrayRef<Expr *> FunctionArgs = Args;
6754
6755 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
6756 FunctionDecl *FD =
6757 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
6758
6759 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
6760 QualType ObjectType;
6761 Expr::Classification ObjectClassification;
6762 if (Args.size() > 0) {
6763 if (Expr *E = Args[0]) {
6764 // Use the explicit base to restrict the lookup:
6765 ObjectType = E->getType();
6766 // Pointers in the object arguments are implicitly dereferenced, so we
6767 // always classify them as l-values.
6768 if (!ObjectType.isNull() && ObjectType->isPointerType())
6769 ObjectClassification = Expr::Classification::makeSimpleLValue();
6770 else
6771 ObjectClassification = E->Classify(Context);
6772 } // .. else there is an implicit base.
6773 FunctionArgs = Args.slice(1);
6774 }
6775 if (FunTmpl) {
6776 AddMethodTemplateCandidate(
6777 FunTmpl, F.getPair(),
6778 cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6779 ExplicitTemplateArgs, ObjectType, ObjectClassification,
6780 FunctionArgs, CandidateSet, SuppressUserConversions,
6781 PartialOverloading);
6782 } else {
6783 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6784 cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
6785 ObjectClassification, FunctionArgs, CandidateSet,
6786 SuppressUserConversions, PartialOverloading);
6787 }
6788 } else {
6789 // This branch handles both standalone functions and static methods.
6790
6791 // Slice the first argument (which is the base) when we access
6792 // static method as non-static.
6793 if (Args.size() > 0 &&
6794 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
6795 !isa<CXXConstructorDecl>(FD)))) {
6796 assert(cast<CXXMethodDecl>(FD)->isStatic())((cast<CXXMethodDecl>(FD)->isStatic()) ? static_cast
<void> (0) : __assert_fail ("cast<CXXMethodDecl>(FD)->isStatic()"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6796, __PRETTY_FUNCTION__))
;
6797 FunctionArgs = Args.slice(1);
6798 }
6799 if (FunTmpl) {
6800 AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6801 ExplicitTemplateArgs, FunctionArgs,
6802 CandidateSet, SuppressUserConversions,
6803 PartialOverloading);
6804 } else {
6805 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
6806 SuppressUserConversions, PartialOverloading);
6807 }
6808 }
6809 }
6810}
6811
6812/// AddMethodCandidate - Adds a named decl (which is some kind of
6813/// method) as a method candidate to the given overload set.
6814void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
6815 Expr::Classification ObjectClassification,
6816 ArrayRef<Expr *> Args,
6817 OverloadCandidateSet &CandidateSet,
6818 bool SuppressUserConversions,
6819 OverloadCandidateParamOrder PO) {
6820 NamedDecl *Decl = FoundDecl.getDecl();
6821 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6822
6823 if (isa<UsingShadowDecl>(Decl))
6824 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6825
6826 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6827 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&((isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
"Expected a member function template") ? static_cast<void
> (0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6828, __PRETTY_FUNCTION__))
6828 "Expected a member function template")((isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
"Expected a member function template") ? static_cast<void
> (0) : __assert_fail ("isa<CXXMethodDecl>(TD->getTemplatedDecl()) && \"Expected a member function template\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6828, __PRETTY_FUNCTION__))
;
6829 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6830 /*ExplicitArgs*/ nullptr, ObjectType,
6831 ObjectClassification, Args, CandidateSet,
6832 SuppressUserConversions, false, PO);
6833 } else {
6834 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6835 ObjectType, ObjectClassification, Args, CandidateSet,
6836 SuppressUserConversions, false, None, PO);
6837 }
6838}
6839
6840/// AddMethodCandidate - Adds the given C++ member function to the set
6841/// of candidate functions, using the given function call arguments
6842/// and the object argument (@c Object). For example, in a call
6843/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6844/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6845/// allow user-defined conversions via constructors or conversion
6846/// operators.
6847void
6848Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6849 CXXRecordDecl *ActingContext, QualType ObjectType,
6850 Expr::Classification ObjectClassification,
6851 ArrayRef<Expr *> Args,
6852 OverloadCandidateSet &CandidateSet,
6853 bool SuppressUserConversions,
6854 bool PartialOverloading,
6855 ConversionSequenceList EarlyConversions,
6856 OverloadCandidateParamOrder PO) {
6857 const FunctionProtoType *Proto
6858 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6859 assert(Proto && "Methods without a prototype cannot be overloaded")((Proto && "Methods without a prototype cannot be overloaded"
) ? static_cast<void> (0) : __assert_fail ("Proto && \"Methods without a prototype cannot be overloaded\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6859, __PRETTY_FUNCTION__))
;
6860 assert(!isa<CXXConstructorDecl>(Method) &&((!isa<CXXConstructorDecl>(Method) && "Use AddOverloadCandidate for constructors"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6861, __PRETTY_FUNCTION__))
6861 "Use AddOverloadCandidate for constructors")((!isa<CXXConstructorDecl>(Method) && "Use AddOverloadCandidate for constructors"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Method) && \"Use AddOverloadCandidate for constructors\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 6861, __PRETTY_FUNCTION__))
;
6862
6863 if (!CandidateSet.isNewCandidate(Method, PO))
6864 return;
6865
6866 // C++11 [class.copy]p23: [DR1402]
6867 // A defaulted move assignment operator that is defined as deleted is
6868 // ignored by overload resolution.
6869 if (Method->isDefaulted() && Method->isDeleted() &&
6870 Method->isMoveAssignmentOperator())
6871 return;
6872
6873 // Overload resolution is always an unevaluated context.
6874 EnterExpressionEvaluationContext Unevaluated(
6875 *this, Sema::ExpressionEvaluationContext::Unevaluated);
6876
6877 // Add this candidate
6878 OverloadCandidate &Candidate =
6879 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
6880 Candidate.FoundDecl = FoundDecl;
6881 Candidate.Function = Method;
6882 Candidate.RewriteKind =
6883 CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
6884 Candidate.IsSurrogate = false;
6885 Candidate.IgnoreObjectArgument = false;
6886 Candidate.ExplicitCallArguments = Args.size();
6887
6888 unsigned NumParams = Proto->getNumParams();
6889
6890 // (C++ 13.3.2p2): A candidate function having fewer than m
6891 // parameters is viable only if it has an ellipsis in its parameter
6892 // list (8.3.5).
6893 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6894 !Proto->isVariadic()) {
6895 Candidate.Viable = false;
6896 Candidate.FailureKind = ovl_fail_too_many_arguments;
6897 return;
6898 }
6899
6900 // (C++ 13.3.2p2): A candidate function having more than m parameters
6901 // is viable only if the (m+1)st parameter has a default argument
6902 // (8.3.6). For the purposes of overload resolution, the
6903 // parameter list is truncated on the right, so that there are
6904 // exactly m parameters.
6905 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6906 if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6907 // Not enough arguments.
6908 Candidate.Viable = false;
6909 Candidate.FailureKind = ovl_fail_too_few_arguments;
6910 return;
6911 }
6912
6913 Candidate.Viable = true;
6914
6915 if (Method->isStatic() || ObjectType.isNull())
6916 // The implicit object argument is ignored.
6917 Candidate.IgnoreObjectArgument = true;
6918 else {
6919 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
6920 // Determine the implicit conversion sequence for the object
6921 // parameter.
6922 Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
6923 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6924 Method, ActingContext);
6925 if (Candidate.Conversions[ConvIdx].isBad()) {
6926 Candidate.Viable = false;
6927 Candidate.FailureKind = ovl_fail_bad_conversion;
6928 return;
6929 }
6930 }
6931
6932 // (CUDA B.1): Check for invalid calls between targets.
6933 if (getLangOpts().CUDA)
6934 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6935 if (!IsAllowedCUDACall(Caller, Method)) {
6936 Candidate.Viable = false;
6937 Candidate.FailureKind = ovl_fail_bad_target;
6938 return;
6939 }
6940
6941 if (Method->getTrailingRequiresClause()) {
6942 ConstraintSatisfaction Satisfaction;
6943 if (CheckFunctionConstraints(Method, Satisfaction) ||
6944 !Satisfaction.IsSatisfied) {
6945 Candidate.Viable = false;
6946 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
6947 return;
6948 }
6949 }
6950
6951 // Determine the implicit conversion sequences for each of the
6952 // arguments.
6953 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6954 unsigned ConvIdx =
6955 PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
6956 if (Candidate.Conversions[ConvIdx].isInitialized()) {
6957 // We already formed a conversion sequence for this parameter during
6958 // template argument deduction.
6959 } else if (ArgIdx < NumParams) {
6960 // (C++ 13.3.2p3): for F to be a viable function, there shall
6961 // exist for each argument an implicit conversion sequence
6962 // (13.3.3.1) that converts that argument to the corresponding
6963 // parameter of F.
6964 QualType ParamType = Proto->getParamType(ArgIdx);
6965 Candidate.Conversions[ConvIdx]
6966 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6967 SuppressUserConversions,
6968 /*InOverloadResolution=*/true,
6969 /*AllowObjCWritebackConversion=*/
6970 getLangOpts().ObjCAutoRefCount);
6971 if (Candidate.Conversions[ConvIdx].isBad()) {
6972 Candidate.Viable = false;
6973 Candidate.FailureKind = ovl_fail_bad_conversion;
6974 return;
6975 }
6976 } else {
6977 // (C++ 13.3.2p2): For the purposes of overload resolution, any
6978 // argument for which there is no corresponding parameter is
6979 // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6980 Candidate.Conversions[ConvIdx].setEllipsis();
6981 }
6982 }
6983
6984 if (EnableIfAttr *FailedAttr =
6985 CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) {
6986 Candidate.Viable = false;
6987 Candidate.FailureKind = ovl_fail_enable_if;
6988 Candidate.DeductionFailure.Data = FailedAttr;
6989 return;
6990 }
6991
6992 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
6993 !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
6994 Candidate.Viable = false;
6995 Candidate.FailureKind = ovl_non_default_multiversion_function;
6996 }
6997}
6998
6999/// Add a C++ member function template as a candidate to the candidate
7000/// set, using template argument deduction to produce an appropriate member
7001/// function template specialization.
7002void Sema::AddMethodTemplateCandidate(
7003 FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
7004 CXXRecordDecl *ActingContext,
7005 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
7006 Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
7007 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7008 bool PartialOverloading, OverloadCandidateParamOrder PO) {
7009 if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
7010 return;
7011
7012 // C++ [over.match.funcs]p7:
7013 // In each case where a candidate is a function template, candidate
7014 // function template specializations are generated using template argument
7015 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
7016 // candidate functions in the usual way.113) A given name can refer to one
7017 // or more function templates and also to a set of overloaded non-template
7018 // functions. In such a case, the candidate functions generated from each
7019 // function template are combined with the set of non-template candidate
7020 // functions.
7021 TemplateDeductionInfo Info(CandidateSet.getLocation());
7022 FunctionDecl *Specialization = nullptr;
7023 ConversionSequenceList Conversions;
7024 if (TemplateDeductionResult Result = DeduceTemplateArguments(
7025 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
7026 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7027 return CheckNonDependentConversions(
7028 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
7029 SuppressUserConversions, ActingContext, ObjectType,
7030 ObjectClassification, PO);
7031 })) {
7032 OverloadCandidate &Candidate =
7033 CandidateSet.addCandidate(Conversions.size(), Conversions);
7034 Candidate.FoundDecl = FoundDecl;
7035 Candidate.Function = MethodTmpl->getTemplatedDecl();
7036 Candidate.Viable = false;
7037 Candidate.RewriteKind =
7038 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7039 Candidate.IsSurrogate = false;
7040 Candidate.IgnoreObjectArgument =
7041 cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
7042 ObjectType.isNull();
7043 Candidate.ExplicitCallArguments = Args.size();
7044 if (Result == TDK_NonDependentConversionFailure)
7045 Candidate.FailureKind = ovl_fail_bad_conversion;
7046 else {
7047 Candidate.FailureKind = ovl_fail_bad_deduction;
7048 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7049 Info);
7050 }
7051 return;
7052 }
7053
7054 // Add the function template specialization produced by template argument
7055 // deduction as a candidate.
7056 assert(Specialization && "Missing member function template specialization?")((Specialization && "Missing member function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing member function template specialization?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7056, __PRETTY_FUNCTION__))
;
7057 assert(isa<CXXMethodDecl>(Specialization) &&((isa<CXXMethodDecl>(Specialization) && "Specialization is not a member function?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7058, __PRETTY_FUNCTION__))
7058 "Specialization is not a member function?")((isa<CXXMethodDecl>(Specialization) && "Specialization is not a member function?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXMethodDecl>(Specialization) && \"Specialization is not a member function?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7058, __PRETTY_FUNCTION__))
;
7059 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
7060 ActingContext, ObjectType, ObjectClassification, Args,
7061 CandidateSet, SuppressUserConversions, PartialOverloading,
7062 Conversions, PO);
7063}
7064
7065/// Determine whether a given function template has a simple explicit specifier
7066/// or a non-value-dependent explicit-specification that evaluates to true.
7067static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) {
7068 return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit();
7069}
7070
7071/// Add a C++ function template specialization as a candidate
7072/// in the candidate set, using template argument deduction to produce
7073/// an appropriate function template specialization.
7074void Sema::AddTemplateOverloadCandidate(
7075 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7076 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
7077 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
7078 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
7079 OverloadCandidateParamOrder PO) {
7080 if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
7081 return;
7082
7083 // If the function template has a non-dependent explicit specification,
7084 // exclude it now if appropriate; we are not permitted to perform deduction
7085 // and substitution in this case.
7086 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7087 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7088 Candidate.FoundDecl = FoundDecl;
7089 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7090 Candidate.Viable = false;
7091 Candidate.FailureKind = ovl_fail_explicit;
7092 return;
7093 }
7094
7095 // C++ [over.match.funcs]p7:
7096 // In each case where a candidate is a function template, candidate
7097 // function template specializations are generated using template argument
7098 // deduction (14.8.3, 14.8.2). Those candidates are then handled as
7099 // candidate functions in the usual way.113) A given name can refer to one
7100 // or more function templates and also to a set of overloaded non-template
7101 // functions. In such a case, the candidate functions generated from each
7102 // function template are combined with the set of non-template candidate
7103 // functions.
7104 TemplateDeductionInfo Info(CandidateSet.getLocation());
7105 FunctionDecl *Specialization = nullptr;
7106 ConversionSequenceList Conversions;
7107 if (TemplateDeductionResult Result = DeduceTemplateArguments(
7108 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
7109 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
7110 return CheckNonDependentConversions(
7111 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
7112 SuppressUserConversions, nullptr, QualType(), {}, PO);
7113 })) {
7114 OverloadCandidate &Candidate =
7115 CandidateSet.addCandidate(Conversions.size(), Conversions);
7116 Candidate.FoundDecl = FoundDecl;
7117 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7118 Candidate.Viable = false;
7119 Candidate.RewriteKind =
7120 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
7121 Candidate.IsSurrogate = false;
7122 Candidate.IsADLCandidate = IsADLCandidate;
7123 // Ignore the object argument if there is one, since we don't have an object
7124 // type.
7125 Candidate.IgnoreObjectArgument =
7126 isa<CXXMethodDecl>(Candidate.Function) &&
7127 !isa<CXXConstructorDecl>(Candidate.Function);
7128 Candidate.ExplicitCallArguments = Args.size();
7129 if (Result == TDK_NonDependentConversionFailure)
7130 Candidate.FailureKind = ovl_fail_bad_conversion;
7131 else {
7132 Candidate.FailureKind = ovl_fail_bad_deduction;
7133 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7134 Info);
7135 }
7136 return;
7137 }
7138
7139 // Add the function template specialization produced by template argument
7140 // deduction as a candidate.
7141 assert(Specialization && "Missing function template specialization?")((Specialization && "Missing function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7141, __PRETTY_FUNCTION__))
;
7142 AddOverloadCandidate(
7143 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
7144 PartialOverloading, AllowExplicit,
7145 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
7146}
7147
7148/// Check that implicit conversion sequences can be formed for each argument
7149/// whose corresponding parameter has a non-dependent type, per DR1391's
7150/// [temp.deduct.call]p10.
7151bool Sema::CheckNonDependentConversions(
7152 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
7153 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
7154 ConversionSequenceList &Conversions, bool SuppressUserConversions,
7155 CXXRecordDecl *ActingContext, QualType ObjectType,
7156 Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
7157 // FIXME: The cases in which we allow explicit conversions for constructor
7158 // arguments never consider calling a constructor template. It's not clear
7159 // that is correct.
7160 const bool AllowExplicit = false;
7161
7162 auto *FD = FunctionTemplate->getTemplatedDecl();
7163 auto *Method = dyn_cast<CXXMethodDecl>(FD);
7164 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
7165 unsigned ThisConversions = HasThisConversion ? 1 : 0;
7166
7167 Conversions =
7168 CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
7169
7170 // Overload resolution is always an unevaluated context.
7171 EnterExpressionEvaluationContext Unevaluated(
7172 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7173
7174 // For a method call, check the 'this' conversion here too. DR1391 doesn't
7175 // require that, but this check should never result in a hard error, and
7176 // overload resolution is permitted to sidestep instantiations.
7177 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
7178 !ObjectType.isNull()) {
7179 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
7180 Conversions[ConvIdx] = TryObjectArgumentInitialization(
7181 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
7182 Method, ActingContext);
7183 if (Conversions[ConvIdx].isBad())
7184 return true;
7185 }
7186
7187 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
7188 ++I) {
7189 QualType ParamType = ParamTypes[I];
7190 if (!ParamType->isDependentType()) {
7191 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
7192 ? 0
7193 : (ThisConversions + I);
7194 Conversions[ConvIdx]
7195 = TryCopyInitialization(*this, Args[I], ParamType,
7196 SuppressUserConversions,
7197 /*InOverloadResolution=*/true,
7198 /*AllowObjCWritebackConversion=*/
7199 getLangOpts().ObjCAutoRefCount,
7200 AllowExplicit);
7201 if (Conversions[ConvIdx].isBad())
7202 return true;
7203 }
7204 }
7205
7206 return false;
7207}
7208
7209/// Determine whether this is an allowable conversion from the result
7210/// of an explicit conversion operator to the expected type, per C++
7211/// [over.match.conv]p1 and [over.match.ref]p1.
7212///
7213/// \param ConvType The return type of the conversion function.
7214///
7215/// \param ToType The type we are converting to.
7216///
7217/// \param AllowObjCPointerConversion Allow a conversion from one
7218/// Objective-C pointer to another.
7219///
7220/// \returns true if the conversion is allowable, false otherwise.
7221static bool isAllowableExplicitConversion(Sema &S,
7222 QualType ConvType, QualType ToType,
7223 bool AllowObjCPointerConversion) {
7224 QualType ToNonRefType = ToType.getNonReferenceType();
7225
7226 // Easy case: the types are the same.
7227 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
7228 return true;
7229
7230 // Allow qualification conversions.
7231 bool ObjCLifetimeConversion;
7232 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
7233 ObjCLifetimeConversion))
7234 return true;
7235
7236 // If we're not allowed to consider Objective-C pointer conversions,
7237 // we're done.
7238 if (!AllowObjCPointerConversion)
7239 return false;
7240
7241 // Is this an Objective-C pointer conversion?
7242 bool IncompatibleObjC = false;
7243 QualType ConvertedType;
7244 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
7245 IncompatibleObjC);
7246}
7247
7248/// AddConversionCandidate - Add a C++ conversion function as a
7249/// candidate in the candidate set (C++ [over.match.conv],
7250/// C++ [over.match.copy]). From is the expression we're converting from,
7251/// and ToType is the type that we're eventually trying to convert to
7252/// (which may or may not be the same type as the type that the
7253/// conversion function produces).
7254void Sema::AddConversionCandidate(
7255 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
7256 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
7257 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7258 bool AllowExplicit, bool AllowResultConversion) {
7259 assert(!Conversion->getDescribedFunctionTemplate() &&((!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"
) ? static_cast<void> (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7260, __PRETTY_FUNCTION__))
7260 "Conversion function templates use AddTemplateConversionCandidate")((!Conversion->getDescribedFunctionTemplate() && "Conversion function templates use AddTemplateConversionCandidate"
) ? static_cast<void> (0) : __assert_fail ("!Conversion->getDescribedFunctionTemplate() && \"Conversion function templates use AddTemplateConversionCandidate\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7260, __PRETTY_FUNCTION__))
;
7261 QualType ConvType = Conversion->getConversionType().getNonReferenceType();
7262 if (!CandidateSet.isNewCandidate(Conversion))
7263 return;
7264
7265 // If the conversion function has an undeduced return type, trigger its
7266 // deduction now.
7267 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
7268 if (DeduceReturnType(Conversion, From->getExprLoc()))
7269 return;
7270 ConvType = Conversion->getConversionType().getNonReferenceType();
7271 }
7272
7273 // If we don't allow any conversion of the result type, ignore conversion
7274 // functions that don't convert to exactly (possibly cv-qualified) T.
7275 if (!AllowResultConversion &&
7276 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
7277 return;
7278
7279 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
7280 // operator is only a candidate if its return type is the target type or
7281 // can be converted to the target type with a qualification conversion.
7282 //
7283 // FIXME: Include such functions in the candidate list and explain why we
7284 // can't select them.
7285 if (Conversion->isExplicit() &&
7286 !isAllowableExplicitConversion(*this, ConvType, ToType,
7287 AllowObjCConversionOnExplicit))
7288 return;
7289
7290 // Overload resolution is always an unevaluated context.
7291 EnterExpressionEvaluationContext Unevaluated(
7292 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7293
7294 // Add this candidate
7295 OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
7296 Candidate.FoundDecl = FoundDecl;
7297 Candidate.Function = Conversion;
7298 Candidate.IsSurrogate = false;
7299 Candidate.IgnoreObjectArgument = false;
7300 Candidate.FinalConversion.setAsIdentityConversion();
7301 Candidate.FinalConversion.setFromType(ConvType);
7302 Candidate.FinalConversion.setAllToTypes(ToType);
7303 Candidate.Viable = true;
7304 Candidate.ExplicitCallArguments = 1;
7305
7306 // Explicit functions are not actually candidates at all if we're not
7307 // allowing them in this context, but keep them around so we can point
7308 // to them in diagnostics.
7309 if (!AllowExplicit && Conversion->isExplicit()) {
7310 Candidate.Viable = false;
7311 Candidate.FailureKind = ovl_fail_explicit;
7312 return;
7313 }
7314
7315 // C++ [over.match.funcs]p4:
7316 // For conversion functions, the function is considered to be a member of
7317 // the class of the implicit implied object argument for the purpose of
7318 // defining the type of the implicit object parameter.
7319 //
7320 // Determine the implicit conversion sequence for the implicit
7321 // object parameter.
7322 QualType ImplicitParamType = From->getType();
7323 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
7324 ImplicitParamType = FromPtrType->getPointeeType();
7325 CXXRecordDecl *ConversionContext
7326 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
7327
7328 Candidate.Conversions[0] = TryObjectArgumentInitialization(
7329 *this, CandidateSet.getLocation(), From->getType(),
7330 From->Classify(Context), Conversion, ConversionContext);
7331
7332 if (Candidate.Conversions[0].isBad()) {
7333 Candidate.Viable = false;
7334 Candidate.FailureKind = ovl_fail_bad_conversion;
7335 return;
7336 }
7337
7338 if (Conversion->getTrailingRequiresClause()) {
7339 ConstraintSatisfaction Satisfaction;
7340 if (CheckFunctionConstraints(Conversion, Satisfaction) ||
7341 !Satisfaction.IsSatisfied) {
7342 Candidate.Viable = false;
7343 Candidate.FailureKind = ovl_fail_constraints_not_satisfied;
7344 return;
7345 }
7346 }
7347
7348 // We won't go through a user-defined type conversion function to convert a
7349 // derived to base as such conversions are given Conversion Rank. They only
7350 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
7351 QualType FromCanon
7352 = Context.getCanonicalType(From->getType().getUnqualifiedType());
7353 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
7354 if (FromCanon == ToCanon ||
7355 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
7356 Candidate.Viable = false;
7357 Candidate.FailureKind = ovl_fail_trivial_conversion;
7358 return;
7359 }
7360
7361 // To determine what the conversion from the result of calling the
7362 // conversion function to the type we're eventually trying to
7363 // convert to (ToType), we need to synthesize a call to the
7364 // conversion function and attempt copy initialization from it. This
7365 // makes sure that we get the right semantics with respect to
7366 // lvalues/rvalues and the type. Fortunately, we can allocate this
7367 // call on the stack and we don't need its arguments to be
7368 // well-formed.
7369 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
7370 VK_LValue, From->getBeginLoc());
7371 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
7372 Context.getPointerType(Conversion->getType()),
7373 CK_FunctionToPointerDecay, &ConversionRef,
7374 VK_RValue, FPOptionsOverride());
7375
7376 QualType ConversionType = Conversion->getConversionType();
7377 if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
7378 Candidate.Viable = false;
7379 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7380 return;
7381 }
7382
7383 ExprValueKind VK = Expr::getValueKindForType(ConversionType);
7384
7385 // Note that it is safe to allocate CallExpr on the stack here because
7386 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
7387 // allocator).
7388 QualType CallResultType = ConversionType.getNonLValueExprType(Context);
7389
7390 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
7391 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
7392 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
7393
7394 ImplicitConversionSequence ICS =
7395 TryCopyInitialization(*this, TheTemporaryCall, ToType,
7396 /*SuppressUserConversions=*/true,
7397 /*InOverloadResolution=*/false,
7398 /*AllowObjCWritebackConversion=*/false);
7399
7400 switch (ICS.getKind()) {
7401 case ImplicitConversionSequence::StandardConversion:
7402 Candidate.FinalConversion = ICS.Standard;
7403
7404 // C++ [over.ics.user]p3:
7405 // If the user-defined conversion is specified by a specialization of a
7406 // conversion function template, the second standard conversion sequence
7407 // shall have exact match rank.
7408 if (Conversion->getPrimaryTemplate() &&
7409 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
7410 Candidate.Viable = false;
7411 Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
7412 return;
7413 }
7414
7415 // C++0x [dcl.init.ref]p5:
7416 // In the second case, if the reference is an rvalue reference and
7417 // the second standard conversion sequence of the user-defined
7418 // conversion sequence includes an lvalue-to-rvalue conversion, the
7419 // program is ill-formed.
7420 if (ToType->isRValueReferenceType() &&
7421 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
7422 Candidate.Viable = false;
7423 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7424 return;
7425 }
7426 break;
7427
7428 case ImplicitConversionSequence::BadConversion:
7429 Candidate.Viable = false;
7430 Candidate.FailureKind = ovl_fail_bad_final_conversion;
7431 return;
7432
7433 default:
7434 llvm_unreachable(::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7435)
7435 "Can only end up with a standard conversion sequence or failure")::llvm::llvm_unreachable_internal("Can only end up with a standard conversion sequence or failure"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7435)
;
7436 }
7437
7438 if (EnableIfAttr *FailedAttr =
7439 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7440 Candidate.Viable = false;
7441 Candidate.FailureKind = ovl_fail_enable_if;
7442 Candidate.DeductionFailure.Data = FailedAttr;
7443 return;
7444 }
7445
7446 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
7447 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
7448 Candidate.Viable = false;
7449 Candidate.FailureKind = ovl_non_default_multiversion_function;
7450 }
7451}
7452
7453/// Adds a conversion function template specialization
7454/// candidate to the overload set, using template argument deduction
7455/// to deduce the template arguments of the conversion function
7456/// template from the type that we are converting to (C++
7457/// [temp.deduct.conv]).
7458void Sema::AddTemplateConversionCandidate(
7459 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
7460 CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
7461 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
7462 bool AllowExplicit, bool AllowResultConversion) {
7463 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&((isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl
()) && "Only conversion function templates permitted here"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7464, __PRETTY_FUNCTION__))
7464 "Only conversion function templates permitted here")((isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl
()) && "Only conversion function templates permitted here"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && \"Only conversion function templates permitted here\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7464, __PRETTY_FUNCTION__))
;
7465
7466 if (!CandidateSet.isNewCandidate(FunctionTemplate))
7467 return;
7468
7469 // If the function template has a non-dependent explicit specification,
7470 // exclude it now if appropriate; we are not permitted to perform deduction
7471 // and substitution in this case.
7472 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) {
7473 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7474 Candidate.FoundDecl = FoundDecl;
7475 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7476 Candidate.Viable = false;
7477 Candidate.FailureKind = ovl_fail_explicit;
7478 return;
7479 }
7480
7481 TemplateDeductionInfo Info(CandidateSet.getLocation());
7482 CXXConversionDecl *Specialization = nullptr;
7483 if (TemplateDeductionResult Result
7484 = DeduceTemplateArguments(FunctionTemplate, ToType,
7485 Specialization, Info)) {
7486 OverloadCandidate &Candidate = CandidateSet.addCandidate();
7487 Candidate.FoundDecl = FoundDecl;
7488 Candidate.Function = FunctionTemplate->getTemplatedDecl();
7489 Candidate.Viable = false;
7490 Candidate.FailureKind = ovl_fail_bad_deduction;
7491 Candidate.IsSurrogate = false;
7492 Candidate.IgnoreObjectArgument = false;
7493 Candidate.ExplicitCallArguments = 1;
7494 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
7495 Info);
7496 return;
7497 }
7498
7499 // Add the conversion function template specialization produced by
7500 // template argument deduction as a candidate.
7501 assert(Specialization && "Missing function template specialization?")((Specialization && "Missing function template specialization?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"Missing function template specialization?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7501, __PRETTY_FUNCTION__))
;
7502 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
7503 CandidateSet, AllowObjCConversionOnExplicit,
7504 AllowExplicit, AllowResultConversion);
7505}
7506
7507/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
7508/// converts the given @c Object to a function pointer via the
7509/// conversion function @c Conversion, and then attempts to call it
7510/// with the given arguments (C++ [over.call.object]p2-4). Proto is
7511/// the type of function that we'll eventually be calling.
7512void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
7513 DeclAccessPair FoundDecl,
7514 CXXRecordDecl *ActingContext,
7515 const FunctionProtoType *Proto,
7516 Expr *Object,
7517 ArrayRef<Expr *> Args,
7518 OverloadCandidateSet& CandidateSet) {
7519 if (!CandidateSet.isNewCandidate(Conversion))
7520 return;
7521
7522 // Overload resolution is always an unevaluated context.
7523 EnterExpressionEvaluationContext Unevaluated(
7524 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7525
7526 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
7527 Candidate.FoundDecl = FoundDecl;
7528 Candidate.Function = nullptr;
7529 Candidate.Surrogate = Conversion;
7530 Candidate.Viable = true;
7531 Candidate.IsSurrogate = true;
7532 Candidate.IgnoreObjectArgument = false;
7533 Candidate.ExplicitCallArguments = Args.size();
7534
7535 // Determine the implicit conversion sequence for the implicit
7536 // object parameter.
7537 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
7538 *this, CandidateSet.getLocation(), Object->getType(),
7539 Object->Classify(Context), Conversion, ActingContext);
7540 if (ObjectInit.isBad()) {
7541 Candidate.Viable = false;
7542 Candidate.FailureKind = ovl_fail_bad_conversion;
7543 Candidate.Conversions[0] = ObjectInit;
7544 return;
7545 }
7546
7547 // The first conversion is actually a user-defined conversion whose
7548 // first conversion is ObjectInit's standard conversion (which is
7549 // effectively a reference binding). Record it as such.
7550 Candidate.Conversions[0].setUserDefined();
7551 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
7552 Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
7553 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
7554 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
7555 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
7556 Candidate.Conversions[0].UserDefined.After
7557 = Candidate.Conversions[0].UserDefined.Before;
7558 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
7559
7560 // Find the
7561 unsigned NumParams = Proto->getNumParams();
7562
7563 // (C++ 13.3.2p2): A candidate function having fewer than m
7564 // parameters is viable only if it has an ellipsis in its parameter
7565 // list (8.3.5).
7566 if (Args.size() > NumParams && !Proto->isVariadic()) {
7567 Candidate.Viable = false;
7568 Candidate.FailureKind = ovl_fail_too_many_arguments;
7569 return;
7570 }
7571
7572 // Function types don't have any default arguments, so just check if
7573 // we have enough arguments.
7574 if (Args.size() < NumParams) {
7575 // Not enough arguments.
7576 Candidate.Viable = false;
7577 Candidate.FailureKind = ovl_fail_too_few_arguments;
7578 return;
7579 }
7580
7581 // Determine the implicit conversion sequences for each of the
7582 // arguments.
7583 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7584 if (ArgIdx < NumParams) {
7585 // (C++ 13.3.2p3): for F to be a viable function, there shall
7586 // exist for each argument an implicit conversion sequence
7587 // (13.3.3.1) that converts that argument to the corresponding
7588 // parameter of F.
7589 QualType ParamType = Proto->getParamType(ArgIdx);
7590 Candidate.Conversions[ArgIdx + 1]
7591 = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
7592 /*SuppressUserConversions=*/false,
7593 /*InOverloadResolution=*/false,
7594 /*AllowObjCWritebackConversion=*/
7595 getLangOpts().ObjCAutoRefCount);
7596 if (Candidate.Conversions[ArgIdx + 1].isBad()) {
7597 Candidate.Viable = false;
7598 Candidate.FailureKind = ovl_fail_bad_conversion;
7599 return;
7600 }
7601 } else {
7602 // (C++ 13.3.2p2): For the purposes of overload resolution, any
7603 // argument for which there is no corresponding parameter is
7604 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
7605 Candidate.Conversions[ArgIdx + 1].setEllipsis();
7606 }
7607 }
7608
7609 if (EnableIfAttr *FailedAttr =
7610 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) {
7611 Candidate.Viable = false;
7612 Candidate.FailureKind = ovl_fail_enable_if;
7613 Candidate.DeductionFailure.Data = FailedAttr;
7614 return;
7615 }
7616}
7617
7618/// Add all of the non-member operator function declarations in the given
7619/// function set to the overload candidate set.
7620void Sema::AddNonMemberOperatorCandidates(
7621 const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
7622 OverloadCandidateSet &CandidateSet,
7623 TemplateArgumentListInfo *ExplicitTemplateArgs) {
7624 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
7625 NamedDecl *D = F.getDecl()->getUnderlyingDecl();
7626 ArrayRef<Expr *> FunctionArgs = Args;
7627
7628 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
7629 FunctionDecl *FD =
7630 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
7631
7632 // Don't consider rewritten functions if we're not rewriting.
7633 if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
7634 continue;
7635
7636 assert(!isa<CXXMethodDecl>(FD) &&((!isa<CXXMethodDecl>(FD) && "unqualified operator lookup found a member function"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXMethodDecl>(FD) && \"unqualified operator lookup found a member function\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7637, __PRETTY_FUNCTION__))
7637 "unqualified operator lookup found a member function")((!isa<CXXMethodDecl>(FD) && "unqualified operator lookup found a member function"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXMethodDecl>(FD) && \"unqualified operator lookup found a member function\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7637, __PRETTY_FUNCTION__))
;
7638
7639 if (FunTmpl) {
7640 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
7641 FunctionArgs, CandidateSet);
7642 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7643 AddTemplateOverloadCandidate(
7644 FunTmpl, F.getPair(), ExplicitTemplateArgs,
7645 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
7646 true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
7647 } else {
7648 if (ExplicitTemplateArgs)
7649 continue;
7650 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
7651 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
7652 AddOverloadCandidate(FD, F.getPair(),
7653 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
7654 false, false, true, false, ADLCallKind::NotADL,
7655 None, OverloadCandidateParamOrder::Reversed);
7656 }
7657 }
7658}
7659
7660/// Add overload candidates for overloaded operators that are
7661/// member functions.
7662///
7663/// Add the overloaded operator candidates that are member functions
7664/// for the operator Op that was used in an operator expression such
7665/// as "x Op y". , Args/NumArgs provides the operator arguments, and
7666/// CandidateSet will store the added overload candidates. (C++
7667/// [over.match.oper]).
7668void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
7669 SourceLocation OpLoc,
7670 ArrayRef<Expr *> Args,
7671 OverloadCandidateSet &CandidateSet,
7672 OverloadCandidateParamOrder PO) {
7673 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7674
7675 // C++ [over.match.oper]p3:
7676 // For a unary operator @ with an operand of a type whose
7677 // cv-unqualified version is T1, and for a binary operator @ with
7678 // a left operand of a type whose cv-unqualified version is T1 and
7679 // a right operand of a type whose cv-unqualified version is T2,
7680 // three sets of candidate functions, designated member
7681 // candidates, non-member candidates and built-in candidates, are
7682 // constructed as follows:
7683 QualType T1 = Args[0]->getType();
7684
7685 // -- If T1 is a complete class type or a class currently being
7686 // defined, the set of member candidates is the result of the
7687 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
7688 // the set of member candidates is empty.
7689 if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
7690 // Complete the type if it can be completed.
7691 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
7692 return;
7693 // If the type is neither complete nor being defined, bail out now.
7694 if (!T1Rec->getDecl()->getDefinition())
7695 return;
7696
7697 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
7698 LookupQualifiedName(Operators, T1Rec->getDecl());
7699 Operators.suppressDiagnostics();
7700
7701 for (LookupResult::iterator Oper = Operators.begin(),
7702 OperEnd = Operators.end();
7703 Oper != OperEnd;
7704 ++Oper)
7705 AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
7706 Args[0]->Classify(Context), Args.slice(1),
7707 CandidateSet, /*SuppressUserConversion=*/false, PO);
7708 }
7709}
7710
7711/// AddBuiltinCandidate - Add a candidate for a built-in
7712/// operator. ResultTy and ParamTys are the result and parameter types
7713/// of the built-in candidate, respectively. Args and NumArgs are the
7714/// arguments being passed to the candidate. IsAssignmentOperator
7715/// should be true when this built-in candidate is an assignment
7716/// operator. NumContextualBoolArguments is the number of arguments
7717/// (at the beginning of the argument list) that will be contextually
7718/// converted to bool.
7719void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
7720 OverloadCandidateSet& CandidateSet,
7721 bool IsAssignmentOperator,
7722 unsigned NumContextualBoolArguments) {
7723 // Overload resolution is always an unevaluated context.
7724 EnterExpressionEvaluationContext Unevaluated(
7725 *this, Sema::ExpressionEvaluationContext::Unevaluated);
7726
7727 // Add this candidate
7728 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
7729 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
7730 Candidate.Function = nullptr;
7731 Candidate.IsSurrogate = false;
7732 Candidate.IgnoreObjectArgument = false;
7733 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
7734
7735 // Determine the implicit conversion sequences for each of the
7736 // arguments.
7737 Candidate.Viable = true;
7738 Candidate.ExplicitCallArguments = Args.size();
7739 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7740 // C++ [over.match.oper]p4:
7741 // For the built-in assignment operators, conversions of the
7742 // left operand are restricted as follows:
7743 // -- no temporaries are introduced to hold the left operand, and
7744 // -- no user-defined conversions are applied to the left
7745 // operand to achieve a type match with the left-most
7746 // parameter of a built-in candidate.
7747 //
7748 // We block these conversions by turning off user-defined
7749 // conversions, since that is the only way that initialization of
7750 // a reference to a non-class type can occur from something that
7751 // is not of the same type.
7752 if (ArgIdx < NumContextualBoolArguments) {
7753 assert(ParamTys[ArgIdx] == Context.BoolTy &&((ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"
) ? static_cast<void> (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7754, __PRETTY_FUNCTION__))
7754 "Contextual conversion to bool requires bool type")((ParamTys[ArgIdx] == Context.BoolTy && "Contextual conversion to bool requires bool type"
) ? static_cast<void> (0) : __assert_fail ("ParamTys[ArgIdx] == Context.BoolTy && \"Contextual conversion to bool requires bool type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7754, __PRETTY_FUNCTION__))
;
7755 Candidate.Conversions[ArgIdx]
7756 = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
7757 } else {
7758 Candidate.Conversions[ArgIdx]
7759 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
7760 ArgIdx == 0 && IsAssignmentOperator,
7761 /*InOverloadResolution=*/false,
7762 /*AllowObjCWritebackConversion=*/
7763 getLangOpts().ObjCAutoRefCount);
7764 }
7765 if (Candidate.Conversions[ArgIdx].isBad()) {
7766 Candidate.Viable = false;
7767 Candidate.FailureKind = ovl_fail_bad_conversion;
7768 break;
7769 }
7770 }
7771}
7772
7773namespace {
7774
7775/// BuiltinCandidateTypeSet - A set of types that will be used for the
7776/// candidate operator functions for built-in operators (C++
7777/// [over.built]). The types are separated into pointer types and
7778/// enumeration types.
7779class BuiltinCandidateTypeSet {
7780 /// TypeSet - A set of types.
7781 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
7782 llvm::SmallPtrSet<QualType, 8>> TypeSet;
7783
7784 /// PointerTypes - The set of pointer types that will be used in the
7785 /// built-in candidates.
7786 TypeSet PointerTypes;
7787
7788 /// MemberPointerTypes - The set of member pointer types that will be
7789 /// used in the built-in candidates.
7790 TypeSet MemberPointerTypes;
7791
7792 /// EnumerationTypes - The set of enumeration types that will be
7793 /// used in the built-in candidates.
7794 TypeSet EnumerationTypes;
7795
7796 /// The set of vector types that will be used in the built-in
7797 /// candidates.
7798 TypeSet VectorTypes;
7799
7800 /// The set of matrix types that will be used in the built-in
7801 /// candidates.
7802 TypeSet MatrixTypes;
7803
7804 /// A flag indicating non-record types are viable candidates
7805 bool HasNonRecordTypes;
7806
7807 /// A flag indicating whether either arithmetic or enumeration types
7808 /// were present in the candidate set.
7809 bool HasArithmeticOrEnumeralTypes;
7810
7811 /// A flag indicating whether the nullptr type was present in the
7812 /// candidate set.
7813 bool HasNullPtrType;
7814
7815 /// Sema - The semantic analysis instance where we are building the
7816 /// candidate type set.
7817 Sema &SemaRef;
7818
7819 /// Context - The AST context in which we will build the type sets.
7820 ASTContext &Context;
7821
7822 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7823 const Qualifiers &VisibleQuals);
7824 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
7825
7826public:
7827 /// iterator - Iterates through the types that are part of the set.
7828 typedef TypeSet::iterator iterator;
7829
7830 BuiltinCandidateTypeSet(Sema &SemaRef)
7831 : HasNonRecordTypes(false),
7832 HasArithmeticOrEnumeralTypes(false),
7833 HasNullPtrType(false),
7834 SemaRef(SemaRef),
7835 Context(SemaRef.Context) { }
7836
7837 void AddTypesConvertedFrom(QualType Ty,
7838 SourceLocation Loc,
7839 bool AllowUserConversions,
7840 bool AllowExplicitConversions,
7841 const Qualifiers &VisibleTypeConversionsQuals);
7842
7843 /// pointer_begin - First pointer type found;
7844 iterator pointer_begin() { return PointerTypes.begin(); }
7845
7846 /// pointer_end - Past the last pointer type found;
7847 iterator pointer_end() { return PointerTypes.end(); }
7848
7849 /// member_pointer_begin - First member pointer type found;
7850 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
7851
7852 /// member_pointer_end - Past the last member pointer type found;
7853 iterator member_pointer_end() { return MemberPointerTypes.end(); }
7854
7855 /// enumeration_begin - First enumeration type found;
7856 iterator enumeration_begin() { return EnumerationTypes.begin(); }
7857
7858 /// enumeration_end - Past the last enumeration type found;
7859 iterator enumeration_end() { return EnumerationTypes.end(); }
7860
7861 llvm::iterator_range<iterator> vector_types() { return VectorTypes; }
7862
7863 llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; }
7864
7865 bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); }
7866 bool hasNonRecordTypes() { return HasNonRecordTypes; }
7867 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
7868 bool hasNullPtrType() const { return HasNullPtrType; }
7869};
7870
7871} // end anonymous namespace
7872
7873/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
7874/// the set of pointer types along with any more-qualified variants of
7875/// that type. For example, if @p Ty is "int const *", this routine
7876/// will add "int const *", "int const volatile *", "int const
7877/// restrict *", and "int const volatile restrict *" to the set of
7878/// pointer types. Returns true if the add of @p Ty itself succeeded,
7879/// false otherwise.
7880///
7881/// FIXME: what to do about extended qualifiers?
7882bool
7883BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
7884 const Qualifiers &VisibleQuals) {
7885
7886 // Insert this type.
7887 if (!PointerTypes.insert(Ty))
7888 return false;
7889
7890 QualType PointeeTy;
7891 const PointerType *PointerTy = Ty->getAs<PointerType>();
7892 bool buildObjCPtr = false;
7893 if (!PointerTy) {
7894 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
7895 PointeeTy = PTy->getPointeeType();
7896 buildObjCPtr = true;
7897 } else {
7898 PointeeTy = PointerTy->getPointeeType();
7899 }
7900
7901 // Don't add qualified variants of arrays. For one, they're not allowed
7902 // (the qualifier would sink to the element type), and for another, the
7903 // only overload situation where it matters is subscript or pointer +- int,
7904 // and those shouldn't have qualifier variants anyway.
7905 if (PointeeTy->isArrayType())
7906 return true;
7907
7908 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7909 bool hasVolatile = VisibleQuals.hasVolatile();
7910 bool hasRestrict = VisibleQuals.hasRestrict();
7911
7912 // Iterate through all strict supersets of BaseCVR.
7913 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7914 if ((CVR | BaseCVR) != CVR) continue;
7915 // Skip over volatile if no volatile found anywhere in the types.
7916 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
7917
7918 // Skip over restrict if no restrict found anywhere in the types, or if
7919 // the type cannot be restrict-qualified.
7920 if ((CVR & Qualifiers::Restrict) &&
7921 (!hasRestrict ||
7922 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
7923 continue;
7924
7925 // Build qualified pointee type.
7926 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7927
7928 // Build qualified pointer type.
7929 QualType QPointerTy;
7930 if (!buildObjCPtr)
7931 QPointerTy = Context.getPointerType(QPointeeTy);
7932 else
7933 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
7934
7935 // Insert qualified pointer type.
7936 PointerTypes.insert(QPointerTy);
7937 }
7938
7939 return true;
7940}
7941
7942/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
7943/// to the set of pointer types along with any more-qualified variants of
7944/// that type. For example, if @p Ty is "int const *", this routine
7945/// will add "int const *", "int const volatile *", "int const
7946/// restrict *", and "int const volatile restrict *" to the set of
7947/// pointer types. Returns true if the add of @p Ty itself succeeded,
7948/// false otherwise.
7949///
7950/// FIXME: what to do about extended qualifiers?
7951bool
7952BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
7953 QualType Ty) {
7954 // Insert this type.
7955 if (!MemberPointerTypes.insert(Ty))
7956 return false;
7957
7958 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
7959 assert(PointerTy && "type was not a member pointer type!")((PointerTy && "type was not a member pointer type!")
? static_cast<void> (0) : __assert_fail ("PointerTy && \"type was not a member pointer type!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 7959, __PRETTY_FUNCTION__))
;
7960
7961 QualType PointeeTy = PointerTy->getPointeeType();
7962 // Don't add qualified variants of arrays. For one, they're not allowed
7963 // (the qualifier would sink to the element type), and for another, the
7964 // only overload situation where it matters is subscript or pointer +- int,
7965 // and those shouldn't have qualifier variants anyway.
7966 if (PointeeTy->isArrayType())
7967 return true;
7968 const Type *ClassTy = PointerTy->getClass();
7969
7970 // Iterate through all strict supersets of the pointee type's CVR
7971 // qualifiers.
7972 unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7973 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7974 if ((CVR | BaseCVR) != CVR) continue;
7975
7976 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7977 MemberPointerTypes.insert(
7978 Context.getMemberPointerType(QPointeeTy, ClassTy));
7979 }
7980
7981 return true;
7982}
7983
7984/// AddTypesConvertedFrom - Add each of the types to which the type @p
7985/// Ty can be implicit converted to the given set of @p Types. We're
7986/// primarily interested in pointer types and enumeration types. We also
7987/// take member pointer types, for the conditional operator.
7988/// AllowUserConversions is true if we should look at the conversion
7989/// functions of a class type, and AllowExplicitConversions if we
7990/// should also include the explicit conversion functions of a class
7991/// type.
7992void
7993BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7994 SourceLocation Loc,
7995 bool AllowUserConversions,
7996 bool AllowExplicitConversions,
7997 const Qualifiers &VisibleQuals) {
7998 // Only deal with canonical types.
7999 Ty = Context.getCanonicalType(Ty);
8000
8001 // Look through reference types; they aren't part of the type of an
8002 // expression for the purposes of conversions.
8003 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
8004 Ty = RefTy->getPointeeType();
8005
8006 // If we're dealing with an array type, decay to the pointer.
8007 if (Ty->isArrayType())
8008 Ty = SemaRef.Context.getArrayDecayedType(Ty);
8009
8010 // Otherwise, we don't care about qualifiers on the type.
8011 Ty = Ty.getLocalUnqualifiedType();
8012
8013 // Flag if we ever add a non-record type.
8014 const RecordType *TyRec = Ty->getAs<RecordType>();
8015 HasNonRecordTypes = HasNonRecordTypes || !TyRec;
8016
8017 // Flag if we encounter an arithmetic type.
8018 HasArithmeticOrEnumeralTypes =
8019 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
8020
8021 if (Ty->isObjCIdType() || Ty->isObjCClassType())
8022 PointerTypes.insert(Ty);
8023 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
8024 // Insert our type, and its more-qualified variants, into the set
8025 // of types.
8026 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
8027 return;
8028 } else if (Ty->isMemberPointerType()) {
8029 // Member pointers are far easier, since the pointee can't be converted.
8030 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
8031 return;
8032 } else if (Ty->isEnumeralType()) {
8033 HasArithmeticOrEnumeralTypes = true;
8034 EnumerationTypes.insert(Ty);
8035 } else if (Ty->isVectorType()) {
8036 // We treat vector types as arithmetic types in many contexts as an
8037 // extension.
8038 HasArithmeticOrEnumeralTypes = true;
8039 VectorTypes.insert(Ty);
8040 } else if (Ty->isMatrixType()) {
8041 // Similar to vector types, we treat vector types as arithmetic types in
8042 // many contexts as an extension.
8043 HasArithmeticOrEnumeralTypes = true;
8044 MatrixTypes.insert(Ty);
8045 } else if (Ty->isNullPtrType()) {
8046 HasNullPtrType = true;
8047 } else if (AllowUserConversions && TyRec) {
8048 // No conversion functions in incomplete types.
8049 if (!SemaRef.isCompleteType(Loc, Ty))
8050 return;
8051
8052 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8053 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8054 if (isa<UsingShadowDecl>(D))
8055 D = cast<UsingShadowDecl>(D)->getTargetDecl();
8056
8057 // Skip conversion function templates; they don't tell us anything
8058 // about which builtin types we can convert to.
8059 if (isa<FunctionTemplateDecl>(D))
8060 continue;
8061
8062 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8063 if (AllowExplicitConversions || !Conv->isExplicit()) {
8064 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
8065 VisibleQuals);
8066 }
8067 }
8068 }
8069}
8070/// Helper function for adjusting address spaces for the pointer or reference
8071/// operands of builtin operators depending on the argument.
8072static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
8073 Expr *Arg) {
8074 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
8075}
8076
8077/// Helper function for AddBuiltinOperatorCandidates() that adds
8078/// the volatile- and non-volatile-qualified assignment operators for the
8079/// given type to the candidate set.
8080static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
8081 QualType T,
8082 ArrayRef<Expr *> Args,
8083 OverloadCandidateSet &CandidateSet) {
8084 QualType ParamTypes[2];
8085
8086 // T& operator=(T&, T)
8087 ParamTypes[0] = S.Context.getLValueReferenceType(
8088 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
8089 ParamTypes[1] = T;
8090 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8091 /*IsAssignmentOperator=*/true);
8092
8093 if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
8094 // volatile T& operator=(volatile T&, T)
8095 ParamTypes[0] = S.Context.getLValueReferenceType(
8096 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
8097 Args[0]));
8098 ParamTypes[1] = T;
8099 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8100 /*IsAssignmentOperator=*/true);
8101 }
8102}
8103
8104/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
8105/// if any, found in visible type conversion functions found in ArgExpr's type.
8106static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
8107 Qualifiers VRQuals;
8108 const RecordType *TyRec;
8109 if (const MemberPointerType *RHSMPType =
8110 ArgExpr->getType()->getAs<MemberPointerType>())
8111 TyRec = RHSMPType->getClass()->getAs<RecordType>();
8112 else
8113 TyRec = ArgExpr->getType()->getAs<RecordType>();
8114 if (!TyRec) {
8115 // Just to be safe, assume the worst case.
8116 VRQuals.addVolatile();
8117 VRQuals.addRestrict();
8118 return VRQuals;
8119 }
8120
8121 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
8122 if (!ClassDecl->hasDefinition())
8123 return VRQuals;
8124
8125 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
8126 if (isa<UsingShadowDecl>(D))
8127 D = cast<UsingShadowDecl>(D)->getTargetDecl();
8128 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
8129 QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
8130 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
8131 CanTy = ResTypeRef->getPointeeType();
8132 // Need to go down the pointer/mempointer chain and add qualifiers
8133 // as see them.
8134 bool done = false;
8135 while (!done) {
8136 if (CanTy.isRestrictQualified())
8137 VRQuals.addRestrict();
8138 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
8139 CanTy = ResTypePtr->getPointeeType();
8140 else if (const MemberPointerType *ResTypeMPtr =
8141 CanTy->getAs<MemberPointerType>())
8142 CanTy = ResTypeMPtr->getPointeeType();
8143 else
8144 done = true;
8145 if (CanTy.isVolatileQualified())
8146 VRQuals.addVolatile();
8147 if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
8148 return VRQuals;
8149 }
8150 }
8151 }
8152 return VRQuals;
8153}
8154
8155namespace {
8156
8157/// Helper class to manage the addition of builtin operator overload
8158/// candidates. It provides shared state and utility methods used throughout
8159/// the process, as well as a helper method to add each group of builtin
8160/// operator overloads from the standard to a candidate set.
8161class BuiltinOperatorOverloadBuilder {
8162 // Common instance state available to all overload candidate addition methods.
8163 Sema &S;
8164 ArrayRef<Expr *> Args;
8165 Qualifiers VisibleTypeConversionsQuals;
8166 bool HasArithmeticOrEnumeralCandidateType;
8167 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
8168 OverloadCandidateSet &CandidateSet;
8169
8170 static constexpr int ArithmeticTypesCap = 24;
8171 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
8172
8173 // Define some indices used to iterate over the arithmetic types in
8174 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
8175 // types are that preserved by promotion (C++ [over.built]p2).
8176 unsigned FirstIntegralType,
8177 LastIntegralType;
8178 unsigned FirstPromotedIntegralType,
8179 LastPromotedIntegralType;
8180 unsigned FirstPromotedArithmeticType,
8181 LastPromotedArithmeticType;
8182 unsigned NumArithmeticTypes;
8183
8184 void InitArithmeticTypes() {
8185 // Start of promoted types.
8186 FirstPromotedArithmeticType = 0;
8187 ArithmeticTypes.push_back(S.Context.FloatTy);
8188 ArithmeticTypes.push_back(S.Context.DoubleTy);
8189 ArithmeticTypes.push_back(S.Context.LongDoubleTy);
8190 if (S.Context.getTargetInfo().hasFloat128Type())
8191 ArithmeticTypes.push_back(S.Context.Float128Ty);
8192
8193 // Start of integral types.
8194 FirstIntegralType = ArithmeticTypes.size();
8195 FirstPromotedIntegralType = ArithmeticTypes.size();
8196 ArithmeticTypes.push_back(S.Context.IntTy);
8197 ArithmeticTypes.push_back(S.Context.LongTy);
8198 ArithmeticTypes.push_back(S.Context.LongLongTy);
8199 if (S.Context.getTargetInfo().hasInt128Type())
8200 ArithmeticTypes.push_back(S.Context.Int128Ty);
8201 ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
8202 ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
8203 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
8204 if (S.Context.getTargetInfo().hasInt128Type())
8205 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
8206 LastPromotedIntegralType = ArithmeticTypes.size();
8207 LastPromotedArithmeticType = ArithmeticTypes.size();
8208 // End of promoted types.
8209
8210 ArithmeticTypes.push_back(S.Context.BoolTy);
8211 ArithmeticTypes.push_back(S.Context.CharTy);
8212 ArithmeticTypes.push_back(S.Context.WCharTy);
8213 if (S.Context.getLangOpts().Char8)
8214 ArithmeticTypes.push_back(S.Context.Char8Ty);
8215 ArithmeticTypes.push_back(S.Context.Char16Ty);
8216 ArithmeticTypes.push_back(S.Context.Char32Ty);
8217 ArithmeticTypes.push_back(S.Context.SignedCharTy);
8218 ArithmeticTypes.push_back(S.Context.ShortTy);
8219 ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
8220 ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
8221 LastIntegralType = ArithmeticTypes.size();
8222 NumArithmeticTypes = ArithmeticTypes.size();
8223 // End of integral types.
8224 // FIXME: What about complex? What about half?
8225
8226 assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&((ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."
) ? static_cast<void> (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 8227, __PRETTY_FUNCTION__))
8227 "Enough inline storage for all arithmetic types.")((ArithmeticTypes.size() <= ArithmeticTypesCap && "Enough inline storage for all arithmetic types."
) ? static_cast<void> (0) : __assert_fail ("ArithmeticTypes.size() <= ArithmeticTypesCap && \"Enough inline storage for all arithmetic types.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 8227, __PRETTY_FUNCTION__))
;
8228 }
8229
8230 /// Helper method to factor out the common pattern of adding overloads
8231 /// for '++' and '--' builtin operators.
8232 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
8233 bool HasVolatile,
8234 bool HasRestrict) {
8235 QualType ParamTypes[2] = {
8236 S.Context.getLValueReferenceType(CandidateTy),
8237 S.Context.IntTy
8238 };
8239
8240 // Non-volatile version.
8241 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8242
8243 // Use a heuristic to reduce number of builtin candidates in the set:
8244 // add volatile version only if there are conversions to a volatile type.
8245 if (HasVolatile) {
8246 ParamTypes[0] =
8247 S.Context.getLValueReferenceType(
8248 S.Context.getVolatileType(CandidateTy));
8249 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8250 }
8251
8252 // Add restrict version only if there are conversions to a restrict type
8253 // and our candidate type is a non-restrict-qualified pointer.
8254 if (HasRestrict && CandidateTy->isAnyPointerType() &&
8255 !CandidateTy.isRestrictQualified()) {
8256 ParamTypes[0]
8257 = S.Context.getLValueReferenceType(
8258 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
8259 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8260
8261 if (HasVolatile) {
8262 ParamTypes[0]
8263 = S.Context.getLValueReferenceType(
8264 S.Context.getCVRQualifiedType(CandidateTy,
8265 (Qualifiers::Volatile |
8266 Qualifiers::Restrict)));
8267 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8268 }
8269 }
8270
8271 }
8272
8273 /// Helper to add an overload candidate for a binary builtin with types \p L
8274 /// and \p R.
8275 void AddCandidate(QualType L, QualType R) {
8276 QualType LandR[2] = {L, R};
8277 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8278 }
8279
8280public:
8281 BuiltinOperatorOverloadBuilder(
8282 Sema &S, ArrayRef<Expr *> Args,
8283 Qualifiers VisibleTypeConversionsQuals,
8284 bool HasArithmeticOrEnumeralCandidateType,
8285 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
8286 OverloadCandidateSet &CandidateSet)
8287 : S(S), Args(Args),
8288 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
8289 HasArithmeticOrEnumeralCandidateType(
8290 HasArithmeticOrEnumeralCandidateType),
8291 CandidateTypes(CandidateTypes),
8292 CandidateSet(CandidateSet) {
8293
8294 InitArithmeticTypes();
8295 }
8296
8297 // Increment is deprecated for bool since C++17.
8298 //
8299 // C++ [over.built]p3:
8300 //
8301 // For every pair (T, VQ), where T is an arithmetic type other
8302 // than bool, and VQ is either volatile or empty, there exist
8303 // candidate operator functions of the form
8304 //
8305 // VQ T& operator++(VQ T&);
8306 // T operator++(VQ T&, int);
8307 //
8308 // C++ [over.built]p4:
8309 //
8310 // For every pair (T, VQ), where T is an arithmetic type other
8311 // than bool, and VQ is either volatile or empty, there exist
8312 // candidate operator functions of the form
8313 //
8314 // VQ T& operator--(VQ T&);
8315 // T operator--(VQ T&, int);
8316 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
8317 if (!HasArithmeticOrEnumeralCandidateType)
8318 return;
8319
8320 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
8321 const auto TypeOfT = ArithmeticTypes[Arith];
8322 if (TypeOfT == S.Context.BoolTy) {
8323 if (Op == OO_MinusMinus)
8324 continue;
8325 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
8326 continue;
8327 }
8328 addPlusPlusMinusMinusStyleOverloads(
8329 TypeOfT,
8330 VisibleTypeConversionsQuals.hasVolatile(),
8331 VisibleTypeConversionsQuals.hasRestrict());
8332 }
8333 }
8334
8335 // C++ [over.built]p5:
8336 //
8337 // For every pair (T, VQ), where T is a cv-qualified or
8338 // cv-unqualified object type, and VQ is either volatile or
8339 // empty, there exist candidate operator functions of the form
8340 //
8341 // T*VQ& operator++(T*VQ&);
8342 // T*VQ& operator--(T*VQ&);
8343 // T* operator++(T*VQ&, int);
8344 // T* operator--(T*VQ&, int);
8345 void addPlusPlusMinusMinusPointerOverloads() {
8346 for (BuiltinCandidateTypeSet::iterator
8347 Ptr = CandidateTypes[0].pointer_begin(),
8348 PtrEnd = CandidateTypes[0].pointer_end();
8349 Ptr != PtrEnd; ++Ptr) {
8350 // Skip pointer types that aren't pointers to object types.
8351 if (!(*Ptr)->getPointeeType()->isObjectType())
8352 continue;
8353
8354 addPlusPlusMinusMinusStyleOverloads(*Ptr,
8355 (!(*Ptr).isVolatileQualified() &&
8356 VisibleTypeConversionsQuals.hasVolatile()),
8357 (!(*Ptr).isRestrictQualified() &&
8358 VisibleTypeConversionsQuals.hasRestrict()));
8359 }
8360 }
8361
8362 // C++ [over.built]p6:
8363 // For every cv-qualified or cv-unqualified object type T, there
8364 // exist candidate operator functions of the form
8365 //
8366 // T& operator*(T*);
8367 //
8368 // C++ [over.built]p7:
8369 // For every function type T that does not have cv-qualifiers or a
8370 // ref-qualifier, there exist candidate operator functions of the form
8371 // T& operator*(T*);
8372 void addUnaryStarPointerOverloads() {
8373 for (BuiltinCandidateTypeSet::iterator
8374 Ptr = CandidateTypes[0].pointer_begin(),
8375 PtrEnd = CandidateTypes[0].pointer_end();
8376 Ptr != PtrEnd; ++Ptr) {
8377 QualType ParamTy = *Ptr;
8378 QualType PointeeTy = ParamTy->getPointeeType();
8379 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
8380 continue;
8381
8382 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
8383 if (Proto->getMethodQuals() || Proto->getRefQualifier())
8384 continue;
8385
8386 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8387 }
8388 }
8389
8390 // C++ [over.built]p9:
8391 // For every promoted arithmetic type T, there exist candidate
8392 // operator functions of the form
8393 //
8394 // T operator+(T);
8395 // T operator-(T);
8396 void addUnaryPlusOrMinusArithmeticOverloads() {
8397 if (!HasArithmeticOrEnumeralCandidateType)
8398 return;
8399
8400 for (unsigned Arith = FirstPromotedArithmeticType;
8401 Arith < LastPromotedArithmeticType; ++Arith) {
8402 QualType ArithTy = ArithmeticTypes[Arith];
8403 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
8404 }
8405
8406 // Extension: We also add these operators for vector types.
8407 for (QualType VecTy : CandidateTypes[0].vector_types())
8408 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8409 }
8410
8411 // C++ [over.built]p8:
8412 // For every type T, there exist candidate operator functions of
8413 // the form
8414 //
8415 // T* operator+(T*);
8416 void addUnaryPlusPointerOverloads() {
8417 for (BuiltinCandidateTypeSet::iterator
8418 Ptr = CandidateTypes[0].pointer_begin(),
8419 PtrEnd = CandidateTypes[0].pointer_end();
8420 Ptr != PtrEnd; ++Ptr) {
8421 QualType ParamTy = *Ptr;
8422 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
8423 }
8424 }
8425
8426 // C++ [over.built]p10:
8427 // For every promoted integral type T, there exist candidate
8428 // operator functions of the form
8429 //
8430 // T operator~(T);
8431 void addUnaryTildePromotedIntegralOverloads() {
8432 if (!HasArithmeticOrEnumeralCandidateType)
8433 return;
8434
8435 for (unsigned Int = FirstPromotedIntegralType;
8436 Int < LastPromotedIntegralType; ++Int) {
8437 QualType IntTy = ArithmeticTypes[Int];
8438 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
8439 }
8440
8441 // Extension: We also add this operator for vector types.
8442 for (QualType VecTy : CandidateTypes[0].vector_types())
8443 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
8444 }
8445
8446 // C++ [over.match.oper]p16:
8447 // For every pointer to member type T or type std::nullptr_t, there
8448 // exist candidate operator functions of the form
8449 //
8450 // bool operator==(T,T);
8451 // bool operator!=(T,T);
8452 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
8453 /// Set of (canonical) types that we've already handled.
8454 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8455
8456 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8457 for (BuiltinCandidateTypeSet::iterator
8458 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8459 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8460 MemPtr != MemPtrEnd;
8461 ++MemPtr) {
8462 // Don't add the same builtin candidate twice.
8463 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8464 continue;
8465
8466 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8467 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8468 }
8469
8470 if (CandidateTypes[ArgIdx].hasNullPtrType()) {
8471 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
8472 if (AddedTypes.insert(NullPtrTy).second) {
8473 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
8474 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8475 }
8476 }
8477 }
8478 }
8479
8480 // C++ [over.built]p15:
8481 //
8482 // For every T, where T is an enumeration type or a pointer type,
8483 // there exist candidate operator functions of the form
8484 //
8485 // bool operator<(T, T);
8486 // bool operator>(T, T);
8487 // bool operator<=(T, T);
8488 // bool operator>=(T, T);
8489 // bool operator==(T, T);
8490 // bool operator!=(T, T);
8491 // R operator<=>(T, T)
8492 void addGenericBinaryPointerOrEnumeralOverloads() {
8493 // C++ [over.match.oper]p3:
8494 // [...]the built-in candidates include all of the candidate operator
8495 // functions defined in 13.6 that, compared to the given operator, [...]
8496 // do not have the same parameter-type-list as any non-template non-member
8497 // candidate.
8498 //
8499 // Note that in practice, this only affects enumeration types because there
8500 // aren't any built-in candidates of record type, and a user-defined operator
8501 // must have an operand of record or enumeration type. Also, the only other
8502 // overloaded operator with enumeration arguments, operator=,
8503 // cannot be overloaded for enumeration types, so this is the only place
8504 // where we must suppress candidates like this.
8505 llvm::DenseSet<std::pair<CanQualType, CanQualType> >
8506 UserDefinedBinaryOperators;
8507
8508 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8509 if (CandidateTypes[ArgIdx].enumeration_begin() !=
8510 CandidateTypes[ArgIdx].enumeration_end()) {
8511 for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
8512 CEnd = CandidateSet.end();
8513 C != CEnd; ++C) {
8514 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
8515 continue;
8516
8517 if (C->Function->isFunctionTemplateSpecialization())
8518 continue;
8519
8520 // We interpret "same parameter-type-list" as applying to the
8521 // "synthesized candidate, with the order of the two parameters
8522 // reversed", not to the original function.
8523 bool Reversed = C->isReversed();
8524 QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
8525 ->getType()
8526 .getUnqualifiedType();
8527 QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
8528 ->getType()
8529 .getUnqualifiedType();
8530
8531 // Skip if either parameter isn't of enumeral type.
8532 if (!FirstParamType->isEnumeralType() ||
8533 !SecondParamType->isEnumeralType())
8534 continue;
8535
8536 // Add this operator to the set of known user-defined operators.
8537 UserDefinedBinaryOperators.insert(
8538 std::make_pair(S.Context.getCanonicalType(FirstParamType),
8539 S.Context.getCanonicalType(SecondParamType)));
8540 }
8541 }
8542 }
8543
8544 /// Set of (canonical) types that we've already handled.
8545 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8546
8547 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8548 for (BuiltinCandidateTypeSet::iterator
8549 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8550 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8551 Ptr != PtrEnd; ++Ptr) {
8552 // Don't add the same builtin candidate twice.
8553 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8554 continue;
8555
8556 QualType ParamTypes[2] = { *Ptr, *Ptr };
8557 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8558 }
8559 for (BuiltinCandidateTypeSet::iterator
8560 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8561 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8562 Enum != EnumEnd; ++Enum) {
8563 CanQualType CanonType = S.Context.getCanonicalType(*Enum);
8564
8565 // Don't add the same builtin candidate twice, or if a user defined
8566 // candidate exists.
8567 if (!AddedTypes.insert(CanonType).second ||
8568 UserDefinedBinaryOperators.count(std::make_pair(CanonType,
8569 CanonType)))
8570 continue;
8571 QualType ParamTypes[2] = { *Enum, *Enum };
8572 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8573 }
8574 }
8575 }
8576
8577 // C++ [over.built]p13:
8578 //
8579 // For every cv-qualified or cv-unqualified object type T
8580 // there exist candidate operator functions of the form
8581 //
8582 // T* operator+(T*, ptrdiff_t);
8583 // T& operator[](T*, ptrdiff_t); [BELOW]
8584 // T* operator-(T*, ptrdiff_t);
8585 // T* operator+(ptrdiff_t, T*);
8586 // T& operator[](ptrdiff_t, T*); [BELOW]
8587 //
8588 // C++ [over.built]p14:
8589 //
8590 // For every T, where T is a pointer to object type, there
8591 // exist candidate operator functions of the form
8592 //
8593 // ptrdiff_t operator-(T, T);
8594 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
8595 /// Set of (canonical) types that we've already handled.
8596 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8597
8598 for (int Arg = 0; Arg < 2; ++Arg) {
8599 QualType AsymmetricParamTypes[2] = {
8600 S.Context.getPointerDiffType(),
8601 S.Context.getPointerDiffType(),
8602 };
8603 for (BuiltinCandidateTypeSet::iterator
8604 Ptr = CandidateTypes[Arg].pointer_begin(),
8605 PtrEnd = CandidateTypes[Arg].pointer_end();
8606 Ptr != PtrEnd; ++Ptr) {
8607 QualType PointeeTy = (*Ptr)->getPointeeType();
8608 if (!PointeeTy->isObjectType())
8609 continue;
8610
8611 AsymmetricParamTypes[Arg] = *Ptr;
8612 if (Arg == 0 || Op == OO_Plus) {
8613 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
8614 // T* operator+(ptrdiff_t, T*);
8615 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
8616 }
8617 if (Op == OO_Minus) {
8618 // ptrdiff_t operator-(T, T);
8619 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8620 continue;
8621
8622 QualType ParamTypes[2] = { *Ptr, *Ptr };
8623 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
8624 }
8625 }
8626 }
8627 }
8628
8629 // C++ [over.built]p12:
8630 //
8631 // For every pair of promoted arithmetic types L and R, there
8632 // exist candidate operator functions of the form
8633 //
8634 // LR operator*(L, R);
8635 // LR operator/(L, R);
8636 // LR operator+(L, R);
8637 // LR operator-(L, R);
8638 // bool operator<(L, R);
8639 // bool operator>(L, R);
8640 // bool operator<=(L, R);
8641 // bool operator>=(L, R);
8642 // bool operator==(L, R);
8643 // bool operator!=(L, R);
8644 //
8645 // where LR is the result of the usual arithmetic conversions
8646 // between types L and R.
8647 //
8648 // C++ [over.built]p24:
8649 //
8650 // For every pair of promoted arithmetic types L and R, there exist
8651 // candidate operator functions of the form
8652 //
8653 // LR operator?(bool, L, R);
8654 //
8655 // where LR is the result of the usual arithmetic conversions
8656 // between types L and R.
8657 // Our candidates ignore the first parameter.
8658 void addGenericBinaryArithmeticOverloads() {
8659 if (!HasArithmeticOrEnumeralCandidateType)
8660 return;
8661
8662 for (unsigned Left = FirstPromotedArithmeticType;
8663 Left < LastPromotedArithmeticType; ++Left) {
8664 for (unsigned Right = FirstPromotedArithmeticType;
8665 Right < LastPromotedArithmeticType; ++Right) {
8666 QualType LandR[2] = { ArithmeticTypes[Left],
8667 ArithmeticTypes[Right] };
8668 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8669 }
8670 }
8671
8672 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
8673 // conditional operator for vector types.
8674 for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8675 for (QualType Vec2Ty : CandidateTypes[1].vector_types()) {
8676 QualType LandR[2] = {Vec1Ty, Vec2Ty};
8677 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8678 }
8679 }
8680
8681 /// Add binary operator overloads for each candidate matrix type M1, M2:
8682 /// * (M1, M1) -> M1
8683 /// * (M1, M1.getElementType()) -> M1
8684 /// * (M2.getElementType(), M2) -> M2
8685 /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0].
8686 void addMatrixBinaryArithmeticOverloads() {
8687 if (!HasArithmeticOrEnumeralCandidateType)
8688 return;
8689
8690 for (QualType M1 : CandidateTypes[0].matrix_types()) {
8691 AddCandidate(M1, cast<MatrixType>(M1)->getElementType());
8692 AddCandidate(M1, M1);
8693 }
8694
8695 for (QualType M2 : CandidateTypes[1].matrix_types()) {
8696 AddCandidate(cast<MatrixType>(M2)->getElementType(), M2);
8697 if (!CandidateTypes[0].containsMatrixType(M2))
8698 AddCandidate(M2, M2);
8699 }
8700 }
8701
8702 // C++2a [over.built]p14:
8703 //
8704 // For every integral type T there exists a candidate operator function
8705 // of the form
8706 //
8707 // std::strong_ordering operator<=>(T, T)
8708 //
8709 // C++2a [over.built]p15:
8710 //
8711 // For every pair of floating-point types L and R, there exists a candidate
8712 // operator function of the form
8713 //
8714 // std::partial_ordering operator<=>(L, R);
8715 //
8716 // FIXME: The current specification for integral types doesn't play nice with
8717 // the direction of p0946r0, which allows mixed integral and unscoped-enum
8718 // comparisons. Under the current spec this can lead to ambiguity during
8719 // overload resolution. For example:
8720 //
8721 // enum A : int {a};
8722 // auto x = (a <=> (long)42);
8723 //
8724 // error: call is ambiguous for arguments 'A' and 'long'.
8725 // note: candidate operator<=>(int, int)
8726 // note: candidate operator<=>(long, long)
8727 //
8728 // To avoid this error, this function deviates from the specification and adds
8729 // the mixed overloads `operator<=>(L, R)` where L and R are promoted
8730 // arithmetic types (the same as the generic relational overloads).
8731 //
8732 // For now this function acts as a placeholder.
8733 void addThreeWayArithmeticOverloads() {
8734 addGenericBinaryArithmeticOverloads();
8735 }
8736
8737 // C++ [over.built]p17:
8738 //
8739 // For every pair of promoted integral types L and R, there
8740 // exist candidate operator functions of the form
8741 //
8742 // LR operator%(L, R);
8743 // LR operator&(L, R);
8744 // LR operator^(L, R);
8745 // LR operator|(L, R);
8746 // L operator<<(L, R);
8747 // L operator>>(L, R);
8748 //
8749 // where LR is the result of the usual arithmetic conversions
8750 // between types L and R.
8751 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
8752 if (!HasArithmeticOrEnumeralCandidateType)
8753 return;
8754
8755 for (unsigned Left = FirstPromotedIntegralType;
8756 Left < LastPromotedIntegralType; ++Left) {
8757 for (unsigned Right = FirstPromotedIntegralType;
8758 Right < LastPromotedIntegralType; ++Right) {
8759 QualType LandR[2] = { ArithmeticTypes[Left],
8760 ArithmeticTypes[Right] };
8761 S.AddBuiltinCandidate(LandR, Args, CandidateSet);
8762 }
8763 }
8764 }
8765
8766 // C++ [over.built]p20:
8767 //
8768 // For every pair (T, VQ), where T is an enumeration or
8769 // pointer to member type and VQ is either volatile or
8770 // empty, there exist candidate operator functions of the form
8771 //
8772 // VQ T& operator=(VQ T&, T);
8773 void addAssignmentMemberPointerOrEnumeralOverloads() {
8774 /// Set of (canonical) types that we've already handled.
8775 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8776
8777 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8778 for (BuiltinCandidateTypeSet::iterator
8779 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8780 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8781 Enum != EnumEnd; ++Enum) {
8782 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8783 continue;
8784
8785 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
8786 }
8787
8788 for (BuiltinCandidateTypeSet::iterator
8789 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8790 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8791 MemPtr != MemPtrEnd; ++MemPtr) {
8792 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8793 continue;
8794
8795 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
8796 }
8797 }
8798 }
8799
8800 // C++ [over.built]p19:
8801 //
8802 // For every pair (T, VQ), where T is any type and VQ is either
8803 // volatile or empty, there exist candidate operator functions
8804 // of the form
8805 //
8806 // T*VQ& operator=(T*VQ&, T*);
8807 //
8808 // C++ [over.built]p21:
8809 //
8810 // For every pair (T, VQ), where T is a cv-qualified or
8811 // cv-unqualified object type and VQ is either volatile or
8812 // empty, there exist candidate operator functions of the form
8813 //
8814 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
8815 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
8816 void addAssignmentPointerOverloads(bool isEqualOp) {
8817 /// Set of (canonical) types that we've already handled.
8818 llvm::SmallPtrSet<QualType, 8> AddedTypes;
8819
8820 for (BuiltinCandidateTypeSet::iterator
8821 Ptr = CandidateTypes[0].pointer_begin(),
8822 PtrEnd = CandidateTypes[0].pointer_end();
8823 Ptr != PtrEnd; ++Ptr) {
8824 // If this is operator=, keep track of the builtin candidates we added.
8825 if (isEqualOp)
8826 AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
8827 else if (!(*Ptr)->getPointeeType()->isObjectType())
8828 continue;
8829
8830 // non-volatile version
8831 QualType ParamTypes[2] = {
8832 S.Context.getLValueReferenceType(*Ptr),
8833 isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
8834 };
8835 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8836 /*IsAssignmentOperator=*/ isEqualOp);
8837
8838 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8839 VisibleTypeConversionsQuals.hasVolatile();
8840 if (NeedVolatile) {
8841 // volatile version
8842 ParamTypes[0] =
8843 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8844 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8845 /*IsAssignmentOperator=*/isEqualOp);
8846 }
8847
8848 if (!(*Ptr).isRestrictQualified() &&
8849 VisibleTypeConversionsQuals.hasRestrict()) {
8850 // restrict version
8851 ParamTypes[0]
8852 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8853 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8854 /*IsAssignmentOperator=*/isEqualOp);
8855
8856 if (NeedVolatile) {
8857 // volatile restrict version
8858 ParamTypes[0]
8859 = S.Context.getLValueReferenceType(
8860 S.Context.getCVRQualifiedType(*Ptr,
8861 (Qualifiers::Volatile |
8862 Qualifiers::Restrict)));
8863 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8864 /*IsAssignmentOperator=*/isEqualOp);
8865 }
8866 }
8867 }
8868
8869 if (isEqualOp) {
8870 for (BuiltinCandidateTypeSet::iterator
8871 Ptr = CandidateTypes[1].pointer_begin(),
8872 PtrEnd = CandidateTypes[1].pointer_end();
8873 Ptr != PtrEnd; ++Ptr) {
8874 // Make sure we don't add the same candidate twice.
8875 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8876 continue;
8877
8878 QualType ParamTypes[2] = {
8879 S.Context.getLValueReferenceType(*Ptr),
8880 *Ptr,
8881 };
8882
8883 // non-volatile version
8884 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8885 /*IsAssignmentOperator=*/true);
8886
8887 bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
8888 VisibleTypeConversionsQuals.hasVolatile();
8889 if (NeedVolatile) {
8890 // volatile version
8891 ParamTypes[0] =
8892 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
8893 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8894 /*IsAssignmentOperator=*/true);
8895 }
8896
8897 if (!(*Ptr).isRestrictQualified() &&
8898 VisibleTypeConversionsQuals.hasRestrict()) {
8899 // restrict version
8900 ParamTypes[0]
8901 = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
8902 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8903 /*IsAssignmentOperator=*/true);
8904
8905 if (NeedVolatile) {
8906 // volatile restrict version
8907 ParamTypes[0]
8908 = S.Context.getLValueReferenceType(
8909 S.Context.getCVRQualifiedType(*Ptr,
8910 (Qualifiers::Volatile |
8911 Qualifiers::Restrict)));
8912 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8913 /*IsAssignmentOperator=*/true);
8914 }
8915 }
8916 }
8917 }
8918 }
8919
8920 // C++ [over.built]p18:
8921 //
8922 // For every triple (L, VQ, R), where L is an arithmetic type,
8923 // VQ is either volatile or empty, and R is a promoted
8924 // arithmetic type, there exist candidate operator functions of
8925 // the form
8926 //
8927 // VQ L& operator=(VQ L&, R);
8928 // VQ L& operator*=(VQ L&, R);
8929 // VQ L& operator/=(VQ L&, R);
8930 // VQ L& operator+=(VQ L&, R);
8931 // VQ L& operator-=(VQ L&, R);
8932 void addAssignmentArithmeticOverloads(bool isEqualOp) {
8933 if (!HasArithmeticOrEnumeralCandidateType)
8934 return;
8935
8936 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
8937 for (unsigned Right = FirstPromotedArithmeticType;
8938 Right < LastPromotedArithmeticType; ++Right) {
8939 QualType ParamTypes[2];
8940 ParamTypes[1] = ArithmeticTypes[Right];
8941 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
8942 S, ArithmeticTypes[Left], Args[0]);
8943 // Add this built-in operator as a candidate (VQ is empty).
8944 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
8945 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8946 /*IsAssignmentOperator=*/isEqualOp);
8947
8948 // Add this built-in operator as a candidate (VQ is 'volatile').
8949 if (VisibleTypeConversionsQuals.hasVolatile()) {
8950 ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
8951 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8952 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8953 /*IsAssignmentOperator=*/isEqualOp);
8954 }
8955 }
8956 }
8957
8958 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8959 for (QualType Vec1Ty : CandidateTypes[0].vector_types())
8960 for (QualType Vec2Ty : CandidateTypes[0].vector_types()) {
8961 QualType ParamTypes[2];
8962 ParamTypes[1] = Vec2Ty;
8963 // Add this built-in operator as a candidate (VQ is empty).
8964 ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty);
8965 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8966 /*IsAssignmentOperator=*/isEqualOp);
8967
8968 // Add this built-in operator as a candidate (VQ is 'volatile').
8969 if (VisibleTypeConversionsQuals.hasVolatile()) {
8970 ParamTypes[0] = S.Context.getVolatileType(Vec1Ty);
8971 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8972 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
8973 /*IsAssignmentOperator=*/isEqualOp);
8974 }
8975 }
8976 }
8977
8978 // C++ [over.built]p22:
8979 //
8980 // For every triple (L, VQ, R), where L is an integral type, VQ
8981 // is either volatile or empty, and R is a promoted integral
8982 // type, there exist candidate operator functions of the form
8983 //
8984 // VQ L& operator%=(VQ L&, R);
8985 // VQ L& operator<<=(VQ L&, R);
8986 // VQ L& operator>>=(VQ L&, R);
8987 // VQ L& operator&=(VQ L&, R);
8988 // VQ L& operator^=(VQ L&, R);
8989 // VQ L& operator|=(VQ L&, R);
8990 void addAssignmentIntegralOverloads() {
8991 if (!HasArithmeticOrEnumeralCandidateType)
8992 return;
8993
8994 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8995 for (unsigned Right = FirstPromotedIntegralType;
8996 Right < LastPromotedIntegralType; ++Right) {
8997 QualType ParamTypes[2];
8998 ParamTypes[1] = ArithmeticTypes[Right];
8999 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
9000 S, ArithmeticTypes[Left], Args[0]);
9001 // Add this built-in operator as a candidate (VQ is empty).
9002 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
9003 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9004 if (VisibleTypeConversionsQuals.hasVolatile()) {
9005 // Add this built-in operator as a candidate (VQ is 'volatile').
9006 ParamTypes[0] = LeftBaseTy;
9007 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
9008 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
9009 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9010 }
9011 }
9012 }
9013 }
9014
9015 // C++ [over.operator]p23:
9016 //
9017 // There also exist candidate operator functions of the form
9018 //
9019 // bool operator!(bool);
9020 // bool operator&&(bool, bool);
9021 // bool operator||(bool, bool);
9022 void addExclaimOverload() {
9023 QualType ParamTy = S.Context.BoolTy;
9024 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
9025 /*IsAssignmentOperator=*/false,
9026 /*NumContextualBoolArguments=*/1);
9027 }
9028 void addAmpAmpOrPipePipeOverload() {
9029 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
9030 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
9031 /*IsAssignmentOperator=*/false,
9032 /*NumContextualBoolArguments=*/2);
9033 }
9034
9035 // C++ [over.built]p13:
9036 //
9037 // For every cv-qualified or cv-unqualified object type T there
9038 // exist candidate operator functions of the form
9039 //
9040 // T* operator+(T*, ptrdiff_t); [ABOVE]
9041 // T& operator[](T*, ptrdiff_t);
9042 // T* operator-(T*, ptrdiff_t); [ABOVE]
9043 // T* operator+(ptrdiff_t, T*); [ABOVE]
9044 // T& operator[](ptrdiff_t, T*);
9045 void addSubscriptOverloads() {
9046 for (BuiltinCandidateTypeSet::iterator
9047 Ptr = CandidateTypes[0].pointer_begin(),
9048 PtrEnd = CandidateTypes[0].pointer_end();
9049 Ptr != PtrEnd; ++Ptr) {
9050 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
9051 QualType PointeeType = (*Ptr)->getPointeeType();
9052 if (!PointeeType->isObjectType())
9053 continue;
9054
9055 // T& operator[](T*, ptrdiff_t)
9056 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9057 }
9058
9059 for (BuiltinCandidateTypeSet::iterator
9060 Ptr = CandidateTypes[1].pointer_begin(),
9061 PtrEnd = CandidateTypes[1].pointer_end();
9062 Ptr != PtrEnd; ++Ptr) {
9063 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
9064 QualType PointeeType = (*Ptr)->getPointeeType();
9065 if (!PointeeType->isObjectType())
9066 continue;
9067
9068 // T& operator[](ptrdiff_t, T*)
9069 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9070 }
9071 }
9072
9073 // C++ [over.built]p11:
9074 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
9075 // C1 is the same type as C2 or is a derived class of C2, T is an object
9076 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
9077 // there exist candidate operator functions of the form
9078 //
9079 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
9080 //
9081 // where CV12 is the union of CV1 and CV2.
9082 void addArrowStarOverloads() {
9083 for (BuiltinCandidateTypeSet::iterator
9084 Ptr = CandidateTypes[0].pointer_begin(),
9085 PtrEnd = CandidateTypes[0].pointer_end();
9086 Ptr != PtrEnd; ++Ptr) {
9087 QualType C1Ty = (*Ptr);
9088 QualType C1;
9089 QualifierCollector Q1;
9090 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
9091 if (!isa<RecordType>(C1))
9092 continue;
9093 // heuristic to reduce number of builtin candidates in the set.
9094 // Add volatile/restrict version only if there are conversions to a
9095 // volatile/restrict type.
9096 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
9097 continue;
9098 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
9099 continue;
9100 for (BuiltinCandidateTypeSet::iterator
9101 MemPtr = CandidateTypes[1].member_pointer_begin(),
9102 MemPtrEnd = CandidateTypes[1].member_pointer_end();
9103 MemPtr != MemPtrEnd; ++MemPtr) {
9104 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
9105 QualType C2 = QualType(mptr->getClass(), 0);
9106 C2 = C2.getUnqualifiedType();
9107 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
9108 break;
9109 QualType ParamTypes[2] = { *Ptr, *MemPtr };
9110 // build CV12 T&
9111 QualType T = mptr->getPointeeType();
9112 if (!VisibleTypeConversionsQuals.hasVolatile() &&
9113 T.isVolatileQualified())
9114 continue;
9115 if (!VisibleTypeConversionsQuals.hasRestrict() &&
9116 T.isRestrictQualified())
9117 continue;
9118 T = Q1.apply(S.Context, T);
9119 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9120 }
9121 }
9122 }
9123
9124 // Note that we don't consider the first argument, since it has been
9125 // contextually converted to bool long ago. The candidates below are
9126 // therefore added as binary.
9127 //
9128 // C++ [over.built]p25:
9129 // For every type T, where T is a pointer, pointer-to-member, or scoped
9130 // enumeration type, there exist candidate operator functions of the form
9131 //
9132 // T operator?(bool, T, T);
9133 //
9134 void addConditionalOperatorOverloads() {
9135 /// Set of (canonical) types that we've already handled.
9136 llvm::SmallPtrSet<QualType, 8> AddedTypes;
9137
9138 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
9139 for (BuiltinCandidateTypeSet::iterator
9140 Ptr = CandidateTypes[ArgIdx].pointer_begin(),
9141 PtrEnd = CandidateTypes[ArgIdx].pointer_end();
9142 Ptr != PtrEnd; ++Ptr) {
9143 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
9144 continue;
9145
9146 QualType ParamTypes[2] = { *Ptr, *Ptr };
9147 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9148 }
9149
9150 for (BuiltinCandidateTypeSet::iterator
9151 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
9152 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
9153 MemPtr != MemPtrEnd; ++MemPtr) {
9154 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
9155 continue;
9156
9157 QualType ParamTypes[2] = { *MemPtr, *MemPtr };
9158 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9159 }
9160
9161 if (S.getLangOpts().CPlusPlus11) {
9162 for (BuiltinCandidateTypeSet::iterator
9163 Enum = CandidateTypes[ArgIdx].enumeration_begin(),
9164 EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
9165 Enum != EnumEnd; ++Enum) {
9166 if (!(*Enum)->castAs<EnumType>()->getDecl()->isScoped())
9167 continue;
9168
9169 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
9170 continue;
9171
9172 QualType ParamTypes[2] = { *Enum, *Enum };
9173 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
9174 }
9175 }
9176 }
9177 }
9178};
9179
9180} // end anonymous namespace
9181
9182/// AddBuiltinOperatorCandidates - Add the appropriate built-in
9183/// operator overloads to the candidate set (C++ [over.built]), based
9184/// on the operator @p Op and the arguments given. For example, if the
9185/// operator is a binary '+', this routine might add "int
9186/// operator+(int, int)" to cover integer addition.
9187void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
9188 SourceLocation OpLoc,
9189 ArrayRef<Expr *> Args,
9190 OverloadCandidateSet &CandidateSet) {
9191 // Find all of the types that the arguments can convert to, but only
9192 // if the operator we're looking at has built-in operator candidates
9193 // that make use of these types. Also record whether we encounter non-record
9194 // candidate types or either arithmetic or enumeral candidate types.
9195 Qualifiers VisibleTypeConversionsQuals;
9196 VisibleTypeConversionsQuals.addConst();
9197 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
9198 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
9199
9200 bool HasNonRecordCandidateType = false;
9201 bool HasArithmeticOrEnumeralCandidateType = false;
9202 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
9203 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
9204 CandidateTypes.emplace_back(*this);
9205 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
9206 OpLoc,
9207 true,
9208 (Op == OO_Exclaim ||
9209 Op == OO_AmpAmp ||
9210 Op == OO_PipePipe),
9211 VisibleTypeConversionsQuals);
9212 HasNonRecordCandidateType = HasNonRecordCandidateType ||
9213 CandidateTypes[ArgIdx].hasNonRecordTypes();
9214 HasArithmeticOrEnumeralCandidateType =
9215 HasArithmeticOrEnumeralCandidateType ||
9216 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
9217 }
9218
9219 // Exit early when no non-record types have been added to the candidate set
9220 // for any of the arguments to the operator.
9221 //
9222 // We can't exit early for !, ||, or &&, since there we have always have
9223 // 'bool' overloads.
9224 if (!HasNonRecordCandidateType &&
9225 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
9226 return;
9227
9228 // Setup an object to manage the common state for building overloads.
9229 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
9230 VisibleTypeConversionsQuals,
9231 HasArithmeticOrEnumeralCandidateType,
9232 CandidateTypes, CandidateSet);
9233
9234 // Dispatch over the operation to add in only those overloads which apply.
9235 switch (Op) {
9236 case OO_None:
9237 case NUM_OVERLOADED_OPERATORS:
9238 llvm_unreachable("Expected an overloaded operator")::llvm::llvm_unreachable_internal("Expected an overloaded operator"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 9238)
;
9239
9240 case OO_New:
9241 case OO_Delete:
9242 case OO_Array_New:
9243 case OO_Array_Delete:
9244 case OO_Call:
9245 llvm_unreachable(::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 9246)
9246 "Special operators don't use AddBuiltinOperatorCandidates")::llvm::llvm_unreachable_internal("Special operators don't use AddBuiltinOperatorCandidates"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 9246)
;
9247
9248 case OO_Comma:
9249 case OO_Arrow:
9250 case OO_Coawait:
9251 // C++ [over.match.oper]p3:
9252 // -- For the operator ',', the unary operator '&', the
9253 // operator '->', or the operator 'co_await', the
9254 // built-in candidates set is empty.
9255 break;
9256
9257 case OO_Plus: // '+' is either unary or binary
9258 if (Args.size() == 1)
9259 OpBuilder.addUnaryPlusPointerOverloads();
9260 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9261
9262 case OO_Minus: // '-' is either unary or binary
9263 if (Args.size() == 1) {
9264 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
9265 } else {
9266 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
9267 OpBuilder.addGenericBinaryArithmeticOverloads();
9268 OpBuilder.addMatrixBinaryArithmeticOverloads();
9269 }
9270 break;
9271
9272 case OO_Star: // '*' is either unary or binary
9273 if (Args.size() == 1)
9274 OpBuilder.addUnaryStarPointerOverloads();
9275 else {
9276 OpBuilder.addGenericBinaryArithmeticOverloads();
9277 OpBuilder.addMatrixBinaryArithmeticOverloads();
9278 }
9279 break;
9280
9281 case OO_Slash:
9282 OpBuilder.addGenericBinaryArithmeticOverloads();
9283 break;
9284
9285 case OO_PlusPlus:
9286 case OO_MinusMinus:
9287 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
9288 OpBuilder.addPlusPlusMinusMinusPointerOverloads();
9289 break;
9290
9291 case OO_EqualEqual:
9292 case OO_ExclaimEqual:
9293 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
9294 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9295
9296 case OO_Less:
9297 case OO_Greater:
9298 case OO_LessEqual:
9299 case OO_GreaterEqual:
9300 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
9301 OpBuilder.addGenericBinaryArithmeticOverloads();
9302 break;
9303
9304 case OO_Spaceship:
9305 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
9306 OpBuilder.addThreeWayArithmeticOverloads();
9307 break;
9308
9309 case OO_Percent:
9310 case OO_Caret:
9311 case OO_Pipe:
9312 case OO_LessLess:
9313 case OO_GreaterGreater:
9314 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
9315 break;
9316
9317 case OO_Amp: // '&' is either unary or binary
9318 if (Args.size() == 1)
9319 // C++ [over.match.oper]p3:
9320 // -- For the operator ',', the unary operator '&', or the
9321 // operator '->', the built-in candidates set is empty.
9322 break;
9323
9324 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
9325 break;
9326
9327 case OO_Tilde:
9328 OpBuilder.addUnaryTildePromotedIntegralOverloads();
9329 break;
9330
9331 case OO_Equal:
9332 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
9333 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9334
9335 case OO_PlusEqual:
9336 case OO_MinusEqual:
9337 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
9338 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9339
9340 case OO_StarEqual:
9341 case OO_SlashEqual:
9342 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
9343 break;
9344
9345 case OO_PercentEqual:
9346 case OO_LessLessEqual:
9347 case OO_GreaterGreaterEqual:
9348 case OO_AmpEqual:
9349 case OO_CaretEqual:
9350 case OO_PipeEqual:
9351 OpBuilder.addAssignmentIntegralOverloads();
9352 break;
9353
9354 case OO_Exclaim:
9355 OpBuilder.addExclaimOverload();
9356 break;
9357
9358 case OO_AmpAmp:
9359 case OO_PipePipe:
9360 OpBuilder.addAmpAmpOrPipePipeOverload();
9361 break;
9362
9363 case OO_Subscript:
9364 OpBuilder.addSubscriptOverloads();
9365 break;
9366
9367 case OO_ArrowStar:
9368 OpBuilder.addArrowStarOverloads();
9369 break;
9370
9371 case OO_Conditional:
9372 OpBuilder.addConditionalOperatorOverloads();
9373 OpBuilder.addGenericBinaryArithmeticOverloads();
9374 break;
9375 }
9376}
9377
9378/// Add function candidates found via argument-dependent lookup
9379/// to the set of overloading candidates.
9380///
9381/// This routine performs argument-dependent name lookup based on the
9382/// given function name (which may also be an operator name) and adds
9383/// all of the overload candidates found by ADL to the overload
9384/// candidate set (C++ [basic.lookup.argdep]).
9385void
9386Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
9387 SourceLocation Loc,
9388 ArrayRef<Expr *> Args,
9389 TemplateArgumentListInfo *ExplicitTemplateArgs,
9390 OverloadCandidateSet& CandidateSet,
9391 bool PartialOverloading) {
9392 ADLResult Fns;
9393
9394 // FIXME: This approach for uniquing ADL results (and removing
9395 // redundant candidates from the set) relies on pointer-equality,
9396 // which means we need to key off the canonical decl. However,
9397 // always going back to the canonical decl might not get us the
9398 // right set of default arguments. What default arguments are
9399 // we supposed to consider on ADL candidates, anyway?
9400
9401 // FIXME: Pass in the explicit template arguments?
9402 ArgumentDependentLookup(Name, Loc, Args, Fns);
9403
9404 // Erase all of the candidates we already knew about.
9405 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
9406 CandEnd = CandidateSet.end();
9407 Cand != CandEnd; ++Cand)
9408 if (Cand->Function) {
9409 Fns.erase(Cand->Function);
9410 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
9411 Fns.erase(FunTmpl);
9412 }
9413
9414 // For each of the ADL candidates we found, add it to the overload
9415 // set.
9416 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
9417 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
9418
9419 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
9420 if (ExplicitTemplateArgs)
9421 continue;
9422
9423 AddOverloadCandidate(
9424 FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false,
9425 PartialOverloading, /*AllowExplicit=*/true,
9426 /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL);
9427 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) {
9428 AddOverloadCandidate(
9429 FD, FoundDecl, {Args[1], Args[0]}, CandidateSet,
9430 /*SuppressUserConversions=*/false, PartialOverloading,
9431 /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false,
9432 ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed);
9433 }
9434 } else {
9435 auto *FTD = cast<FunctionTemplateDecl>(*I);
9436 AddTemplateOverloadCandidate(
9437 FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet,
9438 /*SuppressUserConversions=*/false, PartialOverloading,
9439 /*AllowExplicit=*/true, ADLCallKind::UsesADL);
9440 if (CandidateSet.getRewriteInfo().shouldAddReversed(
9441 Context, FTD->getTemplatedDecl())) {
9442 AddTemplateOverloadCandidate(
9443 FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]},
9444 CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading,
9445 /*AllowExplicit=*/true, ADLCallKind::UsesADL,
9446 OverloadCandidateParamOrder::Reversed);
9447 }
9448 }
9449 }
9450}
9451
9452namespace {
9453enum class Comparison { Equal, Better, Worse };
9454}
9455
9456/// Compares the enable_if attributes of two FunctionDecls, for the purposes of
9457/// overload resolution.
9458///
9459/// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
9460/// Cand1's first N enable_if attributes have precisely the same conditions as
9461/// Cand2's first N enable_if attributes (where N = the number of enable_if
9462/// attributes on Cand2), and Cand1 has more than N enable_if attributes.
9463///
9464/// Note that you can have a pair of candidates such that Cand1's enable_if
9465/// attributes are worse than Cand2's, and Cand2's enable_if attributes are
9466/// worse than Cand1's.
9467static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
9468 const FunctionDecl *Cand2) {
9469 // Common case: One (or both) decls don't have enable_if attrs.
9470 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
9471 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
9472 if (!Cand1Attr || !Cand2Attr) {
9473 if (Cand1Attr == Cand2Attr)
9474 return Comparison::Equal;
9475 return Cand1Attr ? Comparison::Better : Comparison::Worse;
9476 }
9477
9478 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
9479 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
9480
9481 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
9482 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
9483 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
9484 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
9485
9486 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
9487 // has fewer enable_if attributes than Cand2, and vice versa.
9488 if (!Cand1A)
9489 return Comparison::Worse;
9490 if (!Cand2A)
9491 return Comparison::Better;
9492
9493 Cand1ID.clear();
9494 Cand2ID.clear();
9495
9496 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
9497 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
9498 if (Cand1ID != Cand2ID)
9499 return Comparison::Worse;
9500 }
9501
9502 return Comparison::Equal;
9503}
9504
9505static Comparison
9506isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
9507 const OverloadCandidate &Cand2) {
9508 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
9509 !Cand2.Function->isMultiVersion())
9510 return Comparison::Equal;
9511
9512 // If both are invalid, they are equal. If one of them is invalid, the other
9513 // is better.
9514 if (Cand1.Function->isInvalidDecl()) {
9515 if (Cand2.Function->isInvalidDecl())
9516 return Comparison::Equal;
9517 return Comparison::Worse;
9518 }
9519 if (Cand2.Function->isInvalidDecl())
9520 return Comparison::Better;
9521
9522 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
9523 // cpu_dispatch, else arbitrarily based on the identifiers.
9524 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
9525 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
9526 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
9527 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
9528
9529 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
9530 return Comparison::Equal;
9531
9532 if (Cand1CPUDisp && !Cand2CPUDisp)
9533 return Comparison::Better;
9534 if (Cand2CPUDisp && !Cand1CPUDisp)
9535 return Comparison::Worse;
9536
9537 if (Cand1CPUSpec && Cand2CPUSpec) {
9538 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
9539 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size()
9540 ? Comparison::Better
9541 : Comparison::Worse;
9542
9543 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
9544 FirstDiff = std::mismatch(
9545 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
9546 Cand2CPUSpec->cpus_begin(),
9547 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
9548 return LHS->getName() == RHS->getName();
9549 });
9550
9551 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 9553, __PRETTY_FUNCTION__))
9552 "Two different cpu-specific versions should not have the same "((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 9553, __PRETTY_FUNCTION__))
9553 "identifier list, otherwise they'd be the same decl!")((FirstDiff.first != Cand1CPUSpec->cpus_end() && "Two different cpu-specific versions should not have the same "
"identifier list, otherwise they'd be the same decl!") ? static_cast
<void> (0) : __assert_fail ("FirstDiff.first != Cand1CPUSpec->cpus_end() && \"Two different cpu-specific versions should not have the same \" \"identifier list, otherwise they'd be the same decl!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 9553, __PRETTY_FUNCTION__))
;
9554 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName()
9555 ? Comparison::Better
9556 : Comparison::Worse;
9557 }
9558 llvm_unreachable("No way to get here unless both had cpu_dispatch")::llvm::llvm_unreachable_internal("No way to get here unless both had cpu_dispatch"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 9558)
;
9559}
9560
9561/// Compute the type of the implicit object parameter for the given function,
9562/// if any. Returns None if there is no implicit object parameter, and a null
9563/// QualType if there is a 'matches anything' implicit object parameter.
9564static Optional<QualType> getImplicitObjectParamType(ASTContext &Context,
9565 const FunctionDecl *F) {
9566 if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F))
9567 return llvm::None;
9568
9569 auto *M = cast<CXXMethodDecl>(F);
9570 // Static member functions' object parameters match all types.
9571 if (M->isStatic())
9572 return QualType();
9573
9574 QualType T = M->getThisObjectType();
9575 if (M->getRefQualifier() == RQ_RValue)
9576 return Context.getRValueReferenceType(T);
9577 return Context.getLValueReferenceType(T);
9578}
9579
9580static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1,
9581 const FunctionDecl *F2, unsigned NumParams) {
9582 if (declaresSameEntity(F1, F2))
9583 return true;
9584
9585 auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) {
9586 if (First) {
9587 if (Optional<QualType> T = getImplicitObjectParamType(Context, F))
9588 return *T;
9589 }
9590 assert(I < F->getNumParams())((I < F->getNumParams()) ? static_cast<void> (0) :
__assert_fail ("I < F->getNumParams()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 9590, __PRETTY_FUNCTION__))
;
9591 return F->getParamDecl(I++)->getType();
9592 };
9593
9594 unsigned I1 = 0, I2 = 0;
9595 for (unsigned I = 0; I != NumParams; ++I) {
9596 QualType T1 = NextParam(F1, I1, I == 0);
9597 QualType T2 = NextParam(F2, I2, I == 0);
9598 if (!T1.isNull() && !T1.isNull() && !Context.hasSameUnqualifiedType(T1, T2))
9599 return false;
9600 }
9601 return true;
9602}
9603
9604/// isBetterOverloadCandidate - Determines whether the first overload
9605/// candidate is a better candidate than the second (C++ 13.3.3p1).
9606bool clang::isBetterOverloadCandidate(
9607 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
9608 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
9609 // Define viable functions to be better candidates than non-viable
9610 // functions.
9611 if (!Cand2.Viable)
9612 return Cand1.Viable;
9613 else if (!Cand1.Viable)
9614 return false;
9615
9616 // C++ [over.match.best]p1:
9617 //
9618 // -- if F is a static member function, ICS1(F) is defined such
9619 // that ICS1(F) is neither better nor worse than ICS1(G) for
9620 // any function G, and, symmetrically, ICS1(G) is neither
9621 // better nor worse than ICS1(F).
9622 unsigned StartArg = 0;
9623 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
9624 StartArg = 1;
9625
9626 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
9627 // We don't allow incompatible pointer conversions in C++.
9628 if (!S.getLangOpts().CPlusPlus)
9629 return ICS.isStandard() &&
9630 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
9631
9632 // The only ill-formed conversion we allow in C++ is the string literal to
9633 // char* conversion, which is only considered ill-formed after C++11.
9634 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
9635 hasDeprecatedStringLiteralToCharPtrConversion(ICS);
9636 };
9637
9638 // Define functions that don't require ill-formed conversions for a given
9639 // argument to be better candidates than functions that do.
9640 unsigned NumArgs = Cand1.Conversions.size();
9641 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch")((Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"
) ? static_cast<void> (0) : __assert_fail ("Cand2.Conversions.size() == NumArgs && \"Overload candidate mismatch\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 9641, __PRETTY_FUNCTION__))
;
9642 bool HasBetterConversion = false;
9643 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9644 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
9645 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
9646 if (Cand1Bad != Cand2Bad) {
9647 if (Cand1Bad)
9648 return false;
9649 HasBetterConversion = true;
9650 }
9651 }
9652
9653 if (HasBetterConversion)
9654 return true;
9655
9656 // C++ [over.match.best]p1:
9657 // A viable function F1 is defined to be a better function than another
9658 // viable function F2 if for all arguments i, ICSi(F1) is not a worse
9659 // conversion sequence than ICSi(F2), and then...
9660 bool HasWorseConversion = false;
9661 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
9662 switch (CompareImplicitConversionSequences(S, Loc,
9663 Cand1.Conversions[ArgIdx],
9664 Cand2.Conversions[ArgIdx])) {
9665 case ImplicitConversionSequence::Better:
9666 // Cand1 has a better conversion sequence.
9667 HasBetterConversion = true;
9668 break;
9669
9670 case ImplicitConversionSequence::Worse:
9671 if (Cand1.Function && Cand2.Function &&
9672 Cand1.isReversed() != Cand2.isReversed() &&
9673 haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function,
9674 NumArgs)) {
9675 // Work around large-scale breakage caused by considering reversed
9676 // forms of operator== in C++20:
9677 //
9678 // When comparing a function against a reversed function with the same
9679 // parameter types, if we have a better conversion for one argument and
9680 // a worse conversion for the other, the implicit conversion sequences
9681 // are treated as being equally good.
9682 //
9683 // This prevents a comparison function from being considered ambiguous
9684 // with a reversed form that is written in the same way.
9685 //
9686 // We diagnose this as an extension from CreateOverloadedBinOp.
9687 HasWorseConversion = true;
9688 break;
9689 }
9690
9691 // Cand1 can't be better than Cand2.
9692 return false;
9693
9694 case ImplicitConversionSequence::Indistinguishable:
9695 // Do nothing.
9696 break;
9697 }
9698 }
9699
9700 // -- for some argument j, ICSj(F1) is a better conversion sequence than
9701 // ICSj(F2), or, if not that,
9702 if (HasBetterConversion && !HasWorseConversion)
9703 return true;
9704
9705 // -- the context is an initialization by user-defined conversion
9706 // (see 8.5, 13.3.1.5) and the standard conversion sequence
9707 // from the return type of F1 to the destination type (i.e.,
9708 // the type of the entity being initialized) is a better
9709 // conversion sequence than the standard conversion sequence
9710 // from the return type of F2 to the destination type.
9711 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
9712 Cand1.Function && Cand2.Function &&
9713 isa<CXXConversionDecl>(Cand1.Function) &&
9714 isa<CXXConversionDecl>(Cand2.Function)) {
9715 // First check whether we prefer one of the conversion functions over the
9716 // other. This only distinguishes the results in non-standard, extension
9717 // cases such as the conversion from a lambda closure type to a function
9718 // pointer or block.
9719 ImplicitConversionSequence::CompareKind Result =
9720 compareConversionFunctions(S, Cand1.Function, Cand2.Function);
9721 if (Result == ImplicitConversionSequence::Indistinguishable)
9722 Result = CompareStandardConversionSequences(S, Loc,
9723 Cand1.FinalConversion,
9724 Cand2.FinalConversion);
9725
9726 if (Result != ImplicitConversionSequence::Indistinguishable)
9727 return Result == ImplicitConversionSequence::Better;
9728
9729 // FIXME: Compare kind of reference binding if conversion functions
9730 // convert to a reference type used in direct reference binding, per
9731 // C++14 [over.match.best]p1 section 2 bullet 3.
9732 }
9733
9734 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
9735 // as combined with the resolution to CWG issue 243.
9736 //
9737 // When the context is initialization by constructor ([over.match.ctor] or
9738 // either phase of [over.match.list]), a constructor is preferred over
9739 // a conversion function.
9740 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
9741 Cand1.Function && Cand2.Function &&
9742 isa<CXXConstructorDecl>(Cand1.Function) !=
9743 isa<CXXConstructorDecl>(Cand2.Function))
9744 return isa<CXXConstructorDecl>(Cand1.Function);
9745
9746 // -- F1 is a non-template function and F2 is a function template
9747 // specialization, or, if not that,
9748 bool Cand1IsSpecialization = Cand1.Function &&
9749 Cand1.Function->getPrimaryTemplate();
9750 bool Cand2IsSpecialization = Cand2.Function &&
9751 Cand2.Function->getPrimaryTemplate();
9752 if (Cand1IsSpecialization != Cand2IsSpecialization)
9753 return Cand2IsSpecialization;
9754
9755 // -- F1 and F2 are function template specializations, and the function
9756 // template for F1 is more specialized than the template for F2
9757 // according to the partial ordering rules described in 14.5.5.2, or,
9758 // if not that,
9759 if (Cand1IsSpecialization && Cand2IsSpecialization) {
9760 if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate(
9761 Cand1.Function->getPrimaryTemplate(),
9762 Cand2.Function->getPrimaryTemplate(), Loc,
9763 isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion
9764 : TPOC_Call,
9765 Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments,
9766 Cand1.isReversed() ^ Cand2.isReversed()))
9767 return BetterTemplate == Cand1.Function->getPrimaryTemplate();
9768 }
9769
9770 // -— F1 and F2 are non-template functions with the same
9771 // parameter-type-lists, and F1 is more constrained than F2 [...],
9772 if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization &&
9773 !Cand2IsSpecialization && Cand1.Function->hasPrototype() &&
9774 Cand2.Function->hasPrototype()) {
9775 auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType());
9776 auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType());
9777 if (PT1->getNumParams() == PT2->getNumParams() &&
9778 PT1->isVariadic() == PT2->isVariadic() &&
9779 S.FunctionParamTypesAreEqual(PT1, PT2)) {
9780 Expr *RC1 = Cand1.Function->getTrailingRequiresClause();
9781 Expr *RC2 = Cand2.Function->getTrailingRequiresClause();
9782 if (RC1 && RC2) {
9783 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
9784 if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function,
9785 {RC2}, AtLeastAsConstrained1) ||
9786 S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function,
9787 {RC1}, AtLeastAsConstrained2))
9788 return false;
9789 if (AtLeastAsConstrained1 != AtLeastAsConstrained2)
9790 return AtLeastAsConstrained1;
9791 } else if (RC1 || RC2) {
9792 return RC1 != nullptr;
9793 }
9794 }
9795 }
9796
9797 // -- F1 is a constructor for a class D, F2 is a constructor for a base
9798 // class B of D, and for all arguments the corresponding parameters of
9799 // F1 and F2 have the same type.
9800 // FIXME: Implement the "all parameters have the same type" check.
9801 bool Cand1IsInherited =
9802 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
9803 bool Cand2IsInherited =
9804 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
9805 if (Cand1IsInherited != Cand2IsInherited)
9806 return Cand2IsInherited;
9807 else if (Cand1IsInherited) {
9808 assert(Cand2IsInherited)((Cand2IsInherited) ? static_cast<void> (0) : __assert_fail
("Cand2IsInherited", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 9808, __PRETTY_FUNCTION__))
;
9809 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
9810 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
9811 if (Cand1Class->isDerivedFrom(Cand2Class))
9812 return true;
9813 if (Cand2Class->isDerivedFrom(Cand1Class))
9814 return false;
9815 // Inherited from sibling base classes: still ambiguous.
9816 }
9817
9818 // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
9819 // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
9820 // with reversed order of parameters and F1 is not
9821 //
9822 // We rank reversed + different operator as worse than just reversed, but
9823 // that comparison can never happen, because we only consider reversing for
9824 // the maximally-rewritten operator (== or <=>).
9825 if (Cand1.RewriteKind != Cand2.RewriteKind)
9826 return Cand1.RewriteKind < Cand2.RewriteKind;
9827
9828 // Check C++17 tie-breakers for deduction guides.
9829 {
9830 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
9831 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
9832 if (Guide1 && Guide2) {
9833 // -- F1 is generated from a deduction-guide and F2 is not
9834 if (Guide1->isImplicit() != Guide2->isImplicit())
9835 return Guide2->isImplicit();
9836
9837 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
9838 if (Guide1->isCopyDeductionCandidate())
9839 return true;
9840 }
9841 }
9842
9843 // Check for enable_if value-based overload resolution.
9844 if (Cand1.Function && Cand2.Function) {
9845 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
9846 if (Cmp != Comparison::Equal)
9847 return Cmp == Comparison::Better;
9848 }
9849
9850 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
9851 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9852 return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
9853 S.IdentifyCUDAPreference(Caller, Cand2.Function);
9854 }
9855
9856 bool HasPS1 = Cand1.Function != nullptr &&
9857 functionHasPassObjectSizeParams(Cand1.Function);
9858 bool HasPS2 = Cand2.Function != nullptr &&
9859 functionHasPassObjectSizeParams(Cand2.Function);
9860 if (HasPS1 != HasPS2 && HasPS1)
9861 return true;
9862
9863 Comparison MV = isBetterMultiversionCandidate(Cand1, Cand2);
9864 return MV == Comparison::Better;
9865}
9866
9867/// Determine whether two declarations are "equivalent" for the purposes of
9868/// name lookup and overload resolution. This applies when the same internal/no
9869/// linkage entity is defined by two modules (probably by textually including
9870/// the same header). In such a case, we don't consider the declarations to
9871/// declare the same entity, but we also don't want lookups with both
9872/// declarations visible to be ambiguous in some cases (this happens when using
9873/// a modularized libstdc++).
9874bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
9875 const NamedDecl *B) {
9876 auto *VA = dyn_cast_or_null<ValueDecl>(A);
9877 auto *VB = dyn_cast_or_null<ValueDecl>(B);
9878 if (!VA || !VB)
9879 return false;
9880
9881 // The declarations must be declaring the same name as an internal linkage
9882 // entity in different modules.
9883 if (!VA->getDeclContext()->getRedeclContext()->Equals(
9884 VB->getDeclContext()->getRedeclContext()) ||
9885 getOwningModule(VA) == getOwningModule(VB) ||
9886 VA->isExternallyVisible() || VB->isExternallyVisible())
9887 return false;
9888
9889 // Check that the declarations appear to be equivalent.
9890 //
9891 // FIXME: Checking the type isn't really enough to resolve the ambiguity.
9892 // For constants and functions, we should check the initializer or body is
9893 // the same. For non-constant variables, we shouldn't allow it at all.
9894 if (Context.hasSameType(VA->getType(), VB->getType()))
9895 return true;
9896
9897 // Enum constants within unnamed enumerations will have different types, but
9898 // may still be similar enough to be interchangeable for our purposes.
9899 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
9900 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
9901 // Only handle anonymous enums. If the enumerations were named and
9902 // equivalent, they would have been merged to the same type.
9903 auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
9904 auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
9905 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
9906 !Context.hasSameType(EnumA->getIntegerType(),
9907 EnumB->getIntegerType()))
9908 return false;
9909 // Allow this only if the value is the same for both enumerators.
9910 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
9911 }
9912 }
9913
9914 // Nothing else is sufficiently similar.
9915 return false;
9916}
9917
9918void Sema::diagnoseEquivalentInternalLinkageDeclarations(
9919 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
9920 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
9921
9922 Module *M = getOwningModule(D);
9923 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
9924 << !M << (M ? M->getFullModuleName() : "");
9925
9926 for (auto *E : Equiv) {
9927 Module *M = getOwningModule(E);
9928 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
9929 << !M << (M ? M->getFullModuleName() : "");
9930 }
9931}
9932
9933/// Computes the best viable function (C++ 13.3.3)
9934/// within an overload candidate set.
9935///
9936/// \param Loc The location of the function name (or operator symbol) for
9937/// which overload resolution occurs.
9938///
9939/// \param Best If overload resolution was successful or found a deleted
9940/// function, \p Best points to the candidate function found.
9941///
9942/// \returns The result of overload resolution.
9943OverloadingResult
9944OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
9945 iterator &Best) {
9946 llvm::SmallVector<OverloadCandidate *, 16> Candidates;
9947 std::transform(begin(), end(), std::back_inserter(Candidates),
9948 [](OverloadCandidate &Cand) { return &Cand; });
9949
9950 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
9951 // are accepted by both clang and NVCC. However, during a particular
9952 // compilation mode only one call variant is viable. We need to
9953 // exclude non-viable overload candidates from consideration based
9954 // only on their host/device attributes. Specifically, if one
9955 // candidate call is WrongSide and the other is SameSide, we ignore
9956 // the WrongSide candidate.
9957 if (S.getLangOpts().CUDA) {
9958 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
9959 bool ContainsSameSideCandidate =
9960 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
9961 // Check viable function only.
9962 return Cand->Viable && Cand->Function &&
9963 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9964 Sema::CFP_SameSide;
9965 });
9966 if (ContainsSameSideCandidate) {
9967 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
9968 // Check viable function only to avoid unnecessary data copying/moving.
9969 return Cand->Viable && Cand->Function &&
9970 S.IdentifyCUDAPreference(Caller, Cand->Function) ==
9971 Sema::CFP_WrongSide;
9972 };
9973 llvm::erase_if(Candidates, IsWrongSideCandidate);
9974 }
9975 }
9976
9977 // Find the best viable function.
9978 Best = end();
9979 for (auto *Cand : Candidates) {
9980 Cand->Best = false;
9981 if (Cand->Viable)
9982 if (Best == end() ||
9983 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
9984 Best = Cand;
9985 }
9986
9987 // If we didn't find any viable functions, abort.
9988 if (Best == end())
9989 return OR_No_Viable_Function;
9990
9991 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
9992
9993 llvm::SmallVector<OverloadCandidate*, 4> PendingBest;
9994 PendingBest.push_back(&*Best);
9995 Best->Best = true;
9996
9997 // Make sure that this function is better than every other viable
9998 // function. If not, we have an ambiguity.
9999 while (!PendingBest.empty()) {
10000 auto *Curr = PendingBest.pop_back_val();
10001 for (auto *Cand : Candidates) {
10002 if (Cand->Viable && !Cand->Best &&
10003 !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) {
10004 PendingBest.push_back(Cand);
10005 Cand->Best = true;
10006
10007 if (S.isEquivalentInternalLinkageDeclaration(Cand->Function,
10008 Curr->Function))
10009 EquivalentCands.push_back(Cand->Function);
10010 else
10011 Best = end();
10012 }
10013 }
10014 }
10015
10016 // If we found more than one best candidate, this is ambiguous.
10017 if (Best == end())
10018 return OR_Ambiguous;
10019
10020 // Best is the best viable function.
10021 if (Best->Function && Best->Function->isDeleted())
10022 return OR_Deleted;
10023
10024 if (!EquivalentCands.empty())
10025 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
10026 EquivalentCands);
10027
10028 return OR_Success;
10029}
10030
10031namespace {
10032
10033enum OverloadCandidateKind {
10034 oc_function,
10035 oc_method,
10036 oc_reversed_binary_operator,
10037 oc_constructor,
10038 oc_implicit_default_constructor,
10039 oc_implicit_copy_constructor,
10040 oc_implicit_move_constructor,
10041 oc_implicit_copy_assignment,
10042 oc_implicit_move_assignment,
10043 oc_implicit_equality_comparison,
10044 oc_inherited_constructor
10045};
10046
10047enum OverloadCandidateSelect {
10048 ocs_non_template,
10049 ocs_template,
10050 ocs_described_template,
10051};
10052
10053static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
10054ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
10055 OverloadCandidateRewriteKind CRK,
10056 std::string &Description) {
10057
10058 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
10059 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
10060 isTemplate = true;
10061 Description = S.getTemplateArgumentBindingsText(
10062 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
10063 }
10064
10065 OverloadCandidateSelect Select = [&]() {
10066 if (!Description.empty())
10067 return ocs_described_template;
10068 return isTemplate ? ocs_template : ocs_non_template;
10069 }();
10070
10071 OverloadCandidateKind Kind = [&]() {
10072 if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual)
10073 return oc_implicit_equality_comparison;
10074
10075 if (CRK & CRK_Reversed)
10076 return oc_reversed_binary_operator;
10077
10078 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
10079 if (!Ctor->isImplicit()) {
10080 if (isa<ConstructorUsingShadowDecl>(Found))
10081 return oc_inherited_constructor;
10082 else
10083 return oc_constructor;
10084 }
10085
10086 if (Ctor->isDefaultConstructor())
10087 return oc_implicit_default_constructor;
10088
10089 if (Ctor->isMoveConstructor())
10090 return oc_implicit_move_constructor;
10091
10092 assert(Ctor->isCopyConstructor() &&((Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"
) ? static_cast<void> (0) : __assert_fail ("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10093, __PRETTY_FUNCTION__))
10093 "unexpected sort of implicit constructor")((Ctor->isCopyConstructor() && "unexpected sort of implicit constructor"
) ? static_cast<void> (0) : __assert_fail ("Ctor->isCopyConstructor() && \"unexpected sort of implicit constructor\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10093, __PRETTY_FUNCTION__))
;
10094 return oc_implicit_copy_constructor;
10095 }
10096
10097 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
10098 // This actually gets spelled 'candidate function' for now, but
10099 // it doesn't hurt to split it out.
10100 if (!Meth->isImplicit())
10101 return oc_method;
10102
10103 if (Meth->isMoveAssignmentOperator())
10104 return oc_implicit_move_assignment;
10105
10106 if (Meth->isCopyAssignmentOperator())
10107 return oc_implicit_copy_assignment;
10108
10109 assert(isa<CXXConversionDecl>(Meth) && "expected conversion")((isa<CXXConversionDecl>(Meth) && "expected conversion"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXConversionDecl>(Meth) && \"expected conversion\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10109, __PRETTY_FUNCTION__))
;
10110 return oc_method;
10111 }
10112
10113 return oc_function;
10114 }();
10115
10116 return std::make_pair(Kind, Select);
10117}
10118
10119void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
10120 // FIXME: It'd be nice to only emit a note once per using-decl per overload
10121 // set.
10122 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
10123 S.Diag(FoundDecl->getLocation(),
10124 diag::note_ovl_candidate_inherited_constructor)
10125 << Shadow->getNominatedBaseClass();
10126}
10127
10128} // end anonymous namespace
10129
10130static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
10131 const FunctionDecl *FD) {
10132 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
10133 bool AlwaysTrue;
10134 if (EnableIf->getCond()->isValueDependent() ||
10135 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
10136 return false;
10137 if (!AlwaysTrue)
10138 return false;
10139 }
10140 return true;
10141}
10142
10143/// Returns true if we can take the address of the function.
10144///
10145/// \param Complain - If true, we'll emit a diagnostic
10146/// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
10147/// we in overload resolution?
10148/// \param Loc - The location of the statement we're complaining about. Ignored
10149/// if we're not complaining, or if we're in overload resolution.
10150static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
10151 bool Complain,
10152 bool InOverloadResolution,
10153 SourceLocation Loc) {
10154 if (!isFunctionAlwaysEnabled(S.Context, FD)) {
10155 if (Complain) {
10156 if (InOverloadResolution)
10157 S.Diag(FD->getBeginLoc(),
10158 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
10159 else
10160 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
10161 }
10162 return false;
10163 }
10164
10165 if (FD->getTrailingRequiresClause()) {
10166 ConstraintSatisfaction Satisfaction;
10167 if (S.CheckFunctionConstraints(FD, Satisfaction, Loc))
10168 return false;
10169 if (!Satisfaction.IsSatisfied) {
10170 if (Complain) {
10171 if (InOverloadResolution)
10172 S.Diag(FD->getBeginLoc(),
10173 diag::note_ovl_candidate_unsatisfied_constraints);
10174 else
10175 S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied)
10176 << FD;
10177 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
10178 }
10179 return false;
10180 }
10181 }
10182
10183 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
10184 return P->hasAttr<PassObjectSizeAttr>();
10185 });
10186 if (I == FD->param_end())
10187 return true;
10188
10189 if (Complain) {
10190 // Add one to ParamNo because it's user-facing
10191 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
10192 if (InOverloadResolution)
10193 S.Diag(FD->getLocation(),
10194 diag::note_ovl_candidate_has_pass_object_size_params)
10195 << ParamNo;
10196 else
10197 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
10198 << FD << ParamNo;
10199 }
10200 return false;
10201}
10202
10203static bool checkAddressOfCandidateIsAvailable(Sema &S,
10204 const FunctionDecl *FD) {
10205 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
10206 /*InOverloadResolution=*/true,
10207 /*Loc=*/SourceLocation());
10208}
10209
10210bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
10211 bool Complain,
10212 SourceLocation Loc) {
10213 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
10214 /*InOverloadResolution=*/false,
10215 Loc);
10216}
10217
10218// Notes the location of an overload candidate.
10219void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
10220 OverloadCandidateRewriteKind RewriteKind,
10221 QualType DestType, bool TakingAddress) {
10222 if (TakingAddress
8.1
'TakingAddress' is true
8.1
'TakingAddress' is true
&& !checkAddressOfCandidateIsAvailable(*this, Fn))
9
Assuming the condition is false
10
Taking false branch
10223 return;
10224 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
11
Assuming the condition is false
10225 !Fn->getAttr<TargetAttr>()->isDefaultVersion())
10226 return;
10227 if (isa<CXXConversionDecl>(Fn) &&
12
Assuming 'Fn' is a 'CXXConversionDecl'
19
Taking true branch
10228 cast<CXXRecordDecl>(Fn->getParent())->isLambda()) {
13
The object is a 'CXXRecordDecl'
14
Calling 'CXXRecordDecl::isLambda'
17
Returning from 'CXXRecordDecl::isLambda'
18
Assuming the condition is true
10229 // Don't print candidates other than the one that matches the calling
10230 // convention of the call operator, since that is guaranteed to exist.
10231 const auto *RD = cast<CXXRecordDecl>(Fn->getParent());
20
The object is a 'CXXRecordDecl'
10232 CXXMethodDecl *CallOp = RD->getLambdaCallOperator();
10233 CallingConv CallOpCC =
10234 CallOp->getType()->getAs<FunctionType>()->getCallConv();
21
Assuming the object is not a 'FunctionType'
22
Called C++ object pointer is null
10235 CXXConversionDecl *ConvD = cast<CXXConversionDecl>(Fn);
10236 QualType ConvRTy = ConvD->getType()->getAs<FunctionType>()->getReturnType();
10237 CallingConv ConvToCC =
10238 ConvRTy->getPointeeType()->getAs<FunctionType>()->getCallConv();
10239
10240 if (ConvToCC != CallOpCC)
10241 return;
10242 }
10243
10244 std::string FnDesc;
10245 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
10246 ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
10247 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
10248 << (unsigned)KSPair.first << (unsigned)KSPair.second
10249 << Fn << FnDesc;
10250
10251 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
10252 Diag(Fn->getLocation(), PD);
10253 MaybeEmitInheritedConstructorNote(*this, Found);
10254}
10255
10256static void
10257MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) {
10258 // Perhaps the ambiguity was caused by two atomic constraints that are
10259 // 'identical' but not equivalent:
10260 //
10261 // void foo() requires (sizeof(T) > 4) { } // #1
10262 // void foo() requires (sizeof(T) > 4) && T::value { } // #2
10263 //
10264 // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause
10265 // #2 to subsume #1, but these constraint are not considered equivalent
10266 // according to the subsumption rules because they are not the same
10267 // source-level construct. This behavior is quite confusing and we should try
10268 // to help the user figure out what happened.
10269
10270 SmallVector<const Expr *, 3> FirstAC, SecondAC;
10271 FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr;
10272 for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10273 if (!I->Function)
10274 continue;
10275 SmallVector<const Expr *, 3> AC;
10276 if (auto *Template = I->Function->getPrimaryTemplate())
10277 Template->getAssociatedConstraints(AC);
10278 else
10279 I->Function->getAssociatedConstraints(AC);
10280 if (AC.empty())
10281 continue;
10282 if (FirstCand == nullptr) {
10283 FirstCand = I->Function;
10284 FirstAC = AC;
10285 } else if (SecondCand == nullptr) {
10286 SecondCand = I->Function;
10287 SecondAC = AC;
10288 } else {
10289 // We have more than one pair of constrained functions - this check is
10290 // expensive and we'd rather not try to diagnose it.
10291 return;
10292 }
10293 }
10294 if (!SecondCand)
10295 return;
10296 // The diagnostic can only happen if there are associated constraints on
10297 // both sides (there needs to be some identical atomic constraint).
10298 if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC,
10299 SecondCand, SecondAC))
10300 // Just show the user one diagnostic, they'll probably figure it out
10301 // from here.
10302 return;
10303}
10304
10305// Notes the location of all overload candidates designated through
10306// OverloadedExpr
10307void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
10308 bool TakingAddress) {
10309 assert(OverloadedExpr->getType() == Context.OverloadTy)((OverloadedExpr->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("OverloadedExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10309, __PRETTY_FUNCTION__))
;
4
'?' condition is true
10310
10311 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
10312 OverloadExpr *OvlExpr = Ovl.Expression;
10313
10314 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5
Loop condition is true. Entering loop body
10315 IEnd = OvlExpr->decls_end();
10316 I != IEnd; ++I) {
10317 if (FunctionTemplateDecl *FunTmpl
6.1
'FunTmpl' is non-null
6.1
'FunTmpl' is non-null
=
7
Taking true branch
10318 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
6
Assuming the object is a 'FunctionTemplateDecl'
10319 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
8
Calling 'Sema::NoteOverloadCandidate'
10320 TakingAddress);
10321 } else if (FunctionDecl *Fun
10322 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
10323 NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
10324 }
10325 }
10326}
10327
10328/// Diagnoses an ambiguous conversion. The partial diagnostic is the
10329/// "lead" diagnostic; it will be given two arguments, the source and
10330/// target types of the conversion.
10331void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
10332 Sema &S,
10333 SourceLocation CaretLoc,
10334 const PartialDiagnostic &PDiag) const {
10335 S.Diag(CaretLoc, PDiag)
10336 << Ambiguous.getFromType() << Ambiguous.getToType();
10337 // FIXME: The note limiting machinery is borrowed from
10338 // OverloadCandidateSet::NoteCandidates; there's an opportunity for
10339 // refactoring here.
10340 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10341 unsigned CandsShown = 0;
10342 AmbiguousConversionSequence::const_iterator I, E;
10343 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
10344 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
10345 break;
10346 ++CandsShown;
10347 S.NoteOverloadCandidate(I->first, I->second);
10348 }
10349 if (I != E)
10350 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
10351}
10352
10353static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
10354 unsigned I, bool TakingCandidateAddress) {
10355 const ImplicitConversionSequence &Conv = Cand->Conversions[I];
10356 assert(Conv.isBad())((Conv.isBad()) ? static_cast<void> (0) : __assert_fail
("Conv.isBad()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10356, __PRETTY_FUNCTION__))
;
10357 assert(Cand->Function && "for now, candidate must be a function")((Cand->Function && "for now, candidate must be a function"
) ? static_cast<void> (0) : __assert_fail ("Cand->Function && \"for now, candidate must be a function\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10357, __PRETTY_FUNCTION__))
;
10358 FunctionDecl *Fn = Cand->Function;
10359
10360 // There's a conversion slot for the object argument if this is a
10361 // non-constructor method. Note that 'I' corresponds the
10362 // conversion-slot index.
10363 bool isObjectArgument = false;
10364 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
10365 if (I == 0)
10366 isObjectArgument = true;
10367 else
10368 I--;
10369 }
10370
10371 std::string FnDesc;
10372 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10373 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(),
10374 FnDesc);
10375
10376 Expr *FromExpr = Conv.Bad.FromExpr;
10377 QualType FromTy = Conv.Bad.getFromType();
10378 QualType ToTy = Conv.Bad.getToType();
10379
10380 if (FromTy == S.Context.OverloadTy) {
10381 assert(FromExpr && "overload set argument came from implicit argument?")((FromExpr && "overload set argument came from implicit argument?"
) ? static_cast<void> (0) : __assert_fail ("FromExpr && \"overload set argument came from implicit argument?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10381, __PRETTY_FUNCTION__))
;
10382 Expr *E = FromExpr->IgnoreParens();
10383 if (isa<UnaryOperator>(E))
10384 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
10385 DeclarationName Name = cast<OverloadExpr>(E)->getName();
10386
10387 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
10388 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10389 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
10390 << Name << I + 1;
10391 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10392 return;
10393 }
10394
10395 // Do some hand-waving analysis to see if the non-viability is due
10396 // to a qualifier mismatch.
10397 CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
10398 CanQualType CToTy = S.Context.getCanonicalType(ToTy);
10399 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
10400 CToTy = RT->getPointeeType();
10401 else {
10402 // TODO: detect and diagnose the full richness of const mismatches.
10403 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
10404 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
10405 CFromTy = FromPT->getPointeeType();
10406 CToTy = ToPT->getPointeeType();
10407 }
10408 }
10409
10410 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
10411 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
10412 Qualifiers FromQs = CFromTy.getQualifiers();
10413 Qualifiers ToQs = CToTy.getQualifiers();
10414
10415 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
10416 if (isObjectArgument)
10417 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this)
10418 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10419 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10420 << FromQs.getAddressSpace() << ToQs.getAddressSpace();
10421 else
10422 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
10423 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10424 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10425 << FromQs.getAddressSpace() << ToQs.getAddressSpace()
10426 << ToTy->isReferenceType() << I + 1;
10427 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10428 return;
10429 }
10430
10431 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10432 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
10433 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10434 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10435 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
10436 << (unsigned)isObjectArgument << I + 1;
10437 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10438 return;
10439 }
10440
10441 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
10442 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
10443 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10444 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10445 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
10446 << (unsigned)isObjectArgument << I + 1;
10447 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10448 return;
10449 }
10450
10451 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
10452 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
10453 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10454 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10455 << FromQs.hasUnaligned() << I + 1;
10456 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10457 return;
10458 }
10459
10460 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
10461 assert(CVR && "unexpected qualifiers mismatch")((CVR && "unexpected qualifiers mismatch") ? static_cast
<void> (0) : __assert_fail ("CVR && \"unexpected qualifiers mismatch\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10461, __PRETTY_FUNCTION__))
;
10462
10463 if (isObjectArgument) {
10464 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
10465 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10466 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10467 << (CVR - 1);
10468 } else {
10469 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
10470 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10471 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10472 << (CVR - 1) << I + 1;
10473 }
10474 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10475 return;
10476 }
10477
10478 // Special diagnostic for failure to convert an initializer list, since
10479 // telling the user that it has type void is not useful.
10480 if (FromExpr && isa<InitListExpr>(FromExpr)) {
10481 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
10482 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10483 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10484 << ToTy << (unsigned)isObjectArgument << I + 1;
10485 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10486 return;
10487 }
10488
10489 // Diagnose references or pointers to incomplete types differently,
10490 // since it's far from impossible that the incompleteness triggered
10491 // the failure.
10492 QualType TempFromTy = FromTy.getNonReferenceType();
10493 if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
10494 TempFromTy = PTy->getPointeeType();
10495 if (TempFromTy->isIncompleteType()) {
10496 // Emit the generic diagnostic and, optionally, add the hints to it.
10497 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
10498 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10499 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10500 << ToTy << (unsigned)isObjectArgument << I + 1
10501 << (unsigned)(Cand->Fix.Kind);
10502
10503 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10504 return;
10505 }
10506
10507 // Diagnose base -> derived pointer conversions.
10508 unsigned BaseToDerivedConversion = 0;
10509 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
10510 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
10511 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10512 FromPtrTy->getPointeeType()) &&
10513 !FromPtrTy->getPointeeType()->isIncompleteType() &&
10514 !ToPtrTy->getPointeeType()->isIncompleteType() &&
10515 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
10516 FromPtrTy->getPointeeType()))
10517 BaseToDerivedConversion = 1;
10518 }
10519 } else if (const ObjCObjectPointerType *FromPtrTy
10520 = FromTy->getAs<ObjCObjectPointerType>()) {
10521 if (const ObjCObjectPointerType *ToPtrTy
10522 = ToTy->getAs<ObjCObjectPointerType>())
10523 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
10524 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
10525 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
10526 FromPtrTy->getPointeeType()) &&
10527 FromIface->isSuperClassOf(ToIface))
10528 BaseToDerivedConversion = 2;
10529 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
10530 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
10531 !FromTy->isIncompleteType() &&
10532 !ToRefTy->getPointeeType()->isIncompleteType() &&
10533 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
10534 BaseToDerivedConversion = 3;
10535 } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
10536 ToTy.getNonReferenceType().getCanonicalType() ==
10537 FromTy.getNonReferenceType().getCanonicalType()) {
10538 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
10539 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10540 << (unsigned)isObjectArgument << I + 1
10541 << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
10542 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10543 return;
10544 }
10545 }
10546
10547 if (BaseToDerivedConversion) {
10548 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
10549 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10550 << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10551 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
10552 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10553 return;
10554 }
10555
10556 if (isa<ObjCObjectPointerType>(CFromTy) &&
10557 isa<PointerType>(CToTy)) {
10558 Qualifiers FromQs = CFromTy.getQualifiers();
10559 Qualifiers ToQs = CToTy.getQualifiers();
10560 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
10561 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
10562 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10563 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
10564 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
10565 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10566 return;
10567 }
10568 }
10569
10570 if (TakingCandidateAddress &&
10571 !checkAddressOfCandidateIsAvailable(S, Cand->Function))
10572 return;
10573
10574 // Emit the generic diagnostic and, optionally, add the hints to it.
10575 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
10576 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
10577 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
10578 << ToTy << (unsigned)isObjectArgument << I + 1
10579 << (unsigned)(Cand->Fix.Kind);
10580
10581 // If we can fix the conversion, suggest the FixIts.
10582 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
10583 HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
10584 FDiag << *HI;
10585 S.Diag(Fn->getLocation(), FDiag);
10586
10587 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
10588}
10589
10590/// Additional arity mismatch diagnosis specific to a function overload
10591/// candidates. This is not covered by the more general DiagnoseArityMismatch()
10592/// over a candidate in any candidate set.
10593static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
10594 unsigned NumArgs) {
10595 FunctionDecl *Fn = Cand->Function;
10596 unsigned MinParams = Fn->getMinRequiredArguments();
10597
10598 // With invalid overloaded operators, it's possible that we think we
10599 // have an arity mismatch when in fact it looks like we have the
10600 // right number of arguments, because only overloaded operators have
10601 // the weird behavior of overloading member and non-member functions.
10602 // Just don't report anything.
10603 if (Fn->isInvalidDecl() &&
10604 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
10605 return true;
10606
10607 if (NumArgs < MinParams) {
10608 assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10610, __PRETTY_FUNCTION__))
10609 (Cand->FailureKind == ovl_fail_bad_deduction &&(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10610, __PRETTY_FUNCTION__))
10610 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments))(((Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooFewArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_few_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10610, __PRETTY_FUNCTION__))
;
10611 } else {
10612 assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10614, __PRETTY_FUNCTION__))
10613 (Cand->FailureKind == ovl_fail_bad_deduction &&(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10614, __PRETTY_FUNCTION__))
10614 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments))(((Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand
->FailureKind == ovl_fail_bad_deduction && Cand->
DeductionFailure.Result == Sema::TDK_TooManyArguments)) ? static_cast
<void> (0) : __assert_fail ("(Cand->FailureKind == ovl_fail_too_many_arguments) || (Cand->FailureKind == ovl_fail_bad_deduction && Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10614, __PRETTY_FUNCTION__))
;
10615 }
10616
10617 return false;
10618}
10619
10620/// General arity mismatch diagnosis over a candidate in a candidate set.
10621static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
10622 unsigned NumFormalArgs) {
10623 assert(isa<FunctionDecl>(D) &&((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10626, __PRETTY_FUNCTION__))
10624 "The templated declaration should at least be a function"((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10626, __PRETTY_FUNCTION__))
10625 " when diagnosing bad template argument deduction due to too many"((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10626, __PRETTY_FUNCTION__))
10626 " or too few arguments")((isa<FunctionDecl>(D) && "The templated declaration should at least be a function"
" when diagnosing bad template argument deduction due to too many"
" or too few arguments") ? static_cast<void> (0) : __assert_fail
("isa<FunctionDecl>(D) && \"The templated declaration should at least be a function\" \" when diagnosing bad template argument deduction due to too many\" \" or too few arguments\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10626, __PRETTY_FUNCTION__))
;
10627
10628 FunctionDecl *Fn = cast<FunctionDecl>(D);
10629
10630 // TODO: treat calls to a missing default constructor as a special case
10631 const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>();
10632 unsigned MinParams = Fn->getMinRequiredArguments();
10633
10634 // at least / at most / exactly
10635 unsigned mode, modeCount;
10636 if (NumFormalArgs < MinParams) {
10637 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
10638 FnTy->isTemplateVariadic())
10639 mode = 0; // "at least"
10640 else
10641 mode = 2; // "exactly"
10642 modeCount = MinParams;
10643 } else {
10644 if (MinParams != FnTy->getNumParams())
10645 mode = 1; // "at most"
10646 else
10647 mode = 2; // "exactly"
10648 modeCount = FnTy->getNumParams();
10649 }
10650
10651 std::string Description;
10652 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10653 ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
10654
10655 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
10656 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
10657 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10658 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
10659 else
10660 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
10661 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
10662 << Description << mode << modeCount << NumFormalArgs;
10663
10664 MaybeEmitInheritedConstructorNote(S, Found);
10665}
10666
10667/// Arity mismatch diagnosis specific to a function overload candidate.
10668static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
10669 unsigned NumFormalArgs) {
10670 if (!CheckArityMismatch(S, Cand, NumFormalArgs))
10671 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
10672}
10673
10674static TemplateDecl *getDescribedTemplate(Decl *Templated) {
10675 if (TemplateDecl *TD = Templated->getDescribedTemplate())
10676 return TD;
10677 llvm_unreachable("Unsupported: Getting the described template declaration"::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10678)
10678 " for bad deduction diagnosis")::llvm::llvm_unreachable_internal("Unsupported: Getting the described template declaration"
" for bad deduction diagnosis", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10678)
;
10679}
10680
10681/// Diagnose a failed template-argument deduction.
10682static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
10683 DeductionFailureInfo &DeductionFailure,
10684 unsigned NumArgs,
10685 bool TakingCandidateAddress) {
10686 TemplateParameter Param = DeductionFailure.getTemplateParameter();
10687 NamedDecl *ParamD;
10688 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
10689 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
10690 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
10691 switch (DeductionFailure.Result) {
10692 case Sema::TDK_Success:
10693 llvm_unreachable("TDK_success while diagnosing bad deduction")::llvm::llvm_unreachable_internal("TDK_success while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10693)
;
10694
10695 case Sema::TDK_Incomplete: {
10696 assert(ParamD && "no parameter found for incomplete deduction result")((ParamD && "no parameter found for incomplete deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10696, __PRETTY_FUNCTION__))
;
10697 S.Diag(Templated->getLocation(),
10698 diag::note_ovl_candidate_incomplete_deduction)
10699 << ParamD->getDeclName();
10700 MaybeEmitInheritedConstructorNote(S, Found);
10701 return;
10702 }
10703
10704 case Sema::TDK_IncompletePack: {
10705 assert(ParamD && "no parameter found for incomplete deduction result")((ParamD && "no parameter found for incomplete deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for incomplete deduction result\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10705, __PRETTY_FUNCTION__))
;
10706 S.Diag(Templated->getLocation(),
10707 diag::note_ovl_candidate_incomplete_deduction_pack)
10708 << ParamD->getDeclName()
10709 << (DeductionFailure.getFirstArg()->pack_size() + 1)
10710 << *DeductionFailure.getFirstArg();
10711 MaybeEmitInheritedConstructorNote(S, Found);
10712 return;
10713 }
10714
10715 case Sema::TDK_Underqualified: {
10716 assert(ParamD && "no parameter found for bad qualifiers deduction result")((ParamD && "no parameter found for bad qualifiers deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for bad qualifiers deduction result\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10716, __PRETTY_FUNCTION__))
;
10717 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
10718
10719 QualType Param = DeductionFailure.getFirstArg()->getAsType();
10720
10721 // Param will have been canonicalized, but it should just be a
10722 // qualified version of ParamD, so move the qualifiers to that.
10723 QualifierCollector Qs;
10724 Qs.strip(Param);
10725 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
10726 assert(S.Context.hasSameType(Param, NonCanonParam))((S.Context.hasSameType(Param, NonCanonParam)) ? static_cast<
void> (0) : __assert_fail ("S.Context.hasSameType(Param, NonCanonParam)"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10726, __PRETTY_FUNCTION__))
;
10727
10728 // Arg has also been canonicalized, but there's nothing we can do
10729 // about that. It also doesn't matter as much, because it won't
10730 // have any template parameters in it (because deduction isn't
10731 // done on dependent types).
10732 QualType Arg = DeductionFailure.getSecondArg()->getAsType();
10733
10734 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
10735 << ParamD->getDeclName() << Arg << NonCanonParam;
10736 MaybeEmitInheritedConstructorNote(S, Found);
10737 return;
10738 }
10739
10740 case Sema::TDK_Inconsistent: {
10741 assert(ParamD && "no parameter found for inconsistent deduction result")((ParamD && "no parameter found for inconsistent deduction result"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for inconsistent deduction result\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10741, __PRETTY_FUNCTION__))
;
10742 int which = 0;
10743 if (isa<TemplateTypeParmDecl>(ParamD))
10744 which = 0;
10745 else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
10746 // Deduction might have failed because we deduced arguments of two
10747 // different types for a non-type template parameter.
10748 // FIXME: Use a different TDK value for this.
10749 QualType T1 =
10750 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
10751 QualType T2 =
10752 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
10753 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
10754 S.Diag(Templated->getLocation(),
10755 diag::note_ovl_candidate_inconsistent_deduction_types)
10756 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
10757 << *DeductionFailure.getSecondArg() << T2;
10758 MaybeEmitInheritedConstructorNote(S, Found);
10759 return;
10760 }
10761
10762 which = 1;
10763 } else {
10764 which = 2;
10765 }
10766
10767 // Tweak the diagnostic if the problem is that we deduced packs of
10768 // different arities. We'll print the actual packs anyway in case that
10769 // includes additional useful information.
10770 if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack &&
10771 DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack &&
10772 DeductionFailure.getFirstArg()->pack_size() !=
10773 DeductionFailure.getSecondArg()->pack_size()) {
10774 which = 3;
10775 }
10776
10777 S.Diag(Templated->getLocation(),
10778 diag::note_ovl_candidate_inconsistent_deduction)
10779 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
10780 << *DeductionFailure.getSecondArg();
10781 MaybeEmitInheritedConstructorNote(S, Found);
10782 return;
10783 }
10784
10785 case Sema::TDK_InvalidExplicitArguments:
10786 assert(ParamD && "no parameter found for invalid explicit arguments")((ParamD && "no parameter found for invalid explicit arguments"
) ? static_cast<void> (0) : __assert_fail ("ParamD && \"no parameter found for invalid explicit arguments\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 10786, __PRETTY_FUNCTION__))
;
10787 if (ParamD->getDeclName())
10788 S.Diag(Templated->getLocation(),
10789 diag::note_ovl_candidate_explicit_arg_mismatch_named)
10790 << ParamD->getDeclName();
10791 else {
10792 int index = 0;
10793 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
10794 index = TTP->getIndex();
10795 else if (NonTypeTemplateParmDecl *NTTP
10796 = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
10797 index = NTTP->getIndex();
10798 else
10799 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
10800 S.Diag(Templated->getLocation(),
10801 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
10802 << (index + 1);
10803 }
10804 MaybeEmitInheritedConstructorNote(S, Found);
10805 return;
10806
10807 case Sema::TDK_ConstraintsNotSatisfied: {
10808 // Format the template argument list into the argument string.
10809 SmallString<128> TemplateArgString;
10810 TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList();
10811 TemplateArgString = " ";
10812 TemplateArgString += S.getTemplateArgumentBindingsText(
10813 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10814 if (TemplateArgString.size() == 1)
10815 TemplateArgString.clear();
10816 S.Diag(Templated->getLocation(),
10817 diag::note_ovl_candidate_unsatisfied_constraints)
10818 << TemplateArgString;
10819
10820 S.DiagnoseUnsatisfiedConstraint(
10821 static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction);
10822 return;
10823 }
10824 case Sema::TDK_TooManyArguments:
10825 case Sema::TDK_TooFewArguments:
10826 DiagnoseArityMismatch(S, Found, Templated, NumArgs);
10827 return;
10828
10829 case Sema::TDK_InstantiationDepth:
10830 S.Diag(Templated->getLocation(),
10831 diag::note_ovl_candidate_instantiation_depth);
10832 MaybeEmitInheritedConstructorNote(S, Found);
10833 return;
10834
10835 case Sema::TDK_SubstitutionFailure: {
10836 // Format the template argument list into the argument string.
10837 SmallString<128> TemplateArgString;
10838 if (TemplateArgumentList *Args =
10839 DeductionFailure.getTemplateArgumentList()) {
10840 TemplateArgString = " ";
10841 TemplateArgString += S.getTemplateArgumentBindingsText(
10842 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10843 if (TemplateArgString.size() == 1)
10844 TemplateArgString.clear();
10845 }
10846
10847 // If this candidate was disabled by enable_if, say so.
10848 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
10849 if (PDiag && PDiag->second.getDiagID() ==
10850 diag::err_typename_nested_not_found_enable_if) {
10851 // FIXME: Use the source range of the condition, and the fully-qualified
10852 // name of the enable_if template. These are both present in PDiag.
10853 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
10854 << "'enable_if'" << TemplateArgString;
10855 return;
10856 }
10857
10858 // We found a specific requirement that disabled the enable_if.
10859 if (PDiag && PDiag->second.getDiagID() ==
10860 diag::err_typename_nested_not_found_requirement) {
10861 S.Diag(Templated->getLocation(),
10862 diag::note_ovl_candidate_disabled_by_requirement)
10863 << PDiag->second.getStringArg(0) << TemplateArgString;
10864 return;
10865 }
10866
10867 // Format the SFINAE diagnostic into the argument string.
10868 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
10869 // formatted message in another diagnostic.
10870 SmallString<128> SFINAEArgString;
10871 SourceRange R;
10872 if (PDiag) {
10873 SFINAEArgString = ": ";
10874 R = SourceRange(PDiag->first, PDiag->first);
10875 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
10876 }
10877
10878 S.Diag(Templated->getLocation(),
10879 diag::note_ovl_candidate_substitution_failure)
10880 << TemplateArgString << SFINAEArgString << R;
10881 MaybeEmitInheritedConstructorNote(S, Found);
10882 return;
10883 }
10884
10885 case Sema::TDK_DeducedMismatch:
10886 case Sema::TDK_DeducedMismatchNested: {
10887 // Format the template argument list into the argument string.
10888 SmallString<128> TemplateArgString;
10889 if (TemplateArgumentList *Args =
10890 DeductionFailure.getTemplateArgumentList()) {
10891 TemplateArgString = " ";
10892 TemplateArgString += S.getTemplateArgumentBindingsText(
10893 getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
10894 if (TemplateArgString.size() == 1)
10895 TemplateArgString.clear();
10896 }
10897
10898 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
10899 << (*DeductionFailure.getCallArgIndex() + 1)
10900 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
10901 << TemplateArgString
10902 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
10903 break;
10904 }
10905
10906 case Sema::TDK_NonDeducedMismatch: {
10907 // FIXME: Provide a source location to indicate what we couldn't match.
10908 TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
10909 TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
10910 if (FirstTA.getKind() == TemplateArgument::Template &&
10911 SecondTA.getKind() == TemplateArgument::Template) {
10912 TemplateName FirstTN = FirstTA.getAsTemplate();
10913 TemplateName SecondTN = SecondTA.getAsTemplate();
10914 if (FirstTN.getKind() == TemplateName::Template &&
10915 SecondTN.getKind() == TemplateName::Template) {
10916 if (FirstTN.getAsTemplateDecl()->getName() ==
10917 SecondTN.getAsTemplateDecl()->getName()) {
10918 // FIXME: This fixes a bad diagnostic where both templates are named
10919 // the same. This particular case is a bit difficult since:
10920 // 1) It is passed as a string to the diagnostic printer.
10921 // 2) The diagnostic printer only attempts to find a better
10922 // name for types, not decls.
10923 // Ideally, this should folded into the diagnostic printer.
10924 S.Diag(Templated->getLocation(),
10925 diag::note_ovl_candidate_non_deduced_mismatch_qualified)
10926 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
10927 return;
10928 }
10929 }
10930 }
10931
10932 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
10933 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
10934 return;
10935
10936 // FIXME: For generic lambda parameters, check if the function is a lambda
10937 // call operator, and if so, emit a prettier and more informative
10938 // diagnostic that mentions 'auto' and lambda in addition to
10939 // (or instead of?) the canonical template type parameters.
10940 S.Diag(Templated->getLocation(),
10941 diag::note_ovl_candidate_non_deduced_mismatch)
10942 << FirstTA << SecondTA;
10943 return;
10944 }
10945 // TODO: diagnose these individually, then kill off
10946 // note_ovl_candidate_bad_deduction, which is uselessly vague.
10947 case Sema::TDK_MiscellaneousDeductionFailure:
10948 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
10949 MaybeEmitInheritedConstructorNote(S, Found);
10950 return;
10951 case Sema::TDK_CUDATargetMismatch:
10952 S.Diag(Templated->getLocation(),
10953 diag::note_cuda_ovl_candidate_target_mismatch);
10954 return;
10955 }
10956}
10957
10958/// Diagnose a failed template-argument deduction, for function calls.
10959static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
10960 unsigned NumArgs,
10961 bool TakingCandidateAddress) {
10962 unsigned TDK = Cand->DeductionFailure.Result;
10963 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
10964 if (CheckArityMismatch(S, Cand, NumArgs))
10965 return;
10966 }
10967 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
10968 Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
10969}
10970
10971/// CUDA: diagnose an invalid call across targets.
10972static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
10973 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
10974 FunctionDecl *Callee = Cand->Function;
10975
10976 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
10977 CalleeTarget = S.IdentifyCUDATarget(Callee);
10978
10979 std::string FnDesc;
10980 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
10981 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee,
10982 Cand->getRewriteKind(), FnDesc);
10983
10984 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
10985 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
10986 << FnDesc /* Ignored */
10987 << CalleeTarget << CallerTarget;
10988
10989 // This could be an implicit constructor for which we could not infer the
10990 // target due to a collsion. Diagnose that case.
10991 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
10992 if (Meth != nullptr && Meth->isImplicit()) {
10993 CXXRecordDecl *ParentClass = Meth->getParent();
10994 Sema::CXXSpecialMember CSM;
10995
10996 switch (FnKindPair.first) {
10997 default:
10998 return;
10999 case oc_implicit_default_constructor:
11000 CSM = Sema::CXXDefaultConstructor;
11001 break;
11002 case oc_implicit_copy_constructor:
11003 CSM = Sema::CXXCopyConstructor;
11004 break;
11005 case oc_implicit_move_constructor:
11006 CSM = Sema::CXXMoveConstructor;
11007 break;
11008 case oc_implicit_copy_assignment:
11009 CSM = Sema::CXXCopyAssignment;
11010 break;
11011 case oc_implicit_move_assignment:
11012 CSM = Sema::CXXMoveAssignment;
11013 break;
11014 };
11015
11016 bool ConstRHS = false;
11017 if (Meth->getNumParams()) {
11018 if (const ReferenceType *RT =
11019 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
11020 ConstRHS = RT->getPointeeType().isConstQualified();
11021 }
11022 }
11023
11024 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
11025 /* ConstRHS */ ConstRHS,
11026 /* Diagnose */ true);
11027 }
11028}
11029
11030static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
11031 FunctionDecl *Callee = Cand->Function;
11032 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
11033
11034 S.Diag(Callee->getLocation(),
11035 diag::note_ovl_candidate_disabled_by_function_cond_attr)
11036 << Attr->getCond()->getSourceRange() << Attr->getMessage();
11037}
11038
11039static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
11040 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function);
11041 assert(ES.isExplicit() && "not an explicit candidate")((ES.isExplicit() && "not an explicit candidate") ? static_cast
<void> (0) : __assert_fail ("ES.isExplicit() && \"not an explicit candidate\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11041, __PRETTY_FUNCTION__))
;
11042
11043 unsigned Kind;
11044 switch (Cand->Function->getDeclKind()) {
11045 case Decl::Kind::CXXConstructor:
11046 Kind = 0;
11047 break;
11048 case Decl::Kind::CXXConversion:
11049 Kind = 1;
11050 break;
11051 case Decl::Kind::CXXDeductionGuide:
11052 Kind = Cand->Function->isImplicit() ? 0 : 2;
11053 break;
11054 default:
11055 llvm_unreachable("invalid Decl")::llvm::llvm_unreachable_internal("invalid Decl", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11055)
;
11056 }
11057
11058 // Note the location of the first (in-class) declaration; a redeclaration
11059 // (particularly an out-of-class definition) will typically lack the
11060 // 'explicit' specifier.
11061 // FIXME: This is probably a good thing to do for all 'candidate' notes.
11062 FunctionDecl *First = Cand->Function->getFirstDecl();
11063 if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern())
11064 First = Pattern->getFirstDecl();
11065
11066 S.Diag(First->getLocation(),
11067 diag::note_ovl_candidate_explicit)
11068 << Kind << (ES.getExpr() ? 1 : 0)
11069 << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange());
11070}
11071
11072static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
11073 FunctionDecl *Callee = Cand->Function;
11074
11075 S.Diag(Callee->getLocation(),
11076 diag::note_ovl_candidate_disabled_by_extension)
11077 << S.getOpenCLExtensionsFromDeclExtMap(Callee);
11078}
11079
11080/// Generates a 'note' diagnostic for an overload candidate. We've
11081/// already generated a primary error at the call site.
11082///
11083/// It really does need to be a single diagnostic with its caret
11084/// pointed at the candidate declaration. Yes, this creates some
11085/// major challenges of technical writing. Yes, this makes pointing
11086/// out problems with specific arguments quite awkward. It's still
11087/// better than generating twenty screens of text for every failed
11088/// overload.
11089///
11090/// It would be great to be able to express per-candidate problems
11091/// more richly for those diagnostic clients that cared, but we'd
11092/// still have to be just as careful with the default diagnostics.
11093/// \param CtorDestAS Addr space of object being constructed (for ctor
11094/// candidates only).
11095static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
11096 unsigned NumArgs,
11097 bool TakingCandidateAddress,
11098 LangAS CtorDestAS = LangAS::Default) {
11099 FunctionDecl *Fn = Cand->Function;
11100
11101 // Note deleted candidates, but only if they're viable.
11102 if (Cand->Viable) {
11103 if (Fn->isDeleted()) {
11104 std::string FnDesc;
11105 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11106 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11107 Cand->getRewriteKind(), FnDesc);
11108
11109 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
11110 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
11111 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
11112 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11113 return;
11114 }
11115
11116 // We don't really have anything else to say about viable candidates.
11117 S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11118 return;
11119 }
11120
11121 switch (Cand->FailureKind) {
11122 case ovl_fail_too_many_arguments:
11123 case ovl_fail_too_few_arguments:
11124 return DiagnoseArityMismatch(S, Cand, NumArgs);
11125
11126 case ovl_fail_bad_deduction:
11127 return DiagnoseBadDeduction(S, Cand, NumArgs,
11128 TakingCandidateAddress);
11129
11130 case ovl_fail_illegal_constructor: {
11131 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
11132 << (Fn->getPrimaryTemplate() ? 1 : 0);
11133 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11134 return;
11135 }
11136
11137 case ovl_fail_object_addrspace_mismatch: {
11138 Qualifiers QualsForPrinting;
11139 QualsForPrinting.setAddressSpace(CtorDestAS);
11140 S.Diag(Fn->getLocation(),
11141 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
11142 << QualsForPrinting;
11143 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11144 return;
11145 }
11146
11147 case ovl_fail_trivial_conversion:
11148 case ovl_fail_bad_final_conversion:
11149 case ovl_fail_final_conversion_not_exact:
11150 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11151
11152 case ovl_fail_bad_conversion: {
11153 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
11154 for (unsigned N = Cand->Conversions.size(); I != N; ++I)
11155 if (Cand->Conversions[I].isBad())
11156 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
11157
11158 // FIXME: this currently happens when we're called from SemaInit
11159 // when user-conversion overload fails. Figure out how to handle
11160 // those conditions and diagnose them well.
11161 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind());
11162 }
11163
11164 case ovl_fail_bad_target:
11165 return DiagnoseBadTarget(S, Cand);
11166
11167 case ovl_fail_enable_if:
11168 return DiagnoseFailedEnableIfAttr(S, Cand);
11169
11170 case ovl_fail_explicit:
11171 return DiagnoseFailedExplicitSpec(S, Cand);
11172
11173 case ovl_fail_ext_disabled:
11174 return DiagnoseOpenCLExtensionDisabled(S, Cand);
11175
11176 case ovl_fail_inhctor_slice:
11177 // It's generally not interesting to note copy/move constructors here.
11178 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
11179 return;
11180 S.Diag(Fn->getLocation(),
11181 diag::note_ovl_candidate_inherited_constructor_slice)
11182 << (Fn->getPrimaryTemplate() ? 1 : 0)
11183 << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
11184 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
11185 return;
11186
11187 case ovl_fail_addr_not_available: {
11188 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
11189 (void)Available;
11190 assert(!Available)((!Available) ? static_cast<void> (0) : __assert_fail (
"!Available", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11190, __PRETTY_FUNCTION__))
;
11191 break;
11192 }
11193 case ovl_non_default_multiversion_function:
11194 // Do nothing, these should simply be ignored.
11195 break;
11196
11197 case ovl_fail_constraints_not_satisfied: {
11198 std::string FnDesc;
11199 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
11200 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn,
11201 Cand->getRewriteKind(), FnDesc);
11202
11203 S.Diag(Fn->getLocation(),
11204 diag::note_ovl_candidate_constraints_not_satisfied)
11205 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
11206 << FnDesc /* Ignored */;
11207 ConstraintSatisfaction Satisfaction;
11208 if (S.CheckFunctionConstraints(Fn, Satisfaction))
11209 break;
11210 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
11211 }
11212 }
11213}
11214
11215static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
11216 // Desugar the type of the surrogate down to a function type,
11217 // retaining as many typedefs as possible while still showing
11218 // the function type (and, therefore, its parameter types).
11219 QualType FnType = Cand->Surrogate->getConversionType();
11220 bool isLValueReference = false;
11221 bool isRValueReference = false;
11222 bool isPointer = false;
11223 if (const LValueReferenceType *FnTypeRef =
11224 FnType->getAs<LValueReferenceType>()) {
11225 FnType = FnTypeRef->getPointeeType();
11226 isLValueReference = true;
11227 } else if (const RValueReferenceType *FnTypeRef =
11228 FnType->getAs<RValueReferenceType>()) {
11229 FnType = FnTypeRef->getPointeeType();
11230 isRValueReference = true;
11231 }
11232 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
11233 FnType = FnTypePtr->getPointeeType();
11234 isPointer = true;
11235 }
11236 // Desugar down to a function type.
11237 FnType = QualType(FnType->getAs<FunctionType>(), 0);
11238 // Reconstruct the pointer/reference as appropriate.
11239 if (isPointer) FnType = S.Context.getPointerType(FnType);
11240 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
11241 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
11242
11243 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
11244 << FnType;
11245}
11246
11247static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
11248 SourceLocation OpLoc,
11249 OverloadCandidate *Cand) {
11250 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary")((Cand->Conversions.size() <= 2 && "builtin operator is not binary"
) ? static_cast<void> (0) : __assert_fail ("Cand->Conversions.size() <= 2 && \"builtin operator is not binary\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11250, __PRETTY_FUNCTION__))
;
11251 std::string TypeStr("operator");
11252 TypeStr += Opc;
11253 TypeStr += "(";
11254 TypeStr += Cand->BuiltinParamTypes[0].getAsString();
11255 if (Cand->Conversions.size() == 1) {
11256 TypeStr += ")";
11257 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11258 } else {
11259 TypeStr += ", ";
11260 TypeStr += Cand->BuiltinParamTypes[1].getAsString();
11261 TypeStr += ")";
11262 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
11263 }
11264}
11265
11266static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
11267 OverloadCandidate *Cand) {
11268 for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
11269 if (ICS.isBad()) break; // all meaningless after first invalid
11270 if (!ICS.isAmbiguous()) continue;
11271
11272 ICS.DiagnoseAmbiguousConversion(
11273 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
11274 }
11275}
11276
11277static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
11278 if (Cand->Function)
11279 return Cand->Function->getLocation();
11280 if (Cand->IsSurrogate)
11281 return Cand->Surrogate->getLocation();
11282 return SourceLocation();
11283}
11284
11285static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
11286 switch ((Sema::TemplateDeductionResult)DFI.Result) {
11287 case Sema::TDK_Success:
11288 case Sema::TDK_NonDependentConversionFailure:
11289 llvm_unreachable("non-deduction failure while diagnosing bad deduction")::llvm::llvm_unreachable_internal("non-deduction failure while diagnosing bad deduction"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11289)
;
11290
11291 case Sema::TDK_Invalid:
11292 case Sema::TDK_Incomplete:
11293 case Sema::TDK_IncompletePack:
11294 return 1;
11295
11296 case Sema::TDK_Underqualified:
11297 case Sema::TDK_Inconsistent:
11298 return 2;
11299
11300 case Sema::TDK_SubstitutionFailure:
11301 case Sema::TDK_DeducedMismatch:
11302 case Sema::TDK_ConstraintsNotSatisfied:
11303 case Sema::TDK_DeducedMismatchNested:
11304 case Sema::TDK_NonDeducedMismatch:
11305 case Sema::TDK_MiscellaneousDeductionFailure:
11306 case Sema::TDK_CUDATargetMismatch:
11307 return 3;
11308
11309 case Sema::TDK_InstantiationDepth:
11310 return 4;
11311
11312 case Sema::TDK_InvalidExplicitArguments:
11313 return 5;
11314
11315 case Sema::TDK_TooManyArguments:
11316 case Sema::TDK_TooFewArguments:
11317 return 6;
11318 }
11319 llvm_unreachable("Unhandled deduction result")::llvm::llvm_unreachable_internal("Unhandled deduction result"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11319)
;
11320}
11321
11322namespace {
11323struct CompareOverloadCandidatesForDisplay {
11324 Sema &S;
11325 SourceLocation Loc;
11326 size_t NumArgs;
11327 OverloadCandidateSet::CandidateSetKind CSK;
11328
11329 CompareOverloadCandidatesForDisplay(
11330 Sema &S, SourceLocation Loc, size_t NArgs,
11331 OverloadCandidateSet::CandidateSetKind CSK)
11332 : S(S), NumArgs(NArgs), CSK(CSK) {}
11333
11334 OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const {
11335 // If there are too many or too few arguments, that's the high-order bit we
11336 // want to sort by, even if the immediate failure kind was something else.
11337 if (C->FailureKind == ovl_fail_too_many_arguments ||
11338 C->FailureKind == ovl_fail_too_few_arguments)
11339 return static_cast<OverloadFailureKind>(C->FailureKind);
11340
11341 if (C->Function) {
11342 if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic())
11343 return ovl_fail_too_many_arguments;
11344 if (NumArgs < C->Function->getMinRequiredArguments())
11345 return ovl_fail_too_few_arguments;
11346 }
11347
11348 return static_cast<OverloadFailureKind>(C->FailureKind);
11349 }
11350
11351 bool operator()(const OverloadCandidate *L,
11352 const OverloadCandidate *R) {
11353 // Fast-path this check.
11354 if (L == R) return false;
11355
11356 // Order first by viability.
11357 if (L->Viable) {
11358 if (!R->Viable) return true;
11359
11360 // TODO: introduce a tri-valued comparison for overload
11361 // candidates. Would be more worthwhile if we had a sort
11362 // that could exploit it.
11363 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
11364 return true;
11365 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
11366 return false;
11367 } else if (R->Viable)
11368 return false;
11369
11370 assert(L->Viable == R->Viable)((L->Viable == R->Viable) ? static_cast<void> (0)
: __assert_fail ("L->Viable == R->Viable", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11370, __PRETTY_FUNCTION__))
;
11371
11372 // Criteria by which we can sort non-viable candidates:
11373 if (!L->Viable) {
11374 OverloadFailureKind LFailureKind = EffectiveFailureKind(L);
11375 OverloadFailureKind RFailureKind = EffectiveFailureKind(R);
11376
11377 // 1. Arity mismatches come after other candidates.
11378 if (LFailureKind == ovl_fail_too_many_arguments ||
11379 LFailureKind == ovl_fail_too_few_arguments) {
11380 if (RFailureKind == ovl_fail_too_many_arguments ||
11381 RFailureKind == ovl_fail_too_few_arguments) {
11382 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
11383 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
11384 if (LDist == RDist) {
11385 if (LFailureKind == RFailureKind)
11386 // Sort non-surrogates before surrogates.
11387 return !L->IsSurrogate && R->IsSurrogate;
11388 // Sort candidates requiring fewer parameters than there were
11389 // arguments given after candidates requiring more parameters
11390 // than there were arguments given.
11391 return LFailureKind == ovl_fail_too_many_arguments;
11392 }
11393 return LDist < RDist;
11394 }
11395 return false;
11396 }
11397 if (RFailureKind == ovl_fail_too_many_arguments ||
11398 RFailureKind == ovl_fail_too_few_arguments)
11399 return true;
11400
11401 // 2. Bad conversions come first and are ordered by the number
11402 // of bad conversions and quality of good conversions.
11403 if (LFailureKind == ovl_fail_bad_conversion) {
11404 if (RFailureKind != ovl_fail_bad_conversion)
11405 return true;
11406
11407 // The conversion that can be fixed with a smaller number of changes,
11408 // comes first.
11409 unsigned numLFixes = L->Fix.NumConversionsFixed;
11410 unsigned numRFixes = R->Fix.NumConversionsFixed;
11411 numLFixes = (numLFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numLFixes;
11412 numRFixes = (numRFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numRFixes;
11413 if (numLFixes != numRFixes) {
11414 return numLFixes < numRFixes;
11415 }
11416
11417 // If there's any ordering between the defined conversions...
11418 // FIXME: this might not be transitive.
11419 assert(L->Conversions.size() == R->Conversions.size())((L->Conversions.size() == R->Conversions.size()) ? static_cast
<void> (0) : __assert_fail ("L->Conversions.size() == R->Conversions.size()"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11419, __PRETTY_FUNCTION__))
;
11420
11421 int leftBetter = 0;
11422 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
11423 for (unsigned E = L->Conversions.size(); I != E; ++I) {
11424 switch (CompareImplicitConversionSequences(S, Loc,
11425 L->Conversions[I],
11426 R->Conversions[I])) {
11427 case ImplicitConversionSequence::Better:
11428 leftBetter++;
11429 break;
11430
11431 case ImplicitConversionSequence::Worse:
11432 leftBetter--;
11433 break;
11434
11435 case ImplicitConversionSequence::Indistinguishable:
11436 break;
11437 }
11438 }
11439 if (leftBetter > 0) return true;
11440 if (leftBetter < 0) return false;
11441
11442 } else if (RFailureKind == ovl_fail_bad_conversion)
11443 return false;
11444
11445 if (LFailureKind == ovl_fail_bad_deduction) {
11446 if (RFailureKind != ovl_fail_bad_deduction)
11447 return true;
11448
11449 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11450 return RankDeductionFailure(L->DeductionFailure)
11451 < RankDeductionFailure(R->DeductionFailure);
11452 } else if (RFailureKind == ovl_fail_bad_deduction)
11453 return false;
11454
11455 // TODO: others?
11456 }
11457
11458 // Sort everything else by location.
11459 SourceLocation LLoc = GetLocationForCandidate(L);
11460 SourceLocation RLoc = GetLocationForCandidate(R);
11461
11462 // Put candidates without locations (e.g. builtins) at the end.
11463 if (LLoc.isInvalid()) return false;
11464 if (RLoc.isInvalid()) return true;
11465
11466 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11467 }
11468};
11469}
11470
11471/// CompleteNonViableCandidate - Normally, overload resolution only
11472/// computes up to the first bad conversion. Produces the FixIt set if
11473/// possible.
11474static void
11475CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
11476 ArrayRef<Expr *> Args,
11477 OverloadCandidateSet::CandidateSetKind CSK) {
11478 assert(!Cand->Viable)((!Cand->Viable) ? static_cast<void> (0) : __assert_fail
("!Cand->Viable", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11478, __PRETTY_FUNCTION__))
;
11479
11480 // Don't do anything on failures other than bad conversion.
11481 if (Cand->FailureKind != ovl_fail_bad_conversion)
11482 return;
11483
11484 // We only want the FixIts if all the arguments can be corrected.
11485 bool Unfixable = false;
11486 // Use a implicit copy initialization to check conversion fixes.
11487 Cand->Fix.setConversionChecker(TryCopyInitialization);
11488
11489 // Attempt to fix the bad conversion.
11490 unsigned ConvCount = Cand->Conversions.size();
11491 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
11492 ++ConvIdx) {
11493 assert(ConvIdx != ConvCount && "no bad conversion in candidate")((ConvIdx != ConvCount && "no bad conversion in candidate"
) ? static_cast<void> (0) : __assert_fail ("ConvIdx != ConvCount && \"no bad conversion in candidate\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11493, __PRETTY_FUNCTION__))
;
11494 if (Cand->Conversions[ConvIdx].isInitialized() &&
11495 Cand->Conversions[ConvIdx].isBad()) {
11496 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11497 break;
11498 }
11499 }
11500
11501 // FIXME: this should probably be preserved from the overload
11502 // operation somehow.
11503 bool SuppressUserConversions = false;
11504
11505 unsigned ConvIdx = 0;
11506 unsigned ArgIdx = 0;
11507 ArrayRef<QualType> ParamTypes;
11508 bool Reversed = Cand->isReversed();
11509
11510 if (Cand->IsSurrogate) {
11511 QualType ConvType
11512 = Cand->Surrogate->getConversionType().getNonReferenceType();
11513 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
11514 ConvType = ConvPtrType->getPointeeType();
11515 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
11516 // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11517 ConvIdx = 1;
11518 } else if (Cand->Function) {
11519 ParamTypes =
11520 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
11521 if (isa<CXXMethodDecl>(Cand->Function) &&
11522 !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) {
11523 // Conversion 0 is 'this', which doesn't have a corresponding parameter.
11524 ConvIdx = 1;
11525 if (CSK == OverloadCandidateSet::CSK_Operator &&
11526 Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call)
11527 // Argument 0 is 'this', which doesn't have a corresponding parameter.
11528 ArgIdx = 1;
11529 }
11530 } else {
11531 // Builtin operator.
11532 assert(ConvCount <= 3)((ConvCount <= 3) ? static_cast<void> (0) : __assert_fail
("ConvCount <= 3", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11532, __PRETTY_FUNCTION__))
;
11533 ParamTypes = Cand->BuiltinParamTypes;
11534 }
11535
11536 // Fill in the rest of the conversions.
11537 for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
11538 ConvIdx != ConvCount;
11539 ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
11540 assert(ArgIdx < Args.size() && "no argument for this arg conversion")((ArgIdx < Args.size() && "no argument for this arg conversion"
) ? static_cast<void> (0) : __assert_fail ("ArgIdx < Args.size() && \"no argument for this arg conversion\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11540, __PRETTY_FUNCTION__))
;
11541 if (Cand->Conversions[ConvIdx].isInitialized()) {
11542 // We've already checked this conversion.
11543 } else if (ParamIdx < ParamTypes.size()) {
11544 if (ParamTypes[ParamIdx]->isDependentType())
11545 Cand->Conversions[ConvIdx].setAsIdentityConversion(
11546 Args[ArgIdx]->getType());
11547 else {
11548 Cand->Conversions[ConvIdx] =
11549 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
11550 SuppressUserConversions,
11551 /*InOverloadResolution=*/true,
11552 /*AllowObjCWritebackConversion=*/
11553 S.getLangOpts().ObjCAutoRefCount);
11554 // Store the FixIt in the candidate if it exists.
11555 if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
11556 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
11557 }
11558 } else
11559 Cand->Conversions[ConvIdx].setEllipsis();
11560 }
11561}
11562
11563SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
11564 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11565 SourceLocation OpLoc,
11566 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11567 // Sort the candidates by viability and position. Sorting directly would
11568 // be prohibitive, so we make a set of pointers and sort those.
11569 SmallVector<OverloadCandidate*, 32> Cands;
11570 if (OCD == OCD_AllCandidates) Cands.reserve(size());
11571 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11572 if (!Filter(*Cand))
11573 continue;
11574 switch (OCD) {
11575 case OCD_AllCandidates:
11576 if (!Cand->Viable) {
11577 if (!Cand->Function && !Cand->IsSurrogate) {
11578 // This a non-viable builtin candidate. We do not, in general,
11579 // want to list every possible builtin candidate.
11580 continue;
11581 }
11582 CompleteNonViableCandidate(S, Cand, Args, Kind);
11583 }
11584 break;
11585
11586 case OCD_ViableCandidates:
11587 if (!Cand->Viable)
11588 continue;
11589 break;
11590
11591 case OCD_AmbiguousCandidates:
11592 if (!Cand->Best)
11593 continue;
11594 break;
11595 }
11596
11597 Cands.push_back(Cand);
11598 }
11599
11600 llvm::stable_sort(
11601 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
11602
11603 return Cands;
11604}
11605
11606/// When overload resolution fails, prints diagnostic messages containing the
11607/// candidates in the candidate set.
11608void OverloadCandidateSet::NoteCandidates(PartialDiagnosticAt PD,
11609 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
11610 StringRef Opc, SourceLocation OpLoc,
11611 llvm::function_ref<bool(OverloadCandidate &)> Filter) {
11612
11613 bool DeferHint = false;
11614 if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) {
11615 // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates.
11616 auto WrongSidedCands =
11617 CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) {
11618 return Cand.Viable == false &&
11619 Cand.FailureKind == ovl_fail_bad_target;
11620 });
11621 DeferHint = WrongSidedCands.size();
11622 }
11623 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
11624
11625 S.Diag(PD.first, PD.second, DeferHint);
11626
11627 NoteCandidates(S, Args, Cands, Opc, OpLoc);
11628
11629 if (OCD == OCD_AmbiguousCandidates)
11630 MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()});
11631}
11632
11633void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
11634 ArrayRef<OverloadCandidate *> Cands,
11635 StringRef Opc, SourceLocation OpLoc) {
11636 bool ReportedAmbiguousConversions = false;
11637
11638 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11639 unsigned CandsShown = 0;
11640 auto I = Cands.begin(), E = Cands.end();
11641 for (; I != E; ++I) {
11642 OverloadCandidate *Cand = *I;
11643
11644 // Set an arbitrary limit on the number of candidate functions we'll spam
11645 // the user with. FIXME: This limit should depend on details of the
11646 // candidate list.
11647 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
11648 break;
11649 }
11650 ++CandsShown;
11651
11652 if (Cand->Function)
11653 NoteFunctionCandidate(S, Cand, Args.size(),
11654 /*TakingCandidateAddress=*/false, DestAS);
11655 else if (Cand->IsSurrogate)
11656 NoteSurrogateCandidate(S, Cand);
11657 else {
11658 assert(Cand->Viable &&((Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11659, __PRETTY_FUNCTION__))
11659 "Non-viable built-in candidates are not added to Cands.")((Cand->Viable && "Non-viable built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Viable && \"Non-viable built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11659, __PRETTY_FUNCTION__))
;
11660 // Generally we only see ambiguities including viable builtin
11661 // operators if overload resolution got screwed up by an
11662 // ambiguous user-defined conversion.
11663 //
11664 // FIXME: It's quite possible for different conversions to see
11665 // different ambiguities, though.
11666 if (!ReportedAmbiguousConversions) {
11667 NoteAmbiguousUserConversions(S, OpLoc, Cand);
11668 ReportedAmbiguousConversions = true;
11669 }
11670
11671 // If this is a viable builtin, print it.
11672 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
11673 }
11674 }
11675
11676 if (I != E)
11677 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
11678}
11679
11680static SourceLocation
11681GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
11682 return Cand->Specialization ? Cand->Specialization->getLocation()
11683 : SourceLocation();
11684}
11685
11686namespace {
11687struct CompareTemplateSpecCandidatesForDisplay {
11688 Sema &S;
11689 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
11690
11691 bool operator()(const TemplateSpecCandidate *L,
11692 const TemplateSpecCandidate *R) {
11693 // Fast-path this check.
11694 if (L == R)
11695 return false;
11696
11697 // Assuming that both candidates are not matches...
11698
11699 // Sort by the ranking of deduction failures.
11700 if (L->DeductionFailure.Result != R->DeductionFailure.Result)
11701 return RankDeductionFailure(L->DeductionFailure) <
11702 RankDeductionFailure(R->DeductionFailure);
11703
11704 // Sort everything else by location.
11705 SourceLocation LLoc = GetLocationForCandidate(L);
11706 SourceLocation RLoc = GetLocationForCandidate(R);
11707
11708 // Put candidates without locations (e.g. builtins) at the end.
11709 if (LLoc.isInvalid())
11710 return false;
11711 if (RLoc.isInvalid())
11712 return true;
11713
11714 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
11715 }
11716};
11717}
11718
11719/// Diagnose a template argument deduction failure.
11720/// We are treating these failures as overload failures due to bad
11721/// deductions.
11722void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
11723 bool ForTakingAddress) {
11724 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
11725 DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
11726}
11727
11728void TemplateSpecCandidateSet::destroyCandidates() {
11729 for (iterator i = begin(), e = end(); i != e; ++i) {
11730 i->DeductionFailure.Destroy();
11731 }
11732}
11733
11734void TemplateSpecCandidateSet::clear() {
11735 destroyCandidates();
11736 Candidates.clear();
11737}
11738
11739/// NoteCandidates - When no template specialization match is found, prints
11740/// diagnostic messages containing the non-matching specializations that form
11741/// the candidate set.
11742/// This is analoguous to OverloadCandidateSet::NoteCandidates() with
11743/// OCD == OCD_AllCandidates and Cand->Viable == false.
11744void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
11745 // Sort the candidates by position (assuming no candidate is a match).
11746 // Sorting directly would be prohibitive, so we make a set of pointers
11747 // and sort those.
11748 SmallVector<TemplateSpecCandidate *, 32> Cands;
11749 Cands.reserve(size());
11750 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
11751 if (Cand->Specialization)
11752 Cands.push_back(Cand);
11753 // Otherwise, this is a non-matching builtin candidate. We do not,
11754 // in general, want to list every possible builtin candidate.
11755 }
11756
11757 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
11758
11759 // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
11760 // for generalization purposes (?).
11761 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
11762
11763 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
11764 unsigned CandsShown = 0;
11765 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
11766 TemplateSpecCandidate *Cand = *I;
11767
11768 // Set an arbitrary limit on the number of candidates we'll spam
11769 // the user with. FIXME: This limit should depend on details of the
11770 // candidate list.
11771 if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
11772 break;
11773 ++CandsShown;
11774
11775 assert(Cand->Specialization &&((Cand->Specialization && "Non-matching built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11776, __PRETTY_FUNCTION__))
11776 "Non-matching built-in candidates are not added to Cands.")((Cand->Specialization && "Non-matching built-in candidates are not added to Cands."
) ? static_cast<void> (0) : __assert_fail ("Cand->Specialization && \"Non-matching built-in candidates are not added to Cands.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 11776, __PRETTY_FUNCTION__))
;
11777 Cand->NoteDeductionFailure(S, ForTakingAddress);
11778 }
11779
11780 if (I != E)
11781 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
11782}
11783
11784// [PossiblyAFunctionType] --> [Return]
11785// NonFunctionType --> NonFunctionType
11786// R (A) --> R(A)
11787// R (*)(A) --> R (A)
11788// R (&)(A) --> R (A)
11789// R (S::*)(A) --> R (A)
11790QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
11791 QualType Ret = PossiblyAFunctionType;
11792 if (const PointerType *ToTypePtr =
11793 PossiblyAFunctionType->getAs<PointerType>())
11794 Ret = ToTypePtr->getPointeeType();
11795 else if (const ReferenceType *ToTypeRef =
11796 PossiblyAFunctionType->getAs<ReferenceType>())
11797 Ret = ToTypeRef->getPointeeType();
11798 else if (const MemberPointerType *MemTypePtr =
11799 PossiblyAFunctionType->getAs<MemberPointerType>())
11800 Ret = MemTypePtr->getPointeeType();
11801 Ret =
11802 Context.getCanonicalType(Ret).getUnqualifiedType();
11803 return Ret;
11804}
11805
11806static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
11807 bool Complain = true) {
11808 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
11809 S.DeduceReturnType(FD, Loc, Complain))
11810 return true;
11811
11812 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
11813 if (S.getLangOpts().CPlusPlus17 &&
11814 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
11815 !S.ResolveExceptionSpec(Loc, FPT))
11816 return true;
11817
11818 return false;
11819}
11820
11821namespace {
11822// A helper class to help with address of function resolution
11823// - allows us to avoid passing around all those ugly parameters
11824class AddressOfFunctionResolver {
11825 Sema& S;
11826 Expr* SourceExpr;
11827 const QualType& TargetType;
11828 QualType TargetFunctionType; // Extracted function type from target type
11829
11830 bool Complain;
11831 //DeclAccessPair& ResultFunctionAccessPair;
11832 ASTContext& Context;
11833
11834 bool TargetTypeIsNonStaticMemberFunction;
11835 bool FoundNonTemplateFunction;
11836 bool StaticMemberFunctionFromBoundPointer;
11837 bool HasComplained;
11838
11839 OverloadExpr::FindResult OvlExprInfo;
11840 OverloadExpr *OvlExpr;
11841 TemplateArgumentListInfo OvlExplicitTemplateArgs;
11842 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
11843 TemplateSpecCandidateSet FailedCandidates;
11844
11845public:
11846 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
11847 const QualType &TargetType, bool Complain)
11848 : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
11849 Complain(Complain), Context(S.getASTContext()),
11850 TargetTypeIsNonStaticMemberFunction(
11851 !!TargetType->getAs<MemberPointerType>()),
11852 FoundNonTemplateFunction(false),
11853 StaticMemberFunctionFromBoundPointer(false),
11854 HasComplained(false),
11855 OvlExprInfo(OverloadExpr::find(SourceExpr)),
11856 OvlExpr(OvlExprInfo.Expression),
11857 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
11858 ExtractUnqualifiedFunctionTypeFromTargetType();
11859
11860 if (TargetFunctionType->isFunctionType()) {
11861 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
11862 if (!UME->isImplicitAccess() &&
11863 !S.ResolveSingleFunctionTemplateSpecialization(UME))
11864 StaticMemberFunctionFromBoundPointer = true;
11865 } else if (OvlExpr->hasExplicitTemplateArgs()) {
11866 DeclAccessPair dap;
11867 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
11868 OvlExpr, false, &dap)) {
11869 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
11870 if (!Method->isStatic()) {
11871 // If the target type is a non-function type and the function found
11872 // is a non-static member function, pretend as if that was the
11873 // target, it's the only possible type to end up with.
11874 TargetTypeIsNonStaticMemberFunction = true;
11875
11876 // And skip adding the function if its not in the proper form.
11877 // We'll diagnose this due to an empty set of functions.
11878 if (!OvlExprInfo.HasFormOfMemberPointer)
11879 return;
11880 }
11881
11882 Matches.push_back(std::make_pair(dap, Fn));
11883 }
11884 return;
11885 }
11886
11887 if (OvlExpr->hasExplicitTemplateArgs())
11888 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
11889
11890 if (FindAllFunctionsThatMatchTargetTypeExactly()) {
11891 // C++ [over.over]p4:
11892 // If more than one function is selected, [...]
11893 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
11894 if (FoundNonTemplateFunction)
11895 EliminateAllTemplateMatches();
11896 else
11897 EliminateAllExceptMostSpecializedTemplate();
11898 }
11899 }
11900
11901 if (S.getLangOpts().CUDA && Matches.size() > 1)
11902 EliminateSuboptimalCudaMatches();
11903 }
11904
11905 bool hasComplained() const { return HasComplained; }
11906
11907private:
11908 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
11909 QualType Discard;
11910 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
11911 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
11912 }
11913
11914 /// \return true if A is considered a better overload candidate for the
11915 /// desired type than B.
11916 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
11917 // If A doesn't have exactly the correct type, we don't want to classify it
11918 // as "better" than anything else. This way, the user is required to
11919 // disambiguate for us if there are multiple candidates and no exact match.
11920 return candidateHasExactlyCorrectType(A) &&
11921 (!candidateHasExactlyCorrectType(B) ||
11922 compareEnableIfAttrs(S, A, B) == Comparison::Better);
11923 }
11924
11925 /// \return true if we were able to eliminate all but one overload candidate,
11926 /// false otherwise.
11927 bool eliminiateSuboptimalOverloadCandidates() {
11928 // Same algorithm as overload resolution -- one pass to pick the "best",
11929 // another pass to be sure that nothing is better than the best.
11930 auto Best = Matches.begin();
11931 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
11932 if (isBetterCandidate(I->second, Best->second))
11933 Best = I;
11934
11935 const FunctionDecl *BestFn = Best->second;
11936 auto IsBestOrInferiorToBest = [this, BestFn](
11937 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
11938 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
11939 };
11940
11941 // Note: We explicitly leave Matches unmodified if there isn't a clear best
11942 // option, so we can potentially give the user a better error
11943 if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
11944 return false;
11945 Matches[0] = *Best;
11946 Matches.resize(1);
11947 return true;
11948 }
11949
11950 bool isTargetTypeAFunction() const {
11951 return TargetFunctionType->isFunctionType();
11952 }
11953
11954 // [ToType] [Return]
11955
11956 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
11957 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
11958 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
11959 void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
11960 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
11961 }
11962
11963 // return true if any matching specializations were found
11964 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
11965 const DeclAccessPair& CurAccessFunPair) {
11966 if (CXXMethodDecl *Method
11967 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
11968 // Skip non-static function templates when converting to pointer, and
11969 // static when converting to member pointer.
11970 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
11971 return false;
11972 }
11973 else if (TargetTypeIsNonStaticMemberFunction)
11974 return false;
11975
11976 // C++ [over.over]p2:
11977 // If the name is a function template, template argument deduction is
11978 // done (14.8.2.2), and if the argument deduction succeeds, the
11979 // resulting template argument list is used to generate a single
11980 // function template specialization, which is added to the set of
11981 // overloaded functions considered.
11982 FunctionDecl *Specialization = nullptr;
11983 TemplateDeductionInfo Info(FailedCandidates.getLocation());
11984 if (Sema::TemplateDeductionResult Result
11985 = S.DeduceTemplateArguments(FunctionTemplate,
11986 &OvlExplicitTemplateArgs,
11987 TargetFunctionType, Specialization,
11988 Info, /*IsAddressOfFunction*/true)) {
11989 // Make a note of the failed deduction for diagnostics.
11990 FailedCandidates.addCandidate()
11991 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
11992 MakeDeductionFailureInfo(Context, Result, Info));
11993 return false;
11994 }
11995
11996 // Template argument deduction ensures that we have an exact match or
11997 // compatible pointer-to-function arguments that would be adjusted by ICS.
11998 // This function template specicalization works.
11999 assert(S.isSameOrCompatibleFunctionType(((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12001, __PRETTY_FUNCTION__))
12000 Context.getCanonicalType(Specialization->getType()),((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12001, __PRETTY_FUNCTION__))
12001 Context.getCanonicalType(TargetFunctionType)))((S.isSameOrCompatibleFunctionType( Context.getCanonicalType(
Specialization->getType()), Context.getCanonicalType(TargetFunctionType
))) ? static_cast<void> (0) : __assert_fail ("S.isSameOrCompatibleFunctionType( Context.getCanonicalType(Specialization->getType()), Context.getCanonicalType(TargetFunctionType))"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12001, __PRETTY_FUNCTION__))
;
12002
12003 if (!S.checkAddressOfFunctionIsAvailable(Specialization))
12004 return false;
12005
12006 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
12007 return true;
12008 }
12009
12010 bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
12011 const DeclAccessPair& CurAccessFunPair) {
12012 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12013 // Skip non-static functions when converting to pointer, and static
12014 // when converting to member pointer.
12015 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
12016 return false;
12017 }
12018 else if (TargetTypeIsNonStaticMemberFunction)
12019 return false;
12020
12021 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
12022 if (S.getLangOpts().CUDA)
12023 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
12024 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
12025 return false;
12026 if (FunDecl->isMultiVersion()) {
12027 const auto *TA = FunDecl->getAttr<TargetAttr>();
12028 if (TA && !TA->isDefaultVersion())
12029 return false;
12030 }
12031
12032 // If any candidate has a placeholder return type, trigger its deduction
12033 // now.
12034 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
12035 Complain)) {
12036 HasComplained |= Complain;
12037 return false;
12038 }
12039
12040 if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
12041 return false;
12042
12043 // If we're in C, we need to support types that aren't exactly identical.
12044 if (!S.getLangOpts().CPlusPlus ||
12045 candidateHasExactlyCorrectType(FunDecl)) {
12046 Matches.push_back(std::make_pair(
12047 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
12048 FoundNonTemplateFunction = true;
12049 return true;
12050 }
12051 }
12052
12053 return false;
12054 }
12055
12056 bool FindAllFunctionsThatMatchTargetTypeExactly() {
12057 bool Ret = false;
12058
12059 // If the overload expression doesn't have the form of a pointer to
12060 // member, don't try to convert it to a pointer-to-member type.
12061 if (IsInvalidFormOfPointerToMemberFunction())
12062 return false;
12063
12064 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12065 E = OvlExpr->decls_end();
12066 I != E; ++I) {
12067 // Look through any using declarations to find the underlying function.
12068 NamedDecl *Fn = (*I)->getUnderlyingDecl();
12069
12070 // C++ [over.over]p3:
12071 // Non-member functions and static member functions match
12072 // targets of type "pointer-to-function" or "reference-to-function."
12073 // Nonstatic member functions match targets of
12074 // type "pointer-to-member-function."
12075 // Note that according to DR 247, the containing class does not matter.
12076 if (FunctionTemplateDecl *FunctionTemplate
12077 = dyn_cast<FunctionTemplateDecl>(Fn)) {
12078 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
12079 Ret = true;
12080 }
12081 // If we have explicit template arguments supplied, skip non-templates.
12082 else if (!OvlExpr->hasExplicitTemplateArgs() &&
12083 AddMatchingNonTemplateFunction(Fn, I.getPair()))
12084 Ret = true;
12085 }
12086 assert(Ret || Matches.empty())((Ret || Matches.empty()) ? static_cast<void> (0) : __assert_fail
("Ret || Matches.empty()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12086, __PRETTY_FUNCTION__))
;
12087 return Ret;
12088 }
12089
12090 void EliminateAllExceptMostSpecializedTemplate() {
12091 // [...] and any given function template specialization F1 is
12092 // eliminated if the set contains a second function template
12093 // specialization whose function template is more specialized
12094 // than the function template of F1 according to the partial
12095 // ordering rules of 14.5.5.2.
12096
12097 // The algorithm specified above is quadratic. We instead use a
12098 // two-pass algorithm (similar to the one used to identify the
12099 // best viable function in an overload set) that identifies the
12100 // best function template (if it exists).
12101
12102 UnresolvedSet<4> MatchesCopy; // TODO: avoid!
12103 for (unsigned I = 0, E = Matches.size(); I != E; ++I)
12104 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
12105
12106 // TODO: It looks like FailedCandidates does not serve much purpose
12107 // here, since the no_viable diagnostic has index 0.
12108 UnresolvedSetIterator Result = S.getMostSpecialized(
12109 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
12110 SourceExpr->getBeginLoc(), S.PDiag(),
12111 S.PDiag(diag::err_addr_ovl_ambiguous)
12112 << Matches[0].second->getDeclName(),
12113 S.PDiag(diag::note_ovl_candidate)
12114 << (unsigned)oc_function << (unsigned)ocs_described_template,
12115 Complain, TargetFunctionType);
12116
12117 if (Result != MatchesCopy.end()) {
12118 // Make it the first and only element
12119 Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
12120 Matches[0].second = cast<FunctionDecl>(*Result);
12121 Matches.resize(1);
12122 } else
12123 HasComplained |= Complain;
12124 }
12125
12126 void EliminateAllTemplateMatches() {
12127 // [...] any function template specializations in the set are
12128 // eliminated if the set also contains a non-template function, [...]
12129 for (unsigned I = 0, N = Matches.size(); I != N; ) {
12130 if (Matches[I].second->getPrimaryTemplate() == nullptr)
12131 ++I;
12132 else {
12133 Matches[I] = Matches[--N];
12134 Matches.resize(N);
12135 }
12136 }
12137 }
12138
12139 void EliminateSuboptimalCudaMatches() {
12140 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
12141 }
12142
12143public:
12144 void ComplainNoMatchesFound() const {
12145 assert(Matches.empty())((Matches.empty()) ? static_cast<void> (0) : __assert_fail
("Matches.empty()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12145, __PRETTY_FUNCTION__))
;
12146 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
12147 << OvlExpr->getName() << TargetFunctionType
12148 << OvlExpr->getSourceRange();
12149 if (FailedCandidates.empty())
12150 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
12151 /*TakingAddress=*/true);
12152 else {
12153 // We have some deduction failure messages. Use them to diagnose
12154 // the function templates, and diagnose the non-template candidates
12155 // normally.
12156 for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
12157 IEnd = OvlExpr->decls_end();
12158 I != IEnd; ++I)
12159 if (FunctionDecl *Fun =
12160 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
12161 if (!functionHasPassObjectSizeParams(Fun))
12162 S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
12163 /*TakingAddress=*/true);
12164 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
12165 }
12166 }
12167
12168 bool IsInvalidFormOfPointerToMemberFunction() const {
12169 return TargetTypeIsNonStaticMemberFunction &&
12170 !OvlExprInfo.HasFormOfMemberPointer;
12171 }
12172
12173 void ComplainIsInvalidFormOfPointerToMemberFunction() const {
12174 // TODO: Should we condition this on whether any functions might
12175 // have matched, or is it more appropriate to do that in callers?
12176 // TODO: a fixit wouldn't hurt.
12177 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
12178 << TargetType << OvlExpr->getSourceRange();
12179 }
12180
12181 bool IsStaticMemberFunctionFromBoundPointer() const {
12182 return StaticMemberFunctionFromBoundPointer;
12183 }
12184
12185 void ComplainIsStaticMemberFunctionFromBoundPointer() const {
12186 S.Diag(OvlExpr->getBeginLoc(),
12187 diag::err_invalid_form_pointer_member_function)
12188 << OvlExpr->getSourceRange();
12189 }
12190
12191 void ComplainOfInvalidConversion() const {
12192 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
12193 << OvlExpr->getName() << TargetType;
12194 }
12195
12196 void ComplainMultipleMatchesFound() const {
12197 assert(Matches.size() > 1)((Matches.size() > 1) ? static_cast<void> (0) : __assert_fail
("Matches.size() > 1", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12197, __PRETTY_FUNCTION__))
;
1
Assuming the condition is true
2
'?' condition is true
12198 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
12199 << OvlExpr->getName() << OvlExpr->getSourceRange();
12200 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
3
Calling 'Sema::NoteAllOverloadCandidates'
12201 /*TakingAddress=*/true);
12202 }
12203
12204 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
12205
12206 int getNumMatches() const { return Matches.size(); }
12207
12208 FunctionDecl* getMatchingFunctionDecl() const {
12209 if (Matches.size() != 1) return nullptr;
12210 return Matches[0].second;
12211 }
12212
12213 const DeclAccessPair* getMatchingFunctionAccessPair() const {
12214 if (Matches.size() != 1) return nullptr;
12215 return &Matches[0].first;
12216 }
12217};
12218}
12219
12220/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
12221/// an overloaded function (C++ [over.over]), where @p From is an
12222/// expression with overloaded function type and @p ToType is the type
12223/// we're trying to resolve to. For example:
12224///
12225/// @code
12226/// int f(double);
12227/// int f(int);
12228///
12229/// int (*pfd)(double) = f; // selects f(double)
12230/// @endcode
12231///
12232/// This routine returns the resulting FunctionDecl if it could be
12233/// resolved, and NULL otherwise. When @p Complain is true, this
12234/// routine will emit diagnostics if there is an error.
12235FunctionDecl *
12236Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
12237 QualType TargetType,
12238 bool Complain,
12239 DeclAccessPair &FoundResult,
12240 bool *pHadMultipleCandidates) {
12241 assert(AddressOfExpr->getType() == Context.OverloadTy)((AddressOfExpr->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("AddressOfExpr->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12241, __PRETTY_FUNCTION__))
;
12242
12243 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
12244 Complain);
12245 int NumMatches = Resolver.getNumMatches();
12246 FunctionDecl *Fn = nullptr;
12247 bool ShouldComplain = Complain && !Resolver.hasComplained();
12248 if (NumMatches == 0 && ShouldComplain) {
12249 if (Resolver.IsInvalidFormOfPointerToMemberFunction())
12250 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
12251 else
12252 Resolver.ComplainNoMatchesFound();
12253 }
12254 else if (NumMatches > 1 && ShouldComplain)
12255 Resolver.ComplainMultipleMatchesFound();
12256 else if (NumMatches == 1) {
12257 Fn = Resolver.getMatchingFunctionDecl();
12258 assert(Fn)((Fn) ? static_cast<void> (0) : __assert_fail ("Fn", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12258, __PRETTY_FUNCTION__))
;
12259 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
12260 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
12261 FoundResult = *Resolver.getMatchingFunctionAccessPair();
12262 if (Complain) {
12263 if (Resolver.IsStaticMemberFunctionFromBoundPointer())
12264 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
12265 else
12266 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
12267 }
12268 }
12269
12270 if (pHadMultipleCandidates)
12271 *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
12272 return Fn;
12273}
12274
12275/// Given an expression that refers to an overloaded function, try to
12276/// resolve that function to a single function that can have its address taken.
12277/// This will modify `Pair` iff it returns non-null.
12278///
12279/// This routine can only succeed if from all of the candidates in the overload
12280/// set for SrcExpr that can have their addresses taken, there is one candidate
12281/// that is more constrained than the rest.
12282FunctionDecl *
12283Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) {
12284 OverloadExpr::FindResult R = OverloadExpr::find(E);
12285 OverloadExpr *Ovl = R.Expression;
12286 bool IsResultAmbiguous = false;
12287 FunctionDecl *Result = nullptr;
12288 DeclAccessPair DAP;
12289 SmallVector<FunctionDecl *, 2> AmbiguousDecls;
12290
12291 auto CheckMoreConstrained =
12292 [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> {
12293 SmallVector<const Expr *, 1> AC1, AC2;
12294 FD1->getAssociatedConstraints(AC1);
12295 FD2->getAssociatedConstraints(AC2);
12296 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
12297 if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1))
12298 return None;
12299 if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2))
12300 return None;
12301 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
12302 return None;
12303 return AtLeastAsConstrained1;
12304 };
12305
12306 // Don't use the AddressOfResolver because we're specifically looking for
12307 // cases where we have one overload candidate that lacks
12308 // enable_if/pass_object_size/...
12309 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
12310 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
12311 if (!FD)
12312 return nullptr;
12313
12314 if (!checkAddressOfFunctionIsAvailable(FD))
12315 continue;
12316
12317 // We have more than one result - see if it is more constrained than the
12318 // previous one.
12319 if (Result) {
12320 Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD,
12321 Result);
12322 if (!MoreConstrainedThanPrevious) {
12323 IsResultAmbiguous = true;
12324 AmbiguousDecls.push_back(FD);
12325 continue;
12326 }
12327 if (!*MoreConstrainedThanPrevious)
12328 continue;
12329 // FD is more constrained - replace Result with it.
12330 }
12331 IsResultAmbiguous = false;
12332 DAP = I.getPair();
12333 Result = FD;
12334 }
12335
12336 if (IsResultAmbiguous)
12337 return nullptr;
12338
12339 if (Result) {
12340 SmallVector<const Expr *, 1> ResultAC;
12341 // We skipped over some ambiguous declarations which might be ambiguous with
12342 // the selected result.
12343 for (FunctionDecl *Skipped : AmbiguousDecls)
12344 if (!CheckMoreConstrained(Skipped, Result).hasValue())
12345 return nullptr;
12346 Pair = DAP;
12347 }
12348 return Result;
12349}
12350
12351/// Given an overloaded function, tries to turn it into a non-overloaded
12352/// function reference using resolveAddressOfSingleOverloadCandidate. This
12353/// will perform access checks, diagnose the use of the resultant decl, and, if
12354/// requested, potentially perform a function-to-pointer decay.
12355///
12356/// Returns false if resolveAddressOfSingleOverloadCandidate fails.
12357/// Otherwise, returns true. This may emit diagnostics and return true.
12358bool Sema::resolveAndFixAddressOfSingleOverloadCandidate(
12359 ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
12360 Expr *E = SrcExpr.get();
12361 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload")((E->getType() == Context.OverloadTy && "SrcExpr must be an overload"
) ? static_cast<void> (0) : __assert_fail ("E->getType() == Context.OverloadTy && \"SrcExpr must be an overload\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12361, __PRETTY_FUNCTION__))
;
12362
12363 DeclAccessPair DAP;
12364 FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP);
12365 if (!Found || Found->isCPUDispatchMultiVersion() ||
12366 Found->isCPUSpecificMultiVersion())
12367 return false;
12368
12369 // Emitting multiple diagnostics for a function that is both inaccessible and
12370 // unavailable is consistent with our behavior elsewhere. So, always check
12371 // for both.
12372 DiagnoseUseOfDecl(Found, E->getExprLoc());
12373 CheckAddressOfMemberAccess(E, DAP);
12374 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
12375 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
12376 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
12377 else
12378 SrcExpr = Fixed;
12379 return true;
12380}
12381
12382/// Given an expression that refers to an overloaded function, try to
12383/// resolve that overloaded function expression down to a single function.
12384///
12385/// This routine can only resolve template-ids that refer to a single function
12386/// template, where that template-id refers to a single template whose template
12387/// arguments are either provided by the template-id or have defaults,
12388/// as described in C++0x [temp.arg.explicit]p3.
12389///
12390/// If no template-ids are found, no diagnostics are emitted and NULL is
12391/// returned.
12392FunctionDecl *
12393Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
12394 bool Complain,
12395 DeclAccessPair *FoundResult) {
12396 // C++ [over.over]p1:
12397 // [...] [Note: any redundant set of parentheses surrounding the
12398 // overloaded function name is ignored (5.1). ]
12399 // C++ [over.over]p1:
12400 // [...] The overloaded function name can be preceded by the &
12401 // operator.
12402
12403 // If we didn't actually find any template-ids, we're done.
12404 if (!ovl->hasExplicitTemplateArgs())
12405 return nullptr;
12406
12407 TemplateArgumentListInfo ExplicitTemplateArgs;
12408 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
12409 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
12410
12411 // Look through all of the overloaded functions, searching for one
12412 // whose type matches exactly.
12413 FunctionDecl *Matched = nullptr;
12414 for (UnresolvedSetIterator I = ovl->decls_begin(),
12415 E = ovl->decls_end(); I != E; ++I) {
12416 // C++0x [temp.arg.explicit]p3:
12417 // [...] In contexts where deduction is done and fails, or in contexts
12418 // where deduction is not done, if a template argument list is
12419 // specified and it, along with any default template arguments,
12420 // identifies a single function template specialization, then the
12421 // template-id is an lvalue for the function template specialization.
12422 FunctionTemplateDecl *FunctionTemplate
12423 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
12424
12425 // C++ [over.over]p2:
12426 // If the name is a function template, template argument deduction is
12427 // done (14.8.2.2), and if the argument deduction succeeds, the
12428 // resulting template argument list is used to generate a single
12429 // function template specialization, which is added to the set of
12430 // overloaded functions considered.
12431 FunctionDecl *Specialization = nullptr;
12432 TemplateDeductionInfo Info(FailedCandidates.getLocation());
12433 if (TemplateDeductionResult Result
12434 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
12435 Specialization, Info,
12436 /*IsAddressOfFunction*/true)) {
12437 // Make a note of the failed deduction for diagnostics.
12438 // TODO: Actually use the failed-deduction info?
12439 FailedCandidates.addCandidate()
12440 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
12441 MakeDeductionFailureInfo(Context, Result, Info));
12442 continue;
12443 }
12444
12445 assert(Specialization && "no specialization and no error?")((Specialization && "no specialization and no error?"
) ? static_cast<void> (0) : __assert_fail ("Specialization && \"no specialization and no error?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12445, __PRETTY_FUNCTION__))
;
12446
12447 // Multiple matches; we can't resolve to a single declaration.
12448 if (Matched) {
12449 if (Complain) {
12450 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
12451 << ovl->getName();
12452 NoteAllOverloadCandidates(ovl);
12453 }
12454 return nullptr;
12455 }
12456
12457 Matched = Specialization;
12458 if (FoundResult) *FoundResult = I.getPair();
12459 }
12460
12461 if (Matched &&
12462 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
12463 return nullptr;
12464
12465 return Matched;
12466}
12467
12468// Resolve and fix an overloaded expression that can be resolved
12469// because it identifies a single function template specialization.
12470//
12471// Last three arguments should only be supplied if Complain = true
12472//
12473// Return true if it was logically possible to so resolve the
12474// expression, regardless of whether or not it succeeded. Always
12475// returns true if 'complain' is set.
12476bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
12477 ExprResult &SrcExpr, bool doFunctionPointerConverion,
12478 bool complain, SourceRange OpRangeForComplaining,
12479 QualType DestTypeForComplaining,
12480 unsigned DiagIDForComplaining) {
12481 assert(SrcExpr.get()->getType() == Context.OverloadTy)((SrcExpr.get()->getType() == Context.OverloadTy) ? static_cast
<void> (0) : __assert_fail ("SrcExpr.get()->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12481, __PRETTY_FUNCTION__))
;
12482
12483 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
12484
12485 DeclAccessPair found;
12486 ExprResult SingleFunctionExpression;
12487 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
12488 ovl.Expression, /*complain*/ false, &found)) {
12489 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
12490 SrcExpr = ExprError();
12491 return true;
12492 }
12493
12494 // It is only correct to resolve to an instance method if we're
12495 // resolving a form that's permitted to be a pointer to member.
12496 // Otherwise we'll end up making a bound member expression, which
12497 // is illegal in all the contexts we resolve like this.
12498 if (!ovl.HasFormOfMemberPointer &&
12499 isa<CXXMethodDecl>(fn) &&
12500 cast<CXXMethodDecl>(fn)->isInstance()) {
12501 if (!complain) return false;
12502
12503 Diag(ovl.Expression->getExprLoc(),
12504 diag::err_bound_member_function)
12505 << 0 << ovl.Expression->getSourceRange();
12506
12507 // TODO: I believe we only end up here if there's a mix of
12508 // static and non-static candidates (otherwise the expression
12509 // would have 'bound member' type, not 'overload' type).
12510 // Ideally we would note which candidate was chosen and why
12511 // the static candidates were rejected.
12512 SrcExpr = ExprError();
12513 return true;
12514 }
12515
12516 // Fix the expression to refer to 'fn'.
12517 SingleFunctionExpression =
12518 FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
12519
12520 // If desired, do function-to-pointer decay.
12521 if (doFunctionPointerConverion) {
12522 SingleFunctionExpression =
12523 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
12524 if (SingleFunctionExpression.isInvalid()) {
12525 SrcExpr = ExprError();
12526 return true;
12527 }
12528 }
12529 }
12530
12531 if (!SingleFunctionExpression.isUsable()) {
12532 if (complain) {
12533 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
12534 << ovl.Expression->getName()
12535 << DestTypeForComplaining
12536 << OpRangeForComplaining
12537 << ovl.Expression->getQualifierLoc().getSourceRange();
12538 NoteAllOverloadCandidates(SrcExpr.get());
12539
12540 SrcExpr = ExprError();
12541 return true;
12542 }
12543
12544 return false;
12545 }
12546
12547 SrcExpr = SingleFunctionExpression;
12548 return true;
12549}
12550
12551/// Add a single candidate to the overload set.
12552static void AddOverloadedCallCandidate(Sema &S,
12553 DeclAccessPair FoundDecl,
12554 TemplateArgumentListInfo *ExplicitTemplateArgs,
12555 ArrayRef<Expr *> Args,
12556 OverloadCandidateSet &CandidateSet,
12557 bool PartialOverloading,
12558 bool KnownValid) {
12559 NamedDecl *Callee = FoundDecl.getDecl();
12560 if (isa<UsingShadowDecl>(Callee))
12561 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
12562
12563 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
12564 if (ExplicitTemplateArgs) {
12565 assert(!KnownValid && "Explicit template arguments?")((!KnownValid && "Explicit template arguments?") ? static_cast
<void> (0) : __assert_fail ("!KnownValid && \"Explicit template arguments?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12565, __PRETTY_FUNCTION__))
;
12566 return;
12567 }
12568 // Prevent ill-formed function decls to be added as overload candidates.
12569 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
12570 return;
12571
12572 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
12573 /*SuppressUserConversions=*/false,
12574 PartialOverloading);
12575 return;
12576 }
12577
12578 if (FunctionTemplateDecl *FuncTemplate
12579 = dyn_cast<FunctionTemplateDecl>(Callee)) {
12580 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
12581 ExplicitTemplateArgs, Args, CandidateSet,
12582 /*SuppressUserConversions=*/false,
12583 PartialOverloading);
12584 return;
12585 }
12586
12587 assert(!KnownValid && "unhandled case in overloaded call candidate")((!KnownValid && "unhandled case in overloaded call candidate"
) ? static_cast<void> (0) : __assert_fail ("!KnownValid && \"unhandled case in overloaded call candidate\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12587, __PRETTY_FUNCTION__))
;
12588}
12589
12590/// Add the overload candidates named by callee and/or found by argument
12591/// dependent lookup to the given overload set.
12592void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
12593 ArrayRef<Expr *> Args,
12594 OverloadCandidateSet &CandidateSet,
12595 bool PartialOverloading) {
12596
12597#ifndef NDEBUG
12598 // Verify that ArgumentDependentLookup is consistent with the rules
12599 // in C++0x [basic.lookup.argdep]p3:
12600 //
12601 // Let X be the lookup set produced by unqualified lookup (3.4.1)
12602 // and let Y be the lookup set produced by argument dependent
12603 // lookup (defined as follows). If X contains
12604 //
12605 // -- a declaration of a class member, or
12606 //
12607 // -- a block-scope function declaration that is not a
12608 // using-declaration, or
12609 //
12610 // -- a declaration that is neither a function or a function
12611 // template
12612 //
12613 // then Y is empty.
12614
12615 if (ULE->requiresADL()) {
12616 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12617 E = ULE->decls_end(); I != E; ++I) {
12618 assert(!(*I)->getDeclContext()->isRecord())((!(*I)->getDeclContext()->isRecord()) ? static_cast<
void> (0) : __assert_fail ("!(*I)->getDeclContext()->isRecord()"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12618, __PRETTY_FUNCTION__))
;
12619 assert(isa<UsingShadowDecl>(*I) ||((isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext(
)->isFunctionOrMethod()) ? static_cast<void> (0) : __assert_fail
("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12620, __PRETTY_FUNCTION__))
12620 !(*I)->getDeclContext()->isFunctionOrMethod())((isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext(
)->isFunctionOrMethod()) ? static_cast<void> (0) : __assert_fail
("isa<UsingShadowDecl>(*I) || !(*I)->getDeclContext()->isFunctionOrMethod()"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12620, __PRETTY_FUNCTION__))
;
12621 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate())(((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate
()) ? static_cast<void> (0) : __assert_fail ("(*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12621, __PRETTY_FUNCTION__))
;
12622 }
12623 }
12624#endif
12625
12626 // It would be nice to avoid this copy.
12627 TemplateArgumentListInfo TABuffer;
12628 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12629 if (ULE->hasExplicitTemplateArgs()) {
12630 ULE->copyTemplateArgumentsInto(TABuffer);
12631 ExplicitTemplateArgs = &TABuffer;
12632 }
12633
12634 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
12635 E = ULE->decls_end(); I != E; ++I)
12636 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
12637 CandidateSet, PartialOverloading,
12638 /*KnownValid*/ true);
12639
12640 if (ULE->requiresADL())
12641 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
12642 Args, ExplicitTemplateArgs,
12643 CandidateSet, PartialOverloading);
12644}
12645
12646/// Determine whether a declaration with the specified name could be moved into
12647/// a different namespace.
12648static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
12649 switch (Name.getCXXOverloadedOperator()) {
12650 case OO_New: case OO_Array_New:
12651 case OO_Delete: case OO_Array_Delete:
12652 return false;
12653
12654 default:
12655 return true;
12656 }
12657}
12658
12659/// Attempt to recover from an ill-formed use of a non-dependent name in a
12660/// template, where the non-dependent name was declared after the template
12661/// was defined. This is common in code written for a compilers which do not
12662/// correctly implement two-stage name lookup.
12663///
12664/// Returns true if a viable candidate was found and a diagnostic was issued.
12665static bool
12666DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
12667 const CXXScopeSpec &SS, LookupResult &R,
12668 OverloadCandidateSet::CandidateSetKind CSK,
12669 TemplateArgumentListInfo *ExplicitTemplateArgs,
12670 ArrayRef<Expr *> Args,
12671 bool *DoDiagnoseEmptyLookup = nullptr) {
12672 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
12673 return false;
12674
12675 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
12676 if (DC->isTransparentContext())
12677 continue;
12678
12679 SemaRef.LookupQualifiedName(R, DC);
12680
12681 if (!R.empty()) {
12682 R.suppressDiagnostics();
12683
12684 if (isa<CXXRecordDecl>(DC)) {
12685 // Don't diagnose names we find in classes; we get much better
12686 // diagnostics for these from DiagnoseEmptyLookup.
12687 R.clear();
12688 if (DoDiagnoseEmptyLookup)
12689 *DoDiagnoseEmptyLookup = true;
12690 return false;
12691 }
12692
12693 OverloadCandidateSet Candidates(FnLoc, CSK);
12694 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12695 AddOverloadedCallCandidate(SemaRef, I.getPair(),
12696 ExplicitTemplateArgs, Args,
12697 Candidates, false, /*KnownValid*/ false);
12698
12699 OverloadCandidateSet::iterator Best;
12700 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
12701 // No viable functions. Don't bother the user with notes for functions
12702 // which don't work and shouldn't be found anyway.
12703 R.clear();
12704 return false;
12705 }
12706
12707 // Find the namespaces where ADL would have looked, and suggest
12708 // declaring the function there instead.
12709 Sema::AssociatedNamespaceSet AssociatedNamespaces;
12710 Sema::AssociatedClassSet AssociatedClasses;
12711 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
12712 AssociatedNamespaces,
12713 AssociatedClasses);
12714 Sema::AssociatedNamespaceSet SuggestedNamespaces;
12715 if (canBeDeclaredInNamespace(R.getLookupName())) {
12716 DeclContext *Std = SemaRef.getStdNamespace();
12717 for (Sema::AssociatedNamespaceSet::iterator
12718 it = AssociatedNamespaces.begin(),
12719 end = AssociatedNamespaces.end(); it != end; ++it) {
12720 // Never suggest declaring a function within namespace 'std'.
12721 if (Std && Std->Encloses(*it))
12722 continue;
12723
12724 // Never suggest declaring a function within a namespace with a
12725 // reserved name, like __gnu_cxx.
12726 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
12727 if (NS &&
12728 NS->getQualifiedNameAsString().find("__") != std::string::npos)
12729 continue;
12730
12731 SuggestedNamespaces.insert(*it);
12732 }
12733 }
12734
12735 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
12736 << R.getLookupName();
12737 if (SuggestedNamespaces.empty()) {
12738 SemaRef.Diag(Best->Function->getLocation(),
12739 diag::note_not_found_by_two_phase_lookup)
12740 << R.getLookupName() << 0;
12741 } else if (SuggestedNamespaces.size() == 1) {
12742 SemaRef.Diag(Best->Function->getLocation(),
12743 diag::note_not_found_by_two_phase_lookup)
12744 << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
12745 } else {
12746 // FIXME: It would be useful to list the associated namespaces here,
12747 // but the diagnostics infrastructure doesn't provide a way to produce
12748 // a localized representation of a list of items.
12749 SemaRef.Diag(Best->Function->getLocation(),
12750 diag::note_not_found_by_two_phase_lookup)
12751 << R.getLookupName() << 2;
12752 }
12753
12754 // Try to recover by calling this function.
12755 return true;
12756 }
12757
12758 R.clear();
12759 }
12760
12761 return false;
12762}
12763
12764/// Attempt to recover from ill-formed use of a non-dependent operator in a
12765/// template, where the non-dependent operator was declared after the template
12766/// was defined.
12767///
12768/// Returns true if a viable candidate was found and a diagnostic was issued.
12769static bool
12770DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
12771 SourceLocation OpLoc,
12772 ArrayRef<Expr *> Args) {
12773 DeclarationName OpName =
12774 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
12775 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
12776 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
12777 OverloadCandidateSet::CSK_Operator,
12778 /*ExplicitTemplateArgs=*/nullptr, Args);
12779}
12780
12781namespace {
12782class BuildRecoveryCallExprRAII {
12783 Sema &SemaRef;
12784public:
12785 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
12786 assert(SemaRef.IsBuildingRecoveryCallExpr == false)((SemaRef.IsBuildingRecoveryCallExpr == false) ? static_cast<
void> (0) : __assert_fail ("SemaRef.IsBuildingRecoveryCallExpr == false"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12786, __PRETTY_FUNCTION__))
;
12787 SemaRef.IsBuildingRecoveryCallExpr = true;
12788 }
12789
12790 ~BuildRecoveryCallExprRAII() {
12791 SemaRef.IsBuildingRecoveryCallExpr = false;
12792 }
12793};
12794
12795}
12796
12797/// Attempts to recover from a call where no functions were found.
12798static ExprResult
12799BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12800 UnresolvedLookupExpr *ULE,
12801 SourceLocation LParenLoc,
12802 MutableArrayRef<Expr *> Args,
12803 SourceLocation RParenLoc,
12804 bool EmptyLookup, bool AllowTypoCorrection) {
12805 // Do not try to recover if it is already building a recovery call.
12806 // This stops infinite loops for template instantiations like
12807 //
12808 // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
12809 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
12810 //
12811 if (SemaRef.IsBuildingRecoveryCallExpr)
12812 return ExprError();
12813 BuildRecoveryCallExprRAII RCE(SemaRef);
12814
12815 CXXScopeSpec SS;
12816 SS.Adopt(ULE->getQualifierLoc());
12817 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
12818
12819 TemplateArgumentListInfo TABuffer;
12820 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
12821 if (ULE->hasExplicitTemplateArgs()) {
12822 ULE->copyTemplateArgumentsInto(TABuffer);
12823 ExplicitTemplateArgs = &TABuffer;
12824 }
12825
12826 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
12827 Sema::LookupOrdinaryName);
12828 bool DoDiagnoseEmptyLookup = EmptyLookup;
12829 if (!DiagnoseTwoPhaseLookup(
12830 SemaRef, Fn->getExprLoc(), SS, R, OverloadCandidateSet::CSK_Normal,
12831 ExplicitTemplateArgs, Args, &DoDiagnoseEmptyLookup)) {
12832 NoTypoCorrectionCCC NoTypoValidator{};
12833 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
12834 ExplicitTemplateArgs != nullptr,
12835 dyn_cast<MemberExpr>(Fn));
12836 CorrectionCandidateCallback &Validator =
12837 AllowTypoCorrection
12838 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
12839 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
12840 if (!DoDiagnoseEmptyLookup ||
12841 SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
12842 Args))
12843 return ExprError();
12844 }
12845
12846 assert(!R.empty() && "lookup results empty despite recovery")((!R.empty() && "lookup results empty despite recovery"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"lookup results empty despite recovery\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12846, __PRETTY_FUNCTION__))
;
12847
12848 // If recovery created an ambiguity, just bail out.
12849 if (R.isAmbiguous()) {
12850 R.suppressDiagnostics();
12851 return ExprError();
12852 }
12853
12854 // Build an implicit member access expression if appropriate. Just drop the
12855 // casts and such from the call, we don't really care.
12856 ExprResult NewFn = ExprError();
12857 if ((*R.begin())->isCXXClassMember())
12858 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
12859 ExplicitTemplateArgs, S);
12860 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
12861 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
12862 ExplicitTemplateArgs);
12863 else
12864 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
12865
12866 if (NewFn.isInvalid())
12867 return ExprError();
12868
12869 auto CallE =
12870 SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
12871 MultiExprArg(Args.data(), Args.size()), RParenLoc);
12872 if (CallE.isInvalid())
12873 return ExprError();
12874 // We now have recovered a callee. However, building a real call may lead to
12875 // incorrect secondary diagnostics if our recovery wasn't correct.
12876 // We keep the recovery behavior but suppress all following diagnostics by
12877 // using RecoveryExpr. We deliberately drop the return type of the recovery
12878 // function, and rely on clang's dependent mechanism to suppress following
12879 // diagnostics.
12880 return SemaRef.CreateRecoveryExpr(CallE.get()->getBeginLoc(),
12881 CallE.get()->getEndLoc(), {CallE.get()});
12882}
12883
12884/// Constructs and populates an OverloadedCandidateSet from
12885/// the given function.
12886/// \returns true when an the ExprResult output parameter has been set.
12887bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
12888 UnresolvedLookupExpr *ULE,
12889 MultiExprArg Args,
12890 SourceLocation RParenLoc,
12891 OverloadCandidateSet *CandidateSet,
12892 ExprResult *Result) {
12893#ifndef NDEBUG
12894 if (ULE->requiresADL()) {
12895 // To do ADL, we must have found an unqualified name.
12896 assert(!ULE->getQualifier() && "qualified name with ADL")((!ULE->getQualifier() && "qualified name with ADL"
) ? static_cast<void> (0) : __assert_fail ("!ULE->getQualifier() && \"qualified name with ADL\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12896, __PRETTY_FUNCTION__))
;
12897
12898 // We don't perform ADL for implicit declarations of builtins.
12899 // Verify that this was correctly set up.
12900 FunctionDecl *F;
12901 if (ULE->decls_begin() != ULE->decls_end() &&
12902 ULE->decls_begin() + 1 == ULE->decls_end() &&
12903 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
12904 F->getBuiltinID() && F->isImplicit())
12905 llvm_unreachable("performing ADL for builtin")::llvm::llvm_unreachable_internal("performing ADL for builtin"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12905)
;
12906
12907 // We don't perform ADL in C.
12908 assert(getLangOpts().CPlusPlus && "ADL enabled in C")((getLangOpts().CPlusPlus && "ADL enabled in C") ? static_cast
<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL enabled in C\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 12908, __PRETTY_FUNCTION__))
;
12909 }
12910#endif
12911
12912 UnbridgedCastsSet UnbridgedCasts;
12913 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
12914 *Result = ExprError();
12915 return true;
12916 }
12917
12918 // Add the functions denoted by the callee to the set of candidate
12919 // functions, including those from argument-dependent lookup.
12920 AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
12921
12922 if (getLangOpts().MSVCCompat &&
12923 CurContext->isDependentContext() && !isSFINAEContext() &&
12924 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
12925
12926 OverloadCandidateSet::iterator Best;
12927 if (CandidateSet->empty() ||
12928 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
12929 OR_No_Viable_Function) {
12930 // In Microsoft mode, if we are inside a template class member function
12931 // then create a type dependent CallExpr. The goal is to postpone name
12932 // lookup to instantiation time to be able to search into type dependent
12933 // base classes.
12934 CallExpr *CE =
12935 CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_RValue,
12936 RParenLoc, CurFPFeatureOverrides());
12937 CE->markDependentForPostponedNameLookup();
12938 *Result = CE;
12939 return true;
12940 }
12941 }
12942
12943 if (CandidateSet->empty())
12944 return false;
12945
12946 UnbridgedCasts.restore();
12947 return false;
12948}
12949
12950// Guess at what the return type for an unresolvable overload should be.
12951static QualType chooseRecoveryType(OverloadCandidateSet &CS,
12952 OverloadCandidateSet::iterator *Best) {
12953 llvm::Optional<QualType> Result;
12954 // Adjust Type after seeing a candidate.
12955 auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) {
12956 if (!Candidate.Function)
12957 return;
12958 if (Candidate.Function->isInvalidDecl())
12959 return;
12960 QualType T = Candidate.Function->getReturnType();
12961 if (T.isNull())
12962 return;
12963 if (!Result)
12964 Result = T;
12965 else if (Result != T)
12966 Result = QualType();
12967 };
12968
12969 // Look for an unambiguous type from a progressively larger subset.
12970 // e.g. if types disagree, but all *viable* overloads return int, choose int.
12971 //
12972 // First, consider only the best candidate.
12973 if (Best && *Best != CS.end())
12974 ConsiderCandidate(**Best);
12975 // Next, consider only viable candidates.
12976 if (!Result)
12977 for (const auto &C : CS)
12978 if (C.Viable)
12979 ConsiderCandidate(C);
12980 // Finally, consider all candidates.
12981 if (!Result)
12982 for (const auto &C : CS)
12983 ConsiderCandidate(C);
12984
12985 if (!Result)
12986 return QualType();
12987 auto Value = Result.getValue();
12988 if (Value.isNull() || Value->isUndeducedType())
12989 return QualType();
12990 return Value;
12991}
12992
12993/// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
12994/// the completed call expression. If overload resolution fails, emits
12995/// diagnostics and returns ExprError()
12996static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
12997 UnresolvedLookupExpr *ULE,
12998 SourceLocation LParenLoc,
12999 MultiExprArg Args,
13000 SourceLocation RParenLoc,
13001 Expr *ExecConfig,
13002 OverloadCandidateSet *CandidateSet,
13003 OverloadCandidateSet::iterator *Best,
13004 OverloadingResult OverloadResult,
13005 bool AllowTypoCorrection) {
13006 if (CandidateSet->empty())
13007 return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
13008 RParenLoc, /*EmptyLookup=*/true,
13009 AllowTypoCorrection);
13010
13011 switch (OverloadResult) {
13012 case OR_Success: {
13013 FunctionDecl *FDecl = (*Best)->Function;
13014 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
13015 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
13016 return ExprError();
13017 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13018 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13019 ExecConfig, /*IsExecConfig=*/false,
13020 (*Best)->IsADLCandidate);
13021 }
13022
13023 case OR_No_Viable_Function: {
13024 // Try to recover by looking for viable functions which the user might
13025 // have meant to call.
13026 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
13027 Args, RParenLoc,
13028 /*EmptyLookup=*/false,
13029 AllowTypoCorrection);
13030 if (!Recovery.isInvalid())
13031 return Recovery;
13032
13033 // If the user passes in a function that we can't take the address of, we
13034 // generally end up emitting really bad error messages. Here, we attempt to
13035 // emit better ones.
13036 for (const Expr *Arg : Args) {
13037 if (!Arg->getType()->isFunctionType())
13038 continue;
13039 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
13040 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
13041 if (FD &&
13042 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13043 Arg->getExprLoc()))
13044 return ExprError();
13045 }
13046 }
13047
13048 CandidateSet->NoteCandidates(
13049 PartialDiagnosticAt(
13050 Fn->getBeginLoc(),
13051 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
13052 << ULE->getName() << Fn->getSourceRange()),
13053 SemaRef, OCD_AllCandidates, Args);
13054 break;
13055 }
13056
13057 case OR_Ambiguous:
13058 CandidateSet->NoteCandidates(
13059 PartialDiagnosticAt(Fn->getBeginLoc(),
13060 SemaRef.PDiag(diag::err_ovl_ambiguous_call)
13061 << ULE->getName() << Fn->getSourceRange()),
13062 SemaRef, OCD_AmbiguousCandidates, Args);
13063 break;
13064
13065 case OR_Deleted: {
13066 CandidateSet->NoteCandidates(
13067 PartialDiagnosticAt(Fn->getBeginLoc(),
13068 SemaRef.PDiag(diag::err_ovl_deleted_call)
13069 << ULE->getName() << Fn->getSourceRange()),
13070 SemaRef, OCD_AllCandidates, Args);
13071
13072 // We emitted an error for the unavailable/deleted function call but keep
13073 // the call in the AST.
13074 FunctionDecl *FDecl = (*Best)->Function;
13075 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
13076 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
13077 ExecConfig, /*IsExecConfig=*/false,
13078 (*Best)->IsADLCandidate);
13079 }
13080 }
13081
13082 // Overload resolution failed, try to recover.
13083 SmallVector<Expr *, 8> SubExprs = {Fn};
13084 SubExprs.append(Args.begin(), Args.end());
13085 return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs,
13086 chooseRecoveryType(*CandidateSet, Best));
13087}
13088
13089static void markUnaddressableCandidatesUnviable(Sema &S,
13090 OverloadCandidateSet &CS) {
13091 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
13092 if (I->Viable &&
13093 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
13094 I->Viable = false;
13095 I->FailureKind = ovl_fail_addr_not_available;
13096 }
13097 }
13098}
13099
13100/// BuildOverloadedCallExpr - Given the call expression that calls Fn
13101/// (which eventually refers to the declaration Func) and the call
13102/// arguments Args/NumArgs, attempt to resolve the function call down
13103/// to a specific function. If overload resolution succeeds, returns
13104/// the call expression produced by overload resolution.
13105/// Otherwise, emits diagnostics and returns ExprError.
13106ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
13107 UnresolvedLookupExpr *ULE,
13108 SourceLocation LParenLoc,
13109 MultiExprArg Args,
13110 SourceLocation RParenLoc,
13111 Expr *ExecConfig,
13112 bool AllowTypoCorrection,
13113 bool CalleesAddressIsTaken) {
13114 OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
13115 OverloadCandidateSet::CSK_Normal);
13116 ExprResult result;
13117
13118 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
13119 &result))
13120 return result;
13121
13122 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
13123 // functions that aren't addressible are considered unviable.
13124 if (CalleesAddressIsTaken)
13125 markUnaddressableCandidatesUnviable(*this, CandidateSet);
13126
13127 OverloadCandidateSet::iterator Best;
13128 OverloadingResult OverloadResult =
13129 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
13130
13131 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
13132 ExecConfig, &CandidateSet, &Best,
13133 OverloadResult, AllowTypoCorrection);
13134}
13135
13136static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
13137 return Functions.size() > 1 ||
13138 (Functions.size() == 1 &&
13139 isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl()));
13140}
13141
13142ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
13143 NestedNameSpecifierLoc NNSLoc,
13144 DeclarationNameInfo DNI,
13145 const UnresolvedSetImpl &Fns,
13146 bool PerformADL) {
13147 return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI,
13148 PerformADL, IsOverloaded(Fns),
13149 Fns.begin(), Fns.end());
13150}
13151
13152/// Create a unary operation that may resolve to an overloaded
13153/// operator.
13154///
13155/// \param OpLoc The location of the operator itself (e.g., '*').
13156///
13157/// \param Opc The UnaryOperatorKind that describes this operator.
13158///
13159/// \param Fns The set of non-member functions that will be
13160/// considered by overload resolution. The caller needs to build this
13161/// set based on the context using, e.g.,
13162/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13163/// set should not contain any member functions; those will be added
13164/// by CreateOverloadedUnaryOp().
13165///
13166/// \param Input The input argument.
13167ExprResult
13168Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
13169 const UnresolvedSetImpl &Fns,
13170 Expr *Input, bool PerformADL) {
13171 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
13172 assert(Op != OO_None && "Invalid opcode for overloaded unary operator")((Op != OO_None && "Invalid opcode for overloaded unary operator"
) ? static_cast<void> (0) : __assert_fail ("Op != OO_None && \"Invalid opcode for overloaded unary operator\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 13172, __PRETTY_FUNCTION__))
;
13173 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13174 // TODO: provide better source location info.
13175 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13176
13177 if (checkPlaceholderForOverload(*this, Input))
13178 return ExprError();
13179
13180 Expr *Args[2] = { Input, nullptr };
13181 unsigned NumArgs = 1;
13182
13183 // For post-increment and post-decrement, add the implicit '0' as
13184 // the second argument, so that we know this is a post-increment or
13185 // post-decrement.
13186 if (Opc == UO_PostInc || Opc == UO_PostDec) {
13187 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13188 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
13189 SourceLocation());
13190 NumArgs = 2;
13191 }
13192
13193 ArrayRef<Expr *> ArgsArray(Args, NumArgs);
13194
13195 if (Input->isTypeDependent()) {
13196 if (Fns.empty())
13197 return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy,
13198 VK_RValue, OK_Ordinary, OpLoc, false,
13199 CurFPFeatureOverrides());
13200
13201 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13202 ExprResult Fn = CreateUnresolvedLookupExpr(
13203 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns);
13204 if (Fn.isInvalid())
13205 return ExprError();
13206 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray,
13207 Context.DependentTy, VK_RValue, OpLoc,
13208 CurFPFeatureOverrides());
13209 }
13210
13211 // Build an empty overload set.
13212 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
13213
13214 // Add the candidates from the given function set.
13215 AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
13216
13217 // Add operator candidates that are member functions.
13218 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13219
13220 // Add candidates from ADL.
13221 if (PerformADL) {
13222 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
13223 /*ExplicitTemplateArgs*/nullptr,
13224 CandidateSet);
13225 }
13226
13227 // Add builtin operator candidates.
13228 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
13229
13230 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13231
13232 // Perform overload resolution.
13233 OverloadCandidateSet::iterator Best;
13234 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13235 case OR_Success: {
13236 // We found a built-in operator or an overloaded operator.
13237 FunctionDecl *FnDecl = Best->Function;
13238
13239 if (FnDecl) {
13240 Expr *Base = nullptr;
13241 // We matched an overloaded operator. Build a call to that
13242 // operator.
13243
13244 // Convert the arguments.
13245 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13246 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
13247
13248 ExprResult InputRes =
13249 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
13250 Best->FoundDecl, Method);
13251 if (InputRes.isInvalid())
13252 return ExprError();
13253 Base = Input = InputRes.get();
13254 } else {
13255 // Convert the arguments.
13256 ExprResult InputInit
13257 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13258 Context,
13259 FnDecl->getParamDecl(0)),
13260 SourceLocation(),
13261 Input);
13262 if (InputInit.isInvalid())
13263 return ExprError();
13264 Input = InputInit.get();
13265 }
13266
13267 // Build the actual expression node.
13268 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
13269 Base, HadMultipleCandidates,
13270 OpLoc);
13271 if (FnExpr.isInvalid())
13272 return ExprError();
13273
13274 // Determine the result type.
13275 QualType ResultTy = FnDecl->getReturnType();
13276 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13277 ResultTy = ResultTy.getNonLValueExprType(Context);
13278
13279 Args[0] = Input;
13280 CallExpr *TheCall = CXXOperatorCallExpr::Create(
13281 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
13282 CurFPFeatureOverrides(), Best->IsADLCandidate);
13283
13284 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
13285 return ExprError();
13286
13287 if (CheckFunctionCall(FnDecl, TheCall,
13288 FnDecl->getType()->castAs<FunctionProtoType>()))
13289 return ExprError();
13290 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl);
13291 } else {
13292 // We matched a built-in operator. Convert the arguments, then
13293 // break out so that we will build the appropriate built-in
13294 // operator node.
13295 ExprResult InputRes = PerformImplicitConversion(
13296 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
13297 CCK_ForBuiltinOverloadedOp);
13298 if (InputRes.isInvalid())
13299 return ExprError();
13300 Input = InputRes.get();
13301 break;
13302 }
13303 }
13304
13305 case OR_No_Viable_Function:
13306 // This is an erroneous use of an operator which can be overloaded by
13307 // a non-member function. Check for non-member operators which were
13308 // defined too late to be candidates.
13309 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
13310 // FIXME: Recover by calling the found function.
13311 return ExprError();
13312
13313 // No viable function; fall through to handling this as a
13314 // built-in operator, which will produce an error message for us.
13315 break;
13316
13317 case OR_Ambiguous:
13318 CandidateSet.NoteCandidates(
13319 PartialDiagnosticAt(OpLoc,
13320 PDiag(diag::err_ovl_ambiguous_oper_unary)
13321 << UnaryOperator::getOpcodeStr(Opc)
13322 << Input->getType() << Input->getSourceRange()),
13323 *this, OCD_AmbiguousCandidates, ArgsArray,
13324 UnaryOperator::getOpcodeStr(Opc), OpLoc);
13325 return ExprError();
13326
13327 case OR_Deleted:
13328 CandidateSet.NoteCandidates(
13329 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
13330 << UnaryOperator::getOpcodeStr(Opc)
13331 << Input->getSourceRange()),
13332 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
13333 OpLoc);
13334 return ExprError();
13335 }
13336
13337 // Either we found no viable overloaded operator or we matched a
13338 // built-in operator. In either case, fall through to trying to
13339 // build a built-in operation.
13340 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13341}
13342
13343/// Perform lookup for an overloaded binary operator.
13344void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
13345 OverloadedOperatorKind Op,
13346 const UnresolvedSetImpl &Fns,
13347 ArrayRef<Expr *> Args, bool PerformADL) {
13348 SourceLocation OpLoc = CandidateSet.getLocation();
13349
13350 OverloadedOperatorKind ExtraOp =
13351 CandidateSet.getRewriteInfo().AllowRewrittenCandidates
13352 ? getRewrittenOverloadedOperator(Op)
13353 : OO_None;
13354
13355 // Add the candidates from the given function set. This also adds the
13356 // rewritten candidates using these functions if necessary.
13357 AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
13358
13359 // Add operator candidates that are member functions.
13360 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13361 if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
13362 AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
13363 OverloadCandidateParamOrder::Reversed);
13364
13365 // In C++20, also add any rewritten member candidates.
13366 if (ExtraOp) {
13367 AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
13368 if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
13369 AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
13370 CandidateSet,
13371 OverloadCandidateParamOrder::Reversed);
13372 }
13373
13374 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
13375 // performed for an assignment operator (nor for operator[] nor operator->,
13376 // which don't get here).
13377 if (Op != OO_Equal && PerformADL) {
13378 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13379 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
13380 /*ExplicitTemplateArgs*/ nullptr,
13381 CandidateSet);
13382 if (ExtraOp) {
13383 DeclarationName ExtraOpName =
13384 Context.DeclarationNames.getCXXOperatorName(ExtraOp);
13385 AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
13386 /*ExplicitTemplateArgs*/ nullptr,
13387 CandidateSet);
13388 }
13389 }
13390
13391 // Add builtin operator candidates.
13392 //
13393 // FIXME: We don't add any rewritten candidates here. This is strictly
13394 // incorrect; a builtin candidate could be hidden by a non-viable candidate,
13395 // resulting in our selecting a rewritten builtin candidate. For example:
13396 //
13397 // enum class E { e };
13398 // bool operator!=(E, E) requires false;
13399 // bool k = E::e != E::e;
13400 //
13401 // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
13402 // it seems unreasonable to consider rewritten builtin candidates. A core
13403 // issue has been filed proposing to removed this requirement.
13404 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
13405}
13406
13407/// Create a binary operation that may resolve to an overloaded
13408/// operator.
13409///
13410/// \param OpLoc The location of the operator itself (e.g., '+').
13411///
13412/// \param Opc The BinaryOperatorKind that describes this operator.
13413///
13414/// \param Fns The set of non-member functions that will be
13415/// considered by overload resolution. The caller needs to build this
13416/// set based on the context using, e.g.,
13417/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
13418/// set should not contain any member functions; those will be added
13419/// by CreateOverloadedBinOp().
13420///
13421/// \param LHS Left-hand argument.
13422/// \param RHS Right-hand argument.
13423/// \param PerformADL Whether to consider operator candidates found by ADL.
13424/// \param AllowRewrittenCandidates Whether to consider candidates found by
13425/// C++20 operator rewrites.
13426/// \param DefaultedFn If we are synthesizing a defaulted operator function,
13427/// the function in question. Such a function is never a candidate in
13428/// our overload resolution. This also enables synthesizing a three-way
13429/// comparison from < and == as described in C++20 [class.spaceship]p1.
13430ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
13431 BinaryOperatorKind Opc,
13432 const UnresolvedSetImpl &Fns, Expr *LHS,
13433 Expr *RHS, bool PerformADL,
13434 bool AllowRewrittenCandidates,
13435 FunctionDecl *DefaultedFn) {
13436 Expr *Args[2] = { LHS, RHS };
13437 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
13438
13439 if (!getLangOpts().CPlusPlus20)
13440 AllowRewrittenCandidates = false;
13441
13442 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
13443
13444 // If either side is type-dependent, create an appropriate dependent
13445 // expression.
13446 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13447 if (Fns.empty()) {
13448 // If there are no functions to store, just build a dependent
13449 // BinaryOperator or CompoundAssignment.
13450 if (BinaryOperator::isCompoundAssignmentOp(Opc))
13451 return CompoundAssignOperator::Create(
13452 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue,
13453 OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy,
13454 Context.DependentTy);
13455 return BinaryOperator::Create(Context, Args[0], Args[1], Opc,
13456 Context.DependentTy, VK_RValue, OK_Ordinary,
13457 OpLoc, CurFPFeatureOverrides());
13458 }
13459
13460 // FIXME: save results of ADL from here?
13461 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13462 // TODO: provide better source location info in DNLoc component.
13463 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
13464 DeclarationNameInfo OpNameInfo(OpName, OpLoc);
13465 ExprResult Fn = CreateUnresolvedLookupExpr(
13466 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL);
13467 if (Fn.isInvalid())
13468 return ExprError();
13469 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args,
13470 Context.DependentTy, VK_RValue, OpLoc,
13471 CurFPFeatureOverrides());
13472 }
13473
13474 // Always do placeholder-like conversions on the RHS.
13475 if (checkPlaceholderForOverload(*this, Args[1]))
13476 return ExprError();
13477
13478 // Do placeholder-like conversion on the LHS; note that we should
13479 // not get here with a PseudoObject LHS.
13480 assert(Args[0]->getObjectKind() != OK_ObjCProperty)((Args[0]->getObjectKind() != OK_ObjCProperty) ? static_cast
<void> (0) : __assert_fail ("Args[0]->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 13480, __PRETTY_FUNCTION__))
;
13481 if (checkPlaceholderForOverload(*this, Args[0]))
13482 return ExprError();
13483
13484 // If this is the assignment operator, we only perform overload resolution
13485 // if the left-hand side is a class or enumeration type. This is actually
13486 // a hack. The standard requires that we do overload resolution between the
13487 // various built-in candidates, but as DR507 points out, this can lead to
13488 // problems. So we do it this way, which pretty much follows what GCC does.
13489 // Note that we go the traditional code path for compound assignment forms.
13490 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
13491 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13492
13493 // If this is the .* operator, which is not overloadable, just
13494 // create a built-in binary operator.
13495 if (Opc == BO_PtrMemD)
13496 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13497
13498 // Build the overload set.
13499 OverloadCandidateSet CandidateSet(
13500 OpLoc, OverloadCandidateSet::CSK_Operator,
13501 OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
13502 if (DefaultedFn)
13503 CandidateSet.exclude(DefaultedFn);
13504 LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL);
13505
13506 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13507
13508 // Perform overload resolution.
13509 OverloadCandidateSet::iterator Best;
13510 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
13511 case OR_Success: {
13512 // We found a built-in operator or an overloaded operator.
13513 FunctionDecl *FnDecl = Best->Function;
13514
13515 bool IsReversed = Best->isReversed();
13516 if (IsReversed)
13517 std::swap(Args[0], Args[1]);
13518
13519 if (FnDecl) {
13520 Expr *Base = nullptr;
13521 // We matched an overloaded operator. Build a call to that
13522 // operator.
13523
13524 OverloadedOperatorKind ChosenOp =
13525 FnDecl->getDeclName().getCXXOverloadedOperator();
13526
13527 // C++2a [over.match.oper]p9:
13528 // If a rewritten operator== candidate is selected by overload
13529 // resolution for an operator@, its return type shall be cv bool
13530 if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
13531 !FnDecl->getReturnType()->isBooleanType()) {
13532 bool IsExtension =
13533 FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType();
13534 Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool
13535 : diag::err_ovl_rewrite_equalequal_not_bool)
13536 << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
13537 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13538 Diag(FnDecl->getLocation(), diag::note_declared_at);
13539 if (!IsExtension)
13540 return ExprError();
13541 }
13542
13543 if (AllowRewrittenCandidates && !IsReversed &&
13544 CandidateSet.getRewriteInfo().isReversible()) {
13545 // We could have reversed this operator, but didn't. Check if some
13546 // reversed form was a viable candidate, and if so, if it had a
13547 // better conversion for either parameter. If so, this call is
13548 // formally ambiguous, and allowing it is an extension.
13549 llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith;
13550 for (OverloadCandidate &Cand : CandidateSet) {
13551 if (Cand.Viable && Cand.Function && Cand.isReversed() &&
13552 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) {
13553 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
13554 if (CompareImplicitConversionSequences(
13555 *this, OpLoc, Cand.Conversions[ArgIdx],
13556 Best->Conversions[ArgIdx]) ==
13557 ImplicitConversionSequence::Better) {
13558 AmbiguousWith.push_back(Cand.Function);
13559 break;
13560 }
13561 }
13562 }
13563 }
13564
13565 if (!AmbiguousWith.empty()) {
13566 bool AmbiguousWithSelf =
13567 AmbiguousWith.size() == 1 &&
13568 declaresSameEntity(AmbiguousWith.front(), FnDecl);
13569 Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
13570 << BinaryOperator::getOpcodeStr(Opc)
13571 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf
13572 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13573 if (AmbiguousWithSelf) {
13574 Diag(FnDecl->getLocation(),
13575 diag::note_ovl_ambiguous_oper_binary_reversed_self);
13576 } else {
13577 Diag(FnDecl->getLocation(),
13578 diag::note_ovl_ambiguous_oper_binary_selected_candidate);
13579 for (auto *F : AmbiguousWith)
13580 Diag(F->getLocation(),
13581 diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
13582 }
13583 }
13584 }
13585
13586 // Convert the arguments.
13587 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
13588 // Best->Access is only meaningful for class members.
13589 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
13590
13591 ExprResult Arg1 =
13592 PerformCopyInitialization(
13593 InitializedEntity::InitializeParameter(Context,
13594 FnDecl->getParamDecl(0)),
13595 SourceLocation(), Args[1]);
13596 if (Arg1.isInvalid())
13597 return ExprError();
13598
13599 ExprResult Arg0 =
13600 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13601 Best->FoundDecl, Method);
13602 if (Arg0.isInvalid())
13603 return ExprError();
13604 Base = Args[0] = Arg0.getAs<Expr>();
13605 Args[1] = RHS = Arg1.getAs<Expr>();
13606 } else {
13607 // Convert the arguments.
13608 ExprResult Arg0 = PerformCopyInitialization(
13609 InitializedEntity::InitializeParameter(Context,
13610 FnDecl->getParamDecl(0)),
13611 SourceLocation(), Args[0]);
13612 if (Arg0.isInvalid())
13613 return ExprError();
13614
13615 ExprResult Arg1 =
13616 PerformCopyInitialization(
13617 InitializedEntity::InitializeParameter(Context,
13618 FnDecl->getParamDecl(1)),
13619 SourceLocation(), Args[1]);
13620 if (Arg1.isInvalid())
13621 return ExprError();
13622 Args[0] = LHS = Arg0.getAs<Expr>();
13623 Args[1] = RHS = Arg1.getAs<Expr>();
13624 }
13625
13626 // Build the actual expression node.
13627 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
13628 Best->FoundDecl, Base,
13629 HadMultipleCandidates, OpLoc);
13630 if (FnExpr.isInvalid())
13631 return ExprError();
13632
13633 // Determine the result type.
13634 QualType ResultTy = FnDecl->getReturnType();
13635 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
13636 ResultTy = ResultTy.getNonLValueExprType(Context);
13637
13638 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
13639 Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
13640 CurFPFeatureOverrides(), Best->IsADLCandidate);
13641
13642 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
13643 FnDecl))
13644 return ExprError();
13645
13646 ArrayRef<const Expr *> ArgsArray(Args, 2);
13647 const Expr *ImplicitThis = nullptr;
13648 // Cut off the implicit 'this'.
13649 if (isa<CXXMethodDecl>(FnDecl)) {
13650 ImplicitThis = ArgsArray[0];
13651 ArgsArray = ArgsArray.slice(1);
13652 }
13653
13654 // Check for a self move.
13655 if (Op == OO_Equal)
13656 DiagnoseSelfMove(Args[0], Args[1], OpLoc);
13657
13658 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
13659 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
13660 VariadicDoesNotApply);
13661
13662 ExprResult R = MaybeBindToTemporary(TheCall);
13663 if (R.isInvalid())
13664 return ExprError();
13665
13666 R = CheckForImmediateInvocation(R, FnDecl);
13667 if (R.isInvalid())
13668 return ExprError();
13669
13670 // For a rewritten candidate, we've already reversed the arguments
13671 // if needed. Perform the rest of the rewrite now.
13672 if ((Best->RewriteKind & CRK_DifferentOperator) ||
13673 (Op == OO_Spaceship && IsReversed)) {
13674 if (Op == OO_ExclaimEqual) {
13675 assert(ChosenOp == OO_EqualEqual && "unexpected operator name")((ChosenOp == OO_EqualEqual && "unexpected operator name"
) ? static_cast<void> (0) : __assert_fail ("ChosenOp == OO_EqualEqual && \"unexpected operator name\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 13675, __PRETTY_FUNCTION__))
;
13676 R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
13677 } else {
13678 assert(ChosenOp == OO_Spaceship && "unexpected operator name")((ChosenOp == OO_Spaceship && "unexpected operator name"
) ? static_cast<void> (0) : __assert_fail ("ChosenOp == OO_Spaceship && \"unexpected operator name\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 13678, __PRETTY_FUNCTION__))
;
13679 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
13680 Expr *ZeroLiteral =
13681 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
13682
13683 Sema::CodeSynthesisContext Ctx;
13684 Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
13685 Ctx.Entity = FnDecl;
13686 pushCodeSynthesisContext(Ctx);
13687
13688 R = CreateOverloadedBinOp(
13689 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
13690 IsReversed ? R.get() : ZeroLiteral, PerformADL,
13691 /*AllowRewrittenCandidates=*/false);
13692
13693 popCodeSynthesisContext();
13694 }
13695 if (R.isInvalid())
13696 return ExprError();
13697 } else {
13698 assert(ChosenOp == Op && "unexpected operator name")((ChosenOp == Op && "unexpected operator name") ? static_cast
<void> (0) : __assert_fail ("ChosenOp == Op && \"unexpected operator name\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 13698, __PRETTY_FUNCTION__))
;
13699 }
13700
13701 // Make a note in the AST if we did any rewriting.
13702 if (Best->RewriteKind != CRK_None)
13703 R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
13704
13705 return R;
13706 } else {
13707 // We matched a built-in operator. Convert the arguments, then
13708 // break out so that we will build the appropriate built-in
13709 // operator node.
13710 ExprResult ArgsRes0 = PerformImplicitConversion(
13711 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
13712 AA_Passing, CCK_ForBuiltinOverloadedOp);
13713 if (ArgsRes0.isInvalid())
13714 return ExprError();
13715 Args[0] = ArgsRes0.get();
13716
13717 ExprResult ArgsRes1 = PerformImplicitConversion(
13718 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
13719 AA_Passing, CCK_ForBuiltinOverloadedOp);
13720 if (ArgsRes1.isInvalid())
13721 return ExprError();
13722 Args[1] = ArgsRes1.get();
13723 break;
13724 }
13725 }
13726
13727 case OR_No_Viable_Function: {
13728 // C++ [over.match.oper]p9:
13729 // If the operator is the operator , [...] and there are no
13730 // viable functions, then the operator is assumed to be the
13731 // built-in operator and interpreted according to clause 5.
13732 if (Opc == BO_Comma)
13733 break;
13734
13735 // When defaulting an 'operator<=>', we can try to synthesize a three-way
13736 // compare result using '==' and '<'.
13737 if (DefaultedFn && Opc == BO_Cmp) {
13738 ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0],
13739 Args[1], DefaultedFn);
13740 if (E.isInvalid() || E.isUsable())
13741 return E;
13742 }
13743
13744 // For class as left operand for assignment or compound assignment
13745 // operator do not fall through to handling in built-in, but report that
13746 // no overloaded assignment operator found
13747 ExprResult Result = ExprError();
13748 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
13749 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
13750 Args, OpLoc);
13751 if (Args[0]->getType()->isRecordType() &&
13752 Opc >= BO_Assign && Opc <= BO_OrAssign) {
13753 Diag(OpLoc, diag::err_ovl_no_viable_oper)
13754 << BinaryOperator::getOpcodeStr(Opc)
13755 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13756 if (Args[0]->getType()->isIncompleteType()) {
13757 Diag(OpLoc, diag::note_assign_lhs_incomplete)
13758 << Args[0]->getType()
13759 << Args[0]->getSourceRange() << Args[1]->getSourceRange();
13760 }
13761 } else {
13762 // This is an erroneous use of an operator which can be overloaded by
13763 // a non-member function. Check for non-member operators which were
13764 // defined too late to be candidates.
13765 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
13766 // FIXME: Recover by calling the found function.
13767 return ExprError();
13768
13769 // No viable function; try to create a built-in operation, which will
13770 // produce an error. Then, show the non-viable candidates.
13771 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13772 }
13773 assert(Result.isInvalid() &&((Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? static_cast<void> (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 13774, __PRETTY_FUNCTION__))
13774 "C++ binary operator overloading is missing candidates!")((Result.isInvalid() && "C++ binary operator overloading is missing candidates!"
) ? static_cast<void> (0) : __assert_fail ("Result.isInvalid() && \"C++ binary operator overloading is missing candidates!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 13774, __PRETTY_FUNCTION__))
;
13775 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
13776 return Result;
13777 }
13778
13779 case OR_Ambiguous:
13780 CandidateSet.NoteCandidates(
13781 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
13782 << BinaryOperator::getOpcodeStr(Opc)
13783 << Args[0]->getType()
13784 << Args[1]->getType()
13785 << Args[0]->getSourceRange()
13786 << Args[1]->getSourceRange()),
13787 *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13788 OpLoc);
13789 return ExprError();
13790
13791 case OR_Deleted:
13792 if (isImplicitlyDeleted(Best->Function)) {
13793 FunctionDecl *DeletedFD = Best->Function;
13794 DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD);
13795 if (DFK.isSpecialMember()) {
13796 Diag(OpLoc, diag::err_ovl_deleted_special_oper)
13797 << Args[0]->getType() << DFK.asSpecialMember();
13798 } else {
13799 assert(DFK.isComparison())((DFK.isComparison()) ? static_cast<void> (0) : __assert_fail
("DFK.isComparison()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 13799, __PRETTY_FUNCTION__))
;
13800 Diag(OpLoc, diag::err_ovl_deleted_comparison)
13801 << Args[0]->getType() << DeletedFD;
13802 }
13803
13804 // The user probably meant to call this special member. Just
13805 // explain why it's deleted.
13806 NoteDeletedFunction(DeletedFD);
13807 return ExprError();
13808 }
13809 CandidateSet.NoteCandidates(
13810 PartialDiagnosticAt(
13811 OpLoc, PDiag(diag::err_ovl_deleted_oper)
13812 << getOperatorSpelling(Best->Function->getDeclName()
13813 .getCXXOverloadedOperator())
13814 << Args[0]->getSourceRange()
13815 << Args[1]->getSourceRange()),
13816 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
13817 OpLoc);
13818 return ExprError();
13819 }
13820
13821 // We matched a built-in operator; build it.
13822 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
13823}
13824
13825ExprResult Sema::BuildSynthesizedThreeWayComparison(
13826 SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS,
13827 FunctionDecl *DefaultedFn) {
13828 const ComparisonCategoryInfo *Info =
13829 Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType());
13830 // If we're not producing a known comparison category type, we can't
13831 // synthesize a three-way comparison. Let the caller diagnose this.
13832 if (!Info)
13833 return ExprResult((Expr*)nullptr);
13834
13835 // If we ever want to perform this synthesis more generally, we will need to
13836 // apply the temporary materialization conversion to the operands.
13837 assert(LHS->isGLValue() && RHS->isGLValue() &&((LHS->isGLValue() && RHS->isGLValue() &&
"cannot use prvalue expressions more than once") ? static_cast
<void> (0) : __assert_fail ("LHS->isGLValue() && RHS->isGLValue() && \"cannot use prvalue expressions more than once\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 13838, __PRETTY_FUNCTION__))
13838 "cannot use prvalue expressions more than once")((LHS->isGLValue() && RHS->isGLValue() &&
"cannot use prvalue expressions more than once") ? static_cast
<void> (0) : __assert_fail ("LHS->isGLValue() && RHS->isGLValue() && \"cannot use prvalue expressions more than once\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 13838, __PRETTY_FUNCTION__))
;
13839 Expr *OrigLHS = LHS;
13840 Expr *OrigRHS = RHS;
13841
13842 // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to
13843 // each of them multiple times below.
13844 LHS = new (Context)
13845 OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(),
13846 LHS->getObjectKind(), LHS);
13847 RHS = new (Context)
13848 OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(),
13849 RHS->getObjectKind(), RHS);
13850
13851 ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true,
13852 DefaultedFn);
13853 if (Eq.isInvalid())
13854 return ExprError();
13855
13856 ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true,
13857 true, DefaultedFn);
13858 if (Less.isInvalid())
13859 return ExprError();
13860
13861 ExprResult Greater;
13862 if (Info->isPartial()) {
13863 Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true,
13864 DefaultedFn);
13865 if (Greater.isInvalid())
13866 return ExprError();
13867 }
13868
13869 // Form the list of comparisons we're going to perform.
13870 struct Comparison {
13871 ExprResult Cmp;
13872 ComparisonCategoryResult Result;
13873 } Comparisons[4] =
13874 { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal
13875 : ComparisonCategoryResult::Equivalent},
13876 {Less, ComparisonCategoryResult::Less},
13877 {Greater, ComparisonCategoryResult::Greater},
13878 {ExprResult(), ComparisonCategoryResult::Unordered},
13879 };
13880
13881 int I = Info->isPartial() ? 3 : 2;
13882
13883 // Combine the comparisons with suitable conditional expressions.
13884 ExprResult Result;
13885 for (; I >= 0; --I) {
13886 // Build a reference to the comparison category constant.
13887 auto *VI = Info->lookupValueInfo(Comparisons[I].Result);
13888 // FIXME: Missing a constant for a comparison category. Diagnose this?
13889 if (!VI)
13890 return ExprResult((Expr*)nullptr);
13891 ExprResult ThisResult =
13892 BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD);
13893 if (ThisResult.isInvalid())
13894 return ExprError();
13895
13896 // Build a conditional unless this is the final case.
13897 if (Result.get()) {
13898 Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(),
13899 ThisResult.get(), Result.get());
13900 if (Result.isInvalid())
13901 return ExprError();
13902 } else {
13903 Result = ThisResult;
13904 }
13905 }
13906
13907 // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to
13908 // bind the OpaqueValueExprs before they're (repeatedly) used.
13909 Expr *SyntacticForm = BinaryOperator::Create(
13910 Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(),
13911 Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc,
13912 CurFPFeatureOverrides());
13913 Expr *SemanticForm[] = {LHS, RHS, Result.get()};
13914 return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2);
13915}
13916
13917ExprResult
13918Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
13919 SourceLocation RLoc,
13920 Expr *Base, Expr *Idx) {
13921 Expr *Args[2] = { Base, Idx };
13922 DeclarationName OpName =
13923 Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
13924
13925 // If either side is type-dependent, create an appropriate dependent
13926 // expression.
13927 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
13928
13929 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
13930 // CHECKME: no 'operator' keyword?
13931 DeclarationNameInfo OpNameInfo(OpName, LLoc);
13932 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
13933 ExprResult Fn = CreateUnresolvedLookupExpr(
13934 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>());
13935 if (Fn.isInvalid())
13936 return ExprError();
13937 // Can't add any actual overloads yet
13938
13939 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args,
13940 Context.DependentTy, VK_RValue, RLoc,
13941 CurFPFeatureOverrides());
13942 }
13943
13944 // Handle placeholders on both operands.
13945 if (checkPlaceholderForOverload(*this, Args[0]))
13946 return ExprError();
13947 if (checkPlaceholderForOverload(*this, Args[1]))
13948 return ExprError();
13949
13950 // Build an empty overload set.
13951 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
13952
13953 // Subscript can only be overloaded as a member function.
13954
13955 // Add operator candidates that are member functions.
13956 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
13957
13958 // Add builtin operator candidates.
13959 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
13960
13961 bool HadMultipleCandidates = (CandidateSet.size() > 1);
13962
13963 // Perform overload resolution.
13964 OverloadCandidateSet::iterator Best;
13965 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
13966 case OR_Success: {
13967 // We found a built-in operator or an overloaded operator.
13968 FunctionDecl *FnDecl = Best->Function;
13969
13970 if (FnDecl) {
13971 // We matched an overloaded operator. Build a call to that
13972 // operator.
13973
13974 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
13975
13976 // Convert the arguments.
13977 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
13978 ExprResult Arg0 =
13979 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
13980 Best->FoundDecl, Method);
13981 if (Arg0.isInvalid())
13982 return ExprError();
13983 Args[0] = Arg0.get();
13984
13985 // Convert the arguments.
13986 ExprResult InputInit
13987 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
13988 Context,
13989 FnDecl->getParamDecl(0)),
13990 SourceLocation(),
13991 Args[1]);
13992 if (InputInit.isInvalid())
13993 return ExprError();
13994
13995 Args[1] = InputInit.getAs<Expr>();
13996
13997 // Build the actual expression node.
13998 DeclarationNameInfo OpLocInfo(OpName, LLoc);
13999 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
14000 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
14001 Best->FoundDecl,
14002 Base,
14003 HadMultipleCandidates,
14004 OpLocInfo.getLoc(),
14005 OpLocInfo.getInfo());
14006 if (FnExpr.isInvalid())
14007 return ExprError();
14008
14009 // Determine the result type
14010 QualType ResultTy = FnDecl->getReturnType();
14011 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14012 ResultTy = ResultTy.getNonLValueExprType(Context);
14013
14014 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14015 Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc,
14016 CurFPFeatureOverrides());
14017 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
14018 return ExprError();
14019
14020 if (CheckFunctionCall(Method, TheCall,
14021 Method->getType()->castAs<FunctionProtoType>()))
14022 return ExprError();
14023
14024 return MaybeBindToTemporary(TheCall);
14025 } else {
14026 // We matched a built-in operator. Convert the arguments, then
14027 // break out so that we will build the appropriate built-in
14028 // operator node.
14029 ExprResult ArgsRes0 = PerformImplicitConversion(
14030 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
14031 AA_Passing, CCK_ForBuiltinOverloadedOp);
14032 if (ArgsRes0.isInvalid())
14033 return ExprError();
14034 Args[0] = ArgsRes0.get();
14035
14036 ExprResult ArgsRes1 = PerformImplicitConversion(
14037 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
14038 AA_Passing, CCK_ForBuiltinOverloadedOp);
14039 if (ArgsRes1.isInvalid())
14040 return ExprError();
14041 Args[1] = ArgsRes1.get();
14042
14043 break;
14044 }
14045 }
14046
14047 case OR_No_Viable_Function: {
14048 PartialDiagnostic PD = CandidateSet.empty()
14049 ? (PDiag(diag::err_ovl_no_oper)
14050 << Args[0]->getType() << /*subscript*/ 0
14051 << Args[0]->getSourceRange() << Args[1]->getSourceRange())
14052 : (PDiag(diag::err_ovl_no_viable_subscript)
14053 << Args[0]->getType() << Args[0]->getSourceRange()
14054 << Args[1]->getSourceRange());
14055 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
14056 OCD_AllCandidates, Args, "[]", LLoc);
14057 return ExprError();
14058 }
14059
14060 case OR_Ambiguous:
14061 CandidateSet.NoteCandidates(
14062 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
14063 << "[]" << Args[0]->getType()
14064 << Args[1]->getType()
14065 << Args[0]->getSourceRange()
14066 << Args[1]->getSourceRange()),
14067 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc);
14068 return ExprError();
14069
14070 case OR_Deleted:
14071 CandidateSet.NoteCandidates(
14072 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
14073 << "[]" << Args[0]->getSourceRange()
14074 << Args[1]->getSourceRange()),
14075 *this, OCD_AllCandidates, Args, "[]", LLoc);
14076 return ExprError();
14077 }
14078
14079 // We matched a built-in operator; build it.
14080 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
14081}
14082
14083/// BuildCallToMemberFunction - Build a call to a member
14084/// function. MemExpr is the expression that refers to the member
14085/// function (and includes the object parameter), Args/NumArgs are the
14086/// arguments to the function call (not including the object
14087/// parameter). The caller needs to validate that the member
14088/// expression refers to a non-static member function or an overloaded
14089/// member function.
14090ExprResult
14091Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
14092 SourceLocation LParenLoc,
14093 MultiExprArg Args,
14094 SourceLocation RParenLoc) {
14095 assert(MemExprE->getType() == Context.BoundMemberTy ||((MemExprE->getType() == Context.BoundMemberTy || MemExprE
->getType() == Context.OverloadTy) ? static_cast<void>
(0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14096, __PRETTY_FUNCTION__))
14096 MemExprE->getType() == Context.OverloadTy)((MemExprE->getType() == Context.BoundMemberTy || MemExprE
->getType() == Context.OverloadTy) ? static_cast<void>
(0) : __assert_fail ("MemExprE->getType() == Context.BoundMemberTy || MemExprE->getType() == Context.OverloadTy"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14096, __PRETTY_FUNCTION__))
;
14097
14098 // Dig out the member expression. This holds both the object
14099 // argument and the member function we're referring to.
14100 Expr *NakedMemExpr = MemExprE->IgnoreParens();
14101
14102 // Determine whether this is a call to a pointer-to-member function.
14103 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
14104 assert(op->getType() == Context.BoundMemberTy)((op->getType() == Context.BoundMemberTy) ? static_cast<
void> (0) : __assert_fail ("op->getType() == Context.BoundMemberTy"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14104, __PRETTY_FUNCTION__))
;
14105 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI)((op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI
) ? static_cast<void> (0) : __assert_fail ("op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14105, __PRETTY_FUNCTION__))
;
14106
14107 QualType fnType =
14108 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
14109
14110 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
14111 QualType resultType = proto->getCallResultType(Context);
14112 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
14113
14114 // Check that the object type isn't more qualified than the
14115 // member function we're calling.
14116 Qualifiers funcQuals = proto->getMethodQuals();
14117
14118 QualType objectType = op->getLHS()->getType();
14119 if (op->getOpcode() == BO_PtrMemI)
14120 objectType = objectType->castAs<PointerType>()->getPointeeType();
14121 Qualifiers objectQuals = objectType.getQualifiers();
14122
14123 Qualifiers difference = objectQuals - funcQuals;
14124 difference.removeObjCGCAttr();
14125 difference.removeAddressSpace();
14126 if (difference) {
14127 std::string qualsString = difference.getAsString();
14128 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
14129 << fnType.getUnqualifiedType()
14130 << qualsString
14131 << (qualsString.find(' ') == std::string::npos ? 1 : 2);
14132 }
14133
14134 CXXMemberCallExpr *call = CXXMemberCallExpr::Create(
14135 Context, MemExprE, Args, resultType, valueKind, RParenLoc,
14136 CurFPFeatureOverrides(), proto->getNumParams());
14137
14138 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
14139 call, nullptr))
14140 return ExprError();
14141
14142 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
14143 return ExprError();
14144
14145 if (CheckOtherCall(call, proto))
14146 return ExprError();
14147
14148 return MaybeBindToTemporary(call);
14149 }
14150
14151 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
14152 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
14153 RParenLoc, CurFPFeatureOverrides());
14154
14155 UnbridgedCastsSet UnbridgedCasts;
14156 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14157 return ExprError();
14158
14159 MemberExpr *MemExpr;
14160 CXXMethodDecl *Method = nullptr;
14161 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
14162 NestedNameSpecifier *Qualifier = nullptr;
14163 if (isa<MemberExpr>(NakedMemExpr)) {
14164 MemExpr = cast<MemberExpr>(NakedMemExpr);
14165 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
14166 FoundDecl = MemExpr->getFoundDecl();
14167 Qualifier = MemExpr->getQualifier();
14168 UnbridgedCasts.restore();
14169 } else {
14170 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
14171 Qualifier = UnresExpr->getQualifier();
14172
14173 QualType ObjectType = UnresExpr->getBaseType();
14174 Expr::Classification ObjectClassification
14175 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
14176 : UnresExpr->getBase()->Classify(Context);
14177
14178 // Add overload candidates
14179 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
14180 OverloadCandidateSet::CSK_Normal);
14181
14182 // FIXME: avoid copy.
14183 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
14184 if (UnresExpr->hasExplicitTemplateArgs()) {
14185 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
14186 TemplateArgs = &TemplateArgsBuffer;
14187 }
14188
14189 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
14190 E = UnresExpr->decls_end(); I != E; ++I) {
14191
14192 NamedDecl *Func = *I;
14193 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
14194 if (isa<UsingShadowDecl>(Func))
14195 Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
14196
14197
14198 // Microsoft supports direct constructor calls.
14199 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
14200 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
14201 CandidateSet,
14202 /*SuppressUserConversions*/ false);
14203 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
14204 // If explicit template arguments were provided, we can't call a
14205 // non-template member function.
14206 if (TemplateArgs)
14207 continue;
14208
14209 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
14210 ObjectClassification, Args, CandidateSet,
14211 /*SuppressUserConversions=*/false);
14212 } else {
14213 AddMethodTemplateCandidate(
14214 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
14215 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
14216 /*SuppressUserConversions=*/false);
14217 }
14218 }
14219
14220 DeclarationName DeclName = UnresExpr->getMemberName();
14221
14222 UnbridgedCasts.restore();
14223
14224 OverloadCandidateSet::iterator Best;
14225 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
14226 Best)) {
14227 case OR_Success:
14228 Method = cast<CXXMethodDecl>(Best->Function);
14229 FoundDecl = Best->FoundDecl;
14230 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
14231 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
14232 return ExprError();
14233 // If FoundDecl is different from Method (such as if one is a template
14234 // and the other a specialization), make sure DiagnoseUseOfDecl is
14235 // called on both.
14236 // FIXME: This would be more comprehensively addressed by modifying
14237 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
14238 // being used.
14239 if (Method != FoundDecl.getDecl() &&
14240 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
14241 return ExprError();
14242 break;
14243
14244 case OR_No_Viable_Function:
14245 CandidateSet.NoteCandidates(
14246 PartialDiagnosticAt(
14247 UnresExpr->getMemberLoc(),
14248 PDiag(diag::err_ovl_no_viable_member_function_in_call)
14249 << DeclName << MemExprE->getSourceRange()),
14250 *this, OCD_AllCandidates, Args);
14251 // FIXME: Leaking incoming expressions!
14252 return ExprError();
14253
14254 case OR_Ambiguous:
14255 CandidateSet.NoteCandidates(
14256 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14257 PDiag(diag::err_ovl_ambiguous_member_call)
14258 << DeclName << MemExprE->getSourceRange()),
14259 *this, OCD_AmbiguousCandidates, Args);
14260 // FIXME: Leaking incoming expressions!
14261 return ExprError();
14262
14263 case OR_Deleted:
14264 CandidateSet.NoteCandidates(
14265 PartialDiagnosticAt(UnresExpr->getMemberLoc(),
14266 PDiag(diag::err_ovl_deleted_member_call)
14267 << DeclName << MemExprE->getSourceRange()),
14268 *this, OCD_AllCandidates, Args);
14269 // FIXME: Leaking incoming expressions!
14270 return ExprError();
14271 }
14272
14273 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
14274
14275 // If overload resolution picked a static member, build a
14276 // non-member call based on that function.
14277 if (Method->isStatic()) {
14278 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
14279 RParenLoc);
14280 }
14281
14282 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
14283 }
14284
14285 QualType ResultType = Method->getReturnType();
14286 ExprValueKind VK = Expr::getValueKindForType(ResultType);
14287 ResultType = ResultType.getNonLValueExprType(Context);
14288
14289 assert(Method && "Member call to something that isn't a method?")((Method && "Member call to something that isn't a method?"
) ? static_cast<void> (0) : __assert_fail ("Method && \"Member call to something that isn't a method?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14289, __PRETTY_FUNCTION__))
;
14290 const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14291 CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create(
14292 Context, MemExprE, Args, ResultType, VK, RParenLoc,
14293 CurFPFeatureOverrides(), Proto->getNumParams());
14294
14295 // Check for a valid return type.
14296 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
14297 TheCall, Method))
14298 return ExprError();
14299
14300 // Convert the object argument (for a non-static member function call).
14301 // We only need to do this if there was actually an overload; otherwise
14302 // it was done at lookup.
14303 if (!Method->isStatic()) {
14304 ExprResult ObjectArg =
14305 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
14306 FoundDecl, Method);
14307 if (ObjectArg.isInvalid())
14308 return ExprError();
14309 MemExpr->setBase(ObjectArg.get());
14310 }
14311
14312 // Convert the rest of the arguments
14313 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
14314 RParenLoc))
14315 return ExprError();
14316
14317 DiagnoseSentinelCalls(Method, LParenLoc, Args);
14318
14319 if (CheckFunctionCall(Method, TheCall, Proto))
14320 return ExprError();
14321
14322 // In the case the method to call was not selected by the overloading
14323 // resolution process, we still need to handle the enable_if attribute. Do
14324 // that here, so it will not hide previous -- and more relevant -- errors.
14325 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
14326 if (const EnableIfAttr *Attr =
14327 CheckEnableIf(Method, LParenLoc, Args, true)) {
14328 Diag(MemE->getMemberLoc(),
14329 diag::err_ovl_no_viable_member_function_in_call)
14330 << Method << Method->getSourceRange();
14331 Diag(Method->getLocation(),
14332 diag::note_ovl_candidate_disabled_by_function_cond_attr)
14333 << Attr->getCond()->getSourceRange() << Attr->getMessage();
14334 return ExprError();
14335 }
14336 }
14337
14338 if ((isa<CXXConstructorDecl>(CurContext) ||
14339 isa<CXXDestructorDecl>(CurContext)) &&
14340 TheCall->getMethodDecl()->isPure()) {
14341 const CXXMethodDecl *MD = TheCall->getMethodDecl();
14342
14343 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
14344 MemExpr->performsVirtualDispatch(getLangOpts())) {
14345 Diag(MemExpr->getBeginLoc(),
14346 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
14347 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
14348 << MD->getParent();
14349
14350 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
14351 if (getLangOpts().AppleKext)
14352 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
14353 << MD->getParent() << MD->getDeclName();
14354 }
14355 }
14356
14357 if (CXXDestructorDecl *DD =
14358 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
14359 // a->A::f() doesn't go through the vtable, except in AppleKext mode.
14360 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
14361 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
14362 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
14363 MemExpr->getMemberLoc());
14364 }
14365
14366 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall),
14367 TheCall->getMethodDecl());
14368}
14369
14370/// BuildCallToObjectOfClassType - Build a call to an object of class
14371/// type (C++ [over.call.object]), which can end up invoking an
14372/// overloaded function call operator (@c operator()) or performing a
14373/// user-defined conversion on the object argument.
14374ExprResult
14375Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
14376 SourceLocation LParenLoc,
14377 MultiExprArg Args,
14378 SourceLocation RParenLoc) {
14379 if (checkPlaceholderForOverload(*this, Obj))
14380 return ExprError();
14381 ExprResult Object = Obj;
14382
14383 UnbridgedCastsSet UnbridgedCasts;
14384 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
14385 return ExprError();
14386
14387 assert(Object.get()->getType()->isRecordType() &&((Object.get()->getType()->isRecordType() && "Requires object type argument"
) ? static_cast<void> (0) : __assert_fail ("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14388, __PRETTY_FUNCTION__))
14388 "Requires object type argument")((Object.get()->getType()->isRecordType() && "Requires object type argument"
) ? static_cast<void> (0) : __assert_fail ("Object.get()->getType()->isRecordType() && \"Requires object type argument\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14388, __PRETTY_FUNCTION__))
;
14389
14390 // C++ [over.call.object]p1:
14391 // If the primary-expression E in the function call syntax
14392 // evaluates to a class object of type "cv T", then the set of
14393 // candidate functions includes at least the function call
14394 // operators of T. The function call operators of T are obtained by
14395 // ordinary lookup of the name operator() in the context of
14396 // (E).operator().
14397 OverloadCandidateSet CandidateSet(LParenLoc,
14398 OverloadCandidateSet::CSK_Operator);
14399 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
14400
14401 if (RequireCompleteType(LParenLoc, Object.get()->getType(),
14402 diag::err_incomplete_object_call, Object.get()))
14403 return true;
14404
14405 const auto *Record = Object.get()->getType()->castAs<RecordType>();
14406 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
14407 LookupQualifiedName(R, Record->getDecl());
14408 R.suppressDiagnostics();
14409
14410 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14411 Oper != OperEnd; ++Oper) {
14412 AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
14413 Object.get()->Classify(Context), Args, CandidateSet,
14414 /*SuppressUserConversion=*/false);
14415 }
14416
14417 // C++ [over.call.object]p2:
14418 // In addition, for each (non-explicit in C++0x) conversion function
14419 // declared in T of the form
14420 //
14421 // operator conversion-type-id () cv-qualifier;
14422 //
14423 // where cv-qualifier is the same cv-qualification as, or a
14424 // greater cv-qualification than, cv, and where conversion-type-id
14425 // denotes the type "pointer to function of (P1,...,Pn) returning
14426 // R", or the type "reference to pointer to function of
14427 // (P1,...,Pn) returning R", or the type "reference to function
14428 // of (P1,...,Pn) returning R", a surrogate call function [...]
14429 // is also considered as a candidate function. Similarly,
14430 // surrogate call functions are added to the set of candidate
14431 // functions for each conversion function declared in an
14432 // accessible base class provided the function is not hidden
14433 // within T by another intervening declaration.
14434 const auto &Conversions =
14435 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
14436 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
14437 NamedDecl *D = *I;
14438 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
14439 if (isa<UsingShadowDecl>(D))
14440 D = cast<UsingShadowDecl>(D)->getTargetDecl();
14441
14442 // Skip over templated conversion functions; they aren't
14443 // surrogates.
14444 if (isa<FunctionTemplateDecl>(D))
14445 continue;
14446
14447 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
14448 if (!Conv->isExplicit()) {
14449 // Strip the reference type (if any) and then the pointer type (if
14450 // any) to get down to what might be a function type.
14451 QualType ConvType = Conv->getConversionType().getNonReferenceType();
14452 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
14453 ConvType = ConvPtrType->getPointeeType();
14454
14455 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
14456 {
14457 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
14458 Object.get(), Args, CandidateSet);
14459 }
14460 }
14461 }
14462
14463 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14464
14465 // Perform overload resolution.
14466 OverloadCandidateSet::iterator Best;
14467 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
14468 Best)) {
14469 case OR_Success:
14470 // Overload resolution succeeded; we'll build the appropriate call
14471 // below.
14472 break;
14473
14474 case OR_No_Viable_Function: {
14475 PartialDiagnostic PD =
14476 CandidateSet.empty()
14477 ? (PDiag(diag::err_ovl_no_oper)
14478 << Object.get()->getType() << /*call*/ 1
14479 << Object.get()->getSourceRange())
14480 : (PDiag(diag::err_ovl_no_viable_object_call)
14481 << Object.get()->getType() << Object.get()->getSourceRange());
14482 CandidateSet.NoteCandidates(
14483 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
14484 OCD_AllCandidates, Args);
14485 break;
14486 }
14487 case OR_Ambiguous:
14488 CandidateSet.NoteCandidates(
14489 PartialDiagnosticAt(Object.get()->getBeginLoc(),
14490 PDiag(diag::err_ovl_ambiguous_object_call)
14491 << Object.get()->getType()
14492 << Object.get()->getSourceRange()),
14493 *this, OCD_AmbiguousCandidates, Args);
14494 break;
14495
14496 case OR_Deleted:
14497 CandidateSet.NoteCandidates(
14498 PartialDiagnosticAt(Object.get()->getBeginLoc(),
14499 PDiag(diag::err_ovl_deleted_object_call)
14500 << Object.get()->getType()
14501 << Object.get()->getSourceRange()),
14502 *this, OCD_AllCandidates, Args);
14503 break;
14504 }
14505
14506 if (Best == CandidateSet.end())
14507 return true;
14508
14509 UnbridgedCasts.restore();
14510
14511 if (Best->Function == nullptr) {
14512 // Since there is no function declaration, this is one of the
14513 // surrogate candidates. Dig out the conversion function.
14514 CXXConversionDecl *Conv
14515 = cast<CXXConversionDecl>(
14516 Best->Conversions[0].UserDefined.ConversionFunction);
14517
14518 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
14519 Best->FoundDecl);
14520 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
14521 return ExprError();
14522 assert(Conv == Best->FoundDecl.getDecl() &&((Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? static_cast<void> (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14523, __PRETTY_FUNCTION__))
14523 "Found Decl & conversion-to-functionptr should be same, right?!")((Conv == Best->FoundDecl.getDecl() && "Found Decl & conversion-to-functionptr should be same, right?!"
) ? static_cast<void> (0) : __assert_fail ("Conv == Best->FoundDecl.getDecl() && \"Found Decl & conversion-to-functionptr should be same, right?!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14523, __PRETTY_FUNCTION__))
;
14524 // We selected one of the surrogate functions that converts the
14525 // object parameter to a function pointer. Perform the conversion
14526 // on the object argument, then let BuildCallExpr finish the job.
14527
14528 // Create an implicit member expr to refer to the conversion operator.
14529 // and then call it.
14530 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
14531 Conv, HadMultipleCandidates);
14532 if (Call.isInvalid())
14533 return ExprError();
14534 // Record usage of conversion in an implicit cast.
14535 Call = ImplicitCastExpr::Create(
14536 Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(),
14537 nullptr, VK_RValue, CurFPFeatureOverrides());
14538
14539 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
14540 }
14541
14542 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
14543
14544 // We found an overloaded operator(). Build a CXXOperatorCallExpr
14545 // that calls this method, using Object for the implicit object
14546 // parameter and passing along the remaining arguments.
14547 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14548
14549 // An error diagnostic has already been printed when parsing the declaration.
14550 if (Method->isInvalidDecl())
14551 return ExprError();
14552
14553 const auto *Proto = Method->getType()->castAs<FunctionProtoType>();
14554 unsigned NumParams = Proto->getNumParams();
14555
14556 DeclarationNameInfo OpLocInfo(
14557 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
14558 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
14559 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14560 Obj, HadMultipleCandidates,
14561 OpLocInfo.getLoc(),
14562 OpLocInfo.getInfo());
14563 if (NewFn.isInvalid())
14564 return true;
14565
14566 // The number of argument slots to allocate in the call. If we have default
14567 // arguments we need to allocate space for them as well. We additionally
14568 // need one more slot for the object parameter.
14569 unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
14570
14571 // Build the full argument list for the method call (the implicit object
14572 // parameter is placed at the beginning of the list).
14573 SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
14574
14575 bool IsError = false;
14576
14577 // Initialize the implicit object parameter.
14578 ExprResult ObjRes =
14579 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
14580 Best->FoundDecl, Method);
14581 if (ObjRes.isInvalid())
14582 IsError = true;
14583 else
14584 Object = ObjRes;
14585 MethodArgs[0] = Object.get();
14586
14587 // Check the argument types.
14588 for (unsigned i = 0; i != NumParams; i++) {
14589 Expr *Arg;
14590 if (i < Args.size()) {
14591 Arg = Args[i];
14592
14593 // Pass the argument.
14594
14595 ExprResult InputInit
14596 = PerformCopyInitialization(InitializedEntity::InitializeParameter(
14597 Context,
14598 Method->getParamDecl(i)),
14599 SourceLocation(), Arg);
14600
14601 IsError |= InputInit.isInvalid();
14602 Arg = InputInit.getAs<Expr>();
14603 } else {
14604 ExprResult DefArg
14605 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
14606 if (DefArg.isInvalid()) {
14607 IsError = true;
14608 break;
14609 }
14610
14611 Arg = DefArg.getAs<Expr>();
14612 }
14613
14614 MethodArgs[i + 1] = Arg;
14615 }
14616
14617 // If this is a variadic call, handle args passed through "...".
14618 if (Proto->isVariadic()) {
14619 // Promote the arguments (C99 6.5.2.2p7).
14620 for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
14621 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
14622 nullptr);
14623 IsError |= Arg.isInvalid();
14624 MethodArgs[i + 1] = Arg.get();
14625 }
14626 }
14627
14628 if (IsError)
14629 return true;
14630
14631 DiagnoseSentinelCalls(Method, LParenLoc, Args);
14632
14633 // Once we've built TheCall, all of the expressions are properly owned.
14634 QualType ResultTy = Method->getReturnType();
14635 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14636 ResultTy = ResultTy.getNonLValueExprType(Context);
14637
14638 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
14639 Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc,
14640 CurFPFeatureOverrides());
14641
14642 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
14643 return true;
14644
14645 if (CheckFunctionCall(Method, TheCall, Proto))
14646 return true;
14647
14648 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method);
14649}
14650
14651/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
14652/// (if one exists), where @c Base is an expression of class type and
14653/// @c Member is the name of the member we're trying to find.
14654ExprResult
14655Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
14656 bool *NoArrowOperatorFound) {
14657 assert(Base->getType()->isRecordType() &&((Base->getType()->isRecordType() && "left-hand side must have class type"
) ? static_cast<void> (0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14658, __PRETTY_FUNCTION__))
14658 "left-hand side must have class type")((Base->getType()->isRecordType() && "left-hand side must have class type"
) ? static_cast<void> (0) : __assert_fail ("Base->getType()->isRecordType() && \"left-hand side must have class type\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14658, __PRETTY_FUNCTION__))
;
14659
14660 if (checkPlaceholderForOverload(*this, Base))
14661 return ExprError();
14662
14663 SourceLocation Loc = Base->getExprLoc();
14664
14665 // C++ [over.ref]p1:
14666 //
14667 // [...] An expression x->m is interpreted as (x.operator->())->m
14668 // for a class object x of type T if T::operator->() exists and if
14669 // the operator is selected as the best match function by the
14670 // overload resolution mechanism (13.3).
14671 DeclarationName OpName =
14672 Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
14673 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
14674
14675 if (RequireCompleteType(Loc, Base->getType(),
14676 diag::err_typecheck_incomplete_tag, Base))
14677 return ExprError();
14678
14679 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
14680 LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl());
14681 R.suppressDiagnostics();
14682
14683 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
14684 Oper != OperEnd; ++Oper) {
14685 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
14686 None, CandidateSet, /*SuppressUserConversion=*/false);
14687 }
14688
14689 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14690
14691 // Perform overload resolution.
14692 OverloadCandidateSet::iterator Best;
14693 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
14694 case OR_Success:
14695 // Overload resolution succeeded; we'll build the call below.
14696 break;
14697
14698 case OR_No_Viable_Function: {
14699 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
14700 if (CandidateSet.empty()) {
14701 QualType BaseType = Base->getType();
14702 if (NoArrowOperatorFound) {
14703 // Report this specific error to the caller instead of emitting a
14704 // diagnostic, as requested.
14705 *NoArrowOperatorFound = true;
14706 return ExprError();
14707 }
14708 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
14709 << BaseType << Base->getSourceRange();
14710 if (BaseType->isRecordType() && !BaseType->isPointerType()) {
14711 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
14712 << FixItHint::CreateReplacement(OpLoc, ".");
14713 }
14714 } else
14715 Diag(OpLoc, diag::err_ovl_no_viable_oper)
14716 << "operator->" << Base->getSourceRange();
14717 CandidateSet.NoteCandidates(*this, Base, Cands);
14718 return ExprError();
14719 }
14720 case OR_Ambiguous:
14721 CandidateSet.NoteCandidates(
14722 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
14723 << "->" << Base->getType()
14724 << Base->getSourceRange()),
14725 *this, OCD_AmbiguousCandidates, Base);
14726 return ExprError();
14727
14728 case OR_Deleted:
14729 CandidateSet.NoteCandidates(
14730 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
14731 << "->" << Base->getSourceRange()),
14732 *this, OCD_AllCandidates, Base);
14733 return ExprError();
14734 }
14735
14736 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
14737
14738 // Convert the object parameter.
14739 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
14740 ExprResult BaseResult =
14741 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
14742 Best->FoundDecl, Method);
14743 if (BaseResult.isInvalid())
14744 return ExprError();
14745 Base = BaseResult.get();
14746
14747 // Build the operator call.
14748 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
14749 Base, HadMultipleCandidates, OpLoc);
14750 if (FnExpr.isInvalid())
14751 return ExprError();
14752
14753 QualType ResultTy = Method->getReturnType();
14754 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14755 ResultTy = ResultTy.getNonLValueExprType(Context);
14756 CXXOperatorCallExpr *TheCall =
14757 CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base,
14758 ResultTy, VK, OpLoc, CurFPFeatureOverrides());
14759
14760 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
14761 return ExprError();
14762
14763 if (CheckFunctionCall(Method, TheCall,
14764 Method->getType()->castAs<FunctionProtoType>()))
14765 return ExprError();
14766
14767 return MaybeBindToTemporary(TheCall);
14768}
14769
14770/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
14771/// a literal operator described by the provided lookup results.
14772ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
14773 DeclarationNameInfo &SuffixInfo,
14774 ArrayRef<Expr*> Args,
14775 SourceLocation LitEndLoc,
14776 TemplateArgumentListInfo *TemplateArgs) {
14777 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
14778
14779 OverloadCandidateSet CandidateSet(UDSuffixLoc,
14780 OverloadCandidateSet::CSK_Normal);
14781 AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
14782 TemplateArgs);
14783
14784 bool HadMultipleCandidates = (CandidateSet.size() > 1);
14785
14786 // Perform overload resolution. This will usually be trivial, but might need
14787 // to perform substitutions for a literal operator template.
14788 OverloadCandidateSet::iterator Best;
14789 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
14790 case OR_Success:
14791 case OR_Deleted:
14792 break;
14793
14794 case OR_No_Viable_Function:
14795 CandidateSet.NoteCandidates(
14796 PartialDiagnosticAt(UDSuffixLoc,
14797 PDiag(diag::err_ovl_no_viable_function_in_call)
14798 << R.getLookupName()),
14799 *this, OCD_AllCandidates, Args);
14800 return ExprError();
14801
14802 case OR_Ambiguous:
14803 CandidateSet.NoteCandidates(
14804 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
14805 << R.getLookupName()),
14806 *this, OCD_AmbiguousCandidates, Args);
14807 return ExprError();
14808 }
14809
14810 FunctionDecl *FD = Best->Function;
14811 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
14812 nullptr, HadMultipleCandidates,
14813 SuffixInfo.getLoc(),
14814 SuffixInfo.getInfo());
14815 if (Fn.isInvalid())
14816 return true;
14817
14818 // Check the argument types. This should almost always be a no-op, except
14819 // that array-to-pointer decay is applied to string literals.
14820 Expr *ConvArgs[2];
14821 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
14822 ExprResult InputInit = PerformCopyInitialization(
14823 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
14824 SourceLocation(), Args[ArgIdx]);
14825 if (InputInit.isInvalid())
14826 return true;
14827 ConvArgs[ArgIdx] = InputInit.get();
14828 }
14829
14830 QualType ResultTy = FD->getReturnType();
14831 ExprValueKind VK = Expr::getValueKindForType(ResultTy);
14832 ResultTy = ResultTy.getNonLValueExprType(Context);
14833
14834 UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
14835 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
14836 VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides());
14837
14838 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
14839 return ExprError();
14840
14841 if (CheckFunctionCall(FD, UDL, nullptr))
14842 return ExprError();
14843
14844 return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD);
14845}
14846
14847/// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
14848/// given LookupResult is non-empty, it is assumed to describe a member which
14849/// will be invoked. Otherwise, the function will be found via argument
14850/// dependent lookup.
14851/// CallExpr is set to a valid expression and FRS_Success returned on success,
14852/// otherwise CallExpr is set to ExprError() and some non-success value
14853/// is returned.
14854Sema::ForRangeStatus
14855Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
14856 SourceLocation RangeLoc,
14857 const DeclarationNameInfo &NameInfo,
14858 LookupResult &MemberLookup,
14859 OverloadCandidateSet *CandidateSet,
14860 Expr *Range, ExprResult *CallExpr) {
14861 Scope *S = nullptr;
14862
14863 CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
14864 if (!MemberLookup.empty()) {
14865 ExprResult MemberRef =
14866 BuildMemberReferenceExpr(Range, Range->getType(), Loc,
14867 /*IsPtr=*/false, CXXScopeSpec(),
14868 /*TemplateKWLoc=*/SourceLocation(),
14869 /*FirstQualifierInScope=*/nullptr,
14870 MemberLookup,
14871 /*TemplateArgs=*/nullptr, S);
14872 if (MemberRef.isInvalid()) {
14873 *CallExpr = ExprError();
14874 return FRS_DiagnosticIssued;
14875 }
14876 *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
14877 if (CallExpr->isInvalid()) {
14878 *CallExpr = ExprError();
14879 return FRS_DiagnosticIssued;
14880 }
14881 } else {
14882 ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr,
14883 NestedNameSpecifierLoc(),
14884 NameInfo, UnresolvedSet<0>());
14885 if (FnR.isInvalid())
14886 return FRS_DiagnosticIssued;
14887 UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get());
14888
14889 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
14890 CandidateSet, CallExpr);
14891 if (CandidateSet->empty() || CandidateSetError) {
14892 *CallExpr = ExprError();
14893 return FRS_NoViableFunction;
14894 }
14895 OverloadCandidateSet::iterator Best;
14896 OverloadingResult OverloadResult =
14897 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
14898
14899 if (OverloadResult == OR_No_Viable_Function) {
14900 *CallExpr = ExprError();
14901 return FRS_NoViableFunction;
14902 }
14903 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
14904 Loc, nullptr, CandidateSet, &Best,
14905 OverloadResult,
14906 /*AllowTypoCorrection=*/false);
14907 if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
14908 *CallExpr = ExprError();
14909 return FRS_DiagnosticIssued;
14910 }
14911 }
14912 return FRS_Success;
14913}
14914
14915
14916/// FixOverloadedFunctionReference - E is an expression that refers to
14917/// a C++ overloaded function (possibly with some parentheses and
14918/// perhaps a '&' around it). We have resolved the overloaded function
14919/// to the function declaration Fn, so patch up the expression E to
14920/// refer (possibly indirectly) to Fn. Returns the new expr.
14921Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
14922 FunctionDecl *Fn) {
14923 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
14924 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
14925 Found, Fn);
14926 if (SubExpr == PE->getSubExpr())
14927 return PE;
14928
14929 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
14930 }
14931
14932 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
14933 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
14934 Found, Fn);
14935 assert(Context.hasSameType(ICE->getSubExpr()->getType(),((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14937, __PRETTY_FUNCTION__))
14936 SubExpr->getType()) &&((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14937, __PRETTY_FUNCTION__))
14937 "Implicit cast type cannot be determined from overload")((Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr
->getType()) && "Implicit cast type cannot be determined from overload"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(ICE->getSubExpr()->getType(), SubExpr->getType()) && \"Implicit cast type cannot be determined from overload\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14937, __PRETTY_FUNCTION__))
;
14938 assert(ICE->path_empty() && "fixing up hierarchy conversion?")((ICE->path_empty() && "fixing up hierarchy conversion?"
) ? static_cast<void> (0) : __assert_fail ("ICE->path_empty() && \"fixing up hierarchy conversion?\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14938, __PRETTY_FUNCTION__))
;
14939 if (SubExpr == ICE->getSubExpr())
14940 return ICE;
14941
14942 return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(),
14943 SubExpr, nullptr, ICE->getValueKind(),
14944 CurFPFeatureOverrides());
14945 }
14946
14947 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
14948 if (!GSE->isResultDependent()) {
14949 Expr *SubExpr =
14950 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
14951 if (SubExpr == GSE->getResultExpr())
14952 return GSE;
14953
14954 // Replace the resulting type information before rebuilding the generic
14955 // selection expression.
14956 ArrayRef<Expr *> A = GSE->getAssocExprs();
14957 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
14958 unsigned ResultIdx = GSE->getResultIndex();
14959 AssocExprs[ResultIdx] = SubExpr;
14960
14961 return GenericSelectionExpr::Create(
14962 Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
14963 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
14964 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
14965 ResultIdx);
14966 }
14967 // Rather than fall through to the unreachable, return the original generic
14968 // selection expression.
14969 return GSE;
14970 }
14971
14972 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
14973 assert(UnOp->getOpcode() == UO_AddrOf &&((UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"
) ? static_cast<void> (0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14974, __PRETTY_FUNCTION__))
14974 "Can only take the address of an overloaded function")((UnOp->getOpcode() == UO_AddrOf && "Can only take the address of an overloaded function"
) ? static_cast<void> (0) : __assert_fail ("UnOp->getOpcode() == UO_AddrOf && \"Can only take the address of an overloaded function\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14974, __PRETTY_FUNCTION__))
;
14975 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
14976 if (Method->isStatic()) {
14977 // Do nothing: static member functions aren't any different
14978 // from non-member functions.
14979 } else {
14980 // Fix the subexpression, which really has to be an
14981 // UnresolvedLookupExpr holding an overloaded member function
14982 // or template.
14983 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
14984 Found, Fn);
14985 if (SubExpr == UnOp->getSubExpr())
14986 return UnOp;
14987
14988 assert(isa<DeclRefExpr>(SubExpr)((isa<DeclRefExpr>(SubExpr) && "fixed to something other than a decl ref"
) ? static_cast<void> (0) : __assert_fail ("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14989, __PRETTY_FUNCTION__))
14989 && "fixed to something other than a decl ref")((isa<DeclRefExpr>(SubExpr) && "fixed to something other than a decl ref"
) ? static_cast<void> (0) : __assert_fail ("isa<DeclRefExpr>(SubExpr) && \"fixed to something other than a decl ref\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14989, __PRETTY_FUNCTION__))
;
14990 assert(cast<DeclRefExpr>(SubExpr)->getQualifier()((cast<DeclRefExpr>(SubExpr)->getQualifier() &&
"fixed to a member ref with no nested name qualifier") ? static_cast
<void> (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14991, __PRETTY_FUNCTION__))
14991 && "fixed to a member ref with no nested name qualifier")((cast<DeclRefExpr>(SubExpr)->getQualifier() &&
"fixed to a member ref with no nested name qualifier") ? static_cast
<void> (0) : __assert_fail ("cast<DeclRefExpr>(SubExpr)->getQualifier() && \"fixed to a member ref with no nested name qualifier\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 14991, __PRETTY_FUNCTION__))
;
14992
14993 // We have taken the address of a pointer to member
14994 // function. Perform the computation here so that we get the
14995 // appropriate pointer to member type.
14996 QualType ClassType
14997 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
14998 QualType MemPtrType
14999 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
15000 // Under the MS ABI, lock down the inheritance model now.
15001 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15002 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
15003
15004 return UnaryOperator::Create(
15005 Context, SubExpr, UO_AddrOf, MemPtrType, VK_RValue, OK_Ordinary,
15006 UnOp->getOperatorLoc(), false, CurFPFeatureOverrides());
15007 }
15008 }
15009 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
15010 Found, Fn);
15011 if (SubExpr == UnOp->getSubExpr())
15012 return UnOp;
15013
15014 return UnaryOperator::Create(Context, SubExpr, UO_AddrOf,
15015 Context.getPointerType(SubExpr->getType()),
15016 VK_RValue, OK_Ordinary, UnOp->getOperatorLoc(),
15017 false, CurFPFeatureOverrides());
15018 }
15019
15020 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15021 // FIXME: avoid copy.
15022 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15023 if (ULE->hasExplicitTemplateArgs()) {
15024 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
15025 TemplateArgs = &TemplateArgsBuffer;
15026 }
15027
15028 DeclRefExpr *DRE =
15029 BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
15030 ULE->getQualifierLoc(), Found.getDecl(),
15031 ULE->getTemplateKeywordLoc(), TemplateArgs);
15032 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
15033 return DRE;
15034 }
15035
15036 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
15037 // FIXME: avoid copy.
15038 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
15039 if (MemExpr->hasExplicitTemplateArgs()) {
15040 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
15041 TemplateArgs = &TemplateArgsBuffer;
15042 }
15043
15044 Expr *Base;
15045
15046 // If we're filling in a static method where we used to have an
15047 // implicit member access, rewrite to a simple decl ref.
15048 if (MemExpr->isImplicitAccess()) {
15049 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15050 DeclRefExpr *DRE = BuildDeclRefExpr(
15051 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
15052 MemExpr->getQualifierLoc(), Found.getDecl(),
15053 MemExpr->getTemplateKeywordLoc(), TemplateArgs);
15054 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
15055 return DRE;
15056 } else {
15057 SourceLocation Loc = MemExpr->getMemberLoc();
15058 if (MemExpr->getQualifier())
15059 Loc = MemExpr->getQualifierLoc().getBeginLoc();
15060 Base =
15061 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
15062 }
15063 } else
15064 Base = MemExpr->getBase();
15065
15066 ExprValueKind valueKind;
15067 QualType type;
15068 if (cast<CXXMethodDecl>(Fn)->isStatic()) {
15069 valueKind = VK_LValue;
15070 type = Fn->getType();
15071 } else {
15072 valueKind = VK_RValue;
15073 type = Context.BoundMemberTy;
15074 }
15075
15076 return BuildMemberExpr(
15077 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
15078 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
15079 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
15080 type, valueKind, OK_Ordinary, TemplateArgs);
15081 }
15082
15083 llvm_unreachable("Invalid reference to overloaded function")::llvm::llvm_unreachable_internal("Invalid reference to overloaded function"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/lib/Sema/SemaOverload.cpp"
, 15083)
;
15084}
15085
15086ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
15087 DeclAccessPair Found,
15088 FunctionDecl *Fn) {
15089 return FixOverloadedFunctionReference(E.get(), Found, Fn);
15090}

/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h

1//===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the C++ Decl subclasses, other than those for templates
11/// (found in DeclTemplate.h) and friends (in DeclFriend.h).
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_DECLCXX_H
16#define LLVM_CLANG_AST_DECLCXX_H
17
18#include "clang/AST/ASTUnresolvedSet.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclarationName.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExternalASTSource.h"
24#include "clang/AST/LambdaCapture.h"
25#include "clang/AST/NestedNameSpecifier.h"
26#include "clang/AST/Redeclarable.h"
27#include "clang/AST/Stmt.h"
28#include "clang/AST/Type.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/UnresolvedSet.h"
31#include "clang/Basic/LLVM.h"
32#include "clang/Basic/Lambda.h"
33#include "clang/Basic/LangOptions.h"
34#include "clang/Basic/OperatorKinds.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/Specifiers.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/STLExtras.h"
42#include "llvm/ADT/TinyPtrVector.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/TrailingObjects.h"
48#include <cassert>
49#include <cstddef>
50#include <iterator>
51#include <memory>
52#include <vector>
53
54namespace clang {
55
56class ASTContext;
57class ClassTemplateDecl;
58class ConstructorUsingShadowDecl;
59class CXXBasePath;
60class CXXBasePaths;
61class CXXConstructorDecl;
62class CXXDestructorDecl;
63class CXXFinalOverriderMap;
64class CXXIndirectPrimaryBaseSet;
65class CXXMethodDecl;
66class DecompositionDecl;
67class DiagnosticBuilder;
68class FriendDecl;
69class FunctionTemplateDecl;
70class IdentifierInfo;
71class MemberSpecializationInfo;
72class TemplateDecl;
73class TemplateParameterList;
74class UsingDecl;
75
76/// Represents an access specifier followed by colon ':'.
77///
78/// An objects of this class represents sugar for the syntactic occurrence
79/// of an access specifier followed by a colon in the list of member
80/// specifiers of a C++ class definition.
81///
82/// Note that they do not represent other uses of access specifiers,
83/// such as those occurring in a list of base specifiers.
84/// Also note that this class has nothing to do with so-called
85/// "access declarations" (C++98 11.3 [class.access.dcl]).
86class AccessSpecDecl : public Decl {
87 /// The location of the ':'.
88 SourceLocation ColonLoc;
89
90 AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
91 SourceLocation ASLoc, SourceLocation ColonLoc)
92 : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
93 setAccess(AS);
94 }
95
96 AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
97
98 virtual void anchor();
99
100public:
101 /// The location of the access specifier.
102 SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
103
104 /// Sets the location of the access specifier.
105 void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
106
107 /// The location of the colon following the access specifier.
108 SourceLocation getColonLoc() const { return ColonLoc; }
109
110 /// Sets the location of the colon.
111 void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
112
113 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
114 return SourceRange(getAccessSpecifierLoc(), getColonLoc());
115 }
116
117 static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
118 DeclContext *DC, SourceLocation ASLoc,
119 SourceLocation ColonLoc) {
120 return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
121 }
122
123 static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
124
125 // Implement isa/cast/dyncast/etc.
126 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
127 static bool classofKind(Kind K) { return K == AccessSpec; }
128};
129
130/// Represents a base class of a C++ class.
131///
132/// Each CXXBaseSpecifier represents a single, direct base class (or
133/// struct) of a C++ class (or struct). It specifies the type of that
134/// base class, whether it is a virtual or non-virtual base, and what
135/// level of access (public, protected, private) is used for the
136/// derivation. For example:
137///
138/// \code
139/// class A { };
140/// class B { };
141/// class C : public virtual A, protected B { };
142/// \endcode
143///
144/// In this code, C will have two CXXBaseSpecifiers, one for "public
145/// virtual A" and the other for "protected B".
146class CXXBaseSpecifier {
147 /// The source code range that covers the full base
148 /// specifier, including the "virtual" (if present) and access
149 /// specifier (if present).
150 SourceRange Range;
151
152 /// The source location of the ellipsis, if this is a pack
153 /// expansion.
154 SourceLocation EllipsisLoc;
155
156 /// Whether this is a virtual base class or not.
157 unsigned Virtual : 1;
158
159 /// Whether this is the base of a class (true) or of a struct (false).
160 ///
161 /// This determines the mapping from the access specifier as written in the
162 /// source code to the access specifier used for semantic analysis.
163 unsigned BaseOfClass : 1;
164
165 /// Access specifier as written in the source code (may be AS_none).
166 ///
167 /// The actual type of data stored here is an AccessSpecifier, but we use
168 /// "unsigned" here to work around a VC++ bug.
169 unsigned Access : 2;
170
171 /// Whether the class contains a using declaration
172 /// to inherit the named class's constructors.
173 unsigned InheritConstructors : 1;
174
175 /// The type of the base class.
176 ///
177 /// This will be a class or struct (or a typedef of such). The source code
178 /// range does not include the \c virtual or the access specifier.
179 TypeSourceInfo *BaseTypeInfo;
180
181public:
182 CXXBaseSpecifier() = default;
183 CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
184 TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
185 : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
186 Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
187
188 /// Retrieves the source range that contains the entire base specifier.
189 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) { return Range; }
190 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getBegin(); }
191 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return Range.getEnd(); }
192
193 /// Get the location at which the base class type was written.
194 SourceLocation getBaseTypeLoc() const LLVM_READONLY__attribute__((__pure__)) {
195 return BaseTypeInfo->getTypeLoc().getBeginLoc();
196 }
197
198 /// Determines whether the base class is a virtual base class (or not).
199 bool isVirtual() const { return Virtual; }
200
201 /// Determine whether this base class is a base of a class declared
202 /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
203 bool isBaseOfClass() const { return BaseOfClass; }
204
205 /// Determine whether this base specifier is a pack expansion.
206 bool isPackExpansion() const { return EllipsisLoc.isValid(); }
207
208 /// Determine whether this base class's constructors get inherited.
209 bool getInheritConstructors() const { return InheritConstructors; }
210
211 /// Set that this base class's constructors should be inherited.
212 void setInheritConstructors(bool Inherit = true) {
213 InheritConstructors = Inherit;
214 }
215
216 /// For a pack expansion, determine the location of the ellipsis.
217 SourceLocation getEllipsisLoc() const {
218 return EllipsisLoc;
219 }
220
221 /// Returns the access specifier for this base specifier.
222 ///
223 /// This is the actual base specifier as used for semantic analysis, so
224 /// the result can never be AS_none. To retrieve the access specifier as
225 /// written in the source code, use getAccessSpecifierAsWritten().
226 AccessSpecifier getAccessSpecifier() const {
227 if ((AccessSpecifier)Access == AS_none)
228 return BaseOfClass? AS_private : AS_public;
229 else
230 return (AccessSpecifier)Access;
231 }
232
233 /// Retrieves the access specifier as written in the source code
234 /// (which may mean that no access specifier was explicitly written).
235 ///
236 /// Use getAccessSpecifier() to retrieve the access specifier for use in
237 /// semantic analysis.
238 AccessSpecifier getAccessSpecifierAsWritten() const {
239 return (AccessSpecifier)Access;
240 }
241
242 /// Retrieves the type of the base class.
243 ///
244 /// This type will always be an unqualified class type.
245 QualType getType() const {
246 return BaseTypeInfo->getType().getUnqualifiedType();
247 }
248
249 /// Retrieves the type and source location of the base class.
250 TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
251};
252
253/// Represents a C++ struct/union/class.
254class CXXRecordDecl : public RecordDecl {
255 friend class ASTDeclReader;
256 friend class ASTDeclWriter;
257 friend class ASTNodeImporter;
258 friend class ASTReader;
259 friend class ASTRecordWriter;
260 friend class ASTWriter;
261 friend class DeclContext;
262 friend class LambdaExpr;
263
264 friend void FunctionDecl::setPure(bool);
265 friend void TagDecl::startDefinition();
266
267 /// Values used in DefinitionData fields to represent special members.
268 enum SpecialMemberFlags {
269 SMF_DefaultConstructor = 0x1,
270 SMF_CopyConstructor = 0x2,
271 SMF_MoveConstructor = 0x4,
272 SMF_CopyAssignment = 0x8,
273 SMF_MoveAssignment = 0x10,
274 SMF_Destructor = 0x20,
275 SMF_All = 0x3f
276 };
277
278 struct DefinitionData {
279 #define FIELD(Name, Width, Merge) \
280 unsigned Name : Width;
281 #include "CXXRecordDeclDefinitionBits.def"
282
283 /// Whether this class describes a C++ lambda.
284 unsigned IsLambda : 1;
285
286 /// Whether we are currently parsing base specifiers.
287 unsigned IsParsingBaseSpecifiers : 1;
288
289 /// True when visible conversion functions are already computed
290 /// and are available.
291 unsigned ComputedVisibleConversions : 1;
292
293 unsigned HasODRHash : 1;
294
295 /// A hash of parts of the class to help in ODR checking.
296 unsigned ODRHash = 0;
297
298 /// The number of base class specifiers in Bases.
299 unsigned NumBases = 0;
300
301 /// The number of virtual base class specifiers in VBases.
302 unsigned NumVBases = 0;
303
304 /// Base classes of this class.
305 ///
306 /// FIXME: This is wasted space for a union.
307 LazyCXXBaseSpecifiersPtr Bases;
308
309 /// direct and indirect virtual base classes of this class.
310 LazyCXXBaseSpecifiersPtr VBases;
311
312 /// The conversion functions of this C++ class (but not its
313 /// inherited conversion functions).
314 ///
315 /// Each of the entries in this overload set is a CXXConversionDecl.
316 LazyASTUnresolvedSet Conversions;
317
318 /// The conversion functions of this C++ class and all those
319 /// inherited conversion functions that are visible in this class.
320 ///
321 /// Each of the entries in this overload set is a CXXConversionDecl or a
322 /// FunctionTemplateDecl.
323 LazyASTUnresolvedSet VisibleConversions;
324
325 /// The declaration which defines this record.
326 CXXRecordDecl *Definition;
327
328 /// The first friend declaration in this class, or null if there
329 /// aren't any.
330 ///
331 /// This is actually currently stored in reverse order.
332 LazyDeclPtr FirstFriend;
333
334 DefinitionData(CXXRecordDecl *D);
335
336 /// Retrieve the set of direct base classes.
337 CXXBaseSpecifier *getBases() const {
338 if (!Bases.isOffset())
339 return Bases.get(nullptr);
340 return getBasesSlowCase();
341 }
342
343 /// Retrieve the set of virtual base classes.
344 CXXBaseSpecifier *getVBases() const {
345 if (!VBases.isOffset())
346 return VBases.get(nullptr);
347 return getVBasesSlowCase();
348 }
349
350 ArrayRef<CXXBaseSpecifier> bases() const {
351 return llvm::makeArrayRef(getBases(), NumBases);
352 }
353
354 ArrayRef<CXXBaseSpecifier> vbases() const {
355 return llvm::makeArrayRef(getVBases(), NumVBases);
356 }
357
358 private:
359 CXXBaseSpecifier *getBasesSlowCase() const;
360 CXXBaseSpecifier *getVBasesSlowCase() const;
361 };
362
363 struct DefinitionData *DefinitionData;
364
365 /// Describes a C++ closure type (generated by a lambda expression).
366 struct LambdaDefinitionData : public DefinitionData {
367 using Capture = LambdaCapture;
368
369 /// Whether this lambda is known to be dependent, even if its
370 /// context isn't dependent.
371 ///
372 /// A lambda with a non-dependent context can be dependent if it occurs
373 /// within the default argument of a function template, because the
374 /// lambda will have been created with the enclosing context as its
375 /// declaration context, rather than function. This is an unfortunate
376 /// artifact of having to parse the default arguments before.
377 unsigned Dependent : 1;
378
379 /// Whether this lambda is a generic lambda.
380 unsigned IsGenericLambda : 1;
381
382 /// The Default Capture.
383 unsigned CaptureDefault : 2;
384
385 /// The number of captures in this lambda is limited 2^NumCaptures.
386 unsigned NumCaptures : 15;
387
388 /// The number of explicit captures in this lambda.
389 unsigned NumExplicitCaptures : 13;
390
391 /// Has known `internal` linkage.
392 unsigned HasKnownInternalLinkage : 1;
393
394 /// The number used to indicate this lambda expression for name
395 /// mangling in the Itanium C++ ABI.
396 unsigned ManglingNumber : 31;
397
398 /// The declaration that provides context for this lambda, if the
399 /// actual DeclContext does not suffice. This is used for lambdas that
400 /// occur within default arguments of function parameters within the class
401 /// or within a data member initializer.
402 LazyDeclPtr ContextDecl;
403
404 /// The list of captures, both explicit and implicit, for this
405 /// lambda.
406 Capture *Captures = nullptr;
407
408 /// The type of the call method.
409 TypeSourceInfo *MethodTyInfo;
410
411 LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent,
412 bool IsGeneric, LambdaCaptureDefault CaptureDefault)
413 : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
414 CaptureDefault(CaptureDefault), NumCaptures(0),
415 NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0),
416 MethodTyInfo(Info) {
417 IsLambda = true;
418
419 // C++1z [expr.prim.lambda]p4:
420 // This class type is not an aggregate type.
421 Aggregate = false;
422 PlainOldData = false;
423 }
424 };
425
426 struct DefinitionData *dataPtr() const {
427 // Complete the redecl chain (if necessary).
428 getMostRecentDecl();
429 return DefinitionData;
430 }
431
432 struct DefinitionData &data() const {
433 auto *DD = dataPtr();
434 assert(DD && "queried property of class with no definition")((DD && "queried property of class with no definition"
) ? static_cast<void> (0) : __assert_fail ("DD && \"queried property of class with no definition\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 434, __PRETTY_FUNCTION__))
;
435 return *DD;
436 }
437
438 struct LambdaDefinitionData &getLambdaData() const {
439 // No update required: a merged definition cannot change any lambda
440 // properties.
441 auto *DD = DefinitionData;
442 assert(DD && DD->IsLambda && "queried lambda property of non-lambda class")((DD && DD->IsLambda && "queried lambda property of non-lambda class"
) ? static_cast<void> (0) : __assert_fail ("DD && DD->IsLambda && \"queried lambda property of non-lambda class\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 442, __PRETTY_FUNCTION__))
;
443 return static_cast<LambdaDefinitionData&>(*DD);
444 }
445
446 /// The template or declaration that this declaration
447 /// describes or was instantiated from, respectively.
448 ///
449 /// For non-templates, this value will be null. For record
450 /// declarations that describe a class template, this will be a
451 /// pointer to a ClassTemplateDecl. For member
452 /// classes of class template specializations, this will be the
453 /// MemberSpecializationInfo referring to the member class that was
454 /// instantiated or specialized.
455 llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
456 TemplateOrInstantiation;
457
458 /// Called from setBases and addedMember to notify the class that a
459 /// direct or virtual base class or a member of class type has been added.
460 void addedClassSubobject(CXXRecordDecl *Base);
461
462 /// Notify the class that member has been added.
463 ///
464 /// This routine helps maintain information about the class based on which
465 /// members have been added. It will be invoked by DeclContext::addDecl()
466 /// whenever a member is added to this record.
467 void addedMember(Decl *D);
468
469 void markedVirtualFunctionPure();
470
471 /// Get the head of our list of friend declarations, possibly
472 /// deserializing the friends from an external AST source.
473 FriendDecl *getFirstFriend() const;
474
475 /// Determine whether this class has an empty base class subobject of type X
476 /// or of one of the types that might be at offset 0 within X (per the C++
477 /// "standard layout" rules).
478 bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
479 const CXXRecordDecl *X);
480
481protected:
482 CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
483 SourceLocation StartLoc, SourceLocation IdLoc,
484 IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
485
486public:
487 /// Iterator that traverses the base classes of a class.
488 using base_class_iterator = CXXBaseSpecifier *;
489
490 /// Iterator that traverses the base classes of a class.
491 using base_class_const_iterator = const CXXBaseSpecifier *;
492
493 CXXRecordDecl *getCanonicalDecl() override {
494 return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
495 }
496
497 const CXXRecordDecl *getCanonicalDecl() const {
498 return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
499 }
500
501 CXXRecordDecl *getPreviousDecl() {
502 return cast_or_null<CXXRecordDecl>(
503 static_cast<RecordDecl *>(this)->getPreviousDecl());
504 }
505
506 const CXXRecordDecl *getPreviousDecl() const {
507 return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
508 }
509
510 CXXRecordDecl *getMostRecentDecl() {
511 return cast<CXXRecordDecl>(
512 static_cast<RecordDecl *>(this)->getMostRecentDecl());
513 }
514
515 const CXXRecordDecl *getMostRecentDecl() const {
516 return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
517 }
518
519 CXXRecordDecl *getMostRecentNonInjectedDecl() {
520 CXXRecordDecl *Recent =
521 static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
522 while (Recent->isInjectedClassName()) {
523 // FIXME: Does injected class name need to be in the redeclarations chain?
524 assert(Recent->getPreviousDecl())((Recent->getPreviousDecl()) ? static_cast<void> (0)
: __assert_fail ("Recent->getPreviousDecl()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 524, __PRETTY_FUNCTION__))
;
525 Recent = Recent->getPreviousDecl();
526 }
527 return Recent;
528 }
529
530 const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
531 return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
532 }
533
534 CXXRecordDecl *getDefinition() const {
535 // We only need an update if we don't already know which
536 // declaration is the definition.
537 auto *DD = DefinitionData ? DefinitionData : dataPtr();
538 return DD ? DD->Definition : nullptr;
539 }
540
541 bool hasDefinition() const { return DefinitionData || dataPtr(); }
542
543 static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
544 SourceLocation StartLoc, SourceLocation IdLoc,
545 IdentifierInfo *Id,
546 CXXRecordDecl *PrevDecl = nullptr,
547 bool DelayTypeCreation = false);
548 static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
549 TypeSourceInfo *Info, SourceLocation Loc,
550 bool DependentLambda, bool IsGeneric,
551 LambdaCaptureDefault CaptureDefault);
552 static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
553
554 bool isDynamicClass() const {
555 return data().Polymorphic || data().NumVBases != 0;
556 }
557
558 /// @returns true if class is dynamic or might be dynamic because the
559 /// definition is incomplete of dependent.
560 bool mayBeDynamicClass() const {
561 return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
562 }
563
564 /// @returns true if class is non dynamic or might be non dynamic because the
565 /// definition is incomplete of dependent.
566 bool mayBeNonDynamicClass() const {
567 return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
568 }
569
570 void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
571
572 bool isParsingBaseSpecifiers() const {
573 return data().IsParsingBaseSpecifiers;
574 }
575
576 unsigned getODRHash() const;
577
578 /// Sets the base classes of this struct or class.
579 void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
580
581 /// Retrieves the number of base classes of this class.
582 unsigned getNumBases() const { return data().NumBases; }
583
584 using base_class_range = llvm::iterator_range<base_class_iterator>;
585 using base_class_const_range =
586 llvm::iterator_range<base_class_const_iterator>;
587
588 base_class_range bases() {
589 return base_class_range(bases_begin(), bases_end());
590 }
591 base_class_const_range bases() const {
592 return base_class_const_range(bases_begin(), bases_end());
593 }
594
595 base_class_iterator bases_begin() { return data().getBases(); }
596 base_class_const_iterator bases_begin() const { return data().getBases(); }
597 base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
598 base_class_const_iterator bases_end() const {
599 return bases_begin() + data().NumBases;
600 }
601
602 /// Retrieves the number of virtual base classes of this class.
603 unsigned getNumVBases() const { return data().NumVBases; }
604
605 base_class_range vbases() {
606 return base_class_range(vbases_begin(), vbases_end());
607 }
608 base_class_const_range vbases() const {
609 return base_class_const_range(vbases_begin(), vbases_end());
610 }
611
612 base_class_iterator vbases_begin() { return data().getVBases(); }
613 base_class_const_iterator vbases_begin() const { return data().getVBases(); }
614 base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
615 base_class_const_iterator vbases_end() const {
616 return vbases_begin() + data().NumVBases;
617 }
618
619 /// Determine whether this class has any dependent base classes which
620 /// are not the current instantiation.
621 bool hasAnyDependentBases() const;
622
623 /// Iterator access to method members. The method iterator visits
624 /// all method members of the class, including non-instance methods,
625 /// special methods, etc.
626 using method_iterator = specific_decl_iterator<CXXMethodDecl>;
627 using method_range =
628 llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
629
630 method_range methods() const {
631 return method_range(method_begin(), method_end());
632 }
633
634 /// Method begin iterator. Iterates in the order the methods
635 /// were declared.
636 method_iterator method_begin() const {
637 return method_iterator(decls_begin());
638 }
639
640 /// Method past-the-end iterator.
641 method_iterator method_end() const {
642 return method_iterator(decls_end());
643 }
644
645 /// Iterator access to constructor members.
646 using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
647 using ctor_range =
648 llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
649
650 ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
651
652 ctor_iterator ctor_begin() const {
653 return ctor_iterator(decls_begin());
654 }
655
656 ctor_iterator ctor_end() const {
657 return ctor_iterator(decls_end());
658 }
659
660 /// An iterator over friend declarations. All of these are defined
661 /// in DeclFriend.h.
662 class friend_iterator;
663 using friend_range = llvm::iterator_range<friend_iterator>;
664
665 friend_range friends() const;
666 friend_iterator friend_begin() const;
667 friend_iterator friend_end() const;
668 void pushFriendDecl(FriendDecl *FD);
669
670 /// Determines whether this record has any friends.
671 bool hasFriends() const {
672 return data().FirstFriend.isValid();
673 }
674
675 /// \c true if a defaulted copy constructor for this class would be
676 /// deleted.
677 bool defaultedCopyConstructorIsDeleted() const {
678 assert((!needsOverloadResolutionForCopyConstructor() ||(((!needsOverloadResolutionForCopyConstructor() || (data().DeclaredSpecialMembers
& SMF_CopyConstructor)) && "this property has not yet been computed by Sema"
) ? static_cast<void> (0) : __assert_fail ("(!needsOverloadResolutionForCopyConstructor() || (data().DeclaredSpecialMembers & SMF_CopyConstructor)) && \"this property has not yet been computed by Sema\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 680, __PRETTY_FUNCTION__))
679 (data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&(((!needsOverloadResolutionForCopyConstructor() || (data().DeclaredSpecialMembers
& SMF_CopyConstructor)) && "this property has not yet been computed by Sema"
) ? static_cast<void> (0) : __assert_fail ("(!needsOverloadResolutionForCopyConstructor() || (data().DeclaredSpecialMembers & SMF_CopyConstructor)) && \"this property has not yet been computed by Sema\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 680, __PRETTY_FUNCTION__))
680 "this property has not yet been computed by Sema")(((!needsOverloadResolutionForCopyConstructor() || (data().DeclaredSpecialMembers
& SMF_CopyConstructor)) && "this property has not yet been computed by Sema"
) ? static_cast<void> (0) : __assert_fail ("(!needsOverloadResolutionForCopyConstructor() || (data().DeclaredSpecialMembers & SMF_CopyConstructor)) && \"this property has not yet been computed by Sema\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 680, __PRETTY_FUNCTION__))
;
681 return data().DefaultedCopyConstructorIsDeleted;
682 }
683
684 /// \c true if a defaulted move constructor for this class would be
685 /// deleted.
686 bool defaultedMoveConstructorIsDeleted() const {
687 assert((!needsOverloadResolutionForMoveConstructor() ||(((!needsOverloadResolutionForMoveConstructor() || (data().DeclaredSpecialMembers
& SMF_MoveConstructor)) && "this property has not yet been computed by Sema"
) ? static_cast<void> (0) : __assert_fail ("(!needsOverloadResolutionForMoveConstructor() || (data().DeclaredSpecialMembers & SMF_MoveConstructor)) && \"this property has not yet been computed by Sema\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 689, __PRETTY_FUNCTION__))
688 (data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&(((!needsOverloadResolutionForMoveConstructor() || (data().DeclaredSpecialMembers
& SMF_MoveConstructor)) && "this property has not yet been computed by Sema"
) ? static_cast<void> (0) : __assert_fail ("(!needsOverloadResolutionForMoveConstructor() || (data().DeclaredSpecialMembers & SMF_MoveConstructor)) && \"this property has not yet been computed by Sema\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 689, __PRETTY_FUNCTION__))
689 "this property has not yet been computed by Sema")(((!needsOverloadResolutionForMoveConstructor() || (data().DeclaredSpecialMembers
& SMF_MoveConstructor)) && "this property has not yet been computed by Sema"
) ? static_cast<void> (0) : __assert_fail ("(!needsOverloadResolutionForMoveConstructor() || (data().DeclaredSpecialMembers & SMF_MoveConstructor)) && \"this property has not yet been computed by Sema\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 689, __PRETTY_FUNCTION__))
;
690 return data().DefaultedMoveConstructorIsDeleted;
691 }
692
693 /// \c true if a defaulted destructor for this class would be deleted.
694 bool defaultedDestructorIsDeleted() const {
695 assert((!needsOverloadResolutionForDestructor() ||(((!needsOverloadResolutionForDestructor() || (data().DeclaredSpecialMembers
& SMF_Destructor)) && "this property has not yet been computed by Sema"
) ? static_cast<void> (0) : __assert_fail ("(!needsOverloadResolutionForDestructor() || (data().DeclaredSpecialMembers & SMF_Destructor)) && \"this property has not yet been computed by Sema\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 697, __PRETTY_FUNCTION__))
696 (data().DeclaredSpecialMembers & SMF_Destructor)) &&(((!needsOverloadResolutionForDestructor() || (data().DeclaredSpecialMembers
& SMF_Destructor)) && "this property has not yet been computed by Sema"
) ? static_cast<void> (0) : __assert_fail ("(!needsOverloadResolutionForDestructor() || (data().DeclaredSpecialMembers & SMF_Destructor)) && \"this property has not yet been computed by Sema\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 697, __PRETTY_FUNCTION__))
697 "this property has not yet been computed by Sema")(((!needsOverloadResolutionForDestructor() || (data().DeclaredSpecialMembers
& SMF_Destructor)) && "this property has not yet been computed by Sema"
) ? static_cast<void> (0) : __assert_fail ("(!needsOverloadResolutionForDestructor() || (data().DeclaredSpecialMembers & SMF_Destructor)) && \"this property has not yet been computed by Sema\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 697, __PRETTY_FUNCTION__))
;
698 return data().DefaultedDestructorIsDeleted;
699 }
700
701 /// \c true if we know for sure that this class has a single,
702 /// accessible, unambiguous copy constructor that is not deleted.
703 bool hasSimpleCopyConstructor() const {
704 return !hasUserDeclaredCopyConstructor() &&
705 !data().DefaultedCopyConstructorIsDeleted;
706 }
707
708 /// \c true if we know for sure that this class has a single,
709 /// accessible, unambiguous move constructor that is not deleted.
710 bool hasSimpleMoveConstructor() const {
711 return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
712 !data().DefaultedMoveConstructorIsDeleted;
713 }
714
715 /// \c true if we know for sure that this class has a single,
716 /// accessible, unambiguous copy assignment operator that is not deleted.
717 bool hasSimpleCopyAssignment() const {
718 return !hasUserDeclaredCopyAssignment() &&
719 !data().DefaultedCopyAssignmentIsDeleted;
720 }
721
722 /// \c true if we know for sure that this class has a single,
723 /// accessible, unambiguous move assignment operator that is not deleted.
724 bool hasSimpleMoveAssignment() const {
725 return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
726 !data().DefaultedMoveAssignmentIsDeleted;
727 }
728
729 /// \c true if we know for sure that this class has an accessible
730 /// destructor that is not deleted.
731 bool hasSimpleDestructor() const {
732 return !hasUserDeclaredDestructor() &&
733 !data().DefaultedDestructorIsDeleted;
734 }
735
736 /// Determine whether this class has any default constructors.
737 bool hasDefaultConstructor() const {
738 return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
739 needsImplicitDefaultConstructor();
740 }
741
742 /// Determine if we need to declare a default constructor for
743 /// this class.
744 ///
745 /// This value is used for lazy creation of default constructors.
746 bool needsImplicitDefaultConstructor() const {
747 return !data().UserDeclaredConstructor &&
748 !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
749 (!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
750 }
751
752 /// Determine whether this class has any user-declared constructors.
753 ///
754 /// When true, a default constructor will not be implicitly declared.
755 bool hasUserDeclaredConstructor() const {
756 return data().UserDeclaredConstructor;
757 }
758
759 /// Whether this class has a user-provided default constructor
760 /// per C++11.
761 bool hasUserProvidedDefaultConstructor() const {
762 return data().UserProvidedDefaultConstructor;
763 }
764
765 /// Determine whether this class has a user-declared copy constructor.
766 ///
767 /// When false, a copy constructor will be implicitly declared.
768 bool hasUserDeclaredCopyConstructor() const {
769 return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
770 }
771
772 /// Determine whether this class needs an implicit copy
773 /// constructor to be lazily declared.
774 bool needsImplicitCopyConstructor() const {
775 return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
776 }
777
778 /// Determine whether we need to eagerly declare a defaulted copy
779 /// constructor for this class.
780 bool needsOverloadResolutionForCopyConstructor() const {
781 // C++17 [class.copy.ctor]p6:
782 // If the class definition declares a move constructor or move assignment
783 // operator, the implicitly declared copy constructor is defined as
784 // deleted.
785 // In MSVC mode, sometimes a declared move assignment does not delete an
786 // implicit copy constructor, so defer this choice to Sema.
787 if (data().UserDeclaredSpecialMembers &
788 (SMF_MoveConstructor | SMF_MoveAssignment))
789 return true;
790 return data().NeedOverloadResolutionForCopyConstructor;
791 }
792
793 /// Determine whether an implicit copy constructor for this type
794 /// would have a parameter with a const-qualified reference type.
795 bool implicitCopyConstructorHasConstParam() const {
796 return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
797 (isAbstract() ||
798 data().ImplicitCopyConstructorCanHaveConstParamForVBase);
799 }
800
801 /// Determine whether this class has a copy constructor with
802 /// a parameter type which is a reference to a const-qualified type.
803 bool hasCopyConstructorWithConstParam() const {
804 return data().HasDeclaredCopyConstructorWithConstParam ||
805 (needsImplicitCopyConstructor() &&
806 implicitCopyConstructorHasConstParam());
807 }
808
809 /// Whether this class has a user-declared move constructor or
810 /// assignment operator.
811 ///
812 /// When false, a move constructor and assignment operator may be
813 /// implicitly declared.
814 bool hasUserDeclaredMoveOperation() const {
815 return data().UserDeclaredSpecialMembers &
816 (SMF_MoveConstructor | SMF_MoveAssignment);
817 }
818
819 /// Determine whether this class has had a move constructor
820 /// declared by the user.
821 bool hasUserDeclaredMoveConstructor() const {
822 return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
823 }
824
825 /// Determine whether this class has a move constructor.
826 bool hasMoveConstructor() const {
827 return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
828 needsImplicitMoveConstructor();
829 }
830
831 /// Set that we attempted to declare an implicit copy
832 /// constructor, but overload resolution failed so we deleted it.
833 void setImplicitCopyConstructorIsDeleted() {
834 assert((data().DefaultedCopyConstructorIsDeleted ||(((data().DefaultedCopyConstructorIsDeleted || needsOverloadResolutionForCopyConstructor
()) && "Copy constructor should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedCopyConstructorIsDeleted || needsOverloadResolutionForCopyConstructor()) && \"Copy constructor should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 836, __PRETTY_FUNCTION__))
835 needsOverloadResolutionForCopyConstructor()) &&(((data().DefaultedCopyConstructorIsDeleted || needsOverloadResolutionForCopyConstructor
()) && "Copy constructor should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedCopyConstructorIsDeleted || needsOverloadResolutionForCopyConstructor()) && \"Copy constructor should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 836, __PRETTY_FUNCTION__))
836 "Copy constructor should not be deleted")(((data().DefaultedCopyConstructorIsDeleted || needsOverloadResolutionForCopyConstructor
()) && "Copy constructor should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedCopyConstructorIsDeleted || needsOverloadResolutionForCopyConstructor()) && \"Copy constructor should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 836, __PRETTY_FUNCTION__))
;
837 data().DefaultedCopyConstructorIsDeleted = true;
838 }
839
840 /// Set that we attempted to declare an implicit move
841 /// constructor, but overload resolution failed so we deleted it.
842 void setImplicitMoveConstructorIsDeleted() {
843 assert((data().DefaultedMoveConstructorIsDeleted ||(((data().DefaultedMoveConstructorIsDeleted || needsOverloadResolutionForMoveConstructor
()) && "move constructor should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedMoveConstructorIsDeleted || needsOverloadResolutionForMoveConstructor()) && \"move constructor should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 845, __PRETTY_FUNCTION__))
844 needsOverloadResolutionForMoveConstructor()) &&(((data().DefaultedMoveConstructorIsDeleted || needsOverloadResolutionForMoveConstructor
()) && "move constructor should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedMoveConstructorIsDeleted || needsOverloadResolutionForMoveConstructor()) && \"move constructor should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 845, __PRETTY_FUNCTION__))
845 "move constructor should not be deleted")(((data().DefaultedMoveConstructorIsDeleted || needsOverloadResolutionForMoveConstructor
()) && "move constructor should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedMoveConstructorIsDeleted || needsOverloadResolutionForMoveConstructor()) && \"move constructor should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 845, __PRETTY_FUNCTION__))
;
846 data().DefaultedMoveConstructorIsDeleted = true;
847 }
848
849 /// Set that we attempted to declare an implicit destructor,
850 /// but overload resolution failed so we deleted it.
851 void setImplicitDestructorIsDeleted() {
852 assert((data().DefaultedDestructorIsDeleted ||(((data().DefaultedDestructorIsDeleted || needsOverloadResolutionForDestructor
()) && "destructor should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedDestructorIsDeleted || needsOverloadResolutionForDestructor()) && \"destructor should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 854, __PRETTY_FUNCTION__))
853 needsOverloadResolutionForDestructor()) &&(((data().DefaultedDestructorIsDeleted || needsOverloadResolutionForDestructor
()) && "destructor should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedDestructorIsDeleted || needsOverloadResolutionForDestructor()) && \"destructor should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 854, __PRETTY_FUNCTION__))
854 "destructor should not be deleted")(((data().DefaultedDestructorIsDeleted || needsOverloadResolutionForDestructor
()) && "destructor should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedDestructorIsDeleted || needsOverloadResolutionForDestructor()) && \"destructor should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 854, __PRETTY_FUNCTION__))
;
855 data().DefaultedDestructorIsDeleted = true;
856 }
857
858 /// Determine whether this class should get an implicit move
859 /// constructor or if any existing special member function inhibits this.
860 bool needsImplicitMoveConstructor() const {
861 return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
862 !hasUserDeclaredCopyConstructor() &&
863 !hasUserDeclaredCopyAssignment() &&
864 !hasUserDeclaredMoveAssignment() &&
865 !hasUserDeclaredDestructor();
866 }
867
868 /// Determine whether we need to eagerly declare a defaulted move
869 /// constructor for this class.
870 bool needsOverloadResolutionForMoveConstructor() const {
871 return data().NeedOverloadResolutionForMoveConstructor;
872 }
873
874 /// Determine whether this class has a user-declared copy assignment
875 /// operator.
876 ///
877 /// When false, a copy assignment operator will be implicitly declared.
878 bool hasUserDeclaredCopyAssignment() const {
879 return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
880 }
881
882 /// Set that we attempted to declare an implicit copy assignment
883 /// operator, but overload resolution failed so we deleted it.
884 void setImplicitCopyAssignmentIsDeleted() {
885 assert((data().DefaultedCopyAssignmentIsDeleted ||(((data().DefaultedCopyAssignmentIsDeleted || needsOverloadResolutionForCopyAssignment
()) && "copy assignment should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedCopyAssignmentIsDeleted || needsOverloadResolutionForCopyAssignment()) && \"copy assignment should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 887, __PRETTY_FUNCTION__))
886 needsOverloadResolutionForCopyAssignment()) &&(((data().DefaultedCopyAssignmentIsDeleted || needsOverloadResolutionForCopyAssignment
()) && "copy assignment should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedCopyAssignmentIsDeleted || needsOverloadResolutionForCopyAssignment()) && \"copy assignment should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 887, __PRETTY_FUNCTION__))
887 "copy assignment should not be deleted")(((data().DefaultedCopyAssignmentIsDeleted || needsOverloadResolutionForCopyAssignment
()) && "copy assignment should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedCopyAssignmentIsDeleted || needsOverloadResolutionForCopyAssignment()) && \"copy assignment should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 887, __PRETTY_FUNCTION__))
;
888 data().DefaultedCopyAssignmentIsDeleted = true;
889 }
890
891 /// Determine whether this class needs an implicit copy
892 /// assignment operator to be lazily declared.
893 bool needsImplicitCopyAssignment() const {
894 return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
895 }
896
897 /// Determine whether we need to eagerly declare a defaulted copy
898 /// assignment operator for this class.
899 bool needsOverloadResolutionForCopyAssignment() const {
900 // C++20 [class.copy.assign]p2:
901 // If the class definition declares a move constructor or move assignment
902 // operator, the implicitly declared copy assignment operator is defined
903 // as deleted.
904 // In MSVC mode, sometimes a declared move constructor does not delete an
905 // implicit copy assignment, so defer this choice to Sema.
906 if (data().UserDeclaredSpecialMembers &
907 (SMF_MoveConstructor | SMF_MoveAssignment))
908 return true;
909 return data().NeedOverloadResolutionForCopyAssignment;
910 }
911
912 /// Determine whether an implicit copy assignment operator for this
913 /// type would have a parameter with a const-qualified reference type.
914 bool implicitCopyAssignmentHasConstParam() const {
915 return data().ImplicitCopyAssignmentHasConstParam;
916 }
917
918 /// Determine whether this class has a copy assignment operator with
919 /// a parameter type which is a reference to a const-qualified type or is not
920 /// a reference.
921 bool hasCopyAssignmentWithConstParam() const {
922 return data().HasDeclaredCopyAssignmentWithConstParam ||
923 (needsImplicitCopyAssignment() &&
924 implicitCopyAssignmentHasConstParam());
925 }
926
927 /// Determine whether this class has had a move assignment
928 /// declared by the user.
929 bool hasUserDeclaredMoveAssignment() const {
930 return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
931 }
932
933 /// Determine whether this class has a move assignment operator.
934 bool hasMoveAssignment() const {
935 return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
936 needsImplicitMoveAssignment();
937 }
938
939 /// Set that we attempted to declare an implicit move assignment
940 /// operator, but overload resolution failed so we deleted it.
941 void setImplicitMoveAssignmentIsDeleted() {
942 assert((data().DefaultedMoveAssignmentIsDeleted ||(((data().DefaultedMoveAssignmentIsDeleted || needsOverloadResolutionForMoveAssignment
()) && "move assignment should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedMoveAssignmentIsDeleted || needsOverloadResolutionForMoveAssignment()) && \"move assignment should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 944, __PRETTY_FUNCTION__))
943 needsOverloadResolutionForMoveAssignment()) &&(((data().DefaultedMoveAssignmentIsDeleted || needsOverloadResolutionForMoveAssignment
()) && "move assignment should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedMoveAssignmentIsDeleted || needsOverloadResolutionForMoveAssignment()) && \"move assignment should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 944, __PRETTY_FUNCTION__))
944 "move assignment should not be deleted")(((data().DefaultedMoveAssignmentIsDeleted || needsOverloadResolutionForMoveAssignment
()) && "move assignment should not be deleted") ? static_cast
<void> (0) : __assert_fail ("(data().DefaultedMoveAssignmentIsDeleted || needsOverloadResolutionForMoveAssignment()) && \"move assignment should not be deleted\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 944, __PRETTY_FUNCTION__))
;
945 data().DefaultedMoveAssignmentIsDeleted = true;
946 }
947
948 /// Determine whether this class should get an implicit move
949 /// assignment operator or if any existing special member function inhibits
950 /// this.
951 bool needsImplicitMoveAssignment() const {
952 return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
953 !hasUserDeclaredCopyConstructor() &&
954 !hasUserDeclaredCopyAssignment() &&
955 !hasUserDeclaredMoveConstructor() &&
956 !hasUserDeclaredDestructor() &&
957 (!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
958 }
959
960 /// Determine whether we need to eagerly declare a move assignment
961 /// operator for this class.
962 bool needsOverloadResolutionForMoveAssignment() const {
963 return data().NeedOverloadResolutionForMoveAssignment;
964 }
965
966 /// Determine whether this class has a user-declared destructor.
967 ///
968 /// When false, a destructor will be implicitly declared.
969 bool hasUserDeclaredDestructor() const {
970 return data().UserDeclaredSpecialMembers & SMF_Destructor;
971 }
972
973 /// Determine whether this class needs an implicit destructor to
974 /// be lazily declared.
975 bool needsImplicitDestructor() const {
976 return !(data().DeclaredSpecialMembers & SMF_Destructor);
977 }
978
979 /// Determine whether we need to eagerly declare a destructor for this
980 /// class.
981 bool needsOverloadResolutionForDestructor() const {
982 return data().NeedOverloadResolutionForDestructor;
983 }
984
985 /// Determine whether this class describes a lambda function object.
986 bool isLambda() const {
987 // An update record can't turn a non-lambda into a lambda.
988 auto *DD = DefinitionData;
989 return DD && DD->IsLambda;
15
Assuming 'DD' is non-null
16
Returning value, which participates in a condition later
990 }
991
992 /// Determine whether this class describes a generic
993 /// lambda function object (i.e. function call operator is
994 /// a template).
995 bool isGenericLambda() const;
996
997 /// Determine whether this lambda should have an implicit default constructor
998 /// and copy and move assignment operators.
999 bool lambdaIsDefaultConstructibleAndAssignable() const;
1000
1001 /// Retrieve the lambda call operator of the closure type
1002 /// if this is a closure type.
1003 CXXMethodDecl *getLambdaCallOperator() const;
1004
1005 /// Retrieve the dependent lambda call operator of the closure type
1006 /// if this is a templated closure type.
1007 FunctionTemplateDecl *getDependentLambdaCallOperator() const;
1008
1009 /// Retrieve the lambda static invoker, the address of which
1010 /// is returned by the conversion operator, and the body of which
1011 /// is forwarded to the lambda call operator. The version that does not
1012 /// take a calling convention uses the 'default' calling convention for free
1013 /// functions if the Lambda's calling convention was not modified via
1014 /// attribute. Otherwise, it will return the calling convention specified for
1015 /// the lambda.
1016 CXXMethodDecl *getLambdaStaticInvoker() const;
1017 CXXMethodDecl *getLambdaStaticInvoker(CallingConv CC) const;
1018
1019 /// Retrieve the generic lambda's template parameter list.
1020 /// Returns null if the class does not represent a lambda or a generic
1021 /// lambda.
1022 TemplateParameterList *getGenericLambdaTemplateParameterList() const;
1023
1024 /// Retrieve the lambda template parameters that were specified explicitly.
1025 ArrayRef<NamedDecl *> getLambdaExplicitTemplateParameters() const;
1026
1027 LambdaCaptureDefault getLambdaCaptureDefault() const {
1028 assert(isLambda())((isLambda()) ? static_cast<void> (0) : __assert_fail (
"isLambda()", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 1028, __PRETTY_FUNCTION__))
;
1029 return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
1030 }
1031
1032 /// Set the captures for this lambda closure type.
1033 void setCaptures(ASTContext &Context, ArrayRef<LambdaCapture> Captures);
1034
1035 /// For a closure type, retrieve the mapping from captured
1036 /// variables and \c this to the non-static data members that store the
1037 /// values or references of the captures.
1038 ///
1039 /// \param Captures Will be populated with the mapping from captured
1040 /// variables to the corresponding fields.
1041 ///
1042 /// \param ThisCapture Will be set to the field declaration for the
1043 /// \c this capture.
1044 ///
1045 /// \note No entries will be added for init-captures, as they do not capture
1046 /// variables.
1047 void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1048 FieldDecl *&ThisCapture) const;
1049
1050 using capture_const_iterator = const LambdaCapture *;
1051 using capture_const_range = llvm::iterator_range<capture_const_iterator>;
1052
1053 capture_const_range captures() const {
1054 return capture_const_range(captures_begin(), captures_end());
1055 }
1056
1057 capture_const_iterator captures_begin() const {
1058 return isLambda() ? getLambdaData().Captures : nullptr;
1059 }
1060
1061 capture_const_iterator captures_end() const {
1062 return isLambda() ? captures_begin() + getLambdaData().NumCaptures
1063 : nullptr;
1064 }
1065
1066 unsigned capture_size() const { return getLambdaData().NumCaptures; }
1067
1068 using conversion_iterator = UnresolvedSetIterator;
1069
1070 conversion_iterator conversion_begin() const {
1071 return data().Conversions.get(getASTContext()).begin();
1072 }
1073
1074 conversion_iterator conversion_end() const {
1075 return data().Conversions.get(getASTContext()).end();
1076 }
1077
1078 /// Removes a conversion function from this class. The conversion
1079 /// function must currently be a member of this class. Furthermore,
1080 /// this class must currently be in the process of being defined.
1081 void removeConversion(const NamedDecl *Old);
1082
1083 /// Get all conversion functions visible in current class,
1084 /// including conversion function templates.
1085 llvm::iterator_range<conversion_iterator>
1086 getVisibleConversionFunctions() const;
1087
1088 /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1089 /// which is a class with no user-declared constructors, no private
1090 /// or protected non-static data members, no base classes, and no virtual
1091 /// functions (C++ [dcl.init.aggr]p1).
1092 bool isAggregate() const { return data().Aggregate; }
1093
1094 /// Whether this class has any in-class initializers
1095 /// for non-static data members (including those in anonymous unions or
1096 /// structs).
1097 bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1098
1099 /// Whether this class or any of its subobjects has any members of
1100 /// reference type which would make value-initialization ill-formed.
1101 ///
1102 /// Per C++03 [dcl.init]p5:
1103 /// - if T is a non-union class type without a user-declared constructor,
1104 /// then every non-static data member and base-class component of T is
1105 /// value-initialized [...] A program that calls for [...]
1106 /// value-initialization of an entity of reference type is ill-formed.
1107 bool hasUninitializedReferenceMember() const {
1108 return !isUnion() && !hasUserDeclaredConstructor() &&
1109 data().HasUninitializedReferenceMember;
1110 }
1111
1112 /// Whether this class is a POD-type (C++ [class]p4)
1113 ///
1114 /// For purposes of this function a class is POD if it is an aggregate
1115 /// that has no non-static non-POD data members, no reference data
1116 /// members, no user-defined copy assignment operator and no
1117 /// user-defined destructor.
1118 ///
1119 /// Note that this is the C++ TR1 definition of POD.
1120 bool isPOD() const { return data().PlainOldData; }
1121
1122 /// True if this class is C-like, without C++-specific features, e.g.
1123 /// it contains only public fields, no bases, tag kind is not 'class', etc.
1124 bool isCLike() const;
1125
1126 /// Determine whether this is an empty class in the sense of
1127 /// (C++11 [meta.unary.prop]).
1128 ///
1129 /// The CXXRecordDecl is a class type, but not a union type,
1130 /// with no non-static data members other than bit-fields of length 0,
1131 /// no virtual member functions, no virtual base classes,
1132 /// and no base class B for which is_empty<B>::value is false.
1133 ///
1134 /// \note This does NOT include a check for union-ness.
1135 bool isEmpty() const { return data().Empty; }
1136
1137 bool hasPrivateFields() const {
1138 return data().HasPrivateFields;
1139 }
1140
1141 bool hasProtectedFields() const {
1142 return data().HasProtectedFields;
1143 }
1144
1145 /// Determine whether this class has direct non-static data members.
1146 bool hasDirectFields() const {
1147 auto &D = data();
1148 return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
1149 }
1150
1151 /// Whether this class is polymorphic (C++ [class.virtual]),
1152 /// which means that the class contains or inherits a virtual function.
1153 bool isPolymorphic() const { return data().Polymorphic; }
1154
1155 /// Determine whether this class has a pure virtual function.
1156 ///
1157 /// The class is is abstract per (C++ [class.abstract]p2) if it declares
1158 /// a pure virtual function or inherits a pure virtual function that is
1159 /// not overridden.
1160 bool isAbstract() const { return data().Abstract; }
1161
1162 /// Determine whether this class is standard-layout per
1163 /// C++ [class]p7.
1164 bool isStandardLayout() const { return data().IsStandardLayout; }
1165
1166 /// Determine whether this class was standard-layout per
1167 /// C++11 [class]p7, specifically using the C++11 rules without any DRs.
1168 bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
1169
1170 /// Determine whether this class, or any of its class subobjects,
1171 /// contains a mutable field.
1172 bool hasMutableFields() const { return data().HasMutableFields; }
1173
1174 /// Determine whether this class has any variant members.
1175 bool hasVariantMembers() const { return data().HasVariantMembers; }
1176
1177 /// Determine whether this class has a trivial default constructor
1178 /// (C++11 [class.ctor]p5).
1179 bool hasTrivialDefaultConstructor() const {
1180 return hasDefaultConstructor() &&
1181 (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1182 }
1183
1184 /// Determine whether this class has a non-trivial default constructor
1185 /// (C++11 [class.ctor]p5).
1186 bool hasNonTrivialDefaultConstructor() const {
1187 return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1188 (needsImplicitDefaultConstructor() &&
1189 !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1190 }
1191
1192 /// Determine whether this class has at least one constexpr constructor
1193 /// other than the copy or move constructors.
1194 bool hasConstexprNonCopyMoveConstructor() const {
1195 return data().HasConstexprNonCopyMoveConstructor ||
1196 (needsImplicitDefaultConstructor() &&
1197 defaultedDefaultConstructorIsConstexpr());
1198 }
1199
1200 /// Determine whether a defaulted default constructor for this class
1201 /// would be constexpr.
1202 bool defaultedDefaultConstructorIsConstexpr() const {
1203 return data().DefaultedDefaultConstructorIsConstexpr &&
1204 (!isUnion() || hasInClassInitializer() || !hasVariantMembers() ||
1205 getLangOpts().CPlusPlus20);
1206 }
1207
1208 /// Determine whether this class has a constexpr default constructor.
1209 bool hasConstexprDefaultConstructor() const {
1210 return data().HasConstexprDefaultConstructor ||
1211 (needsImplicitDefaultConstructor() &&
1212 defaultedDefaultConstructorIsConstexpr());
1213 }
1214
1215 /// Determine whether this class has a trivial copy constructor
1216 /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1217 bool hasTrivialCopyConstructor() const {
1218 return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1219 }
1220
1221 bool hasTrivialCopyConstructorForCall() const {
1222 return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
1223 }
1224
1225 /// Determine whether this class has a non-trivial copy constructor
1226 /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1227 bool hasNonTrivialCopyConstructor() const {
1228 return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1229 !hasTrivialCopyConstructor();
1230 }
1231
1232 bool hasNonTrivialCopyConstructorForCall() const {
1233 return (data().DeclaredNonTrivialSpecialMembersForCall &
1234 SMF_CopyConstructor) ||
1235 !hasTrivialCopyConstructorForCall();
1236 }
1237
1238 /// Determine whether this class has a trivial move constructor
1239 /// (C++11 [class.copy]p12)
1240 bool hasTrivialMoveConstructor() const {
1241 return hasMoveConstructor() &&
1242 (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1243 }
1244
1245 bool hasTrivialMoveConstructorForCall() const {
1246 return hasMoveConstructor() &&
1247 (data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
1248 }
1249
1250 /// Determine whether this class has a non-trivial move constructor
1251 /// (C++11 [class.copy]p12)
1252 bool hasNonTrivialMoveConstructor() const {
1253 return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1254 (needsImplicitMoveConstructor() &&
1255 !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1256 }
1257
1258 bool hasNonTrivialMoveConstructorForCall() const {
1259 return (data().DeclaredNonTrivialSpecialMembersForCall &
1260 SMF_MoveConstructor) ||
1261 (needsImplicitMoveConstructor() &&
1262 !(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
1263 }
1264
1265 /// Determine whether this class has a trivial copy assignment operator
1266 /// (C++ [class.copy]p11, C++11 [class.copy]p25)
1267 bool hasTrivialCopyAssignment() const {
1268 return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1269 }
1270
1271 /// Determine whether this class has a non-trivial copy assignment
1272 /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
1273 bool hasNonTrivialCopyAssignment() const {
1274 return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1275 !hasTrivialCopyAssignment();
1276 }
1277
1278 /// Determine whether this class has a trivial move assignment operator
1279 /// (C++11 [class.copy]p25)
1280 bool hasTrivialMoveAssignment() const {
1281 return hasMoveAssignment() &&
1282 (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1283 }
1284
1285 /// Determine whether this class has a non-trivial move assignment
1286 /// operator (C++11 [class.copy]p25)
1287 bool hasNonTrivialMoveAssignment() const {
1288 return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1289 (needsImplicitMoveAssignment() &&
1290 !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1291 }
1292
1293 /// Determine whether a defaulted default constructor for this class
1294 /// would be constexpr.
1295 bool defaultedDestructorIsConstexpr() const {
1296 return data().DefaultedDestructorIsConstexpr &&
1297 getLangOpts().CPlusPlus20;
1298 }
1299
1300 /// Determine whether this class has a constexpr destructor.
1301 bool hasConstexprDestructor() const;
1302
1303 /// Determine whether this class has a trivial destructor
1304 /// (C++ [class.dtor]p3)
1305 bool hasTrivialDestructor() const {
1306 return data().HasTrivialSpecialMembers & SMF_Destructor;
1307 }
1308
1309 bool hasTrivialDestructorForCall() const {
1310 return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
1311 }
1312
1313 /// Determine whether this class has a non-trivial destructor
1314 /// (C++ [class.dtor]p3)
1315 bool hasNonTrivialDestructor() const {
1316 return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1317 }
1318
1319 bool hasNonTrivialDestructorForCall() const {
1320 return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
1321 }
1322
1323 void setHasTrivialSpecialMemberForCall() {
1324 data().HasTrivialSpecialMembersForCall =
1325 (SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
1326 }
1327
1328 /// Determine whether declaring a const variable with this type is ok
1329 /// per core issue 253.
1330 bool allowConstDefaultInit() const {
1331 return !data().HasUninitializedFields ||
1332 !(data().HasDefaultedDefaultConstructor ||
1333 needsImplicitDefaultConstructor());
1334 }
1335
1336 /// Determine whether this class has a destructor which has no
1337 /// semantic effect.
1338 ///
1339 /// Any such destructor will be trivial, public, defaulted and not deleted,
1340 /// and will call only irrelevant destructors.
1341 bool hasIrrelevantDestructor() const {
1342 return data().HasIrrelevantDestructor;
1343 }
1344
1345 /// Determine whether this class has a non-literal or/ volatile type
1346 /// non-static data member or base class.
1347 bool hasNonLiteralTypeFieldsOrBases() const {
1348 return data().HasNonLiteralTypeFieldsOrBases;
1349 }
1350
1351 /// Determine whether this class has a using-declaration that names
1352 /// a user-declared base class constructor.
1353 bool hasInheritedConstructor() const {
1354 return data().HasInheritedConstructor;
1355 }
1356
1357 /// Determine whether this class has a using-declaration that names
1358 /// a base class assignment operator.
1359 bool hasInheritedAssignment() const {
1360 return data().HasInheritedAssignment;
1361 }
1362
1363 /// Determine whether this class is considered trivially copyable per
1364 /// (C++11 [class]p6).
1365 bool isTriviallyCopyable() const;
1366
1367 /// Determine whether this class is considered trivial.
1368 ///
1369 /// C++11 [class]p6:
1370 /// "A trivial class is a class that has a trivial default constructor and
1371 /// is trivially copyable."
1372 bool isTrivial() const {
1373 return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1374 }
1375
1376 /// Determine whether this class is a literal type.
1377 ///
1378 /// C++11 [basic.types]p10:
1379 /// A class type that has all the following properties:
1380 /// - it has a trivial destructor
1381 /// - every constructor call and full-expression in the
1382 /// brace-or-equal-intializers for non-static data members (if any) is
1383 /// a constant expression.
1384 /// - it is an aggregate type or has at least one constexpr constructor
1385 /// or constructor template that is not a copy or move constructor, and
1386 /// - all of its non-static data members and base classes are of literal
1387 /// types
1388 ///
1389 /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
1390 /// treating types with trivial default constructors as literal types.
1391 ///
1392 /// Only in C++17 and beyond, are lambdas literal types.
1393 bool isLiteral() const {
1394 const LangOptions &LangOpts = getLangOpts();
1395 return (LangOpts.CPlusPlus20 ? hasConstexprDestructor()
1396 : hasTrivialDestructor()) &&
1397 (!isLambda() || LangOpts.CPlusPlus17) &&
1398 !hasNonLiteralTypeFieldsOrBases() &&
1399 (isAggregate() || isLambda() ||
1400 hasConstexprNonCopyMoveConstructor() ||
1401 hasTrivialDefaultConstructor());
1402 }
1403
1404 /// Determine whether this is a structural type.
1405 bool isStructural() const {
1406 return isLiteral() && data().StructuralIfLiteral;
1407 }
1408
1409 /// If this record is an instantiation of a member class,
1410 /// retrieves the member class from which it was instantiated.
1411 ///
1412 /// This routine will return non-null for (non-templated) member
1413 /// classes of class templates. For example, given:
1414 ///
1415 /// \code
1416 /// template<typename T>
1417 /// struct X {
1418 /// struct A { };
1419 /// };
1420 /// \endcode
1421 ///
1422 /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1423 /// whose parent is the class template specialization X<int>. For
1424 /// this declaration, getInstantiatedFromMemberClass() will return
1425 /// the CXXRecordDecl X<T>::A. When a complete definition of
1426 /// X<int>::A is required, it will be instantiated from the
1427 /// declaration returned by getInstantiatedFromMemberClass().
1428 CXXRecordDecl *getInstantiatedFromMemberClass() const;
1429
1430 /// If this class is an instantiation of a member class of a
1431 /// class template specialization, retrieves the member specialization
1432 /// information.
1433 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1434
1435 /// Specify that this record is an instantiation of the
1436 /// member class \p RD.
1437 void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1438 TemplateSpecializationKind TSK);
1439
1440 /// Retrieves the class template that is described by this
1441 /// class declaration.
1442 ///
1443 /// Every class template is represented as a ClassTemplateDecl and a
1444 /// CXXRecordDecl. The former contains template properties (such as
1445 /// the template parameter lists) while the latter contains the
1446 /// actual description of the template's
1447 /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1448 /// CXXRecordDecl that from a ClassTemplateDecl, while
1449 /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1450 /// a CXXRecordDecl.
1451 ClassTemplateDecl *getDescribedClassTemplate() const;
1452
1453 void setDescribedClassTemplate(ClassTemplateDecl *Template);
1454
1455 /// Determine whether this particular class is a specialization or
1456 /// instantiation of a class template or member class of a class template,
1457 /// and how it was instantiated or specialized.
1458 TemplateSpecializationKind getTemplateSpecializationKind() const;
1459
1460 /// Set the kind of specialization or template instantiation this is.
1461 void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1462
1463 /// Retrieve the record declaration from which this record could be
1464 /// instantiated. Returns null if this class is not a template instantiation.
1465 const CXXRecordDecl *getTemplateInstantiationPattern() const;
1466
1467 CXXRecordDecl *getTemplateInstantiationPattern() {
1468 return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
1469 ->getTemplateInstantiationPattern());
1470 }
1471
1472 /// Returns the destructor decl for this class.
1473 CXXDestructorDecl *getDestructor() const;
1474
1475 /// Returns true if the class destructor, or any implicitly invoked
1476 /// destructors are marked noreturn.
1477 bool isAnyDestructorNoReturn() const;
1478
1479 /// If the class is a local class [class.local], returns
1480 /// the enclosing function declaration.
1481 const FunctionDecl *isLocalClass() const {
1482 if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1483 return RD->isLocalClass();
1484
1485 return dyn_cast<FunctionDecl>(getDeclContext());
1486 }
1487
1488 FunctionDecl *isLocalClass() {
1489 return const_cast<FunctionDecl*>(
1490 const_cast<const CXXRecordDecl*>(this)->isLocalClass());
1491 }
1492
1493 /// Determine whether this dependent class is a current instantiation,
1494 /// when viewed from within the given context.
1495 bool isCurrentInstantiation(const DeclContext *CurContext) const;
1496
1497 /// Determine whether this class is derived from the class \p Base.
1498 ///
1499 /// This routine only determines whether this class is derived from \p Base,
1500 /// but does not account for factors that may make a Derived -> Base class
1501 /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1502 /// base class subobjects.
1503 ///
1504 /// \param Base the base class we are searching for.
1505 ///
1506 /// \returns true if this class is derived from Base, false otherwise.
1507 bool isDerivedFrom(const CXXRecordDecl *Base) const;
1508
1509 /// Determine whether this class is derived from the type \p Base.
1510 ///
1511 /// This routine only determines whether this class is derived from \p Base,
1512 /// but does not account for factors that may make a Derived -> Base class
1513 /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1514 /// base class subobjects.
1515 ///
1516 /// \param Base the base class we are searching for.
1517 ///
1518 /// \param Paths will contain the paths taken from the current class to the
1519 /// given \p Base class.
1520 ///
1521 /// \returns true if this class is derived from \p Base, false otherwise.
1522 ///
1523 /// \todo add a separate parameter to configure IsDerivedFrom, rather than
1524 /// tangling input and output in \p Paths
1525 bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1526
1527 /// Determine whether this class is virtually derived from
1528 /// the class \p Base.
1529 ///
1530 /// This routine only determines whether this class is virtually
1531 /// derived from \p Base, but does not account for factors that may
1532 /// make a Derived -> Base class ill-formed, such as
1533 /// private/protected inheritance or multiple, ambiguous base class
1534 /// subobjects.
1535 ///
1536 /// \param Base the base class we are searching for.
1537 ///
1538 /// \returns true if this class is virtually derived from Base,
1539 /// false otherwise.
1540 bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1541
1542 /// Determine whether this class is provably not derived from
1543 /// the type \p Base.
1544 bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1545
1546 /// Function type used by forallBases() as a callback.
1547 ///
1548 /// \param BaseDefinition the definition of the base class
1549 ///
1550 /// \returns true if this base matched the search criteria
1551 using ForallBasesCallback =
1552 llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
1553
1554 /// Determines if the given callback holds for all the direct
1555 /// or indirect base classes of this type.
1556 ///
1557 /// The class itself does not count as a base class. This routine
1558 /// returns false if the class has non-computable base classes.
1559 ///
1560 /// \param BaseMatches Callback invoked for each (direct or indirect) base
1561 /// class of this type until a call returns false.
1562 bool forallBases(ForallBasesCallback BaseMatches) const;
1563
1564 /// Function type used by lookupInBases() to determine whether a
1565 /// specific base class subobject matches the lookup criteria.
1566 ///
1567 /// \param Specifier the base-class specifier that describes the inheritance
1568 /// from the base class we are trying to match.
1569 ///
1570 /// \param Path the current path, from the most-derived class down to the
1571 /// base named by the \p Specifier.
1572 ///
1573 /// \returns true if this base matched the search criteria, false otherwise.
1574 using BaseMatchesCallback =
1575 llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
1576 CXXBasePath &Path)>;
1577
1578 /// Look for entities within the base classes of this C++ class,
1579 /// transitively searching all base class subobjects.
1580 ///
1581 /// This routine uses the callback function \p BaseMatches to find base
1582 /// classes meeting some search criteria, walking all base class subobjects
1583 /// and populating the given \p Paths structure with the paths through the
1584 /// inheritance hierarchy that resulted in a match. On a successful search,
1585 /// the \p Paths structure can be queried to retrieve the matching paths and
1586 /// to determine if there were any ambiguities.
1587 ///
1588 /// \param BaseMatches callback function used to determine whether a given
1589 /// base matches the user-defined search criteria.
1590 ///
1591 /// \param Paths used to record the paths from this class to its base class
1592 /// subobjects that match the search criteria.
1593 ///
1594 /// \param LookupInDependent can be set to true to extend the search to
1595 /// dependent base classes.
1596 ///
1597 /// \returns true if there exists any path from this class to a base class
1598 /// subobject that matches the search criteria.
1599 bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
1600 bool LookupInDependent = false) const;
1601
1602 /// Base-class lookup callback that determines whether the given
1603 /// base class specifier refers to a specific class declaration.
1604 ///
1605 /// This callback can be used with \c lookupInBases() to determine whether
1606 /// a given derived class has is a base class subobject of a particular type.
1607 /// The base record pointer should refer to the canonical CXXRecordDecl of the
1608 /// base class that we are searching for.
1609 static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1610 CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
1611
1612 /// Base-class lookup callback that determines whether the
1613 /// given base class specifier refers to a specific class
1614 /// declaration and describes virtual derivation.
1615 ///
1616 /// This callback can be used with \c lookupInBases() to determine
1617 /// whether a given derived class has is a virtual base class
1618 /// subobject of a particular type. The base record pointer should
1619 /// refer to the canonical CXXRecordDecl of the base class that we
1620 /// are searching for.
1621 static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1622 CXXBasePath &Path,
1623 const CXXRecordDecl *BaseRecord);
1624
1625 /// Base-class lookup callback that determines whether there exists
1626 /// a tag with the given name.
1627 ///
1628 /// This callback can be used with \c lookupInBases() to find tag members
1629 /// of the given name within a C++ class hierarchy.
1630 static bool FindTagMember(const CXXBaseSpecifier *Specifier,
1631 CXXBasePath &Path, DeclarationName Name);
1632
1633 /// Base-class lookup callback that determines whether there exists
1634 /// a member with the given name.
1635 ///
1636 /// This callback can be used with \c lookupInBases() to find members
1637 /// of the given name within a C++ class hierarchy.
1638 static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
1639 CXXBasePath &Path, DeclarationName Name);
1640
1641 /// Base-class lookup callback that determines whether there exists
1642 /// a member with the given name.
1643 ///
1644 /// This callback can be used with \c lookupInBases() to find members
1645 /// of the given name within a C++ class hierarchy, including dependent
1646 /// classes.
1647 static bool
1648 FindOrdinaryMemberInDependentClasses(const CXXBaseSpecifier *Specifier,
1649 CXXBasePath &Path, DeclarationName Name);
1650
1651 /// Base-class lookup callback that determines whether there exists
1652 /// an OpenMP declare reduction member with the given name.
1653 ///
1654 /// This callback can be used with \c lookupInBases() to find members
1655 /// of the given name within a C++ class hierarchy.
1656 static bool FindOMPReductionMember(const CXXBaseSpecifier *Specifier,
1657 CXXBasePath &Path, DeclarationName Name);
1658
1659 /// Base-class lookup callback that determines whether there exists
1660 /// an OpenMP declare mapper member with the given name.
1661 ///
1662 /// This callback can be used with \c lookupInBases() to find members
1663 /// of the given name within a C++ class hierarchy.
1664 static bool FindOMPMapperMember(const CXXBaseSpecifier *Specifier,
1665 CXXBasePath &Path, DeclarationName Name);
1666
1667 /// Base-class lookup callback that determines whether there exists
1668 /// a member with the given name that can be used in a nested-name-specifier.
1669 ///
1670 /// This callback can be used with \c lookupInBases() to find members of
1671 /// the given name within a C++ class hierarchy that can occur within
1672 /// nested-name-specifiers.
1673 static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
1674 CXXBasePath &Path,
1675 DeclarationName Name);
1676
1677 /// Retrieve the final overriders for each virtual member
1678 /// function in the class hierarchy where this class is the
1679 /// most-derived class in the class hierarchy.
1680 void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1681
1682 /// Get the indirect primary bases for this class.
1683 void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1684
1685 /// Performs an imprecise lookup of a dependent name in this class.
1686 ///
1687 /// This function does not follow strict semantic rules and should be used
1688 /// only when lookup rules can be relaxed, e.g. indexing.
1689 std::vector<const NamedDecl *>
1690 lookupDependentName(const DeclarationName &Name,
1691 llvm::function_ref<bool(const NamedDecl *ND)> Filter);
1692
1693 /// Renders and displays an inheritance diagram
1694 /// for this C++ class and all of its base classes (transitively) using
1695 /// GraphViz.
1696 void viewInheritance(ASTContext& Context) const;
1697
1698 /// Calculates the access of a decl that is reached
1699 /// along a path.
1700 static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1701 AccessSpecifier DeclAccess) {
1702 assert(DeclAccess != AS_none)((DeclAccess != AS_none) ? static_cast<void> (0) : __assert_fail
("DeclAccess != AS_none", "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 1702, __PRETTY_FUNCTION__))
;
1703 if (DeclAccess == AS_private) return AS_none;
1704 return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1705 }
1706
1707 /// Indicates that the declaration of a defaulted or deleted special
1708 /// member function is now complete.
1709 void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1710
1711 void setTrivialForCallFlags(CXXMethodDecl *MD);
1712
1713 /// Indicates that the definition of this class is now complete.
1714 void completeDefinition() override;
1715
1716 /// Indicates that the definition of this class is now complete,
1717 /// and provides a final overrider map to help determine
1718 ///
1719 /// \param FinalOverriders The final overrider map for this class, which can
1720 /// be provided as an optimization for abstract-class checking. If NULL,
1721 /// final overriders will be computed if they are needed to complete the
1722 /// definition.
1723 void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1724
1725 /// Determine whether this class may end up being abstract, even though
1726 /// it is not yet known to be abstract.
1727 ///
1728 /// \returns true if this class is not known to be abstract but has any
1729 /// base classes that are abstract. In this case, \c completeDefinition()
1730 /// will need to compute final overriders to determine whether the class is
1731 /// actually abstract.
1732 bool mayBeAbstract() const;
1733
1734 /// Determine whether it's impossible for a class to be derived from this
1735 /// class. This is best-effort, and may conservatively return false.
1736 bool isEffectivelyFinal() const;
1737
1738 /// If this is the closure type of a lambda expression, retrieve the
1739 /// number to be used for name mangling in the Itanium C++ ABI.
1740 ///
1741 /// Zero indicates that this closure type has internal linkage, so the
1742 /// mangling number does not matter, while a non-zero value indicates which
1743 /// lambda expression this is in this particular context.
1744 unsigned getLambdaManglingNumber() const {
1745 assert(isLambda() && "Not a lambda closure type!")((isLambda() && "Not a lambda closure type!") ? static_cast
<void> (0) : __assert_fail ("isLambda() && \"Not a lambda closure type!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 1745, __PRETTY_FUNCTION__))
;
1746 return getLambdaData().ManglingNumber;
1747 }
1748
1749 /// The lambda is known to has internal linkage no matter whether it has name
1750 /// mangling number.
1751 bool hasKnownLambdaInternalLinkage() const {
1752 assert(isLambda() && "Not a lambda closure type!")((isLambda() && "Not a lambda closure type!") ? static_cast
<void> (0) : __assert_fail ("isLambda() && \"Not a lambda closure type!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 1752, __PRETTY_FUNCTION__))
;
1753 return getLambdaData().HasKnownInternalLinkage;
1754 }
1755
1756 /// Retrieve the declaration that provides additional context for a
1757 /// lambda, when the normal declaration context is not specific enough.
1758 ///
1759 /// Certain contexts (default arguments of in-class function parameters and
1760 /// the initializers of data members) have separate name mangling rules for
1761 /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1762 /// the declaration in which the lambda occurs, e.g., the function parameter
1763 /// or the non-static data member. Otherwise, it returns NULL to imply that
1764 /// the declaration context suffices.
1765 Decl *getLambdaContextDecl() const;
1766
1767 /// Set the mangling number and context declaration for a lambda
1768 /// class.
1769 void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl,
1770 bool HasKnownInternalLinkage = false) {
1771 assert(isLambda() && "Not a lambda closure type!")((isLambda() && "Not a lambda closure type!") ? static_cast
<void> (0) : __assert_fail ("isLambda() && \"Not a lambda closure type!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 1771, __PRETTY_FUNCTION__))
;
1772 getLambdaData().ManglingNumber = ManglingNumber;
1773 getLambdaData().ContextDecl = ContextDecl;
1774 getLambdaData().HasKnownInternalLinkage = HasKnownInternalLinkage;
1775 }
1776
1777 /// Returns the inheritance model used for this record.
1778 MSInheritanceModel getMSInheritanceModel() const;
1779
1780 /// Calculate what the inheritance model would be for this class.
1781 MSInheritanceModel calculateInheritanceModel() const;
1782
1783 /// In the Microsoft C++ ABI, use zero for the field offset of a null data
1784 /// member pointer if we can guarantee that zero is not a valid field offset,
1785 /// or if the member pointer has multiple fields. Polymorphic classes have a
1786 /// vfptr at offset zero, so we can use zero for null. If there are multiple
1787 /// fields, we can use zero even if it is a valid field offset because
1788 /// null-ness testing will check the other fields.
1789 bool nullFieldOffsetIsZero() const;
1790
1791 /// Controls when vtordisps will be emitted if this record is used as a
1792 /// virtual base.
1793 MSVtorDispMode getMSVtorDispMode() const;
1794
1795 /// Determine whether this lambda expression was known to be dependent
1796 /// at the time it was created, even if its context does not appear to be
1797 /// dependent.
1798 ///
1799 /// This flag is a workaround for an issue with parsing, where default
1800 /// arguments are parsed before their enclosing function declarations have
1801 /// been created. This means that any lambda expressions within those
1802 /// default arguments will have as their DeclContext the context enclosing
1803 /// the function declaration, which may be non-dependent even when the
1804 /// function declaration itself is dependent. This flag indicates when we
1805 /// know that the lambda is dependent despite that.
1806 bool isDependentLambda() const {
1807 return isLambda() && getLambdaData().Dependent;
1808 }
1809
1810 TypeSourceInfo *getLambdaTypeInfo() const {
1811 return getLambdaData().MethodTyInfo;
1812 }
1813
1814 // Determine whether this type is an Interface Like type for
1815 // __interface inheritance purposes.
1816 bool isInterfaceLike() const;
1817
1818 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1819 static bool classofKind(Kind K) {
1820 return K >= firstCXXRecord && K <= lastCXXRecord;
1821 }
1822};
1823
1824/// Store information needed for an explicit specifier.
1825/// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl.
1826class ExplicitSpecifier {
1827 llvm::PointerIntPair<Expr *, 2, ExplicitSpecKind> ExplicitSpec{
1828 nullptr, ExplicitSpecKind::ResolvedFalse};
1829
1830public:
1831 ExplicitSpecifier() = default;
1832 ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind)
1833 : ExplicitSpec(Expression, Kind) {}
1834 ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); }
1835 const Expr *getExpr() const { return ExplicitSpec.getPointer(); }
1836 Expr *getExpr() { return ExplicitSpec.getPointer(); }
1837
1838 /// Determine if the declaration had an explicit specifier of any kind.
1839 bool isSpecified() const {
1840 return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse ||
1841 ExplicitSpec.getPointer();
1842 }
1843
1844 /// Check for equivalence of explicit specifiers.
1845 /// \return true if the explicit specifier are equivalent, false otherwise.
1846 bool isEquivalent(const ExplicitSpecifier Other) const;
1847 /// Determine whether this specifier is known to correspond to an explicit
1848 /// declaration. Returns false if the specifier is absent or has an
1849 /// expression that is value-dependent or evaluates to false.
1850 bool isExplicit() const {
1851 return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue;
1852 }
1853 /// Determine if the explicit specifier is invalid.
1854 /// This state occurs after a substitution failures.
1855 bool isInvalid() const {
1856 return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved &&
1857 !ExplicitSpec.getPointer();
1858 }
1859 void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); }
1860 void setExpr(Expr *E) { ExplicitSpec.setPointer(E); }
1861 // Retrieve the explicit specifier in the given declaration, if any.
1862 static ExplicitSpecifier getFromDecl(FunctionDecl *Function);
1863 static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) {
1864 return getFromDecl(const_cast<FunctionDecl *>(Function));
1865 }
1866 static ExplicitSpecifier Invalid() {
1867 return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved);
1868 }
1869};
1870
1871/// Represents a C++ deduction guide declaration.
1872///
1873/// \code
1874/// template<typename T> struct A { A(); A(T); };
1875/// A() -> A<int>;
1876/// \endcode
1877///
1878/// In this example, there will be an explicit deduction guide from the
1879/// second line, and implicit deduction guide templates synthesized from
1880/// the constructors of \c A.
1881class CXXDeductionGuideDecl : public FunctionDecl {
1882 void anchor() override;
1883
1884private:
1885 CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1886 ExplicitSpecifier ES,
1887 const DeclarationNameInfo &NameInfo, QualType T,
1888 TypeSourceInfo *TInfo, SourceLocation EndLocation)
1889 : FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
1890 SC_None, false, CSK_unspecified),
1891 ExplicitSpec(ES) {
1892 if (EndLocation.isValid())
1893 setRangeEnd(EndLocation);
1894 setIsCopyDeductionCandidate(false);
1895 }
1896
1897 ExplicitSpecifier ExplicitSpec;
1898 void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
1899
1900public:
1901 friend class ASTDeclReader;
1902 friend class ASTDeclWriter;
1903
1904 static CXXDeductionGuideDecl *
1905 Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1906 ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
1907 TypeSourceInfo *TInfo, SourceLocation EndLocation);
1908
1909 static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1910
1911 ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; }
1912 const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; }
1913
1914 /// Return true if the declartion is already resolved to be explicit.
1915 bool isExplicit() const { return ExplicitSpec.isExplicit(); }
1916
1917 /// Get the template for which this guide performs deduction.
1918 TemplateDecl *getDeducedTemplate() const {
1919 return getDeclName().getCXXDeductionGuideTemplate();
1920 }
1921
1922 void setIsCopyDeductionCandidate(bool isCDC = true) {
1923 FunctionDeclBits.IsCopyDeductionCandidate = isCDC;
1924 }
1925
1926 bool isCopyDeductionCandidate() const {
1927 return FunctionDeclBits.IsCopyDeductionCandidate;
1928 }
1929
1930 // Implement isa/cast/dyncast/etc.
1931 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1932 static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
1933};
1934
1935/// \brief Represents the body of a requires-expression.
1936///
1937/// This decl exists merely to serve as the DeclContext for the local
1938/// parameters of the requires expression as well as other declarations inside
1939/// it.
1940///
1941/// \code
1942/// template<typename T> requires requires (T t) { {t++} -> regular; }
1943/// \endcode
1944///
1945/// In this example, a RequiresExpr object will be generated for the expression,
1946/// and a RequiresExprBodyDecl will be created to hold the parameter t and the
1947/// template argument list imposed by the compound requirement.
1948class RequiresExprBodyDecl : public Decl, public DeclContext {
1949 RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc)
1950 : Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {}
1951
1952public:
1953 friend class ASTDeclReader;
1954 friend class ASTDeclWriter;
1955
1956 static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC,
1957 SourceLocation StartLoc);
1958
1959 static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1960
1961 // Implement isa/cast/dyncast/etc.
1962 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1963 static bool classofKind(Kind K) { return K == RequiresExprBody; }
1964};
1965
1966/// Represents a static or instance method of a struct/union/class.
1967///
1968/// In the terminology of the C++ Standard, these are the (static and
1969/// non-static) member functions, whether virtual or not.
1970class CXXMethodDecl : public FunctionDecl {
1971 void anchor() override;
1972
1973protected:
1974 CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
1975 SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
1976 QualType T, TypeSourceInfo *TInfo, StorageClass SC,
1977 bool isInline, ConstexprSpecKind ConstexprKind,
1978 SourceLocation EndLocation,
1979 Expr *TrailingRequiresClause = nullptr)
1980 : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, isInline,
1981 ConstexprKind, TrailingRequiresClause) {
1982 if (EndLocation.isValid())
1983 setRangeEnd(EndLocation);
1984 }
1985
1986public:
1987 static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
1988 SourceLocation StartLoc,
1989 const DeclarationNameInfo &NameInfo, QualType T,
1990 TypeSourceInfo *TInfo, StorageClass SC,
1991 bool isInline, ConstexprSpecKind ConstexprKind,
1992 SourceLocation EndLocation,
1993 Expr *TrailingRequiresClause = nullptr);
1994
1995 static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1996
1997 bool isStatic() const;
1998 bool isInstance() const { return !isStatic(); }
1999
2000 /// Returns true if the given operator is implicitly static in a record
2001 /// context.
2002 static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
2003 // [class.free]p1:
2004 // Any allocation function for a class T is a static member
2005 // (even if not explicitly declared static).
2006 // [class.free]p6 Any deallocation function for a class X is a static member
2007 // (even if not explicitly declared static).
2008 return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
2009 OOK == OO_Array_Delete;
2010 }
2011
2012 bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
2013 bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
2014
2015 bool isVirtual() const {
2016 CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2017
2018 // Member function is virtual if it is marked explicitly so, or if it is
2019 // declared in __interface -- then it is automatically pure virtual.
2020 if (CD->isVirtualAsWritten() || CD->isPure())
2021 return true;
2022
2023 return CD->size_overridden_methods() != 0;
2024 }
2025
2026 /// If it's possible to devirtualize a call to this method, return the called
2027 /// function. Otherwise, return null.
2028
2029 /// \param Base The object on which this virtual function is called.
2030 /// \param IsAppleKext True if we are compiling for Apple kext.
2031 CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
2032
2033 const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
2034 bool IsAppleKext) const {
2035 return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
2036 Base, IsAppleKext);
2037 }
2038
2039 /// Determine whether this is a usual deallocation function (C++
2040 /// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
2041 /// delete[] operator with a particular signature. Populates \p PreventedBy
2042 /// with the declarations of the functions of the same kind if they were the
2043 /// reason for this function returning false. This is used by
2044 /// Sema::isUsualDeallocationFunction to reconsider the answer based on the
2045 /// context.
2046 bool isUsualDeallocationFunction(
2047 SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
2048
2049 /// Determine whether this is a copy-assignment operator, regardless
2050 /// of whether it was declared implicitly or explicitly.
2051 bool isCopyAssignmentOperator() const;
2052
2053 /// Determine whether this is a move assignment operator.
2054 bool isMoveAssignmentOperator() const;
2055
2056 CXXMethodDecl *getCanonicalDecl() override {
2057 return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
2058 }
2059 const CXXMethodDecl *getCanonicalDecl() const {
2060 return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2061 }
2062
2063 CXXMethodDecl *getMostRecentDecl() {
2064 return cast<CXXMethodDecl>(
2065 static_cast<FunctionDecl *>(this)->getMostRecentDecl());
2066 }
2067 const CXXMethodDecl *getMostRecentDecl() const {
2068 return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
2069 }
2070
2071 void addOverriddenMethod(const CXXMethodDecl *MD);
2072
2073 using method_iterator = const CXXMethodDecl *const *;
2074
2075 method_iterator begin_overridden_methods() const;
2076 method_iterator end_overridden_methods() const;
2077 unsigned size_overridden_methods() const;
2078
2079 using overridden_method_range = llvm::iterator_range<
2080 llvm::TinyPtrVector<const CXXMethodDecl *>::const_iterator>;
2081
2082 overridden_method_range overridden_methods() const;
2083
2084 /// Return the parent of this method declaration, which
2085 /// is the class in which this method is defined.
2086 const CXXRecordDecl *getParent() const {
2087 return cast<CXXRecordDecl>(FunctionDecl::getParent());
2088 }
2089
2090 /// Return the parent of this method declaration, which
2091 /// is the class in which this method is defined.
2092 CXXRecordDecl *getParent() {
2093 return const_cast<CXXRecordDecl *>(
2094 cast<CXXRecordDecl>(FunctionDecl::getParent()));
2095 }
2096
2097 /// Return the type of the \c this pointer.
2098 ///
2099 /// Should only be called for instance (i.e., non-static) methods. Note
2100 /// that for the call operator of a lambda closure type, this returns the
2101 /// desugared 'this' type (a pointer to the closure type), not the captured
2102 /// 'this' type.
2103 QualType getThisType() const;
2104
2105 /// Return the type of the object pointed by \c this.
2106 ///
2107 /// See getThisType() for usage restriction.
2108 QualType getThisObjectType() const;
2109
2110 static QualType getThisType(const FunctionProtoType *FPT,
2111 const CXXRecordDecl *Decl);
2112
2113 static QualType getThisObjectType(const FunctionProtoType *FPT,
2114 const CXXRecordDecl *Decl);
2115
2116 Qualifiers getMethodQualifiers() const {
2117 return getType()->castAs<FunctionProtoType>()->getMethodQuals();
2118 }
2119
2120 /// Retrieve the ref-qualifier associated with this method.
2121 ///
2122 /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
2123 /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
2124 /// @code
2125 /// struct X {
2126 /// void f() &;
2127 /// void g() &&;
2128 /// void h();
2129 /// };
2130 /// @endcode
2131 RefQualifierKind getRefQualifier() const {
2132 return getType()->castAs<FunctionProtoType>()->getRefQualifier();
2133 }
2134
2135 bool hasInlineBody() const;
2136
2137 /// Determine whether this is a lambda closure type's static member
2138 /// function that is used for the result of the lambda's conversion to
2139 /// function pointer (for a lambda with no captures).
2140 ///
2141 /// The function itself, if used, will have a placeholder body that will be
2142 /// supplied by IR generation to either forward to the function call operator
2143 /// or clone the function call operator.
2144 bool isLambdaStaticInvoker() const;
2145
2146 /// Find the method in \p RD that corresponds to this one.
2147 ///
2148 /// Find if \p RD or one of the classes it inherits from override this method.
2149 /// If so, return it. \p RD is assumed to be a subclass of the class defining
2150 /// this method (or be the class itself), unless \p MayBeBase is set to true.
2151 CXXMethodDecl *
2152 getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2153 bool MayBeBase = false);
2154
2155 const CXXMethodDecl *
2156 getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2157 bool MayBeBase = false) const {
2158 return const_cast<CXXMethodDecl *>(this)
2159 ->getCorrespondingMethodInClass(RD, MayBeBase);
2160 }
2161
2162 /// Find if \p RD declares a function that overrides this function, and if so,
2163 /// return it. Does not search base classes.
2164 CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2165 bool MayBeBase = false);
2166 const CXXMethodDecl *
2167 getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2168 bool MayBeBase = false) const {
2169 return const_cast<CXXMethodDecl *>(this)
2170 ->getCorrespondingMethodDeclaredInClass(RD, MayBeBase);
2171 }
2172
2173 // Implement isa/cast/dyncast/etc.
2174 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2175 static bool classofKind(Kind K) {
2176 return K >= firstCXXMethod && K <= lastCXXMethod;
2177 }
2178};
2179
2180/// Represents a C++ base or member initializer.
2181///
2182/// This is part of a constructor initializer that
2183/// initializes one non-static member variable or one base class. For
2184/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
2185/// initializers:
2186///
2187/// \code
2188/// class A { };
2189/// class B : public A {
2190/// float f;
2191/// public:
2192/// B(A& a) : A(a), f(3.14159) { }
2193/// };
2194/// \endcode
2195class CXXCtorInitializer final {
2196 /// Either the base class name/delegating constructor type (stored as
2197 /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
2198 /// (IndirectFieldDecl*) being initialized.
2199 llvm::PointerUnion<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
2200 Initializee;
2201
2202 /// The source location for the field name or, for a base initializer
2203 /// pack expansion, the location of the ellipsis.
2204 ///
2205 /// In the case of a delegating
2206 /// constructor, it will still include the type's source location as the
2207 /// Initializee points to the CXXConstructorDecl (to allow loop detection).
2208 SourceLocation MemberOrEllipsisLocation;
2209
2210 /// The argument used to initialize the base or member, which may
2211 /// end up constructing an object (when multiple arguments are involved).
2212 Stmt *Init;
2213
2214 /// Location of the left paren of the ctor-initializer.
2215 SourceLocation LParenLoc;
2216
2217 /// Location of the right paren of the ctor-initializer.
2218 SourceLocation RParenLoc;
2219
2220 /// If the initializee is a type, whether that type makes this
2221 /// a delegating initialization.
2222 unsigned IsDelegating : 1;
2223
2224 /// If the initializer is a base initializer, this keeps track
2225 /// of whether the base is virtual or not.
2226 unsigned IsVirtual : 1;
2227
2228 /// Whether or not the initializer is explicitly written
2229 /// in the sources.
2230 unsigned IsWritten : 1;
2231
2232 /// If IsWritten is true, then this number keeps track of the textual order
2233 /// of this initializer in the original sources, counting from 0.
2234 unsigned SourceOrder : 13;
2235
2236public:
2237 /// Creates a new base-class initializer.
2238 explicit
2239 CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
2240 SourceLocation L, Expr *Init, SourceLocation R,
2241 SourceLocation EllipsisLoc);
2242
2243 /// Creates a new member initializer.
2244 explicit
2245 CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2246 SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2247 SourceLocation R);
2248
2249 /// Creates a new anonymous field initializer.
2250 explicit
2251 CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
2252 SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2253 SourceLocation R);
2254
2255 /// Creates a new delegating initializer.
2256 explicit
2257 CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
2258 SourceLocation L, Expr *Init, SourceLocation R);
2259
2260 /// \return Unique reproducible object identifier.
2261 int64_t getID(const ASTContext &Context) const;
2262
2263 /// Determine whether this initializer is initializing a base class.
2264 bool isBaseInitializer() const {
2265 return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
2266 }
2267
2268 /// Determine whether this initializer is initializing a non-static
2269 /// data member.
2270 bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
2271
2272 bool isAnyMemberInitializer() const {
2273 return isMemberInitializer() || isIndirectMemberInitializer();
2274 }
2275
2276 bool isIndirectMemberInitializer() const {
2277 return Initializee.is<IndirectFieldDecl*>();
2278 }
2279
2280 /// Determine whether this initializer is an implicit initializer
2281 /// generated for a field with an initializer defined on the member
2282 /// declaration.
2283 ///
2284 /// In-class member initializers (also known as "non-static data member
2285 /// initializations", NSDMIs) were introduced in C++11.
2286 bool isInClassMemberInitializer() const {
2287 return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
2288 }
2289
2290 /// Determine whether this initializer is creating a delegating
2291 /// constructor.
2292 bool isDelegatingInitializer() const {
2293 return Initializee.is<TypeSourceInfo*>() && IsDelegating;
2294 }
2295
2296 /// Determine whether this initializer is a pack expansion.
2297 bool isPackExpansion() const {
2298 return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
2299 }
2300
2301 // For a pack expansion, returns the location of the ellipsis.
2302 SourceLocation getEllipsisLoc() const {
2303 assert(isPackExpansion() && "Initializer is not a pack expansion")((isPackExpansion() && "Initializer is not a pack expansion"
) ? static_cast<void> (0) : __assert_fail ("isPackExpansion() && \"Initializer is not a pack expansion\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2303, __PRETTY_FUNCTION__))
;
2304 return MemberOrEllipsisLocation;
2305 }
2306
2307 /// If this is a base class initializer, returns the type of the
2308 /// base class with location information. Otherwise, returns an NULL
2309 /// type location.
2310 TypeLoc getBaseClassLoc() const;
2311
2312 /// If this is a base class initializer, returns the type of the base class.
2313 /// Otherwise, returns null.
2314 const Type *getBaseClass() const;
2315
2316 /// Returns whether the base is virtual or not.
2317 bool isBaseVirtual() const {
2318 assert(isBaseInitializer() && "Must call this on base initializer!")((isBaseInitializer() && "Must call this on base initializer!"
) ? static_cast<void> (0) : __assert_fail ("isBaseInitializer() && \"Must call this on base initializer!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2318, __PRETTY_FUNCTION__))
;
2319
2320 return IsVirtual;
2321 }
2322
2323 /// Returns the declarator information for a base class or delegating
2324 /// initializer.
2325 TypeSourceInfo *getTypeSourceInfo() const {
2326 return Initializee.dyn_cast<TypeSourceInfo *>();
2327 }
2328
2329 /// If this is a member initializer, returns the declaration of the
2330 /// non-static data member being initialized. Otherwise, returns null.
2331 FieldDecl *getMember() const {
2332 if (isMemberInitializer())
2333 return Initializee.get<FieldDecl*>();
2334 return nullptr;
2335 }
2336
2337 FieldDecl *getAnyMember() const {
2338 if (isMemberInitializer())
2339 return Initializee.get<FieldDecl*>();
2340 if (isIndirectMemberInitializer())
2341 return Initializee.get<IndirectFieldDecl*>()->getAnonField();
2342 return nullptr;
2343 }
2344
2345 IndirectFieldDecl *getIndirectMember() const {
2346 if (isIndirectMemberInitializer())
2347 return Initializee.get<IndirectFieldDecl*>();
2348 return nullptr;
2349 }
2350
2351 SourceLocation getMemberLocation() const {
2352 return MemberOrEllipsisLocation;
2353 }
2354
2355 /// Determine the source location of the initializer.
2356 SourceLocation getSourceLocation() const;
2357
2358 /// Determine the source range covering the entire initializer.
2359 SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__));
2360
2361 /// Determine whether this initializer is explicitly written
2362 /// in the source code.
2363 bool isWritten() const { return IsWritten; }
2364
2365 /// Return the source position of the initializer, counting from 0.
2366 /// If the initializer was implicit, -1 is returned.
2367 int getSourceOrder() const {
2368 return IsWritten ? static_cast<int>(SourceOrder) : -1;
2369 }
2370
2371 /// Set the source order of this initializer.
2372 ///
2373 /// This can only be called once for each initializer; it cannot be called
2374 /// on an initializer having a positive number of (implicit) array indices.
2375 ///
2376 /// This assumes that the initializer was written in the source code, and
2377 /// ensures that isWritten() returns true.
2378 void setSourceOrder(int Pos) {
2379 assert(!IsWritten &&((!IsWritten && "setSourceOrder() used on implicit initializer"
) ? static_cast<void> (0) : __assert_fail ("!IsWritten && \"setSourceOrder() used on implicit initializer\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2380, __PRETTY_FUNCTION__))
2380 "setSourceOrder() used on implicit initializer")((!IsWritten && "setSourceOrder() used on implicit initializer"
) ? static_cast<void> (0) : __assert_fail ("!IsWritten && \"setSourceOrder() used on implicit initializer\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2380, __PRETTY_FUNCTION__))
;
2381 assert(SourceOrder == 0 &&((SourceOrder == 0 && "calling twice setSourceOrder() on the same initializer"
) ? static_cast<void> (0) : __assert_fail ("SourceOrder == 0 && \"calling twice setSourceOrder() on the same initializer\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2382, __PRETTY_FUNCTION__))
2382 "calling twice setSourceOrder() on the same initializer")((SourceOrder == 0 && "calling twice setSourceOrder() on the same initializer"
) ? static_cast<void> (0) : __assert_fail ("SourceOrder == 0 && \"calling twice setSourceOrder() on the same initializer\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2382, __PRETTY_FUNCTION__))
;
2383 assert(Pos >= 0 &&((Pos >= 0 && "setSourceOrder() used to make an initializer implicit"
) ? static_cast<void> (0) : __assert_fail ("Pos >= 0 && \"setSourceOrder() used to make an initializer implicit\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2384, __PRETTY_FUNCTION__))
2384 "setSourceOrder() used to make an initializer implicit")((Pos >= 0 && "setSourceOrder() used to make an initializer implicit"
) ? static_cast<void> (0) : __assert_fail ("Pos >= 0 && \"setSourceOrder() used to make an initializer implicit\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2384, __PRETTY_FUNCTION__))
;
2385 IsWritten = true;
2386 SourceOrder = static_cast<unsigned>(Pos);
2387 }
2388
2389 SourceLocation getLParenLoc() const { return LParenLoc; }
2390 SourceLocation getRParenLoc() const { return RParenLoc; }
2391
2392 /// Get the initializer.
2393 Expr *getInit() const { return static_cast<Expr *>(Init); }
2394};
2395
2396/// Description of a constructor that was inherited from a base class.
2397class InheritedConstructor {
2398 ConstructorUsingShadowDecl *Shadow = nullptr;
2399 CXXConstructorDecl *BaseCtor = nullptr;
2400
2401public:
2402 InheritedConstructor() = default;
2403 InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
2404 CXXConstructorDecl *BaseCtor)
2405 : Shadow(Shadow), BaseCtor(BaseCtor) {}
2406
2407 explicit operator bool() const { return Shadow; }
2408
2409 ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
2410 CXXConstructorDecl *getConstructor() const { return BaseCtor; }
2411};
2412
2413/// Represents a C++ constructor within a class.
2414///
2415/// For example:
2416///
2417/// \code
2418/// class X {
2419/// public:
2420/// explicit X(int); // represented by a CXXConstructorDecl.
2421/// };
2422/// \endcode
2423class CXXConstructorDecl final
2424 : public CXXMethodDecl,
2425 private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor,
2426 ExplicitSpecifier> {
2427 // This class stores some data in DeclContext::CXXConstructorDeclBits
2428 // to save some space. Use the provided accessors to access it.
2429
2430 /// \name Support for base and member initializers.
2431 /// \{
2432 /// The arguments used to initialize the base or member.
2433 LazyCXXCtorInitializersPtr CtorInitializers;
2434
2435 CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2436 const DeclarationNameInfo &NameInfo, QualType T,
2437 TypeSourceInfo *TInfo, ExplicitSpecifier ES, bool isInline,
2438 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2439 InheritedConstructor Inherited,
2440 Expr *TrailingRequiresClause);
2441
2442 void anchor() override;
2443
2444 size_t numTrailingObjects(OverloadToken<InheritedConstructor>) const {
2445 return CXXConstructorDeclBits.IsInheritingConstructor;
2446 }
2447 size_t numTrailingObjects(OverloadToken<ExplicitSpecifier>) const {
2448 return CXXConstructorDeclBits.HasTrailingExplicitSpecifier;
2449 }
2450
2451 ExplicitSpecifier getExplicitSpecifierInternal() const {
2452 if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier)
2453 return *getTrailingObjects<ExplicitSpecifier>();
2454 return ExplicitSpecifier(
2455 nullptr, CXXConstructorDeclBits.IsSimpleExplicit
2456 ? ExplicitSpecKind::ResolvedTrue
2457 : ExplicitSpecKind::ResolvedFalse);
2458 }
2459
2460 enum TraillingAllocKind {
2461 TAKInheritsConstructor = 1,
2462 TAKHasTailExplicit = 1 << 1,
2463 };
2464
2465 uint64_t getTraillingAllocKind() const {
2466 return numTrailingObjects(OverloadToken<InheritedConstructor>()) |
2467 (numTrailingObjects(OverloadToken<ExplicitSpecifier>()) << 1);
2468 }
2469
2470public:
2471 friend class ASTDeclReader;
2472 friend class ASTDeclWriter;
2473 friend TrailingObjects;
2474
2475 static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
2476 uint64_t AllocKind);
2477 static CXXConstructorDecl *
2478 Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2479 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2480 ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
2481 ConstexprSpecKind ConstexprKind,
2482 InheritedConstructor Inherited = InheritedConstructor(),
2483 Expr *TrailingRequiresClause = nullptr);
2484
2485 void setExplicitSpecifier(ExplicitSpecifier ES) {
2486 assert((!ES.getExpr() ||(((!ES.getExpr() || CXXConstructorDeclBits.HasTrailingExplicitSpecifier
) && "cannot set this explicit specifier. no trail-allocated space for "
"explicit") ? static_cast<void> (0) : __assert_fail ("(!ES.getExpr() || CXXConstructorDeclBits.HasTrailingExplicitSpecifier) && \"cannot set this explicit specifier. no trail-allocated space for \" \"explicit\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2489, __PRETTY_FUNCTION__))
2487 CXXConstructorDeclBits.HasTrailingExplicitSpecifier) &&(((!ES.getExpr() || CXXConstructorDeclBits.HasTrailingExplicitSpecifier
) && "cannot set this explicit specifier. no trail-allocated space for "
"explicit") ? static_cast<void> (0) : __assert_fail ("(!ES.getExpr() || CXXConstructorDeclBits.HasTrailingExplicitSpecifier) && \"cannot set this explicit specifier. no trail-allocated space for \" \"explicit\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2489, __PRETTY_FUNCTION__))
2488 "cannot set this explicit specifier. no trail-allocated space for "(((!ES.getExpr() || CXXConstructorDeclBits.HasTrailingExplicitSpecifier
) && "cannot set this explicit specifier. no trail-allocated space for "
"explicit") ? static_cast<void> (0) : __assert_fail ("(!ES.getExpr() || CXXConstructorDeclBits.HasTrailingExplicitSpecifier) && \"cannot set this explicit specifier. no trail-allocated space for \" \"explicit\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2489, __PRETTY_FUNCTION__))
2489 "explicit")(((!ES.getExpr() || CXXConstructorDeclBits.HasTrailingExplicitSpecifier
) && "cannot set this explicit specifier. no trail-allocated space for "
"explicit") ? static_cast<void> (0) : __assert_fail ("(!ES.getExpr() || CXXConstructorDeclBits.HasTrailingExplicitSpecifier) && \"cannot set this explicit specifier. no trail-allocated space for \" \"explicit\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2489, __PRETTY_FUNCTION__))
;
2490 if (ES.getExpr())
2491 *getCanonicalDecl()->getTrailingObjects<ExplicitSpecifier>() = ES;
2492 else
2493 CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit();
2494 }
2495
2496 ExplicitSpecifier getExplicitSpecifier() {
2497 return getCanonicalDecl()->getExplicitSpecifierInternal();
2498 }
2499 const ExplicitSpecifier getExplicitSpecifier() const {
2500 return getCanonicalDecl()->getExplicitSpecifierInternal();
2501 }
2502
2503 /// Return true if the declartion is already resolved to be explicit.
2504 bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2505
2506 /// Iterates through the member/base initializer list.
2507 using init_iterator = CXXCtorInitializer **;
2508
2509 /// Iterates through the member/base initializer list.
2510 using init_const_iterator = CXXCtorInitializer *const *;
2511
2512 using init_range = llvm::iterator_range<init_iterator>;
2513 using init_const_range = llvm::iterator_range<init_const_iterator>;
2514
2515 init_range inits() { return init_range(init_begin(), init_end()); }
2516 init_const_range inits() const {
2517 return init_const_range(init_begin(), init_end());
2518 }
2519
2520 /// Retrieve an iterator to the first initializer.
2521 init_iterator init_begin() {
2522 const auto *ConstThis = this;
2523 return const_cast<init_iterator>(ConstThis->init_begin());
2524 }
2525
2526 /// Retrieve an iterator to the first initializer.
2527 init_const_iterator init_begin() const;
2528
2529 /// Retrieve an iterator past the last initializer.
2530 init_iterator init_end() {
2531 return init_begin() + getNumCtorInitializers();
2532 }
2533
2534 /// Retrieve an iterator past the last initializer.
2535 init_const_iterator init_end() const {
2536 return init_begin() + getNumCtorInitializers();
2537 }
2538
2539 using init_reverse_iterator = std::reverse_iterator<init_iterator>;
2540 using init_const_reverse_iterator =
2541 std::reverse_iterator<init_const_iterator>;
2542
2543 init_reverse_iterator init_rbegin() {
2544 return init_reverse_iterator(init_end());
2545 }
2546 init_const_reverse_iterator init_rbegin() const {
2547 return init_const_reverse_iterator(init_end());
2548 }
2549
2550 init_reverse_iterator init_rend() {
2551 return init_reverse_iterator(init_begin());
2552 }
2553 init_const_reverse_iterator init_rend() const {
2554 return init_const_reverse_iterator(init_begin());
2555 }
2556
2557 /// Determine the number of arguments used to initialize the member
2558 /// or base.
2559 unsigned getNumCtorInitializers() const {
2560 return CXXConstructorDeclBits.NumCtorInitializers;
2561 }
2562
2563 void setNumCtorInitializers(unsigned numCtorInitializers) {
2564 CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
2565 // This assert added because NumCtorInitializers is stored
2566 // in CXXConstructorDeclBits as a bitfield and its width has
2567 // been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
2568 assert(CXXConstructorDeclBits.NumCtorInitializers ==((CXXConstructorDeclBits.NumCtorInitializers == numCtorInitializers
&& "NumCtorInitializers overflow!") ? static_cast<
void> (0) : __assert_fail ("CXXConstructorDeclBits.NumCtorInitializers == numCtorInitializers && \"NumCtorInitializers overflow!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2569, __PRETTY_FUNCTION__))
2569 numCtorInitializers && "NumCtorInitializers overflow!")((CXXConstructorDeclBits.NumCtorInitializers == numCtorInitializers
&& "NumCtorInitializers overflow!") ? static_cast<
void> (0) : __assert_fail ("CXXConstructorDeclBits.NumCtorInitializers == numCtorInitializers && \"NumCtorInitializers overflow!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2569, __PRETTY_FUNCTION__))
;
2570 }
2571
2572 void setCtorInitializers(CXXCtorInitializer **Initializers) {
2573 CtorInitializers = Initializers;
2574 }
2575
2576 /// Determine whether this constructor is a delegating constructor.
2577 bool isDelegatingConstructor() const {
2578 return (getNumCtorInitializers() == 1) &&
2579 init_begin()[0]->isDelegatingInitializer();
2580 }
2581
2582 /// When this constructor delegates to another, retrieve the target.
2583 CXXConstructorDecl *getTargetConstructor() const;
2584
2585 /// Whether this constructor is a default
2586 /// constructor (C++ [class.ctor]p5), which can be used to
2587 /// default-initialize a class of this type.
2588 bool isDefaultConstructor() const;
2589
2590 /// Whether this constructor is a copy constructor (C++ [class.copy]p2,
2591 /// which can be used to copy the class.
2592 ///
2593 /// \p TypeQuals will be set to the qualifiers on the
2594 /// argument type. For example, \p TypeQuals would be set to \c
2595 /// Qualifiers::Const for the following copy constructor:
2596 ///
2597 /// \code
2598 /// class X {
2599 /// public:
2600 /// X(const X&);
2601 /// };
2602 /// \endcode
2603 bool isCopyConstructor(unsigned &TypeQuals) const;
2604
2605 /// Whether this constructor is a copy
2606 /// constructor (C++ [class.copy]p2, which can be used to copy the
2607 /// class.
2608 bool isCopyConstructor() const {
2609 unsigned TypeQuals = 0;
2610 return isCopyConstructor(TypeQuals);
2611 }
2612
2613 /// Determine whether this constructor is a move constructor
2614 /// (C++11 [class.copy]p3), which can be used to move values of the class.
2615 ///
2616 /// \param TypeQuals If this constructor is a move constructor, will be set
2617 /// to the type qualifiers on the referent of the first parameter's type.
2618 bool isMoveConstructor(unsigned &TypeQuals) const;
2619
2620 /// Determine whether this constructor is a move constructor
2621 /// (C++11 [class.copy]p3), which can be used to move values of the class.
2622 bool isMoveConstructor() const {
2623 unsigned TypeQuals = 0;
2624 return isMoveConstructor(TypeQuals);
2625 }
2626
2627 /// Determine whether this is a copy or move constructor.
2628 ///
2629 /// \param TypeQuals Will be set to the type qualifiers on the reference
2630 /// parameter, if in fact this is a copy or move constructor.
2631 bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2632
2633 /// Determine whether this a copy or move constructor.
2634 bool isCopyOrMoveConstructor() const {
2635 unsigned Quals;
2636 return isCopyOrMoveConstructor(Quals);
2637 }
2638
2639 /// Whether this constructor is a
2640 /// converting constructor (C++ [class.conv.ctor]), which can be
2641 /// used for user-defined conversions.
2642 bool isConvertingConstructor(bool AllowExplicit) const;
2643
2644 /// Determine whether this is a member template specialization that
2645 /// would copy the object to itself. Such constructors are never used to copy
2646 /// an object.
2647 bool isSpecializationCopyingObject() const;
2648
2649 /// Determine whether this is an implicit constructor synthesized to
2650 /// model a call to a constructor inherited from a base class.
2651 bool isInheritingConstructor() const {
2652 return CXXConstructorDeclBits.IsInheritingConstructor;
2653 }
2654
2655 /// State that this is an implicit constructor synthesized to
2656 /// model a call to a constructor inherited from a base class.
2657 void setInheritingConstructor(bool isIC = true) {
2658 CXXConstructorDeclBits.IsInheritingConstructor = isIC;
2659 }
2660
2661 /// Get the constructor that this inheriting constructor is based on.
2662 InheritedConstructor getInheritedConstructor() const {
2663 return isInheritingConstructor() ?
2664 *getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
2665 }
2666
2667 CXXConstructorDecl *getCanonicalDecl() override {
2668 return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2669 }
2670 const CXXConstructorDecl *getCanonicalDecl() const {
2671 return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
2672 }
2673
2674 // Implement isa/cast/dyncast/etc.
2675 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2676 static bool classofKind(Kind K) { return K == CXXConstructor; }
2677};
2678
2679/// Represents a C++ destructor within a class.
2680///
2681/// For example:
2682///
2683/// \code
2684/// class X {
2685/// public:
2686/// ~X(); // represented by a CXXDestructorDecl.
2687/// };
2688/// \endcode
2689class CXXDestructorDecl : public CXXMethodDecl {
2690 friend class ASTDeclReader;
2691 friend class ASTDeclWriter;
2692
2693 // FIXME: Don't allocate storage for these except in the first declaration
2694 // of a virtual destructor.
2695 FunctionDecl *OperatorDelete = nullptr;
2696 Expr *OperatorDeleteThisArg = nullptr;
2697
2698 CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2699 const DeclarationNameInfo &NameInfo, QualType T,
2700 TypeSourceInfo *TInfo, bool isInline,
2701 bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2702 Expr *TrailingRequiresClause = nullptr)
2703 : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
2704 SC_None, isInline, ConstexprKind, SourceLocation(),
2705 TrailingRequiresClause) {
2706 setImplicit(isImplicitlyDeclared);
2707 }
2708
2709 void anchor() override;
2710
2711public:
2712 static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2713 SourceLocation StartLoc,
2714 const DeclarationNameInfo &NameInfo,
2715 QualType T, TypeSourceInfo *TInfo,
2716 bool isInline, bool isImplicitlyDeclared,
2717 ConstexprSpecKind ConstexprKind,
2718 Expr *TrailingRequiresClause = nullptr);
2719 static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2720
2721 void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
2722
2723 const FunctionDecl *getOperatorDelete() const {
2724 return getCanonicalDecl()->OperatorDelete;
2725 }
2726
2727 Expr *getOperatorDeleteThisArg() const {
2728 return getCanonicalDecl()->OperatorDeleteThisArg;
2729 }
2730
2731 CXXDestructorDecl *getCanonicalDecl() override {
2732 return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
2733 }
2734 const CXXDestructorDecl *getCanonicalDecl() const {
2735 return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
2736 }
2737
2738 // Implement isa/cast/dyncast/etc.
2739 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2740 static bool classofKind(Kind K) { return K == CXXDestructor; }
2741};
2742
2743/// Represents a C++ conversion function within a class.
2744///
2745/// For example:
2746///
2747/// \code
2748/// class X {
2749/// public:
2750/// operator bool();
2751/// };
2752/// \endcode
2753class CXXConversionDecl : public CXXMethodDecl {
2754 CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2755 const DeclarationNameInfo &NameInfo, QualType T,
2756 TypeSourceInfo *TInfo, bool isInline, ExplicitSpecifier ES,
2757 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2758 Expr *TrailingRequiresClause = nullptr)
2759 : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
2760 SC_None, isInline, ConstexprKind, EndLocation,
2761 TrailingRequiresClause),
2762 ExplicitSpec(ES) {}
2763 void anchor() override;
2764
2765 ExplicitSpecifier ExplicitSpec;
2766
2767public:
2768 friend class ASTDeclReader;
2769 friend class ASTDeclWriter;
2770
2771 static CXXConversionDecl *
2772 Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2773 const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2774 bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2775 SourceLocation EndLocation, Expr *TrailingRequiresClause = nullptr);
2776 static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2777
2778 ExplicitSpecifier getExplicitSpecifier() {
2779 return getCanonicalDecl()->ExplicitSpec;
2780 }
2781
2782 const ExplicitSpecifier getExplicitSpecifier() const {
2783 return getCanonicalDecl()->ExplicitSpec;
2784 }
2785
2786 /// Return true if the declartion is already resolved to be explicit.
2787 bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2788 void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
2789
2790 /// Returns the type that this conversion function is converting to.
2791 QualType getConversionType() const {
2792 return getType()->castAs<FunctionType>()->getReturnType();
2793 }
2794
2795 /// Determine whether this conversion function is a conversion from
2796 /// a lambda closure type to a block pointer.
2797 bool isLambdaToBlockPointerConversion() const;
2798
2799 CXXConversionDecl *getCanonicalDecl() override {
2800 return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
2801 }
2802 const CXXConversionDecl *getCanonicalDecl() const {
2803 return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
2804 }
2805
2806 // Implement isa/cast/dyncast/etc.
2807 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2808 static bool classofKind(Kind K) { return K == CXXConversion; }
2809};
2810
2811/// Represents a linkage specification.
2812///
2813/// For example:
2814/// \code
2815/// extern "C" void foo();
2816/// \endcode
2817class LinkageSpecDecl : public Decl, public DeclContext {
2818 virtual void anchor();
2819 // This class stores some data in DeclContext::LinkageSpecDeclBits to save
2820 // some space. Use the provided accessors to access it.
2821public:
2822 /// Represents the language in a linkage specification.
2823 ///
2824 /// The values are part of the serialization ABI for
2825 /// ASTs and cannot be changed without altering that ABI.
2826 enum LanguageIDs { lang_c = 1, lang_cxx = 2 };
2827
2828private:
2829 /// The source location for the extern keyword.
2830 SourceLocation ExternLoc;
2831
2832 /// The source location for the right brace (if valid).
2833 SourceLocation RBraceLoc;
2834
2835 LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2836 SourceLocation LangLoc, LanguageIDs lang, bool HasBraces);
2837
2838public:
2839 static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2840 SourceLocation ExternLoc,
2841 SourceLocation LangLoc, LanguageIDs Lang,
2842 bool HasBraces);
2843 static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2844
2845 /// Return the language specified by this linkage specification.
2846 LanguageIDs getLanguage() const {
2847 return static_cast<LanguageIDs>(LinkageSpecDeclBits.Language);
2848 }
2849
2850 /// Set the language specified by this linkage specification.
2851 void setLanguage(LanguageIDs L) { LinkageSpecDeclBits.Language = L; }
2852
2853 /// Determines whether this linkage specification had braces in
2854 /// its syntactic form.
2855 bool hasBraces() const {
2856 assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces)((!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces) ? static_cast
<void> (0) : __assert_fail ("!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces"
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 2856, __PRETTY_FUNCTION__))
;
2857 return LinkageSpecDeclBits.HasBraces;
2858 }
2859
2860 SourceLocation getExternLoc() const { return ExternLoc; }
2861 SourceLocation getRBraceLoc() const { return RBraceLoc; }
2862 void setExternLoc(SourceLocation L) { ExternLoc = L; }
2863 void setRBraceLoc(SourceLocation L) {
2864 RBraceLoc = L;
2865 LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
2866 }
2867
2868 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
2869 if (hasBraces())
2870 return getRBraceLoc();
2871 // No braces: get the end location of the (only) declaration in context
2872 // (if present).
2873 return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
2874 }
2875
2876 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
2877 return SourceRange(ExternLoc, getEndLoc());
2878 }
2879
2880 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2881 static bool classofKind(Kind K) { return K == LinkageSpec; }
2882
2883 static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2884 return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2885 }
2886
2887 static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2888 return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2889 }
2890};
2891
2892/// Represents C++ using-directive.
2893///
2894/// For example:
2895/// \code
2896/// using namespace std;
2897/// \endcode
2898///
2899/// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
2900/// artificial names for all using-directives in order to store
2901/// them in DeclContext effectively.
2902class UsingDirectiveDecl : public NamedDecl {
2903 /// The location of the \c using keyword.
2904 SourceLocation UsingLoc;
2905
2906 /// The location of the \c namespace keyword.
2907 SourceLocation NamespaceLoc;
2908
2909 /// The nested-name-specifier that precedes the namespace.
2910 NestedNameSpecifierLoc QualifierLoc;
2911
2912 /// The namespace nominated by this using-directive.
2913 NamedDecl *NominatedNamespace;
2914
2915 /// Enclosing context containing both using-directive and nominated
2916 /// namespace.
2917 DeclContext *CommonAncestor;
2918
2919 UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
2920 SourceLocation NamespcLoc,
2921 NestedNameSpecifierLoc QualifierLoc,
2922 SourceLocation IdentLoc,
2923 NamedDecl *Nominated,
2924 DeclContext *CommonAncestor)
2925 : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
2926 NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
2927 NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
2928
2929 /// Returns special DeclarationName used by using-directives.
2930 ///
2931 /// This is only used by DeclContext for storing UsingDirectiveDecls in
2932 /// its lookup structure.
2933 static DeclarationName getName() {
2934 return DeclarationName::getUsingDirectiveName();
2935 }
2936
2937 void anchor() override;
2938
2939public:
2940 friend class ASTDeclReader;
2941
2942 // Friend for getUsingDirectiveName.
2943 friend class DeclContext;
2944
2945 /// Retrieve the nested-name-specifier that qualifies the
2946 /// name of the namespace, with source-location information.
2947 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2948
2949 /// Retrieve the nested-name-specifier that qualifies the
2950 /// name of the namespace.
2951 NestedNameSpecifier *getQualifier() const {
2952 return QualifierLoc.getNestedNameSpecifier();
2953 }
2954
2955 NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
2956 const NamedDecl *getNominatedNamespaceAsWritten() const {
2957 return NominatedNamespace;
2958 }
2959
2960 /// Returns the namespace nominated by this using-directive.
2961 NamespaceDecl *getNominatedNamespace();
2962
2963 const NamespaceDecl *getNominatedNamespace() const {
2964 return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
2965 }
2966
2967 /// Returns the common ancestor context of this using-directive and
2968 /// its nominated namespace.
2969 DeclContext *getCommonAncestor() { return CommonAncestor; }
2970 const DeclContext *getCommonAncestor() const { return CommonAncestor; }
2971
2972 /// Return the location of the \c using keyword.
2973 SourceLocation getUsingLoc() const { return UsingLoc; }
2974
2975 // FIXME: Could omit 'Key' in name.
2976 /// Returns the location of the \c namespace keyword.
2977 SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
2978
2979 /// Returns the location of this using declaration's identifier.
2980 SourceLocation getIdentLocation() const { return getLocation(); }
2981
2982 static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
2983 SourceLocation UsingLoc,
2984 SourceLocation NamespaceLoc,
2985 NestedNameSpecifierLoc QualifierLoc,
2986 SourceLocation IdentLoc,
2987 NamedDecl *Nominated,
2988 DeclContext *CommonAncestor);
2989 static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2990
2991 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
2992 return SourceRange(UsingLoc, getLocation());
2993 }
2994
2995 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2996 static bool classofKind(Kind K) { return K == UsingDirective; }
2997};
2998
2999/// Represents a C++ namespace alias.
3000///
3001/// For example:
3002///
3003/// \code
3004/// namespace Foo = Bar;
3005/// \endcode
3006class NamespaceAliasDecl : public NamedDecl,
3007 public Redeclarable<NamespaceAliasDecl> {
3008 friend class ASTDeclReader;
3009
3010 /// The location of the \c namespace keyword.
3011 SourceLocation NamespaceLoc;
3012
3013 /// The location of the namespace's identifier.
3014 ///
3015 /// This is accessed by TargetNameLoc.
3016 SourceLocation IdentLoc;
3017
3018 /// The nested-name-specifier that precedes the namespace.
3019 NestedNameSpecifierLoc QualifierLoc;
3020
3021 /// The Decl that this alias points to, either a NamespaceDecl or
3022 /// a NamespaceAliasDecl.
3023 NamedDecl *Namespace;
3024
3025 NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
3026 SourceLocation NamespaceLoc, SourceLocation AliasLoc,
3027 IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
3028 SourceLocation IdentLoc, NamedDecl *Namespace)
3029 : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
3030 NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
3031 QualifierLoc(QualifierLoc), Namespace(Namespace) {}
3032
3033 void anchor() override;
3034
3035 using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
3036
3037 NamespaceAliasDecl *getNextRedeclarationImpl() override;
3038 NamespaceAliasDecl *getPreviousDeclImpl() override;
3039 NamespaceAliasDecl *getMostRecentDeclImpl() override;
3040
3041public:
3042 static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
3043 SourceLocation NamespaceLoc,
3044 SourceLocation AliasLoc,
3045 IdentifierInfo *Alias,
3046 NestedNameSpecifierLoc QualifierLoc,
3047 SourceLocation IdentLoc,
3048 NamedDecl *Namespace);
3049
3050 static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3051
3052 using redecl_range = redeclarable_base::redecl_range;
3053 using redecl_iterator = redeclarable_base::redecl_iterator;
3054
3055 using redeclarable_base::redecls_begin;
3056 using redeclarable_base::redecls_end;
3057 using redeclarable_base::redecls;
3058 using redeclarable_base::getPreviousDecl;
3059 using redeclarable_base::getMostRecentDecl;
3060
3061 NamespaceAliasDecl *getCanonicalDecl() override {
3062 return getFirstDecl();
3063 }
3064 const NamespaceAliasDecl *getCanonicalDecl() const {
3065 return getFirstDecl();
3066 }
3067
3068 /// Retrieve the nested-name-specifier that qualifies the
3069 /// name of the namespace, with source-location information.
3070 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3071
3072 /// Retrieve the nested-name-specifier that qualifies the
3073 /// name of the namespace.
3074 NestedNameSpecifier *getQualifier() const {
3075 return QualifierLoc.getNestedNameSpecifier();
3076 }
3077
3078 /// Retrieve the namespace declaration aliased by this directive.
3079 NamespaceDecl *getNamespace() {
3080 if (auto *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
3081 return AD->getNamespace();
3082
3083 return cast<NamespaceDecl>(Namespace);
3084 }
3085
3086 const NamespaceDecl *getNamespace() const {
3087 return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
3088 }
3089
3090 /// Returns the location of the alias name, i.e. 'foo' in
3091 /// "namespace foo = ns::bar;".
3092 SourceLocation getAliasLoc() const { return getLocation(); }
3093
3094 /// Returns the location of the \c namespace keyword.
3095 SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
3096
3097 /// Returns the location of the identifier in the named namespace.
3098 SourceLocation getTargetNameLoc() const { return IdentLoc; }
3099
3100 /// Retrieve the namespace that this alias refers to, which
3101 /// may either be a NamespaceDecl or a NamespaceAliasDecl.
3102 NamedDecl *getAliasedNamespace() const { return Namespace; }
3103
3104 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
3105 return SourceRange(NamespaceLoc, IdentLoc);
3106 }
3107
3108 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3109 static bool classofKind(Kind K) { return K == NamespaceAlias; }
3110};
3111
3112/// Implicit declaration of a temporary that was materialized by
3113/// a MaterializeTemporaryExpr and lifetime-extended by a declaration
3114class LifetimeExtendedTemporaryDecl final
3115 : public Decl,
3116 public Mergeable<LifetimeExtendedTemporaryDecl> {
3117 friend class MaterializeTemporaryExpr;
3118 friend class ASTDeclReader;
3119
3120 Stmt *ExprWithTemporary = nullptr;
3121
3122 /// The declaration which lifetime-extended this reference, if any.
3123 /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3124 ValueDecl *ExtendingDecl = nullptr;
3125 unsigned ManglingNumber;
3126
3127 mutable APValue *Value = nullptr;
3128
3129 virtual void anchor();
3130
3131 LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling)
3132 : Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(),
3133 EDecl->getLocation()),
3134 ExprWithTemporary(Temp), ExtendingDecl(EDecl),
3135 ManglingNumber(Mangling) {}
3136
3137 LifetimeExtendedTemporaryDecl(EmptyShell)
3138 : Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {}
3139
3140public:
3141 static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec,
3142 unsigned Mangling) {
3143 return new (EDec->getASTContext(), EDec->getDeclContext())
3144 LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling);
3145 }
3146 static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C,
3147 unsigned ID) {
3148 return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{});
3149 }
3150
3151 ValueDecl *getExtendingDecl() { return ExtendingDecl; }
3152 const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3153
3154 /// Retrieve the storage duration for the materialized temporary.
3155 StorageDuration getStorageDuration() const;
3156
3157 /// Retrieve the expression to which the temporary materialization conversion
3158 /// was applied. This isn't necessarily the initializer of the temporary due
3159 /// to the C++98 delayed materialization rules, but
3160 /// skipRValueSubobjectAdjustments can be used to find said initializer within
3161 /// the subexpression.
3162 Expr *getTemporaryExpr() { return cast<Expr>(ExprWithTemporary); }
3163 const Expr *getTemporaryExpr() const { return cast<Expr>(ExprWithTemporary); }
3164
3165 unsigned getManglingNumber() const { return ManglingNumber; }
3166
3167 /// Get the storage for the constant value of a materialized temporary
3168 /// of static storage duration.
3169 APValue *getOrCreateValue(bool MayCreate) const;
3170
3171 APValue *getValue() const { return Value; }
3172
3173 // Iterators
3174 Stmt::child_range childrenExpr() {
3175 return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3176 }
3177
3178 Stmt::const_child_range childrenExpr() const {
3179 return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3180 }
3181
3182 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3183 static bool classofKind(Kind K) {
3184 return K == Decl::LifetimeExtendedTemporary;
3185 }
3186};
3187
3188/// Represents a shadow declaration introduced into a scope by a
3189/// (resolved) using declaration.
3190///
3191/// For example,
3192/// \code
3193/// namespace A {
3194/// void foo();
3195/// }
3196/// namespace B {
3197/// using A::foo; // <- a UsingDecl
3198/// // Also creates a UsingShadowDecl for A::foo() in B
3199/// }
3200/// \endcode
3201class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
3202 friend class UsingDecl;
3203
3204 /// The referenced declaration.
3205 NamedDecl *Underlying = nullptr;
3206
3207 /// The using declaration which introduced this decl or the next using
3208 /// shadow declaration contained in the aforementioned using declaration.
3209 NamedDecl *UsingOrNextShadow = nullptr;
3210
3211 void anchor() override;
3212
3213 using redeclarable_base = Redeclarable<UsingShadowDecl>;
3214
3215 UsingShadowDecl *getNextRedeclarationImpl() override {
3216 return getNextRedeclaration();
3217 }
3218
3219 UsingShadowDecl *getPreviousDeclImpl() override {
3220 return getPreviousDecl();
3221 }
3222
3223 UsingShadowDecl *getMostRecentDeclImpl() override {
3224 return getMostRecentDecl();
3225 }
3226
3227protected:
3228 UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
3229 UsingDecl *Using, NamedDecl *Target);
3230 UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
3231
3232public:
3233 friend class ASTDeclReader;
3234 friend class ASTDeclWriter;
3235
3236 static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3237 SourceLocation Loc, UsingDecl *Using,
3238 NamedDecl *Target) {
3239 return new (C, DC) UsingShadowDecl(UsingShadow, C, DC, Loc, Using, Target);
3240 }
3241
3242 static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3243
3244 using redecl_range = redeclarable_base::redecl_range;
3245 using redecl_iterator = redeclarable_base::redecl_iterator;
3246
3247 using redeclarable_base::redecls_begin;
3248 using redeclarable_base::redecls_end;
3249 using redeclarable_base::redecls;
3250 using redeclarable_base::getPreviousDecl;
3251 using redeclarable_base::getMostRecentDecl;
3252 using redeclarable_base::isFirstDecl;
3253
3254 UsingShadowDecl *getCanonicalDecl() override {
3255 return getFirstDecl();
3256 }
3257 const UsingShadowDecl *getCanonicalDecl() const {
3258 return getFirstDecl();
3259 }
3260
3261 /// Gets the underlying declaration which has been brought into the
3262 /// local scope.
3263 NamedDecl *getTargetDecl() const { return Underlying; }
3264
3265 /// Sets the underlying declaration which has been brought into the
3266 /// local scope.
3267 void setTargetDecl(NamedDecl *ND) {
3268 assert(ND && "Target decl is null!")((ND && "Target decl is null!") ? static_cast<void
> (0) : __assert_fail ("ND && \"Target decl is null!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/clang/include/clang/AST/DeclCXX.h"
, 3268, __PRETTY_FUNCTION__))
;
3269 Underlying = ND;
3270 // A UsingShadowDecl is never a friend or local extern declaration, even
3271 // if it is a shadow declaration for one.
3272 IdentifierNamespace =
3273 ND->getIdentifierNamespace() &
3274 ~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
3275 }
3276
3277 /// Gets the using declaration to which this declaration is tied.
3278 UsingDecl *getUsingDecl() const;
3279
3280 /// The next using shadow declaration contained in the shadow decl
3281 /// chain of the using declaration which introduced this decl.
3282 UsingShadowDecl *getNextUsingShadowDecl() const {
3283 return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
3284 }
3285
3286 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3287 static bool classofKind(Kind K) {
3288 return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
3289 }
3290};
3291
3292/// Represents a shadow constructor declaration introduced into a
3293/// class by a C++11 using-declaration that names a constructor.
3294///
3295/// For example:
3296/// \code
3297/// struct Base { Base(int); };
3298/// struct Derived {
3299/// using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
3300/// };
3301/// \endcode
3302class ConstructorUsingShadowDecl final : public UsingShadowDecl {
3303 /// If this constructor using declaration inherted the constructor
3304 /// from an indirect base class, this is the ConstructorUsingShadowDecl
3305 /// in the named direct base class from which the declaration was inherited.
3306 ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
3307
3308 /// If this constructor using declaration inherted the constructor
3309 /// from an indirect base class, this is the ConstructorUsingShadowDecl
3310 /// that will be used to construct the unique direct or virtual base class
3311 /// that receives the constructor arguments.
3312 ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
3313
3314 /// \c true if the constructor ultimately named by this using shadow
3315 /// declaration is within a virtual base class subobject of the class that
3316 /// contains this declaration.
3317 unsigned IsVirtual : 1;
3318
3319 ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
3320 UsingDecl *Using, NamedDecl *Target,
3321 bool TargetInVirtualBase)
3322 : UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc, Using,
3323 Target->getUnderlyingDecl()),
3324 NominatedBaseClassShadowDecl(
3325 dyn_cast<ConstructorUsingShadowDecl>(Target)),
3326 ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
3327 IsVirtual(TargetInVirtualBase) {
3328 // If we found a constructor that chains to a constructor for a virtual
3329 // base, we should directly call that virtual base constructor instead.
3330 // FIXME: This logic belongs in Sema.
3331 if (NominatedBaseClassShadowDecl &&
3332 NominatedBaseClassShadowDecl->constructsVirtualBase()) {
3333 ConstructedBaseClassShadowDecl =
3334 NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
3335 IsVirtual = true;
3336 }
3337 }
3338
3339 ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
3340 : UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
3341
3342 void anchor() override;
3343
3344public:
3345 friend class ASTDeclReader;
3346 friend class ASTDeclWriter;
3347
3348 static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3349 SourceLocation Loc,
3350 UsingDecl *Using, NamedDecl *Target,
3351 bool IsVirtual);
3352 static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
3353 unsigned ID);
3354
3355 /// Returns the parent of this using shadow declaration, which
3356 /// is the class in which this is declared.
3357 //@{
3358 const CXXRecordDecl *getParent() const {
3359 return cast<CXXRecordDecl>(getDeclContext());
3360 }
3361 CXXRecordDecl *getParent() {
3362 return cast<CXXRecordDecl>(getDeclContext());
3363 }
3364 //@}
3365
3366 /// Get the inheriting constructor declaration for the direct base
3367 /// class from which this using shadow declaration was inherited, if there is
3368 /// one. This can be different for each redeclaration of the same shadow decl.
3369 ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
3370 return NominatedBaseClassShadowDecl;
3371 }
3372
3373 /// Get the inheriting constructor declaration for the base class
3374 /// for which we don't have an explicit initializer, if there is one.
3375 ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
3376 return ConstructedBaseClassShadowDecl;
3377 }
3378
3379 /// Get the base class that was named in the using declaration. This
3380 /// can be different for each redeclaration of this same shadow decl.
3381 CXXRecordDecl *getNominatedBaseClass() const;
3382
3383 /// Get the base class whose constructor or constructor shadow
3384 /// declaration is passed the constructor arguments.
3385 CXXRecordDecl *getConstructedBaseClass() const {
3386 return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
3387 ? ConstructedBaseClassShadowDecl
3388 : getTargetDecl())
3389 ->getDeclContext());
3390 }
3391
3392 /// Returns \c true if the constructed base class is a virtual base
3393 /// class subobject of this declaration's class.
3394 bool constructsVirtualBase() const {
3395 return IsVirtual;
3396 }
3397
3398 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3399 static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
3400};
3401
3402/// Represents a C++ using-declaration.
3403///
3404/// For example:
3405/// \code
3406/// using someNameSpace::someIdentifier;
3407/// \endcode
3408class UsingDecl : public NamedDecl, public Mergeable<UsingDecl> {
3409 /// The source location of the 'using' keyword itself.
3410 SourceLocation UsingLocation;
3411
3412 /// The nested-name-specifier that precedes the name.
3413 NestedNameSpecifierLoc QualifierLoc;
3414
3415 /// Provides source/type location info for the declaration name
3416 /// embedded in the ValueDecl base class.
3417 DeclarationNameLoc DNLoc;
3418
3419 /// The first shadow declaration of the shadow decl chain associated
3420 /// with this using declaration.
3421 ///
3422 /// The bool member of the pair store whether this decl has the \c typename
3423 /// keyword.
3424 llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
3425
3426 UsingDecl(DeclContext *DC, SourceLocation UL,
3427 NestedNameSpecifierLoc QualifierLoc,
3428 const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
3429 : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
3430 UsingLocation(UL), QualifierLoc(QualifierLoc),
3431 DNLoc(NameInfo.getInfo()), FirstUsingShadow(nullptr, HasTypenameKeyword) {
3432 }
3433
3434 void anchor() override;
3435
3436public:
3437 friend class ASTDeclReader;
3438 friend class ASTDeclWriter;
3439
3440 /// Return the source location of the 'using' keyword.
3441 SourceLocation getUsingLoc() const { return UsingLocation; }
3442
3443 /// Set the source location of the 'using' keyword.
3444 void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3445
3446 /// Retrieve the nested-name-specifier that qualifies the name,
3447 /// with source-location information.
3448 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3449
3450 /// Retrieve the nested-name-specifier that qualifies the name.
3451 NestedNameSpecifier *getQualifier() const {
3452 return QualifierLoc.getNestedNameSpecifier();
3453 }
3454
3455 DeclarationNameInfo getNameInfo() const {
3456 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3457 }
3458
3459 /// Return true if it is a C++03 access declaration (no 'using').
3460 bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3461
3462 /// Return true if the using declaration has 'typename'.
3463 bool hasTypename() const { return FirstUsingShadow.getInt(); }
3464
3465 /// Sets whether the using declaration has 'typename'.
3466 void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
3467
3468 /// Iterates through the using shadow declarations associated with
3469 /// this using declaration.
3470 class shadow_iterator {
3471 /// The current using shadow declaration.
3472 UsingShadowDecl *Current = nullptr;
3473
3474 public:
3475 using value_type = UsingShadowDecl *;
3476 using reference = UsingShadowDecl *;
3477 using pointer = UsingShadowDecl *;
3478 using iterator_category = std::forward_iterator_tag;
3479 using difference_type = std::ptrdiff_t;
3480
3481 shadow_iterator() = default;
3482 explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
3483
3484 reference operator*() const { return Current; }
3485 pointer operator->() const { return Current; }
3486
3487 shadow_iterator& operator++() {
3488 Current = Current->getNextUsingShadowDecl();
3489 return *this;
3490 }
3491
3492 shadow_iterator operator++(int) {
3493 shadow_iterator tmp(*this);
3494 ++(*this);
3495 return tmp;
3496 }
3497
3498 friend bool operator==(shadow_iterator x, shadow_iterator y) {
3499 return x.Current == y.Current;
3500 }
3501 friend bool operator!=(shadow_iterator x, shadow_iterator y) {
3502 return x.Current != y.Current;
3503 }
3504 };
3505
3506 using shadow_range = llvm::iterator_range<shadow_iterator>;
3507
3508 shadow_range shadows() const {
3509 return shadow_range(shadow_begin(), shadow_end());
3510 }
3511
3512 shadow_iterator shadow_begin() const {
3513 return shadow_iterator(FirstUsingShadow.getPointer());
3514 }
3515
3516 shadow_iterator shadow_end() const { return shadow_iterator(); }
3517
3518 /// Return the number of shadowed declarations associated with this
3519 /// using declaration.
3520 unsigned shadow_size() const {
3521 return std::distance(shadow_begin(), shadow_end());
3522 }
3523
3524 void addShadowDecl(UsingShadowDecl *S);
3525 void removeShadowDecl(UsingShadowDecl *S);
3526
3527 static UsingDecl *Create(ASTContext &C, DeclContext *DC,
3528 SourceLocation UsingL,
3529 NestedNameSpecifierLoc QualifierLoc,
3530 const DeclarationNameInfo &NameInfo,
3531 bool HasTypenameKeyword);
3532
3533 static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3534
3535 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3536
3537 /// Retrieves the canonical declaration of this declaration.
3538 UsingDecl *getCanonicalDecl() override { return getFirstDecl(); }
3539 const UsingDecl *getCanonicalDecl() const { return getFirstDecl(); }
3540
3541 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3542 static bool classofKind(Kind K) { return K == Using; }
3543};
3544
3545/// Represents a pack of using declarations that a single
3546/// using-declarator pack-expanded into.
3547///
3548/// \code
3549/// template<typename ...T> struct X : T... {
3550/// using T::operator()...;
3551/// using T::operator T...;
3552/// };
3553/// \endcode
3554///
3555/// In the second case above, the UsingPackDecl will have the name
3556/// 'operator T' (which contains an unexpanded pack), but the individual
3557/// UsingDecls and UsingShadowDecls will have more reasonable names.
3558class UsingPackDecl final
3559 : public NamedDecl, public Mergeable<UsingPackDecl>,
3560 private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
3561 /// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
3562 /// which this waas instantiated.
3563 NamedDecl *InstantiatedFrom;
3564
3565 /// The number of using-declarations created by this pack expansion.
3566 unsigned NumExpansions;
3567
3568 UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
3569 ArrayRef<NamedDecl *> UsingDecls)
3570 : NamedDecl(UsingPack, DC,
3571 InstantiatedFrom ? InstantiatedFrom->getLocation()
3572 : SourceLocation(),
3573 InstantiatedFrom ? InstantiatedFrom->getDeclName()
3574 : DeclarationName()),
3575 InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
3576 std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
3577 getTrailingObjects<NamedDecl *>());
3578 }
3579
3580 void anchor() override;
3581
3582public:
3583 friend class ASTDeclReader;
3584 friend class ASTDeclWriter;
3585 friend TrailingObjects;
3586
3587 /// Get the using declaration from which this was instantiated. This will
3588 /// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
3589 /// that is a pack expansion.
3590 NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
3591
3592 /// Get the set of using declarations that this pack expanded into. Note that
3593 /// some of these may still be unresolved.
3594 ArrayRef<NamedDecl *> expansions() const {
3595 return llvm::makeArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
3596 }
3597
3598 static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
3599 NamedDecl *InstantiatedFrom,
3600 ArrayRef<NamedDecl *> UsingDecls);
3601
3602 static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
3603 unsigned NumExpansions);
3604
3605 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
3606 return InstantiatedFrom->getSourceRange();
3607 }
3608
3609 UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
3610 const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
3611
3612 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3613 static bool classofKind(Kind K) { return K == UsingPack; }
3614};
3615
3616/// Represents a dependent using declaration which was not marked with
3617/// \c typename.
3618///
3619/// Unlike non-dependent using declarations, these *only* bring through
3620/// non-types; otherwise they would break two-phase lookup.
3621///
3622/// \code
3623/// template \<class T> class A : public Base<T> {
3624/// using Base<T>::foo;
3625/// };
3626/// \endcode
3627class UnresolvedUsingValueDecl : public ValueDecl,
3628 public Mergeable<UnresolvedUsingValueDecl> {
3629 /// The source location of the 'using' keyword
3630 SourceLocation UsingLocation;
3631
3632 /// If this is a pack expansion, the location of the '...'.
3633 SourceLocation EllipsisLoc;
3634
3635 /// The nested-name-specifier that precedes the name.
3636 NestedNameSpecifierLoc QualifierLoc;
3637
3638 /// Provides source/type location info for the declaration name
3639 /// embedded in the ValueDecl base class.
3640 DeclarationNameLoc DNLoc;
3641
3642 UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
3643 SourceLocation UsingLoc,
3644 NestedNameSpecifierLoc QualifierLoc,
3645 const DeclarationNameInfo &NameInfo,
3646 SourceLocation EllipsisLoc)
3647 : ValueDecl(UnresolvedUsingValue, DC,
3648 NameInfo.getLoc(), NameInfo.getName(), Ty),
3649 UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
3650 QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
3651
3652 void anchor() override;
3653
3654public:
3655 friend class ASTDeclReader;
3656 friend class ASTDeclWriter;
3657
3658 /// Returns the source location of the 'using' keyword.
3659 SourceLocation getUsingLoc() const { return UsingLocation; }
3660
3661 /// Set the source location of the 'using' keyword.
3662 void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3663
3664 /// Return true if it is a C++03 access declaration (no 'using').
3665 bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3666
3667 /// Retrieve the nested-name-specifier that qualifies the name,
3668 /// with source-location information.
3669 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3670
3671 /// Retrieve the nested-name-specifier that qualifies the name.
3672 NestedNameSpecifier *getQualifier() const {
3673 return QualifierLoc.getNestedNameSpecifier();
3674 }
3675
3676 DeclarationNameInfo getNameInfo() const {
3677 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3678 }
3679
3680 /// Determine whether this is a pack expansion.
3681 bool isPackExpansion() const {
3682 return EllipsisLoc.isValid();
3683 }
3684
3685 /// Get the location of the ellipsis if this is a pack expansion.
3686 SourceLocation getEllipsisLoc() const {
3687 return EllipsisLoc;
3688 }
3689
3690 static UnresolvedUsingValueDecl *
3691 Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3692 NestedNameSpecifierLoc QualifierLoc,
3693 const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
3694
3695 static UnresolvedUsingValueDecl *
3696 CreateDeserialized(ASTContext &C, unsigned ID);
3697
3698 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3699
3700 /// Retrieves the canonical declaration of this declaration.
3701 UnresolvedUsingValueDecl *getCanonicalDecl() override {
3702 return getFirstDecl();
3703 }
3704 const UnresolvedUsingValueDecl *getCanonicalDecl() const {
3705 return getFirstDecl();
3706 }
3707
3708 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3709 static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
3710};
3711
3712/// Represents a dependent using declaration which was marked with
3713/// \c typename.
3714///
3715/// \code
3716/// template \<class T> class A : public Base<T> {
3717/// using typename Base<T>::foo;
3718/// };
3719/// \endcode
3720///
3721/// The type associated with an unresolved using typename decl is
3722/// currently always a typename type.
3723class UnresolvedUsingTypenameDecl
3724 : public TypeDecl,
3725 public Mergeable<UnresolvedUsingTypenameDecl> {
3726 friend class ASTDeclReader;
3727
3728 /// The source location of the 'typename' keyword
3729 SourceLocation TypenameLocation;
3730
3731 /// If this is a pack expansion, the location of the '...'.
3732 SourceLocation EllipsisLoc;
3733
3734 /// The nested-name-specifier that precedes the name.
3735 NestedNameSpecifierLoc QualifierLoc;
3736
3737 UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
3738 SourceLocation TypenameLoc,
3739 NestedNameSpecifierLoc QualifierLoc,
3740 SourceLocation TargetNameLoc,
3741 IdentifierInfo *TargetName,
3742 SourceLocation EllipsisLoc)
3743 : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
3744 UsingLoc),
3745 TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
3746 QualifierLoc(QualifierLoc) {}
3747
3748 void anchor() override;
3749
3750public:
3751 /// Returns the source location of the 'using' keyword.
3752 SourceLocation getUsingLoc() const { return getBeginLoc(); }
3753
3754 /// Returns the source location of the 'typename' keyword.
3755 SourceLocation getTypenameLoc() const { return TypenameLocation; }
3756
3757 /// Retrieve the nested-name-specifier that qualifies the name,
3758 /// with source-location information.
3759 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3760
3761 /// Retrieve the nested-name-specifier that qualifies the name.
3762 NestedNameSpecifier *getQualifier() const {
3763 return QualifierLoc.getNestedNameSpecifier();
3764 }
3765
3766 DeclarationNameInfo getNameInfo() const {
3767 return DeclarationNameInfo(getDeclName(), getLocation());
3768 }
3769
3770 /// Determine whether this is a pack expansion.
3771 bool isPackExpansion() const {
3772 return EllipsisLoc.isValid();
3773 }
3774
3775 /// Get the location of the ellipsis if this is a pack expansion.
3776 SourceLocation getEllipsisLoc() const {
3777 return EllipsisLoc;
3778 }
3779
3780 static UnresolvedUsingTypenameDecl *
3781 Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3782 SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
3783 SourceLocation TargetNameLoc, DeclarationName TargetName,
3784 SourceLocation EllipsisLoc);
3785
3786 static UnresolvedUsingTypenameDecl *
3787 CreateDeserialized(ASTContext &C, unsigned ID);
3788
3789 /// Retrieves the canonical declaration of this declaration.
3790 UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
3791 return getFirstDecl();
3792 }
3793 const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
3794 return getFirstDecl();
3795 }
3796
3797 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3798 static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
3799};
3800
3801/// Represents a C++11 static_assert declaration.
3802class StaticAssertDecl : public Decl {
3803 llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
3804 StringLiteral *Message;
3805 SourceLocation RParenLoc;
3806
3807 StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
3808 Expr *AssertExpr, StringLiteral *Message,
3809 SourceLocation RParenLoc, bool Failed)
3810 : Decl(StaticAssert, DC, StaticAssertLoc),
3811 AssertExprAndFailed(AssertExpr, Failed), Message(Message),
3812 RParenLoc(RParenLoc) {}
3813
3814 virtual void anchor();
3815
3816public:
3817 friend class ASTDeclReader;
3818
3819 static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
3820 SourceLocation StaticAssertLoc,
3821 Expr *AssertExpr, StringLiteral *Message,
3822 SourceLocation RParenLoc, bool Failed);
3823 static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3824
3825 Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
3826 const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
3827
3828 StringLiteral *getMessage() { return Message; }
3829 const StringLiteral *getMessage() const { return Message; }
3830
3831 bool isFailed() const { return AssertExprAndFailed.getInt(); }
3832
3833 SourceLocation getRParenLoc() const { return RParenLoc; }
3834
3835 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
3836 return SourceRange(getLocation(), getRParenLoc());
3837 }
3838
3839 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3840 static bool classofKind(Kind K) { return K == StaticAssert; }
3841};
3842
3843/// A binding in a decomposition declaration. For instance, given:
3844///
3845/// int n[3];
3846/// auto &[a, b, c] = n;
3847///
3848/// a, b, and c are BindingDecls, whose bindings are the expressions
3849/// x[0], x[1], and x[2] respectively, where x is the implicit
3850/// DecompositionDecl of type 'int (&)[3]'.
3851class BindingDecl : public ValueDecl {
3852 /// The declaration that this binding binds to part of.
3853 LazyDeclPtr Decomp;
3854 /// The binding represented by this declaration. References to this
3855 /// declaration are effectively equivalent to this expression (except
3856 /// that it is only evaluated once at the point of declaration of the
3857 /// binding).
3858 Expr *Binding = nullptr;
3859
3860 BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
3861 : ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {}
3862
3863 void anchor() override;
3864
3865public:
3866 friend class ASTDeclReader;
3867
3868 static BindingDecl *Create(ASTContext &C, DeclContext *DC,
3869 SourceLocation IdLoc, IdentifierInfo *Id);
3870 static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3871
3872 /// Get the expression to which this declaration is bound. This may be null
3873 /// in two different cases: while parsing the initializer for the
3874 /// decomposition declaration, and when the initializer is type-dependent.
3875 Expr *getBinding() const { return Binding; }
3876
3877 /// Get the decomposition declaration that this binding represents a
3878 /// decomposition of.
3879 ValueDecl *getDecomposedDecl() const;
3880
3881 /// Get the variable (if any) that holds the value of evaluating the binding.
3882 /// Only present for user-defined bindings for tuple-like types.
3883 VarDecl *getHoldingVar() const;
3884
3885 /// Set the binding for this BindingDecl, along with its declared type (which
3886 /// should be a possibly-cv-qualified form of the type of the binding, or a
3887 /// reference to such a type).
3888 void setBinding(QualType DeclaredType, Expr *Binding) {
3889 setType(DeclaredType);
3890 this->Binding = Binding;
3891 }
3892
3893 /// Set the decomposed variable for this BindingDecl.
3894 void setDecomposedDecl(ValueDecl *Decomposed) { Decomp = Decomposed; }
3895
3896 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3897 static bool classofKind(Kind K) { return K == Decl::Binding; }
3898};
3899
3900/// A decomposition declaration. For instance, given:
3901///
3902/// int n[3];
3903/// auto &[a, b, c] = n;
3904///
3905/// the second line declares a DecompositionDecl of type 'int (&)[3]', and
3906/// three BindingDecls (named a, b, and c). An instance of this class is always
3907/// unnamed, but behaves in almost all other respects like a VarDecl.
3908class DecompositionDecl final
3909 : public VarDecl,
3910 private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
3911 /// The number of BindingDecl*s following this object.
3912 unsigned NumBindings;
3913
3914 DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3915 SourceLocation LSquareLoc, QualType T,
3916 TypeSourceInfo *TInfo, StorageClass SC,
3917 ArrayRef<BindingDecl *> Bindings)
3918 : VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
3919 SC),
3920 NumBindings(Bindings.size()) {
3921 std::uninitialized_copy(Bindings.begin(), Bindings.end(),
3922 getTrailingObjects<BindingDecl *>());
3923 for (auto *B : Bindings)
3924 B->setDecomposedDecl(this);
3925 }
3926
3927 void anchor() override;
3928
3929public:
3930 friend class ASTDeclReader;
3931 friend TrailingObjects;
3932
3933 static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
3934 SourceLocation StartLoc,
3935 SourceLocation LSquareLoc,
3936 QualType T, TypeSourceInfo *TInfo,
3937 StorageClass S,
3938 ArrayRef<BindingDecl *> Bindings);
3939 static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
3940 unsigned NumBindings);
3941
3942 ArrayRef<BindingDecl *> bindings() const {
3943 return llvm::makeArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
3944 }
3945
3946 void printName(raw_ostream &os) const override;
3947
3948 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3949 static bool classofKind(Kind K) { return K == Decomposition; }
3950};
3951
3952/// An instance of this class represents the declaration of a property
3953/// member. This is a Microsoft extension to C++, first introduced in
3954/// Visual Studio .NET 2003 as a parallel to similar features in C#
3955/// and Managed C++.
3956///
3957/// A property must always be a non-static class member.
3958///
3959/// A property member superficially resembles a non-static data
3960/// member, except preceded by a property attribute:
3961/// __declspec(property(get=GetX, put=PutX)) int x;
3962/// Either (but not both) of the 'get' and 'put' names may be omitted.
3963///
3964/// A reference to a property is always an lvalue. If the lvalue
3965/// undergoes lvalue-to-rvalue conversion, then a getter name is
3966/// required, and that member is called with no arguments.
3967/// If the lvalue is assigned into, then a setter name is required,
3968/// and that member is called with one argument, the value assigned.
3969/// Both operations are potentially overloaded. Compound assignments
3970/// are permitted, as are the increment and decrement operators.
3971///
3972/// The getter and putter methods are permitted to be overloaded,
3973/// although their return and parameter types are subject to certain
3974/// restrictions according to the type of the property.
3975///
3976/// A property declared using an incomplete array type may
3977/// additionally be subscripted, adding extra parameters to the getter
3978/// and putter methods.
3979class MSPropertyDecl : public DeclaratorDecl {
3980 IdentifierInfo *GetterId, *SetterId;
3981
3982 MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
3983 QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
3984 IdentifierInfo *Getter, IdentifierInfo *Setter)
3985 : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
3986 GetterId(Getter), SetterId(Setter) {}
3987
3988 void anchor() override;
3989public:
3990 friend class ASTDeclReader;
3991
3992 static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
3993 SourceLocation L, DeclarationName N, QualType T,
3994 TypeSourceInfo *TInfo, SourceLocation StartL,
3995 IdentifierInfo *Getter, IdentifierInfo *Setter);
3996 static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3997
3998 static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
3999
4000 bool hasGetter() const { return GetterId != nullptr; }
4001 IdentifierInfo* getGetterId() const { return GetterId; }
4002 bool hasSetter() const { return SetterId != nullptr; }
4003 IdentifierInfo* getSetterId() const { return SetterId; }
4004};
4005
4006/// Parts of a decomposed MSGuidDecl. Factored out to avoid unnecessary
4007/// dependencies on DeclCXX.h.
4008struct MSGuidDeclParts {
4009 /// {01234567-...
4010 uint32_t Part1;
4011 /// ...-89ab-...
4012 uint16_t Part2;
4013 /// ...-cdef-...
4014 uint16_t Part3;
4015 /// ...-0123-456789abcdef}
4016 uint8_t Part4And5[8];
4017
4018 uint64_t getPart4And5AsUint64() const {
4019 uint64_t Val;
4020 memcpy(&Val, &Part4And5, sizeof(Part4And5));
4021 return Val;
4022 }
4023};
4024
4025/// A global _GUID constant. These are implicitly created by UuidAttrs.
4026///
4027/// struct _declspec(uuid("01234567-89ab-cdef-0123-456789abcdef")) X{};
4028///
4029/// X is a CXXRecordDecl that contains a UuidAttr that references the (unique)
4030/// MSGuidDecl for the specified UUID.
4031class MSGuidDecl : public ValueDecl,
4032 public Mergeable<MSGuidDecl>,
4033 public llvm::FoldingSetNode {
4034public:
4035 using Parts = MSGuidDeclParts;
4036
4037private:
4038 /// The decomposed form of the UUID.
4039 Parts PartVal;
4040
4041 /// The resolved value of the UUID as an APValue. Computed on demand and
4042 /// cached.
4043 mutable APValue APVal;
4044
4045 void anchor() override;
4046
4047 MSGuidDecl(DeclContext *DC, QualType T, Parts P);
4048
4049 static MSGuidDecl *Create(const ASTContext &C, QualType T, Parts P);
4050 static MSGuidDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4051
4052 // Only ASTContext::getMSGuidDecl and deserialization create these.
4053 friend class ASTContext;
4054 friend class ASTReader;
4055 friend class ASTDeclReader;
4056
4057public:
4058 /// Print this UUID in a human-readable format.
4059 void printName(llvm::raw_ostream &OS) const override;
4060
4061 /// Get the decomposed parts of this declaration.
4062 Parts getParts() const { return PartVal; }
4063
4064 /// Get the value of this MSGuidDecl as an APValue. This may fail and return
4065 /// an absent APValue if the type of the declaration is not of the expected
4066 /// shape.
4067 APValue &getAsAPValue() const;
4068
4069 static void Profile(llvm::FoldingSetNodeID &ID, Parts P) {
4070 ID.AddInteger(P.Part1);
4071 ID.AddInteger(P.Part2);
4072 ID.AddInteger(P.Part3);
4073 ID.AddInteger(P.getPart4And5AsUint64());
4074 }
4075 void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, PartVal); }
4076
4077 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4078 static bool classofKind(Kind K) { return K == Decl::MSGuid; }
4079};
4080
4081/// Insertion operator for diagnostics. This allows sending an AccessSpecifier
4082/// into a diagnostic with <<.
4083const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
4084 AccessSpecifier AS);
4085
4086} // namespace clang
4087
4088#endif // LLVM_CLANG_AST_DECLCXX_H