Bug Summary

File:tools/clang/lib/Sema/SemaTemplate.cpp
Warning:line 5945, column 9
Called C++ object pointer is null

Annotated Source Code

1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===//
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclFriend.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/TypeVisitor.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/ParsedTemplate.h"
28#include "clang/Sema/Scope.h"
29#include "clang/Sema/SemaInternal.h"
30#include "clang/Sema/Template.h"
31#include "clang/Sema/TemplateDeduction.h"
32#include "llvm/ADT/SmallBitVector.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35
36#include <iterator>
37using namespace clang;
38using namespace sema;
39
40// Exported for use by Parser.
41SourceRange
42clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
43 unsigned N) {
44 if (!N) return SourceRange();
45 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
46}
47
48/// \brief Determine whether the declaration found is acceptable as the name
49/// of a template and, if so, return that template declaration. Otherwise,
50/// returns NULL.
51static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
52 NamedDecl *Orig,
53 bool AllowFunctionTemplates) {
54 NamedDecl *D = Orig->getUnderlyingDecl();
55
56 if (isa<TemplateDecl>(D)) {
57 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
58 return nullptr;
59
60 return Orig;
61 }
62
63 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
64 // C++ [temp.local]p1:
65 // Like normal (non-template) classes, class templates have an
66 // injected-class-name (Clause 9). The injected-class-name
67 // can be used with or without a template-argument-list. When
68 // it is used without a template-argument-list, it is
69 // equivalent to the injected-class-name followed by the
70 // template-parameters of the class template enclosed in
71 // <>. When it is used with a template-argument-list, it
72 // refers to the specified class template specialization,
73 // which could be the current specialization or another
74 // specialization.
75 if (Record->isInjectedClassName()) {
76 Record = cast<CXXRecordDecl>(Record->getDeclContext());
77 if (Record->getDescribedClassTemplate())
78 return Record->getDescribedClassTemplate();
79
80 if (ClassTemplateSpecializationDecl *Spec
81 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
82 return Spec->getSpecializedTemplate();
83 }
84
85 return nullptr;
86 }
87
88 return nullptr;
89}
90
91void Sema::FilterAcceptableTemplateNames(LookupResult &R,
92 bool AllowFunctionTemplates) {
93 // The set of class templates we've already seen.
94 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
95 LookupResult::Filter filter = R.makeFilter();
96 while (filter.hasNext()) {
97 NamedDecl *Orig = filter.next();
98 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
99 AllowFunctionTemplates);
100 if (!Repl)
101 filter.erase();
102 else if (Repl != Orig) {
103
104 // C++ [temp.local]p3:
105 // A lookup that finds an injected-class-name (10.2) can result in an
106 // ambiguity in certain cases (for example, if it is found in more than
107 // one base class). If all of the injected-class-names that are found
108 // refer to specializations of the same class template, and if the name
109 // is used as a template-name, the reference refers to the class
110 // template itself and not a specialization thereof, and is not
111 // ambiguous.
112 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
113 if (!ClassTemplates.insert(ClassTmpl).second) {
114 filter.erase();
115 continue;
116 }
117
118 // FIXME: we promote access to public here as a workaround to
119 // the fact that LookupResult doesn't let us remember that we
120 // found this template through a particular injected class name,
121 // which means we end up doing nasty things to the invariants.
122 // Pretending that access is public is *much* safer.
123 filter.replace(Repl, AS_public);
124 }
125 }
126 filter.done();
127}
128
129bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
130 bool AllowFunctionTemplates) {
131 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
132 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
133 return true;
134
135 return false;
136}
137
138TemplateNameKind Sema::isTemplateName(Scope *S,
139 CXXScopeSpec &SS,
140 bool hasTemplateKeyword,
141 UnqualifiedId &Name,
142 ParsedType ObjectTypePtr,
143 bool EnteringContext,
144 TemplateTy &TemplateResult,
145 bool &MemberOfUnknownSpecialization) {
146 assert(getLangOpts().CPlusPlus && "No template names in C!")((getLangOpts().CPlusPlus && "No template names in C!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No template names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 146, __PRETTY_FUNCTION__))
;
147
148 DeclarationName TName;
149 MemberOfUnknownSpecialization = false;
150
151 switch (Name.getKind()) {
152 case UnqualifiedId::IK_Identifier:
153 TName = DeclarationName(Name.Identifier);
154 break;
155
156 case UnqualifiedId::IK_OperatorFunctionId:
157 TName = Context.DeclarationNames.getCXXOperatorName(
158 Name.OperatorFunctionId.Operator);
159 break;
160
161 case UnqualifiedId::IK_LiteralOperatorId:
162 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
163 break;
164
165 default:
166 return TNK_Non_template;
167 }
168
169 QualType ObjectType = ObjectTypePtr.get();
170
171 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
172 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
173 MemberOfUnknownSpecialization);
174 if (R.empty()) return TNK_Non_template;
175 if (R.isAmbiguous()) {
176 // Suppress diagnostics; we'll redo this lookup later.
177 R.suppressDiagnostics();
178
179 // FIXME: we might have ambiguous templates, in which case we
180 // should at least parse them properly!
181 return TNK_Non_template;
182 }
183
184 TemplateName Template;
185 TemplateNameKind TemplateKind;
186
187 unsigned ResultCount = R.end() - R.begin();
188 if (ResultCount > 1) {
189 // We assume that we'll preserve the qualifier from a function
190 // template name in other ways.
191 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
192 TemplateKind = TNK_Function_template;
193
194 // We'll do this lookup again later.
195 R.suppressDiagnostics();
196 } else {
197 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
198
199 if (SS.isSet() && !SS.isInvalid()) {
200 NestedNameSpecifier *Qualifier = SS.getScopeRep();
201 Template = Context.getQualifiedTemplateName(Qualifier,
202 hasTemplateKeyword, TD);
203 } else {
204 Template = TemplateName(TD);
205 }
206
207 if (isa<FunctionTemplateDecl>(TD)) {
208 TemplateKind = TNK_Function_template;
209
210 // We'll do this lookup again later.
211 R.suppressDiagnostics();
212 } else {
213 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 215, __PRETTY_FUNCTION__))
214 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 215, __PRETTY_FUNCTION__))
215 isa<BuiltinTemplateDecl>(TD))((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 215, __PRETTY_FUNCTION__))
;
216 TemplateKind =
217 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
218 }
219 }
220
221 TemplateResult = TemplateTy::make(Template);
222 return TemplateKind;
223}
224
225bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
226 SourceLocation IILoc,
227 Scope *S,
228 const CXXScopeSpec *SS,
229 TemplateTy &SuggestedTemplate,
230 TemplateNameKind &SuggestedKind) {
231 // We can't recover unless there's a dependent scope specifier preceding the
232 // template name.
233 // FIXME: Typo correction?
234 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
235 computeDeclContext(*SS))
236 return false;
237
238 // The code is missing a 'template' keyword prior to the dependent template
239 // name.
240 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
241 Diag(IILoc, diag::err_template_kw_missing)
242 << Qualifier << II.getName()
243 << FixItHint::CreateInsertion(IILoc, "template ");
244 SuggestedTemplate
245 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
246 SuggestedKind = TNK_Dependent_template_name;
247 return true;
248}
249
250void Sema::LookupTemplateName(LookupResult &Found,
251 Scope *S, CXXScopeSpec &SS,
252 QualType ObjectType,
253 bool EnteringContext,
254 bool &MemberOfUnknownSpecialization) {
255 // Determine where to perform name lookup
256 MemberOfUnknownSpecialization = false;
257 DeclContext *LookupCtx = nullptr;
258 bool isDependent = false;
259 if (!ObjectType.isNull()) {
260 // This nested-name-specifier occurs in a member access expression, e.g.,
261 // x->B::f, and we are looking into the type of the object.
262 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist")((!SS.isSet() && "ObjectType and scope specifier cannot coexist"
) ? static_cast<void> (0) : __assert_fail ("!SS.isSet() && \"ObjectType and scope specifier cannot coexist\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 262, __PRETTY_FUNCTION__))
;
263 LookupCtx = computeDeclContext(ObjectType);
264 isDependent = ObjectType->isDependentType();
265 assert((isDependent || !ObjectType->isIncompleteType() ||(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 267, __PRETTY_FUNCTION__))
266 ObjectType->castAs<TagType>()->isBeingDefined()) &&(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 267, __PRETTY_FUNCTION__))
267 "Caller should have completed object type")(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 267, __PRETTY_FUNCTION__))
;
268
269 // Template names cannot appear inside an Objective-C class or object type.
270 if (ObjectType->isObjCObjectOrInterfaceType()) {
271 Found.clear();
272 return;
273 }
274 } else if (SS.isSet()) {
275 // This nested-name-specifier occurs after another nested-name-specifier,
276 // so long into the context associated with the prior nested-name-specifier.
277 LookupCtx = computeDeclContext(SS, EnteringContext);
278 isDependent = isDependentScopeSpecifier(SS);
279
280 // The declaration context must be complete.
281 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
282 return;
283 }
284
285 bool ObjectTypeSearchedInScope = false;
286 bool AllowFunctionTemplatesInLookup = true;
287 if (LookupCtx) {
288 // Perform "qualified" name lookup into the declaration context we
289 // computed, which is either the type of the base of a member access
290 // expression or the declaration context associated with a prior
291 // nested-name-specifier.
292 LookupQualifiedName(Found, LookupCtx);
293 if (!ObjectType.isNull() && Found.empty()) {
294 // C++ [basic.lookup.classref]p1:
295 // In a class member access expression (5.2.5), if the . or -> token is
296 // immediately followed by an identifier followed by a <, the
297 // identifier must be looked up to determine whether the < is the
298 // beginning of a template argument list (14.2) or a less-than operator.
299 // The identifier is first looked up in the class of the object
300 // expression. If the identifier is not found, it is then looked up in
301 // the context of the entire postfix-expression and shall name a class
302 // or function template.
303 if (S) LookupName(Found, S);
304 ObjectTypeSearchedInScope = true;
305 AllowFunctionTemplatesInLookup = false;
306 }
307 } else if (isDependent && (!S || ObjectType.isNull())) {
308 // We cannot look into a dependent object type or nested nme
309 // specifier.
310 MemberOfUnknownSpecialization = true;
311 return;
312 } else {
313 // Perform unqualified name lookup in the current scope.
314 LookupName(Found, S);
315
316 if (!ObjectType.isNull())
317 AllowFunctionTemplatesInLookup = false;
318 }
319
320 if (Found.empty() && !isDependent) {
321 // If we did not find any names, attempt to correct any typos.
322 DeclarationName Name = Found.getLookupName();
323 Found.clear();
324 // Simple filter callback that, for keywords, only accepts the C++ *_cast
325 auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
326 FilterCCC->WantTypeSpecifiers = false;
327 FilterCCC->WantExpressionKeywords = false;
328 FilterCCC->WantRemainingKeywords = false;
329 FilterCCC->WantCXXNamedCasts = true;
330 if (TypoCorrection Corrected = CorrectTypo(
331 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
332 std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
333 Found.setLookupName(Corrected.getCorrection());
334 if (auto *ND = Corrected.getFoundDecl())
335 Found.addDecl(ND);
336 FilterAcceptableTemplateNames(Found);
337 if (!Found.empty()) {
338 if (LookupCtx) {
339 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
340 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
341 Name.getAsString() == CorrectedStr;
342 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
343 << Name << LookupCtx << DroppedSpecifier
344 << SS.getRange());
345 } else {
346 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
347 }
348 }
349 } else {
350 Found.setLookupName(Name);
351 }
352 }
353
354 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
355 if (Found.empty()) {
356 if (isDependent)
357 MemberOfUnknownSpecialization = true;
358 return;
359 }
360
361 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
362 !getLangOpts().CPlusPlus11) {
363 // C++03 [basic.lookup.classref]p1:
364 // [...] If the lookup in the class of the object expression finds a
365 // template, the name is also looked up in the context of the entire
366 // postfix-expression and [...]
367 //
368 // Note: C++11 does not perform this second lookup.
369 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
370 LookupOrdinaryName);
371 LookupName(FoundOuter, S);
372 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
373
374 if (FoundOuter.empty()) {
375 // - if the name is not found, the name found in the class of the
376 // object expression is used, otherwise
377 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
378 FoundOuter.isAmbiguous()) {
379 // - if the name is found in the context of the entire
380 // postfix-expression and does not name a class template, the name
381 // found in the class of the object expression is used, otherwise
382 FoundOuter.clear();
383 } else if (!Found.isSuppressingDiagnostics()) {
384 // - if the name found is a class template, it must refer to the same
385 // entity as the one found in the class of the object expression,
386 // otherwise the program is ill-formed.
387 if (!Found.isSingleResult() ||
388 Found.getFoundDecl()->getCanonicalDecl()
389 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
390 Diag(Found.getNameLoc(),
391 diag::ext_nested_name_member_ref_lookup_ambiguous)
392 << Found.getLookupName()
393 << ObjectType;
394 Diag(Found.getRepresentativeDecl()->getLocation(),
395 diag::note_ambig_member_ref_object_type)
396 << ObjectType;
397 Diag(FoundOuter.getFoundDecl()->getLocation(),
398 diag::note_ambig_member_ref_scope);
399
400 // Recover by taking the template that we found in the object
401 // expression's type.
402 }
403 }
404 }
405}
406
407/// ActOnDependentIdExpression - Handle a dependent id-expression that
408/// was just parsed. This is only possible with an explicit scope
409/// specifier naming a dependent type.
410ExprResult
411Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
412 SourceLocation TemplateKWLoc,
413 const DeclarationNameInfo &NameInfo,
414 bool isAddressOfOperand,
415 const TemplateArgumentListInfo *TemplateArgs) {
416 DeclContext *DC = getFunctionLevelDeclContext();
417
418 // C++11 [expr.prim.general]p12:
419 // An id-expression that denotes a non-static data member or non-static
420 // member function of a class can only be used:
421 // (...)
422 // - if that id-expression denotes a non-static data member and it
423 // appears in an unevaluated operand.
424 //
425 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
426 // CXXDependentScopeMemberExpr. The former can instantiate to either
427 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
428 // always a MemberExpr.
429 bool MightBeCxx11UnevalField =
430 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
431
432 if (!MightBeCxx11UnevalField && !isAddressOfOperand &&
433 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
434 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
435
436 // Since the 'this' expression is synthesized, we don't need to
437 // perform the double-lookup check.
438 NamedDecl *FirstQualifierInScope = nullptr;
439
440 return CXXDependentScopeMemberExpr::Create(
441 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
442 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
443 FirstQualifierInScope, NameInfo, TemplateArgs);
444 }
445
446 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
447}
448
449ExprResult
450Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
451 SourceLocation TemplateKWLoc,
452 const DeclarationNameInfo &NameInfo,
453 const TemplateArgumentListInfo *TemplateArgs) {
454 return DependentScopeDeclRefExpr::Create(
455 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
456 TemplateArgs);
457}
458
459
460/// Determine whether we would be unable to instantiate this template (because
461/// it either has no definition, or is in the process of being instantiated).
462bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
463 NamedDecl *Instantiation,
464 bool InstantiatedFromMember,
465 const NamedDecl *Pattern,
466 const NamedDecl *PatternDef,
467 TemplateSpecializationKind TSK,
468 bool Complain /*= true*/) {
469 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 470, __PRETTY_FUNCTION__))
470 isa<VarDecl>(Instantiation))((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 470, __PRETTY_FUNCTION__))
;
471
472 bool IsEntityBeingDefined = false;
473 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
474 IsEntityBeingDefined = TD->isBeingDefined();
475
476 if (PatternDef && !IsEntityBeingDefined) {
477 NamedDecl *SuggestedDef = nullptr;
478 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
479 /*OnlyNeedComplete*/false)) {
480 // If we're allowed to diagnose this and recover, do so.
481 bool Recover = Complain && !isSFINAEContext();
482 if (Complain)
483 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
484 Sema::MissingImportKind::Definition, Recover);
485 return !Recover;
486 }
487 return false;
488 }
489
490 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
491 return true;
492
493 llvm::Optional<unsigned> Note;
494 QualType InstantiationTy;
495 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
496 InstantiationTy = Context.getTypeDeclType(TD);
497 if (PatternDef) {
498 Diag(PointOfInstantiation,
499 diag::err_template_instantiate_within_definition)
500 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
501 << InstantiationTy;
502 // Not much point in noting the template declaration here, since
503 // we're lexically inside it.
504 Instantiation->setInvalidDecl();
505 } else if (InstantiatedFromMember) {
506 if (isa<FunctionDecl>(Instantiation)) {
507 Diag(PointOfInstantiation,
508 diag::err_explicit_instantiation_undefined_member)
509 << /*member function*/ 1 << Instantiation->getDeclName()
510 << Instantiation->getDeclContext();
511 Note = diag::note_explicit_instantiation_here;
512 } else {
513 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!")((isa<TagDecl>(Instantiation) && "Must be a TagDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) && \"Must be a TagDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 513, __PRETTY_FUNCTION__))
;
514 Diag(PointOfInstantiation,
515 diag::err_implicit_instantiate_member_undefined)
516 << InstantiationTy;
517 Note = diag::note_member_declared_at;
518 }
519 } else {
520 if (isa<FunctionDecl>(Instantiation)) {
521 Diag(PointOfInstantiation,
522 diag::err_explicit_instantiation_undefined_func_template)
523 << Pattern;
524 Note = diag::note_explicit_instantiation_here;
525 } else if (isa<TagDecl>(Instantiation)) {
526 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
527 << (TSK != TSK_ImplicitInstantiation)
528 << InstantiationTy;
529 Note = diag::note_template_decl_here;
530 } else {
531 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!")((isa<VarDecl>(Instantiation) && "Must be a VarDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<VarDecl>(Instantiation) && \"Must be a VarDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 531, __PRETTY_FUNCTION__))
;
532 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
533 Diag(PointOfInstantiation,
534 diag::err_explicit_instantiation_undefined_var_template)
535 << Instantiation;
536 Instantiation->setInvalidDecl();
537 } else
538 Diag(PointOfInstantiation,
539 diag::err_explicit_instantiation_undefined_member)
540 << /*static data member*/ 2 << Instantiation->getDeclName()
541 << Instantiation->getDeclContext();
542 Note = diag::note_explicit_instantiation_here;
543 }
544 }
545 if (Note) // Diagnostics were emitted.
546 Diag(Pattern->getLocation(), Note.getValue());
547
548 // In general, Instantiation isn't marked invalid to get more than one
549 // error for multiple undefined instantiations. But the code that does
550 // explicit declaration -> explicit definition conversion can't handle
551 // invalid declarations, so mark as invalid in that case.
552 if (TSK == TSK_ExplicitInstantiationDeclaration)
553 Instantiation->setInvalidDecl();
554 return true;
555}
556
557/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
558/// that the template parameter 'PrevDecl' is being shadowed by a new
559/// declaration at location Loc. Returns true to indicate that this is
560/// an error, and false otherwise.
561void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
562 assert(PrevDecl->isTemplateParameter() && "Not a template parameter")((PrevDecl->isTemplateParameter() && "Not a template parameter"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->isTemplateParameter() && \"Not a template parameter\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 562, __PRETTY_FUNCTION__))
;
563
564 // Microsoft Visual C++ permits template parameters to be shadowed.
565 if (getLangOpts().MicrosoftExt)
566 return;
567
568 // C++ [temp.local]p4:
569 // A template-parameter shall not be redeclared within its
570 // scope (including nested scopes).
571 Diag(Loc, diag::err_template_param_shadow)
572 << cast<NamedDecl>(PrevDecl)->getDeclName();
573 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
574}
575
576/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
577/// the parameter D to reference the templated declaration and return a pointer
578/// to the template declaration. Otherwise, do nothing to D and return null.
579TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
580 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
581 D = Temp->getTemplatedDecl();
582 return Temp;
583 }
584 return nullptr;
585}
586
587ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
588 SourceLocation EllipsisLoc) const {
589 assert(Kind == Template &&((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 590, __PRETTY_FUNCTION__))
590 "Only template template arguments can be pack expansions here")((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 590, __PRETTY_FUNCTION__))
;
591 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 592, __PRETTY_FUNCTION__))
592 "Template template argument pack expansion without packs")((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 592, __PRETTY_FUNCTION__))
;
593 ParsedTemplateArgument Result(*this);
594 Result.EllipsisLoc = EllipsisLoc;
595 return Result;
596}
597
598static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
599 const ParsedTemplateArgument &Arg) {
600
601 switch (Arg.getKind()) {
602 case ParsedTemplateArgument::Type: {
603 TypeSourceInfo *DI;
604 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
605 if (!DI)
606 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
607 return TemplateArgumentLoc(TemplateArgument(T), DI);
608 }
609
610 case ParsedTemplateArgument::NonType: {
611 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
612 return TemplateArgumentLoc(TemplateArgument(E), E);
613 }
614
615 case ParsedTemplateArgument::Template: {
616 TemplateName Template = Arg.getAsTemplate().get();
617 TemplateArgument TArg;
618 if (Arg.getEllipsisLoc().isValid())
619 TArg = TemplateArgument(Template, Optional<unsigned int>());
620 else
621 TArg = Template;
622 return TemplateArgumentLoc(TArg,
623 Arg.getScopeSpec().getWithLocInContext(
624 SemaRef.Context),
625 Arg.getLocation(),
626 Arg.getEllipsisLoc());
627 }
628 }
629
630 llvm_unreachable("Unhandled parsed template argument")::llvm::llvm_unreachable_internal("Unhandled parsed template argument"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 630)
;
631}
632
633/// \brief Translates template arguments as provided by the parser
634/// into template arguments used by semantic analysis.
635void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
636 TemplateArgumentListInfo &TemplateArgs) {
637 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
638 TemplateArgs.addArgument(translateTemplateArgument(*this,
639 TemplateArgsIn[I]));
640}
641
642static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
643 SourceLocation Loc,
644 IdentifierInfo *Name) {
645 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
646 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
647 if (PrevDecl && PrevDecl->isTemplateParameter())
648 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
649}
650
651/// ActOnTypeParameter - Called when a C++ template type parameter
652/// (e.g., "typename T") has been parsed. Typename specifies whether
653/// the keyword "typename" was used to declare the type parameter
654/// (otherwise, "class" was used), and KeyLoc is the location of the
655/// "class" or "typename" keyword. ParamName is the name of the
656/// parameter (NULL indicates an unnamed template parameter) and
657/// ParamNameLoc is the location of the parameter name (if any).
658/// If the type parameter has a default argument, it will be added
659/// later via ActOnTypeParameterDefault.
660Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
661 SourceLocation EllipsisLoc,
662 SourceLocation KeyLoc,
663 IdentifierInfo *ParamName,
664 SourceLocation ParamNameLoc,
665 unsigned Depth, unsigned Position,
666 SourceLocation EqualLoc,
667 ParsedType DefaultArg) {
668 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 669, __PRETTY_FUNCTION__))
669 "Template type parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 669, __PRETTY_FUNCTION__))
;
670
671 SourceLocation Loc = ParamNameLoc;
672 if (!ParamName)
673 Loc = KeyLoc;
674
675 bool IsParameterPack = EllipsisLoc.isValid();
676 TemplateTypeParmDecl *Param
677 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
678 KeyLoc, Loc, Depth, Position, ParamName,
679 Typename, IsParameterPack);
680 Param->setAccess(AS_public);
681
682 if (ParamName) {
683 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
684
685 // Add the template parameter into the current scope.
686 S->AddDecl(Param);
687 IdResolver.AddDecl(Param);
688 }
689
690 // C++0x [temp.param]p9:
691 // A default template-argument may be specified for any kind of
692 // template-parameter that is not a template parameter pack.
693 if (DefaultArg && IsParameterPack) {
694 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
695 DefaultArg = nullptr;
696 }
697
698 // Handle the default argument, if provided.
699 if (DefaultArg) {
700 TypeSourceInfo *DefaultTInfo;
701 GetTypeFromParser(DefaultArg, &DefaultTInfo);
702
703 assert(DefaultTInfo && "expected source information for type")((DefaultTInfo && "expected source information for type"
) ? static_cast<void> (0) : __assert_fail ("DefaultTInfo && \"expected source information for type\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 703, __PRETTY_FUNCTION__))
;
704
705 // Check for unexpanded parameter packs.
706 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
707 UPPC_DefaultArgument))
708 return Param;
709
710 // Check the template argument itself.
711 if (CheckTemplateArgument(Param, DefaultTInfo)) {
712 Param->setInvalidDecl();
713 return Param;
714 }
715
716 Param->setDefaultArgument(DefaultTInfo);
717 }
718
719 return Param;
720}
721
722/// \brief Check that the type of a non-type template parameter is
723/// well-formed.
724///
725/// \returns the (possibly-promoted) parameter type if valid;
726/// otherwise, produces a diagnostic and returns a NULL type.
727QualType
728Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
729 // We don't allow variably-modified types as the type of non-type template
730 // parameters.
731 if (T->isVariablyModifiedType()) {
732 Diag(Loc, diag::err_variably_modified_nontype_template_param)
733 << T;
734 return QualType();
735 }
736
737 // C++ [temp.param]p4:
738 //
739 // A non-type template-parameter shall have one of the following
740 // (optionally cv-qualified) types:
741 //
742 // -- integral or enumeration type,
743 if (T->isIntegralOrEnumerationType() ||
744 // -- pointer to object or pointer to function,
745 T->isPointerType() ||
746 // -- reference to object or reference to function,
747 T->isReferenceType() ||
748 // -- pointer to member,
749 T->isMemberPointerType() ||
750 // -- std::nullptr_t.
751 T->isNullPtrType() ||
752 // If T is a dependent type, we can't do the check now, so we
753 // assume that it is well-formed.
754 T->isDependentType() ||
755 // Allow use of auto in template parameter declarations.
756 T->isUndeducedType()) {
757 if (T->isUndeducedType()) {
758 Diag(Loc, diag::warn_cxx14_compat_template_nontype_parm_auto_type)
759 << QualType(T->getContainedAutoType(), 0);
760 }
761 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
762 // are ignored when determining its type.
763 return T.getUnqualifiedType();
764 }
765
766 // C++ [temp.param]p8:
767 //
768 // A non-type template-parameter of type "array of T" or
769 // "function returning T" is adjusted to be of type "pointer to
770 // T" or "pointer to function returning T", respectively.
771 else if (T->isArrayType() || T->isFunctionType())
772 return Context.getDecayedType(T);
773
774 Diag(Loc, diag::err_template_nontype_parm_bad_type)
775 << T;
776
777 return QualType();
778}
779
780Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
781 unsigned Depth,
782 unsigned Position,
783 SourceLocation EqualLoc,
784 Expr *Default) {
785 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
786 QualType T = TInfo->getType();
787
788 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 789, __PRETTY_FUNCTION__))
789 "Non-type template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 789, __PRETTY_FUNCTION__))
;
790 bool Invalid = false;
791
792 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
793 if (T.isNull()) {
794 T = Context.IntTy; // Recover with an 'int' type.
795 Invalid = true;
796 }
797
798 IdentifierInfo *ParamName = D.getIdentifier();
799 bool IsParameterPack = D.hasEllipsis();
800 NonTypeTemplateParmDecl *Param
801 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
802 D.getLocStart(),
803 D.getIdentifierLoc(),
804 Depth, Position, ParamName, T,
805 IsParameterPack, TInfo);
806 Param->setAccess(AS_public);
807
808 if (Invalid)
809 Param->setInvalidDecl();
810
811 if (ParamName) {
812 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
813 ParamName);
814
815 // Add the template parameter into the current scope.
816 S->AddDecl(Param);
817 IdResolver.AddDecl(Param);
818 }
819
820 // C++0x [temp.param]p9:
821 // A default template-argument may be specified for any kind of
822 // template-parameter that is not a template parameter pack.
823 if (Default && IsParameterPack) {
824 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
825 Default = nullptr;
826 }
827
828 // Check the well-formedness of the default template argument, if provided.
829 if (Default) {
830 // Check for unexpanded parameter packs.
831 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
832 return Param;
833
834 TemplateArgument Converted;
835 ExprResult DefaultRes =
836 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
837 if (DefaultRes.isInvalid()) {
838 Param->setInvalidDecl();
839 return Param;
840 }
841 Default = DefaultRes.get();
842
843 Param->setDefaultArgument(Default);
844 }
845
846 return Param;
847}
848
849/// ActOnTemplateTemplateParameter - Called when a C++ template template
850/// parameter (e.g. T in template <template \<typename> class T> class array)
851/// has been parsed. S is the current scope.
852Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
853 SourceLocation TmpLoc,
854 TemplateParameterList *Params,
855 SourceLocation EllipsisLoc,
856 IdentifierInfo *Name,
857 SourceLocation NameLoc,
858 unsigned Depth,
859 unsigned Position,
860 SourceLocation EqualLoc,
861 ParsedTemplateArgument Default) {
862 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 863, __PRETTY_FUNCTION__))
863 "Template template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 863, __PRETTY_FUNCTION__))
;
864
865 // Construct the parameter object.
866 bool IsParameterPack = EllipsisLoc.isValid();
867 TemplateTemplateParmDecl *Param =
868 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
869 NameLoc.isInvalid()? TmpLoc : NameLoc,
870 Depth, Position, IsParameterPack,
871 Name, Params);
872 Param->setAccess(AS_public);
873
874 // If the template template parameter has a name, then link the identifier
875 // into the scope and lookup mechanisms.
876 if (Name) {
877 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
878
879 S->AddDecl(Param);
880 IdResolver.AddDecl(Param);
881 }
882
883 if (Params->size() == 0) {
884 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
885 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
886 Param->setInvalidDecl();
887 }
888
889 // C++0x [temp.param]p9:
890 // A default template-argument may be specified for any kind of
891 // template-parameter that is not a template parameter pack.
892 if (IsParameterPack && !Default.isInvalid()) {
893 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
894 Default = ParsedTemplateArgument();
895 }
896
897 if (!Default.isInvalid()) {
898 // Check only that we have a template template argument. We don't want to
899 // try to check well-formedness now, because our template template parameter
900 // might have dependent types in its template parameters, which we wouldn't
901 // be able to match now.
902 //
903 // If none of the template template parameter's template arguments mention
904 // other template parameters, we could actually perform more checking here.
905 // However, it isn't worth doing.
906 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
907 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
908 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
909 << DefaultArg.getSourceRange();
910 return Param;
911 }
912
913 // Check for unexpanded parameter packs.
914 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
915 DefaultArg.getArgument().getAsTemplate(),
916 UPPC_DefaultArgument))
917 return Param;
918
919 Param->setDefaultArgument(Context, DefaultArg);
920 }
921
922 return Param;
923}
924
925/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
926/// constrained by RequiresClause, that contains the template parameters in
927/// Params.
928TemplateParameterList *
929Sema::ActOnTemplateParameterList(unsigned Depth,
930 SourceLocation ExportLoc,
931 SourceLocation TemplateLoc,
932 SourceLocation LAngleLoc,
933 ArrayRef<Decl *> Params,
934 SourceLocation RAngleLoc,
935 Expr *RequiresClause) {
936 if (ExportLoc.isValid())
937 Diag(ExportLoc, diag::warn_template_export_unsupported);
938
939 return TemplateParameterList::Create(
940 Context, TemplateLoc, LAngleLoc,
941 llvm::makeArrayRef((NamedDecl *const *)Params.data(), Params.size()),
942 RAngleLoc, RequiresClause);
943}
944
945static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
946 if (SS.isSet())
947 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
948}
949
950DeclResult
951Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
952 SourceLocation KWLoc, CXXScopeSpec &SS,
953 IdentifierInfo *Name, SourceLocation NameLoc,
954 AttributeList *Attr,
955 TemplateParameterList *TemplateParams,
956 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
957 SourceLocation FriendLoc,
958 unsigned NumOuterTemplateParamLists,
959 TemplateParameterList** OuterTemplateParamLists,
960 SkipBodyInfo *SkipBody) {
961 assert(TemplateParams && TemplateParams->size() > 0 &&((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 962, __PRETTY_FUNCTION__))
962 "No template parameters")((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 962, __PRETTY_FUNCTION__))
;
963 assert(TUK != TUK_Reference && "Can only declare or define class templates")((TUK != TUK_Reference && "Can only declare or define class templates"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"Can only declare or define class templates\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 963, __PRETTY_FUNCTION__))
;
964 bool Invalid = false;
965
966 // Check that we can declare a template here.
967 if (CheckTemplateDeclScope(S, TemplateParams))
1
Calling 'Sema::CheckTemplateDeclScope'
968 return true;
969
970 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
971 assert(Kind != TTK_Enum && "can't build template of enumerated type")((Kind != TTK_Enum && "can't build template of enumerated type"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"can't build template of enumerated type\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 971, __PRETTY_FUNCTION__))
;
972
973 // There is no such thing as an unnamed class template.
974 if (!Name) {
975 Diag(KWLoc, diag::err_template_unnamed_class);
976 return true;
977 }
978
979 // Find any previous declaration with this name. For a friend with no
980 // scope explicitly specified, we only look for tag declarations (per
981 // C++11 [basic.lookup.elab]p2).
982 DeclContext *SemanticContext;
983 LookupResult Previous(*this, Name, NameLoc,
984 (SS.isEmpty() && TUK == TUK_Friend)
985 ? LookupTagName : LookupOrdinaryName,
986 ForRedeclaration);
987 if (SS.isNotEmpty() && !SS.isInvalid()) {
988 SemanticContext = computeDeclContext(SS, true);
989 if (!SemanticContext) {
990 // FIXME: Horrible, horrible hack! We can't currently represent this
991 // in the AST, and historically we have just ignored such friend
992 // class templates, so don't complain here.
993 Diag(NameLoc, TUK == TUK_Friend
994 ? diag::warn_template_qualified_friend_ignored
995 : diag::err_template_qualified_declarator_no_match)
996 << SS.getScopeRep() << SS.getRange();
997 return TUK != TUK_Friend;
998 }
999
1000 if (RequireCompleteDeclContext(SS, SemanticContext))
1001 return true;
1002
1003 // If we're adding a template to a dependent context, we may need to
1004 // rebuilding some of the types used within the template parameter list,
1005 // now that we know what the current instantiation is.
1006 if (SemanticContext->isDependentContext()) {
1007 ContextRAII SavedContext(*this, SemanticContext);
1008 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1009 Invalid = true;
1010 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1011 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
1012
1013 LookupQualifiedName(Previous, SemanticContext);
1014 } else {
1015 SemanticContext = CurContext;
1016
1017 // C++14 [class.mem]p14:
1018 // If T is the name of a class, then each of the following shall have a
1019 // name different from T:
1020 // -- every member template of class T
1021 if (TUK != TUK_Friend &&
1022 DiagnoseClassNameShadow(SemanticContext,
1023 DeclarationNameInfo(Name, NameLoc)))
1024 return true;
1025
1026 LookupName(Previous, S);
1027 }
1028
1029 if (Previous.isAmbiguous())
1030 return true;
1031
1032 NamedDecl *PrevDecl = nullptr;
1033 if (Previous.begin() != Previous.end())
1034 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1035
1036 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1037 // Maybe we will complain about the shadowed template parameter.
1038 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1039 // Just pretend that we didn't see the previous declaration.
1040 PrevDecl = nullptr;
1041 }
1042
1043 // If there is a previous declaration with the same name, check
1044 // whether this is a valid redeclaration.
1045 ClassTemplateDecl *PrevClassTemplate
1046 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1047
1048 // We may have found the injected-class-name of a class template,
1049 // class template partial specialization, or class template specialization.
1050 // In these cases, grab the template that is being defined or specialized.
1051 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1052 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1053 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1054 PrevClassTemplate
1055 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1056 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1057 PrevClassTemplate
1058 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1059 ->getSpecializedTemplate();
1060 }
1061 }
1062
1063 if (TUK == TUK_Friend) {
1064 // C++ [namespace.memdef]p3:
1065 // [...] When looking for a prior declaration of a class or a function
1066 // declared as a friend, and when the name of the friend class or
1067 // function is neither a qualified name nor a template-id, scopes outside
1068 // the innermost enclosing namespace scope are not considered.
1069 if (!SS.isSet()) {
1070 DeclContext *OutermostContext = CurContext;
1071 while (!OutermostContext->isFileContext())
1072 OutermostContext = OutermostContext->getLookupParent();
1073
1074 if (PrevDecl &&
1075 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1076 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1077 SemanticContext = PrevDecl->getDeclContext();
1078 } else {
1079 // Declarations in outer scopes don't matter. However, the outermost
1080 // context we computed is the semantic context for our new
1081 // declaration.
1082 PrevDecl = PrevClassTemplate = nullptr;
1083 SemanticContext = OutermostContext;
1084
1085 // Check that the chosen semantic context doesn't already contain a
1086 // declaration of this name as a non-tag type.
1087 Previous.clear(LookupOrdinaryName);
1088 DeclContext *LookupContext = SemanticContext;
1089 while (LookupContext->isTransparentContext())
1090 LookupContext = LookupContext->getLookupParent();
1091 LookupQualifiedName(Previous, LookupContext);
1092
1093 if (Previous.isAmbiguous())
1094 return true;
1095
1096 if (Previous.begin() != Previous.end())
1097 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1098 }
1099 }
1100 } else if (PrevDecl &&
1101 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1102 S, SS.isValid()))
1103 PrevDecl = PrevClassTemplate = nullptr;
1104
1105 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1106 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1107 if (SS.isEmpty() &&
1108 !(PrevClassTemplate &&
1109 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1110 SemanticContext->getRedeclContext()))) {
1111 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1112 Diag(Shadow->getTargetDecl()->getLocation(),
1113 diag::note_using_decl_target);
1114 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1115 // Recover by ignoring the old declaration.
1116 PrevDecl = PrevClassTemplate = nullptr;
1117 }
1118 }
1119
1120 if (PrevClassTemplate) {
1121 // Ensure that the template parameter lists are compatible. Skip this check
1122 // for a friend in a dependent context: the template parameter list itself
1123 // could be dependent.
1124 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1125 !TemplateParameterListsAreEqual(TemplateParams,
1126 PrevClassTemplate->getTemplateParameters(),
1127 /*Complain=*/true,
1128 TPL_TemplateMatch))
1129 return true;
1130
1131 // C++ [temp.class]p4:
1132 // In a redeclaration, partial specialization, explicit
1133 // specialization or explicit instantiation of a class template,
1134 // the class-key shall agree in kind with the original class
1135 // template declaration (7.1.5.3).
1136 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1137 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1138 TUK == TUK_Definition, KWLoc, Name)) {
1139 Diag(KWLoc, diag::err_use_with_wrong_tag)
1140 << Name
1141 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1142 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1143 Kind = PrevRecordDecl->getTagKind();
1144 }
1145
1146 // Check for redefinition of this class template.
1147 if (TUK == TUK_Definition) {
1148 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1149 // If we have a prior definition that is not visible, treat this as
1150 // simply making that previous definition visible.
1151 NamedDecl *Hidden = nullptr;
1152 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1153 SkipBody->ShouldSkip = true;
1154 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1155 assert(Tmpl && "original definition of a class template is not a "((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1156, __PRETTY_FUNCTION__))
1156 "class template?")((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1156, __PRETTY_FUNCTION__))
;
1157 makeMergedDefinitionVisible(Hidden, KWLoc);
1158 makeMergedDefinitionVisible(Tmpl, KWLoc);
1159 return Def;
1160 }
1161
1162 Diag(NameLoc, diag::err_redefinition) << Name;
1163 Diag(Def->getLocation(), diag::note_previous_definition);
1164 // FIXME: Would it make sense to try to "forget" the previous
1165 // definition, as part of error recovery?
1166 return true;
1167 }
1168 }
1169 } else if (PrevDecl) {
1170 // C++ [temp]p5:
1171 // A class template shall not have the same name as any other
1172 // template, class, function, object, enumeration, enumerator,
1173 // namespace, or type in the same scope (3.3), except as specified
1174 // in (14.5.4).
1175 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1176 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1177 return true;
1178 }
1179
1180 // Check the template parameter list of this declaration, possibly
1181 // merging in the template parameter list from the previous class
1182 // template declaration. Skip this check for a friend in a dependent
1183 // context, because the template parameter list might be dependent.
1184 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1185 CheckTemplateParameterList(
1186 TemplateParams,
1187 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1188 : nullptr,
1189 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1190 SemanticContext->isDependentContext())
1191 ? TPC_ClassTemplateMember
1192 : TUK == TUK_Friend ? TPC_FriendClassTemplate
1193 : TPC_ClassTemplate))
1194 Invalid = true;
1195
1196 if (SS.isSet()) {
1197 // If the name of the template was qualified, we must be defining the
1198 // template out-of-line.
1199 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1200 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1201 : diag::err_member_decl_does_not_match)
1202 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1203 Invalid = true;
1204 }
1205 }
1206
1207 CXXRecordDecl *NewClass =
1208 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1209 PrevClassTemplate?
1210 PrevClassTemplate->getTemplatedDecl() : nullptr,
1211 /*DelayTypeCreation=*/true);
1212 SetNestedNameSpecifier(NewClass, SS);
1213 if (NumOuterTemplateParamLists > 0)
1214 NewClass->setTemplateParameterListsInfo(
1215 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1216 NumOuterTemplateParamLists));
1217
1218 // Add alignment attributes if necessary; these attributes are checked when
1219 // the ASTContext lays out the structure.
1220 if (TUK == TUK_Definition) {
1221 AddAlignmentAttributesForRecord(NewClass);
1222 AddMsStructLayoutForRecord(NewClass);
1223 }
1224
1225 ClassTemplateDecl *NewTemplate
1226 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1227 DeclarationName(Name), TemplateParams,
1228 NewClass, PrevClassTemplate);
1229 NewClass->setDescribedClassTemplate(NewTemplate);
1230
1231 if (ModulePrivateLoc.isValid())
1232 NewTemplate->setModulePrivate();
1233
1234 // Build the type for the class template declaration now.
1235 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1236 T = Context.getInjectedClassNameType(NewClass, T);
1237 assert(T->isDependentType() && "Class template type is not dependent?")((T->isDependentType() && "Class template type is not dependent?"
) ? static_cast<void> (0) : __assert_fail ("T->isDependentType() && \"Class template type is not dependent?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1237, __PRETTY_FUNCTION__))
;
1238 (void)T;
1239
1240 // If we are providing an explicit specialization of a member that is a
1241 // class template, make a note of that.
1242 if (PrevClassTemplate &&
1243 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1244 PrevClassTemplate->setMemberSpecialization();
1245
1246 // Set the access specifier.
1247 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1248 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1249
1250 // Set the lexical context of these templates
1251 NewClass->setLexicalDeclContext(CurContext);
1252 NewTemplate->setLexicalDeclContext(CurContext);
1253
1254 if (TUK == TUK_Definition)
1255 NewClass->startDefinition();
1256
1257 if (Attr)
1258 ProcessDeclAttributeList(S, NewClass, Attr);
1259
1260 if (PrevClassTemplate)
1261 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1262
1263 AddPushedVisibilityAttribute(NewClass);
1264
1265 if (TUK != TUK_Friend) {
1266 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1267 Scope *Outer = S;
1268 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1269 Outer = Outer->getParent();
1270 PushOnScopeChains(NewTemplate, Outer);
1271 } else {
1272 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1273 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1274 NewClass->setAccess(PrevClassTemplate->getAccess());
1275 }
1276
1277 NewTemplate->setObjectOfFriendDecl();
1278
1279 // Friend templates are visible in fairly strange ways.
1280 if (!CurContext->isDependentContext()) {
1281 DeclContext *DC = SemanticContext->getRedeclContext();
1282 DC->makeDeclVisibleInContext(NewTemplate);
1283 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1284 PushOnScopeChains(NewTemplate, EnclosingScope,
1285 /* AddToContext = */ false);
1286 }
1287
1288 FriendDecl *Friend = FriendDecl::Create(
1289 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1290 Friend->setAccess(AS_public);
1291 CurContext->addDecl(Friend);
1292 }
1293
1294 if (Invalid) {
1295 NewTemplate->setInvalidDecl();
1296 NewClass->setInvalidDecl();
1297 }
1298
1299 ActOnDocumentableDecl(NewTemplate);
1300
1301 return NewTemplate;
1302}
1303
1304/// \brief Diagnose the presence of a default template argument on a
1305/// template parameter, which is ill-formed in certain contexts.
1306///
1307/// \returns true if the default template argument should be dropped.
1308static bool DiagnoseDefaultTemplateArgument(Sema &S,
1309 Sema::TemplateParamListContext TPC,
1310 SourceLocation ParamLoc,
1311 SourceRange DefArgRange) {
1312 switch (TPC) {
1313 case Sema::TPC_ClassTemplate:
1314 case Sema::TPC_VarTemplate:
1315 case Sema::TPC_TypeAliasTemplate:
1316 return false;
1317
1318 case Sema::TPC_FunctionTemplate:
1319 case Sema::TPC_FriendFunctionTemplateDefinition:
1320 // C++ [temp.param]p9:
1321 // A default template-argument shall not be specified in a
1322 // function template declaration or a function template
1323 // definition [...]
1324 // If a friend function template declaration specifies a default
1325 // template-argument, that declaration shall be a definition and shall be
1326 // the only declaration of the function template in the translation unit.
1327 // (C++98/03 doesn't have this wording; see DR226).
1328 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1329 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1330 : diag::ext_template_parameter_default_in_function_template)
1331 << DefArgRange;
1332 return false;
1333
1334 case Sema::TPC_ClassTemplateMember:
1335 // C++0x [temp.param]p9:
1336 // A default template-argument shall not be specified in the
1337 // template-parameter-lists of the definition of a member of a
1338 // class template that appears outside of the member's class.
1339 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1340 << DefArgRange;
1341 return true;
1342
1343 case Sema::TPC_FriendClassTemplate:
1344 case Sema::TPC_FriendFunctionTemplate:
1345 // C++ [temp.param]p9:
1346 // A default template-argument shall not be specified in a
1347 // friend template declaration.
1348 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1349 << DefArgRange;
1350 return true;
1351
1352 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1353 // for friend function templates if there is only a single
1354 // declaration (and it is a definition). Strange!
1355 }
1356
1357 llvm_unreachable("Invalid TemplateParamListContext!")::llvm::llvm_unreachable_internal("Invalid TemplateParamListContext!"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1357)
;
1358}
1359
1360/// \brief Check for unexpanded parameter packs within the template parameters
1361/// of a template template parameter, recursively.
1362static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1363 TemplateTemplateParmDecl *TTP) {
1364 // A template template parameter which is a parameter pack is also a pack
1365 // expansion.
1366 if (TTP->isParameterPack())
1367 return false;
1368
1369 TemplateParameterList *Params = TTP->getTemplateParameters();
1370 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1371 NamedDecl *P = Params->getParam(I);
1372 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1373 if (!NTTP->isParameterPack() &&
1374 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1375 NTTP->getTypeSourceInfo(),
1376 Sema::UPPC_NonTypeTemplateParameterType))
1377 return true;
1378
1379 continue;
1380 }
1381
1382 if (TemplateTemplateParmDecl *InnerTTP
1383 = dyn_cast<TemplateTemplateParmDecl>(P))
1384 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1385 return true;
1386 }
1387
1388 return false;
1389}
1390
1391/// \brief Checks the validity of a template parameter list, possibly
1392/// considering the template parameter list from a previous
1393/// declaration.
1394///
1395/// If an "old" template parameter list is provided, it must be
1396/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1397/// template parameter list.
1398///
1399/// \param NewParams Template parameter list for a new template
1400/// declaration. This template parameter list will be updated with any
1401/// default arguments that are carried through from the previous
1402/// template parameter list.
1403///
1404/// \param OldParams If provided, template parameter list from a
1405/// previous declaration of the same template. Default template
1406/// arguments will be merged from the old template parameter list to
1407/// the new template parameter list.
1408///
1409/// \param TPC Describes the context in which we are checking the given
1410/// template parameter list.
1411///
1412/// \returns true if an error occurred, false otherwise.
1413bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1414 TemplateParameterList *OldParams,
1415 TemplateParamListContext TPC) {
1416 bool Invalid = false;
1417
1418 // C++ [temp.param]p10:
1419 // The set of default template-arguments available for use with a
1420 // template declaration or definition is obtained by merging the
1421 // default arguments from the definition (if in scope) and all
1422 // declarations in scope in the same way default function
1423 // arguments are (8.3.6).
1424 bool SawDefaultArgument = false;
1425 SourceLocation PreviousDefaultArgLoc;
1426
1427 // Dummy initialization to avoid warnings.
1428 TemplateParameterList::iterator OldParam = NewParams->end();
1429 if (OldParams)
1430 OldParam = OldParams->begin();
1431
1432 bool RemoveDefaultArguments = false;
1433 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1434 NewParamEnd = NewParams->end();
1435 NewParam != NewParamEnd; ++NewParam) {
1436 // Variables used to diagnose redundant default arguments
1437 bool RedundantDefaultArg = false;
1438 SourceLocation OldDefaultLoc;
1439 SourceLocation NewDefaultLoc;
1440
1441 // Variable used to diagnose missing default arguments
1442 bool MissingDefaultArg = false;
1443
1444 // Variable used to diagnose non-final parameter packs
1445 bool SawParameterPack = false;
1446
1447 if (TemplateTypeParmDecl *NewTypeParm
1448 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1449 // Check the presence of a default argument here.
1450 if (NewTypeParm->hasDefaultArgument() &&
1451 DiagnoseDefaultTemplateArgument(*this, TPC,
1452 NewTypeParm->getLocation(),
1453 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1454 .getSourceRange()))
1455 NewTypeParm->removeDefaultArgument();
1456
1457 // Merge default arguments for template type parameters.
1458 TemplateTypeParmDecl *OldTypeParm
1459 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
1460 if (NewTypeParm->isParameterPack()) {
1461 assert(!NewTypeParm->hasDefaultArgument() &&((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1462, __PRETTY_FUNCTION__))
1462 "Parameter packs can't have a default argument!")((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1462, __PRETTY_FUNCTION__))
;
1463 SawParameterPack = true;
1464 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
1465 NewTypeParm->hasDefaultArgument()) {
1466 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1467 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1468 SawDefaultArgument = true;
1469 RedundantDefaultArg = true;
1470 PreviousDefaultArgLoc = NewDefaultLoc;
1471 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1472 // Merge the default argument from the old declaration to the
1473 // new declaration.
1474 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
1475 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1476 } else if (NewTypeParm->hasDefaultArgument()) {
1477 SawDefaultArgument = true;
1478 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1479 } else if (SawDefaultArgument)
1480 MissingDefaultArg = true;
1481 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1482 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1483 // Check for unexpanded parameter packs.
1484 if (!NewNonTypeParm->isParameterPack() &&
1485 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1486 NewNonTypeParm->getTypeSourceInfo(),
1487 UPPC_NonTypeTemplateParameterType)) {
1488 Invalid = true;
1489 continue;
1490 }
1491
1492 // Check the presence of a default argument here.
1493 if (NewNonTypeParm->hasDefaultArgument() &&
1494 DiagnoseDefaultTemplateArgument(*this, TPC,
1495 NewNonTypeParm->getLocation(),
1496 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1497 NewNonTypeParm->removeDefaultArgument();
1498 }
1499
1500 // Merge default arguments for non-type template parameters
1501 NonTypeTemplateParmDecl *OldNonTypeParm
1502 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
1503 if (NewNonTypeParm->isParameterPack()) {
1504 assert(!NewNonTypeParm->hasDefaultArgument() &&((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1505, __PRETTY_FUNCTION__))
1505 "Parameter packs can't have a default argument!")((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1505, __PRETTY_FUNCTION__))
;
1506 if (!NewNonTypeParm->isPackExpansion())
1507 SawParameterPack = true;
1508 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
1509 NewNonTypeParm->hasDefaultArgument()) {
1510 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1511 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1512 SawDefaultArgument = true;
1513 RedundantDefaultArg = true;
1514 PreviousDefaultArgLoc = NewDefaultLoc;
1515 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1516 // Merge the default argument from the old declaration to the
1517 // new declaration.
1518 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
1519 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1520 } else if (NewNonTypeParm->hasDefaultArgument()) {
1521 SawDefaultArgument = true;
1522 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1523 } else if (SawDefaultArgument)
1524 MissingDefaultArg = true;
1525 } else {
1526 TemplateTemplateParmDecl *NewTemplateParm
1527 = cast<TemplateTemplateParmDecl>(*NewParam);
1528
1529 // Check for unexpanded parameter packs, recursively.
1530 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1531 Invalid = true;
1532 continue;
1533 }
1534
1535 // Check the presence of a default argument here.
1536 if (NewTemplateParm->hasDefaultArgument() &&
1537 DiagnoseDefaultTemplateArgument(*this, TPC,
1538 NewTemplateParm->getLocation(),
1539 NewTemplateParm->getDefaultArgument().getSourceRange()))
1540 NewTemplateParm->removeDefaultArgument();
1541
1542 // Merge default arguments for template template parameters
1543 TemplateTemplateParmDecl *OldTemplateParm
1544 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
1545 if (NewTemplateParm->isParameterPack()) {
1546 assert(!NewTemplateParm->hasDefaultArgument() &&((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1547, __PRETTY_FUNCTION__))
1547 "Parameter packs can't have a default argument!")((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1547, __PRETTY_FUNCTION__))
;
1548 if (!NewTemplateParm->isPackExpansion())
1549 SawParameterPack = true;
1550 } else if (OldTemplateParm &&
1551 hasVisibleDefaultArgument(OldTemplateParm) &&
1552 NewTemplateParm->hasDefaultArgument()) {
1553 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1554 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1555 SawDefaultArgument = true;
1556 RedundantDefaultArg = true;
1557 PreviousDefaultArgLoc = NewDefaultLoc;
1558 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1559 // Merge the default argument from the old declaration to the
1560 // new declaration.
1561 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
1562 PreviousDefaultArgLoc
1563 = OldTemplateParm->getDefaultArgument().getLocation();
1564 } else if (NewTemplateParm->hasDefaultArgument()) {
1565 SawDefaultArgument = true;
1566 PreviousDefaultArgLoc
1567 = NewTemplateParm->getDefaultArgument().getLocation();
1568 } else if (SawDefaultArgument)
1569 MissingDefaultArg = true;
1570 }
1571
1572 // C++11 [temp.param]p11:
1573 // If a template parameter of a primary class template or alias template
1574 // is a template parameter pack, it shall be the last template parameter.
1575 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1576 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1577 TPC == TPC_TypeAliasTemplate)) {
1578 Diag((*NewParam)->getLocation(),
1579 diag::err_template_param_pack_must_be_last_template_parameter);
1580 Invalid = true;
1581 }
1582
1583 if (RedundantDefaultArg) {
1584 // C++ [temp.param]p12:
1585 // A template-parameter shall not be given default arguments
1586 // by two different declarations in the same scope.
1587 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1588 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1589 Invalid = true;
1590 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1591 // C++ [temp.param]p11:
1592 // If a template-parameter of a class template has a default
1593 // template-argument, each subsequent template-parameter shall either
1594 // have a default template-argument supplied or be a template parameter
1595 // pack.
1596 Diag((*NewParam)->getLocation(),
1597 diag::err_template_param_default_arg_missing);
1598 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1599 Invalid = true;
1600 RemoveDefaultArguments = true;
1601 }
1602
1603 // If we have an old template parameter list that we're merging
1604 // in, move on to the next parameter.
1605 if (OldParams)
1606 ++OldParam;
1607 }
1608
1609 // We were missing some default arguments at the end of the list, so remove
1610 // all of the default arguments.
1611 if (RemoveDefaultArguments) {
1612 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1613 NewParamEnd = NewParams->end();
1614 NewParam != NewParamEnd; ++NewParam) {
1615 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1616 TTP->removeDefaultArgument();
1617 else if (NonTypeTemplateParmDecl *NTTP
1618 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1619 NTTP->removeDefaultArgument();
1620 else
1621 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1622 }
1623 }
1624
1625 return Invalid;
1626}
1627
1628namespace {
1629
1630/// A class which looks for a use of a certain level of template
1631/// parameter.
1632struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1633 typedef RecursiveASTVisitor<DependencyChecker> super;
1634
1635 unsigned Depth;
1636 bool Match;
1637 SourceLocation MatchLoc;
1638
1639 DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
1640
1641 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1642 NamedDecl *ND = Params->getParam(0);
1643 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1644 Depth = PD->getDepth();
1645 } else if (NonTypeTemplateParmDecl *PD =
1646 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1647 Depth = PD->getDepth();
1648 } else {
1649 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1650 }
1651 }
1652
1653 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
1654 if (ParmDepth >= Depth) {
1655 Match = true;
1656 MatchLoc = Loc;
1657 return true;
1658 }
1659 return false;
1660 }
1661
1662 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
1663 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
1664 }
1665
1666 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1667 return !Matches(T->getDepth());
1668 }
1669
1670 bool TraverseTemplateName(TemplateName N) {
1671 if (TemplateTemplateParmDecl *PD =
1672 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1673 if (Matches(PD->getDepth()))
1674 return false;
1675 return super::TraverseTemplateName(N);
1676 }
1677
1678 bool VisitDeclRefExpr(DeclRefExpr *E) {
1679 if (NonTypeTemplateParmDecl *PD =
1680 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
1681 if (Matches(PD->getDepth(), E->getExprLoc()))
1682 return false;
1683 return super::VisitDeclRefExpr(E);
1684 }
1685
1686 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1687 return TraverseType(T->getReplacementType());
1688 }
1689
1690 bool
1691 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
1692 return TraverseTemplateArgument(T->getArgumentPack());
1693 }
1694
1695 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1696 return TraverseType(T->getInjectedSpecializationType());
1697 }
1698};
1699} // end anonymous namespace
1700
1701/// Determines whether a given type depends on the given parameter
1702/// list.
1703static bool
1704DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1705 DependencyChecker Checker(Params);
1706 Checker.TraverseType(T);
1707 return Checker.Match;
1708}
1709
1710// Find the source range corresponding to the named type in the given
1711// nested-name-specifier, if any.
1712static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1713 QualType T,
1714 const CXXScopeSpec &SS) {
1715 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1716 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1717 if (const Type *CurType = NNS->getAsType()) {
1718 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1719 return NNSLoc.getTypeLoc().getSourceRange();
1720 } else
1721 break;
1722
1723 NNSLoc = NNSLoc.getPrefix();
1724 }
1725
1726 return SourceRange();
1727}
1728
1729/// \brief Match the given template parameter lists to the given scope
1730/// specifier, returning the template parameter list that applies to the
1731/// name.
1732///
1733/// \param DeclStartLoc the start of the declaration that has a scope
1734/// specifier or a template parameter list.
1735///
1736/// \param DeclLoc The location of the declaration itself.
1737///
1738/// \param SS the scope specifier that will be matched to the given template
1739/// parameter lists. This scope specifier precedes a qualified name that is
1740/// being declared.
1741///
1742/// \param TemplateId The template-id following the scope specifier, if there
1743/// is one. Used to check for a missing 'template<>'.
1744///
1745/// \param ParamLists the template parameter lists, from the outermost to the
1746/// innermost template parameter lists.
1747///
1748/// \param IsFriend Whether to apply the slightly different rules for
1749/// matching template parameters to scope specifiers in friend
1750/// declarations.
1751///
1752/// \param IsExplicitSpecialization will be set true if the entity being
1753/// declared is an explicit specialization, false otherwise.
1754///
1755/// \returns the template parameter list, if any, that corresponds to the
1756/// name that is preceded by the scope specifier @p SS. This template
1757/// parameter list may have template parameters (if we're declaring a
1758/// template) or may have no template parameters (if we're declaring a
1759/// template specialization), or may be NULL (if what we're declaring isn't
1760/// itself a template).
1761TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1762 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1763 TemplateIdAnnotation *TemplateId,
1764 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1765 bool &IsExplicitSpecialization, bool &Invalid) {
1766 IsExplicitSpecialization = false;
1767 Invalid = false;
1768
1769 // The sequence of nested types to which we will match up the template
1770 // parameter lists. We first build this list by starting with the type named
1771 // by the nested-name-specifier and walking out until we run out of types.
1772 SmallVector<QualType, 4> NestedTypes;
1773 QualType T;
1774 if (SS.getScopeRep()) {
1775 if (CXXRecordDecl *Record
1776 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1777 T = Context.getTypeDeclType(Record);
1778 else
1779 T = QualType(SS.getScopeRep()->getAsType(), 0);
1780 }
1781
1782 // If we found an explicit specialization that prevents us from needing
1783 // 'template<>' headers, this will be set to the location of that
1784 // explicit specialization.
1785 SourceLocation ExplicitSpecLoc;
1786
1787 while (!T.isNull()) {
1788 NestedTypes.push_back(T);
1789
1790 // Retrieve the parent of a record type.
1791 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1792 // If this type is an explicit specialization, we're done.
1793 if (ClassTemplateSpecializationDecl *Spec
1794 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1795 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1796 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1797 ExplicitSpecLoc = Spec->getLocation();
1798 break;
1799 }
1800 } else if (Record->getTemplateSpecializationKind()
1801 == TSK_ExplicitSpecialization) {
1802 ExplicitSpecLoc = Record->getLocation();
1803 break;
1804 }
1805
1806 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1807 T = Context.getTypeDeclType(Parent);
1808 else
1809 T = QualType();
1810 continue;
1811 }
1812
1813 if (const TemplateSpecializationType *TST
1814 = T->getAs<TemplateSpecializationType>()) {
1815 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1816 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1817 T = Context.getTypeDeclType(Parent);
1818 else
1819 T = QualType();
1820 continue;
1821 }
1822 }
1823
1824 // Look one step prior in a dependent template specialization type.
1825 if (const DependentTemplateSpecializationType *DependentTST
1826 = T->getAs<DependentTemplateSpecializationType>()) {
1827 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1828 T = QualType(NNS->getAsType(), 0);
1829 else
1830 T = QualType();
1831 continue;
1832 }
1833
1834 // Look one step prior in a dependent name type.
1835 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1836 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1837 T = QualType(NNS->getAsType(), 0);
1838 else
1839 T = QualType();
1840 continue;
1841 }
1842
1843 // Retrieve the parent of an enumeration type.
1844 if (const EnumType *EnumT = T->getAs<EnumType>()) {
1845 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1846 // check here.
1847 EnumDecl *Enum = EnumT->getDecl();
1848
1849 // Get to the parent type.
1850 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1851 T = Context.getTypeDeclType(Parent);
1852 else
1853 T = QualType();
1854 continue;
1855 }
1856
1857 T = QualType();
1858 }
1859 // Reverse the nested types list, since we want to traverse from the outermost
1860 // to the innermost while checking template-parameter-lists.
1861 std::reverse(NestedTypes.begin(), NestedTypes.end());
1862
1863 // C++0x [temp.expl.spec]p17:
1864 // A member or a member template may be nested within many
1865 // enclosing class templates. In an explicit specialization for
1866 // such a member, the member declaration shall be preceded by a
1867 // template<> for each enclosing class template that is
1868 // explicitly specialized.
1869 bool SawNonEmptyTemplateParameterList = false;
1870
1871 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
1872 if (SawNonEmptyTemplateParameterList) {
1873 Diag(DeclLoc, diag::err_specialize_member_of_template)
1874 << !Recovery << Range;
1875 Invalid = true;
1876 IsExplicitSpecialization = false;
1877 return true;
1878 }
1879
1880 return false;
1881 };
1882
1883 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
1884 // Check that we can have an explicit specialization here.
1885 if (CheckExplicitSpecialization(Range, true))
1886 return true;
1887
1888 // We don't have a template header, but we should.
1889 SourceLocation ExpectedTemplateLoc;
1890 if (!ParamLists.empty())
1891 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1892 else
1893 ExpectedTemplateLoc = DeclStartLoc;
1894
1895 Diag(DeclLoc, diag::err_template_spec_needs_header)
1896 << Range
1897 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1898 return false;
1899 };
1900
1901 unsigned ParamIdx = 0;
1902 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1903 ++TypeIdx) {
1904 T = NestedTypes[TypeIdx];
1905
1906 // Whether we expect a 'template<>' header.
1907 bool NeedEmptyTemplateHeader = false;
1908
1909 // Whether we expect a template header with parameters.
1910 bool NeedNonemptyTemplateHeader = false;
1911
1912 // For a dependent type, the set of template parameters that we
1913 // expect to see.
1914 TemplateParameterList *ExpectedTemplateParams = nullptr;
1915
1916 // C++0x [temp.expl.spec]p15:
1917 // A member or a member template may be nested within many enclosing
1918 // class templates. In an explicit specialization for such a member, the
1919 // member declaration shall be preceded by a template<> for each
1920 // enclosing class template that is explicitly specialized.
1921 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1922 if (ClassTemplatePartialSpecializationDecl *Partial
1923 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1924 ExpectedTemplateParams = Partial->getTemplateParameters();
1925 NeedNonemptyTemplateHeader = true;
1926 } else if (Record->isDependentType()) {
1927 if (Record->getDescribedClassTemplate()) {
1928 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1929 ->getTemplateParameters();
1930 NeedNonemptyTemplateHeader = true;
1931 }
1932 } else if (ClassTemplateSpecializationDecl *Spec
1933 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1934 // C++0x [temp.expl.spec]p4:
1935 // Members of an explicitly specialized class template are defined
1936 // in the same manner as members of normal classes, and not using
1937 // the template<> syntax.
1938 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1939 NeedEmptyTemplateHeader = true;
1940 else
1941 continue;
1942 } else if (Record->getTemplateSpecializationKind()) {
1943 if (Record->getTemplateSpecializationKind()
1944 != TSK_ExplicitSpecialization &&
1945 TypeIdx == NumTypes - 1)
1946 IsExplicitSpecialization = true;
1947
1948 continue;
1949 }
1950 } else if (const TemplateSpecializationType *TST
1951 = T->getAs<TemplateSpecializationType>()) {
1952 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1953 ExpectedTemplateParams = Template->getTemplateParameters();
1954 NeedNonemptyTemplateHeader = true;
1955 }
1956 } else if (T->getAs<DependentTemplateSpecializationType>()) {
1957 // FIXME: We actually could/should check the template arguments here
1958 // against the corresponding template parameter list.
1959 NeedNonemptyTemplateHeader = false;
1960 }
1961
1962 // C++ [temp.expl.spec]p16:
1963 // In an explicit specialization declaration for a member of a class
1964 // template or a member template that ap- pears in namespace scope, the
1965 // member template and some of its enclosing class templates may remain
1966 // unspecialized, except that the declaration shall not explicitly
1967 // specialize a class member template if its en- closing class templates
1968 // are not explicitly specialized as well.
1969 if (ParamIdx < ParamLists.size()) {
1970 if (ParamLists[ParamIdx]->size() == 0) {
1971 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1972 false))
1973 return nullptr;
1974 } else
1975 SawNonEmptyTemplateParameterList = true;
1976 }
1977
1978 if (NeedEmptyTemplateHeader) {
1979 // If we're on the last of the types, and we need a 'template<>' header
1980 // here, then it's an explicit specialization.
1981 if (TypeIdx == NumTypes - 1)
1982 IsExplicitSpecialization = true;
1983
1984 if (ParamIdx < ParamLists.size()) {
1985 if (ParamLists[ParamIdx]->size() > 0) {
1986 // The header has template parameters when it shouldn't. Complain.
1987 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1988 diag::err_template_param_list_matches_nontemplate)
1989 << T
1990 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1991 ParamLists[ParamIdx]->getRAngleLoc())
1992 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1993 Invalid = true;
1994 return nullptr;
1995 }
1996
1997 // Consume this template header.
1998 ++ParamIdx;
1999 continue;
2000 }
2001
2002 if (!IsFriend)
2003 if (DiagnoseMissingExplicitSpecialization(
2004 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
2005 return nullptr;
2006
2007 continue;
2008 }
2009
2010 if (NeedNonemptyTemplateHeader) {
2011 // In friend declarations we can have template-ids which don't
2012 // depend on the corresponding template parameter lists. But
2013 // assume that empty parameter lists are supposed to match this
2014 // template-id.
2015 if (IsFriend && T->isDependentType()) {
2016 if (ParamIdx < ParamLists.size() &&
2017 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
2018 ExpectedTemplateParams = nullptr;
2019 else
2020 continue;
2021 }
2022
2023 if (ParamIdx < ParamLists.size()) {
2024 // Check the template parameter list, if we can.
2025 if (ExpectedTemplateParams &&
2026 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
2027 ExpectedTemplateParams,
2028 true, TPL_TemplateMatch))
2029 Invalid = true;
2030
2031 if (!Invalid &&
2032 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
2033 TPC_ClassTemplateMember))
2034 Invalid = true;
2035
2036 ++ParamIdx;
2037 continue;
2038 }
2039
2040 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
2041 << T
2042 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2043 Invalid = true;
2044 continue;
2045 }
2046 }
2047
2048 // If there were at least as many template-ids as there were template
2049 // parameter lists, then there are no template parameter lists remaining for
2050 // the declaration itself.
2051 if (ParamIdx >= ParamLists.size()) {
2052 if (TemplateId && !IsFriend) {
2053 // We don't have a template header for the declaration itself, but we
2054 // should.
2055 IsExplicitSpecialization = true;
2056 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
2057 TemplateId->RAngleLoc));
2058
2059 // Fabricate an empty template parameter list for the invented header.
2060 return TemplateParameterList::Create(Context, SourceLocation(),
2061 SourceLocation(), None,
2062 SourceLocation(), nullptr);
2063 }
2064
2065 return nullptr;
2066 }
2067
2068 // If there were too many template parameter lists, complain about that now.
2069 if (ParamIdx < ParamLists.size() - 1) {
2070 bool HasAnyExplicitSpecHeader = false;
2071 bool AllExplicitSpecHeaders = true;
2072 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
2073 if (ParamLists[I]->size() == 0)
2074 HasAnyExplicitSpecHeader = true;
2075 else
2076 AllExplicitSpecHeaders = false;
2077 }
2078
2079 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2080 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
2081 : diag::err_template_spec_extra_headers)
2082 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
2083 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
2084
2085 // If there was a specialization somewhere, such that 'template<>' is
2086 // not required, and there were any 'template<>' headers, note where the
2087 // specialization occurred.
2088 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
2089 Diag(ExplicitSpecLoc,
2090 diag::note_explicit_template_spec_does_not_need_header)
2091 << NestedTypes.back();
2092
2093 // We have a template parameter list with no corresponding scope, which
2094 // means that the resulting template declaration can't be instantiated
2095 // properly (we'll end up with dependent nodes when we shouldn't).
2096 if (!AllExplicitSpecHeaders)
2097 Invalid = true;
2098 }
2099
2100 // C++ [temp.expl.spec]p16:
2101 // In an explicit specialization declaration for a member of a class
2102 // template or a member template that ap- pears in namespace scope, the
2103 // member template and some of its enclosing class templates may remain
2104 // unspecialized, except that the declaration shall not explicitly
2105 // specialize a class member template if its en- closing class templates
2106 // are not explicitly specialized as well.
2107 if (ParamLists.back()->size() == 0 &&
2108 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2109 false))
2110 return nullptr;
2111
2112 // Return the last template parameter list, which corresponds to the
2113 // entity being declared.
2114 return ParamLists.back();
2115}
2116
2117void Sema::NoteAllFoundTemplates(TemplateName Name) {
2118 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2119 Diag(Template->getLocation(), diag::note_template_declared_here)
2120 << (isa<FunctionTemplateDecl>(Template)
2121 ? 0
2122 : isa<ClassTemplateDecl>(Template)
2123 ? 1
2124 : isa<VarTemplateDecl>(Template)
2125 ? 2
2126 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
2127 << Template->getDeclName();
2128 return;
2129 }
2130
2131 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
2132 for (OverloadedTemplateStorage::iterator I = OST->begin(),
2133 IEnd = OST->end();
2134 I != IEnd; ++I)
2135 Diag((*I)->getLocation(), diag::note_template_declared_here)
2136 << 0 << (*I)->getDeclName();
2137
2138 return;
2139 }
2140}
2141
2142static QualType
2143checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
2144 const SmallVectorImpl<TemplateArgument> &Converted,
2145 SourceLocation TemplateLoc,
2146 TemplateArgumentListInfo &TemplateArgs) {
2147 ASTContext &Context = SemaRef.getASTContext();
2148 switch (BTD->getBuiltinTemplateKind()) {
2149 case BTK__make_integer_seq: {
2150 // Specializations of __make_integer_seq<S, T, N> are treated like
2151 // S<T, 0, ..., N-1>.
2152
2153 // C++14 [inteseq.intseq]p1:
2154 // T shall be an integer type.
2155 if (!Converted[1].getAsType()->isIntegralType(Context)) {
2156 SemaRef.Diag(TemplateArgs[1].getLocation(),
2157 diag::err_integer_sequence_integral_element_type);
2158 return QualType();
2159 }
2160
2161 // C++14 [inteseq.make]p1:
2162 // If N is negative the program is ill-formed.
2163 TemplateArgument NumArgsArg = Converted[2];
2164 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
2165 if (NumArgs < 0) {
2166 SemaRef.Diag(TemplateArgs[2].getLocation(),
2167 diag::err_integer_sequence_negative_length);
2168 return QualType();
2169 }
2170
2171 QualType ArgTy = NumArgsArg.getIntegralType();
2172 TemplateArgumentListInfo SyntheticTemplateArgs;
2173 // The type argument gets reused as the first template argument in the
2174 // synthetic template argument list.
2175 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
2176 // Expand N into 0 ... N-1.
2177 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
2178 I < NumArgs; ++I) {
2179 TemplateArgument TA(Context, I, ArgTy);
2180 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
2181 TA, ArgTy, TemplateArgs[2].getLocation()));
2182 }
2183 // The first template argument will be reused as the template decl that
2184 // our synthetic template arguments will be applied to.
2185 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
2186 TemplateLoc, SyntheticTemplateArgs);
2187 }
2188
2189 case BTK__type_pack_element:
2190 // Specializations of
2191 // __type_pack_element<Index, T_1, ..., T_N>
2192 // are treated like T_Index.
2193 assert(Converted.size() == 2 &&((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2194, __PRETTY_FUNCTION__))
2194 "__type_pack_element should be given an index and a parameter pack")((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2194, __PRETTY_FUNCTION__))
;
2195
2196 // If the Index is out of bounds, the program is ill-formed.
2197 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
2198 llvm::APSInt Index = IndexArg.getAsIntegral();
2199 assert(Index >= 0 && "the index used with __type_pack_element should be of "((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2200, __PRETTY_FUNCTION__))
2200 "type std::size_t, and hence be non-negative")((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2200, __PRETTY_FUNCTION__))
;
2201 if (Index >= Ts.pack_size()) {
2202 SemaRef.Diag(TemplateArgs[0].getLocation(),
2203 diag::err_type_pack_element_out_of_bounds);
2204 return QualType();
2205 }
2206
2207 // We simply return the type at index `Index`.
2208 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
2209 return Nth->getAsType();
2210 }
2211 llvm_unreachable("unexpected BuiltinTemplateDecl!")::llvm::llvm_unreachable_internal("unexpected BuiltinTemplateDecl!"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2211)
;
2212}
2213
2214QualType Sema::CheckTemplateIdType(TemplateName Name,
2215 SourceLocation TemplateLoc,
2216 TemplateArgumentListInfo &TemplateArgs) {
2217 DependentTemplateName *DTN
2218 = Name.getUnderlying().getAsDependentTemplateName();
2219 if (DTN && DTN->isIdentifier())
2220 // When building a template-id where the template-name is dependent,
2221 // assume the template is a type template. Either our assumption is
2222 // correct, or the code is ill-formed and will be diagnosed when the
2223 // dependent name is substituted.
2224 return Context.getDependentTemplateSpecializationType(ETK_None,
2225 DTN->getQualifier(),
2226 DTN->getIdentifier(),
2227 TemplateArgs);
2228
2229 TemplateDecl *Template = Name.getAsTemplateDecl();
2230 if (!Template || isa<FunctionTemplateDecl>(Template) ||
2231 isa<VarTemplateDecl>(Template)) {
2232 // We might have a substituted template template parameter pack. If so,
2233 // build a template specialization type for it.
2234 if (Name.getAsSubstTemplateTemplateParmPack())
2235 return Context.getTemplateSpecializationType(Name, TemplateArgs);
2236
2237 Diag(TemplateLoc, diag::err_template_id_not_a_type)
2238 << Name;
2239 NoteAllFoundTemplates(Name);
2240 return QualType();
2241 }
2242
2243 // Check that the template argument list is well-formed for this
2244 // template.
2245 SmallVector<TemplateArgument, 4> Converted;
2246 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2247 false, Converted))
2248 return QualType();
2249
2250 QualType CanonType;
2251
2252 bool InstantiationDependent = false;
2253 if (TypeAliasTemplateDecl *AliasTemplate =
2254 dyn_cast<TypeAliasTemplateDecl>(Template)) {
2255 // Find the canonical type for this type alias template specialization.
2256 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2257 if (Pattern->isInvalidDecl())
2258 return QualType();
2259
2260 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2261 Converted);
2262
2263 // Only substitute for the innermost template argument list.
2264 MultiLevelTemplateArgumentList TemplateArgLists;
2265 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2266 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2267 for (unsigned I = 0; I < Depth; ++I)
2268 TemplateArgLists.addOuterTemplateArguments(None);
2269
2270 LocalInstantiationScope Scope(*this);
2271 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2272 if (Inst.isInvalid())
2273 return QualType();
2274
2275 CanonType = SubstType(Pattern->getUnderlyingType(),
2276 TemplateArgLists, AliasTemplate->getLocation(),
2277 AliasTemplate->getDeclName());
2278 if (CanonType.isNull())
2279 return QualType();
2280 } else if (Name.isDependent() ||
2281 TemplateSpecializationType::anyDependentTemplateArguments(
2282 TemplateArgs, InstantiationDependent)) {
2283 // This class template specialization is a dependent
2284 // type. Therefore, its canonical type is another class template
2285 // specialization type that contains all of the converted
2286 // arguments in canonical form. This ensures that, e.g., A<T> and
2287 // A<T, T> have identical types when A is declared as:
2288 //
2289 // template<typename T, typename U = T> struct A;
2290 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2291 CanonType = Context.getTemplateSpecializationType(CanonName,
2292 Converted);
2293
2294 // FIXME: CanonType is not actually the canonical type, and unfortunately
2295 // it is a TemplateSpecializationType that we will never use again.
2296 // In the future, we need to teach getTemplateSpecializationType to only
2297 // build the canonical type and return that to us.
2298 CanonType = Context.getCanonicalType(CanonType);
2299
2300 // This might work out to be a current instantiation, in which
2301 // case the canonical type needs to be the InjectedClassNameType.
2302 //
2303 // TODO: in theory this could be a simple hashtable lookup; most
2304 // changes to CurContext don't change the set of current
2305 // instantiations.
2306 if (isa<ClassTemplateDecl>(Template)) {
2307 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2308 // If we get out to a namespace, we're done.
2309 if (Ctx->isFileContext()) break;
2310
2311 // If this isn't a record, keep looking.
2312 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2313 if (!Record) continue;
2314
2315 // Look for one of the two cases with InjectedClassNameTypes
2316 // and check whether it's the same template.
2317 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2318 !Record->getDescribedClassTemplate())
2319 continue;
2320
2321 // Fetch the injected class name type and check whether its
2322 // injected type is equal to the type we just built.
2323 QualType ICNT = Context.getTypeDeclType(Record);
2324 QualType Injected = cast<InjectedClassNameType>(ICNT)
2325 ->getInjectedSpecializationType();
2326
2327 if (CanonType != Injected->getCanonicalTypeInternal())
2328 continue;
2329
2330 // If so, the canonical type of this TST is the injected
2331 // class name type of the record we just found.
2332 assert(ICNT.isCanonical())((ICNT.isCanonical()) ? static_cast<void> (0) : __assert_fail
("ICNT.isCanonical()", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2332, __PRETTY_FUNCTION__))
;
2333 CanonType = ICNT;
2334 break;
2335 }
2336 }
2337 } else if (ClassTemplateDecl *ClassTemplate
2338 = dyn_cast<ClassTemplateDecl>(Template)) {
2339 // Find the class template specialization declaration that
2340 // corresponds to these arguments.
2341 void *InsertPos = nullptr;
2342 ClassTemplateSpecializationDecl *Decl
2343 = ClassTemplate->findSpecialization(Converted, InsertPos);
2344 if (!Decl) {
2345 // This is the first time we have referenced this class template
2346 // specialization. Create the canonical declaration and add it to
2347 // the set of specializations.
2348 Decl = ClassTemplateSpecializationDecl::Create(Context,
2349 ClassTemplate->getTemplatedDecl()->getTagKind(),
2350 ClassTemplate->getDeclContext(),
2351 ClassTemplate->getTemplatedDecl()->getLocStart(),
2352 ClassTemplate->getLocation(),
2353 ClassTemplate,
2354 Converted, nullptr);
2355 ClassTemplate->AddSpecialization(Decl, InsertPos);
2356 if (ClassTemplate->isOutOfLine())
2357 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2358 }
2359
2360 // Diagnose uses of this specialization.
2361 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2362
2363 CanonType = Context.getTypeDeclType(Decl);
2364 assert(isa<RecordType>(CanonType) &&((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2365, __PRETTY_FUNCTION__))
2365 "type of non-dependent specialization is not a RecordType")((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2365, __PRETTY_FUNCTION__))
;
2366 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
2367 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
2368 TemplateArgs);
2369 }
2370
2371 // Build the fully-sugared type for this class template
2372 // specialization, which refers back to the class template
2373 // specialization we created or found.
2374 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2375}
2376
2377TypeResult
2378Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2379 TemplateTy TemplateD, SourceLocation TemplateLoc,
2380 SourceLocation LAngleLoc,
2381 ASTTemplateArgsPtr TemplateArgsIn,
2382 SourceLocation RAngleLoc,
2383 bool IsCtorOrDtorName) {
2384 if (SS.isInvalid())
2385 return true;
2386
2387 TemplateName Template = TemplateD.get();
2388
2389 // Translate the parser's template argument list in our AST format.
2390 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2391 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2392
2393 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2394 QualType T
2395 = Context.getDependentTemplateSpecializationType(ETK_None,
2396 DTN->getQualifier(),
2397 DTN->getIdentifier(),
2398 TemplateArgs);
2399 // Build type-source information.
2400 TypeLocBuilder TLB;
2401 DependentTemplateSpecializationTypeLoc SpecTL
2402 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2403 SpecTL.setElaboratedKeywordLoc(SourceLocation());
2404 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2405 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2406 SpecTL.setTemplateNameLoc(TemplateLoc);
2407 SpecTL.setLAngleLoc(LAngleLoc);
2408 SpecTL.setRAngleLoc(RAngleLoc);
2409 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2410 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2411 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2412 }
2413
2414 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2415
2416 if (Result.isNull())
2417 return true;
2418
2419 // Build type-source information.
2420 TypeLocBuilder TLB;
2421 TemplateSpecializationTypeLoc SpecTL
2422 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2423 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2424 SpecTL.setTemplateNameLoc(TemplateLoc);
2425 SpecTL.setLAngleLoc(LAngleLoc);
2426 SpecTL.setRAngleLoc(RAngleLoc);
2427 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2428 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2429
2430 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2431 // constructor or destructor name (in such a case, the scope specifier
2432 // will be attached to the enclosing Decl or Expr node).
2433 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2434 // Create an elaborated-type-specifier containing the nested-name-specifier.
2435 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2436 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2437 ElabTL.setElaboratedKeywordLoc(SourceLocation());
2438 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2439 }
2440
2441 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2442}
2443
2444TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2445 TypeSpecifierType TagSpec,
2446 SourceLocation TagLoc,
2447 CXXScopeSpec &SS,
2448 SourceLocation TemplateKWLoc,
2449 TemplateTy TemplateD,
2450 SourceLocation TemplateLoc,
2451 SourceLocation LAngleLoc,
2452 ASTTemplateArgsPtr TemplateArgsIn,
2453 SourceLocation RAngleLoc) {
2454 TemplateName Template = TemplateD.get();
2455
2456 // Translate the parser's template argument list in our AST format.
2457 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2458 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2459
2460 // Determine the tag kind
2461 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2462 ElaboratedTypeKeyword Keyword
2463 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2464
2465 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2466 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2467 DTN->getQualifier(),
2468 DTN->getIdentifier(),
2469 TemplateArgs);
2470
2471 // Build type-source information.
2472 TypeLocBuilder TLB;
2473 DependentTemplateSpecializationTypeLoc SpecTL
2474 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2475 SpecTL.setElaboratedKeywordLoc(TagLoc);
2476 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2477 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2478 SpecTL.setTemplateNameLoc(TemplateLoc);
2479 SpecTL.setLAngleLoc(LAngleLoc);
2480 SpecTL.setRAngleLoc(RAngleLoc);
2481 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2482 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2483 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2484 }
2485
2486 if (TypeAliasTemplateDecl *TAT =
2487 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2488 // C++0x [dcl.type.elab]p2:
2489 // If the identifier resolves to a typedef-name or the simple-template-id
2490 // resolves to an alias template specialization, the
2491 // elaborated-type-specifier is ill-formed.
2492 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << NTK_TypeAliasTemplate;
2493 Diag(TAT->getLocation(), diag::note_declared_at);
2494 }
2495
2496 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2497 if (Result.isNull())
2498 return TypeResult(true);
2499
2500 // Check the tag kind
2501 if (const RecordType *RT = Result->getAs<RecordType>()) {
2502 RecordDecl *D = RT->getDecl();
2503
2504 IdentifierInfo *Id = D->getIdentifier();
2505 assert(Id && "templated class must have an identifier")((Id && "templated class must have an identifier") ? static_cast
<void> (0) : __assert_fail ("Id && \"templated class must have an identifier\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2505, __PRETTY_FUNCTION__))
;
2506
2507 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2508 TagLoc, Id)) {
2509 Diag(TagLoc, diag::err_use_with_wrong_tag)
2510 << Result
2511 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2512 Diag(D->getLocation(), diag::note_previous_use);
2513 }
2514 }
2515
2516 // Provide source-location information for the template specialization.
2517 TypeLocBuilder TLB;
2518 TemplateSpecializationTypeLoc SpecTL
2519 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2520 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2521 SpecTL.setTemplateNameLoc(TemplateLoc);
2522 SpecTL.setLAngleLoc(LAngleLoc);
2523 SpecTL.setRAngleLoc(RAngleLoc);
2524 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2525 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2526
2527 // Construct an elaborated type containing the nested-name-specifier (if any)
2528 // and tag keyword.
2529 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2530 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2531 ElabTL.setElaboratedKeywordLoc(TagLoc);
2532 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2533 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2534}
2535
2536static bool CheckTemplatePartialSpecializationArgs(
2537 Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
2538 unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
2539
2540static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2541 NamedDecl *PrevDecl,
2542 SourceLocation Loc,
2543 bool IsPartialSpecialization);
2544
2545static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2546
2547static bool isTemplateArgumentTemplateParameter(
2548 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2549 switch (Arg.getKind()) {
2550 case TemplateArgument::Null:
2551 case TemplateArgument::NullPtr:
2552 case TemplateArgument::Integral:
2553 case TemplateArgument::Declaration:
2554 case TemplateArgument::Pack:
2555 case TemplateArgument::TemplateExpansion:
2556 return false;
2557
2558 case TemplateArgument::Type: {
2559 QualType Type = Arg.getAsType();
2560 const TemplateTypeParmType *TPT =
2561 Arg.getAsType()->getAs<TemplateTypeParmType>();
2562 return TPT && !Type.hasQualifiers() &&
2563 TPT->getDepth() == Depth && TPT->getIndex() == Index;
2564 }
2565
2566 case TemplateArgument::Expression: {
2567 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2568 if (!DRE || !DRE->getDecl())
2569 return false;
2570 const NonTypeTemplateParmDecl *NTTP =
2571 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2572 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2573 }
2574
2575 case TemplateArgument::Template:
2576 const TemplateTemplateParmDecl *TTP =
2577 dyn_cast_or_null<TemplateTemplateParmDecl>(
2578 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2579 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2580 }
2581 llvm_unreachable("unexpected kind of template argument")::llvm::llvm_unreachable_internal("unexpected kind of template argument"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2581)
;
2582}
2583
2584static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2585 ArrayRef<TemplateArgument> Args) {
2586 if (Params->size() != Args.size())
2587 return false;
2588
2589 unsigned Depth = Params->getDepth();
2590
2591 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2592 TemplateArgument Arg = Args[I];
2593
2594 // If the parameter is a pack expansion, the argument must be a pack
2595 // whose only element is a pack expansion.
2596 if (Params->getParam(I)->isParameterPack()) {
2597 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2598 !Arg.pack_begin()->isPackExpansion())
2599 return false;
2600 Arg = Arg.pack_begin()->getPackExpansionPattern();
2601 }
2602
2603 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2604 return false;
2605 }
2606
2607 return true;
2608}
2609
2610/// Convert the parser's template argument list representation into our form.
2611static TemplateArgumentListInfo
2612makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
2613 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
2614 TemplateId.RAngleLoc);
2615 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
2616 TemplateId.NumArgs);
2617 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2618 return TemplateArgs;
2619}
2620
2621DeclResult Sema::ActOnVarTemplateSpecialization(
2622 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
2623 TemplateParameterList *TemplateParams, StorageClass SC,
2624 bool IsPartialSpecialization) {
2625 // D must be variable template id.
2626 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&((D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedId::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2627, __PRETTY_FUNCTION__))
2627 "Variable template specialization is declared with a template it.")((D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedId::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2627, __PRETTY_FUNCTION__))
;
2628
2629 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2630 TemplateArgumentListInfo TemplateArgs =
2631 makeTemplateArgumentListInfo(*this, *TemplateId);
2632 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2633 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2634 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2635
2636 TemplateName Name = TemplateId->Template.get();
2637
2638 // The template-id must name a variable template.
2639 VarTemplateDecl *VarTemplate =
2640 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
2641 if (!VarTemplate) {
2642 NamedDecl *FnTemplate;
2643 if (auto *OTS = Name.getAsOverloadedTemplate())
2644 FnTemplate = *OTS->begin();
2645 else
2646 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
2647 if (FnTemplate)
2648 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
2649 << FnTemplate->getDeclName();
2650 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
2651 << IsPartialSpecialization;
2652 }
2653
2654 // Check for unexpanded parameter packs in any of the template arguments.
2655 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2656 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2657 UPPC_PartialSpecialization))
2658 return true;
2659
2660 // Check that the template argument list is well-formed for this
2661 // template.
2662 SmallVector<TemplateArgument, 4> Converted;
2663 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2664 false, Converted))
2665 return true;
2666
2667 // Find the variable template (partial) specialization declaration that
2668 // corresponds to these arguments.
2669 if (IsPartialSpecialization) {
2670 if (CheckTemplatePartialSpecializationArgs(
2671 *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
2672 TemplateArgs.size(), Converted))
2673 return true;
2674
2675 bool InstantiationDependent;
2676 if (!Name.isDependent() &&
2677 !TemplateSpecializationType::anyDependentTemplateArguments(
2678 TemplateArgs.arguments(),
2679 InstantiationDependent)) {
2680 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2681 << VarTemplate->getDeclName();
2682 IsPartialSpecialization = false;
2683 }
2684
2685 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2686 Converted)) {
2687 // C++ [temp.class.spec]p9b3:
2688 //
2689 // -- The argument list of the specialization shall not be identical
2690 // to the implicit argument list of the primary template.
2691 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2692 << /*variable template*/ 1
2693 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2694 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2695 // FIXME: Recover from this by treating the declaration as a redeclaration
2696 // of the primary template.
2697 return true;
2698 }
2699 }
2700
2701 void *InsertPos = nullptr;
2702 VarTemplateSpecializationDecl *PrevDecl = nullptr;
2703
2704 if (IsPartialSpecialization)
2705 // FIXME: Template parameter list matters too
2706 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
2707 else
2708 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
2709
2710 VarTemplateSpecializationDecl *Specialization = nullptr;
2711
2712 // Check whether we can declare a variable template specialization in
2713 // the current scope.
2714 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2715 TemplateNameLoc,
2716 IsPartialSpecialization))
2717 return true;
2718
2719 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2720 // Since the only prior variable template specialization with these
2721 // arguments was referenced but not declared, reuse that
2722 // declaration node as our own, updating its source location and
2723 // the list of outer template parameters to reflect our new declaration.
2724 Specialization = PrevDecl;
2725 Specialization->setLocation(TemplateNameLoc);
2726 PrevDecl = nullptr;
2727 } else if (IsPartialSpecialization) {
2728 // Create a new class template partial specialization declaration node.
2729 VarTemplatePartialSpecializationDecl *PrevPartial =
2730 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2731 VarTemplatePartialSpecializationDecl *Partial =
2732 VarTemplatePartialSpecializationDecl::Create(
2733 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2734 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2735 Converted, TemplateArgs);
2736
2737 if (!PrevPartial)
2738 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2739 Specialization = Partial;
2740
2741 // If we are providing an explicit specialization of a member variable
2742 // template specialization, make a note of that.
2743 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2744 PrevPartial->setMemberSpecialization();
2745
2746 // Check that all of the template parameters of the variable template
2747 // partial specialization are deducible from the template
2748 // arguments. If not, this variable template partial specialization
2749 // will never be used.
2750 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2751 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2752 TemplateParams->getDepth(), DeducibleParams);
2753
2754 if (!DeducibleParams.all()) {
2755 unsigned NumNonDeducible =
2756 DeducibleParams.size() - DeducibleParams.count();
2757 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2758 << /*variable template*/ 1 << (NumNonDeducible > 1)
2759 << SourceRange(TemplateNameLoc, RAngleLoc);
2760 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2761 if (!DeducibleParams[I]) {
2762 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2763 if (Param->getDeclName())
2764 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2765 << Param->getDeclName();
2766 else
2767 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2768 << "(anonymous)";
2769 }
2770 }
2771 }
2772 } else {
2773 // Create a new class template specialization declaration node for
2774 // this explicit specialization or friend declaration.
2775 Specialization = VarTemplateSpecializationDecl::Create(
2776 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2777 VarTemplate, DI->getType(), DI, SC, Converted);
2778 Specialization->setTemplateArgsInfo(TemplateArgs);
2779
2780 if (!PrevDecl)
2781 VarTemplate->AddSpecialization(Specialization, InsertPos);
2782 }
2783
2784 // C++ [temp.expl.spec]p6:
2785 // If a template, a member template or the member of a class template is
2786 // explicitly specialized then that specialization shall be declared
2787 // before the first use of that specialization that would cause an implicit
2788 // instantiation to take place, in every translation unit in which such a
2789 // use occurs; no diagnostic is required.
2790 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2791 bool Okay = false;
2792 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2793 // Is there any previous explicit specialization declaration?
2794 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2795 Okay = true;
2796 break;
2797 }
2798 }
2799
2800 if (!Okay) {
2801 SourceRange Range(TemplateNameLoc, RAngleLoc);
2802 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2803 << Name << Range;
2804
2805 Diag(PrevDecl->getPointOfInstantiation(),
2806 diag::note_instantiation_required_here)
2807 << (PrevDecl->getTemplateSpecializationKind() !=
2808 TSK_ImplicitInstantiation);
2809 return true;
2810 }
2811 }
2812
2813 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2814 Specialization->setLexicalDeclContext(CurContext);
2815
2816 // Add the specialization into its lexical context, so that it can
2817 // be seen when iterating through the list of declarations in that
2818 // context. However, specializations are not found by name lookup.
2819 CurContext->addDecl(Specialization);
2820
2821 // Note that this is an explicit specialization.
2822 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2823
2824 if (PrevDecl) {
2825 // Check that this isn't a redefinition of this specialization,
2826 // merging with previous declarations.
2827 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2828 ForRedeclaration);
2829 PrevSpec.addDecl(PrevDecl);
2830 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2831 } else if (Specialization->isStaticDataMember() &&
2832 Specialization->isOutOfLine()) {
2833 Specialization->setAccess(VarTemplate->getAccess());
2834 }
2835
2836 // Link instantiations of static data members back to the template from
2837 // which they were instantiated.
2838 if (Specialization->isStaticDataMember())
2839 Specialization->setInstantiationOfStaticDataMember(
2840 VarTemplate->getTemplatedDecl(),
2841 Specialization->getSpecializationKind());
2842
2843 return Specialization;
2844}
2845
2846namespace {
2847/// \brief A partial specialization whose template arguments have matched
2848/// a given template-id.
2849struct PartialSpecMatchResult {
2850 VarTemplatePartialSpecializationDecl *Partial;
2851 TemplateArgumentList *Args;
2852};
2853} // end anonymous namespace
2854
2855DeclResult
2856Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2857 SourceLocation TemplateNameLoc,
2858 const TemplateArgumentListInfo &TemplateArgs) {
2859 assert(Template && "A variable template id without template?")((Template && "A variable template id without template?"
) ? static_cast<void> (0) : __assert_fail ("Template && \"A variable template id without template?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2859, __PRETTY_FUNCTION__))
;
2860
2861 // Check that the template argument list is well-formed for this template.
2862 SmallVector<TemplateArgument, 4> Converted;
2863 if (CheckTemplateArgumentList(
2864 Template, TemplateNameLoc,
2865 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2866 Converted))
2867 return true;
2868
2869 // Find the variable template specialization declaration that
2870 // corresponds to these arguments.
2871 void *InsertPos = nullptr;
2872 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2873 Converted, InsertPos)) {
2874 checkSpecializationVisibility(TemplateNameLoc, Spec);
2875 // If we already have a variable template specialization, return it.
2876 return Spec;
2877 }
2878
2879 // This is the first time we have referenced this variable template
2880 // specialization. Create the canonical declaration and add it to
2881 // the set of specializations, based on the closest partial specialization
2882 // that it represents. That is,
2883 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2884 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2885 Converted);
2886 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2887 bool AmbiguousPartialSpec = false;
2888 typedef PartialSpecMatchResult MatchResult;
2889 SmallVector<MatchResult, 4> Matched;
2890 SourceLocation PointOfInstantiation = TemplateNameLoc;
2891 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
2892 /*ForTakingAddress=*/false);
2893
2894 // 1. Attempt to find the closest partial specialization that this
2895 // specializes, if any.
2896 // If any of the template arguments is dependent, then this is probably
2897 // a placeholder for an incomplete declarative context; which must be
2898 // complete by instantiation time. Thus, do not search through the partial
2899 // specializations yet.
2900 // TODO: Unify with InstantiateClassTemplateSpecialization()?
2901 // Perhaps better after unification of DeduceTemplateArguments() and
2902 // getMoreSpecializedPartialSpecialization().
2903 bool InstantiationDependent = false;
2904 if (!TemplateSpecializationType::anyDependentTemplateArguments(
2905 TemplateArgs, InstantiationDependent)) {
2906
2907 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2908 Template->getPartialSpecializations(PartialSpecs);
2909
2910 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2911 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2912 TemplateDeductionInfo Info(FailedCandidates.getLocation());
2913
2914 if (TemplateDeductionResult Result =
2915 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2916 // Store the failed-deduction information for use in diagnostics, later.
2917 // TODO: Actually use the failed-deduction info?
2918 FailedCandidates.addCandidate().set(
2919 DeclAccessPair::make(Template, AS_public), Partial,
2920 MakeDeductionFailureInfo(Context, Result, Info));
2921 (void)Result;
2922 } else {
2923 Matched.push_back(PartialSpecMatchResult());
2924 Matched.back().Partial = Partial;
2925 Matched.back().Args = Info.take();
2926 }
2927 }
2928
2929 if (Matched.size() >= 1) {
2930 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2931 if (Matched.size() == 1) {
2932 // -- If exactly one matching specialization is found, the
2933 // instantiation is generated from that specialization.
2934 // We don't need to do anything for this.
2935 } else {
2936 // -- If more than one matching specialization is found, the
2937 // partial order rules (14.5.4.2) are used to determine
2938 // whether one of the specializations is more specialized
2939 // than the others. If none of the specializations is more
2940 // specialized than all of the other matching
2941 // specializations, then the use of the variable template is
2942 // ambiguous and the program is ill-formed.
2943 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2944 PEnd = Matched.end();
2945 P != PEnd; ++P) {
2946 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2947 PointOfInstantiation) ==
2948 P->Partial)
2949 Best = P;
2950 }
2951
2952 // Determine if the best partial specialization is more specialized than
2953 // the others.
2954 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2955 PEnd = Matched.end();
2956 P != PEnd; ++P) {
2957 if (P != Best && getMoreSpecializedPartialSpecialization(
2958 P->Partial, Best->Partial,
2959 PointOfInstantiation) != Best->Partial) {
2960 AmbiguousPartialSpec = true;
2961 break;
2962 }
2963 }
2964 }
2965
2966 // Instantiate using the best variable template partial specialization.
2967 InstantiationPattern = Best->Partial;
2968 InstantiationArgs = Best->Args;
2969 } else {
2970 // -- If no match is found, the instantiation is generated
2971 // from the primary template.
2972 // InstantiationPattern = Template->getTemplatedDecl();
2973 }
2974 }
2975
2976 // 2. Create the canonical declaration.
2977 // Note that we do not instantiate a definition until we see an odr-use
2978 // in DoMarkVarDeclReferenced().
2979 // FIXME: LateAttrs et al.?
2980 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2981 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2982 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2983 if (!Decl)
2984 return true;
2985
2986 if (AmbiguousPartialSpec) {
2987 // Partial ordering did not produce a clear winner. Complain.
2988 Decl->setInvalidDecl();
2989 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2990 << Decl;
2991
2992 // Print the matching partial specializations.
2993 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2994 PEnd = Matched.end();
2995 P != PEnd; ++P)
2996 Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2997 << getTemplateArgumentBindingsText(
2998 P->Partial->getTemplateParameters(), *P->Args);
2999 return true;
3000 }
3001
3002 if (VarTemplatePartialSpecializationDecl *D =
3003 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
3004 Decl->setInstantiationOf(D, InstantiationArgs);
3005
3006 checkSpecializationVisibility(TemplateNameLoc, Decl);
3007
3008 assert(Decl && "No variable template specialization?")((Decl && "No variable template specialization?") ? static_cast
<void> (0) : __assert_fail ("Decl && \"No variable template specialization?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3008, __PRETTY_FUNCTION__))
;
3009 return Decl;
3010}
3011
3012ExprResult
3013Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
3014 const DeclarationNameInfo &NameInfo,
3015 VarTemplateDecl *Template, SourceLocation TemplateLoc,
3016 const TemplateArgumentListInfo *TemplateArgs) {
3017
3018 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
3019 *TemplateArgs);
3020 if (Decl.isInvalid())
3021 return ExprError();
3022
3023 VarDecl *Var = cast<VarDecl>(Decl.get());
3024 if (!Var->getTemplateSpecializationKind())
3025 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
3026 NameInfo.getLoc());
3027
3028 // Build an ordinary singleton decl ref.
3029 return BuildDeclarationNameExpr(SS, NameInfo, Var,
3030 /*FoundD=*/nullptr, TemplateArgs);
3031}
3032
3033ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
3034 SourceLocation TemplateKWLoc,
3035 LookupResult &R,
3036 bool RequiresADL,
3037 const TemplateArgumentListInfo *TemplateArgs) {
3038 // FIXME: Can we do any checking at this point? I guess we could check the
3039 // template arguments that we have against the template name, if the template
3040 // name refers to a single template. That's not a terribly common case,
3041 // though.
3042 // foo<int> could identify a single function unambiguously
3043 // This approach does NOT work, since f<int>(1);
3044 // gets resolved prior to resorting to overload resolution
3045 // i.e., template<class T> void f(double);
3046 // vs template<class T, class U> void f(U);
3047
3048 // These should be filtered out by our callers.
3049 assert(!R.empty() && "empty lookup results when building templateid")((!R.empty() && "empty lookup results when building templateid"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"empty lookup results when building templateid\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3049, __PRETTY_FUNCTION__))
;
3050 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid")((!R.isAmbiguous() && "ambiguous lookup when building templateid"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"ambiguous lookup when building templateid\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3050, __PRETTY_FUNCTION__))
;
3051
3052 // In C++1y, check variable template ids.
3053 bool InstantiationDependent;
3054 if (R.getAsSingle<VarTemplateDecl>() &&
3055 !TemplateSpecializationType::anyDependentTemplateArguments(
3056 *TemplateArgs, InstantiationDependent)) {
3057 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
3058 R.getAsSingle<VarTemplateDecl>(),
3059 TemplateKWLoc, TemplateArgs);
3060 }
3061
3062 // We don't want lookup warnings at this point.
3063 R.suppressDiagnostics();
3064
3065 UnresolvedLookupExpr *ULE
3066 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3067 SS.getWithLocInContext(Context),
3068 TemplateKWLoc,
3069 R.getLookupNameInfo(),
3070 RequiresADL, TemplateArgs,
3071 R.begin(), R.end());
3072
3073 return ULE;
3074}
3075
3076// We actually only call this from template instantiation.
3077ExprResult
3078Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
3079 SourceLocation TemplateKWLoc,
3080 const DeclarationNameInfo &NameInfo,
3081 const TemplateArgumentListInfo *TemplateArgs) {
3082
3083 assert(TemplateArgs || TemplateKWLoc.isValid())((TemplateArgs || TemplateKWLoc.isValid()) ? static_cast<void
> (0) : __assert_fail ("TemplateArgs || TemplateKWLoc.isValid()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3083, __PRETTY_FUNCTION__))
;
3084 DeclContext *DC;
3085 if (!(DC = computeDeclContext(SS, false)) ||
3086 DC->isDependentContext() ||
3087 RequireCompleteDeclContext(SS, DC))
3088 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
3089
3090 bool MemberOfUnknownSpecialization;
3091 LookupResult R(*this, NameInfo, LookupOrdinaryName);
3092 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
3093 MemberOfUnknownSpecialization);
3094
3095 if (R.isAmbiguous())
3096 return ExprError();
3097
3098 if (R.empty()) {
3099 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
3100 << NameInfo.getName() << SS.getRange();
3101 return ExprError();
3102 }
3103
3104 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
3105 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
3106 << SS.getScopeRep()
3107 << NameInfo.getName().getAsString() << SS.getRange();
3108 Diag(Temp->getLocation(), diag::note_referenced_class_template);
3109 return ExprError();
3110 }
3111
3112 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
3113}
3114
3115/// \brief Form a dependent template name.
3116///
3117/// This action forms a dependent template name given the template
3118/// name and its (presumably dependent) scope specifier. For
3119/// example, given "MetaFun::template apply", the scope specifier \p
3120/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
3121/// of the "template" keyword, and "apply" is the \p Name.
3122TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
3123 CXXScopeSpec &SS,
3124 SourceLocation TemplateKWLoc,
3125 UnqualifiedId &Name,
3126 ParsedType ObjectType,
3127 bool EnteringContext,
3128 TemplateTy &Result) {
3129 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
3130 Diag(TemplateKWLoc,
3131 getLangOpts().CPlusPlus11 ?
3132 diag::warn_cxx98_compat_template_outside_of_template :
3133 diag::ext_template_outside_of_template)
3134 << FixItHint::CreateRemoval(TemplateKWLoc);
3135
3136 DeclContext *LookupCtx = nullptr;
3137 if (SS.isSet())
3138 LookupCtx = computeDeclContext(SS, EnteringContext);
3139 if (!LookupCtx && ObjectType)
3140 LookupCtx = computeDeclContext(ObjectType.get());
3141 if (LookupCtx) {
3142 // C++0x [temp.names]p5:
3143 // If a name prefixed by the keyword template is not the name of
3144 // a template, the program is ill-formed. [Note: the keyword
3145 // template may not be applied to non-template members of class
3146 // templates. -end note ] [ Note: as is the case with the
3147 // typename prefix, the template prefix is allowed in cases
3148 // where it is not strictly necessary; i.e., when the
3149 // nested-name-specifier or the expression on the left of the ->
3150 // or . is not dependent on a template-parameter, or the use
3151 // does not appear in the scope of a template. -end note]
3152 //
3153 // Note: C++03 was more strict here, because it banned the use of
3154 // the "template" keyword prior to a template-name that was not a
3155 // dependent name. C++ DR468 relaxed this requirement (the
3156 // "template" keyword is now permitted). We follow the C++0x
3157 // rules, even in C++03 mode with a warning, retroactively applying the DR.
3158 bool MemberOfUnknownSpecialization;
3159 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
3160 ObjectType, EnteringContext, Result,
3161 MemberOfUnknownSpecialization);
3162 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
3163 isa<CXXRecordDecl>(LookupCtx) &&
3164 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
3165 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
3166 // This is a dependent template. Handle it below.
3167 } else if (TNK == TNK_Non_template) {
3168 Diag(Name.getLocStart(),
3169 diag::err_template_kw_refers_to_non_template)
3170 << GetNameFromUnqualifiedId(Name).getName()
3171 << Name.getSourceRange()
3172 << TemplateKWLoc;
3173 return TNK_Non_template;
3174 } else {
3175 // We found something; return it.
3176 return TNK;
3177 }
3178 }
3179
3180 NestedNameSpecifier *Qualifier = SS.getScopeRep();
3181
3182 switch (Name.getKind()) {
3183 case UnqualifiedId::IK_Identifier:
3184 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3185 Name.Identifier));
3186 return TNK_Dependent_template_name;
3187
3188 case UnqualifiedId::IK_OperatorFunctionId:
3189 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3190 Name.OperatorFunctionId.Operator));
3191 return TNK_Function_template;
3192
3193 case UnqualifiedId::IK_LiteralOperatorId:
3194 llvm_unreachable("literal operator id cannot have a dependent scope")::llvm::llvm_unreachable_internal("literal operator id cannot have a dependent scope"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3194)
;
3195
3196 default:
3197 break;
3198 }
3199
3200 Diag(Name.getLocStart(),
3201 diag::err_template_kw_refers_to_non_template)
3202 << GetNameFromUnqualifiedId(Name).getName()
3203 << Name.getSourceRange()
3204 << TemplateKWLoc;
3205 return TNK_Non_template;
3206}
3207
3208bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
3209 TemplateArgumentLoc &AL,
3210 SmallVectorImpl<TemplateArgument> &Converted) {
3211 const TemplateArgument &Arg = AL.getArgument();
3212 QualType ArgType;
3213 TypeSourceInfo *TSI = nullptr;
3214
3215 // Check template type parameter.
3216 switch(Arg.getKind()) {
3217 case TemplateArgument::Type:
3218 // C++ [temp.arg.type]p1:
3219 // A template-argument for a template-parameter which is a
3220 // type shall be a type-id.
3221 ArgType = Arg.getAsType();
3222 TSI = AL.getTypeSourceInfo();
3223 break;
3224 case TemplateArgument::Template: {
3225 // We have a template type parameter but the template argument
3226 // is a template without any arguments.
3227 SourceRange SR = AL.getSourceRange();
3228 TemplateName Name = Arg.getAsTemplate();
3229 Diag(SR.getBegin(), diag::err_template_missing_args)
3230 << Name << SR;
3231 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
3232 Diag(Decl->getLocation(), diag::note_template_decl_here);
3233
3234 return true;
3235 }
3236 case TemplateArgument::Expression: {
3237 // We have a template type parameter but the template argument is an
3238 // expression; see if maybe it is missing the "typename" keyword.
3239 CXXScopeSpec SS;
3240 DeclarationNameInfo NameInfo;
3241
3242 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
3243 SS.Adopt(ArgExpr->getQualifierLoc());
3244 NameInfo = ArgExpr->getNameInfo();
3245 } else if (DependentScopeDeclRefExpr *ArgExpr =
3246 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
3247 SS.Adopt(ArgExpr->getQualifierLoc());
3248 NameInfo = ArgExpr->getNameInfo();
3249 } else if (CXXDependentScopeMemberExpr *ArgExpr =
3250 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
3251 if (ArgExpr->isImplicitAccess()) {
3252 SS.Adopt(ArgExpr->getQualifierLoc());
3253 NameInfo = ArgExpr->getMemberNameInfo();
3254 }
3255 }
3256
3257 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
3258 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
3259 LookupParsedName(Result, CurScope, &SS);
3260
3261 if (Result.getAsSingle<TypeDecl>() ||
3262 Result.getResultKind() ==
3263 LookupResult::NotFoundInCurrentInstantiation) {
3264 // Suggest that the user add 'typename' before the NNS.
3265 SourceLocation Loc = AL.getSourceRange().getBegin();
3266 Diag(Loc, getLangOpts().MSVCCompat
3267 ? diag::ext_ms_template_type_arg_missing_typename
3268 : diag::err_template_arg_must_be_type_suggest)
3269 << FixItHint::CreateInsertion(Loc, "typename ");
3270 Diag(Param->getLocation(), diag::note_template_param_here);
3271
3272 // Recover by synthesizing a type using the location information that we
3273 // already have.
3274 ArgType =
3275 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
3276 TypeLocBuilder TLB;
3277 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
3278 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
3279 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3280 TL.setNameLoc(NameInfo.getLoc());
3281 TSI = TLB.getTypeSourceInfo(Context, ArgType);
3282
3283 // Overwrite our input TemplateArgumentLoc so that we can recover
3284 // properly.
3285 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
3286 TemplateArgumentLocInfo(TSI));
3287
3288 break;
3289 }
3290 }
3291 // fallthrough
3292 }
3293 default: {
3294 // We have a template type parameter but the template argument
3295 // is not a type.
3296 SourceRange SR = AL.getSourceRange();
3297 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3298 Diag(Param->getLocation(), diag::note_template_param_here);
3299
3300 return true;
3301 }
3302 }
3303
3304 if (CheckTemplateArgument(Param, TSI))
3305 return true;
3306
3307 // Add the converted template type argument.
3308 ArgType = Context.getCanonicalType(ArgType);
3309
3310 // Objective-C ARC:
3311 // If an explicitly-specified template argument type is a lifetime type
3312 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3313 if (getLangOpts().ObjCAutoRefCount &&
3314 ArgType->isObjCLifetimeType() &&
3315 !ArgType.getObjCLifetime()) {
3316 Qualifiers Qs;
3317 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3318 ArgType = Context.getQualifiedType(ArgType, Qs);
3319 }
3320
3321 Converted.push_back(TemplateArgument(ArgType));
3322 return false;
3323}
3324
3325/// \brief Substitute template arguments into the default template argument for
3326/// the given template type parameter.
3327///
3328/// \param SemaRef the semantic analysis object for which we are performing
3329/// the substitution.
3330///
3331/// \param Template the template that we are synthesizing template arguments
3332/// for.
3333///
3334/// \param TemplateLoc the location of the template name that started the
3335/// template-id we are checking.
3336///
3337/// \param RAngleLoc the location of the right angle bracket ('>') that
3338/// terminates the template-id.
3339///
3340/// \param Param the template template parameter whose default we are
3341/// substituting into.
3342///
3343/// \param Converted the list of template arguments provided for template
3344/// parameters that precede \p Param in the template parameter list.
3345/// \returns the substituted template argument, or NULL if an error occurred.
3346static TypeSourceInfo *
3347SubstDefaultTemplateArgument(Sema &SemaRef,
3348 TemplateDecl *Template,
3349 SourceLocation TemplateLoc,
3350 SourceLocation RAngleLoc,
3351 TemplateTypeParmDecl *Param,
3352 SmallVectorImpl<TemplateArgument> &Converted) {
3353 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3354
3355 // If the argument type is dependent, instantiate it now based
3356 // on the previously-computed template arguments.
3357 if (ArgType->getType()->isDependentType()) {
3358 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3359 Param, Template, Converted,
3360 SourceRange(TemplateLoc, RAngleLoc));
3361 if (Inst.isInvalid())
3362 return nullptr;
3363
3364 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
3365
3366 // Only substitute for the innermost template argument list.
3367 MultiLevelTemplateArgumentList TemplateArgLists;
3368 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3369 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3370 TemplateArgLists.addOuterTemplateArguments(None);
3371
3372 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3373 ArgType =
3374 SemaRef.SubstType(ArgType, TemplateArgLists,
3375 Param->getDefaultArgumentLoc(), Param->getDeclName());
3376 }
3377
3378 return ArgType;
3379}
3380
3381/// \brief Substitute template arguments into the default template argument for
3382/// the given non-type template parameter.
3383///
3384/// \param SemaRef the semantic analysis object for which we are performing
3385/// the substitution.
3386///
3387/// \param Template the template that we are synthesizing template arguments
3388/// for.
3389///
3390/// \param TemplateLoc the location of the template name that started the
3391/// template-id we are checking.
3392///
3393/// \param RAngleLoc the location of the right angle bracket ('>') that
3394/// terminates the template-id.
3395///
3396/// \param Param the non-type template parameter whose default we are
3397/// substituting into.
3398///
3399/// \param Converted the list of template arguments provided for template
3400/// parameters that precede \p Param in the template parameter list.
3401///
3402/// \returns the substituted template argument, or NULL if an error occurred.
3403static ExprResult
3404SubstDefaultTemplateArgument(Sema &SemaRef,
3405 TemplateDecl *Template,
3406 SourceLocation TemplateLoc,
3407 SourceLocation RAngleLoc,
3408 NonTypeTemplateParmDecl *Param,
3409 SmallVectorImpl<TemplateArgument> &Converted) {
3410 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3411 Param, Template, Converted,
3412 SourceRange(TemplateLoc, RAngleLoc));
3413 if (Inst.isInvalid())
3414 return ExprError();
3415
3416 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
3417
3418 // Only substitute for the innermost template argument list.
3419 MultiLevelTemplateArgumentList TemplateArgLists;
3420 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3421 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3422 TemplateArgLists.addOuterTemplateArguments(None);
3423
3424 EnterExpressionEvaluationContext ConstantEvaluated(SemaRef,
3425 Sema::ConstantEvaluated);
3426 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3427}
3428
3429/// \brief Substitute template arguments into the default template argument for
3430/// the given template template parameter.
3431///
3432/// \param SemaRef the semantic analysis object for which we are performing
3433/// the substitution.
3434///
3435/// \param Template the template that we are synthesizing template arguments
3436/// for.
3437///
3438/// \param TemplateLoc the location of the template name that started the
3439/// template-id we are checking.
3440///
3441/// \param RAngleLoc the location of the right angle bracket ('>') that
3442/// terminates the template-id.
3443///
3444/// \param Param the template template parameter whose default we are
3445/// substituting into.
3446///
3447/// \param Converted the list of template arguments provided for template
3448/// parameters that precede \p Param in the template parameter list.
3449///
3450/// \param QualifierLoc Will be set to the nested-name-specifier (with
3451/// source-location information) that precedes the template name.
3452///
3453/// \returns the substituted template argument, or NULL if an error occurred.
3454static TemplateName
3455SubstDefaultTemplateArgument(Sema &SemaRef,
3456 TemplateDecl *Template,
3457 SourceLocation TemplateLoc,
3458 SourceLocation RAngleLoc,
3459 TemplateTemplateParmDecl *Param,
3460 SmallVectorImpl<TemplateArgument> &Converted,
3461 NestedNameSpecifierLoc &QualifierLoc) {
3462 Sema::InstantiatingTemplate Inst(
3463 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
3464 SourceRange(TemplateLoc, RAngleLoc));
3465 if (Inst.isInvalid())
3466 return TemplateName();
3467
3468 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
3469
3470 // Only substitute for the innermost template argument list.
3471 MultiLevelTemplateArgumentList TemplateArgLists;
3472 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3473 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3474 TemplateArgLists.addOuterTemplateArguments(None);
3475
3476 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3477 // Substitute into the nested-name-specifier first,
3478 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3479 if (QualifierLoc) {
3480 QualifierLoc =
3481 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3482 if (!QualifierLoc)
3483 return TemplateName();
3484 }
3485
3486 return SemaRef.SubstTemplateName(
3487 QualifierLoc,
3488 Param->getDefaultArgument().getArgument().getAsTemplate(),
3489 Param->getDefaultArgument().getTemplateNameLoc(),
3490 TemplateArgLists);
3491}
3492
3493/// \brief If the given template parameter has a default template
3494/// argument, substitute into that default template argument and
3495/// return the corresponding template argument.
3496TemplateArgumentLoc
3497Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3498 SourceLocation TemplateLoc,
3499 SourceLocation RAngleLoc,
3500 Decl *Param,
3501 SmallVectorImpl<TemplateArgument>
3502 &Converted,
3503 bool &HasDefaultArg) {
3504 HasDefaultArg = false;
3505
3506 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3507 if (!hasVisibleDefaultArgument(TypeParm))
3508 return TemplateArgumentLoc();
3509
3510 HasDefaultArg = true;
3511 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3512 TemplateLoc,
3513 RAngleLoc,
3514 TypeParm,
3515 Converted);
3516 if (DI)
3517 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3518
3519 return TemplateArgumentLoc();
3520 }
3521
3522 if (NonTypeTemplateParmDecl *NonTypeParm
3523 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3524 if (!hasVisibleDefaultArgument(NonTypeParm))
3525 return TemplateArgumentLoc();
3526
3527 HasDefaultArg = true;
3528 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3529 TemplateLoc,
3530 RAngleLoc,
3531 NonTypeParm,
3532 Converted);
3533 if (Arg.isInvalid())
3534 return TemplateArgumentLoc();
3535
3536 Expr *ArgE = Arg.getAs<Expr>();
3537 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3538 }
3539
3540 TemplateTemplateParmDecl *TempTempParm
3541 = cast<TemplateTemplateParmDecl>(Param);
3542 if (!hasVisibleDefaultArgument(TempTempParm))
3543 return TemplateArgumentLoc();
3544
3545 HasDefaultArg = true;
3546 NestedNameSpecifierLoc QualifierLoc;
3547 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3548 TemplateLoc,
3549 RAngleLoc,
3550 TempTempParm,
3551 Converted,
3552 QualifierLoc);
3553 if (TName.isNull())
3554 return TemplateArgumentLoc();
3555
3556 return TemplateArgumentLoc(TemplateArgument(TName),
3557 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3558 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3559}
3560
3561/// \brief Check that the given template argument corresponds to the given
3562/// template parameter.
3563///
3564/// \param Param The template parameter against which the argument will be
3565/// checked.
3566///
3567/// \param Arg The template argument, which may be updated due to conversions.
3568///
3569/// \param Template The template in which the template argument resides.
3570///
3571/// \param TemplateLoc The location of the template name for the template
3572/// whose argument list we're matching.
3573///
3574/// \param RAngleLoc The location of the right angle bracket ('>') that closes
3575/// the template argument list.
3576///
3577/// \param ArgumentPackIndex The index into the argument pack where this
3578/// argument will be placed. Only valid if the parameter is a parameter pack.
3579///
3580/// \param Converted The checked, converted argument will be added to the
3581/// end of this small vector.
3582///
3583/// \param CTAK Describes how we arrived at this particular template argument:
3584/// explicitly written, deduced, etc.
3585///
3586/// \returns true on error, false otherwise.
3587bool Sema::CheckTemplateArgument(NamedDecl *Param,
3588 TemplateArgumentLoc &Arg,
3589 NamedDecl *Template,
3590 SourceLocation TemplateLoc,
3591 SourceLocation RAngleLoc,
3592 unsigned ArgumentPackIndex,
3593 SmallVectorImpl<TemplateArgument> &Converted,
3594 CheckTemplateArgumentKind CTAK) {
3595 // Check template type parameters.
3596 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3597 return CheckTemplateTypeArgument(TTP, Arg, Converted);
3598
3599 // Check non-type template parameters.
3600 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3601 // Do substitution on the type of the non-type template parameter
3602 // with the template arguments we've seen thus far. But if the
3603 // template has a dependent context then we cannot substitute yet.
3604 QualType NTTPType = NTTP->getType();
3605 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3606 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3607
3608 if (NTTPType->isDependentType() &&
3609 !isa<TemplateTemplateParmDecl>(Template) &&
3610 !Template->getDeclContext()->isDependentContext()) {
3611 // Do substitution on the type of the non-type template parameter.
3612 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3613 NTTP, Converted,
3614 SourceRange(TemplateLoc, RAngleLoc));
3615 if (Inst.isInvalid())
3616 return true;
3617
3618 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3619 Converted);
3620 NTTPType = SubstType(NTTPType,
3621 MultiLevelTemplateArgumentList(TemplateArgs),
3622 NTTP->getLocation(),
3623 NTTP->getDeclName());
3624 // If that worked, check the non-type template parameter type
3625 // for validity.
3626 if (!NTTPType.isNull())
3627 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3628 NTTP->getLocation());
3629 if (NTTPType.isNull())
3630 return true;
3631 }
3632
3633 switch (Arg.getArgument().getKind()) {
3634 case TemplateArgument::Null:
3635 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3635)
;
3636
3637 case TemplateArgument::Expression: {
3638 TemplateArgument Result;
3639 ExprResult Res =
3640 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3641 Result, CTAK);
3642 if (Res.isInvalid())
3643 return true;
3644
3645 // If the resulting expression is new, then use it in place of the
3646 // old expression in the template argument.
3647 if (Res.get() != Arg.getArgument().getAsExpr()) {
3648 TemplateArgument TA(Res.get());
3649 Arg = TemplateArgumentLoc(TA, Res.get());
3650 }
3651
3652 Converted.push_back(Result);
3653 break;
3654 }
3655
3656 case TemplateArgument::Declaration:
3657 case TemplateArgument::Integral:
3658 case TemplateArgument::NullPtr:
3659 // We've already checked this template argument, so just copy
3660 // it to the list of converted arguments.
3661 Converted.push_back(Arg.getArgument());
3662 break;
3663
3664 case TemplateArgument::Template:
3665 case TemplateArgument::TemplateExpansion:
3666 // We were given a template template argument. It may not be ill-formed;
3667 // see below.
3668 if (DependentTemplateName *DTN
3669 = Arg.getArgument().getAsTemplateOrTemplatePattern()
3670 .getAsDependentTemplateName()) {
3671 // We have a template argument such as \c T::template X, which we
3672 // parsed as a template template argument. However, since we now
3673 // know that we need a non-type template argument, convert this
3674 // template name into an expression.
3675
3676 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3677 Arg.getTemplateNameLoc());
3678
3679 CXXScopeSpec SS;
3680 SS.Adopt(Arg.getTemplateQualifierLoc());
3681 // FIXME: the template-template arg was a DependentTemplateName,
3682 // so it was provided with a template keyword. However, its source
3683 // location is not stored in the template argument structure.
3684 SourceLocation TemplateKWLoc;
3685 ExprResult E = DependentScopeDeclRefExpr::Create(
3686 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
3687 nullptr);
3688
3689 // If we parsed the template argument as a pack expansion, create a
3690 // pack expansion expression.
3691 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3692 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
3693 if (E.isInvalid())
3694 return true;
3695 }
3696
3697 TemplateArgument Result;
3698 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
3699 if (E.isInvalid())
3700 return true;
3701
3702 Converted.push_back(Result);
3703 break;
3704 }
3705
3706 // We have a template argument that actually does refer to a class
3707 // template, alias template, or template template parameter, and
3708 // therefore cannot be a non-type template argument.
3709 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3710 << Arg.getSourceRange();
3711
3712 Diag(Param->getLocation(), diag::note_template_param_here);
3713 return true;
3714
3715 case TemplateArgument::Type: {
3716 // We have a non-type template parameter but the template
3717 // argument is a type.
3718
3719 // C++ [temp.arg]p2:
3720 // In a template-argument, an ambiguity between a type-id and
3721 // an expression is resolved to a type-id, regardless of the
3722 // form of the corresponding template-parameter.
3723 //
3724 // We warn specifically about this case, since it can be rather
3725 // confusing for users.
3726 QualType T = Arg.getArgument().getAsType();
3727 SourceRange SR = Arg.getSourceRange();
3728 if (T->isFunctionType())
3729 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3730 else
3731 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3732 Diag(Param->getLocation(), diag::note_template_param_here);
3733 return true;
3734 }
3735
3736 case TemplateArgument::Pack:
3737 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3737)
;
3738 }
3739
3740 return false;
3741 }
3742
3743
3744 // Check template template parameters.
3745 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3746
3747 // Substitute into the template parameter list of the template
3748 // template parameter, since previously-supplied template arguments
3749 // may appear within the template template parameter.
3750 {
3751 // Set up a template instantiation context.
3752 LocalInstantiationScope Scope(*this);
3753 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3754 TempParm, Converted,
3755 SourceRange(TemplateLoc, RAngleLoc));
3756 if (Inst.isInvalid())
3757 return true;
3758
3759 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
3760 TempParm = cast_or_null<TemplateTemplateParmDecl>(
3761 SubstDecl(TempParm, CurContext,
3762 MultiLevelTemplateArgumentList(TemplateArgs)));
3763 if (!TempParm)
3764 return true;
3765 }
3766
3767 switch (Arg.getArgument().getKind()) {
3768 case TemplateArgument::Null:
3769 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3769)
;
3770
3771 case TemplateArgument::Template:
3772 case TemplateArgument::TemplateExpansion:
3773 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3774 return true;
3775
3776 Converted.push_back(Arg.getArgument());
3777 break;
3778
3779 case TemplateArgument::Expression:
3780 case TemplateArgument::Type:
3781 // We have a template template parameter but the template
3782 // argument does not refer to a template.
3783 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3784 << getLangOpts().CPlusPlus11;
3785 return true;
3786
3787 case TemplateArgument::Declaration:
3788 llvm_unreachable("Declaration argument with template template parameter")::llvm::llvm_unreachable_internal("Declaration argument with template template parameter"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3788)
;
3789 case TemplateArgument::Integral:
3790 llvm_unreachable("Integral argument with template template parameter")::llvm::llvm_unreachable_internal("Integral argument with template template parameter"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3790)
;
3791 case TemplateArgument::NullPtr:
3792 llvm_unreachable("Null pointer argument with template template parameter")::llvm::llvm_unreachable_internal("Null pointer argument with template template parameter"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3792)
;
3793
3794 case TemplateArgument::Pack:
3795 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3795)
;
3796 }
3797
3798 return false;
3799}
3800
3801/// \brief Diagnose an arity mismatch in the
3802static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3803 SourceLocation TemplateLoc,
3804 TemplateArgumentListInfo &TemplateArgs) {
3805 TemplateParameterList *Params = Template->getTemplateParameters();
3806 unsigned NumParams = Params->size();
3807 unsigned NumArgs = TemplateArgs.size();
3808
3809 SourceRange Range;
3810 if (NumArgs > NumParams)
3811 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3812 TemplateArgs.getRAngleLoc());
3813 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3814 << (NumArgs > NumParams)
3815 << (isa<ClassTemplateDecl>(Template)? 0 :
3816 isa<FunctionTemplateDecl>(Template)? 1 :
3817 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3818 << Template << Range;
3819 S.Diag(Template->getLocation(), diag::note_template_decl_here)
3820 << Params->getSourceRange();
3821 return true;
3822}
3823
3824/// \brief Check whether the template parameter is a pack expansion, and if so,
3825/// determine the number of parameters produced by that expansion. For instance:
3826///
3827/// \code
3828/// template<typename ...Ts> struct A {
3829/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3830/// };
3831/// \endcode
3832///
3833/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3834/// is not a pack expansion, so returns an empty Optional.
3835static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3836 if (NonTypeTemplateParmDecl *NTTP
3837 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3838 if (NTTP->isExpandedParameterPack())
3839 return NTTP->getNumExpansionTypes();
3840 }
3841
3842 if (TemplateTemplateParmDecl *TTP
3843 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3844 if (TTP->isExpandedParameterPack())
3845 return TTP->getNumExpansionTemplateParameters();
3846 }
3847
3848 return None;
3849}
3850
3851/// Diagnose a missing template argument.
3852template<typename TemplateParmDecl>
3853static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
3854 TemplateDecl *TD,
3855 const TemplateParmDecl *D,
3856 TemplateArgumentListInfo &Args) {
3857 // Dig out the most recent declaration of the template parameter; there may be
3858 // declarations of the template that are more recent than TD.
3859 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
3860 ->getTemplateParameters()
3861 ->getParam(D->getIndex()));
3862
3863 // If there's a default argument that's not visible, diagnose that we're
3864 // missing a module import.
3865 llvm::SmallVector<Module*, 8> Modules;
3866 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
3867 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
3868 D->getDefaultArgumentLoc(), Modules,
3869 Sema::MissingImportKind::DefaultArgument,
3870 /*Recover*/true);
3871 return true;
3872 }
3873
3874 // FIXME: If there's a more recent default argument that *is* visible,
3875 // diagnose that it was declared too late.
3876
3877 return diagnoseArityMismatch(S, TD, Loc, Args);
3878}
3879
3880/// \brief Check that the given template argument list is well-formed
3881/// for specializing the given template.
3882bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3883 SourceLocation TemplateLoc,
3884 TemplateArgumentListInfo &TemplateArgs,
3885 bool PartialTemplateArgs,
3886 SmallVectorImpl<TemplateArgument> &Converted) {
3887 // Make a copy of the template arguments for processing. Only make the
3888 // changes at the end when successful in matching the arguments to the
3889 // template.
3890 TemplateArgumentListInfo NewArgs = TemplateArgs;
3891
3892 TemplateParameterList *Params = Template->getTemplateParameters();
3893
3894 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
3895
3896 // C++ [temp.arg]p1:
3897 // [...] The type and form of each template-argument specified in
3898 // a template-id shall match the type and form specified for the
3899 // corresponding parameter declared by the template in its
3900 // template-parameter-list.
3901 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3902 SmallVector<TemplateArgument, 2> ArgumentPack;
3903 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
3904 LocalInstantiationScope InstScope(*this, true);
3905 for (TemplateParameterList::iterator Param = Params->begin(),
3906 ParamEnd = Params->end();
3907 Param != ParamEnd; /* increment in loop */) {
3908 // If we have an expanded parameter pack, make sure we don't have too
3909 // many arguments.
3910 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3911 if (*Expansions == ArgumentPack.size()) {
3912 // We're done with this parameter pack. Pack up its arguments and add
3913 // them to the list.
3914 Converted.push_back(
3915 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3916 ArgumentPack.clear();
3917
3918 // This argument is assigned to the next parameter.
3919 ++Param;
3920 continue;
3921 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3922 // Not enough arguments for this parameter pack.
3923 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3924 << false
3925 << (isa<ClassTemplateDecl>(Template)? 0 :
3926 isa<FunctionTemplateDecl>(Template)? 1 :
3927 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3928 << Template;
3929 Diag(Template->getLocation(), diag::note_template_decl_here)
3930 << Params->getSourceRange();
3931 return true;
3932 }
3933 }
3934
3935 if (ArgIdx < NumArgs) {
3936 // Check the template argument we were given.
3937 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
3938 TemplateLoc, RAngleLoc,
3939 ArgumentPack.size(), Converted))
3940 return true;
3941
3942 bool PackExpansionIntoNonPack =
3943 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
3944 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
3945 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
3946 // Core issue 1430: we have a pack expansion as an argument to an
3947 // alias template, and it's not part of a parameter pack. This
3948 // can't be canonicalized, so reject it now.
3949 Diag(NewArgs[ArgIdx].getLocation(),
3950 diag::err_alias_template_expansion_into_fixed_list)
3951 << NewArgs[ArgIdx].getSourceRange();
3952 Diag((*Param)->getLocation(), diag::note_template_param_here);
3953 return true;
3954 }
3955
3956 // We're now done with this argument.
3957 ++ArgIdx;
3958
3959 if ((*Param)->isTemplateParameterPack()) {
3960 // The template parameter was a template parameter pack, so take the
3961 // deduced argument and place it on the argument pack. Note that we
3962 // stay on the same template parameter so that we can deduce more
3963 // arguments.
3964 ArgumentPack.push_back(Converted.pop_back_val());
3965 } else {
3966 // Move to the next template parameter.
3967 ++Param;
3968 }
3969
3970 // If we just saw a pack expansion into a non-pack, then directly convert
3971 // the remaining arguments, because we don't know what parameters they'll
3972 // match up with.
3973 if (PackExpansionIntoNonPack) {
3974 if (!ArgumentPack.empty()) {
3975 // If we were part way through filling in an expanded parameter pack,
3976 // fall back to just producing individual arguments.
3977 Converted.insert(Converted.end(),
3978 ArgumentPack.begin(), ArgumentPack.end());
3979 ArgumentPack.clear();
3980 }
3981
3982 while (ArgIdx < NumArgs) {
3983 Converted.push_back(NewArgs[ArgIdx].getArgument());
3984 ++ArgIdx;
3985 }
3986
3987 return false;
3988 }
3989
3990 continue;
3991 }
3992
3993 // If we're checking a partial template argument list, we're done.
3994 if (PartialTemplateArgs) {
3995 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3996 Converted.push_back(
3997 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3998
3999 return false;
4000 }
4001
4002 // If we have a template parameter pack with no more corresponding
4003 // arguments, just break out now and we'll fill in the argument pack below.
4004 if ((*Param)->isTemplateParameterPack()) {
4005 assert(!getExpandedPackSize(*Param) &&((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4006, __PRETTY_FUNCTION__))
4006 "Should have dealt with this already")((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4006, __PRETTY_FUNCTION__))
;
4007
4008 // A non-expanded parameter pack before the end of the parameter list
4009 // only occurs for an ill-formed template parameter list, unless we've
4010 // got a partial argument list for a function template, so just bail out.
4011 if (Param + 1 != ParamEnd)
4012 return true;
4013
4014 Converted.push_back(
4015 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4016 ArgumentPack.clear();
4017
4018 ++Param;
4019 continue;
4020 }
4021
4022 // Check whether we have a default argument.
4023 TemplateArgumentLoc Arg;
4024
4025 // Retrieve the default template argument from the template
4026 // parameter. For each kind of template parameter, we substitute the
4027 // template arguments provided thus far and any "outer" template arguments
4028 // (when the template parameter was part of a nested template) into
4029 // the default argument.
4030 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
4031 if (!hasVisibleDefaultArgument(TTP))
4032 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
4033 NewArgs);
4034
4035 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
4036 Template,
4037 TemplateLoc,
4038 RAngleLoc,
4039 TTP,
4040 Converted);
4041 if (!ArgType)
4042 return true;
4043
4044 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
4045 ArgType);
4046 } else if (NonTypeTemplateParmDecl *NTTP
4047 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
4048 if (!hasVisibleDefaultArgument(NTTP))
4049 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
4050 NewArgs);
4051
4052 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
4053 TemplateLoc,
4054 RAngleLoc,
4055 NTTP,
4056 Converted);
4057 if (E.isInvalid())
4058 return true;
4059
4060 Expr *Ex = E.getAs<Expr>();
4061 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
4062 } else {
4063 TemplateTemplateParmDecl *TempParm
4064 = cast<TemplateTemplateParmDecl>(*Param);
4065
4066 if (!hasVisibleDefaultArgument(TempParm))
4067 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
4068 NewArgs);
4069
4070 NestedNameSpecifierLoc QualifierLoc;
4071 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
4072 TemplateLoc,
4073 RAngleLoc,
4074 TempParm,
4075 Converted,
4076 QualifierLoc);
4077 if (Name.isNull())
4078 return true;
4079
4080 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
4081 TempParm->getDefaultArgument().getTemplateNameLoc());
4082 }
4083
4084 // Introduce an instantiation record that describes where we are using
4085 // the default template argument. We're not actually instantiating a
4086 // template here, we just create this object to put a note into the
4087 // context stack.
4088 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
4089 SourceRange(TemplateLoc, RAngleLoc));
4090 if (Inst.isInvalid())
4091 return true;
4092
4093 // Check the default template argument.
4094 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
4095 RAngleLoc, 0, Converted))
4096 return true;
4097
4098 // Core issue 150 (assumed resolution): if this is a template template
4099 // parameter, keep track of the default template arguments from the
4100 // template definition.
4101 if (isTemplateTemplateParameter)
4102 NewArgs.addArgument(Arg);
4103
4104 // Move to the next template parameter and argument.
4105 ++Param;
4106 ++ArgIdx;
4107 }
4108
4109 // If we're performing a partial argument substitution, allow any trailing
4110 // pack expansions; they might be empty. This can happen even if
4111 // PartialTemplateArgs is false (the list of arguments is complete but
4112 // still dependent).
4113 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
4114 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
4115 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
4116 Converted.push_back(NewArgs[ArgIdx++].getArgument());
4117 }
4118
4119 // If we have any leftover arguments, then there were too many arguments.
4120 // Complain and fail.
4121 if (ArgIdx < NumArgs)
4122 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
4123
4124 // No problems found with the new argument list, propagate changes back
4125 // to caller.
4126 TemplateArgs = std::move(NewArgs);
4127
4128 return false;
4129}
4130
4131namespace {
4132 class UnnamedLocalNoLinkageFinder
4133 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
4134 {
4135 Sema &S;
4136 SourceRange SR;
4137
4138 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
4139
4140 public:
4141 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
4142
4143 bool Visit(QualType T) {
4144 return inherited::Visit(T.getTypePtr());
4145 }
4146
4147#define TYPE(Class, Parent) \
4148 bool Visit##Class##Type(const Class##Type *);
4149#define ABSTRACT_TYPE(Class, Parent) \
4150 bool Visit##Class##Type(const Class##Type *) { return false; }
4151#define NON_CANONICAL_TYPE(Class, Parent) \
4152 bool Visit##Class##Type(const Class##Type *) { return false; }
4153#include "clang/AST/TypeNodes.def"
4154
4155 bool VisitTagDecl(const TagDecl *Tag);
4156 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
4157 };
4158} // end anonymous namespace
4159
4160bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
4161 return false;
4162}
4163
4164bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
4165 return Visit(T->getElementType());
4166}
4167
4168bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
4169 return Visit(T->getPointeeType());
4170}
4171
4172bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
4173 const BlockPointerType* T) {
4174 return Visit(T->getPointeeType());
4175}
4176
4177bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
4178 const LValueReferenceType* T) {
4179 return Visit(T->getPointeeType());
4180}
4181
4182bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
4183 const RValueReferenceType* T) {
4184 return Visit(T->getPointeeType());
4185}
4186
4187bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
4188 const MemberPointerType* T) {
4189 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
4190}
4191
4192bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
4193 const ConstantArrayType* T) {
4194 return Visit(T->getElementType());
4195}
4196
4197bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
4198 const IncompleteArrayType* T) {
4199 return Visit(T->getElementType());
4200}
4201
4202bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
4203 const VariableArrayType* T) {
4204 return Visit(T->getElementType());
4205}
4206
4207bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
4208 const DependentSizedArrayType* T) {
4209 return Visit(T->getElementType());
4210}
4211
4212bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
4213 const DependentSizedExtVectorType* T) {
4214 return Visit(T->getElementType());
4215}
4216
4217bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
4218 return Visit(T->getElementType());
4219}
4220
4221bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
4222 return Visit(T->getElementType());
4223}
4224
4225bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
4226 const FunctionProtoType* T) {
4227 for (const auto &A : T->param_types()) {
4228 if (Visit(A))
4229 return true;
4230 }
4231
4232 return Visit(T->getReturnType());
4233}
4234
4235bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
4236 const FunctionNoProtoType* T) {
4237 return Visit(T->getReturnType());
4238}
4239
4240bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
4241 const UnresolvedUsingType*) {
4242 return false;
4243}
4244
4245bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
4246 return false;
4247}
4248
4249bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
4250 return Visit(T->getUnderlyingType());
4251}
4252
4253bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
4254 return false;
4255}
4256
4257bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
4258 const UnaryTransformType*) {
4259 return false;
4260}
4261
4262bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
4263 return Visit(T->getDeducedType());
4264}
4265
4266bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
4267 return VisitTagDecl(T->getDecl());
4268}
4269
4270bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
4271 return VisitTagDecl(T->getDecl());
4272}
4273
4274bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
4275 const TemplateTypeParmType*) {
4276 return false;
4277}
4278
4279bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
4280 const SubstTemplateTypeParmPackType *) {
4281 return false;
4282}
4283
4284bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
4285 const TemplateSpecializationType*) {
4286 return false;
4287}
4288
4289bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
4290 const InjectedClassNameType* T) {
4291 return VisitTagDecl(T->getDecl());
4292}
4293
4294bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
4295 const DependentNameType* T) {
4296 return VisitNestedNameSpecifier(T->getQualifier());
4297}
4298
4299bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
4300 const DependentTemplateSpecializationType* T) {
4301 return VisitNestedNameSpecifier(T->getQualifier());
4302}
4303
4304bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
4305 const PackExpansionType* T) {
4306 return Visit(T->getPattern());
4307}
4308
4309bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
4310 return false;
4311}
4312
4313bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
4314 const ObjCInterfaceType *) {
4315 return false;
4316}
4317
4318bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
4319 const ObjCObjectPointerType *) {
4320 return false;
4321}
4322
4323bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
4324 return Visit(T->getValueType());
4325}
4326
4327bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
4328 return false;
4329}
4330
4331bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
4332 if (Tag->getDeclContext()->isFunctionOrMethod()) {
4333 S.Diag(SR.getBegin(),
4334 S.getLangOpts().CPlusPlus11 ?
4335 diag::warn_cxx98_compat_template_arg_local_type :
4336 diag::ext_template_arg_local_type)
4337 << S.Context.getTypeDeclType(Tag) << SR;
4338 return true;
4339 }
4340
4341 if (!Tag->hasNameForLinkage()) {
4342 S.Diag(SR.getBegin(),
4343 S.getLangOpts().CPlusPlus11 ?
4344 diag::warn_cxx98_compat_template_arg_unnamed_type :
4345 diag::ext_template_arg_unnamed_type) << SR;
4346 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4347 return true;
4348 }
4349
4350 return false;
4351}
4352
4353bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4354 NestedNameSpecifier *NNS) {
4355 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4356 return true;
4357
4358 switch (NNS->getKind()) {
4359 case NestedNameSpecifier::Identifier:
4360 case NestedNameSpecifier::Namespace:
4361 case NestedNameSpecifier::NamespaceAlias:
4362 case NestedNameSpecifier::Global:
4363 case NestedNameSpecifier::Super:
4364 return false;
4365
4366 case NestedNameSpecifier::TypeSpec:
4367 case NestedNameSpecifier::TypeSpecWithTemplate:
4368 return Visit(QualType(NNS->getAsType(), 0));
4369 }
4370 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")::llvm::llvm_unreachable_internal("Invalid NestedNameSpecifier::Kind!"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4370)
;
4371}
4372
4373/// \brief Check a template argument against its corresponding
4374/// template type parameter.
4375///
4376/// This routine implements the semantics of C++ [temp.arg.type]. It
4377/// returns true if an error occurred, and false otherwise.
4378bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4379 TypeSourceInfo *ArgInfo) {
4380 assert(ArgInfo && "invalid TypeSourceInfo")((ArgInfo && "invalid TypeSourceInfo") ? static_cast<
void> (0) : __assert_fail ("ArgInfo && \"invalid TypeSourceInfo\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4380, __PRETTY_FUNCTION__))
;
4381 QualType Arg = ArgInfo->getType();
4382 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4383
4384 if (Arg->isVariablyModifiedType()) {
4385 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4386 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4387 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4388 }
4389
4390 // C++03 [temp.arg.type]p2:
4391 // A local type, a type with no linkage, an unnamed type or a type
4392 // compounded from any of these types shall not be used as a
4393 // template-argument for a template type-parameter.
4394 //
4395 // C++11 allows these, and even in C++03 we allow them as an extension with
4396 // a warning.
4397 bool NeedsCheck;
4398 if (LangOpts.CPlusPlus11)
4399 NeedsCheck =
4400 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
4401 SR.getBegin()) ||
4402 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
4403 SR.getBegin());
4404 else
4405 NeedsCheck = Arg->hasUnnamedOrLocalType();
4406
4407 if (NeedsCheck) {
4408 UnnamedLocalNoLinkageFinder Finder(*this, SR);
4409 (void)Finder.Visit(Context.getCanonicalType(Arg));
4410 }
4411
4412 return false;
4413}
4414
4415enum NullPointerValueKind {
4416 NPV_NotNullPointer,
4417 NPV_NullPointer,
4418 NPV_Error
4419};
4420
4421/// \brief Determine whether the given template argument is a null pointer
4422/// value of the appropriate type.
4423static NullPointerValueKind
4424isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4425 QualType ParamType, Expr *Arg) {
4426 if (Arg->isValueDependent() || Arg->isTypeDependent())
4427 return NPV_NotNullPointer;
4428
4429 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
4430 llvm_unreachable(::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4431)
4431 "Incomplete parameter type in isNullPointerValueTemplateArgument!")::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4431)
;
4432
4433 if (!S.getLangOpts().CPlusPlus11)
4434 return NPV_NotNullPointer;
4435
4436 // Determine whether we have a constant expression.
4437 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4438 if (ArgRV.isInvalid())
4439 return NPV_Error;
4440 Arg = ArgRV.get();
4441
4442 Expr::EvalResult EvalResult;
4443 SmallVector<PartialDiagnosticAt, 8> Notes;
4444 EvalResult.Diag = &Notes;
4445 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4446 EvalResult.HasSideEffects) {
4447 SourceLocation DiagLoc = Arg->getExprLoc();
4448
4449 // If our only note is the usual "invalid subexpression" note, just point
4450 // the caret at its location rather than producing an essentially
4451 // redundant note.
4452 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4453 diag::note_invalid_subexpr_in_const_expr) {
4454 DiagLoc = Notes[0].first;
4455 Notes.clear();
4456 }
4457
4458 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4459 << Arg->getType() << Arg->getSourceRange();
4460 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4461 S.Diag(Notes[I].first, Notes[I].second);
4462
4463 S.Diag(Param->getLocation(), diag::note_template_param_here);
4464 return NPV_Error;
4465 }
4466
4467 // C++11 [temp.arg.nontype]p1:
4468 // - an address constant expression of type std::nullptr_t
4469 if (Arg->getType()->isNullPtrType())
4470 return NPV_NullPointer;
4471
4472 // - a constant expression that evaluates to a null pointer value (4.10); or
4473 // - a constant expression that evaluates to a null member pointer value
4474 // (4.11); or
4475 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4476 (EvalResult.Val.isMemberPointer() &&
4477 !EvalResult.Val.getMemberPointerDecl())) {
4478 // If our expression has an appropriate type, we've succeeded.
4479 bool ObjCLifetimeConversion;
4480 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4481 S.IsQualificationConversion(Arg->getType(), ParamType, false,
4482 ObjCLifetimeConversion))
4483 return NPV_NullPointer;
4484
4485 // The types didn't match, but we know we got a null pointer; complain,
4486 // then recover as if the types were correct.
4487 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4488 << Arg->getType() << ParamType << Arg->getSourceRange();
4489 S.Diag(Param->getLocation(), diag::note_template_param_here);
4490 return NPV_NullPointer;
4491 }
4492
4493 // If we don't have a null pointer value, but we do have a NULL pointer
4494 // constant, suggest a cast to the appropriate type.
4495 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4496 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4497 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4498 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4499 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
4500 ")");
4501 S.Diag(Param->getLocation(), diag::note_template_param_here);
4502 return NPV_NullPointer;
4503 }
4504
4505 // FIXME: If we ever want to support general, address-constant expressions
4506 // as non-type template arguments, we should return the ExprResult here to
4507 // be interpreted by the caller.
4508 return NPV_NotNullPointer;
4509}
4510
4511/// \brief Checks whether the given template argument is compatible with its
4512/// template parameter.
4513static bool CheckTemplateArgumentIsCompatibleWithParameter(
4514 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4515 Expr *Arg, QualType ArgType) {
4516 bool ObjCLifetimeConversion;
4517 if (ParamType->isPointerType() &&
4518 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4519 S.IsQualificationConversion(ArgType, ParamType, false,
4520 ObjCLifetimeConversion)) {
4521 // For pointer-to-object types, qualification conversions are
4522 // permitted.
4523 } else {
4524 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4525 if (!ParamRef->getPointeeType()->isFunctionType()) {
4526 // C++ [temp.arg.nontype]p5b3:
4527 // For a non-type template-parameter of type reference to
4528 // object, no conversions apply. The type referred to by the
4529 // reference may be more cv-qualified than the (otherwise
4530 // identical) type of the template- argument. The
4531 // template-parameter is bound directly to the
4532 // template-argument, which shall be an lvalue.
4533
4534 // FIXME: Other qualifiers?
4535 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4536 unsigned ArgQuals = ArgType.getCVRQualifiers();
4537
4538 if ((ParamQuals | ArgQuals) != ParamQuals) {
4539 S.Diag(Arg->getLocStart(),
4540 diag::err_template_arg_ref_bind_ignores_quals)
4541 << ParamType << Arg->getType() << Arg->getSourceRange();
4542 S.Diag(Param->getLocation(), diag::note_template_param_here);
4543 return true;
4544 }
4545 }
4546 }
4547
4548 // At this point, the template argument refers to an object or
4549 // function with external linkage. We now need to check whether the
4550 // argument and parameter types are compatible.
4551 if (!S.Context.hasSameUnqualifiedType(ArgType,
4552 ParamType.getNonReferenceType())) {
4553 // We can't perform this conversion or binding.
4554 if (ParamType->isReferenceType())
4555 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4556 << ParamType << ArgIn->getType() << Arg->getSourceRange();
4557 else
4558 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4559 << ArgIn->getType() << ParamType << Arg->getSourceRange();
4560 S.Diag(Param->getLocation(), diag::note_template_param_here);
4561 return true;
4562 }
4563 }
4564
4565 return false;
4566}
4567
4568/// \brief Checks whether the given template argument is the address
4569/// of an object or function according to C++ [temp.arg.nontype]p1.
4570static bool
4571CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4572 NonTypeTemplateParmDecl *Param,
4573 QualType ParamType,
4574 Expr *ArgIn,
4575 TemplateArgument &Converted) {
4576 bool Invalid = false;
4577 Expr *Arg = ArgIn;
4578 QualType ArgType = Arg->getType();
4579
4580 bool AddressTaken = false;
4581 SourceLocation AddrOpLoc;
4582 if (S.getLangOpts().MicrosoftExt) {
4583 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4584 // dereference and address-of operators.
4585 Arg = Arg->IgnoreParenCasts();
4586
4587 bool ExtWarnMSTemplateArg = false;
4588 UnaryOperatorKind FirstOpKind;
4589 SourceLocation FirstOpLoc;
4590 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4591 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4592 if (UnOpKind == UO_Deref)
4593 ExtWarnMSTemplateArg = true;
4594 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4595 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4596 if (!AddrOpLoc.isValid()) {
4597 FirstOpKind = UnOpKind;
4598 FirstOpLoc = UnOp->getOperatorLoc();
4599 }
4600 } else
4601 break;
4602 }
4603 if (FirstOpLoc.isValid()) {
4604 if (ExtWarnMSTemplateArg)
4605 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4606 << ArgIn->getSourceRange();
4607
4608 if (FirstOpKind == UO_AddrOf)
4609 AddressTaken = true;
4610 else if (Arg->getType()->isPointerType()) {
4611 // We cannot let pointers get dereferenced here, that is obviously not a
4612 // constant expression.
4613 assert(FirstOpKind == UO_Deref)((FirstOpKind == UO_Deref) ? static_cast<void> (0) : __assert_fail
("FirstOpKind == UO_Deref", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4613, __PRETTY_FUNCTION__))
;
4614 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4615 << Arg->getSourceRange();
4616 }
4617 }
4618 } else {
4619 // See through any implicit casts we added to fix the type.
4620 Arg = Arg->IgnoreImpCasts();
4621
4622 // C++ [temp.arg.nontype]p1:
4623 //
4624 // A template-argument for a non-type, non-template
4625 // template-parameter shall be one of: [...]
4626 //
4627 // -- the address of an object or function with external
4628 // linkage, including function templates and function
4629 // template-ids but excluding non-static class members,
4630 // expressed as & id-expression where the & is optional if
4631 // the name refers to a function or array, or if the
4632 // corresponding template-parameter is a reference; or
4633
4634 // In C++98/03 mode, give an extension warning on any extra parentheses.
4635 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4636 bool ExtraParens = false;
4637 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4638 if (!Invalid && !ExtraParens) {
4639 S.Diag(Arg->getLocStart(),
4640 S.getLangOpts().CPlusPlus11
4641 ? diag::warn_cxx98_compat_template_arg_extra_parens
4642 : diag::ext_template_arg_extra_parens)
4643 << Arg->getSourceRange();
4644 ExtraParens = true;
4645 }
4646
4647 Arg = Parens->getSubExpr();
4648 }
4649
4650 while (SubstNonTypeTemplateParmExpr *subst =
4651 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4652 Arg = subst->getReplacement()->IgnoreImpCasts();
4653
4654 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4655 if (UnOp->getOpcode() == UO_AddrOf) {
4656 Arg = UnOp->getSubExpr();
4657 AddressTaken = true;
4658 AddrOpLoc = UnOp->getOperatorLoc();
4659 }
4660 }
4661
4662 while (SubstNonTypeTemplateParmExpr *subst =
4663 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4664 Arg = subst->getReplacement()->IgnoreImpCasts();
4665 }
4666
4667 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4668 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
4669
4670 // If our parameter has pointer type, check for a null template value.
4671 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4672 NullPointerValueKind NPV;
4673 // dllimport'd entities aren't constant but are available inside of template
4674 // arguments.
4675 if (Entity && Entity->hasAttr<DLLImportAttr>())
4676 NPV = NPV_NotNullPointer;
4677 else
4678 NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
4679 switch (NPV) {
4680 case NPV_NullPointer:
4681 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4682 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4683 /*isNullPtr=*/true);
4684 return false;
4685
4686 case NPV_Error:
4687 return true;
4688
4689 case NPV_NotNullPointer:
4690 break;
4691 }
4692 }
4693
4694 // Stop checking the precise nature of the argument if it is value dependent,
4695 // it should be checked when instantiated.
4696 if (Arg->isValueDependent()) {
4697 Converted = TemplateArgument(ArgIn);
4698 return false;
4699 }
4700
4701 if (isa<CXXUuidofExpr>(Arg)) {
4702 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4703 ArgIn, Arg, ArgType))
4704 return true;
4705
4706 Converted = TemplateArgument(ArgIn);
4707 return false;
4708 }
4709
4710 if (!DRE) {
4711 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4712 << Arg->getSourceRange();
4713 S.Diag(Param->getLocation(), diag::note_template_param_here);
4714 return true;
4715 }
4716
4717 // Cannot refer to non-static data members
4718 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
4719 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4720 << Entity << Arg->getSourceRange();
4721 S.Diag(Param->getLocation(), diag::note_template_param_here);
4722 return true;
4723 }
4724
4725 // Cannot refer to non-static member functions
4726 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4727 if (!Method->isStatic()) {
4728 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4729 << Method << Arg->getSourceRange();
4730 S.Diag(Param->getLocation(), diag::note_template_param_here);
4731 return true;
4732 }
4733 }
4734
4735 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4736 VarDecl *Var = dyn_cast<VarDecl>(Entity);
4737
4738 // A non-type template argument must refer to an object or function.
4739 if (!Func && !Var) {
4740 // We found something, but we don't know specifically what it is.
4741 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4742 << Arg->getSourceRange();
4743 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4744 return true;
4745 }
4746
4747 // Address / reference template args must have external linkage in C++98.
4748 if (Entity->getFormalLinkage() == InternalLinkage) {
4749 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4750 diag::warn_cxx98_compat_template_arg_object_internal :
4751 diag::ext_template_arg_object_internal)
4752 << !Func << Entity << Arg->getSourceRange();
4753 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4754 << !Func;
4755 } else if (!Entity->hasLinkage()) {
4756 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4757 << !Func << Entity << Arg->getSourceRange();
4758 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4759 << !Func;
4760 return true;
4761 }
4762
4763 if (Func) {
4764 // If the template parameter has pointer type, the function decays.
4765 if (ParamType->isPointerType() && !AddressTaken)
4766 ArgType = S.Context.getPointerType(Func->getType());
4767 else if (AddressTaken && ParamType->isReferenceType()) {
4768 // If we originally had an address-of operator, but the
4769 // parameter has reference type, complain and (if things look
4770 // like they will work) drop the address-of operator.
4771 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4772 ParamType.getNonReferenceType())) {
4773 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4774 << ParamType;
4775 S.Diag(Param->getLocation(), diag::note_template_param_here);
4776 return true;
4777 }
4778
4779 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4780 << ParamType
4781 << FixItHint::CreateRemoval(AddrOpLoc);
4782 S.Diag(Param->getLocation(), diag::note_template_param_here);
4783
4784 ArgType = Func->getType();
4785 }
4786 } else {
4787 // A value of reference type is not an object.
4788 if (Var->getType()->isReferenceType()) {
4789 S.Diag(Arg->getLocStart(),
4790 diag::err_template_arg_reference_var)
4791 << Var->getType() << Arg->getSourceRange();
4792 S.Diag(Param->getLocation(), diag::note_template_param_here);
4793 return true;
4794 }
4795
4796 // A template argument must have static storage duration.
4797 if (Var->getTLSKind()) {
4798 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4799 << Arg->getSourceRange();
4800 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4801 return true;
4802 }
4803
4804 // If the template parameter has pointer type, we must have taken
4805 // the address of this object.
4806 if (ParamType->isReferenceType()) {
4807 if (AddressTaken) {
4808 // If we originally had an address-of operator, but the
4809 // parameter has reference type, complain and (if things look
4810 // like they will work) drop the address-of operator.
4811 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4812 ParamType.getNonReferenceType())) {
4813 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4814 << ParamType;
4815 S.Diag(Param->getLocation(), diag::note_template_param_here);
4816 return true;
4817 }
4818
4819 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4820 << ParamType
4821 << FixItHint::CreateRemoval(AddrOpLoc);
4822 S.Diag(Param->getLocation(), diag::note_template_param_here);
4823
4824 ArgType = Var->getType();
4825 }
4826 } else if (!AddressTaken && ParamType->isPointerType()) {
4827 if (Var->getType()->isArrayType()) {
4828 // Array-to-pointer decay.
4829 ArgType = S.Context.getArrayDecayedType(Var->getType());
4830 } else {
4831 // If the template parameter has pointer type but the address of
4832 // this object was not taken, complain and (possibly) recover by
4833 // taking the address of the entity.
4834 ArgType = S.Context.getPointerType(Var->getType());
4835 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4836 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4837 << ParamType;
4838 S.Diag(Param->getLocation(), diag::note_template_param_here);
4839 return true;
4840 }
4841
4842 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4843 << ParamType
4844 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4845
4846 S.Diag(Param->getLocation(), diag::note_template_param_here);
4847 }
4848 }
4849 }
4850
4851 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4852 Arg, ArgType))
4853 return true;
4854
4855 // Create the template argument.
4856 Converted =
4857 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
4858 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4859 return false;
4860}
4861
4862/// \brief Checks whether the given template argument is a pointer to
4863/// member constant according to C++ [temp.arg.nontype]p1.
4864static bool CheckTemplateArgumentPointerToMember(Sema &S,
4865 NonTypeTemplateParmDecl *Param,
4866 QualType ParamType,
4867 Expr *&ResultArg,
4868 TemplateArgument &Converted) {
4869 bool Invalid = false;
4870
4871 // Check for a null pointer value.
4872 Expr *Arg = ResultArg;
4873 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4874 case NPV_Error:
4875 return true;
4876 case NPV_NullPointer:
4877 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4878 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4879 /*isNullPtr*/true);
4880 return false;
4881 case NPV_NotNullPointer:
4882 break;
4883 }
4884
4885 bool ObjCLifetimeConversion;
4886 if (S.IsQualificationConversion(Arg->getType(),
4887 ParamType.getNonReferenceType(),
4888 false, ObjCLifetimeConversion)) {
4889 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4890 Arg->getValueKind()).get();
4891 ResultArg = Arg;
4892 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4893 ParamType.getNonReferenceType())) {
4894 // We can't perform this conversion.
4895 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4896 << Arg->getType() << ParamType << Arg->getSourceRange();
4897 S.Diag(Param->getLocation(), diag::note_template_param_here);
4898 return true;
4899 }
4900
4901 // See through any implicit casts we added to fix the type.
4902 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4903 Arg = Cast->getSubExpr();
4904
4905 // C++ [temp.arg.nontype]p1:
4906 //
4907 // A template-argument for a non-type, non-template
4908 // template-parameter shall be one of: [...]
4909 //
4910 // -- a pointer to member expressed as described in 5.3.1.
4911 DeclRefExpr *DRE = nullptr;
4912
4913 // In C++98/03 mode, give an extension warning on any extra parentheses.
4914 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4915 bool ExtraParens = false;
4916 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4917 if (!Invalid && !ExtraParens) {
4918 S.Diag(Arg->getLocStart(),
4919 S.getLangOpts().CPlusPlus11 ?
4920 diag::warn_cxx98_compat_template_arg_extra_parens :
4921 diag::ext_template_arg_extra_parens)
4922 << Arg->getSourceRange();
4923 ExtraParens = true;
4924 }
4925
4926 Arg = Parens->getSubExpr();
4927 }
4928
4929 while (SubstNonTypeTemplateParmExpr *subst =
4930 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4931 Arg = subst->getReplacement()->IgnoreImpCasts();
4932
4933 // A pointer-to-member constant written &Class::member.
4934 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4935 if (UnOp->getOpcode() == UO_AddrOf) {
4936 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4937 if (DRE && !DRE->getQualifier())
4938 DRE = nullptr;
4939 }
4940 }
4941 // A constant of pointer-to-member type.
4942 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4943 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4944 if (VD->getType()->isMemberPointerType()) {
4945 if (isa<NonTypeTemplateParmDecl>(VD)) {
4946 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4947 Converted = TemplateArgument(Arg);
4948 } else {
4949 VD = cast<ValueDecl>(VD->getCanonicalDecl());
4950 Converted = TemplateArgument(VD, ParamType);
4951 }
4952 return Invalid;
4953 }
4954 }
4955 }
4956
4957 DRE = nullptr;
4958 }
4959
4960 if (!DRE)
4961 return S.Diag(Arg->getLocStart(),
4962 diag::err_template_arg_not_pointer_to_member_form)
4963 << Arg->getSourceRange();
4964
4965 if (isa<FieldDecl>(DRE->getDecl()) ||
4966 isa<IndirectFieldDecl>(DRE->getDecl()) ||
4967 isa<CXXMethodDecl>(DRE->getDecl())) {
4968 assert((isa<FieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4971, __PRETTY_FUNCTION__))
4969 isa<IndirectFieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4971, __PRETTY_FUNCTION__))
4970 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4971, __PRETTY_FUNCTION__))
4971 "Only non-static member pointers can make it here")(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4971, __PRETTY_FUNCTION__))
;
4972
4973 // Okay: this is the address of a non-static member, and therefore
4974 // a member pointer constant.
4975 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4976 Converted = TemplateArgument(Arg);
4977 } else {
4978 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4979 Converted = TemplateArgument(D, ParamType);
4980 }
4981 return Invalid;
4982 }
4983
4984 // We found something else, but we don't know specifically what it is.
4985 S.Diag(Arg->getLocStart(),
4986 diag::err_template_arg_not_pointer_to_member_form)
4987 << Arg->getSourceRange();
4988 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4989 return true;
4990}
4991
4992/// \brief Check a template argument against its corresponding
4993/// non-type template parameter.
4994///
4995/// This routine implements the semantics of C++ [temp.arg.nontype].
4996/// If an error occurred, it returns ExprError(); otherwise, it
4997/// returns the converted template argument. \p ParamType is the
4998/// type of the non-type template parameter after it has been instantiated.
4999ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
5000 QualType ParamType, Expr *Arg,
5001 TemplateArgument &Converted,
5002 CheckTemplateArgumentKind CTAK) {
5003 SourceLocation StartLoc = Arg->getLocStart();
5004
5005 // If the parameter type somehow involves auto, deduce the type now.
5006 if (getLangOpts().CPlusPlus1z && ParamType->isUndeducedType()) {
5007 if (DeduceAutoType(
5008 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
5009 Arg, ParamType) == DAR_Failed) {
5010 Diag(Arg->getExprLoc(),
5011 diag::err_non_type_template_parm_type_deduction_failure)
5012 << Param->getDeclName() << Param->getType() << Arg->getType()
5013 << Arg->getSourceRange();
5014 Diag(Param->getLocation(), diag::note_template_param_here);
5015 return ExprError();
5016 }
5017 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
5018 // an error. The error message normally references the parameter
5019 // declaration, but here we'll pass the argument location because that's
5020 // where the parameter type is deduced.
5021 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
5022 if (ParamType.isNull()) {
5023 Diag(Param->getLocation(), diag::note_template_param_here);
5024 return ExprError();
5025 }
5026 }
5027
5028 // If either the parameter has a dependent type or the argument is
5029 // type-dependent, there's nothing we can check now.
5030 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
5031 // FIXME: Produce a cloned, canonical expression?
5032 Converted = TemplateArgument(Arg);
5033 return Arg;
5034 }
5035
5036 // We should have already dropped all cv-qualifiers by now.
5037 assert(!ParamType.hasQualifiers() &&((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5038, __PRETTY_FUNCTION__))
5038 "non-type template parameter type cannot be qualified")((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5038, __PRETTY_FUNCTION__))
;
5039
5040 if (CTAK == CTAK_Deduced &&
5041 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
5042 // C++ [temp.deduct.type]p17:
5043 // If, in the declaration of a function template with a non-type
5044 // template-parameter, the non-type template-parameter is used
5045 // in an expression in the function parameter-list and, if the
5046 // corresponding template-argument is deduced, the
5047 // template-argument type shall match the type of the
5048 // template-parameter exactly, except that a template-argument
5049 // deduced from an array bound may be of any integral type.
5050 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
5051 << Arg->getType().getUnqualifiedType()
5052 << ParamType.getUnqualifiedType();
5053 Diag(Param->getLocation(), diag::note_template_param_here);
5054 return ExprError();
5055 }
5056
5057 if (getLangOpts().CPlusPlus1z) {
5058 // FIXME: We can do some limited checking for a value-dependent but not
5059 // type-dependent argument.
5060 if (Arg->isValueDependent()) {
5061 Converted = TemplateArgument(Arg);
5062 return Arg;
5063 }
5064
5065 // C++1z [temp.arg.nontype]p1:
5066 // A template-argument for a non-type template parameter shall be
5067 // a converted constant expression of the type of the template-parameter.
5068 APValue Value;
5069 ExprResult ArgResult = CheckConvertedConstantExpression(
5070 Arg, ParamType, Value, CCEK_TemplateArg);
5071 if (ArgResult.isInvalid())
5072 return ExprError();
5073
5074 QualType CanonParamType = Context.getCanonicalType(ParamType);
5075
5076 // Convert the APValue to a TemplateArgument.
5077 switch (Value.getKind()) {
5078 case APValue::Uninitialized:
5079 assert(ParamType->isNullPtrType())((ParamType->isNullPtrType()) ? static_cast<void> (0
) : __assert_fail ("ParamType->isNullPtrType()", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5079, __PRETTY_FUNCTION__))
;
5080 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
5081 break;
5082 case APValue::Int:
5083 assert(ParamType->isIntegralOrEnumerationType())((ParamType->isIntegralOrEnumerationType()) ? static_cast<
void> (0) : __assert_fail ("ParamType->isIntegralOrEnumerationType()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5083, __PRETTY_FUNCTION__))
;
5084 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
5085 break;
5086 case APValue::MemberPointer: {
5087 assert(ParamType->isMemberPointerType())((ParamType->isMemberPointerType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isMemberPointerType()", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5087, __PRETTY_FUNCTION__))
;
5088
5089 // FIXME: We need TemplateArgument representation and mangling for these.
5090 if (!Value.getMemberPointerPath().empty()) {
5091 Diag(Arg->getLocStart(),
5092 diag::err_template_arg_member_ptr_base_derived_not_supported)
5093 << Value.getMemberPointerDecl() << ParamType
5094 << Arg->getSourceRange();
5095 return ExprError();
5096 }
5097
5098 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
5099 Converted = VD ? TemplateArgument(VD, CanonParamType)
5100 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
5101 break;
5102 }
5103 case APValue::LValue: {
5104 // For a non-type template-parameter of pointer or reference type,
5105 // the value of the constant expression shall not refer to
5106 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5107, __PRETTY_FUNCTION__))
5107 ParamType->isNullPtrType())((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5107, __PRETTY_FUNCTION__))
;
5108 // -- a temporary object
5109 // -- a string literal
5110 // -- the result of a typeid expression, or
5111 // -- a predefind __func__ variable
5112 if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
5113 if (isa<CXXUuidofExpr>(E)) {
5114 Converted = TemplateArgument(const_cast<Expr*>(E));
5115 break;
5116 }
5117 Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5118 << Arg->getSourceRange();
5119 return ExprError();
5120 }
5121 auto *VD = const_cast<ValueDecl *>(
5122 Value.getLValueBase().dyn_cast<const ValueDecl *>());
5123 // -- a subobject
5124 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
5125 VD && VD->getType()->isArrayType() &&
5126 Value.getLValuePath()[0].ArrayIndex == 0 &&
5127 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
5128 // Per defect report (no number yet):
5129 // ... other than a pointer to the first element of a complete array
5130 // object.
5131 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
5132 Value.isLValueOnePastTheEnd()) {
5133 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
5134 << Value.getAsString(Context, ParamType);
5135 return ExprError();
5136 }
5137 assert((VD || !ParamType->isReferenceType()) &&(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5138, __PRETTY_FUNCTION__))
5138 "null reference should not be a constant expression")(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5138, __PRETTY_FUNCTION__))
;
5139 assert((!VD || !ParamType->isNullPtrType()) &&(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5140, __PRETTY_FUNCTION__))
5140 "non-null value of type nullptr_t?")(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5140, __PRETTY_FUNCTION__))
;
5141 Converted = VD ? TemplateArgument(VD, CanonParamType)
5142 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
5143 break;
5144 }
5145 case APValue::AddrLabelDiff:
5146 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
5147 case APValue::Float:
5148 case APValue::ComplexInt:
5149 case APValue::ComplexFloat:
5150 case APValue::Vector:
5151 case APValue::Array:
5152 case APValue::Struct:
5153 case APValue::Union:
5154 llvm_unreachable("invalid kind for template argument")::llvm::llvm_unreachable_internal("invalid kind for template argument"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5154)
;
5155 }
5156
5157 return ArgResult.get();
5158 }
5159
5160 // C++ [temp.arg.nontype]p5:
5161 // The following conversions are performed on each expression used
5162 // as a non-type template-argument. If a non-type
5163 // template-argument cannot be converted to the type of the
5164 // corresponding template-parameter then the program is
5165 // ill-formed.
5166 if (ParamType->isIntegralOrEnumerationType()) {
5167 // C++11:
5168 // -- for a non-type template-parameter of integral or
5169 // enumeration type, conversions permitted in a converted
5170 // constant expression are applied.
5171 //
5172 // C++98:
5173 // -- for a non-type template-parameter of integral or
5174 // enumeration type, integral promotions (4.5) and integral
5175 // conversions (4.7) are applied.
5176
5177 if (getLangOpts().CPlusPlus11) {
5178 // We can't check arbitrary value-dependent arguments.
5179 // FIXME: If there's no viable conversion to the template parameter type,
5180 // we should be able to diagnose that prior to instantiation.
5181 if (Arg->isValueDependent()) {
5182 Converted = TemplateArgument(Arg);
5183 return Arg;
5184 }
5185
5186 // C++ [temp.arg.nontype]p1:
5187 // A template-argument for a non-type, non-template template-parameter
5188 // shall be one of:
5189 //
5190 // -- for a non-type template-parameter of integral or enumeration
5191 // type, a converted constant expression of the type of the
5192 // template-parameter; or
5193 llvm::APSInt Value;
5194 ExprResult ArgResult =
5195 CheckConvertedConstantExpression(Arg, ParamType, Value,
5196 CCEK_TemplateArg);
5197 if (ArgResult.isInvalid())
5198 return ExprError();
5199
5200 // Widen the argument value to sizeof(parameter type). This is almost
5201 // always a no-op, except when the parameter type is bool. In
5202 // that case, this may extend the argument from 1 bit to 8 bits.
5203 QualType IntegerType = ParamType;
5204 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5205 IntegerType = Enum->getDecl()->getIntegerType();
5206 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
5207
5208 Converted = TemplateArgument(Context, Value,
5209 Context.getCanonicalType(ParamType));
5210 return ArgResult;
5211 }
5212
5213 ExprResult ArgResult = DefaultLvalueConversion(Arg);
5214 if (ArgResult.isInvalid())
5215 return ExprError();
5216 Arg = ArgResult.get();
5217
5218 QualType ArgType = Arg->getType();
5219
5220 // C++ [temp.arg.nontype]p1:
5221 // A template-argument for a non-type, non-template
5222 // template-parameter shall be one of:
5223 //
5224 // -- an integral constant-expression of integral or enumeration
5225 // type; or
5226 // -- the name of a non-type template-parameter; or
5227 SourceLocation NonConstantLoc;
5228 llvm::APSInt Value;
5229 if (!ArgType->isIntegralOrEnumerationType()) {
5230 Diag(Arg->getLocStart(),
5231 diag::err_template_arg_not_integral_or_enumeral)
5232 << ArgType << Arg->getSourceRange();
5233 Diag(Param->getLocation(), diag::note_template_param_here);
5234 return ExprError();
5235 } else if (!Arg->isValueDependent()) {
5236 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
5237 QualType T;
5238
5239 public:
5240 TmplArgICEDiagnoser(QualType T) : T(T) { }
5241
5242 void diagnoseNotICE(Sema &S, SourceLocation Loc,
5243 SourceRange SR) override {
5244 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
5245 }
5246 } Diagnoser(ArgType);
5247
5248 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
5249 false).get();
5250 if (!Arg)
5251 return ExprError();
5252 }
5253
5254 // From here on out, all we care about is the unqualified form
5255 // of the argument type.
5256 ArgType = ArgType.getUnqualifiedType();
5257
5258 // Try to convert the argument to the parameter's type.
5259 if (Context.hasSameType(ParamType, ArgType)) {
5260 // Okay: no conversion necessary
5261 } else if (ParamType->isBooleanType()) {
5262 // This is an integral-to-boolean conversion.
5263 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
5264 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
5265 !ParamType->isEnumeralType()) {
5266 // This is an integral promotion or conversion.
5267 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
5268 } else {
5269 // We can't perform this conversion.
5270 Diag(Arg->getLocStart(),
5271 diag::err_template_arg_not_convertible)
5272 << Arg->getType() << ParamType << Arg->getSourceRange();
5273 Diag(Param->getLocation(), diag::note_template_param_here);
5274 return ExprError();
5275 }
5276
5277 // Add the value of this argument to the list of converted
5278 // arguments. We use the bitwidth and signedness of the template
5279 // parameter.
5280 if (Arg->isValueDependent()) {
5281 // The argument is value-dependent. Create a new
5282 // TemplateArgument with the converted expression.
5283 Converted = TemplateArgument(Arg);
5284 return Arg;
5285 }
5286
5287 QualType IntegerType = Context.getCanonicalType(ParamType);
5288 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5289 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
5290
5291 if (ParamType->isBooleanType()) {
5292 // Value must be zero or one.
5293 Value = Value != 0;
5294 unsigned AllowedBits = Context.getTypeSize(IntegerType);
5295 if (Value.getBitWidth() != AllowedBits)
5296 Value = Value.extOrTrunc(AllowedBits);
5297 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5298 } else {
5299 llvm::APSInt OldValue = Value;
5300
5301 // Coerce the template argument's value to the value it will have
5302 // based on the template parameter's type.
5303 unsigned AllowedBits = Context.getTypeSize(IntegerType);
5304 if (Value.getBitWidth() != AllowedBits)
5305 Value = Value.extOrTrunc(AllowedBits);
5306 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5307
5308 // Complain if an unsigned parameter received a negative value.
5309 if (IntegerType->isUnsignedIntegerOrEnumerationType()
5310 && (OldValue.isSigned() && OldValue.isNegative())) {
5311 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
5312 << OldValue.toString(10) << Value.toString(10) << Param->getType()
5313 << Arg->getSourceRange();
5314 Diag(Param->getLocation(), diag::note_template_param_here);
5315 }
5316
5317 // Complain if we overflowed the template parameter's type.
5318 unsigned RequiredBits;
5319 if (IntegerType->isUnsignedIntegerOrEnumerationType())
5320 RequiredBits = OldValue.getActiveBits();
5321 else if (OldValue.isUnsigned())
5322 RequiredBits = OldValue.getActiveBits() + 1;
5323 else
5324 RequiredBits = OldValue.getMinSignedBits();
5325 if (RequiredBits > AllowedBits) {
5326 Diag(Arg->getLocStart(),
5327 diag::warn_template_arg_too_large)
5328 << OldValue.toString(10) << Value.toString(10) << Param->getType()
5329 << Arg->getSourceRange();
5330 Diag(Param->getLocation(), diag::note_template_param_here);
5331 }
5332 }
5333
5334 Converted = TemplateArgument(Context, Value,
5335 ParamType->isEnumeralType()
5336 ? Context.getCanonicalType(ParamType)
5337 : IntegerType);
5338 return Arg;
5339 }
5340
5341 QualType ArgType = Arg->getType();
5342 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
5343
5344 // Handle pointer-to-function, reference-to-function, and
5345 // pointer-to-member-function all in (roughly) the same way.
5346 if (// -- For a non-type template-parameter of type pointer to
5347 // function, only the function-to-pointer conversion (4.3) is
5348 // applied. If the template-argument represents a set of
5349 // overloaded functions (or a pointer to such), the matching
5350 // function is selected from the set (13.4).
5351 (ParamType->isPointerType() &&
5352 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
5353 // -- For a non-type template-parameter of type reference to
5354 // function, no conversions apply. If the template-argument
5355 // represents a set of overloaded functions, the matching
5356 // function is selected from the set (13.4).
5357 (ParamType->isReferenceType() &&
5358 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
5359 // -- For a non-type template-parameter of type pointer to
5360 // member function, no conversions apply. If the
5361 // template-argument represents a set of overloaded member
5362 // functions, the matching member function is selected from
5363 // the set (13.4).
5364 (ParamType->isMemberPointerType() &&
5365 ParamType->getAs<MemberPointerType>()->getPointeeType()
5366 ->isFunctionType())) {
5367
5368 if (Arg->getType() == Context.OverloadTy) {
5369 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
5370 true,
5371 FoundResult)) {
5372 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5373 return ExprError();
5374
5375 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5376 ArgType = Arg->getType();
5377 } else
5378 return ExprError();
5379 }
5380
5381 if (!ParamType->isMemberPointerType()) {
5382 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5383 ParamType,
5384 Arg, Converted))
5385 return ExprError();
5386 return Arg;
5387 }
5388
5389 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5390 Converted))
5391 return ExprError();
5392 return Arg;
5393 }
5394
5395 if (ParamType->isPointerType()) {
5396 // -- for a non-type template-parameter of type pointer to
5397 // object, qualification conversions (4.4) and the
5398 // array-to-pointer conversion (4.2) are applied.
5399 // C++0x also allows a value of std::nullptr_t.
5400 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5401, __PRETTY_FUNCTION__))
5401 "Only object pointers allowed here")((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5401, __PRETTY_FUNCTION__))
;
5402
5403 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5404 ParamType,
5405 Arg, Converted))
5406 return ExprError();
5407 return Arg;
5408 }
5409
5410 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
5411 // -- For a non-type template-parameter of type reference to
5412 // object, no conversions apply. The type referred to by the
5413 // reference may be more cv-qualified than the (otherwise
5414 // identical) type of the template-argument. The
5415 // template-parameter is bound directly to the
5416 // template-argument, which must be an lvalue.
5417 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5418, __PRETTY_FUNCTION__))
5418 "Only object references allowed here")((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5418, __PRETTY_FUNCTION__))
;
5419
5420 if (Arg->getType() == Context.OverloadTy) {
5421 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
5422 ParamRefType->getPointeeType(),
5423 true,
5424 FoundResult)) {
5425 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5426 return ExprError();
5427
5428 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5429 ArgType = Arg->getType();
5430 } else
5431 return ExprError();
5432 }
5433
5434 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5435 ParamType,
5436 Arg, Converted))
5437 return ExprError();
5438 return Arg;
5439 }
5440
5441 // Deal with parameters of type std::nullptr_t.
5442 if (ParamType->isNullPtrType()) {
5443 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5444 Converted = TemplateArgument(Arg);
5445 return Arg;
5446 }
5447
5448 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
5449 case NPV_NotNullPointer:
5450 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
5451 << Arg->getType() << ParamType;
5452 Diag(Param->getLocation(), diag::note_template_param_here);
5453 return ExprError();
5454
5455 case NPV_Error:
5456 return ExprError();
5457
5458 case NPV_NullPointer:
5459 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5460 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
5461 /*isNullPtr*/true);
5462 return Arg;
5463 }
5464 }
5465
5466 // -- For a non-type template-parameter of type pointer to data
5467 // member, qualification conversions (4.4) are applied.
5468 assert(ParamType->isMemberPointerType() && "Only pointers to members remain")((ParamType->isMemberPointerType() && "Only pointers to members remain"
) ? static_cast<void> (0) : __assert_fail ("ParamType->isMemberPointerType() && \"Only pointers to members remain\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5468, __PRETTY_FUNCTION__))
;
5469
5470 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5471 Converted))
5472 return ExprError();
5473 return Arg;
5474}
5475
5476/// \brief Check a template argument against its corresponding
5477/// template template parameter.
5478///
5479/// This routine implements the semantics of C++ [temp.arg.template].
5480/// It returns true if an error occurred, and false otherwise.
5481bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
5482 TemplateArgumentLoc &Arg,
5483 unsigned ArgumentPackIndex) {
5484 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5485 TemplateDecl *Template = Name.getAsTemplateDecl();
5486 if (!Template) {
5487 // Any dependent template name is fine.
5488 assert(Name.isDependent() && "Non-dependent template isn't a declaration?")((Name.isDependent() && "Non-dependent template isn't a declaration?"
) ? static_cast<void> (0) : __assert_fail ("Name.isDependent() && \"Non-dependent template isn't a declaration?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5488, __PRETTY_FUNCTION__))
;
5489 return false;
5490 }
5491
5492 // C++0x [temp.arg.template]p1:
5493 // A template-argument for a template template-parameter shall be
5494 // the name of a class template or an alias template, expressed as an
5495 // id-expression. When the template-argument names a class template, only
5496 // primary class templates are considered when matching the
5497 // template template argument with the corresponding parameter;
5498 // partial specializations are not considered even if their
5499 // parameter lists match that of the template template parameter.
5500 //
5501 // Note that we also allow template template parameters here, which
5502 // will happen when we are dealing with, e.g., class template
5503 // partial specializations.
5504 if (!isa<ClassTemplateDecl>(Template) &&
5505 !isa<TemplateTemplateParmDecl>(Template) &&
5506 !isa<TypeAliasTemplateDecl>(Template) &&
5507 !isa<BuiltinTemplateDecl>(Template)) {
5508 assert(isa<FunctionTemplateDecl>(Template) &&((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5509, __PRETTY_FUNCTION__))
5509 "Only function templates are possible here")((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5509, __PRETTY_FUNCTION__))
;
5510 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
5511 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5512 << Template;
5513 }
5514
5515 TemplateParameterList *Params = Param->getTemplateParameters();
5516 if (Param->isExpandedParameterPack())
5517 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5518
5519 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5520 Params,
5521 true,
5522 TPL_TemplateTemplateArgumentMatch,
5523 Arg.getLocation());
5524}
5525
5526/// \brief Given a non-type template argument that refers to a
5527/// declaration and the type of its corresponding non-type template
5528/// parameter, produce an expression that properly refers to that
5529/// declaration.
5530ExprResult
5531Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5532 QualType ParamType,
5533 SourceLocation Loc) {
5534 // C++ [temp.param]p8:
5535 //
5536 // A non-type template-parameter of type "array of T" or
5537 // "function returning T" is adjusted to be of type "pointer to
5538 // T" or "pointer to function returning T", respectively.
5539 if (ParamType->isArrayType())
5540 ParamType = Context.getArrayDecayedType(ParamType);
5541 else if (ParamType->isFunctionType())
5542 ParamType = Context.getPointerType(ParamType);
5543
5544 // For a NULL non-type template argument, return nullptr casted to the
5545 // parameter's type.
5546 if (Arg.getKind() == TemplateArgument::NullPtr) {
5547 return ImpCastExprToType(
5548 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5549 ParamType,
5550 ParamType->getAs<MemberPointerType>()
5551 ? CK_NullToMemberPointer
5552 : CK_NullToPointer);
5553 }
5554 assert(Arg.getKind() == TemplateArgument::Declaration &&((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5555, __PRETTY_FUNCTION__))
5555 "Only declaration template arguments permitted here")((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5555, __PRETTY_FUNCTION__))
;
5556
5557 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5558
5559 if (VD->getDeclContext()->isRecord() &&
5560 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
5561 isa<IndirectFieldDecl>(VD))) {
5562 // If the value is a class member, we might have a pointer-to-member.
5563 // Determine whether the non-type template template parameter is of
5564 // pointer-to-member type. If so, we need to build an appropriate
5565 // expression for a pointer-to-member, since a "normal" DeclRefExpr
5566 // would refer to the member itself.
5567 if (ParamType->isMemberPointerType()) {
5568 QualType ClassType
5569 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5570 NestedNameSpecifier *Qualifier
5571 = NestedNameSpecifier::Create(Context, nullptr, false,
5572 ClassType.getTypePtr());
5573 CXXScopeSpec SS;
5574 SS.MakeTrivial(Context, Qualifier, Loc);
5575
5576 // The actual value-ness of this is unimportant, but for
5577 // internal consistency's sake, references to instance methods
5578 // are r-values.
5579 ExprValueKind VK = VK_LValue;
5580 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5581 VK = VK_RValue;
5582
5583 ExprResult RefExpr = BuildDeclRefExpr(VD,
5584 VD->getType().getNonReferenceType(),
5585 VK,
5586 Loc,
5587 &SS);
5588 if (RefExpr.isInvalid())
5589 return ExprError();
5590
5591 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5592
5593 // We might need to perform a trailing qualification conversion, since
5594 // the element type on the parameter could be more qualified than the
5595 // element type in the expression we constructed.
5596 bool ObjCLifetimeConversion;
5597 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5598 ParamType.getUnqualifiedType(), false,
5599 ObjCLifetimeConversion))
5600 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
5601
5602 assert(!RefExpr.isInvalid() &&((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5604, __PRETTY_FUNCTION__))
5603 Context.hasSameType(((Expr*) RefExpr.get())->getType(),((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5604, __PRETTY_FUNCTION__))
5604 ParamType.getUnqualifiedType()))((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5604, __PRETTY_FUNCTION__))
;
5605 return RefExpr;
5606 }
5607 }
5608
5609 QualType T = VD->getType().getNonReferenceType();
5610
5611 if (ParamType->isPointerType()) {
5612 // When the non-type template parameter is a pointer, take the
5613 // address of the declaration.
5614 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5615 if (RefExpr.isInvalid())
5616 return ExprError();
5617
5618 if (T->isFunctionType() || T->isArrayType()) {
5619 // Decay functions and arrays.
5620 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
5621 if (RefExpr.isInvalid())
5622 return ExprError();
5623
5624 return RefExpr;
5625 }
5626
5627 // Take the address of everything else
5628 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5629 }
5630
5631 ExprValueKind VK = VK_RValue;
5632
5633 // If the non-type template parameter has reference type, qualify the
5634 // resulting declaration reference with the extra qualifiers on the
5635 // type that the reference refers to.
5636 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5637 VK = VK_LValue;
5638 T = Context.getQualifiedType(T,
5639 TargetRef->getPointeeType().getQualifiers());
5640 } else if (isa<FunctionDecl>(VD)) {
5641 // References to functions are always lvalues.
5642 VK = VK_LValue;
5643 }
5644
5645 return BuildDeclRefExpr(VD, T, VK, Loc);
5646}
5647
5648/// \brief Construct a new expression that refers to the given
5649/// integral template argument with the given source-location
5650/// information.
5651///
5652/// This routine takes care of the mapping from an integral template
5653/// argument (which may have any integral type) to the appropriate
5654/// literal value.
5655ExprResult
5656Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5657 SourceLocation Loc) {
5658 assert(Arg.getKind() == TemplateArgument::Integral &&((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5659, __PRETTY_FUNCTION__))
5659 "Operation is only valid for integral template arguments")((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5659, __PRETTY_FUNCTION__))
;
5660 QualType OrigT = Arg.getIntegralType();
5661
5662 // If this is an enum type that we're instantiating, we need to use an integer
5663 // type the same size as the enumerator. We don't want to build an
5664 // IntegerLiteral with enum type. The integer type of an enum type can be of
5665 // any integral type with C++11 enum classes, make sure we create the right
5666 // type of literal for it.
5667 QualType T = OrigT;
5668 if (const EnumType *ET = OrigT->getAs<EnumType>())
5669 T = ET->getDecl()->getIntegerType();
5670
5671 Expr *E;
5672 if (T->isAnyCharacterType()) {
5673 // This does not need to handle u8 character literals because those are
5674 // of type char, and so can also be covered by an ASCII character literal.
5675 CharacterLiteral::CharacterKind Kind;
5676 if (T->isWideCharType())
5677 Kind = CharacterLiteral::Wide;
5678 else if (T->isChar16Type())
5679 Kind = CharacterLiteral::UTF16;
5680 else if (T->isChar32Type())
5681 Kind = CharacterLiteral::UTF32;
5682 else
5683 Kind = CharacterLiteral::Ascii;
5684
5685 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5686 Kind, T, Loc);
5687 } else if (T->isBooleanType()) {
5688 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5689 T, Loc);
5690 } else if (T->isNullPtrType()) {
5691 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5692 } else {
5693 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5694 }
5695
5696 if (OrigT->isEnumeralType()) {
5697 // FIXME: This is a hack. We need a better way to handle substituted
5698 // non-type template parameters.
5699 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
5700 nullptr,
5701 Context.getTrivialTypeSourceInfo(OrigT, Loc),
5702 Loc, Loc);
5703 }
5704
5705 return E;
5706}
5707
5708/// \brief Match two template parameters within template parameter lists.
5709static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5710 bool Complain,
5711 Sema::TemplateParameterListEqualKind Kind,
5712 SourceLocation TemplateArgLoc) {
5713 // Check the actual kind (type, non-type, template).
5714 if (Old->getKind() != New->getKind()) {
5715 if (Complain) {
5716 unsigned NextDiag = diag::err_template_param_different_kind;
5717 if (TemplateArgLoc.isValid()) {
5718 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5719 NextDiag = diag::note_template_param_different_kind;
5720 }
5721 S.Diag(New->getLocation(), NextDiag)
5722 << (Kind != Sema::TPL_TemplateMatch);
5723 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5724 << (Kind != Sema::TPL_TemplateMatch);
5725 }
5726
5727 return false;
5728 }
5729
5730 // Check that both are parameter packs are neither are parameter packs.
5731 // However, if we are matching a template template argument to a
5732 // template template parameter, the template template parameter can have
5733 // a parameter pack where the template template argument does not.
5734 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5735 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5736 Old->isTemplateParameterPack())) {
5737 if (Complain) {
5738 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5739 if (TemplateArgLoc.isValid()) {
5740 S.Diag(TemplateArgLoc,
5741 diag::err_template_arg_template_params_mismatch);
5742 NextDiag = diag::note_template_parameter_pack_non_pack;
5743 }
5744
5745 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5746 : isa<NonTypeTemplateParmDecl>(New)? 1
5747 : 2;
5748 S.Diag(New->getLocation(), NextDiag)
5749 << ParamKind << New->isParameterPack();
5750 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5751 << ParamKind << Old->isParameterPack();
5752 }
5753
5754 return false;
5755 }
5756
5757 // For non-type template parameters, check the type of the parameter.
5758 if (NonTypeTemplateParmDecl *OldNTTP
5759 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5760 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5761
5762 // If we are matching a template template argument to a template
5763 // template parameter and one of the non-type template parameter types
5764 // is dependent, then we must wait until template instantiation time
5765 // to actually compare the arguments.
5766 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5767 (OldNTTP->getType()->isDependentType() ||
5768 NewNTTP->getType()->isDependentType()))
5769 return true;
5770
5771 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5772 if (Complain) {
5773 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5774 if (TemplateArgLoc.isValid()) {
5775 S.Diag(TemplateArgLoc,
5776 diag::err_template_arg_template_params_mismatch);
5777 NextDiag = diag::note_template_nontype_parm_different_type;
5778 }
5779 S.Diag(NewNTTP->getLocation(), NextDiag)
5780 << NewNTTP->getType()
5781 << (Kind != Sema::TPL_TemplateMatch);
5782 S.Diag(OldNTTP->getLocation(),
5783 diag::note_template_nontype_parm_prev_declaration)
5784 << OldNTTP->getType();
5785 }
5786
5787 return false;
5788 }
5789
5790 return true;
5791 }
5792
5793 // For template template parameters, check the template parameter types.
5794 // The template parameter lists of template template
5795 // parameters must agree.
5796 if (TemplateTemplateParmDecl *OldTTP
5797 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5798 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5799 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5800 OldTTP->getTemplateParameters(),
5801 Complain,
5802 (Kind == Sema::TPL_TemplateMatch
5803 ? Sema::TPL_TemplateTemplateParmMatch
5804 : Kind),
5805 TemplateArgLoc);
5806 }
5807
5808 return true;
5809}
5810
5811/// \brief Diagnose a known arity mismatch when comparing template argument
5812/// lists.
5813static
5814void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5815 TemplateParameterList *New,
5816 TemplateParameterList *Old,
5817 Sema::TemplateParameterListEqualKind Kind,
5818 SourceLocation TemplateArgLoc) {
5819 unsigned NextDiag = diag::err_template_param_list_different_arity;
5820 if (TemplateArgLoc.isValid()) {
5821 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5822 NextDiag = diag::note_template_param_list_different_arity;
5823 }
5824 S.Diag(New->getTemplateLoc(), NextDiag)
5825 << (New->size() > Old->size())
5826 << (Kind != Sema::TPL_TemplateMatch)
5827 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5828 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5829 << (Kind != Sema::TPL_TemplateMatch)
5830 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5831}
5832
5833/// \brief Determine whether the given template parameter lists are
5834/// equivalent.
5835///
5836/// \param New The new template parameter list, typically written in the
5837/// source code as part of a new template declaration.
5838///
5839/// \param Old The old template parameter list, typically found via
5840/// name lookup of the template declared with this template parameter
5841/// list.
5842///
5843/// \param Complain If true, this routine will produce a diagnostic if
5844/// the template parameter lists are not equivalent.
5845///
5846/// \param Kind describes how we are to match the template parameter lists.
5847///
5848/// \param TemplateArgLoc If this source location is valid, then we
5849/// are actually checking the template parameter list of a template
5850/// argument (New) against the template parameter list of its
5851/// corresponding template template parameter (Old). We produce
5852/// slightly different diagnostics in this scenario.
5853///
5854/// \returns True if the template parameter lists are equal, false
5855/// otherwise.
5856bool
5857Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5858 TemplateParameterList *Old,
5859 bool Complain,
5860 TemplateParameterListEqualKind Kind,
5861 SourceLocation TemplateArgLoc) {
5862 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5863 if (Complain)
5864 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5865 TemplateArgLoc);
5866
5867 return false;
5868 }
5869
5870 // C++0x [temp.arg.template]p3:
5871 // A template-argument matches a template template-parameter (call it P)
5872 // when each of the template parameters in the template-parameter-list of
5873 // the template-argument's corresponding class template or alias template
5874 // (call it A) matches the corresponding template parameter in the
5875 // template-parameter-list of P. [...]
5876 TemplateParameterList::iterator NewParm = New->begin();
5877 TemplateParameterList::iterator NewParmEnd = New->end();
5878 for (TemplateParameterList::iterator OldParm = Old->begin(),
5879 OldParmEnd = Old->end();
5880 OldParm != OldParmEnd; ++OldParm) {
5881 if (Kind != TPL_TemplateTemplateArgumentMatch ||
5882 !(*OldParm)->isTemplateParameterPack()) {
5883 if (NewParm == NewParmEnd) {
5884 if (Complain)
5885 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5886 TemplateArgLoc);
5887
5888 return false;
5889 }
5890
5891 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5892 Kind, TemplateArgLoc))
5893 return false;
5894
5895 ++NewParm;
5896 continue;
5897 }
5898
5899 // C++0x [temp.arg.template]p3:
5900 // [...] When P's template- parameter-list contains a template parameter
5901 // pack (14.5.3), the template parameter pack will match zero or more
5902 // template parameters or template parameter packs in the
5903 // template-parameter-list of A with the same type and form as the
5904 // template parameter pack in P (ignoring whether those template
5905 // parameters are template parameter packs).
5906 for (; NewParm != NewParmEnd; ++NewParm) {
5907 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5908 Kind, TemplateArgLoc))
5909 return false;
5910 }
5911 }
5912
5913 // Make sure we exhausted all of the arguments.
5914 if (NewParm != NewParmEnd) {
5915 if (Complain)
5916 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5917 TemplateArgLoc);
5918
5919 return false;
5920 }
5921
5922 return true;
5923}
5924
5925/// \brief Check whether a template can be declared within this scope.
5926///
5927/// If the template declaration is valid in this scope, returns
5928/// false. Otherwise, issues a diagnostic and returns true.
5929bool
5930Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5931 if (!S)
2
Assuming 'S' is non-null
3
Taking false branch
5932 return false;
5933
5934 // Find the nearest enclosing declaration scope.
5935 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4
Assuming the condition is false
6
Loop condition is false. Execution continues on line 5941
5936 (S->getFlags() & Scope::TemplateParamScope) != 0)
5
Assuming the condition is false
5937 S = S->getParent();
5938
5939 // C++ [temp]p4:
5940 // A template [...] shall not have C linkage.
5941 DeclContext *Ctx = S->getEntity();
7
Calling 'Scope::getEntity'
8
Returning from 'Scope::getEntity'
9
'Ctx' initialized here
5942 if (Ctx && Ctx->isExternCContext())
10
Assuming 'Ctx' is null
11
Assuming pointer value is null
5943 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5944 << TemplateParams->getSourceRange();
5945 Ctx = Ctx->getRedeclContext();
12
Called C++ object pointer is null
5946
5947 // C++ [temp]p2:
5948 // A template-declaration can appear only as a namespace scope or
5949 // class scope declaration.
5950 if (Ctx) {
5951 if (Ctx->isFileContext())
5952 return false;
5953 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
5954 // C++ [temp.mem]p2:
5955 // A local class shall not have member templates.
5956 if (RD->isLocalClass())
5957 return Diag(TemplateParams->getTemplateLoc(),
5958 diag::err_template_inside_local_class)
5959 << TemplateParams->getSourceRange();
5960 else
5961 return false;
5962 }
5963 }
5964
5965 return Diag(TemplateParams->getTemplateLoc(),
5966 diag::err_template_outside_namespace_or_class_scope)
5967 << TemplateParams->getSourceRange();
5968}
5969
5970/// \brief Determine what kind of template specialization the given declaration
5971/// is.
5972static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5973 if (!D)
5974 return TSK_Undeclared;
5975
5976 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5977 return Record->getTemplateSpecializationKind();
5978 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5979 return Function->getTemplateSpecializationKind();
5980 if (VarDecl *Var = dyn_cast<VarDecl>(D))
5981 return Var->getTemplateSpecializationKind();
5982
5983 return TSK_Undeclared;
5984}
5985
5986/// \brief Check whether a specialization is well-formed in the current
5987/// context.
5988///
5989/// This routine determines whether a template specialization can be declared
5990/// in the current context (C++ [temp.expl.spec]p2).
5991///
5992/// \param S the semantic analysis object for which this check is being
5993/// performed.
5994///
5995/// \param Specialized the entity being specialized or instantiated, which
5996/// may be a kind of template (class template, function template, etc.) or
5997/// a member of a class template (member function, static data member,
5998/// member class).
5999///
6000/// \param PrevDecl the previous declaration of this entity, if any.
6001///
6002/// \param Loc the location of the explicit specialization or instantiation of
6003/// this entity.
6004///
6005/// \param IsPartialSpecialization whether this is a partial specialization of
6006/// a class template.
6007///
6008/// \returns true if there was an error that we cannot recover from, false
6009/// otherwise.
6010static bool CheckTemplateSpecializationScope(Sema &S,
6011 NamedDecl *Specialized,
6012 NamedDecl *PrevDecl,
6013 SourceLocation Loc,
6014 bool IsPartialSpecialization) {
6015 // Keep these "kind" numbers in sync with the %select statements in the
6016 // various diagnostics emitted by this routine.
6017 int EntityKind = 0;
6018 if (isa<ClassTemplateDecl>(Specialized))
6019 EntityKind = IsPartialSpecialization? 1 : 0;
6020 else if (isa<VarTemplateDecl>(Specialized))
6021 EntityKind = IsPartialSpecialization ? 3 : 2;
6022 else if (isa<FunctionTemplateDecl>(Specialized))
6023 EntityKind = 4;
6024 else if (isa<CXXMethodDecl>(Specialized))
6025 EntityKind = 5;
6026 else if (isa<VarDecl>(Specialized))
6027 EntityKind = 6;
6028 else if (isa<RecordDecl>(Specialized))
6029 EntityKind = 7;
6030 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
6031 EntityKind = 8;
6032 else {
6033 S.Diag(Loc, diag::err_template_spec_unknown_kind)
6034 << S.getLangOpts().CPlusPlus11;
6035 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
6036 return true;
6037 }
6038
6039 // C++ [temp.expl.spec]p2:
6040 // An explicit specialization shall be declared in the namespace
6041 // of which the template is a member, or, for member templates, in
6042 // the namespace of which the enclosing class or enclosing class
6043 // template is a member. An explicit specialization of a member
6044 // function, member class or static data member of a class
6045 // template shall be declared in the namespace of which the class
6046 // template is a member. Such a declaration may also be a
6047 // definition. If the declaration is not a definition, the
6048 // specialization may be defined later in the name- space in which
6049 // the explicit specialization was declared, or in a namespace
6050 // that encloses the one in which the explicit specialization was
6051 // declared.
6052 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6053 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
6054 << Specialized;
6055 return true;
6056 }
6057
6058 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
6059 if (S.getLangOpts().MicrosoftExt) {
6060 // Do not warn for class scope explicit specialization during
6061 // instantiation, warning was already emitted during pattern
6062 // semantic analysis.
6063 if (!S.ActiveTemplateInstantiations.size())
6064 S.Diag(Loc, diag::ext_function_specialization_in_class)
6065 << Specialized;
6066 } else {
6067 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
6068 << Specialized;
6069 return true;
6070 }
6071 }
6072
6073 if (S.CurContext->isRecord() &&
6074 !S.CurContext->Equals(Specialized->getDeclContext())) {
6075 // Make sure that we're specializing in the right record context.
6076 // Otherwise, things can go horribly wrong.
6077 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
6078 << Specialized;
6079 return true;
6080 }
6081
6082 // C++ [temp.class.spec]p6:
6083 // A class template partial specialization may be declared or redeclared
6084 // in any namespace scope in which its definition may be defined (14.5.1
6085 // and 14.5.2).
6086 DeclContext *SpecializedContext
6087 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
6088 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
6089
6090 // Make sure that this redeclaration (or definition) occurs in an enclosing
6091 // namespace.
6092 // Note that HandleDeclarator() performs this check for explicit
6093 // specializations of function templates, static data members, and member
6094 // functions, so we skip the check here for those kinds of entities.
6095 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
6096 // Should we refactor that check, so that it occurs later?
6097 if (!DC->Encloses(SpecializedContext) &&
6098 !(isa<FunctionTemplateDecl>(Specialized) ||
6099 isa<FunctionDecl>(Specialized) ||
6100 isa<VarTemplateDecl>(Specialized) ||
6101 isa<VarDecl>(Specialized))) {
6102 if (isa<TranslationUnitDecl>(SpecializedContext))
6103 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
6104 << EntityKind << Specialized;
6105 else if (isa<NamespaceDecl>(SpecializedContext)) {
6106 int Diag = diag::err_template_spec_redecl_out_of_scope;
6107 if (S.getLangOpts().MicrosoftExt)
6108 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
6109 S.Diag(Loc, Diag) << EntityKind << Specialized
6110 << cast<NamedDecl>(SpecializedContext);
6111 } else
6112 llvm_unreachable("unexpected namespace context for specialization")::llvm::llvm_unreachable_internal("unexpected namespace context for specialization"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6112)
;
6113
6114 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
6115 } else if ((!PrevDecl ||
6116 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
6117 getTemplateSpecializationKind(PrevDecl) ==
6118 TSK_ImplicitInstantiation)) {
6119 // C++ [temp.exp.spec]p2:
6120 // An explicit specialization shall be declared in the namespace of which
6121 // the template is a member, or, for member templates, in the namespace
6122 // of which the enclosing class or enclosing class template is a member.
6123 // An explicit specialization of a member function, member class or
6124 // static data member of a class template shall be declared in the
6125 // namespace of which the class template is a member.
6126 //
6127 // C++11 [temp.expl.spec]p2:
6128 // An explicit specialization shall be declared in a namespace enclosing
6129 // the specialized template.
6130 // C++11 [temp.explicit]p3:
6131 // An explicit instantiation shall appear in an enclosing namespace of its
6132 // template.
6133 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
6134 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
6135 if (isa<TranslationUnitDecl>(SpecializedContext)) {
6136 assert(!IsCPlusPlus11Extension &&((!IsCPlusPlus11Extension && "DC encloses TU but isn't in enclosing namespace set"
) ? static_cast<void> (0) : __assert_fail ("!IsCPlusPlus11Extension && \"DC encloses TU but isn't in enclosing namespace set\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6137, __PRETTY_FUNCTION__))
6137 "DC encloses TU but isn't in enclosing namespace set")((!IsCPlusPlus11Extension && "DC encloses TU but isn't in enclosing namespace set"
) ? static_cast<void> (0) : __assert_fail ("!IsCPlusPlus11Extension && \"DC encloses TU but isn't in enclosing namespace set\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6137, __PRETTY_FUNCTION__))
;
6138 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
6139 << EntityKind << Specialized;
6140 } else if (isa<NamespaceDecl>(SpecializedContext)) {
6141 int Diag;
6142 if (!IsCPlusPlus11Extension)
6143 Diag = diag::err_template_spec_decl_out_of_scope;
6144 else if (!S.getLangOpts().CPlusPlus11)
6145 Diag = diag::ext_template_spec_decl_out_of_scope;
6146 else
6147 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
6148 S.Diag(Loc, Diag)
6149 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
6150 }
6151
6152 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
6153 }
6154 }
6155
6156 return false;
6157}
6158
6159static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
6160 if (!E->isInstantiationDependent())
6161 return SourceLocation();
6162 DependencyChecker Checker(Depth);
6163 Checker.TraverseStmt(E);
6164 if (Checker.Match && Checker.MatchLoc.isInvalid())
6165 return E->getSourceRange();
6166 return Checker.MatchLoc;
6167}
6168
6169static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
6170 if (!TL.getType()->isDependentType())
6171 return SourceLocation();
6172 DependencyChecker Checker(Depth);
6173 Checker.TraverseTypeLoc(TL);
6174 if (Checker.Match && Checker.MatchLoc.isInvalid())
6175 return TL.getSourceRange();
6176 return Checker.MatchLoc;
6177}
6178
6179/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
6180/// that checks non-type template partial specialization arguments.
6181static bool CheckNonTypeTemplatePartialSpecializationArgs(
6182 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
6183 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
6184 for (unsigned I = 0; I != NumArgs; ++I) {
6185 if (Args[I].getKind() == TemplateArgument::Pack) {
6186 if (CheckNonTypeTemplatePartialSpecializationArgs(
6187 S, TemplateNameLoc, Param, Args[I].pack_begin(),
6188 Args[I].pack_size(), IsDefaultArgument))
6189 return true;
6190
6191 continue;
6192 }
6193
6194 if (Args[I].getKind() != TemplateArgument::Expression)
6195 continue;
6196
6197 Expr *ArgExpr = Args[I].getAsExpr();
6198
6199 // We can have a pack expansion of any of the bullets below.
6200 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
6201 ArgExpr = Expansion->getPattern();
6202
6203 // Strip off any implicit casts we added as part of type checking.
6204 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
6205 ArgExpr = ICE->getSubExpr();
6206
6207 // C++ [temp.class.spec]p8:
6208 // A non-type argument is non-specialized if it is the name of a
6209 // non-type parameter. All other non-type arguments are
6210 // specialized.
6211 //
6212 // Below, we check the two conditions that only apply to
6213 // specialized non-type arguments, so skip any non-specialized
6214 // arguments.
6215 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
6216 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
6217 continue;
6218
6219 // C++ [temp.class.spec]p9:
6220 // Within the argument list of a class template partial
6221 // specialization, the following restrictions apply:
6222 // -- A partially specialized non-type argument expression
6223 // shall not involve a template parameter of the partial
6224 // specialization except when the argument expression is a
6225 // simple identifier.
6226 SourceRange ParamUseRange =
6227 findTemplateParameter(Param->getDepth(), ArgExpr);
6228 if (ParamUseRange.isValid()) {
6229 if (IsDefaultArgument) {
6230 S.Diag(TemplateNameLoc,
6231 diag::err_dependent_non_type_arg_in_partial_spec);
6232 S.Diag(ParamUseRange.getBegin(),
6233 diag::note_dependent_non_type_default_arg_in_partial_spec)
6234 << ParamUseRange;
6235 } else {
6236 S.Diag(ParamUseRange.getBegin(),
6237 diag::err_dependent_non_type_arg_in_partial_spec)
6238 << ParamUseRange;
6239 }
6240 return true;
6241 }
6242
6243 // -- The type of a template parameter corresponding to a
6244 // specialized non-type argument shall not be dependent on a
6245 // parameter of the specialization.
6246 //
6247 // FIXME: We need to delay this check until instantiation in some cases:
6248 //
6249 // template<template<typename> class X> struct A {
6250 // template<typename T, X<T> N> struct B;
6251 // template<typename T> struct B<T, 0>;
6252 // };
6253 // template<typename> using X = int;
6254 // A<X>::B<int, 0> b;
6255 ParamUseRange = findTemplateParameter(
6256 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
6257 if (ParamUseRange.isValid()) {
6258 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
6259 diag::err_dependent_typed_non_type_arg_in_partial_spec)
6260 << Param->getType() << ParamUseRange;
6261 S.Diag(Param->getLocation(), diag::note_template_param_here)
6262 << (IsDefaultArgument ? ParamUseRange : SourceRange());
6263 return true;
6264 }
6265 }
6266
6267 return false;
6268}
6269
6270/// \brief Check the non-type template arguments of a class template
6271/// partial specialization according to C++ [temp.class.spec]p9.
6272///
6273/// \param TemplateNameLoc the location of the template name.
6274/// \param TemplateParams the template parameters of the primary class
6275/// template.
6276/// \param NumExplicit the number of explicitly-specified template arguments.
6277/// \param TemplateArgs the template arguments of the class template
6278/// partial specialization.
6279///
6280/// \returns \c true if there was an error, \c false otherwise.
6281static bool CheckTemplatePartialSpecializationArgs(
6282 Sema &S, SourceLocation TemplateNameLoc,
6283 TemplateParameterList *TemplateParams, unsigned NumExplicit,
6284 SmallVectorImpl<TemplateArgument> &TemplateArgs) {
6285 const TemplateArgument *ArgList = TemplateArgs.data();
6286
6287 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6288 NonTypeTemplateParmDecl *Param
6289 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
6290 if (!Param)
6291 continue;
6292
6293 if (CheckNonTypeTemplatePartialSpecializationArgs(
6294 S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
6295 return true;
6296 }
6297
6298 return false;
6299}
6300
6301DeclResult
6302Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
6303 TagUseKind TUK,
6304 SourceLocation KWLoc,
6305 SourceLocation ModulePrivateLoc,
6306 TemplateIdAnnotation &TemplateId,
6307 AttributeList *Attr,
6308 MultiTemplateParamsArg
6309 TemplateParameterLists,
6310 SkipBodyInfo *SkipBody) {
6311 assert(TUK != TUK_Reference && "References are not specializations")((TUK != TUK_Reference && "References are not specializations"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"References are not specializations\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6311, __PRETTY_FUNCTION__))
;
6312
6313 CXXScopeSpec &SS = TemplateId.SS;
6314
6315 // NOTE: KWLoc is the location of the tag keyword. This will instead
6316 // store the location of the outermost template keyword in the declaration.
6317 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
6318 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
6319 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
6320 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
6321 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
6322
6323 // Find the class template we're specializing
6324 TemplateName Name = TemplateId.Template.get();
6325 ClassTemplateDecl *ClassTemplate
6326 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
6327
6328 if (!ClassTemplate) {
6329 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
6330 << (Name.getAsTemplateDecl() &&
6331 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
6332 return true;
6333 }
6334
6335 bool isExplicitSpecialization = false;
6336 bool isPartialSpecialization = false;
6337
6338 // Check the validity of the template headers that introduce this
6339 // template.
6340 // FIXME: We probably shouldn't complain about these headers for
6341 // friend declarations.
6342 bool Invalid = false;
6343 TemplateParameterList *TemplateParams =
6344 MatchTemplateParametersToScopeSpecifier(
6345 KWLoc, TemplateNameLoc, SS, &TemplateId,
6346 TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
6347 Invalid);
6348 if (Invalid)
6349 return true;
6350
6351 if (TemplateParams && TemplateParams->size() > 0) {
6352 isPartialSpecialization = true;
6353
6354 if (TUK == TUK_Friend) {
6355 Diag(KWLoc, diag::err_partial_specialization_friend)
6356 << SourceRange(LAngleLoc, RAngleLoc);
6357 return true;
6358 }
6359
6360 // C++ [temp.class.spec]p10:
6361 // The template parameter list of a specialization shall not
6362 // contain default template argument values.
6363 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6364 Decl *Param = TemplateParams->getParam(I);
6365 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
6366 if (TTP->hasDefaultArgument()) {
6367 Diag(TTP->getDefaultArgumentLoc(),
6368 diag::err_default_arg_in_partial_spec);
6369 TTP->removeDefaultArgument();
6370 }
6371 } else if (NonTypeTemplateParmDecl *NTTP
6372 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
6373 if (Expr *DefArg = NTTP->getDefaultArgument()) {
6374 Diag(NTTP->getDefaultArgumentLoc(),
6375 diag::err_default_arg_in_partial_spec)
6376 << DefArg->getSourceRange();
6377 NTTP->removeDefaultArgument();
6378 }
6379 } else {
6380 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
6381 if (TTP->hasDefaultArgument()) {
6382 Diag(TTP->getDefaultArgument().getLocation(),
6383 diag::err_default_arg_in_partial_spec)
6384 << TTP->getDefaultArgument().getSourceRange();
6385 TTP->removeDefaultArgument();
6386 }
6387 }
6388 }
6389 } else if (TemplateParams) {
6390 if (TUK == TUK_Friend)
6391 Diag(KWLoc, diag::err_template_spec_friend)
6392 << FixItHint::CreateRemoval(
6393 SourceRange(TemplateParams->getTemplateLoc(),
6394 TemplateParams->getRAngleLoc()))
6395 << SourceRange(LAngleLoc, RAngleLoc);
6396 else
6397 isExplicitSpecialization = true;
6398 } else {
6399 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl")((TUK == TUK_Friend && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("TUK == TUK_Friend && \"should have a 'template<>' for this decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6399, __PRETTY_FUNCTION__))
;
6400 }
6401
6402 // Check that the specialization uses the same tag kind as the
6403 // original template.
6404 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6405 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!")((Kind != TTK_Enum && "Invalid enum tag in class template spec!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template spec!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6405, __PRETTY_FUNCTION__))
;
6406 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6407 Kind, TUK == TUK_Definition, KWLoc,
6408 ClassTemplate->getIdentifier())) {
6409 Diag(KWLoc, diag::err_use_with_wrong_tag)
6410 << ClassTemplate
6411 << FixItHint::CreateReplacement(KWLoc,
6412 ClassTemplate->getTemplatedDecl()->getKindName());
6413 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6414 diag::note_previous_use);
6415 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6416 }
6417
6418 // Translate the parser's template argument list in our AST format.
6419 TemplateArgumentListInfo TemplateArgs =
6420 makeTemplateArgumentListInfo(*this, TemplateId);
6421
6422 // Check for unexpanded parameter packs in any of the template arguments.
6423 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6424 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
6425 UPPC_PartialSpecialization))
6426 return true;
6427
6428 // Check that the template argument list is well-formed for this
6429 // template.
6430 SmallVector<TemplateArgument, 4> Converted;
6431 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6432 TemplateArgs, false, Converted))
6433 return true;
6434
6435 // Find the class template (partial) specialization declaration that
6436 // corresponds to these arguments.
6437 if (isPartialSpecialization) {
6438 if (CheckTemplatePartialSpecializationArgs(
6439 *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
6440 TemplateArgs.size(), Converted))
6441 return true;
6442
6443 bool InstantiationDependent;
6444 if (!Name.isDependent() &&
6445 !TemplateSpecializationType::anyDependentTemplateArguments(
6446 TemplateArgs.arguments(), InstantiationDependent)) {
6447 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
6448 << ClassTemplate->getDeclName();
6449 isPartialSpecialization = false;
6450 }
6451 }
6452
6453 void *InsertPos = nullptr;
6454 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
6455
6456 if (isPartialSpecialization)
6457 // FIXME: Template parameter list matters, too
6458 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
6459 else
6460 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
6461
6462 ClassTemplateSpecializationDecl *Specialization = nullptr;
6463
6464 // Check whether we can declare a class template specialization in
6465 // the current scope.
6466 if (TUK != TUK_Friend &&
6467 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
6468 TemplateNameLoc,
6469 isPartialSpecialization))
6470 return true;
6471
6472 // The canonical type
6473 QualType CanonType;
6474 if (isPartialSpecialization) {
6475 // Build the canonical type that describes the converted template
6476 // arguments of the class template partial specialization.
6477 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6478 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
6479 Converted);
6480
6481 if (Context.hasSameType(CanonType,
6482 ClassTemplate->getInjectedClassNameSpecialization())) {
6483 // C++ [temp.class.spec]p9b3:
6484 //
6485 // -- The argument list of the specialization shall not be identical
6486 // to the implicit argument list of the primary template.
6487 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
6488 << /*class template*/0 << (TUK == TUK_Definition)
6489 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
6490 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
6491 ClassTemplate->getIdentifier(),
6492 TemplateNameLoc,
6493 Attr,
6494 TemplateParams,
6495 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
6496 /*FriendLoc*/SourceLocation(),
6497 TemplateParameterLists.size() - 1,
6498 TemplateParameterLists.data());
6499 }
6500
6501 // Create a new class template partial specialization declaration node.
6502 ClassTemplatePartialSpecializationDecl *PrevPartial
6503 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
6504 ClassTemplatePartialSpecializationDecl *Partial
6505 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
6506 ClassTemplate->getDeclContext(),
6507 KWLoc, TemplateNameLoc,
6508 TemplateParams,
6509 ClassTemplate,
6510 Converted,
6511 TemplateArgs,
6512 CanonType,
6513 PrevPartial);
6514 SetNestedNameSpecifier(Partial, SS);
6515 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
6516 Partial->setTemplateParameterListsInfo(
6517 Context, TemplateParameterLists.drop_back(1));
6518 }
6519
6520 if (!PrevPartial)
6521 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6522 Specialization = Partial;
6523
6524 // If we are providing an explicit specialization of a member class
6525 // template specialization, make a note of that.
6526 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6527 PrevPartial->setMemberSpecialization();
6528
6529 // Check that all of the template parameters of the class template
6530 // partial specialization are deducible from the template
6531 // arguments. If not, this class template partial specialization
6532 // will never be used.
6533 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6534 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6535 TemplateParams->getDepth(),
6536 DeducibleParams);
6537
6538 if (!DeducibleParams.all()) {
6539 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6540 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6541 << /*class template*/0 << (NumNonDeducible > 1)
6542 << SourceRange(TemplateNameLoc, RAngleLoc);
6543 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6544 if (!DeducibleParams[I]) {
6545 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6546 if (Param->getDeclName())
6547 Diag(Param->getLocation(),
6548 diag::note_partial_spec_unused_parameter)
6549 << Param->getDeclName();
6550 else
6551 Diag(Param->getLocation(),
6552 diag::note_partial_spec_unused_parameter)
6553 << "(anonymous)";
6554 }
6555 }
6556 }
6557 } else {
6558 // Create a new class template specialization declaration node for
6559 // this explicit specialization or friend declaration.
6560 Specialization
6561 = ClassTemplateSpecializationDecl::Create(Context, Kind,
6562 ClassTemplate->getDeclContext(),
6563 KWLoc, TemplateNameLoc,
6564 ClassTemplate,
6565 Converted,
6566 PrevDecl);
6567 SetNestedNameSpecifier(Specialization, SS);
6568 if (TemplateParameterLists.size() > 0) {
6569 Specialization->setTemplateParameterListsInfo(Context,
6570 TemplateParameterLists);
6571 }
6572
6573 if (!PrevDecl)
6574 ClassTemplate->AddSpecialization(Specialization, InsertPos);
6575
6576 if (CurContext->isDependentContext()) {
6577 // -fms-extensions permits specialization of nested classes without
6578 // fully specializing the outer class(es).
6579 assert(getLangOpts().MicrosoftExt &&((getLangOpts().MicrosoftExt && "Only possible with -fms-extensions!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MicrosoftExt && \"Only possible with -fms-extensions!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6580, __PRETTY_FUNCTION__))
6580 "Only possible with -fms-extensions!")((getLangOpts().MicrosoftExt && "Only possible with -fms-extensions!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MicrosoftExt && \"Only possible with -fms-extensions!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6580, __PRETTY_FUNCTION__))
;
6581 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6582 CanonType = Context.getTemplateSpecializationType(
6583 CanonTemplate, Converted);
6584 } else {
6585 CanonType = Context.getTypeDeclType(Specialization);
6586 }
6587 }
6588
6589 // C++ [temp.expl.spec]p6:
6590 // If a template, a member template or the member of a class template is
6591 // explicitly specialized then that specialization shall be declared
6592 // before the first use of that specialization that would cause an implicit
6593 // instantiation to take place, in every translation unit in which such a
6594 // use occurs; no diagnostic is required.
6595 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6596 bool Okay = false;
6597 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6598 // Is there any previous explicit specialization declaration?
6599 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6600 Okay = true;
6601 break;
6602 }
6603 }
6604
6605 if (!Okay) {
6606 SourceRange Range(TemplateNameLoc, RAngleLoc);
6607 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6608 << Context.getTypeDeclType(Specialization) << Range;
6609
6610 Diag(PrevDecl->getPointOfInstantiation(),
6611 diag::note_instantiation_required_here)
6612 << (PrevDecl->getTemplateSpecializationKind()
6613 != TSK_ImplicitInstantiation);
6614 return true;
6615 }
6616 }
6617
6618 // If this is not a friend, note that this is an explicit specialization.
6619 if (TUK != TUK_Friend)
6620 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6621
6622 // Check that this isn't a redefinition of this specialization.
6623 if (TUK == TUK_Definition) {
6624 RecordDecl *Def = Specialization->getDefinition();
6625 NamedDecl *Hidden = nullptr;
6626 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
6627 SkipBody->ShouldSkip = true;
6628 makeMergedDefinitionVisible(Hidden, KWLoc);
6629 // From here on out, treat this as just a redeclaration.
6630 TUK = TUK_Declaration;
6631 } else if (Def) {
6632 SourceRange Range(TemplateNameLoc, RAngleLoc);
6633 Diag(TemplateNameLoc, diag::err_redefinition)
6634 << Context.getTypeDeclType(Specialization) << Range;
6635 Diag(Def->getLocation(), diag::note_previous_definition);
6636 Specialization->setInvalidDecl();
6637 return true;
6638 }
6639 }
6640
6641 if (Attr)
6642 ProcessDeclAttributeList(S, Specialization, Attr);
6643
6644 // Add alignment attributes if necessary; these attributes are checked when
6645 // the ASTContext lays out the structure.
6646 if (TUK == TUK_Definition) {
6647 AddAlignmentAttributesForRecord(Specialization);
6648 AddMsStructLayoutForRecord(Specialization);
6649 }
6650
6651 if (ModulePrivateLoc.isValid())
6652 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6653 << (isPartialSpecialization? 1 : 0)
6654 << FixItHint::CreateRemoval(ModulePrivateLoc);
6655
6656 // Build the fully-sugared type for this class template
6657 // specialization as the user wrote in the specialization
6658 // itself. This means that we'll pretty-print the type retrieved
6659 // from the specialization's declaration the way that the user
6660 // actually wrote the specialization, rather than formatting the
6661 // name based on the "canonical" representation used to store the
6662 // template arguments in the specialization.
6663 TypeSourceInfo *WrittenTy
6664 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6665 TemplateArgs, CanonType);
6666 if (TUK != TUK_Friend) {
6667 Specialization->setTypeAsWritten(WrittenTy);
6668 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6669 }
6670
6671 // C++ [temp.expl.spec]p9:
6672 // A template explicit specialization is in the scope of the
6673 // namespace in which the template was defined.
6674 //
6675 // We actually implement this paragraph where we set the semantic
6676 // context (in the creation of the ClassTemplateSpecializationDecl),
6677 // but we also maintain the lexical context where the actual
6678 // definition occurs.
6679 Specialization->setLexicalDeclContext(CurContext);
6680
6681 // We may be starting the definition of this specialization.
6682 if (TUK == TUK_Definition)
6683 Specialization->startDefinition();
6684
6685 if (TUK == TUK_Friend) {
6686 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6687 TemplateNameLoc,
6688 WrittenTy,
6689 /*FIXME:*/KWLoc);
6690 Friend->setAccess(AS_public);
6691 CurContext->addDecl(Friend);
6692 } else {
6693 // Add the specialization into its lexical context, so that it can
6694 // be seen when iterating through the list of declarations in that
6695 // context. However, specializations are not found by name lookup.
6696 CurContext->addDecl(Specialization);
6697 }
6698 return Specialization;
6699}
6700
6701Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6702 MultiTemplateParamsArg TemplateParameterLists,
6703 Declarator &D) {
6704 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6705 ActOnDocumentableDecl(NewDecl);
6706 return NewDecl;
6707}
6708
6709/// \brief Strips various properties off an implicit instantiation
6710/// that has just been explicitly specialized.
6711static void StripImplicitInstantiation(NamedDecl *D) {
6712 D->dropAttr<DLLImportAttr>();
6713 D->dropAttr<DLLExportAttr>();
6714
6715 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
6716 FD->setInlineSpecified(false);
6717}
6718
6719/// \brief Compute the diagnostic location for an explicit instantiation
6720// declaration or definition.
6721static SourceLocation DiagLocForExplicitInstantiation(
6722 NamedDecl* D, SourceLocation PointOfInstantiation) {
6723 // Explicit instantiations following a specialization have no effect and
6724 // hence no PointOfInstantiation. In that case, walk decl backwards
6725 // until a valid name loc is found.
6726 SourceLocation PrevDiagLoc = PointOfInstantiation;
6727 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6728 Prev = Prev->getPreviousDecl()) {
6729 PrevDiagLoc = Prev->getLocation();
6730 }
6731 assert(PrevDiagLoc.isValid() &&((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6732, __PRETTY_FUNCTION__))
6732 "Explicit instantiation without point of instantiation?")((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6732, __PRETTY_FUNCTION__))
;
6733 return PrevDiagLoc;
6734}
6735
6736/// \brief Diagnose cases where we have an explicit template specialization
6737/// before/after an explicit template instantiation, producing diagnostics
6738/// for those cases where they are required and determining whether the
6739/// new specialization/instantiation will have any effect.
6740///
6741/// \param NewLoc the location of the new explicit specialization or
6742/// instantiation.
6743///
6744/// \param NewTSK the kind of the new explicit specialization or instantiation.
6745///
6746/// \param PrevDecl the previous declaration of the entity.
6747///
6748/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6749///
6750/// \param PrevPointOfInstantiation if valid, indicates where the previus
6751/// declaration was instantiated (either implicitly or explicitly).
6752///
6753/// \param HasNoEffect will be set to true to indicate that the new
6754/// specialization or instantiation has no effect and should be ignored.
6755///
6756/// \returns true if there was an error that should prevent the introduction of
6757/// the new declaration into the AST, false otherwise.
6758bool
6759Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6760 TemplateSpecializationKind NewTSK,
6761 NamedDecl *PrevDecl,
6762 TemplateSpecializationKind PrevTSK,
6763 SourceLocation PrevPointOfInstantiation,
6764 bool &HasNoEffect) {
6765 HasNoEffect = false;
6766
6767 switch (NewTSK) {
6768 case TSK_Undeclared:
6769 case TSK_ImplicitInstantiation:
6770 assert((((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6772, __PRETTY_FUNCTION__))
6771 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6772, __PRETTY_FUNCTION__))
6772 "previous declaration must be implicit!")(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6772, __PRETTY_FUNCTION__))
;
6773 return false;
6774
6775 case TSK_ExplicitSpecialization:
6776 switch (PrevTSK) {
6777 case TSK_Undeclared:
6778 case TSK_ExplicitSpecialization:
6779 // Okay, we're just specializing something that is either already
6780 // explicitly specialized or has merely been mentioned without any
6781 // instantiation.
6782 return false;
6783
6784 case TSK_ImplicitInstantiation:
6785 if (PrevPointOfInstantiation.isInvalid()) {
6786 // The declaration itself has not actually been instantiated, so it is
6787 // still okay to specialize it.
6788 StripImplicitInstantiation(PrevDecl);
6789 return false;
6790 }
6791 // Fall through
6792
6793 case TSK_ExplicitInstantiationDeclaration:
6794 case TSK_ExplicitInstantiationDefinition:
6795 assert((PrevTSK == TSK_ImplicitInstantiation ||(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6797, __PRETTY_FUNCTION__))
6796 PrevPointOfInstantiation.isValid()) &&(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6797, __PRETTY_FUNCTION__))
6797 "Explicit instantiation without point of instantiation?")(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6797, __PRETTY_FUNCTION__))
;
6798
6799 // C++ [temp.expl.spec]p6:
6800 // If a template, a member template or the member of a class template
6801 // is explicitly specialized then that specialization shall be declared
6802 // before the first use of that specialization that would cause an
6803 // implicit instantiation to take place, in every translation unit in
6804 // which such a use occurs; no diagnostic is required.
6805 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6806 // Is there any previous explicit specialization declaration?
6807 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6808 return false;
6809 }
6810
6811 Diag(NewLoc, diag::err_specialization_after_instantiation)
6812 << PrevDecl;
6813 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6814 << (PrevTSK != TSK_ImplicitInstantiation);
6815
6816 return true;
6817 }
6818
6819 case TSK_ExplicitInstantiationDeclaration:
6820 switch (PrevTSK) {
6821 case TSK_ExplicitInstantiationDeclaration:
6822 // This explicit instantiation declaration is redundant (that's okay).
6823 HasNoEffect = true;
6824 return false;
6825
6826 case TSK_Undeclared:
6827 case TSK_ImplicitInstantiation:
6828 // We're explicitly instantiating something that may have already been
6829 // implicitly instantiated; that's fine.
6830 return false;
6831
6832 case TSK_ExplicitSpecialization:
6833 // C++0x [temp.explicit]p4:
6834 // For a given set of template parameters, if an explicit instantiation
6835 // of a template appears after a declaration of an explicit
6836 // specialization for that template, the explicit instantiation has no
6837 // effect.
6838 HasNoEffect = true;
6839 return false;
6840
6841 case TSK_ExplicitInstantiationDefinition:
6842 // C++0x [temp.explicit]p10:
6843 // If an entity is the subject of both an explicit instantiation
6844 // declaration and an explicit instantiation definition in the same
6845 // translation unit, the definition shall follow the declaration.
6846 Diag(NewLoc,
6847 diag::err_explicit_instantiation_declaration_after_definition);
6848
6849 // Explicit instantiations following a specialization have no effect and
6850 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6851 // until a valid name loc is found.
6852 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6853 diag::note_explicit_instantiation_definition_here);
6854 HasNoEffect = true;
6855 return false;
6856 }
6857
6858 case TSK_ExplicitInstantiationDefinition:
6859 switch (PrevTSK) {
6860 case TSK_Undeclared:
6861 case TSK_ImplicitInstantiation:
6862 // We're explicitly instantiating something that may have already been
6863 // implicitly instantiated; that's fine.
6864 return false;
6865
6866 case TSK_ExplicitSpecialization:
6867 // C++ DR 259, C++0x [temp.explicit]p4:
6868 // For a given set of template parameters, if an explicit
6869 // instantiation of a template appears after a declaration of
6870 // an explicit specialization for that template, the explicit
6871 // instantiation has no effect.
6872 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
6873 << PrevDecl;
6874 Diag(PrevDecl->getLocation(),
6875 diag::note_previous_template_specialization);
6876 HasNoEffect = true;
6877 return false;
6878
6879 case TSK_ExplicitInstantiationDeclaration:
6880 // We're explicity instantiating a definition for something for which we
6881 // were previously asked to suppress instantiations. That's fine.
6882
6883 // C++0x [temp.explicit]p4:
6884 // For a given set of template parameters, if an explicit instantiation
6885 // of a template appears after a declaration of an explicit
6886 // specialization for that template, the explicit instantiation has no
6887 // effect.
6888 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6889 // Is there any previous explicit specialization declaration?
6890 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6891 HasNoEffect = true;
6892 break;
6893 }
6894 }
6895
6896 return false;
6897
6898 case TSK_ExplicitInstantiationDefinition:
6899 // C++0x [temp.spec]p5:
6900 // For a given template and a given set of template-arguments,
6901 // - an explicit instantiation definition shall appear at most once
6902 // in a program,
6903
6904 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
6905 Diag(NewLoc, (getLangOpts().MSVCCompat)
6906 ? diag::ext_explicit_instantiation_duplicate
6907 : diag::err_explicit_instantiation_duplicate)
6908 << PrevDecl;
6909 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6910 diag::note_previous_explicit_instantiation);
6911 HasNoEffect = true;
6912 return false;
6913 }
6914 }
6915
6916 llvm_unreachable("Missing specialization/instantiation case?")::llvm::llvm_unreachable_internal("Missing specialization/instantiation case?"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6916)
;
6917}
6918
6919/// \brief Perform semantic analysis for the given dependent function
6920/// template specialization.
6921///
6922/// The only possible way to get a dependent function template specialization
6923/// is with a friend declaration, like so:
6924///
6925/// \code
6926/// template \<class T> void foo(T);
6927/// template \<class T> class A {
6928/// friend void foo<>(T);
6929/// };
6930/// \endcode
6931///
6932/// There really isn't any useful analysis we can do here, so we
6933/// just store the information.
6934bool
6935Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6936 const TemplateArgumentListInfo &ExplicitTemplateArgs,
6937 LookupResult &Previous) {
6938 // Remove anything from Previous that isn't a function template in
6939 // the correct context.
6940 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6941 LookupResult::Filter F = Previous.makeFilter();
6942 while (F.hasNext()) {
6943 NamedDecl *D = F.next()->getUnderlyingDecl();
6944 if (!isa<FunctionTemplateDecl>(D) ||
6945 !FDLookupContext->InEnclosingNamespaceSetOf(
6946 D->getDeclContext()->getRedeclContext()))
6947 F.erase();
6948 }
6949 F.done();
6950
6951 // Should this be diagnosed here?
6952 if (Previous.empty()) return true;
6953
6954 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6955 ExplicitTemplateArgs);
6956 return false;
6957}
6958
6959/// \brief Perform semantic analysis for the given function template
6960/// specialization.
6961///
6962/// This routine performs all of the semantic analysis required for an
6963/// explicit function template specialization. On successful completion,
6964/// the function declaration \p FD will become a function template
6965/// specialization.
6966///
6967/// \param FD the function declaration, which will be updated to become a
6968/// function template specialization.
6969///
6970/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6971/// if any. Note that this may be valid info even when 0 arguments are
6972/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6973/// as it anyway contains info on the angle brackets locations.
6974///
6975/// \param Previous the set of declarations that may be specialized by
6976/// this function specialization.
6977bool Sema::CheckFunctionTemplateSpecialization(
6978 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6979 LookupResult &Previous) {
6980 // The set of function template specializations that could match this
6981 // explicit function template specialization.
6982 UnresolvedSet<8> Candidates;
6983 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
6984 /*ForTakingAddress=*/false);
6985
6986 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
6987 ConvertedTemplateArgs;
6988
6989 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6990 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6991 I != E; ++I) {
6992 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6993 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6994 // Only consider templates found within the same semantic lookup scope as
6995 // FD.
6996 if (!FDLookupContext->InEnclosingNamespaceSetOf(
6997 Ovl->getDeclContext()->getRedeclContext()))
6998 continue;
6999
7000 // When matching a constexpr member function template specialization
7001 // against the primary template, we don't yet know whether the
7002 // specialization has an implicit 'const' (because we don't know whether
7003 // it will be a static member function until we know which template it
7004 // specializes), so adjust it now assuming it specializes this template.
7005 QualType FT = FD->getType();
7006 if (FD->isConstexpr()) {
7007 CXXMethodDecl *OldMD =
7008 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
7009 if (OldMD && OldMD->isConst()) {
7010 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
7011 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7012 EPI.TypeQuals |= Qualifiers::Const;
7013 FT = Context.getFunctionType(FPT->getReturnType(),
7014 FPT->getParamTypes(), EPI);
7015 }
7016 }
7017
7018 TemplateArgumentListInfo Args;
7019 if (ExplicitTemplateArgs)
7020 Args = *ExplicitTemplateArgs;
7021
7022 // C++ [temp.expl.spec]p11:
7023 // A trailing template-argument can be left unspecified in the
7024 // template-id naming an explicit function template specialization
7025 // provided it can be deduced from the function argument type.
7026 // Perform template argument deduction to determine whether we may be
7027 // specializing this template.
7028 // FIXME: It is somewhat wasteful to build
7029 TemplateDeductionInfo Info(FailedCandidates.getLocation());
7030 FunctionDecl *Specialization = nullptr;
7031 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
7032 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
7033 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
7034 Info)) {
7035 // Template argument deduction failed; record why it failed, so
7036 // that we can provide nifty diagnostics.
7037 FailedCandidates.addCandidate().set(
7038 I.getPair(), FunTmpl->getTemplatedDecl(),
7039 MakeDeductionFailureInfo(Context, TDK, Info));
7040 (void)TDK;
7041 continue;
7042 }
7043
7044 // Record this candidate.
7045 if (ExplicitTemplateArgs)
7046 ConvertedTemplateArgs[Specialization] = std::move(Args);
7047 Candidates.addDecl(Specialization, I.getAccess());
7048 }
7049 }
7050
7051 // Find the most specialized function template.
7052 UnresolvedSetIterator Result = getMostSpecialized(
7053 Candidates.begin(), Candidates.end(), FailedCandidates,
7054 FD->getLocation(),
7055 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
7056 PDiag(diag::err_function_template_spec_ambiguous)
7057 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
7058 PDiag(diag::note_function_template_spec_matched));
7059
7060 if (Result == Candidates.end())
7061 return true;
7062
7063 // Ignore access information; it doesn't figure into redeclaration checking.
7064 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7065
7066 // C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare [...]
7067 // an explicit specialization (14.8.3) [...] of a concept definition.
7068 if (Specialization->getPrimaryTemplate()->isConcept()) {
7069 Diag(FD->getLocation(), diag::err_concept_specialized)
7070 << 0 /*function*/ << 1 /*explicitly specialized*/;
7071 Diag(Specialization->getLocation(), diag::note_previous_declaration);
7072 return true;
7073 }
7074
7075 FunctionTemplateSpecializationInfo *SpecInfo
7076 = Specialization->getTemplateSpecializationInfo();
7077 assert(SpecInfo && "Function template specialization info missing?")((SpecInfo && "Function template specialization info missing?"
) ? static_cast<void> (0) : __assert_fail ("SpecInfo && \"Function template specialization info missing?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7077, __PRETTY_FUNCTION__))
;
7078
7079 // Note: do not overwrite location info if previous template
7080 // specialization kind was explicit.
7081 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
7082 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
7083 Specialization->setLocation(FD->getLocation());
7084 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
7085 // function can differ from the template declaration with respect to
7086 // the constexpr specifier.
7087 Specialization->setConstexpr(FD->isConstexpr());
7088 }
7089
7090 // FIXME: Check if the prior specialization has a point of instantiation.
7091 // If so, we have run afoul of .
7092
7093 // If this is a friend declaration, then we're not really declaring
7094 // an explicit specialization.
7095 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
7096
7097 // Check the scope of this explicit specialization.
7098 if (!isFriend &&
7099 CheckTemplateSpecializationScope(*this,
7100 Specialization->getPrimaryTemplate(),
7101 Specialization, FD->getLocation(),
7102 false))
7103 return true;
7104
7105 // C++ [temp.expl.spec]p6:
7106 // If a template, a member template or the member of a class template is
7107 // explicitly specialized then that specialization shall be declared
7108 // before the first use of that specialization that would cause an implicit
7109 // instantiation to take place, in every translation unit in which such a
7110 // use occurs; no diagnostic is required.
7111 bool HasNoEffect = false;
7112 if (!isFriend &&
7113 CheckSpecializationInstantiationRedecl(FD->getLocation(),
7114 TSK_ExplicitSpecialization,
7115 Specialization,
7116 SpecInfo->getTemplateSpecializationKind(),
7117 SpecInfo->getPointOfInstantiation(),
7118 HasNoEffect))
7119 return true;
7120
7121 // Mark the prior declaration as an explicit specialization, so that later
7122 // clients know that this is an explicit specialization.
7123 if (!isFriend) {
7124 // Since explicit specializations do not inherit '=delete' from their
7125 // primary function template - check if the 'specialization' that was
7126 // implicitly generated (during template argument deduction for partial
7127 // ordering) from the most specialized of all the function templates that
7128 // 'FD' could have been specializing, has a 'deleted' definition. If so,
7129 // first check that it was implicitly generated during template argument
7130 // deduction by making sure it wasn't referenced, and then reset the deleted
7131 // flag to not-deleted, so that we can inherit that information from 'FD'.
7132 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
7133 !Specialization->getCanonicalDecl()->isReferenced()) {
7134 assert(((Specialization->getCanonicalDecl() == Specialization &&
"This must be the only existing declaration of this specialization"
) ? static_cast<void> (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7136, __PRETTY_FUNCTION__))
7135 Specialization->getCanonicalDecl() == Specialization &&((Specialization->getCanonicalDecl() == Specialization &&
"This must be the only existing declaration of this specialization"
) ? static_cast<void> (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7136, __PRETTY_FUNCTION__))
7136 "This must be the only existing declaration of this specialization")((Specialization->getCanonicalDecl() == Specialization &&
"This must be the only existing declaration of this specialization"
) ? static_cast<void> (0) : __assert_fail ("Specialization->getCanonicalDecl() == Specialization && \"This must be the only existing declaration of this specialization\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7136, __PRETTY_FUNCTION__))
;
7137 Specialization->setDeletedAsWritten(false);
7138 }
7139 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
7140 MarkUnusedFileScopedDecl(Specialization);
7141 }
7142
7143 // Turn the given function declaration into a function template
7144 // specialization, with the template arguments from the previous
7145 // specialization.
7146 // Take copies of (semantic and syntactic) template argument lists.
7147 const TemplateArgumentList* TemplArgs = new (Context)
7148 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
7149 FD->setFunctionTemplateSpecialization(
7150 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
7151 SpecInfo->getTemplateSpecializationKind(),
7152 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
7153
7154 // The "previous declaration" for this function template specialization is
7155 // the prior function template specialization.
7156 Previous.clear();
7157 Previous.addDecl(Specialization);
7158 return false;
7159}
7160
7161/// \brief Perform semantic analysis for the given non-template member
7162/// specialization.
7163///
7164/// This routine performs all of the semantic analysis required for an
7165/// explicit member function specialization. On successful completion,
7166/// the function declaration \p FD will become a member function
7167/// specialization.
7168///
7169/// \param Member the member declaration, which will be updated to become a
7170/// specialization.
7171///
7172/// \param Previous the set of declarations, one of which may be specialized
7173/// by this function specialization; the set will be modified to contain the
7174/// redeclared member.
7175bool
7176Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
7177 assert(!isa<TemplateDecl>(Member) && "Only for non-template members")((!isa<TemplateDecl>(Member) && "Only for non-template members"
) ? static_cast<void> (0) : __assert_fail ("!isa<TemplateDecl>(Member) && \"Only for non-template members\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7177, __PRETTY_FUNCTION__))
;
7178
7179 // Try to find the member we are instantiating.
7180 NamedDecl *FoundInstantiation = nullptr;
7181 NamedDecl *Instantiation = nullptr;
7182 NamedDecl *InstantiatedFrom = nullptr;
7183 MemberSpecializationInfo *MSInfo = nullptr;
7184
7185 if (Previous.empty()) {
7186 // Nowhere to look anyway.
7187 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
7188 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7189 I != E; ++I) {
7190 NamedDecl *D = (*I)->getUnderlyingDecl();
7191 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
7192 QualType Adjusted = Function->getType();
7193 if (!hasExplicitCallingConv(Adjusted))
7194 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
7195 if (Context.hasSameType(Adjusted, Method->getType())) {
7196 FoundInstantiation = *I;
7197 Instantiation = Method;
7198 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
7199 MSInfo = Method->getMemberSpecializationInfo();
7200 break;
7201 }
7202 }
7203 }
7204 } else if (isa<VarDecl>(Member)) {
7205 VarDecl *PrevVar;
7206 if (Previous.isSingleResult() &&
7207 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
7208 if (PrevVar->isStaticDataMember()) {
7209 FoundInstantiation = Previous.getRepresentativeDecl();
7210 Instantiation = PrevVar;
7211 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
7212 MSInfo = PrevVar->getMemberSpecializationInfo();
7213 }
7214 } else if (isa<RecordDecl>(Member)) {
7215 CXXRecordDecl *PrevRecord;
7216 if (Previous.isSingleResult() &&
7217 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
7218 FoundInstantiation = Previous.getRepresentativeDecl();
7219 Instantiation = PrevRecord;
7220 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
7221 MSInfo = PrevRecord->getMemberSpecializationInfo();
7222 }
7223 } else if (isa<EnumDecl>(Member)) {
7224 EnumDecl *PrevEnum;
7225 if (Previous.isSingleResult() &&
7226 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
7227 FoundInstantiation = Previous.getRepresentativeDecl();
7228 Instantiation = PrevEnum;
7229 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
7230 MSInfo = PrevEnum->getMemberSpecializationInfo();
7231 }
7232 }
7233
7234 if (!Instantiation) {
7235 // There is no previous declaration that matches. Since member
7236 // specializations are always out-of-line, the caller will complain about
7237 // this mismatch later.
7238 return false;
7239 }
7240
7241 // If this is a friend, just bail out here before we start turning
7242 // things into explicit specializations.
7243 if (Member->getFriendObjectKind() != Decl::FOK_None) {
7244 // Preserve instantiation information.
7245 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
7246 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
7247 cast<CXXMethodDecl>(InstantiatedFrom),
7248 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
7249 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
7250 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
7251 cast<CXXRecordDecl>(InstantiatedFrom),
7252 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
7253 }
7254
7255 Previous.clear();
7256 Previous.addDecl(FoundInstantiation);
7257 return false;
7258 }
7259
7260 // Make sure that this is a specialization of a member.
7261 if (!InstantiatedFrom) {
7262 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
7263 << Member;
7264 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
7265 return true;
7266 }
7267
7268 // C++ [temp.expl.spec]p6:
7269 // If a template, a member template or the member of a class template is
7270 // explicitly specialized then that specialization shall be declared
7271 // before the first use of that specialization that would cause an implicit
7272 // instantiation to take place, in every translation unit in which such a
7273 // use occurs; no diagnostic is required.
7274 assert(MSInfo && "Member specialization info missing?")((MSInfo && "Member specialization info missing?") ? static_cast
<void> (0) : __assert_fail ("MSInfo && \"Member specialization info missing?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7274, __PRETTY_FUNCTION__))
;
7275
7276 bool HasNoEffect = false;
7277 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
7278 TSK_ExplicitSpecialization,
7279 Instantiation,
7280 MSInfo->getTemplateSpecializationKind(),
7281 MSInfo->getPointOfInstantiation(),
7282 HasNoEffect))
7283 return true;
7284
7285 // Check the scope of this explicit specialization.
7286 if (CheckTemplateSpecializationScope(*this,
7287 InstantiatedFrom,
7288 Instantiation, Member->getLocation(),
7289 false))
7290 return true;
7291
7292 // Note that this is an explicit instantiation of a member.
7293 // the original declaration to note that it is an explicit specialization
7294 // (if it was previously an implicit instantiation). This latter step
7295 // makes bookkeeping easier.
7296 if (isa<FunctionDecl>(Member)) {
7297 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
7298 if (InstantiationFunction->getTemplateSpecializationKind() ==
7299 TSK_ImplicitInstantiation) {
7300 InstantiationFunction->setTemplateSpecializationKind(
7301 TSK_ExplicitSpecialization);
7302 InstantiationFunction->setLocation(Member->getLocation());
7303 // Explicit specializations of member functions of class templates do not
7304 // inherit '=delete' from the member function they are specializing.
7305 if (InstantiationFunction->isDeleted()) {
7306 assert(InstantiationFunction->getCanonicalDecl() ==((InstantiationFunction->getCanonicalDecl() == InstantiationFunction
) ? static_cast<void> (0) : __assert_fail ("InstantiationFunction->getCanonicalDecl() == InstantiationFunction"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7307, __PRETTY_FUNCTION__))
7307 InstantiationFunction)((InstantiationFunction->getCanonicalDecl() == InstantiationFunction
) ? static_cast<void> (0) : __assert_fail ("InstantiationFunction->getCanonicalDecl() == InstantiationFunction"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7307, __PRETTY_FUNCTION__))
;
7308 InstantiationFunction->setDeletedAsWritten(false);
7309 }
7310 }
7311
7312 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
7313 cast<CXXMethodDecl>(InstantiatedFrom),
7314 TSK_ExplicitSpecialization);
7315 MarkUnusedFileScopedDecl(InstantiationFunction);
7316 } else if (isa<VarDecl>(Member)) {
7317 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
7318 if (InstantiationVar->getTemplateSpecializationKind() ==
7319 TSK_ImplicitInstantiation) {
7320 InstantiationVar->setTemplateSpecializationKind(
7321 TSK_ExplicitSpecialization);
7322 InstantiationVar->setLocation(Member->getLocation());
7323 }
7324
7325 cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
7326 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7327 MarkUnusedFileScopedDecl(InstantiationVar);
7328 } else if (isa<CXXRecordDecl>(Member)) {
7329 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
7330 if (InstantiationClass->getTemplateSpecializationKind() ==
7331 TSK_ImplicitInstantiation) {
7332 InstantiationClass->setTemplateSpecializationKind(
7333 TSK_ExplicitSpecialization);
7334 InstantiationClass->setLocation(Member->getLocation());
7335 }
7336
7337 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
7338 cast<CXXRecordDecl>(InstantiatedFrom),
7339 TSK_ExplicitSpecialization);
7340 } else {
7341 assert(isa<EnumDecl>(Member) && "Only member enums remain")((isa<EnumDecl>(Member) && "Only member enums remain"
) ? static_cast<void> (0) : __assert_fail ("isa<EnumDecl>(Member) && \"Only member enums remain\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7341, __PRETTY_FUNCTION__))
;
7342 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
7343 if (InstantiationEnum->getTemplateSpecializationKind() ==
7344 TSK_ImplicitInstantiation) {
7345 InstantiationEnum->setTemplateSpecializationKind(
7346 TSK_ExplicitSpecialization);
7347 InstantiationEnum->setLocation(Member->getLocation());
7348 }
7349
7350 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
7351 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7352 }
7353
7354 // Save the caller the trouble of having to figure out which declaration
7355 // this specialization matches.
7356 Previous.clear();
7357 Previous.addDecl(FoundInstantiation);
7358 return false;
7359}
7360
7361/// \brief Check the scope of an explicit instantiation.
7362///
7363/// \returns true if a serious error occurs, false otherwise.
7364static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
7365 SourceLocation InstLoc,
7366 bool WasQualifiedName) {
7367 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
7368 DeclContext *CurContext = S.CurContext->getRedeclContext();
7369
7370 if (CurContext->isRecord()) {
7371 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
7372 << D;
7373 return true;
7374 }
7375
7376 // C++11 [temp.explicit]p3:
7377 // An explicit instantiation shall appear in an enclosing namespace of its
7378 // template. If the name declared in the explicit instantiation is an
7379 // unqualified name, the explicit instantiation shall appear in the
7380 // namespace where its template is declared or, if that namespace is inline
7381 // (7.3.1), any namespace from its enclosing namespace set.
7382 //
7383 // This is DR275, which we do not retroactively apply to C++98/03.
7384 if (WasQualifiedName) {
7385 if (CurContext->Encloses(OrigContext))
7386 return false;
7387 } else {
7388 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
7389 return false;
7390 }
7391
7392 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
7393 if (WasQualifiedName)
7394 S.Diag(InstLoc,
7395 S.getLangOpts().CPlusPlus11?
7396 diag::err_explicit_instantiation_out_of_scope :
7397 diag::warn_explicit_instantiation_out_of_scope_0x)
7398 << D << NS;
7399 else
7400 S.Diag(InstLoc,
7401 S.getLangOpts().CPlusPlus11?
7402 diag::err_explicit_instantiation_unqualified_wrong_namespace :
7403 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
7404 << D << NS;
7405 } else
7406 S.Diag(InstLoc,
7407 S.getLangOpts().CPlusPlus11?
7408 diag::err_explicit_instantiation_must_be_global :
7409 diag::warn_explicit_instantiation_must_be_global_0x)
7410 << D;
7411 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
7412 return false;
7413}
7414
7415/// \brief Determine whether the given scope specifier has a template-id in it.
7416static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
7417 if (!SS.isSet())
7418 return false;
7419
7420 // C++11 [temp.explicit]p3:
7421 // If the explicit instantiation is for a member function, a member class
7422 // or a static data member of a class template specialization, the name of
7423 // the class template specialization in the qualified-id for the member
7424 // name shall be a simple-template-id.
7425 //
7426 // C++98 has the same restriction, just worded differently.
7427 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
7428 NNS = NNS->getPrefix())
7429 if (const Type *T = NNS->getAsType())
7430 if (isa<TemplateSpecializationType>(T))
7431 return true;
7432
7433 return false;
7434}
7435
7436// Explicit instantiation of a class template specialization
7437DeclResult
7438Sema::ActOnExplicitInstantiation(Scope *S,
7439 SourceLocation ExternLoc,
7440 SourceLocation TemplateLoc,
7441 unsigned TagSpec,
7442 SourceLocation KWLoc,
7443 const CXXScopeSpec &SS,
7444 TemplateTy TemplateD,
7445 SourceLocation TemplateNameLoc,
7446 SourceLocation LAngleLoc,
7447 ASTTemplateArgsPtr TemplateArgsIn,
7448 SourceLocation RAngleLoc,
7449 AttributeList *Attr) {
7450 // Find the class template we're specializing
7451 TemplateName Name = TemplateD.get();
7452 TemplateDecl *TD = Name.getAsTemplateDecl();
7453 // Check that the specialization uses the same tag kind as the
7454 // original template.
7455 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7456 assert(Kind != TTK_Enum &&((Kind != TTK_Enum && "Invalid enum tag in class template explicit instantiation!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template explicit instantiation!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7457, __PRETTY_FUNCTION__))
7457 "Invalid enum tag in class template explicit instantiation!")((Kind != TTK_Enum && "Invalid enum tag in class template explicit instantiation!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template explicit instantiation!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7457, __PRETTY_FUNCTION__))
;
7458
7459 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
7460
7461 if (!ClassTemplate) {
7462 NonTagKind NTK = getNonTagTypeDeclKind(TD);
7463 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << NTK;
7464 Diag(TD->getLocation(), diag::note_previous_use);
7465 return true;
7466 }
7467
7468 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7469 Kind, /*isDefinition*/false, KWLoc,
7470 ClassTemplate->getIdentifier())) {
7471 Diag(KWLoc, diag::err_use_with_wrong_tag)
7472 << ClassTemplate
7473 << FixItHint::CreateReplacement(KWLoc,
7474 ClassTemplate->getTemplatedDecl()->getKindName());
7475 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7476 diag::note_previous_use);
7477 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7478 }
7479
7480 // C++0x [temp.explicit]p2:
7481 // There are two forms of explicit instantiation: an explicit instantiation
7482 // definition and an explicit instantiation declaration. An explicit
7483 // instantiation declaration begins with the extern keyword. [...]
7484 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
7485 ? TSK_ExplicitInstantiationDefinition
7486 : TSK_ExplicitInstantiationDeclaration;
7487
7488 if (TSK == TSK_ExplicitInstantiationDeclaration) {
7489 // Check for dllexport class template instantiation declarations.
7490 for (AttributeList *A = Attr; A; A = A->getNext()) {
7491 if (A->getKind() == AttributeList::AT_DLLExport) {
7492 Diag(ExternLoc,
7493 diag::warn_attribute_dllexport_explicit_instantiation_decl);
7494 Diag(A->getLoc(), diag::note_attribute);
7495 break;
7496 }
7497 }
7498
7499 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
7500 Diag(ExternLoc,
7501 diag::warn_attribute_dllexport_explicit_instantiation_decl);
7502 Diag(A->getLocation(), diag::note_attribute);
7503 }
7504 }
7505
7506 // In MSVC mode, dllimported explicit instantiation definitions are treated as
7507 // instantiation declarations for most purposes.
7508 bool DLLImportExplicitInstantiationDef = false;
7509 if (TSK == TSK_ExplicitInstantiationDefinition &&
7510 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7511 // Check for dllimport class template instantiation definitions.
7512 bool DLLImport =
7513 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
7514 for (AttributeList *A = Attr; A; A = A->getNext()) {
7515 if (A->getKind() == AttributeList::AT_DLLImport)
7516 DLLImport = true;
7517 if (A->getKind() == AttributeList::AT_DLLExport) {
7518 // dllexport trumps dllimport here.
7519 DLLImport = false;
7520 break;
7521 }
7522 }
7523 if (DLLImport) {
7524 TSK = TSK_ExplicitInstantiationDeclaration;
7525 DLLImportExplicitInstantiationDef = true;
7526 }
7527 }
7528
7529 // Translate the parser's template argument list in our AST format.
7530 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7531 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7532
7533 // Check that the template argument list is well-formed for this
7534 // template.
7535 SmallVector<TemplateArgument, 4> Converted;
7536 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7537 TemplateArgs, false, Converted))
7538 return true;
7539
7540 // Find the class template specialization declaration that
7541 // corresponds to these arguments.
7542 void *InsertPos = nullptr;
7543 ClassTemplateSpecializationDecl *PrevDecl
7544 = ClassTemplate->findSpecialization(Converted, InsertPos);
7545
7546 TemplateSpecializationKind PrevDecl_TSK
7547 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
7548
7549 // C++0x [temp.explicit]p2:
7550 // [...] An explicit instantiation shall appear in an enclosing
7551 // namespace of its template. [...]
7552 //
7553 // This is C++ DR 275.
7554 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
7555 SS.isSet()))
7556 return true;
7557
7558 ClassTemplateSpecializationDecl *Specialization = nullptr;
7559
7560 bool HasNoEffect = false;
7561 if (PrevDecl) {
7562 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
7563 PrevDecl, PrevDecl_TSK,
7564 PrevDecl->getPointOfInstantiation(),
7565 HasNoEffect))
7566 return PrevDecl;
7567
7568 // Even though HasNoEffect == true means that this explicit instantiation
7569 // has no effect on semantics, we go on to put its syntax in the AST.
7570
7571 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
7572 PrevDecl_TSK == TSK_Undeclared) {
7573 // Since the only prior class template specialization with these
7574 // arguments was referenced but not declared, reuse that
7575 // declaration node as our own, updating the source location
7576 // for the template name to reflect our new declaration.
7577 // (Other source locations will be updated later.)
7578 Specialization = PrevDecl;
7579 Specialization->setLocation(TemplateNameLoc);
7580 PrevDecl = nullptr;
7581 }
7582
7583 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
7584 DLLImportExplicitInstantiationDef) {
7585 // The new specialization might add a dllimport attribute.
7586 HasNoEffect = false;
7587 }
7588 }
7589
7590 if (!Specialization) {
7591 // Create a new class template specialization declaration node for
7592 // this explicit specialization.
7593 Specialization
7594 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7595 ClassTemplate->getDeclContext(),
7596 KWLoc, TemplateNameLoc,
7597 ClassTemplate,
7598 Converted,
7599 PrevDecl);
7600 SetNestedNameSpecifier(Specialization, SS);
7601
7602 if (!HasNoEffect && !PrevDecl) {
7603 // Insert the new specialization.
7604 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7605 }
7606 }
7607
7608 // Build the fully-sugared type for this explicit instantiation as
7609 // the user wrote in the explicit instantiation itself. This means
7610 // that we'll pretty-print the type retrieved from the
7611 // specialization's declaration the way that the user actually wrote
7612 // the explicit instantiation, rather than formatting the name based
7613 // on the "canonical" representation used to store the template
7614 // arguments in the specialization.
7615 TypeSourceInfo *WrittenTy
7616 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7617 TemplateArgs,
7618 Context.getTypeDeclType(Specialization));
7619 Specialization->setTypeAsWritten(WrittenTy);
7620
7621 // Set source locations for keywords.
7622 Specialization->setExternLoc(ExternLoc);
7623 Specialization->setTemplateKeywordLoc(TemplateLoc);
7624 Specialization->setBraceRange(SourceRange());
7625
7626 if (Attr)
7627 ProcessDeclAttributeList(S, Specialization, Attr);
7628
7629 // Add the explicit instantiation into its lexical context. However,
7630 // since explicit instantiations are never found by name lookup, we
7631 // just put it into the declaration context directly.
7632 Specialization->setLexicalDeclContext(CurContext);
7633 CurContext->addDecl(Specialization);
7634
7635 // Syntax is now OK, so return if it has no other effect on semantics.
7636 if (HasNoEffect) {
7637 // Set the template specialization kind.
7638 Specialization->setTemplateSpecializationKind(TSK);
7639 return Specialization;
7640 }
7641
7642 // C++ [temp.explicit]p3:
7643 // A definition of a class template or class member template
7644 // shall be in scope at the point of the explicit instantiation of
7645 // the class template or class member template.
7646 //
7647 // This check comes when we actually try to perform the
7648 // instantiation.
7649 ClassTemplateSpecializationDecl *Def
7650 = cast_or_null<ClassTemplateSpecializationDecl>(
7651 Specialization->getDefinition());
7652 if (!Def)
7653 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7654 else if (TSK == TSK_ExplicitInstantiationDefinition) {
7655 MarkVTableUsed(TemplateNameLoc, Specialization, true);
7656 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7657 }
7658
7659 // Instantiate the members of this class template specialization.
7660 Def = cast_or_null<ClassTemplateSpecializationDecl>(
7661 Specialization->getDefinition());
7662 if (Def) {
7663 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7664 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7665 // TSK_ExplicitInstantiationDefinition
7666 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7667 (TSK == TSK_ExplicitInstantiationDefinition ||
7668 DLLImportExplicitInstantiationDef)) {
7669 // FIXME: Need to notify the ASTMutationListener that we did this.
7670 Def->setTemplateSpecializationKind(TSK);
7671
7672 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
7673 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7674 // In the MS ABI, an explicit instantiation definition can add a dll
7675 // attribute to a template with a previous instantiation declaration.
7676 // MinGW doesn't allow this.
7677 auto *A = cast<InheritableAttr>(
7678 getDLLAttr(Specialization)->clone(getASTContext()));
7679 A->setInherited(true);
7680 Def->addAttr(A);
7681
7682 // We reject explicit instantiations in class scope, so there should
7683 // never be any delayed exported classes to worry about.
7684 assert(DelayedDllExportClasses.empty() &&((DelayedDllExportClasses.empty() && "delayed exports present at explicit instantiation"
) ? static_cast<void> (0) : __assert_fail ("DelayedDllExportClasses.empty() && \"delayed exports present at explicit instantiation\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7685, __PRETTY_FUNCTION__))
7685 "delayed exports present at explicit instantiation")((DelayedDllExportClasses.empty() && "delayed exports present at explicit instantiation"
) ? static_cast<void> (0) : __assert_fail ("DelayedDllExportClasses.empty() && \"delayed exports present at explicit instantiation\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7685, __PRETTY_FUNCTION__))
;
7686 checkClassLevelDLLAttribute(Def);
7687 referenceDLLExportedClassMethods();
7688
7689 // Propagate attribute to base class templates.
7690 for (auto &B : Def->bases()) {
7691 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
7692 B.getType()->getAsCXXRecordDecl()))
7693 propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart());
7694 }
7695 }
7696 }
7697
7698 // Set the template specialization kind. Make sure it is set before
7699 // instantiating the members which will trigger ASTConsumer callbacks.
7700 Specialization->setTemplateSpecializationKind(TSK);
7701 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7702 } else {
7703
7704 // Set the template specialization kind.
7705 Specialization->setTemplateSpecializationKind(TSK);
7706 }
7707
7708 return Specialization;
7709}
7710
7711// Explicit instantiation of a member class of a class template.
7712DeclResult
7713Sema::ActOnExplicitInstantiation(Scope *S,
7714 SourceLocation ExternLoc,
7715 SourceLocation TemplateLoc,
7716 unsigned TagSpec,
7717 SourceLocation KWLoc,
7718 CXXScopeSpec &SS,
7719 IdentifierInfo *Name,
7720 SourceLocation NameLoc,
7721 AttributeList *Attr) {
7722
7723 bool Owned = false;
7724 bool IsDependent = false;
7725 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7726 KWLoc, SS, Name, NameLoc, Attr, AS_none,
7727 /*ModulePrivateLoc=*/SourceLocation(),
7728 MultiTemplateParamsArg(), Owned, IsDependent,
7729 SourceLocation(), false, TypeResult(),
7730 /*IsTypeSpecifier*/false);
7731 assert(!IsDependent && "explicit instantiation of dependent name not yet handled")((!IsDependent && "explicit instantiation of dependent name not yet handled"
) ? static_cast<void> (0) : __assert_fail ("!IsDependent && \"explicit instantiation of dependent name not yet handled\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7731, __PRETTY_FUNCTION__))
;
7732
7733 if (!TagD)
7734 return true;
7735
7736 TagDecl *Tag = cast<TagDecl>(TagD);
7737 assert(!Tag->isEnum() && "shouldn't see enumerations here")((!Tag->isEnum() && "shouldn't see enumerations here"
) ? static_cast<void> (0) : __assert_fail ("!Tag->isEnum() && \"shouldn't see enumerations here\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7737, __PRETTY_FUNCTION__))
;
7738
7739 if (Tag->isInvalidDecl())
7740 return true;
7741
7742 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7743 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7744 if (!Pattern) {
7745 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7746 << Context.getTypeDeclType(Record);
7747 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7748 return true;
7749 }
7750
7751 // C++0x [temp.explicit]p2:
7752 // If the explicit instantiation is for a class or member class, the
7753 // elaborated-type-specifier in the declaration shall include a
7754 // simple-template-id.
7755 //
7756 // C++98 has the same restriction, just worded differently.
7757 if (!ScopeSpecifierHasTemplateId(SS))
7758 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7759 << Record << SS.getRange();
7760
7761 // C++0x [temp.explicit]p2:
7762 // There are two forms of explicit instantiation: an explicit instantiation
7763 // definition and an explicit instantiation declaration. An explicit
7764 // instantiation declaration begins with the extern keyword. [...]
7765 TemplateSpecializationKind TSK
7766 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7767 : TSK_ExplicitInstantiationDeclaration;
7768
7769 // C++0x [temp.explicit]p2:
7770 // [...] An explicit instantiation shall appear in an enclosing
7771 // namespace of its template. [...]
7772 //
7773 // This is C++ DR 275.
7774 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7775
7776 // Verify that it is okay to explicitly instantiate here.
7777 CXXRecordDecl *PrevDecl
7778 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7779 if (!PrevDecl && Record->getDefinition())
7780 PrevDecl = Record;
7781 if (PrevDecl) {
7782 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7783 bool HasNoEffect = false;
7784 assert(MSInfo && "No member specialization information?")((MSInfo && "No member specialization information?") ?
static_cast<void> (0) : __assert_fail ("MSInfo && \"No member specialization information?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7784, __PRETTY_FUNCTION__))
;
7785 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7786 PrevDecl,
7787 MSInfo->getTemplateSpecializationKind(),
7788 MSInfo->getPointOfInstantiation(),
7789 HasNoEffect))
7790 return true;
7791 if (HasNoEffect)
7792 return TagD;
7793 }
7794
7795 CXXRecordDecl *RecordDef
7796 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7797 if (!RecordDef) {
7798 // C++ [temp.explicit]p3:
7799 // A definition of a member class of a class template shall be in scope
7800 // at the point of an explicit instantiation of the member class.
7801 CXXRecordDecl *Def
7802 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7803 if (!Def) {
7804 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7805 << 0 << Record->getDeclName() << Record->getDeclContext();
7806 Diag(Pattern->getLocation(), diag::note_forward_declaration)
7807 << Pattern;
7808 return true;
7809 } else {
7810 if (InstantiateClass(NameLoc, Record, Def,
7811 getTemplateInstantiationArgs(Record),
7812 TSK))
7813 return true;
7814
7815 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7816 if (!RecordDef)
7817 return true;
7818 }
7819 }
7820
7821 // Instantiate all of the members of the class.
7822 InstantiateClassMembers(NameLoc, RecordDef,
7823 getTemplateInstantiationArgs(Record), TSK);
7824
7825 if (TSK == TSK_ExplicitInstantiationDefinition)
7826 MarkVTableUsed(NameLoc, RecordDef, true);
7827
7828 // FIXME: We don't have any representation for explicit instantiations of
7829 // member classes. Such a representation is not needed for compilation, but it
7830 // should be available for clients that want to see all of the declarations in
7831 // the source code.
7832 return TagD;
7833}
7834
7835DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7836 SourceLocation ExternLoc,
7837 SourceLocation TemplateLoc,
7838 Declarator &D) {
7839 // Explicit instantiations always require a name.
7840 // TODO: check if/when DNInfo should replace Name.
7841 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7842 DeclarationName Name = NameInfo.getName();
7843 if (!Name) {
7844 if (!D.isInvalidType())
7845 Diag(D.getDeclSpec().getLocStart(),
7846 diag::err_explicit_instantiation_requires_name)
7847 << D.getDeclSpec().getSourceRange()
7848 << D.getSourceRange();
7849
7850 return true;
7851 }
7852
7853 // The scope passed in may not be a decl scope. Zip up the scope tree until
7854 // we find one that is.
7855 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7856 (S->getFlags() & Scope::TemplateParamScope) != 0)
7857 S = S->getParent();
7858
7859 // Determine the type of the declaration.
7860 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7861 QualType R = T->getType();
7862 if (R.isNull())
7863 return true;
7864
7865 // C++ [dcl.stc]p1:
7866 // A storage-class-specifier shall not be specified in [...] an explicit
7867 // instantiation (14.7.2) directive.
7868 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7869 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7870 << Name;
7871 return true;
7872 } else if (D.getDeclSpec().getStorageClassSpec()
7873 != DeclSpec::SCS_unspecified) {
7874 // Complain about then remove the storage class specifier.
7875 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7876 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7877
7878 D.getMutableDeclSpec().ClearStorageClassSpecs();
7879 }
7880
7881 // C++0x [temp.explicit]p1:
7882 // [...] An explicit instantiation of a function template shall not use the
7883 // inline or constexpr specifiers.
7884 // Presumably, this also applies to member functions of class templates as
7885 // well.
7886 if (D.getDeclSpec().isInlineSpecified())
7887 Diag(D.getDeclSpec().getInlineSpecLoc(),
7888 getLangOpts().CPlusPlus11 ?
7889 diag::err_explicit_instantiation_inline :
7890 diag::warn_explicit_instantiation_inline_0x)
7891 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7892 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7893 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7894 // not already specified.
7895 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7896 diag::err_explicit_instantiation_constexpr);
7897
7898 // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
7899 // applied only to the definition of a function template or variable template,
7900 // declared in namespace scope.
7901 if (D.getDeclSpec().isConceptSpecified()) {
7902 Diag(D.getDeclSpec().getConceptSpecLoc(),
7903 diag::err_concept_specified_specialization) << 0;
7904 return true;
7905 }
7906
7907 // C++0x [temp.explicit]p2:
7908 // There are two forms of explicit instantiation: an explicit instantiation
7909 // definition and an explicit instantiation declaration. An explicit
7910 // instantiation declaration begins with the extern keyword. [...]
7911 TemplateSpecializationKind TSK
7912 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7913 : TSK_ExplicitInstantiationDeclaration;
7914
7915 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7916 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7917
7918 if (!R->isFunctionType()) {
7919 // C++ [temp.explicit]p1:
7920 // A [...] static data member of a class template can be explicitly
7921 // instantiated from the member definition associated with its class
7922 // template.
7923 // C++1y [temp.explicit]p1:
7924 // A [...] variable [...] template specialization can be explicitly
7925 // instantiated from its template.
7926 if (Previous.isAmbiguous())
7927 return true;
7928
7929 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7930 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7931
7932 if (!PrevTemplate) {
7933 if (!Prev || !Prev->isStaticDataMember()) {
7934 // We expect to see a data data member here.
7935 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7936 << Name;
7937 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7938 P != PEnd; ++P)
7939 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7940 return true;
7941 }
7942
7943 if (!Prev->getInstantiatedFromStaticDataMember()) {
7944 // FIXME: Check for explicit specialization?
7945 Diag(D.getIdentifierLoc(),
7946 diag::err_explicit_instantiation_data_member_not_instantiated)
7947 << Prev;
7948 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7949 // FIXME: Can we provide a note showing where this was declared?
7950 return true;
7951 }
7952 } else {
7953 // Explicitly instantiate a variable template.
7954
7955 // C++1y [dcl.spec.auto]p6:
7956 // ... A program that uses auto or decltype(auto) in a context not
7957 // explicitly allowed in this section is ill-formed.
7958 //
7959 // This includes auto-typed variable template instantiations.
7960 if (R->isUndeducedType()) {
7961 Diag(T->getTypeLoc().getLocStart(),
7962 diag::err_auto_not_allowed_var_inst);
7963 return true;
7964 }
7965
7966 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7967 // C++1y [temp.explicit]p3:
7968 // If the explicit instantiation is for a variable, the unqualified-id
7969 // in the declaration shall be a template-id.
7970 Diag(D.getIdentifierLoc(),
7971 diag::err_explicit_instantiation_without_template_id)
7972 << PrevTemplate;
7973 Diag(PrevTemplate->getLocation(),
7974 diag::note_explicit_instantiation_here);
7975 return true;
7976 }
7977
7978 // C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare an
7979 // explicit instantiation (14.8.2) [...] of a concept definition.
7980 if (PrevTemplate->isConcept()) {
7981 Diag(D.getIdentifierLoc(), diag::err_concept_specialized)
7982 << 1 /*variable*/ << 0 /*explicitly instantiated*/;
7983 Diag(PrevTemplate->getLocation(), diag::note_previous_declaration);
7984 return true;
7985 }
7986
7987 // Translate the parser's template argument list into our AST format.
7988 TemplateArgumentListInfo TemplateArgs =
7989 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7990
7991 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7992 D.getIdentifierLoc(), TemplateArgs);
7993 if (Res.isInvalid())
7994 return true;
7995
7996 // Ignore access control bits, we don't need them for redeclaration
7997 // checking.
7998 Prev = cast<VarDecl>(Res.get());
7999 }
8000
8001 // C++0x [temp.explicit]p2:
8002 // If the explicit instantiation is for a member function, a member class
8003 // or a static data member of a class template specialization, the name of
8004 // the class template specialization in the qualified-id for the member
8005 // name shall be a simple-template-id.
8006 //
8007 // C++98 has the same restriction, just worded differently.
8008 //
8009 // This does not apply to variable template specializations, where the
8010 // template-id is in the unqualified-id instead.
8011 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
8012 Diag(D.getIdentifierLoc(),
8013 diag::ext_explicit_instantiation_without_qualified_id)
8014 << Prev << D.getCXXScopeSpec().getRange();
8015
8016 // Check the scope of this explicit instantiation.
8017 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
8018
8019 // Verify that it is okay to explicitly instantiate here.
8020 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
8021 SourceLocation POI = Prev->getPointOfInstantiation();
8022 bool HasNoEffect = false;
8023 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
8024 PrevTSK, POI, HasNoEffect))
8025 return true;
8026
8027 if (!HasNoEffect) {
8028 // Instantiate static data member or variable template.
8029
8030 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
8031 if (PrevTemplate) {
8032 // Merge attributes.
8033 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
8034 ProcessDeclAttributeList(S, Prev, Attr);
8035 }
8036 if (TSK == TSK_ExplicitInstantiationDefinition)
8037 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
8038 }
8039
8040 // Check the new variable specialization against the parsed input.
8041 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
8042 Diag(T->getTypeLoc().getLocStart(),
8043 diag::err_invalid_var_template_spec_type)
8044 << 0 << PrevTemplate << R << Prev->getType();
8045 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
8046 << 2 << PrevTemplate->getDeclName();
8047 return true;
8048 }
8049
8050 // FIXME: Create an ExplicitInstantiation node?
8051 return (Decl*) nullptr;
8052 }
8053
8054 // If the declarator is a template-id, translate the parser's template
8055 // argument list into our AST format.
8056 bool HasExplicitTemplateArgs = false;
8057 TemplateArgumentListInfo TemplateArgs;
8058 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
8059 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
8060 HasExplicitTemplateArgs = true;
8061 }
8062
8063 // C++ [temp.explicit]p1:
8064 // A [...] function [...] can be explicitly instantiated from its template.
8065 // A member function [...] of a class template can be explicitly
8066 // instantiated from the member definition associated with its class
8067 // template.
8068 UnresolvedSet<8> Matches;
8069 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
8070 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
8071 P != PEnd; ++P) {
8072 NamedDecl *Prev = *P;
8073 if (!HasExplicitTemplateArgs) {
8074 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
8075 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
8076 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
8077 Matches.clear();
8078
8079 Matches.addDecl(Method, P.getAccess());
8080 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
8081 break;
8082 }
8083 }
8084 }
8085
8086 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
8087 if (!FunTmpl)
8088 continue;
8089
8090 TemplateDeductionInfo Info(FailedCandidates.getLocation());
8091 FunctionDecl *Specialization = nullptr;
8092 if (TemplateDeductionResult TDK
8093 = DeduceTemplateArguments(FunTmpl,
8094 (HasExplicitTemplateArgs ? &TemplateArgs
8095 : nullptr),
8096 R, Specialization, Info)) {
8097 // Keep track of almost-matches.
8098 FailedCandidates.addCandidate()
8099 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
8100 MakeDeductionFailureInfo(Context, TDK, Info));
8101 (void)TDK;
8102 continue;
8103 }
8104
8105 Matches.addDecl(Specialization, P.getAccess());
8106 }
8107
8108 // Find the most specialized function template specialization.
8109 UnresolvedSetIterator Result = getMostSpecialized(
8110 Matches.begin(), Matches.end(), FailedCandidates,
8111 D.getIdentifierLoc(),
8112 PDiag(diag::err_explicit_instantiation_not_known) << Name,
8113 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
8114 PDiag(diag::note_explicit_instantiation_candidate));
8115
8116 if (Result == Matches.end())
8117 return true;
8118
8119 // Ignore access control bits, we don't need them for redeclaration checking.
8120 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
8121
8122 // C++11 [except.spec]p4
8123 // In an explicit instantiation an exception-specification may be specified,
8124 // but is not required.
8125 // If an exception-specification is specified in an explicit instantiation
8126 // directive, it shall be compatible with the exception-specifications of
8127 // other declarations of that function.
8128 if (auto *FPT = R->getAs<FunctionProtoType>())
8129 if (FPT->hasExceptionSpec()) {
8130 unsigned DiagID =
8131 diag::err_mismatched_exception_spec_explicit_instantiation;
8132 if (getLangOpts().MicrosoftExt)
8133 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
8134 bool Result = CheckEquivalentExceptionSpec(
8135 PDiag(DiagID) << Specialization->getType(),
8136 PDiag(diag::note_explicit_instantiation_here),
8137 Specialization->getType()->getAs<FunctionProtoType>(),
8138 Specialization->getLocation(), FPT, D.getLocStart());
8139 // In Microsoft mode, mismatching exception specifications just cause a
8140 // warning.
8141 if (!getLangOpts().MicrosoftExt && Result)
8142 return true;
8143 }
8144
8145 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
8146 Diag(D.getIdentifierLoc(),
8147 diag::err_explicit_instantiation_member_function_not_instantiated)
8148 << Specialization
8149 << (Specialization->getTemplateSpecializationKind() ==
8150 TSK_ExplicitSpecialization);
8151 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
8152 return true;
8153 }
8154
8155 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
8156 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
8157 PrevDecl = Specialization;
8158
8159 if (PrevDecl) {
8160 bool HasNoEffect = false;
8161 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
8162 PrevDecl,
8163 PrevDecl->getTemplateSpecializationKind(),
8164 PrevDecl->getPointOfInstantiation(),
8165 HasNoEffect))
8166 return true;
8167
8168 // FIXME: We may still want to build some representation of this
8169 // explicit specialization.
8170 if (HasNoEffect)
8171 return (Decl*) nullptr;
8172 }
8173
8174 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
8175 AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
8176 if (Attr)
8177 ProcessDeclAttributeList(S, Specialization, Attr);
8178
8179 if (Specialization->isDefined()) {
8180 // Let the ASTConsumer know that this function has been explicitly
8181 // instantiated now, and its linkage might have changed.
8182 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
8183 } else if (TSK == TSK_ExplicitInstantiationDefinition)
8184 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
8185
8186 // C++0x [temp.explicit]p2:
8187 // If the explicit instantiation is for a member function, a member class
8188 // or a static data member of a class template specialization, the name of
8189 // the class template specialization in the qualified-id for the member
8190 // name shall be a simple-template-id.
8191 //
8192 // C++98 has the same restriction, just worded differently.
8193 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
8194 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
8195 D.getCXXScopeSpec().isSet() &&
8196 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
8197 Diag(D.getIdentifierLoc(),
8198 diag::ext_explicit_instantiation_without_qualified_id)
8199 << Specialization << D.getCXXScopeSpec().getRange();
8200
8201 // C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare an
8202 // explicit instantiation (14.8.2) [...] of a concept definition.
8203 if (FunTmpl && FunTmpl->isConcept() &&
8204 !D.getDeclSpec().isConceptSpecified()) {
8205 Diag(D.getIdentifierLoc(), diag::err_concept_specialized)
8206 << 0 /*function*/ << 0 /*explicitly instantiated*/;
8207 Diag(FunTmpl->getLocation(), diag::note_previous_declaration);
8208 return true;
8209 }
8210
8211 CheckExplicitInstantiationScope(*this,
8212 FunTmpl? (NamedDecl *)FunTmpl
8213 : Specialization->getInstantiatedFromMemberFunction(),
8214 D.getIdentifierLoc(),
8215 D.getCXXScopeSpec().isSet());
8216
8217 // FIXME: Create some kind of ExplicitInstantiationDecl here.
8218 return (Decl*) nullptr;
8219}
8220
8221TypeResult
8222Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8223 const CXXScopeSpec &SS, IdentifierInfo *Name,
8224 SourceLocation TagLoc, SourceLocation NameLoc) {
8225 // This has to hold, because SS is expected to be defined.
8226 assert(Name && "Expected a name in a dependent tag")((Name && "Expected a name in a dependent tag") ? static_cast
<void> (0) : __assert_fail ("Name && \"Expected a name in a dependent tag\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8226, __PRETTY_FUNCTION__))
;
8227
8228 NestedNameSpecifier *NNS = SS.getScopeRep();
8229 if (!NNS)
8230 return true;
8231
8232 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8233
8234 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
8235 Diag(NameLoc, diag::err_dependent_tag_decl)
8236 << (TUK == TUK_Definition) << Kind << SS.getRange();
8237 return true;
8238 }
8239
8240 // Create the resulting type.
8241 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8242 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
8243
8244 // Create type-source location information for this type.
8245 TypeLocBuilder TLB;
8246 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
8247 TL.setElaboratedKeywordLoc(TagLoc);
8248 TL.setQualifierLoc(SS.getWithLocInContext(Context));
8249 TL.setNameLoc(NameLoc);
8250 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
8251}
8252
8253TypeResult
8254Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
8255 const CXXScopeSpec &SS, const IdentifierInfo &II,
8256 SourceLocation IdLoc) {
8257 if (SS.isInvalid())
8258 return true;
8259
8260 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
8261 Diag(TypenameLoc,
8262 getLangOpts().CPlusPlus11 ?
8263 diag::warn_cxx98_compat_typename_outside_of_template :
8264 diag::ext_typename_outside_of_template)
8265 << FixItHint::CreateRemoval(TypenameLoc);
8266
8267 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8268 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
8269 TypenameLoc, QualifierLoc, II, IdLoc);
8270 if (T.isNull())
8271 return true;
8272
8273 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8274 if (isa<DependentNameType>(T)) {
8275 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
8276 TL.setElaboratedKeywordLoc(TypenameLoc);
8277 TL.setQualifierLoc(QualifierLoc);
8278 TL.setNameLoc(IdLoc);
8279 } else {
8280 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
8281 TL.setElaboratedKeywordLoc(TypenameLoc);
8282 TL.setQualifierLoc(QualifierLoc);
8283 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
8284 }
8285
8286 return CreateParsedType(T, TSI);
8287}
8288
8289TypeResult
8290Sema::ActOnTypenameType(Scope *S,
8291 SourceLocation TypenameLoc,
8292 const CXXScopeSpec &SS,
8293 SourceLocation TemplateKWLoc,
8294 TemplateTy TemplateIn,
8295 SourceLocation TemplateNameLoc,
8296 SourceLocation LAngleLoc,
8297 ASTTemplateArgsPtr TemplateArgsIn,
8298 SourceLocation RAngleLoc) {
8299 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
8300 Diag(TypenameLoc,
8301 getLangOpts().CPlusPlus11 ?
8302 diag::warn_cxx98_compat_typename_outside_of_template :
8303 diag::ext_typename_outside_of_template)
8304 << FixItHint::CreateRemoval(TypenameLoc);
8305
8306 // Translate the parser's template argument list in our AST format.
8307 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
8308 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
8309
8310 TemplateName Template = TemplateIn.get();
8311 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
8312 // Construct a dependent template specialization type.
8313 assert(DTN && "dependent template has non-dependent name?")((DTN && "dependent template has non-dependent name?"
) ? static_cast<void> (0) : __assert_fail ("DTN && \"dependent template has non-dependent name?\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8313, __PRETTY_FUNCTION__))
;
8314 assert(DTN->getQualifier() == SS.getScopeRep())((DTN->getQualifier() == SS.getScopeRep()) ? static_cast<
void> (0) : __assert_fail ("DTN->getQualifier() == SS.getScopeRep()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8314, __PRETTY_FUNCTION__))
;
8315 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
8316 DTN->getQualifier(),
8317 DTN->getIdentifier(),
8318 TemplateArgs);
8319
8320 // Create source-location information for this type.
8321 TypeLocBuilder Builder;
8322 DependentTemplateSpecializationTypeLoc SpecTL
8323 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
8324 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
8325 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
8326 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
8327 SpecTL.setTemplateNameLoc(TemplateNameLoc);
8328 SpecTL.setLAngleLoc(LAngleLoc);
8329 SpecTL.setRAngleLoc(RAngleLoc);
8330 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8331 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
8332 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
8333 }
8334
8335 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
8336 if (T.isNull())
8337 return true;
8338
8339 // Provide source-location information for the template specialization type.
8340 TypeLocBuilder Builder;
8341 TemplateSpecializationTypeLoc SpecTL
8342 = Builder.push<TemplateSpecializationTypeLoc>(T);
8343 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
8344 SpecTL.setTemplateNameLoc(TemplateNameLoc);
8345 SpecTL.setLAngleLoc(LAngleLoc);
8346 SpecTL.setRAngleLoc(RAngleLoc);
8347 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8348 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
8349
8350 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
8351 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
8352 TL.setElaboratedKeywordLoc(TypenameLoc);
8353 TL.setQualifierLoc(SS.getWithLocInContext(Context));
8354
8355 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
8356 return CreateParsedType(T, TSI);
8357}
8358
8359
8360/// Determine whether this failed name lookup should be treated as being
8361/// disabled by a usage of std::enable_if.
8362static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
8363 SourceRange &CondRange) {
8364 // We must be looking for a ::type...
8365 if (!II.isStr("type"))
8366 return false;
8367
8368 // ... within an explicitly-written template specialization...
8369 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
8370 return false;
8371 TypeLoc EnableIfTy = NNS.getTypeLoc();
8372 TemplateSpecializationTypeLoc EnableIfTSTLoc =
8373 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
8374 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
8375 return false;
8376 const TemplateSpecializationType *EnableIfTST =
8377 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
8378
8379 // ... which names a complete class template declaration...
8380 const TemplateDecl *EnableIfDecl =
8381 EnableIfTST->getTemplateName().getAsTemplateDecl();
8382 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
8383 return false;
8384
8385 // ... called "enable_if".
8386 const IdentifierInfo *EnableIfII =
8387 EnableIfDecl->getDeclName().getAsIdentifierInfo();
8388 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
8389 return false;
8390
8391 // Assume the first template argument is the condition.
8392 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
8393 return true;
8394}
8395
8396/// \brief Build the type that describes a C++ typename specifier,
8397/// e.g., "typename T::type".
8398QualType
8399Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
8400 SourceLocation KeywordLoc,
8401 NestedNameSpecifierLoc QualifierLoc,
8402 const IdentifierInfo &II,
8403 SourceLocation IILoc) {
8404 CXXScopeSpec SS;
8405 SS.Adopt(QualifierLoc);
8406
8407 DeclContext *Ctx = computeDeclContext(SS);
8408 if (!Ctx) {
8409 // If the nested-name-specifier is dependent and couldn't be
8410 // resolved to a type, build a typename type.
8411 assert(QualifierLoc.getNestedNameSpecifier()->isDependent())((QualifierLoc.getNestedNameSpecifier()->isDependent()) ? static_cast
<void> (0) : __assert_fail ("QualifierLoc.getNestedNameSpecifier()->isDependent()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn285492/tools/clang/lib/Sema/SemaTemplate.cpp"
, 8411, __PRETTY_FUNCTION__))
;
8412 return Context.getDependentNameType(Keyword,
8413 QualifierLoc.getNestedNameSpecifier(),
8414 &II);
8415 }
8416
8417 // If the nested-name-specifier refers to the current instantiation,
8418 // the "typename" keyword itself is superfluous. In C++03, the
8419 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
8420 // allows such extraneous "typename" keywords, and we retroactively
8421 // apply this DR to C++03 code with only a warning. In any case we continue.
8422
8423 if (RequireCompleteDeclContext(SS, Ctx))
8424 return QualType();
8425
8426 DeclarationName Name(&II);
8427 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
8428 LookupQualifiedName(Result, Ctx, SS);
8429 unsigned DiagID = 0;
8430 Decl *Referenced = nullptr;
8431 switch (Result.getResultKind()) {
8432 case LookupResult::NotFound: {
8433 // If we're looking up 'type' within a template named 'enable_if', produce
8434 // a more specific diagnostic.
8435 SourceRange CondRange;
8436 if (isEnableIf(QualifierLoc, II, CondRange)) {
8437 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
8438 << Ctx << CondRange;
8439 return QualType();
8440 }
8441
8442 DiagID = diag::err_typename_nested_not_found;
8443 break;
8444 }
8445
8446 case LookupResult::FoundUnresolvedValue: {
8447 // We found a using declaration that is a value. Most likely, the using
8448 // declaration itself is meant to have the 'typename' keyword.
8449 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8450 IILoc);
8451 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
8452 << Name << Ctx << FullRange;
8453 if (UnresolvedUsingValueDecl *Using
8454 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
8455 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
8456 Diag(Loc, diag::note_using_value_decl_missing_typename)
8457 << FixItHint::CreateInsertion(Loc, "typename ");
8458 }
8459 }
8460 // Fall through to create a dependent typename type, from which we can recover
8461 // better.
8462
8463 case LookupResult::NotFoundInCurrentInstantiation:
8464 // Okay, it's a member of an unknown instantiation.
8465 return Context.getDependentNameType(Keyword,
8466 QualifierLoc.getNestedNameSpecifier(),
8467 &II);
8468
8469 case LookupResult::Found:
8470 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
8471 // We found a type. Build an ElaboratedType, since the
8472 // typename-specifier was just sugar.
8473 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
8474 return Context.getElaboratedType(ETK_Typename,
8475 QualifierLoc.getNestedNameSpecifier(),
8476 Context.getTypeDeclType(Type));
8477 }
8478
8479 DiagID = diag::err_typename_nested_not_type;
8480 Referenced = Result.getFoundDecl();
8481 break;
8482
8483 case LookupResult::FoundOverloaded:
8484 DiagID = diag::err_typename_nested_not_type;
8485 Referenced = *Result.begin();
8486 break;
8487
8488 case LookupResult::Ambiguous:
8489 return QualType();
8490 }
8491
8492 // If we get here, it's because name lookup did not find a
8493 // type. Emit an appropriate diagnostic and return an error.
8494 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8495 IILoc);
8496 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
8497 if (Referenced)
8498 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
8499 << Name;
8500 return QualType();
8501}
8502
8503namespace {
8504 // See Sema::RebuildTypeInCurrentInstantiation
8505 class CurrentInstantiationRebuilder
8506 : public TreeTransform<CurrentInstantiationRebuilder> {
8507 SourceLocation Loc;
8508 DeclarationName Entity;
8509
8510 public:
8511 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
8512
8513 CurrentInstantiationRebuilder(Sema &SemaRef,
8514 SourceLocation Loc,
8515 DeclarationName Entity)
8516 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
8517 Loc(Loc), Entity(Entity) { }
8518
8519 /// \brief Determine whether the given type \p T has already been
8520 /// transformed.
8521 ///
8522 /// For the purposes of type reconstruction, a type has already been
8523 /// transformed if it is NULL or if it is not dependent.
8524 bool AlreadyTransformed(QualType T) {
8525 return T.isNull() || !T->isDependentType();
8526 }
8527
8528 /// \brief Returns the location of the entity whose type is being
8529 /// rebuilt.
8530 SourceLocation getBaseLocation() { return Loc; }
8531
8532 /// \brief Returns the name of the entity whose type is being rebuilt.
8533 DeclarationName getBaseEntity() { return Entity; }
8534
8535 /// \brief Sets the "base" location and entity when that
8536 /// information is known based on another transformation.
8537 void setBase(SourceLocation Loc, DeclarationName Entity) {
8538 this->Loc = Loc;
8539 this->Entity = Entity;
8540 }
8541
8542 ExprResult TransformLambdaExpr(LambdaExpr *E) {
8543 // Lambdas never need to be transformed.
8544 return E;
8545 }
8546 };
8547} // end anonymous namespace
8548
8549/// \brief Rebuilds a type within the context of the current instantiation.
8550///
8551/// The type \p T is part of the type of an out-of-line member definition of
8552/// a class template (or class template partial specialization) that was parsed
8553/// and constructed before we entered the scope of the class template (or
8554/// partial specialization thereof). This routine will rebuild that type now
8555/// that we have entered the declarator's scope, which may produce different
8556/// canonical types, e.g.,
8557///
8558/// \code
8559/// template<typename T>
8560/// struct X {
8561/// typedef T* pointer;
8562/// pointer data();
8563/// };
8564///
8565/// template<typename T>
8566/// typename X<T>::pointer X<T>::data() { ... }
8567/// \endcode
8568///
8569/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
8570/// since we do not know that we can look into X<T> when we parsed the type.
8571/// This function will rebuild the type, performing the lookup of "pointer"
8572/// in X<T> and returning an ElaboratedType whose canonical type is the same
8573/// as the canonical type of T*, allowing the return types of the out-of-line
8574/// definition and the declaration to match.
8575TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
8576 SourceLocation Loc,
8577 DeclarationName Name) {
8578 if (!T || !T->getType()->isDependentType())
8579 return T;
8580
8581 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
8582 return Rebuilder.TransformType(T);
8583}
8584
8585ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
8586 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
8587 DeclarationName());
8588 return Rebuilder.TransformExpr(E);
8589}
8590
8591bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
8592 if (SS.isInvalid())
8593 return true;
8594
8595 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8596 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
8597 DeclarationName());
8598 NestedNameSpecifierLoc Rebuilt
8599 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
8600 if (!Rebuilt)
8601 return true;
8602
8603 SS.Adopt(Rebuilt);
8604 return false;
8605}
8606
8607/// \brief Rebuild the template parameters now that we know we're in a current
8608/// instantiation.
8609bool Sema::RebuildTemplateParamsInCurrentInstantiation(
8610 TemplateParameterList *Params) {
8611 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8612 Decl *Param = Params->getParam(I);
8613
8614 // There is nothing to rebuild in a type parameter.
8615 if (isa<TemplateTypeParmDecl>(Param))
8616 continue;
8617
8618 // Rebuild the template parameter list of a template template parameter.
8619 if (TemplateTemplateParmDecl *TTP
8620 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
8621 if (RebuildTemplateParamsInCurrentInstantiation(
8622 TTP->getTemplateParameters()))
8623 return true;
8624
8625 continue;
8626 }
8627
8628 // Rebuild the type of a non-type template parameter.
8629 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
8630 TypeSourceInfo *NewTSI
8631 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
8632 NTTP->getLocation(),
8633 NTTP->getDeclName());
8634 if (!NewTSI)
8635 return true;
8636
8637 if (NewTSI != NTTP->getTypeSourceInfo()) {
8638 NTTP->setTypeSourceInfo(NewTSI);
8639 NTTP->setType(NewTSI->getType());
8640 }
8641 }
8642
8643 return false;
8644}
8645
8646/// \brief Produces a formatted string that describes the binding of
8647/// template parameters to template arguments.
8648std::string
8649Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8650 const TemplateArgumentList &Args) {
8651 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
8652}
8653
8654std::string
8655Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8656 const TemplateArgument *Args,
8657 unsigned NumArgs) {
8658 SmallString<128> Str;
8659 llvm::raw_svector_ostream Out(Str);
8660
8661 if (!Params || Params->size() == 0 || NumArgs == 0)
8662 return std::string();
8663
8664 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8665 if (I >= NumArgs)
8666 break;
8667
8668 if (I == 0)
8669 Out << "[with ";
8670 else
8671 Out << ", ";
8672
8673 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
8674 Out << Id->getName();
8675 } else {
8676 Out << '$' << I;
8677 }
8678
8679 Out << " = ";
8680 Args[I].print(getPrintingPolicy(), Out);
8681 }
8682
8683 Out << ']';
8684 return Out.str();
8685}
8686
8687void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8688 CachedTokens &Toks) {
8689 if (!FD)
8690 return;
8691
8692 auto LPT = llvm::make_unique<LateParsedTemplate>();
8693
8694 // Take tokens to avoid allocations
8695 LPT->Toks.swap(Toks);
8696 LPT->D = FnD;
8697 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
8698
8699 FD->setLateTemplateParsed(true);
8700}
8701
8702void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8703 if (!FD)
8704 return;
8705 FD->setLateTemplateParsed(false);
8706}
8707
8708bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8709 DeclContext *DC = CurContext;
8710
8711 while (DC) {
8712 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8713 const FunctionDecl *FD = RD->isLocalClass();
8714 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8715 } else if (DC->isTranslationUnit() || DC->isNamespace())
8716 return false;
8717
8718 DC = DC->getParent();
8719 }
8720 return false;
8721}
8722
8723namespace {
8724/// \brief Walk the path from which a declaration was instantiated, and check
8725/// that every explicit specialization along that path is visible. This enforces
8726/// C++ [temp.expl.spec]/6:
8727///
8728/// If a template, a member template or a member of a class template is
8729/// explicitly specialized then that specialization shall be declared before
8730/// the first use of that specialization that would cause an implicit
8731/// instantiation to take place, in every translation unit in which such a
8732/// use occurs; no diagnostic is required.
8733///
8734/// and also C++ [temp.class.spec]/1:
8735///
8736/// A partial specialization shall be declared before the first use of a
8737/// class template specialization that would make use of the partial
8738/// specialization as the result of an implicit or explicit instantiation
8739/// in every translation unit in which such a use occurs; no diagnostic is
8740/// required.
8741class ExplicitSpecializationVisibilityChecker {
8742 Sema &S;
8743 SourceLocation Loc;
8744 llvm::SmallVector<Module *, 8> Modules;
8745
8746public:
8747 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
8748 : S(S), Loc(Loc) {}
8749
8750 void check(NamedDecl *ND) {
8751 if (auto *FD = dyn_cast<FunctionDecl>(ND))
8752 return checkImpl(FD);
8753 if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
8754 return checkImpl(RD);
8755 if (auto *VD = dyn_cast<VarDecl>(ND))
8756 return checkImpl(VD);
8757 if (auto *ED = dyn_cast<EnumDecl>(ND))
8758 return checkImpl(ED);
8759 }
8760
8761private:
8762 void diagnose(NamedDecl *D, bool IsPartialSpec) {
8763 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
8764 : Sema::MissingImportKind::ExplicitSpecialization;
8765 const bool Recover = true;
8766
8767 // If we got a custom set of modules (because only a subset of the
8768 // declarations are interesting), use them, otherwise let
8769 // diagnoseMissingImport intelligently pick some.
8770 if (Modules.empty())
8771 S.diagnoseMissingImport(Loc, D, Kind, Recover);
8772 else
8773 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
8774 }
8775
8776 // Check a specific declaration. There are three problematic cases:
8777 //
8778 // 1) The declaration is an explicit specialization of a template
8779 // specialization.
8780 // 2) The declaration is an explicit specialization of a member of an
8781 // templated class.
8782 // 3) The declaration is an instantiation of a template, and that template
8783 // is an explicit specialization of a member of a templated class.
8784 //
8785 // We don't need to go any deeper than that, as the instantiation of the
8786 // surrounding class / etc is not triggered by whatever triggered this
8787 // instantiation, and thus should be checked elsewhere.
8788 template<typename SpecDecl>
8789 void checkImpl(SpecDecl *Spec) {
8790 bool IsHiddenExplicitSpecialization = false;
8791 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
8792 IsHiddenExplicitSpecialization =
8793 Spec->getMemberSpecializationInfo()
8794 ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
8795 : !S.hasVisibleDeclaration(Spec);
8796 } else {
8797 checkInstantiated(Spec);
8798 }
8799
8800 if (IsHiddenExplicitSpecialization)
8801 diagnose(Spec->getMostRecentDecl(), false);
8802 }
8803
8804 void checkInstantiated(FunctionDecl *FD) {
8805 if (auto *TD = FD->getPrimaryTemplate())
8806 checkTemplate(TD);
8807 }
8808
8809 void checkInstantiated(CXXRecordDecl *RD) {
8810 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
8811 if (!SD)
8812 return;
8813
8814 auto From = SD->getSpecializedTemplateOrPartial();
8815 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
8816 checkTemplate(TD);
8817 else if (auto *TD =
8818 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
8819 if (!S.hasVisibleDeclaration(TD))
8820 diagnose(TD, true);
8821 checkTemplate(TD);
8822 }
8823 }
8824
8825 void checkInstantiated(VarDecl *RD) {
8826 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
8827 if (!SD)
8828 return;
8829
8830 auto From = SD->getSpecializedTemplateOrPartial();
8831 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
8832 checkTemplate(TD);
8833 else if (auto *TD =
8834 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
8835 if (!S.hasVisibleDeclaration(TD))
8836 diagnose(TD, true);
8837 checkTemplate(TD);
8838 }
8839 }
8840
8841 void checkInstantiated(EnumDecl *FD) {}
8842
8843 template<typename TemplDecl>
8844 void checkTemplate(TemplDecl *TD) {
8845 if (TD->isMemberSpecialization()) {
8846 if (!S.hasVisibleMemberSpecialization(TD, &Modules))
8847 diagnose(TD->getMostRecentDecl(), false);
8848 }
8849 }
8850};
8851} // end anonymous namespace
8852
8853void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
8854 if (!getLangOpts().Modules)
8855 return;
8856
8857 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
8858}
8859
8860/// \brief Check whether a template partial specialization that we've discovered
8861/// is hidden, and produce suitable diagnostics if so.
8862void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
8863 NamedDecl *Spec) {
8864 llvm::SmallVector<Module *, 8> Modules;
8865 if (!hasVisibleDeclaration(Spec, &Modules))
8866 diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
8867 MissingImportKind::PartialSpecialization,
8868 /*Recover*/true);
8869}