Bug Summary

File:tools/clang/lib/Sema/SemaTemplate.cpp
Warning:line 6920, column 9
Called C++ object pointer is null

Annotated Source Code

1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===//
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclFriend.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/TypeVisitor.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/ParsedTemplate.h"
28#include "clang/Sema/Scope.h"
29#include "clang/Sema/SemaInternal.h"
30#include "clang/Sema/Template.h"
31#include "clang/Sema/TemplateDeduction.h"
32#include "llvm/ADT/SmallBitVector.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35
36#include <iterator>
37using namespace clang;
38using namespace sema;
39
40// Exported for use by Parser.
41SourceRange
42clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
43 unsigned N) {
44 if (!N) return SourceRange();
45 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
46}
47
48namespace clang {
49/// \brief [temp.constr.decl]p2: A template's associated constraints are
50/// defined as a single constraint-expression derived from the introduced
51/// constraint-expressions [ ... ].
52///
53/// \param Params The template parameter list and optional requires-clause.
54///
55/// \param FD The underlying templated function declaration for a function
56/// template.
57static Expr *formAssociatedConstraints(TemplateParameterList *Params,
58 FunctionDecl *FD);
59}
60
61static Expr *clang::formAssociatedConstraints(TemplateParameterList *Params,
62 FunctionDecl *FD) {
63 // FIXME: Concepts: collect additional introduced constraint-expressions
64 assert(!FD && "Cannot collect constraints from function declaration yet.")((!FD && "Cannot collect constraints from function declaration yet."
) ? static_cast<void> (0) : __assert_fail ("!FD && \"Cannot collect constraints from function declaration yet.\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 64, __PRETTY_FUNCTION__))
;
65 return Params->getRequiresClause();
66}
67
68/// \brief Determine whether the declaration found is acceptable as the name
69/// of a template and, if so, return that template declaration. Otherwise,
70/// returns NULL.
71static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
72 NamedDecl *Orig,
73 bool AllowFunctionTemplates) {
74 NamedDecl *D = Orig->getUnderlyingDecl();
75
76 if (isa<TemplateDecl>(D)) {
77 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
78 return nullptr;
79
80 return Orig;
81 }
82
83 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
84 // C++ [temp.local]p1:
85 // Like normal (non-template) classes, class templates have an
86 // injected-class-name (Clause 9). The injected-class-name
87 // can be used with or without a template-argument-list. When
88 // it is used without a template-argument-list, it is
89 // equivalent to the injected-class-name followed by the
90 // template-parameters of the class template enclosed in
91 // <>. When it is used with a template-argument-list, it
92 // refers to the specified class template specialization,
93 // which could be the current specialization or another
94 // specialization.
95 if (Record->isInjectedClassName()) {
96 Record = cast<CXXRecordDecl>(Record->getDeclContext());
97 if (Record->getDescribedClassTemplate())
98 return Record->getDescribedClassTemplate();
99
100 if (ClassTemplateSpecializationDecl *Spec
101 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
102 return Spec->getSpecializedTemplate();
103 }
104
105 return nullptr;
106 }
107
108 return nullptr;
109}
110
111void Sema::FilterAcceptableTemplateNames(LookupResult &R,
112 bool AllowFunctionTemplates) {
113 // The set of class templates we've already seen.
114 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
115 LookupResult::Filter filter = R.makeFilter();
116 while (filter.hasNext()) {
117 NamedDecl *Orig = filter.next();
118 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
119 AllowFunctionTemplates);
120 if (!Repl)
121 filter.erase();
122 else if (Repl != Orig) {
123
124 // C++ [temp.local]p3:
125 // A lookup that finds an injected-class-name (10.2) can result in an
126 // ambiguity in certain cases (for example, if it is found in more than
127 // one base class). If all of the injected-class-names that are found
128 // refer to specializations of the same class template, and if the name
129 // is used as a template-name, the reference refers to the class
130 // template itself and not a specialization thereof, and is not
131 // ambiguous.
132 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
133 if (!ClassTemplates.insert(ClassTmpl).second) {
134 filter.erase();
135 continue;
136 }
137
138 // FIXME: we promote access to public here as a workaround to
139 // the fact that LookupResult doesn't let us remember that we
140 // found this template through a particular injected class name,
141 // which means we end up doing nasty things to the invariants.
142 // Pretending that access is public is *much* safer.
143 filter.replace(Repl, AS_public);
144 }
145 }
146 filter.done();
147}
148
149bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
150 bool AllowFunctionTemplates) {
151 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
152 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
153 return true;
154
155 return false;
156}
157
158TemplateNameKind Sema::isTemplateName(Scope *S,
159 CXXScopeSpec &SS,
160 bool hasTemplateKeyword,
161 UnqualifiedId &Name,
162 ParsedType ObjectTypePtr,
163 bool EnteringContext,
164 TemplateTy &TemplateResult,
165 bool &MemberOfUnknownSpecialization) {
166 assert(getLangOpts().CPlusPlus && "No template names in C!")((getLangOpts().CPlusPlus && "No template names in C!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No template names in C!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 166, __PRETTY_FUNCTION__))
;
167
168 DeclarationName TName;
169 MemberOfUnknownSpecialization = false;
170
171 switch (Name.getKind()) {
172 case UnqualifiedId::IK_Identifier:
173 TName = DeclarationName(Name.Identifier);
174 break;
175
176 case UnqualifiedId::IK_OperatorFunctionId:
177 TName = Context.DeclarationNames.getCXXOperatorName(
178 Name.OperatorFunctionId.Operator);
179 break;
180
181 case UnqualifiedId::IK_LiteralOperatorId:
182 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
183 break;
184
185 default:
186 return TNK_Non_template;
187 }
188
189 QualType ObjectType = ObjectTypePtr.get();
190
191 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
192 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
193 MemberOfUnknownSpecialization);
194 if (R.empty()) return TNK_Non_template;
195 if (R.isAmbiguous()) {
196 // Suppress diagnostics; we'll redo this lookup later.
197 R.suppressDiagnostics();
198
199 // FIXME: we might have ambiguous templates, in which case we
200 // should at least parse them properly!
201 return TNK_Non_template;
202 }
203
204 TemplateName Template;
205 TemplateNameKind TemplateKind;
206
207 unsigned ResultCount = R.end() - R.begin();
208 if (ResultCount > 1) {
209 // We assume that we'll preserve the qualifier from a function
210 // template name in other ways.
211 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
212 TemplateKind = TNK_Function_template;
213
214 // We'll do this lookup again later.
215 R.suppressDiagnostics();
216 } else {
217 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
218
219 if (SS.isSet() && !SS.isInvalid()) {
220 NestedNameSpecifier *Qualifier = SS.getScopeRep();
221 Template = Context.getQualifiedTemplateName(Qualifier,
222 hasTemplateKeyword, TD);
223 } else {
224 Template = TemplateName(TD);
225 }
226
227 if (isa<FunctionTemplateDecl>(TD)) {
228 TemplateKind = TNK_Function_template;
229
230 // We'll do this lookup again later.
231 R.suppressDiagnostics();
232 } else {
233 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __PRETTY_FUNCTION__))
234 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __PRETTY_FUNCTION__))
235 isa<BuiltinTemplateDecl>(TD))((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __PRETTY_FUNCTION__))
;
236 TemplateKind =
237 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
238 }
239 }
240
241 TemplateResult = TemplateTy::make(Template);
242 return TemplateKind;
243}
244
245bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
246 SourceLocation NameLoc,
247 ParsedTemplateTy *Template) {
248 CXXScopeSpec SS;
249 bool MemberOfUnknownSpecialization = false;
250
251 // We could use redeclaration lookup here, but we don't need to: the
252 // syntactic form of a deduction guide is enough to identify it even
253 // if we can't look up the template name at all.
254 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
255 LookupTemplateName(R, S, SS, /*ObjectType*/QualType(),
256 /*EnteringContext*/false, MemberOfUnknownSpecialization);
257
258 if (R.empty()) return false;
259 if (R.isAmbiguous()) {
260 // FIXME: Diagnose an ambiguity if we find at least one template.
261 R.suppressDiagnostics();
262 return false;
263 }
264
265 // We only treat template-names that name type templates as valid deduction
266 // guide names.
267 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
268 if (!TD || !getAsTypeTemplateDecl(TD))
269 return false;
270
271 if (Template)
272 *Template = TemplateTy::make(TemplateName(TD));
273 return true;
274}
275
276bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
277 SourceLocation IILoc,
278 Scope *S,
279 const CXXScopeSpec *SS,
280 TemplateTy &SuggestedTemplate,
281 TemplateNameKind &SuggestedKind) {
282 // We can't recover unless there's a dependent scope specifier preceding the
283 // template name.
284 // FIXME: Typo correction?
285 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
286 computeDeclContext(*SS))
287 return false;
288
289 // The code is missing a 'template' keyword prior to the dependent template
290 // name.
291 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
292 Diag(IILoc, diag::err_template_kw_missing)
293 << Qualifier << II.getName()
294 << FixItHint::CreateInsertion(IILoc, "template ");
295 SuggestedTemplate
296 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
297 SuggestedKind = TNK_Dependent_template_name;
298 return true;
299}
300
301void Sema::LookupTemplateName(LookupResult &Found,
302 Scope *S, CXXScopeSpec &SS,
303 QualType ObjectType,
304 bool EnteringContext,
305 bool &MemberOfUnknownSpecialization) {
306 // Determine where to perform name lookup
307 MemberOfUnknownSpecialization = false;
308 DeclContext *LookupCtx = nullptr;
309 bool isDependent = false;
310 if (!ObjectType.isNull()) {
311 // This nested-name-specifier occurs in a member access expression, e.g.,
312 // x->B::f, and we are looking into the type of the object.
313 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist")((!SS.isSet() && "ObjectType and scope specifier cannot coexist"
) ? static_cast<void> (0) : __assert_fail ("!SS.isSet() && \"ObjectType and scope specifier cannot coexist\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 313, __PRETTY_FUNCTION__))
;
314 LookupCtx = computeDeclContext(ObjectType);
315 isDependent = ObjectType->isDependentType();
316 assert((isDependent || !ObjectType->isIncompleteType() ||(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __PRETTY_FUNCTION__))
317 ObjectType->castAs<TagType>()->isBeingDefined()) &&(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __PRETTY_FUNCTION__))
318 "Caller should have completed object type")(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __PRETTY_FUNCTION__))
;
319
320 // Template names cannot appear inside an Objective-C class or object type.
321 if (ObjectType->isObjCObjectOrInterfaceType()) {
322 Found.clear();
323 return;
324 }
325 } else if (SS.isSet()) {
326 // This nested-name-specifier occurs after another nested-name-specifier,
327 // so long into the context associated with the prior nested-name-specifier.
328 LookupCtx = computeDeclContext(SS, EnteringContext);
329 isDependent = isDependentScopeSpecifier(SS);
330
331 // The declaration context must be complete.
332 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
333 return;
334 }
335
336 bool ObjectTypeSearchedInScope = false;
337 bool AllowFunctionTemplatesInLookup = true;
338 if (LookupCtx) {
339 // Perform "qualified" name lookup into the declaration context we
340 // computed, which is either the type of the base of a member access
341 // expression or the declaration context associated with a prior
342 // nested-name-specifier.
343 LookupQualifiedName(Found, LookupCtx);
344 if (!ObjectType.isNull() && Found.empty()) {
345 // C++ [basic.lookup.classref]p1:
346 // In a class member access expression (5.2.5), if the . or -> token is
347 // immediately followed by an identifier followed by a <, the
348 // identifier must be looked up to determine whether the < is the
349 // beginning of a template argument list (14.2) or a less-than operator.
350 // The identifier is first looked up in the class of the object
351 // expression. If the identifier is not found, it is then looked up in
352 // the context of the entire postfix-expression and shall name a class
353 // or function template.
354 if (S) LookupName(Found, S);
355 ObjectTypeSearchedInScope = true;
356 AllowFunctionTemplatesInLookup = false;
357 }
358 } else if (isDependent && (!S || ObjectType.isNull())) {
359 // We cannot look into a dependent object type or nested nme
360 // specifier.
361 MemberOfUnknownSpecialization = true;
362 return;
363 } else {
364 // Perform unqualified name lookup in the current scope.
365 LookupName(Found, S);
366
367 if (!ObjectType.isNull())
368 AllowFunctionTemplatesInLookup = false;
369 }
370
371 if (Found.empty() && !isDependent) {
372 // If we did not find any names, attempt to correct any typos.
373 DeclarationName Name = Found.getLookupName();
374 Found.clear();
375 // Simple filter callback that, for keywords, only accepts the C++ *_cast
376 auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
377 FilterCCC->WantTypeSpecifiers = false;
378 FilterCCC->WantExpressionKeywords = false;
379 FilterCCC->WantRemainingKeywords = false;
380 FilterCCC->WantCXXNamedCasts = true;
381 if (TypoCorrection Corrected = CorrectTypo(
382 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
383 std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
384 Found.setLookupName(Corrected.getCorrection());
385 if (auto *ND = Corrected.getFoundDecl())
386 Found.addDecl(ND);
387 FilterAcceptableTemplateNames(Found);
388 if (!Found.empty()) {
389 if (LookupCtx) {
390 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
391 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
392 Name.getAsString() == CorrectedStr;
393 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
394 << Name << LookupCtx << DroppedSpecifier
395 << SS.getRange());
396 } else {
397 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
398 }
399 }
400 } else {
401 Found.setLookupName(Name);
402 }
403 }
404
405 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
406 if (Found.empty()) {
407 if (isDependent)
408 MemberOfUnknownSpecialization = true;
409 return;
410 }
411
412 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
413 !getLangOpts().CPlusPlus11) {
414 // C++03 [basic.lookup.classref]p1:
415 // [...] If the lookup in the class of the object expression finds a
416 // template, the name is also looked up in the context of the entire
417 // postfix-expression and [...]
418 //
419 // Note: C++11 does not perform this second lookup.
420 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
421 LookupOrdinaryName);
422 LookupName(FoundOuter, S);
423 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
424
425 if (FoundOuter.empty()) {
426 // - if the name is not found, the name found in the class of the
427 // object expression is used, otherwise
428 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
429 FoundOuter.isAmbiguous()) {
430 // - if the name is found in the context of the entire
431 // postfix-expression and does not name a class template, the name
432 // found in the class of the object expression is used, otherwise
433 FoundOuter.clear();
434 } else if (!Found.isSuppressingDiagnostics()) {
435 // - if the name found is a class template, it must refer to the same
436 // entity as the one found in the class of the object expression,
437 // otherwise the program is ill-formed.
438 if (!Found.isSingleResult() ||
439 Found.getFoundDecl()->getCanonicalDecl()
440 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
441 Diag(Found.getNameLoc(),
442 diag::ext_nested_name_member_ref_lookup_ambiguous)
443 << Found.getLookupName()
444 << ObjectType;
445 Diag(Found.getRepresentativeDecl()->getLocation(),
446 diag::note_ambig_member_ref_object_type)
447 << ObjectType;
448 Diag(FoundOuter.getFoundDecl()->getLocation(),
449 diag::note_ambig_member_ref_scope);
450
451 // Recover by taking the template that we found in the object
452 // expression's type.
453 }
454 }
455 }
456}
457
458void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
459 SourceLocation Less,
460 SourceLocation Greater) {
461 if (TemplateName.isInvalid())
462 return;
463
464 DeclarationNameInfo NameInfo;
465 CXXScopeSpec SS;
466 LookupNameKind LookupKind;
467
468 DeclContext *LookupCtx = nullptr;
469 NamedDecl *Found = nullptr;
470
471 // Figure out what name we looked up.
472 if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
473 NameInfo = ME->getMemberNameInfo();
474 SS.Adopt(ME->getQualifierLoc());
475 LookupKind = LookupMemberName;
476 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
477 Found = ME->getMemberDecl();
478 } else {
479 auto *DRE = cast<DeclRefExpr>(TemplateName.get());
480 NameInfo = DRE->getNameInfo();
481 SS.Adopt(DRE->getQualifierLoc());
482 LookupKind = LookupOrdinaryName;
483 Found = DRE->getFoundDecl();
484 }
485
486 // Try to correct the name by looking for templates and C++ named casts.
487 struct TemplateCandidateFilter : CorrectionCandidateCallback {
488 TemplateCandidateFilter() {
489 WantTypeSpecifiers = false;
490 WantExpressionKeywords = false;
491 WantRemainingKeywords = false;
492 WantCXXNamedCasts = true;
493 };
494 bool ValidateCandidate(const TypoCorrection &Candidate) override {
495 if (auto *ND = Candidate.getCorrectionDecl())
496 return isAcceptableTemplateName(ND->getASTContext(), ND, true);
497 return Candidate.isKeyword();
498 }
499 };
500
501 DeclarationName Name = NameInfo.getName();
502 if (TypoCorrection Corrected =
503 CorrectTypo(NameInfo, LookupKind, S, &SS,
504 llvm::make_unique<TemplateCandidateFilter>(),
505 CTK_ErrorRecovery, LookupCtx)) {
506 auto *ND = Corrected.getFoundDecl();
507 if (ND)
508 ND = isAcceptableTemplateName(Context, ND,
509 /*AllowFunctionTemplates*/ true);
510 if (ND || Corrected.isKeyword()) {
511 if (LookupCtx) {
512 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
513 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
514 Name.getAsString() == CorrectedStr;
515 diagnoseTypo(Corrected,
516 PDiag(diag::err_non_template_in_member_template_id_suggest)
517 << Name << LookupCtx << DroppedSpecifier
518 << SS.getRange(), false);
519 } else {
520 diagnoseTypo(Corrected,
521 PDiag(diag::err_non_template_in_template_id_suggest)
522 << Name, false);
523 }
524 if (Found)
525 Diag(Found->getLocation(),
526 diag::note_non_template_in_template_id_found);
527 return;
528 }
529 }
530
531 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
532 << Name << SourceRange(Less, Greater);
533 if (Found)
534 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
535}
536
537/// ActOnDependentIdExpression - Handle a dependent id-expression that
538/// was just parsed. This is only possible with an explicit scope
539/// specifier naming a dependent type.
540ExprResult
541Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
542 SourceLocation TemplateKWLoc,
543 const DeclarationNameInfo &NameInfo,
544 bool isAddressOfOperand,
545 const TemplateArgumentListInfo *TemplateArgs) {
546 DeclContext *DC = getFunctionLevelDeclContext();
547
548 // C++11 [expr.prim.general]p12:
549 // An id-expression that denotes a non-static data member or non-static
550 // member function of a class can only be used:
551 // (...)
552 // - if that id-expression denotes a non-static data member and it
553 // appears in an unevaluated operand.
554 //
555 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
556 // CXXDependentScopeMemberExpr. The former can instantiate to either
557 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
558 // always a MemberExpr.
559 bool MightBeCxx11UnevalField =
560 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
561
562 // Check if the nested name specifier is an enum type.
563 bool IsEnum = false;
564 if (NestedNameSpecifier *NNS = SS.getScopeRep())
565 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
566
567 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
568 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
569 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
570
571 // Since the 'this' expression is synthesized, we don't need to
572 // perform the double-lookup check.
573 NamedDecl *FirstQualifierInScope = nullptr;
574
575 return CXXDependentScopeMemberExpr::Create(
576 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
577 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
578 FirstQualifierInScope, NameInfo, TemplateArgs);
579 }
580
581 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
582}
583
584ExprResult
585Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
586 SourceLocation TemplateKWLoc,
587 const DeclarationNameInfo &NameInfo,
588 const TemplateArgumentListInfo *TemplateArgs) {
589 return DependentScopeDeclRefExpr::Create(
590 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
591 TemplateArgs);
592}
593
594
595/// Determine whether we would be unable to instantiate this template (because
596/// it either has no definition, or is in the process of being instantiated).
597bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
598 NamedDecl *Instantiation,
599 bool InstantiatedFromMember,
600 const NamedDecl *Pattern,
601 const NamedDecl *PatternDef,
602 TemplateSpecializationKind TSK,
603 bool Complain /*= true*/) {
604 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 605, __PRETTY_FUNCTION__))
605 isa<VarDecl>(Instantiation))((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 605, __PRETTY_FUNCTION__))
;
606
607 bool IsEntityBeingDefined = false;
608 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
609 IsEntityBeingDefined = TD->isBeingDefined();
610
611 if (PatternDef && !IsEntityBeingDefined) {
612 NamedDecl *SuggestedDef = nullptr;
613 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
614 /*OnlyNeedComplete*/false)) {
615 // If we're allowed to diagnose this and recover, do so.
616 bool Recover = Complain && !isSFINAEContext();
617 if (Complain)
618 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
619 Sema::MissingImportKind::Definition, Recover);
620 return !Recover;
621 }
622 return false;
623 }
624
625 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
626 return true;
627
628 llvm::Optional<unsigned> Note;
629 QualType InstantiationTy;
630 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
631 InstantiationTy = Context.getTypeDeclType(TD);
632 if (PatternDef) {
633 Diag(PointOfInstantiation,
634 diag::err_template_instantiate_within_definition)
635 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
636 << InstantiationTy;
637 // Not much point in noting the template declaration here, since
638 // we're lexically inside it.
639 Instantiation->setInvalidDecl();
640 } else if (InstantiatedFromMember) {
641 if (isa<FunctionDecl>(Instantiation)) {
642 Diag(PointOfInstantiation,
643 diag::err_explicit_instantiation_undefined_member)
644 << /*member function*/ 1 << Instantiation->getDeclName()
645 << Instantiation->getDeclContext();
646 Note = diag::note_explicit_instantiation_here;
647 } else {
648 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!")((isa<TagDecl>(Instantiation) && "Must be a TagDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) && \"Must be a TagDecl!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 648, __PRETTY_FUNCTION__))
;
649 Diag(PointOfInstantiation,
650 diag::err_implicit_instantiate_member_undefined)
651 << InstantiationTy;
652 Note = diag::note_member_declared_at;
653 }
654 } else {
655 if (isa<FunctionDecl>(Instantiation)) {
656 Diag(PointOfInstantiation,
657 diag::err_explicit_instantiation_undefined_func_template)
658 << Pattern;
659 Note = diag::note_explicit_instantiation_here;
660 } else if (isa<TagDecl>(Instantiation)) {
661 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
662 << (TSK != TSK_ImplicitInstantiation)
663 << InstantiationTy;
664 Note = diag::note_template_decl_here;
665 } else {
666 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!")((isa<VarDecl>(Instantiation) && "Must be a VarDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<VarDecl>(Instantiation) && \"Must be a VarDecl!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 666, __PRETTY_FUNCTION__))
;
667 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
668 Diag(PointOfInstantiation,
669 diag::err_explicit_instantiation_undefined_var_template)
670 << Instantiation;
671 Instantiation->setInvalidDecl();
672 } else
673 Diag(PointOfInstantiation,
674 diag::err_explicit_instantiation_undefined_member)
675 << /*static data member*/ 2 << Instantiation->getDeclName()
676 << Instantiation->getDeclContext();
677 Note = diag::note_explicit_instantiation_here;
678 }
679 }
680 if (Note) // Diagnostics were emitted.
681 Diag(Pattern->getLocation(), Note.getValue());
682
683 // In general, Instantiation isn't marked invalid to get more than one
684 // error for multiple undefined instantiations. But the code that does
685 // explicit declaration -> explicit definition conversion can't handle
686 // invalid declarations, so mark as invalid in that case.
687 if (TSK == TSK_ExplicitInstantiationDeclaration)
688 Instantiation->setInvalidDecl();
689 return true;
690}
691
692/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
693/// that the template parameter 'PrevDecl' is being shadowed by a new
694/// declaration at location Loc. Returns true to indicate that this is
695/// an error, and false otherwise.
696void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
697 assert(PrevDecl->isTemplateParameter() && "Not a template parameter")((PrevDecl->isTemplateParameter() && "Not a template parameter"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->isTemplateParameter() && \"Not a template parameter\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 697, __PRETTY_FUNCTION__))
;
698
699 // Microsoft Visual C++ permits template parameters to be shadowed.
700 if (getLangOpts().MicrosoftExt)
701 return;
702
703 // C++ [temp.local]p4:
704 // A template-parameter shall not be redeclared within its
705 // scope (including nested scopes).
706 Diag(Loc, diag::err_template_param_shadow)
707 << cast<NamedDecl>(PrevDecl)->getDeclName();
708 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
709}
710
711/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
712/// the parameter D to reference the templated declaration and return a pointer
713/// to the template declaration. Otherwise, do nothing to D and return null.
714TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
715 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
716 D = Temp->getTemplatedDecl();
717 return Temp;
718 }
719 return nullptr;
720}
721
722ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
723 SourceLocation EllipsisLoc) const {
724 assert(Kind == Template &&((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 725, __PRETTY_FUNCTION__))
725 "Only template template arguments can be pack expansions here")((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 725, __PRETTY_FUNCTION__))
;
726 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 727, __PRETTY_FUNCTION__))
727 "Template template argument pack expansion without packs")((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 727, __PRETTY_FUNCTION__))
;
728 ParsedTemplateArgument Result(*this);
729 Result.EllipsisLoc = EllipsisLoc;
730 return Result;
731}
732
733static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
734 const ParsedTemplateArgument &Arg) {
735
736 switch (Arg.getKind()) {
737 case ParsedTemplateArgument::Type: {
738 TypeSourceInfo *DI;
739 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
740 if (!DI)
741 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
742 return TemplateArgumentLoc(TemplateArgument(T), DI);
743 }
744
745 case ParsedTemplateArgument::NonType: {
746 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
747 return TemplateArgumentLoc(TemplateArgument(E), E);
748 }
749
750 case ParsedTemplateArgument::Template: {
751 TemplateName Template = Arg.getAsTemplate().get();
752 TemplateArgument TArg;
753 if (Arg.getEllipsisLoc().isValid())
754 TArg = TemplateArgument(Template, Optional<unsigned int>());
755 else
756 TArg = Template;
757 return TemplateArgumentLoc(TArg,
758 Arg.getScopeSpec().getWithLocInContext(
759 SemaRef.Context),
760 Arg.getLocation(),
761 Arg.getEllipsisLoc());
762 }
763 }
764
765 llvm_unreachable("Unhandled parsed template argument")::llvm::llvm_unreachable_internal("Unhandled parsed template argument"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 765)
;
766}
767
768/// \brief Translates template arguments as provided by the parser
769/// into template arguments used by semantic analysis.
770void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
771 TemplateArgumentListInfo &TemplateArgs) {
772 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
773 TemplateArgs.addArgument(translateTemplateArgument(*this,
774 TemplateArgsIn[I]));
775}
776
777static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
778 SourceLocation Loc,
779 IdentifierInfo *Name) {
780 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
781 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
782 if (PrevDecl && PrevDecl->isTemplateParameter())
783 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
784}
785
786/// ActOnTypeParameter - Called when a C++ template type parameter
787/// (e.g., "typename T") has been parsed. Typename specifies whether
788/// the keyword "typename" was used to declare the type parameter
789/// (otherwise, "class" was used), and KeyLoc is the location of the
790/// "class" or "typename" keyword. ParamName is the name of the
791/// parameter (NULL indicates an unnamed template parameter) and
792/// ParamNameLoc is the location of the parameter name (if any).
793/// If the type parameter has a default argument, it will be added
794/// later via ActOnTypeParameterDefault.
795Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
796 SourceLocation EllipsisLoc,
797 SourceLocation KeyLoc,
798 IdentifierInfo *ParamName,
799 SourceLocation ParamNameLoc,
800 unsigned Depth, unsigned Position,
801 SourceLocation EqualLoc,
802 ParsedType DefaultArg) {
803 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 804, __PRETTY_FUNCTION__))
804 "Template type parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 804, __PRETTY_FUNCTION__))
;
805
806 SourceLocation Loc = ParamNameLoc;
807 if (!ParamName)
808 Loc = KeyLoc;
809
810 bool IsParameterPack = EllipsisLoc.isValid();
811 TemplateTypeParmDecl *Param
812 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
813 KeyLoc, Loc, Depth, Position, ParamName,
814 Typename, IsParameterPack);
815 Param->setAccess(AS_public);
816
817 if (ParamName) {
818 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
819
820 // Add the template parameter into the current scope.
821 S->AddDecl(Param);
822 IdResolver.AddDecl(Param);
823 }
824
825 // C++0x [temp.param]p9:
826 // A default template-argument may be specified for any kind of
827 // template-parameter that is not a template parameter pack.
828 if (DefaultArg && IsParameterPack) {
829 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
830 DefaultArg = nullptr;
831 }
832
833 // Handle the default argument, if provided.
834 if (DefaultArg) {
835 TypeSourceInfo *DefaultTInfo;
836 GetTypeFromParser(DefaultArg, &DefaultTInfo);
837
838 assert(DefaultTInfo && "expected source information for type")((DefaultTInfo && "expected source information for type"
) ? static_cast<void> (0) : __assert_fail ("DefaultTInfo && \"expected source information for type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 838, __PRETTY_FUNCTION__))
;
839
840 // Check for unexpanded parameter packs.
841 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
842 UPPC_DefaultArgument))
843 return Param;
844
845 // Check the template argument itself.
846 if (CheckTemplateArgument(Param, DefaultTInfo)) {
847 Param->setInvalidDecl();
848 return Param;
849 }
850
851 Param->setDefaultArgument(DefaultTInfo);
852 }
853
854 return Param;
855}
856
857/// \brief Check that the type of a non-type template parameter is
858/// well-formed.
859///
860/// \returns the (possibly-promoted) parameter type if valid;
861/// otherwise, produces a diagnostic and returns a NULL type.
862QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
863 SourceLocation Loc) {
864 if (TSI->getType()->isUndeducedType()) {
865 // C++1z [temp.dep.expr]p3:
866 // An id-expression is type-dependent if it contains
867 // - an identifier associated by name lookup with a non-type
868 // template-parameter declared with a type that contains a
869 // placeholder type (7.1.7.4),
870 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
871 }
872
873 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
874}
875
876QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
877 SourceLocation Loc) {
878 // We don't allow variably-modified types as the type of non-type template
879 // parameters.
880 if (T->isVariablyModifiedType()) {
881 Diag(Loc, diag::err_variably_modified_nontype_template_param)
882 << T;
883 return QualType();
884 }
885
886 // C++ [temp.param]p4:
887 //
888 // A non-type template-parameter shall have one of the following
889 // (optionally cv-qualified) types:
890 //
891 // -- integral or enumeration type,
892 if (T->isIntegralOrEnumerationType() ||
893 // -- pointer to object or pointer to function,
894 T->isPointerType() ||
895 // -- reference to object or reference to function,
896 T->isReferenceType() ||
897 // -- pointer to member,
898 T->isMemberPointerType() ||
899 // -- std::nullptr_t.
900 T->isNullPtrType() ||
901 // If T is a dependent type, we can't do the check now, so we
902 // assume that it is well-formed.
903 T->isDependentType() ||
904 // Allow use of auto in template parameter declarations.
905 T->isUndeducedType()) {
906 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
907 // are ignored when determining its type.
908 return T.getUnqualifiedType();
909 }
910
911 // C++ [temp.param]p8:
912 //
913 // A non-type template-parameter of type "array of T" or
914 // "function returning T" is adjusted to be of type "pointer to
915 // T" or "pointer to function returning T", respectively.
916 else if (T->isArrayType() || T->isFunctionType())
917 return Context.getDecayedType(T);
918
919 Diag(Loc, diag::err_template_nontype_parm_bad_type)
920 << T;
921
922 return QualType();
923}
924
925Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
926 unsigned Depth,
927 unsigned Position,
928 SourceLocation EqualLoc,
929 Expr *Default) {
930 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
931
932 if (TInfo->getType()->isUndeducedType()) {
933 Diag(D.getIdentifierLoc(),
934 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
935 << QualType(TInfo->getType()->getContainedAutoType(), 0);
936 }
937
938 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 939, __PRETTY_FUNCTION__))
939 "Non-type template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 939, __PRETTY_FUNCTION__))
;
940 bool Invalid = false;
941
942 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
943 if (T.isNull()) {
944 T = Context.IntTy; // Recover with an 'int' type.
945 Invalid = true;
946 }
947
948 IdentifierInfo *ParamName = D.getIdentifier();
949 bool IsParameterPack = D.hasEllipsis();
950 NonTypeTemplateParmDecl *Param
951 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
952 D.getLocStart(),
953 D.getIdentifierLoc(),
954 Depth, Position, ParamName, T,
955 IsParameterPack, TInfo);
956 Param->setAccess(AS_public);
957
958 if (Invalid)
959 Param->setInvalidDecl();
960
961 if (ParamName) {
962 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
963 ParamName);
964
965 // Add the template parameter into the current scope.
966 S->AddDecl(Param);
967 IdResolver.AddDecl(Param);
968 }
969
970 // C++0x [temp.param]p9:
971 // A default template-argument may be specified for any kind of
972 // template-parameter that is not a template parameter pack.
973 if (Default && IsParameterPack) {
974 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
975 Default = nullptr;
976 }
977
978 // Check the well-formedness of the default template argument, if provided.
979 if (Default) {
980 // Check for unexpanded parameter packs.
981 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
982 return Param;
983
984 TemplateArgument Converted;
985 ExprResult DefaultRes =
986 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
987 if (DefaultRes.isInvalid()) {
988 Param->setInvalidDecl();
989 return Param;
990 }
991 Default = DefaultRes.get();
992
993 Param->setDefaultArgument(Default);
994 }
995
996 return Param;
997}
998
999/// ActOnTemplateTemplateParameter - Called when a C++ template template
1000/// parameter (e.g. T in template <template \<typename> class T> class array)
1001/// has been parsed. S is the current scope.
1002Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1003 SourceLocation TmpLoc,
1004 TemplateParameterList *Params,
1005 SourceLocation EllipsisLoc,
1006 IdentifierInfo *Name,
1007 SourceLocation NameLoc,
1008 unsigned Depth,
1009 unsigned Position,
1010 SourceLocation EqualLoc,
1011 ParsedTemplateArgument Default) {
1012 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1013, __PRETTY_FUNCTION__))
1013 "Template template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1013, __PRETTY_FUNCTION__))
;
1014
1015 // Construct the parameter object.
1016 bool IsParameterPack = EllipsisLoc.isValid();
1017 TemplateTemplateParmDecl *Param =
1018 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1019 NameLoc.isInvalid()? TmpLoc : NameLoc,
1020 Depth, Position, IsParameterPack,
1021 Name, Params);
1022 Param->setAccess(AS_public);
1023
1024 // If the template template parameter has a name, then link the identifier
1025 // into the scope and lookup mechanisms.
1026 if (Name) {
1027 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1028
1029 S->AddDecl(Param);
1030 IdResolver.AddDecl(Param);
1031 }
1032
1033 if (Params->size() == 0) {
1034 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1035 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1036 Param->setInvalidDecl();
1037 }
1038
1039 // C++0x [temp.param]p9:
1040 // A default template-argument may be specified for any kind of
1041 // template-parameter that is not a template parameter pack.
1042 if (IsParameterPack && !Default.isInvalid()) {
1043 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1044 Default = ParsedTemplateArgument();
1045 }
1046
1047 if (!Default.isInvalid()) {
1048 // Check only that we have a template template argument. We don't want to
1049 // try to check well-formedness now, because our template template parameter
1050 // might have dependent types in its template parameters, which we wouldn't
1051 // be able to match now.
1052 //
1053 // If none of the template template parameter's template arguments mention
1054 // other template parameters, we could actually perform more checking here.
1055 // However, it isn't worth doing.
1056 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1057 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1058 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1059 << DefaultArg.getSourceRange();
1060 return Param;
1061 }
1062
1063 // Check for unexpanded parameter packs.
1064 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1065 DefaultArg.getArgument().getAsTemplate(),
1066 UPPC_DefaultArgument))
1067 return Param;
1068
1069 Param->setDefaultArgument(Context, DefaultArg);
1070 }
1071
1072 return Param;
1073}
1074
1075/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1076/// constrained by RequiresClause, that contains the template parameters in
1077/// Params.
1078TemplateParameterList *
1079Sema::ActOnTemplateParameterList(unsigned Depth,
1080 SourceLocation ExportLoc,
1081 SourceLocation TemplateLoc,
1082 SourceLocation LAngleLoc,
1083 ArrayRef<NamedDecl *> Params,
1084 SourceLocation RAngleLoc,
1085 Expr *RequiresClause) {
1086 if (ExportLoc.isValid())
1087 Diag(ExportLoc, diag::warn_template_export_unsupported);
1088
1089 return TemplateParameterList::Create(
1090 Context, TemplateLoc, LAngleLoc,
1091 llvm::makeArrayRef(Params.data(), Params.size()),
1092 RAngleLoc, RequiresClause);
1093}
1094
1095static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
1096 if (SS.isSet())
1097 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
1098}
1099
1100DeclResult
1101Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
1102 SourceLocation KWLoc, CXXScopeSpec &SS,
1103 IdentifierInfo *Name, SourceLocation NameLoc,
1104 AttributeList *Attr,
1105 TemplateParameterList *TemplateParams,
1106 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1107 SourceLocation FriendLoc,
1108 unsigned NumOuterTemplateParamLists,
1109 TemplateParameterList** OuterTemplateParamLists,
1110 SkipBodyInfo *SkipBody) {
1111 assert(TemplateParams && TemplateParams->size() > 0 &&((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1112, __PRETTY_FUNCTION__))
1112 "No template parameters")((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1112, __PRETTY_FUNCTION__))
;
1113 assert(TUK != TUK_Reference && "Can only declare or define class templates")((TUK != TUK_Reference && "Can only declare or define class templates"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"Can only declare or define class templates\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1113, __PRETTY_FUNCTION__))
;
1114 bool Invalid = false;
1115
1116 // Check that we can declare a template here.
1117 if (CheckTemplateDeclScope(S, TemplateParams))
1
Calling 'Sema::CheckTemplateDeclScope'
1118 return true;
1119
1120 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1121 assert(Kind != TTK_Enum && "can't build template of enumerated type")((Kind != TTK_Enum && "can't build template of enumerated type"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"can't build template of enumerated type\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1121, __PRETTY_FUNCTION__))
;
1122
1123 // There is no such thing as an unnamed class template.
1124 if (!Name) {
1125 Diag(KWLoc, diag::err_template_unnamed_class);
1126 return true;
1127 }
1128
1129 // Find any previous declaration with this name. For a friend with no
1130 // scope explicitly specified, we only look for tag declarations (per
1131 // C++11 [basic.lookup.elab]p2).
1132 DeclContext *SemanticContext;
1133 LookupResult Previous(*this, Name, NameLoc,
1134 (SS.isEmpty() && TUK == TUK_Friend)
1135 ? LookupTagName : LookupOrdinaryName,
1136 forRedeclarationInCurContext());
1137 if (SS.isNotEmpty() && !SS.isInvalid()) {
1138 SemanticContext = computeDeclContext(SS, true);
1139 if (!SemanticContext) {
1140 // FIXME: Horrible, horrible hack! We can't currently represent this
1141 // in the AST, and historically we have just ignored such friend
1142 // class templates, so don't complain here.
1143 Diag(NameLoc, TUK == TUK_Friend
1144 ? diag::warn_template_qualified_friend_ignored
1145 : diag::err_template_qualified_declarator_no_match)
1146 << SS.getScopeRep() << SS.getRange();
1147 return TUK != TUK_Friend;
1148 }
1149
1150 if (RequireCompleteDeclContext(SS, SemanticContext))
1151 return true;
1152
1153 // If we're adding a template to a dependent context, we may need to
1154 // rebuilding some of the types used within the template parameter list,
1155 // now that we know what the current instantiation is.
1156 if (SemanticContext->isDependentContext()) {
1157 ContextRAII SavedContext(*this, SemanticContext);
1158 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1159 Invalid = true;
1160 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1161 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
1162
1163 LookupQualifiedName(Previous, SemanticContext);
1164 } else {
1165 SemanticContext = CurContext;
1166
1167 // C++14 [class.mem]p14:
1168 // If T is the name of a class, then each of the following shall have a
1169 // name different from T:
1170 // -- every member template of class T
1171 if (TUK != TUK_Friend &&
1172 DiagnoseClassNameShadow(SemanticContext,
1173 DeclarationNameInfo(Name, NameLoc)))
1174 return true;
1175
1176 LookupName(Previous, S);
1177 }
1178
1179 if (Previous.isAmbiguous())
1180 return true;
1181
1182 NamedDecl *PrevDecl = nullptr;
1183 if (Previous.begin() != Previous.end())
1184 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1185
1186 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1187 // Maybe we will complain about the shadowed template parameter.
1188 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1189 // Just pretend that we didn't see the previous declaration.
1190 PrevDecl = nullptr;
1191 }
1192
1193 // If there is a previous declaration with the same name, check
1194 // whether this is a valid redeclaration.
1195 ClassTemplateDecl *PrevClassTemplate =
1196 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1197
1198 // We may have found the injected-class-name of a class template,
1199 // class template partial specialization, or class template specialization.
1200 // In these cases, grab the template that is being defined or specialized.
1201 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1202 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1203 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1204 PrevClassTemplate
1205 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1206 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1207 PrevClassTemplate
1208 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1209 ->getSpecializedTemplate();
1210 }
1211 }
1212
1213 if (TUK == TUK_Friend) {
1214 // C++ [namespace.memdef]p3:
1215 // [...] When looking for a prior declaration of a class or a function
1216 // declared as a friend, and when the name of the friend class or
1217 // function is neither a qualified name nor a template-id, scopes outside
1218 // the innermost enclosing namespace scope are not considered.
1219 if (!SS.isSet()) {
1220 DeclContext *OutermostContext = CurContext;
1221 while (!OutermostContext->isFileContext())
1222 OutermostContext = OutermostContext->getLookupParent();
1223
1224 if (PrevDecl &&
1225 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1226 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1227 SemanticContext = PrevDecl->getDeclContext();
1228 } else {
1229 // Declarations in outer scopes don't matter. However, the outermost
1230 // context we computed is the semantic context for our new
1231 // declaration.
1232 PrevDecl = PrevClassTemplate = nullptr;
1233 SemanticContext = OutermostContext;
1234
1235 // Check that the chosen semantic context doesn't already contain a
1236 // declaration of this name as a non-tag type.
1237 Previous.clear(LookupOrdinaryName);
1238 DeclContext *LookupContext = SemanticContext;
1239 while (LookupContext->isTransparentContext())
1240 LookupContext = LookupContext->getLookupParent();
1241 LookupQualifiedName(Previous, LookupContext);
1242
1243 if (Previous.isAmbiguous())
1244 return true;
1245
1246 if (Previous.begin() != Previous.end())
1247 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1248 }
1249 }
1250 } else if (PrevDecl &&
1251 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1252 S, SS.isValid()))
1253 PrevDecl = PrevClassTemplate = nullptr;
1254
1255 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1256 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1257 if (SS.isEmpty() &&
1258 !(PrevClassTemplate &&
1259 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1260 SemanticContext->getRedeclContext()))) {
1261 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1262 Diag(Shadow->getTargetDecl()->getLocation(),
1263 diag::note_using_decl_target);
1264 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1265 // Recover by ignoring the old declaration.
1266 PrevDecl = PrevClassTemplate = nullptr;
1267 }
1268 }
1269
1270 // TODO Memory management; associated constraints are not always stored.
1271 Expr *const CurAC = formAssociatedConstraints(TemplateParams, nullptr);
1272
1273 if (PrevClassTemplate) {
1274 // Ensure that the template parameter lists are compatible. Skip this check
1275 // for a friend in a dependent context: the template parameter list itself
1276 // could be dependent.
1277 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1278 !TemplateParameterListsAreEqual(TemplateParams,
1279 PrevClassTemplate->getTemplateParameters(),
1280 /*Complain=*/true,
1281 TPL_TemplateMatch))
1282 return true;
1283
1284 // Check for matching associated constraints on redeclarations.
1285 const Expr *const PrevAC = PrevClassTemplate->getAssociatedConstraints();
1286 const bool RedeclACMismatch = [&] {
1287 if (!(CurAC || PrevAC))
1288 return false; // Nothing to check; no mismatch.
1289 if (CurAC && PrevAC) {
1290 llvm::FoldingSetNodeID CurACInfo, PrevACInfo;
1291 CurAC->Profile(CurACInfo, Context, /*Canonical=*/true);
1292 PrevAC->Profile(PrevACInfo, Context, /*Canonical=*/true);
1293 if (CurACInfo == PrevACInfo)
1294 return false; // All good; no mismatch.
1295 }
1296 return true;
1297 }();
1298
1299 if (RedeclACMismatch) {
1300 Diag(CurAC ? CurAC->getLocStart() : NameLoc,
1301 diag::err_template_different_associated_constraints);
1302 Diag(PrevAC ? PrevAC->getLocStart() : PrevClassTemplate->getLocation(),
1303 diag::note_template_prev_declaration) << /*declaration*/0;
1304 return true;
1305 }
1306
1307 // C++ [temp.class]p4:
1308 // In a redeclaration, partial specialization, explicit
1309 // specialization or explicit instantiation of a class template,
1310 // the class-key shall agree in kind with the original class
1311 // template declaration (7.1.5.3).
1312 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1313 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1314 TUK == TUK_Definition, KWLoc, Name)) {
1315 Diag(KWLoc, diag::err_use_with_wrong_tag)
1316 << Name
1317 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1318 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1319 Kind = PrevRecordDecl->getTagKind();
1320 }
1321
1322 // Check for redefinition of this class template.
1323 if (TUK == TUK_Definition) {
1324 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1325 // If we have a prior definition that is not visible, treat this as
1326 // simply making that previous definition visible.
1327 NamedDecl *Hidden = nullptr;
1328 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1329 SkipBody->ShouldSkip = true;
1330 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1331 assert(Tmpl && "original definition of a class template is not a "((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1332, __PRETTY_FUNCTION__))
1332 "class template?")((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1332, __PRETTY_FUNCTION__))
;
1333 makeMergedDefinitionVisible(Hidden);
1334 makeMergedDefinitionVisible(Tmpl);
1335 return Def;
1336 }
1337
1338 Diag(NameLoc, diag::err_redefinition) << Name;
1339 Diag(Def->getLocation(), diag::note_previous_definition);
1340 // FIXME: Would it make sense to try to "forget" the previous
1341 // definition, as part of error recovery?
1342 return true;
1343 }
1344 }
1345 } else if (PrevDecl) {
1346 // C++ [temp]p5:
1347 // A class template shall not have the same name as any other
1348 // template, class, function, object, enumeration, enumerator,
1349 // namespace, or type in the same scope (3.3), except as specified
1350 // in (14.5.4).
1351 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1352 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1353 return true;
1354 }
1355
1356 // Check the template parameter list of this declaration, possibly
1357 // merging in the template parameter list from the previous class
1358 // template declaration. Skip this check for a friend in a dependent
1359 // context, because the template parameter list might be dependent.
1360 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1361 CheckTemplateParameterList(
1362 TemplateParams,
1363 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1364 : nullptr,
1365 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1366 SemanticContext->isDependentContext())
1367 ? TPC_ClassTemplateMember
1368 : TUK == TUK_Friend ? TPC_FriendClassTemplate
1369 : TPC_ClassTemplate))
1370 Invalid = true;
1371
1372 if (SS.isSet()) {
1373 // If the name of the template was qualified, we must be defining the
1374 // template out-of-line.
1375 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1376 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1377 : diag::err_member_decl_does_not_match)
1378 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1379 Invalid = true;
1380 }
1381 }
1382
1383 // If this is a templated friend in a dependent context we should not put it
1384 // on the redecl chain. In some cases, the templated friend can be the most
1385 // recent declaration tricking the template instantiator to make substitutions
1386 // there.
1387 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1388 bool ShouldAddRedecl
1389 = !(TUK == TUK_Friend && CurContext->isDependentContext());
1390
1391 CXXRecordDecl *NewClass =
1392 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1393 PrevClassTemplate && ShouldAddRedecl ?
1394 PrevClassTemplate->getTemplatedDecl() : nullptr,
1395 /*DelayTypeCreation=*/true);
1396 SetNestedNameSpecifier(NewClass, SS);
1397 if (NumOuterTemplateParamLists > 0)
1398 NewClass->setTemplateParameterListsInfo(
1399 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1400 NumOuterTemplateParamLists));
1401
1402 // Add alignment attributes if necessary; these attributes are checked when
1403 // the ASTContext lays out the structure.
1404 if (TUK == TUK_Definition) {
1405 AddAlignmentAttributesForRecord(NewClass);
1406 AddMsStructLayoutForRecord(NewClass);
1407 }
1408
1409 // Attach the associated constraints when the declaration will not be part of
1410 // a decl chain.
1411 Expr *const ACtoAttach =
1412 PrevClassTemplate && ShouldAddRedecl ? nullptr : CurAC;
1413
1414 ClassTemplateDecl *NewTemplate
1415 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1416 DeclarationName(Name), TemplateParams,
1417 NewClass, ACtoAttach);
1418
1419 if (ShouldAddRedecl)
1420 NewTemplate->setPreviousDecl(PrevClassTemplate);
1421
1422 NewClass->setDescribedClassTemplate(NewTemplate);
1423
1424 if (ModulePrivateLoc.isValid())
1425 NewTemplate->setModulePrivate();
1426
1427 // Build the type for the class template declaration now.
1428 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1429 T = Context.getInjectedClassNameType(NewClass, T);
1430 assert(T->isDependentType() && "Class template type is not dependent?")((T->isDependentType() && "Class template type is not dependent?"
) ? static_cast<void> (0) : __assert_fail ("T->isDependentType() && \"Class template type is not dependent?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1430, __PRETTY_FUNCTION__))
;
1431 (void)T;
1432
1433 // If we are providing an explicit specialization of a member that is a
1434 // class template, make a note of that.
1435 if (PrevClassTemplate &&
1436 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1437 PrevClassTemplate->setMemberSpecialization();
1438
1439 // Set the access specifier.
1440 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1441 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1442
1443 // Set the lexical context of these templates
1444 NewClass->setLexicalDeclContext(CurContext);
1445 NewTemplate->setLexicalDeclContext(CurContext);
1446
1447 if (TUK == TUK_Definition)
1448 NewClass->startDefinition();
1449
1450 if (Attr)
1451 ProcessDeclAttributeList(S, NewClass, Attr);
1452
1453 if (PrevClassTemplate)
1454 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1455
1456 AddPushedVisibilityAttribute(NewClass);
1457
1458 if (TUK != TUK_Friend) {
1459 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1460 Scope *Outer = S;
1461 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1462 Outer = Outer->getParent();
1463 PushOnScopeChains(NewTemplate, Outer);
1464 } else {
1465 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1466 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1467 NewClass->setAccess(PrevClassTemplate->getAccess());
1468 }
1469
1470 NewTemplate->setObjectOfFriendDecl();
1471
1472 // Friend templates are visible in fairly strange ways.
1473 if (!CurContext->isDependentContext()) {
1474 DeclContext *DC = SemanticContext->getRedeclContext();
1475 DC->makeDeclVisibleInContext(NewTemplate);
1476 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1477 PushOnScopeChains(NewTemplate, EnclosingScope,
1478 /* AddToContext = */ false);
1479 }
1480
1481 FriendDecl *Friend = FriendDecl::Create(
1482 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1483 Friend->setAccess(AS_public);
1484 CurContext->addDecl(Friend);
1485 }
1486
1487 if (PrevClassTemplate)
1488 CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
1489
1490 if (Invalid) {
1491 NewTemplate->setInvalidDecl();
1492 NewClass->setInvalidDecl();
1493 }
1494
1495 ActOnDocumentableDecl(NewTemplate);
1496
1497 return NewTemplate;
1498}
1499
1500namespace {
1501/// Transform to convert portions of a constructor declaration into the
1502/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
1503struct ConvertConstructorToDeductionGuideTransform {
1504 ConvertConstructorToDeductionGuideTransform(Sema &S,
1505 ClassTemplateDecl *Template)
1506 : SemaRef(S), Template(Template) {}
1507
1508 Sema &SemaRef;
1509 ClassTemplateDecl *Template;
1510
1511 DeclContext *DC = Template->getDeclContext();
1512 CXXRecordDecl *Primary = Template->getTemplatedDecl();
1513 DeclarationName DeductionGuideName =
1514 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
1515
1516 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
1517
1518 // Index adjustment to apply to convert depth-1 template parameters into
1519 // depth-0 template parameters.
1520 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
1521
1522 /// Transform a constructor declaration into a deduction guide.
1523 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
1524 CXXConstructorDecl *CD) {
1525 SmallVector<TemplateArgument, 16> SubstArgs;
1526
1527 LocalInstantiationScope Scope(SemaRef);
1528
1529 // C++ [over.match.class.deduct]p1:
1530 // -- For each constructor of the class template designated by the
1531 // template-name, a function template with the following properties:
1532
1533 // -- The template parameters are the template parameters of the class
1534 // template followed by the template parameters (including default
1535 // template arguments) of the constructor, if any.
1536 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
1537 if (FTD) {
1538 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
1539 SmallVector<NamedDecl *, 16> AllParams;
1540 AllParams.reserve(TemplateParams->size() + InnerParams->size());
1541 AllParams.insert(AllParams.begin(),
1542 TemplateParams->begin(), TemplateParams->end());
1543 SubstArgs.reserve(InnerParams->size());
1544
1545 // Later template parameters could refer to earlier ones, so build up
1546 // a list of substituted template arguments as we go.
1547 for (NamedDecl *Param : *InnerParams) {
1548 MultiLevelTemplateArgumentList Args;
1549 Args.addOuterTemplateArguments(SubstArgs);
1550 Args.addOuterRetainedLevel();
1551 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
1552 if (!NewParam)
1553 return nullptr;
1554 AllParams.push_back(NewParam);
1555 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
1556 SemaRef.Context.getInjectedTemplateArg(NewParam)));
1557 }
1558 TemplateParams = TemplateParameterList::Create(
1559 SemaRef.Context, InnerParams->getTemplateLoc(),
1560 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
1561 /*FIXME: RequiresClause*/ nullptr);
1562 }
1563
1564 // If we built a new template-parameter-list, track that we need to
1565 // substitute references to the old parameters into references to the
1566 // new ones.
1567 MultiLevelTemplateArgumentList Args;
1568 if (FTD) {
1569 Args.addOuterTemplateArguments(SubstArgs);
1570 Args.addOuterRetainedLevel();
1571 }
1572
1573 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
1574 .getAsAdjusted<FunctionProtoTypeLoc>();
1575 assert(FPTL && "no prototype for constructor declaration")((FPTL && "no prototype for constructor declaration")
? static_cast<void> (0) : __assert_fail ("FPTL && \"no prototype for constructor declaration\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1575, __PRETTY_FUNCTION__))
;
1576
1577 // Transform the type of the function, adjusting the return type and
1578 // replacing references to the old parameters with references to the
1579 // new ones.
1580 TypeLocBuilder TLB;
1581 SmallVector<ParmVarDecl*, 8> Params;
1582 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args);
1583 if (NewType.isNull())
1584 return nullptr;
1585 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
1586
1587 return buildDeductionGuide(TemplateParams, CD->isExplicit(), NewTInfo,
1588 CD->getLocStart(), CD->getLocation(),
1589 CD->getLocEnd());
1590 }
1591
1592 /// Build a deduction guide with the specified parameter types.
1593 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
1594 SourceLocation Loc = Template->getLocation();
1595
1596 // Build the requested type.
1597 FunctionProtoType::ExtProtoInfo EPI;
1598 EPI.HasTrailingReturn = true;
1599 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
1600 DeductionGuideName, EPI);
1601 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
1602
1603 FunctionProtoTypeLoc FPTL =
1604 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
1605
1606 // Build the parameters, needed during deduction / substitution.
1607 SmallVector<ParmVarDecl*, 4> Params;
1608 for (auto T : ParamTypes) {
1609 ParmVarDecl *NewParam = ParmVarDecl::Create(
1610 SemaRef.Context, DC, Loc, Loc, nullptr, T,
1611 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
1612 NewParam->setScopeInfo(0, Params.size());
1613 FPTL.setParam(Params.size(), NewParam);
1614 Params.push_back(NewParam);
1615 }
1616
1617 return buildDeductionGuide(Template->getTemplateParameters(), false, TSI,
1618 Loc, Loc, Loc);
1619 }
1620
1621private:
1622 /// Transform a constructor template parameter into a deduction guide template
1623 /// parameter, rebuilding any internal references to earlier parameters and
1624 /// renumbering as we go.
1625 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
1626 MultiLevelTemplateArgumentList &Args) {
1627 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
1628 // TemplateTypeParmDecl's index cannot be changed after creation, so
1629 // substitute it directly.
1630 auto *NewTTP = TemplateTypeParmDecl::Create(
1631 SemaRef.Context, DC, TTP->getLocStart(), TTP->getLocation(),
1632 /*Depth*/0, Depth1IndexAdjustment + TTP->getIndex(),
1633 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
1634 TTP->isParameterPack());
1635 if (TTP->hasDefaultArgument()) {
1636 TypeSourceInfo *InstantiatedDefaultArg =
1637 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
1638 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
1639 if (InstantiatedDefaultArg)
1640 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
1641 }
1642 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
1643 NewTTP);
1644 return NewTTP;
1645 }
1646
1647 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
1648 return transformTemplateParameterImpl(TTP, Args);
1649
1650 return transformTemplateParameterImpl(
1651 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
1652 }
1653 template<typename TemplateParmDecl>
1654 TemplateParmDecl *
1655 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
1656 MultiLevelTemplateArgumentList &Args) {
1657 // Ask the template instantiator to do the heavy lifting for us, then adjust
1658 // the index of the parameter once it's done.
1659 auto *NewParam =
1660 cast_or_null<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
1661 assert(NewParam->getDepth() == 0 && "unexpected template param depth")((NewParam->getDepth() == 0 && "unexpected template param depth"
) ? static_cast<void> (0) : __assert_fail ("NewParam->getDepth() == 0 && \"unexpected template param depth\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1661, __PRETTY_FUNCTION__))
;
1662 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
1663 return NewParam;
1664 }
1665
1666 QualType transformFunctionProtoType(TypeLocBuilder &TLB,
1667 FunctionProtoTypeLoc TL,
1668 SmallVectorImpl<ParmVarDecl*> &Params,
1669 MultiLevelTemplateArgumentList &Args) {
1670 SmallVector<QualType, 4> ParamTypes;
1671 const FunctionProtoType *T = TL.getTypePtr();
1672
1673 // -- The types of the function parameters are those of the constructor.
1674 for (auto *OldParam : TL.getParams()) {
1675 ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args);
1676 if (!NewParam)
1677 return QualType();
1678 ParamTypes.push_back(NewParam->getType());
1679 Params.push_back(NewParam);
1680 }
1681
1682 // -- The return type is the class template specialization designated by
1683 // the template-name and template arguments corresponding to the
1684 // template parameters obtained from the class template.
1685 //
1686 // We use the injected-class-name type of the primary template instead.
1687 // This has the convenient property that it is different from any type that
1688 // the user can write in a deduction-guide (because they cannot enter the
1689 // context of the template), so implicit deduction guides can never collide
1690 // with explicit ones.
1691 QualType ReturnType = DeducedType;
1692 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
1693
1694 // Resolving a wording defect, we also inherit the variadicness of the
1695 // constructor.
1696 FunctionProtoType::ExtProtoInfo EPI;
1697 EPI.Variadic = T->isVariadic();
1698 EPI.HasTrailingReturn = true;
1699
1700 QualType Result = SemaRef.BuildFunctionType(
1701 ReturnType, ParamTypes, TL.getLocStart(), DeductionGuideName, EPI);
1702 if (Result.isNull())
1703 return QualType();
1704
1705 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
1706 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
1707 NewTL.setLParenLoc(TL.getLParenLoc());
1708 NewTL.setRParenLoc(TL.getRParenLoc());
1709 NewTL.setExceptionSpecRange(SourceRange());
1710 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
1711 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
1712 NewTL.setParam(I, Params[I]);
1713
1714 return Result;
1715 }
1716
1717 ParmVarDecl *
1718 transformFunctionTypeParam(ParmVarDecl *OldParam,
1719 MultiLevelTemplateArgumentList &Args) {
1720 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
1721 TypeSourceInfo *NewDI;
1722 if (!Args.getNumLevels())
1723 NewDI = OldDI;
1724 else if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
1725 // Expand out the one and only element in each inner pack.
1726 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
1727 NewDI =
1728 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
1729 OldParam->getLocation(), OldParam->getDeclName());
1730 if (!NewDI) return nullptr;
1731 NewDI =
1732 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
1733 PackTL.getTypePtr()->getNumExpansions());
1734 } else
1735 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
1736 OldParam->getDeclName());
1737 if (!NewDI)
1738 return nullptr;
1739
1740 // Canonicalize the type. This (for instance) replaces references to
1741 // typedef members of the current instantiations with the definitions of
1742 // those typedefs, avoiding triggering instantiation of the deduced type
1743 // during deduction.
1744 // FIXME: It would be preferable to retain type sugar and source
1745 // information here (and handle this in substitution instead).
1746 NewDI = SemaRef.Context.getTrivialTypeSourceInfo(
1747 SemaRef.Context.getCanonicalType(NewDI->getType()),
1748 OldParam->getLocation());
1749
1750 // Resolving a wording defect, we also inherit default arguments from the
1751 // constructor.
1752 ExprResult NewDefArg;
1753 if (OldParam->hasDefaultArg()) {
1754 NewDefArg = Args.getNumLevels()
1755 ? SemaRef.SubstExpr(OldParam->getDefaultArg(), Args)
1756 : OldParam->getDefaultArg();
1757 if (NewDefArg.isInvalid())
1758 return nullptr;
1759 }
1760
1761 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
1762 OldParam->getInnerLocStart(),
1763 OldParam->getLocation(),
1764 OldParam->getIdentifier(),
1765 NewDI->getType(),
1766 NewDI,
1767 OldParam->getStorageClass(),
1768 NewDefArg.get());
1769 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
1770 OldParam->getFunctionScopeIndex());
1771 return NewParam;
1772 }
1773
1774 NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams,
1775 bool Explicit, TypeSourceInfo *TInfo,
1776 SourceLocation LocStart, SourceLocation Loc,
1777 SourceLocation LocEnd) {
1778 DeclarationNameInfo Name(DeductionGuideName, Loc);
1779 ArrayRef<ParmVarDecl *> Params =
1780 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
1781
1782 // Build the implicit deduction guide template.
1783 auto *Guide =
1784 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, Explicit,
1785 Name, TInfo->getType(), TInfo, LocEnd);
1786 Guide->setImplicit();
1787 Guide->setParams(Params);
1788
1789 for (auto *Param : Params)
1790 Param->setDeclContext(Guide);
1791
1792 auto *GuideTemplate = FunctionTemplateDecl::Create(
1793 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
1794 GuideTemplate->setImplicit();
1795 Guide->setDescribedFunctionTemplate(GuideTemplate);
1796
1797 if (isa<CXXRecordDecl>(DC)) {
1798 Guide->setAccess(AS_public);
1799 GuideTemplate->setAccess(AS_public);
1800 }
1801
1802 DC->addDecl(GuideTemplate);
1803 return GuideTemplate;
1804 }
1805};
1806}
1807
1808void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
1809 SourceLocation Loc) {
1810 DeclContext *DC = Template->getDeclContext();
1811 if (DC->isDependentContext())
1812 return;
1813
1814 ConvertConstructorToDeductionGuideTransform Transform(
1815 *this, cast<ClassTemplateDecl>(Template));
1816 if (!isCompleteType(Loc, Transform.DeducedType))
1817 return;
1818
1819 // Check whether we've already declared deduction guides for this template.
1820 // FIXME: Consider storing a flag on the template to indicate this.
1821 auto Existing = DC->lookup(Transform.DeductionGuideName);
1822 for (auto *D : Existing)
1823 if (D->isImplicit())
1824 return;
1825
1826 // In case we were expanding a pack when we attempted to declare deduction
1827 // guides, turn off pack expansion for everything we're about to do.
1828 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
1829 // Create a template instantiation record to track the "instantiation" of
1830 // constructors into deduction guides.
1831 // FIXME: Add a kind for this to give more meaningful diagnostics. But can
1832 // this substitution process actually fail?
1833 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
1834
1835 // Convert declared constructors into deduction guide templates.
1836 // FIXME: Skip constructors for which deduction must necessarily fail (those
1837 // for which some class template parameter without a default argument never
1838 // appears in a deduced context).
1839 bool AddedAny = false;
1840 bool AddedCopyOrMove = false;
1841 for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
1842 D = D->getUnderlyingDecl();
1843 if (D->isInvalidDecl() || D->isImplicit())
1844 continue;
1845 D = cast<NamedDecl>(D->getCanonicalDecl());
1846
1847 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
1848 auto *CD =
1849 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
1850 // Class-scope explicit specializations (MS extension) do not result in
1851 // deduction guides.
1852 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
1853 continue;
1854
1855 Transform.transformConstructor(FTD, CD);
1856 AddedAny = true;
1857
1858 AddedCopyOrMove |= CD->isCopyOrMoveConstructor();
1859 }
1860
1861 // Synthesize an X() -> X<...> guide if there were no declared constructors.
1862 // FIXME: The standard doesn't say (how) to do this.
1863 if (!AddedAny)
1864 Transform.buildSimpleDeductionGuide(None);
1865
1866 // Synthesize an X(X<...>) -> X<...> guide if there was no declared constructor
1867 // resembling a copy or move constructor.
1868 // FIXME: The standard doesn't say (how) to do this.
1869 if (!AddedCopyOrMove)
1870 Transform.buildSimpleDeductionGuide(Transform.DeducedType);
1871}
1872
1873/// \brief Diagnose the presence of a default template argument on a
1874/// template parameter, which is ill-formed in certain contexts.
1875///
1876/// \returns true if the default template argument should be dropped.
1877static bool DiagnoseDefaultTemplateArgument(Sema &S,
1878 Sema::TemplateParamListContext TPC,
1879 SourceLocation ParamLoc,
1880 SourceRange DefArgRange) {
1881 switch (TPC) {
1882 case Sema::TPC_ClassTemplate:
1883 case Sema::TPC_VarTemplate:
1884 case Sema::TPC_TypeAliasTemplate:
1885 return false;
1886
1887 case Sema::TPC_FunctionTemplate:
1888 case Sema::TPC_FriendFunctionTemplateDefinition:
1889 // C++ [temp.param]p9:
1890 // A default template-argument shall not be specified in a
1891 // function template declaration or a function template
1892 // definition [...]
1893 // If a friend function template declaration specifies a default
1894 // template-argument, that declaration shall be a definition and shall be
1895 // the only declaration of the function template in the translation unit.
1896 // (C++98/03 doesn't have this wording; see DR226).
1897 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1898 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1899 : diag::ext_template_parameter_default_in_function_template)
1900 << DefArgRange;
1901 return false;
1902
1903 case Sema::TPC_ClassTemplateMember:
1904 // C++0x [temp.param]p9:
1905 // A default template-argument shall not be specified in the
1906 // template-parameter-lists of the definition of a member of a
1907 // class template that appears outside of the member's class.
1908 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1909 << DefArgRange;
1910 return true;
1911
1912 case Sema::TPC_FriendClassTemplate:
1913 case Sema::TPC_FriendFunctionTemplate:
1914 // C++ [temp.param]p9:
1915 // A default template-argument shall not be specified in a
1916 // friend template declaration.
1917 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1918 << DefArgRange;
1919 return true;
1920
1921 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1922 // for friend function templates if there is only a single
1923 // declaration (and it is a definition). Strange!
1924 }
1925
1926 llvm_unreachable("Invalid TemplateParamListContext!")::llvm::llvm_unreachable_internal("Invalid TemplateParamListContext!"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1926)
;
1927}
1928
1929/// \brief Check for unexpanded parameter packs within the template parameters
1930/// of a template template parameter, recursively.
1931static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1932 TemplateTemplateParmDecl *TTP) {
1933 // A template template parameter which is a parameter pack is also a pack
1934 // expansion.
1935 if (TTP->isParameterPack())
1936 return false;
1937
1938 TemplateParameterList *Params = TTP->getTemplateParameters();
1939 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1940 NamedDecl *P = Params->getParam(I);
1941 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1942 if (!NTTP->isParameterPack() &&
1943 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1944 NTTP->getTypeSourceInfo(),
1945 Sema::UPPC_NonTypeTemplateParameterType))
1946 return true;
1947
1948 continue;
1949 }
1950
1951 if (TemplateTemplateParmDecl *InnerTTP
1952 = dyn_cast<TemplateTemplateParmDecl>(P))
1953 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1954 return true;
1955 }
1956
1957 return false;
1958}
1959
1960/// \brief Checks the validity of a template parameter list, possibly
1961/// considering the template parameter list from a previous
1962/// declaration.
1963///
1964/// If an "old" template parameter list is provided, it must be
1965/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1966/// template parameter list.
1967///
1968/// \param NewParams Template parameter list for a new template
1969/// declaration. This template parameter list will be updated with any
1970/// default arguments that are carried through from the previous
1971/// template parameter list.
1972///
1973/// \param OldParams If provided, template parameter list from a
1974/// previous declaration of the same template. Default template
1975/// arguments will be merged from the old template parameter list to
1976/// the new template parameter list.
1977///
1978/// \param TPC Describes the context in which we are checking the given
1979/// template parameter list.
1980///
1981/// \returns true if an error occurred, false otherwise.
1982bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1983 TemplateParameterList *OldParams,
1984 TemplateParamListContext TPC) {
1985 bool Invalid = false;
1986
1987 // C++ [temp.param]p10:
1988 // The set of default template-arguments available for use with a
1989 // template declaration or definition is obtained by merging the
1990 // default arguments from the definition (if in scope) and all
1991 // declarations in scope in the same way default function
1992 // arguments are (8.3.6).
1993 bool SawDefaultArgument = false;
1994 SourceLocation PreviousDefaultArgLoc;
1995
1996 // Dummy initialization to avoid warnings.
1997 TemplateParameterList::iterator OldParam = NewParams->end();
1998 if (OldParams)
1999 OldParam = OldParams->begin();
2000
2001 bool RemoveDefaultArguments = false;
2002 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2003 NewParamEnd = NewParams->end();
2004 NewParam != NewParamEnd; ++NewParam) {
2005 // Variables used to diagnose redundant default arguments
2006 bool RedundantDefaultArg = false;
2007 SourceLocation OldDefaultLoc;
2008 SourceLocation NewDefaultLoc;
2009
2010 // Variable used to diagnose missing default arguments
2011 bool MissingDefaultArg = false;
2012
2013 // Variable used to diagnose non-final parameter packs
2014 bool SawParameterPack = false;
2015
2016 if (TemplateTypeParmDecl *NewTypeParm
2017 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2018 // Check the presence of a default argument here.
2019 if (NewTypeParm->hasDefaultArgument() &&
2020 DiagnoseDefaultTemplateArgument(*this, TPC,
2021 NewTypeParm->getLocation(),
2022 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2023 .getSourceRange()))
2024 NewTypeParm->removeDefaultArgument();
2025
2026 // Merge default arguments for template type parameters.
2027 TemplateTypeParmDecl *OldTypeParm
2028 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2029 if (NewTypeParm->isParameterPack()) {
2030 assert(!NewTypeParm->hasDefaultArgument() &&((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2031, __PRETTY_FUNCTION__))
2031 "Parameter packs can't have a default argument!")((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2031, __PRETTY_FUNCTION__))
;
2032 SawParameterPack = true;
2033 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2034 NewTypeParm->hasDefaultArgument()) {
2035 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2036 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2037 SawDefaultArgument = true;
2038 RedundantDefaultArg = true;
2039 PreviousDefaultArgLoc = NewDefaultLoc;
2040 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2041 // Merge the default argument from the old declaration to the
2042 // new declaration.
2043 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2044 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2045 } else if (NewTypeParm->hasDefaultArgument()) {
2046 SawDefaultArgument = true;
2047 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2048 } else if (SawDefaultArgument)
2049 MissingDefaultArg = true;
2050 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2051 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2052 // Check for unexpanded parameter packs.
2053 if (!NewNonTypeParm->isParameterPack() &&
2054 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2055 NewNonTypeParm->getTypeSourceInfo(),
2056 UPPC_NonTypeTemplateParameterType)) {
2057 Invalid = true;
2058 continue;
2059 }
2060
2061 // Check the presence of a default argument here.
2062 if (NewNonTypeParm->hasDefaultArgument() &&
2063 DiagnoseDefaultTemplateArgument(*this, TPC,
2064 NewNonTypeParm->getLocation(),
2065 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2066 NewNonTypeParm->removeDefaultArgument();
2067 }
2068
2069 // Merge default arguments for non-type template parameters
2070 NonTypeTemplateParmDecl *OldNonTypeParm
2071 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2072 if (NewNonTypeParm->isParameterPack()) {
2073 assert(!NewNonTypeParm->hasDefaultArgument() &&((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2074, __PRETTY_FUNCTION__))
2074 "Parameter packs can't have a default argument!")((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2074, __PRETTY_FUNCTION__))
;
2075 if (!NewNonTypeParm->isPackExpansion())
2076 SawParameterPack = true;
2077 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2078 NewNonTypeParm->hasDefaultArgument()) {
2079 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2080 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2081 SawDefaultArgument = true;
2082 RedundantDefaultArg = true;
2083 PreviousDefaultArgLoc = NewDefaultLoc;
2084 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2085 // Merge the default argument from the old declaration to the
2086 // new declaration.
2087 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2088 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2089 } else if (NewNonTypeParm->hasDefaultArgument()) {
2090 SawDefaultArgument = true;
2091 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2092 } else if (SawDefaultArgument)
2093 MissingDefaultArg = true;
2094 } else {
2095 TemplateTemplateParmDecl *NewTemplateParm
2096 = cast<TemplateTemplateParmDecl>(*NewParam);
2097
2098 // Check for unexpanded parameter packs, recursively.
2099 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2100 Invalid = true;
2101 continue;
2102 }
2103
2104 // Check the presence of a default argument here.
2105 if (NewTemplateParm->hasDefaultArgument() &&
2106 DiagnoseDefaultTemplateArgument(*this, TPC,
2107 NewTemplateParm->getLocation(),
2108 NewTemplateParm->getDefaultArgument().getSourceRange()))
2109 NewTemplateParm->removeDefaultArgument();
2110
2111 // Merge default arguments for template template parameters
2112 TemplateTemplateParmDecl *OldTemplateParm
2113 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2114 if (NewTemplateParm->isParameterPack()) {
2115 assert(!NewTemplateParm->hasDefaultArgument() &&((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2116, __PRETTY_FUNCTION__))
2116 "Parameter packs can't have a default argument!")((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2116, __PRETTY_FUNCTION__))
;
2117 if (!NewTemplateParm->isPackExpansion())
2118 SawParameterPack = true;
2119 } else if (OldTemplateParm &&
2120 hasVisibleDefaultArgument(OldTemplateParm) &&
2121 NewTemplateParm->hasDefaultArgument()) {
2122 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2123 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2124 SawDefaultArgument = true;
2125 RedundantDefaultArg = true;
2126 PreviousDefaultArgLoc = NewDefaultLoc;
2127 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2128 // Merge the default argument from the old declaration to the
2129 // new declaration.
2130 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2131 PreviousDefaultArgLoc
2132 = OldTemplateParm->getDefaultArgument().getLocation();
2133 } else if (NewTemplateParm->hasDefaultArgument()) {
2134 SawDefaultArgument = true;
2135 PreviousDefaultArgLoc
2136 = NewTemplateParm->getDefaultArgument().getLocation();
2137 } else if (SawDefaultArgument)
2138 MissingDefaultArg = true;
2139 }
2140
2141 // C++11 [temp.param]p11:
2142 // If a template parameter of a primary class template or alias template
2143 // is a template parameter pack, it shall be the last template parameter.
2144 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2145 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2146 TPC == TPC_TypeAliasTemplate)) {
2147 Diag((*NewParam)->getLocation(),
2148 diag::err_template_param_pack_must_be_last_template_parameter);
2149 Invalid = true;
2150 }
2151
2152 if (RedundantDefaultArg) {
2153 // C++ [temp.param]p12:
2154 // A template-parameter shall not be given default arguments
2155 // by two different declarations in the same scope.
2156 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2157 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2158 Invalid = true;
2159 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2160 // C++ [temp.param]p11:
2161 // If a template-parameter of a class template has a default
2162 // template-argument, each subsequent template-parameter shall either
2163 // have a default template-argument supplied or be a template parameter
2164 // pack.
2165 Diag((*NewParam)->getLocation(),
2166 diag::err_template_param_default_arg_missing);
2167 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2168 Invalid = true;
2169 RemoveDefaultArguments = true;
2170 }
2171
2172 // If we have an old template parameter list that we're merging
2173 // in, move on to the next parameter.
2174 if (OldParams)
2175 ++OldParam;
2176 }
2177
2178 // We were missing some default arguments at the end of the list, so remove
2179 // all of the default arguments.
2180 if (RemoveDefaultArguments) {
2181 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2182 NewParamEnd = NewParams->end();
2183 NewParam != NewParamEnd; ++NewParam) {
2184 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2185 TTP->removeDefaultArgument();
2186 else if (NonTypeTemplateParmDecl *NTTP
2187 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2188 NTTP->removeDefaultArgument();
2189 else
2190 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2191 }
2192 }
2193
2194 return Invalid;
2195}
2196
2197namespace {
2198
2199/// A class which looks for a use of a certain level of template
2200/// parameter.
2201struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2202 typedef RecursiveASTVisitor<DependencyChecker> super;
2203
2204 unsigned Depth;
2205
2206 // Whether we're looking for a use of a template parameter that makes the
2207 // overall construct type-dependent / a dependent type. This is strictly
2208 // best-effort for now; we may fail to match at all for a dependent type
2209 // in some cases if this is set.
2210 bool IgnoreNonTypeDependent;
2211
2212 bool Match;
2213 SourceLocation MatchLoc;
2214
2215 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2216 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2217 Match(false) {}
2218
2219 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2220 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2221 NamedDecl *ND = Params->getParam(0);
2222 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2223 Depth = PD->getDepth();
2224 } else if (NonTypeTemplateParmDecl *PD =
2225 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2226 Depth = PD->getDepth();
2227 } else {
2228 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2229 }
2230 }
2231
2232 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2233 if (ParmDepth >= Depth) {
2234 Match = true;
2235 MatchLoc = Loc;
2236 return true;
2237 }
2238 return false;
2239 }
2240
2241 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2242 // Prune out non-type-dependent expressions if requested. This can
2243 // sometimes result in us failing to find a template parameter reference
2244 // (if a value-dependent expression creates a dependent type), but this
2245 // mode is best-effort only.
2246 if (auto *E = dyn_cast_or_null<Expr>(S))
2247 if (IgnoreNonTypeDependent && !E->isTypeDependent())
2248 return true;
2249 return super::TraverseStmt(S, Q);
2250 }
2251
2252 bool TraverseTypeLoc(TypeLoc TL) {
2253 if (IgnoreNonTypeDependent && !TL.isNull() &&
2254 !TL.getType()->isDependentType())
2255 return true;
2256 return super::TraverseTypeLoc(TL);
2257 }
2258
2259 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2260 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2261 }
2262
2263 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2264 // For a best-effort search, keep looking until we find a location.
2265 return IgnoreNonTypeDependent || !Matches(T->getDepth());
2266 }
2267
2268 bool TraverseTemplateName(TemplateName N) {
2269 if (TemplateTemplateParmDecl *PD =
2270 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2271 if (Matches(PD->getDepth()))
2272 return false;
2273 return super::TraverseTemplateName(N);
2274 }
2275
2276 bool VisitDeclRefExpr(DeclRefExpr *E) {
2277 if (NonTypeTemplateParmDecl *PD =
2278 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2279 if (Matches(PD->getDepth(), E->getExprLoc()))
2280 return false;
2281 return super::VisitDeclRefExpr(E);
2282 }
2283
2284 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2285 return TraverseType(T->getReplacementType());
2286 }
2287
2288 bool
2289 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2290 return TraverseTemplateArgument(T->getArgumentPack());
2291 }
2292
2293 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2294 return TraverseType(T->getInjectedSpecializationType());
2295 }
2296};
2297} // end anonymous namespace
2298
2299/// Determines whether a given type depends on the given parameter
2300/// list.
2301static bool
2302DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2303 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2304 Checker.TraverseType(T);
2305 return Checker.Match;
2306}
2307
2308// Find the source range corresponding to the named type in the given
2309// nested-name-specifier, if any.
2310static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2311 QualType T,
2312 const CXXScopeSpec &SS) {
2313 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2314 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2315 if (const Type *CurType = NNS->getAsType()) {
2316 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2317 return NNSLoc.getTypeLoc().getSourceRange();
2318 } else
2319 break;
2320
2321 NNSLoc = NNSLoc.getPrefix();
2322 }
2323
2324 return SourceRange();
2325}
2326
2327/// \brief Match the given template parameter lists to the given scope
2328/// specifier, returning the template parameter list that applies to the
2329/// name.
2330///
2331/// \param DeclStartLoc the start of the declaration that has a scope
2332/// specifier or a template parameter list.
2333///
2334/// \param DeclLoc The location of the declaration itself.
2335///
2336/// \param SS the scope specifier that will be matched to the given template
2337/// parameter lists. This scope specifier precedes a qualified name that is
2338/// being declared.
2339///
2340/// \param TemplateId The template-id following the scope specifier, if there
2341/// is one. Used to check for a missing 'template<>'.
2342///
2343/// \param ParamLists the template parameter lists, from the outermost to the
2344/// innermost template parameter lists.
2345///
2346/// \param IsFriend Whether to apply the slightly different rules for
2347/// matching template parameters to scope specifiers in friend
2348/// declarations.
2349///
2350/// \param IsMemberSpecialization will be set true if the scope specifier
2351/// denotes a fully-specialized type, and therefore this is a declaration of
2352/// a member specialization.
2353///
2354/// \returns the template parameter list, if any, that corresponds to the
2355/// name that is preceded by the scope specifier @p SS. This template
2356/// parameter list may have template parameters (if we're declaring a
2357/// template) or may have no template parameters (if we're declaring a
2358/// template specialization), or may be NULL (if what we're declaring isn't
2359/// itself a template).
2360TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
2361 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
2362 TemplateIdAnnotation *TemplateId,
2363 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
2364 bool &IsMemberSpecialization, bool &Invalid) {
2365 IsMemberSpecialization = false;
2366 Invalid = false;
2367
2368 // The sequence of nested types to which we will match up the template
2369 // parameter lists. We first build this list by starting with the type named
2370 // by the nested-name-specifier and walking out until we run out of types.
2371 SmallVector<QualType, 4> NestedTypes;
2372 QualType T;
2373 if (SS.getScopeRep()) {
2374 if (CXXRecordDecl *Record
2375 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
2376 T = Context.getTypeDeclType(Record);
2377 else
2378 T = QualType(SS.getScopeRep()->getAsType(), 0);
2379 }
2380
2381 // If we found an explicit specialization that prevents us from needing
2382 // 'template<>' headers, this will be set to the location of that
2383 // explicit specialization.
2384 SourceLocation ExplicitSpecLoc;
2385
2386 while (!T.isNull()) {
2387 NestedTypes.push_back(T);
2388
2389 // Retrieve the parent of a record type.
2390 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2391 // If this type is an explicit specialization, we're done.
2392 if (ClassTemplateSpecializationDecl *Spec
2393 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2394 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
2395 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
2396 ExplicitSpecLoc = Spec->getLocation();
2397 break;
2398 }
2399 } else if (Record->getTemplateSpecializationKind()
2400 == TSK_ExplicitSpecialization) {
2401 ExplicitSpecLoc = Record->getLocation();
2402 break;
2403 }
2404
2405 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
2406 T = Context.getTypeDeclType(Parent);
2407 else
2408 T = QualType();
2409 continue;
2410 }
2411
2412 if (const TemplateSpecializationType *TST
2413 = T->getAs<TemplateSpecializationType>()) {
2414 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2415 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
2416 T = Context.getTypeDeclType(Parent);
2417 else
2418 T = QualType();
2419 continue;
2420 }
2421 }
2422
2423 // Look one step prior in a dependent template specialization type.
2424 if (const DependentTemplateSpecializationType *DependentTST
2425 = T->getAs<DependentTemplateSpecializationType>()) {
2426 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
2427 T = QualType(NNS->getAsType(), 0);
2428 else
2429 T = QualType();
2430 continue;
2431 }
2432
2433 // Look one step prior in a dependent name type.
2434 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
2435 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
2436 T = QualType(NNS->getAsType(), 0);
2437 else
2438 T = QualType();
2439 continue;
2440 }
2441
2442 // Retrieve the parent of an enumeration type.
2443 if (const EnumType *EnumT = T->getAs<EnumType>()) {
2444 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
2445 // check here.
2446 EnumDecl *Enum = EnumT->getDecl();
2447
2448 // Get to the parent type.
2449 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
2450 T = Context.getTypeDeclType(Parent);
2451 else
2452 T = QualType();
2453 continue;
2454 }
2455
2456 T = QualType();
2457 }
2458 // Reverse the nested types list, since we want to traverse from the outermost
2459 // to the innermost while checking template-parameter-lists.
2460 std::reverse(NestedTypes.begin(), NestedTypes.end());
2461
2462 // C++0x [temp.expl.spec]p17:
2463 // A member or a member template may be nested within many
2464 // enclosing class templates. In an explicit specialization for
2465 // such a member, the member declaration shall be preceded by a
2466 // template<> for each enclosing class template that is
2467 // explicitly specialized.
2468 bool SawNonEmptyTemplateParameterList = false;
2469
2470 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
2471 if (SawNonEmptyTemplateParameterList) {
2472 Diag(DeclLoc, diag::err_specialize_member_of_template)
2473 << !Recovery << Range;
2474 Invalid = true;
2475 IsMemberSpecialization = false;
2476 return true;
2477 }
2478
2479 return false;
2480 };
2481
2482 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
2483 // Check that we can have an explicit specialization here.
2484 if (CheckExplicitSpecialization(Range, true))
2485 return true;
2486
2487 // We don't have a template header, but we should.
2488 SourceLocation ExpectedTemplateLoc;
2489 if (!ParamLists.empty())
2490 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
2491 else
2492 ExpectedTemplateLoc = DeclStartLoc;
2493
2494 Diag(DeclLoc, diag::err_template_spec_needs_header)
2495 << Range
2496 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
2497 return false;
2498 };
2499
2500 unsigned ParamIdx = 0;
2501 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
2502 ++TypeIdx) {
2503 T = NestedTypes[TypeIdx];
2504
2505 // Whether we expect a 'template<>' header.
2506 bool NeedEmptyTemplateHeader = false;
2507
2508 // Whether we expect a template header with parameters.
2509 bool NeedNonemptyTemplateHeader = false;
2510
2511 // For a dependent type, the set of template parameters that we
2512 // expect to see.
2513 TemplateParameterList *ExpectedTemplateParams = nullptr;
2514
2515 // C++0x [temp.expl.spec]p15:
2516 // A member or a member template may be nested within many enclosing
2517 // class templates. In an explicit specialization for such a member, the
2518 // member declaration shall be preceded by a template<> for each
2519 // enclosing class template that is explicitly specialized.
2520 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2521 if (ClassTemplatePartialSpecializationDecl *Partial
2522 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
2523 ExpectedTemplateParams = Partial->getTemplateParameters();
2524 NeedNonemptyTemplateHeader = true;
2525 } else if (Record->isDependentType()) {
2526 if (Record->getDescribedClassTemplate()) {
2527 ExpectedTemplateParams = Record->getDescribedClassTemplate()
2528 ->getTemplateParameters();
2529 NeedNonemptyTemplateHeader = true;
2530 }
2531 } else if (ClassTemplateSpecializationDecl *Spec
2532 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2533 // C++0x [temp.expl.spec]p4:
2534 // Members of an explicitly specialized class template are defined
2535 // in the same manner as members of normal classes, and not using
2536 // the template<> syntax.
2537 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
2538 NeedEmptyTemplateHeader = true;
2539 else
2540 continue;
2541 } else if (Record->getTemplateSpecializationKind()) {
2542 if (Record->getTemplateSpecializationKind()
2543 != TSK_ExplicitSpecialization &&
2544 TypeIdx == NumTypes - 1)
2545 IsMemberSpecialization = true;
2546
2547 continue;
2548 }
2549 } else if (const TemplateSpecializationType *TST
2550 = T->getAs<TemplateSpecializationType>()) {
2551 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2552 ExpectedTemplateParams = Template->getTemplateParameters();
2553 NeedNonemptyTemplateHeader = true;
2554 }
2555 } else if (T->getAs<DependentTemplateSpecializationType>()) {
2556 // FIXME: We actually could/should check the template arguments here
2557 // against the corresponding template parameter list.
2558 NeedNonemptyTemplateHeader = false;
2559 }
2560
2561 // C++ [temp.expl.spec]p16:
2562 // In an explicit specialization declaration for a member of a class
2563 // template or a member template that ap- pears in namespace scope, the
2564 // member template and some of its enclosing class templates may remain
2565 // unspecialized, except that the declaration shall not explicitly
2566 // specialize a class member template if its en- closing class templates
2567 // are not explicitly specialized as well.
2568 if (ParamIdx < ParamLists.size()) {
2569 if (ParamLists[ParamIdx]->size() == 0) {
2570 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2571 false))
2572 return nullptr;
2573 } else
2574 SawNonEmptyTemplateParameterList = true;
2575 }
2576
2577 if (NeedEmptyTemplateHeader) {
2578 // If we're on the last of the types, and we need a 'template<>' header
2579 // here, then it's a member specialization.
2580 if (TypeIdx == NumTypes - 1)
2581 IsMemberSpecialization = true;
2582
2583 if (ParamIdx < ParamLists.size()) {
2584 if (ParamLists[ParamIdx]->size() > 0) {
2585 // The header has template parameters when it shouldn't. Complain.
2586 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2587 diag::err_template_param_list_matches_nontemplate)
2588 << T
2589 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
2590 ParamLists[ParamIdx]->getRAngleLoc())
2591 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2592 Invalid = true;
2593 return nullptr;
2594 }
2595
2596 // Consume this template header.
2597 ++ParamIdx;
2598 continue;
2599 }
2600
2601 if (!IsFriend)
2602 if (DiagnoseMissingExplicitSpecialization(
2603 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
2604 return nullptr;
2605
2606 continue;
2607 }
2608
2609 if (NeedNonemptyTemplateHeader) {
2610 // In friend declarations we can have template-ids which don't
2611 // depend on the corresponding template parameter lists. But
2612 // assume that empty parameter lists are supposed to match this
2613 // template-id.
2614 if (IsFriend && T->isDependentType()) {
2615 if (ParamIdx < ParamLists.size() &&
2616 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
2617 ExpectedTemplateParams = nullptr;
2618 else
2619 continue;
2620 }
2621
2622 if (ParamIdx < ParamLists.size()) {
2623 // Check the template parameter list, if we can.
2624 if (ExpectedTemplateParams &&
2625 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
2626 ExpectedTemplateParams,
2627 true, TPL_TemplateMatch))
2628 Invalid = true;
2629
2630 if (!Invalid &&
2631 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
2632 TPC_ClassTemplateMember))
2633 Invalid = true;
2634
2635 ++ParamIdx;
2636 continue;
2637 }
2638
2639 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
2640 << T
2641 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2642 Invalid = true;
2643 continue;
2644 }
2645 }
2646
2647 // If there were at least as many template-ids as there were template
2648 // parameter lists, then there are no template parameter lists remaining for
2649 // the declaration itself.
2650 if (ParamIdx >= ParamLists.size()) {
2651 if (TemplateId && !IsFriend) {
2652 // We don't have a template header for the declaration itself, but we
2653 // should.
2654 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
2655 TemplateId->RAngleLoc));
2656
2657 // Fabricate an empty template parameter list for the invented header.
2658 return TemplateParameterList::Create(Context, SourceLocation(),
2659 SourceLocation(), None,
2660 SourceLocation(), nullptr);
2661 }
2662
2663 return nullptr;
2664 }
2665
2666 // If there were too many template parameter lists, complain about that now.
2667 if (ParamIdx < ParamLists.size() - 1) {
2668 bool HasAnyExplicitSpecHeader = false;
2669 bool AllExplicitSpecHeaders = true;
2670 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
2671 if (ParamLists[I]->size() == 0)
2672 HasAnyExplicitSpecHeader = true;
2673 else
2674 AllExplicitSpecHeaders = false;
2675 }
2676
2677 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2678 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
2679 : diag::err_template_spec_extra_headers)
2680 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
2681 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
2682
2683 // If there was a specialization somewhere, such that 'template<>' is
2684 // not required, and there were any 'template<>' headers, note where the
2685 // specialization occurred.
2686 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
2687 Diag(ExplicitSpecLoc,
2688 diag::note_explicit_template_spec_does_not_need_header)
2689 << NestedTypes.back();
2690
2691 // We have a template parameter list with no corresponding scope, which
2692 // means that the resulting template declaration can't be instantiated
2693 // properly (we'll end up with dependent nodes when we shouldn't).
2694 if (!AllExplicitSpecHeaders)
2695 Invalid = true;
2696 }
2697
2698 // C++ [temp.expl.spec]p16:
2699 // In an explicit specialization declaration for a member of a class
2700 // template or a member template that ap- pears in namespace scope, the
2701 // member template and some of its enclosing class templates may remain
2702 // unspecialized, except that the declaration shall not explicitly
2703 // specialize a class member template if its en- closing class templates
2704 // are not explicitly specialized as well.
2705 if (ParamLists.back()->size() == 0 &&
2706 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2707 false))
2708 return nullptr;
2709
2710 // Return the last template parameter list, which corresponds to the
2711 // entity being declared.
2712 return ParamLists.back();
2713}
2714
2715void Sema::NoteAllFoundTemplates(TemplateName Name) {
2716 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2717 Diag(Template->getLocation(), diag::note_template_declared_here)
2718 << (isa<FunctionTemplateDecl>(Template)
2719 ? 0
2720 : isa<ClassTemplateDecl>(Template)
2721 ? 1
2722 : isa<VarTemplateDecl>(Template)
2723 ? 2
2724 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
2725 << Template->getDeclName();
2726 return;
2727 }
2728
2729 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
2730 for (OverloadedTemplateStorage::iterator I = OST->begin(),
2731 IEnd = OST->end();
2732 I != IEnd; ++I)
2733 Diag((*I)->getLocation(), diag::note_template_declared_here)
2734 << 0 << (*I)->getDeclName();
2735
2736 return;
2737 }
2738}
2739
2740static QualType
2741checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
2742 const SmallVectorImpl<TemplateArgument> &Converted,
2743 SourceLocation TemplateLoc,
2744 TemplateArgumentListInfo &TemplateArgs) {
2745 ASTContext &Context = SemaRef.getASTContext();
2746 switch (BTD->getBuiltinTemplateKind()) {
2747 case BTK__make_integer_seq: {
2748 // Specializations of __make_integer_seq<S, T, N> are treated like
2749 // S<T, 0, ..., N-1>.
2750
2751 // C++14 [inteseq.intseq]p1:
2752 // T shall be an integer type.
2753 if (!Converted[1].getAsType()->isIntegralType(Context)) {
2754 SemaRef.Diag(TemplateArgs[1].getLocation(),
2755 diag::err_integer_sequence_integral_element_type);
2756 return QualType();
2757 }
2758
2759 // C++14 [inteseq.make]p1:
2760 // If N is negative the program is ill-formed.
2761 TemplateArgument NumArgsArg = Converted[2];
2762 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
2763 if (NumArgs < 0) {
2764 SemaRef.Diag(TemplateArgs[2].getLocation(),
2765 diag::err_integer_sequence_negative_length);
2766 return QualType();
2767 }
2768
2769 QualType ArgTy = NumArgsArg.getIntegralType();
2770 TemplateArgumentListInfo SyntheticTemplateArgs;
2771 // The type argument gets reused as the first template argument in the
2772 // synthetic template argument list.
2773 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
2774 // Expand N into 0 ... N-1.
2775 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
2776 I < NumArgs; ++I) {
2777 TemplateArgument TA(Context, I, ArgTy);
2778 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
2779 TA, ArgTy, TemplateArgs[2].getLocation()));
2780 }
2781 // The first template argument will be reused as the template decl that
2782 // our synthetic template arguments will be applied to.
2783 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
2784 TemplateLoc, SyntheticTemplateArgs);
2785 }
2786
2787 case BTK__type_pack_element:
2788 // Specializations of
2789 // __type_pack_element<Index, T_1, ..., T_N>
2790 // are treated like T_Index.
2791 assert(Converted.size() == 2 &&((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2792, __PRETTY_FUNCTION__))
2792 "__type_pack_element should be given an index and a parameter pack")((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2792, __PRETTY_FUNCTION__))
;
2793
2794 // If the Index is out of bounds, the program is ill-formed.
2795 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
2796 llvm::APSInt Index = IndexArg.getAsIntegral();
2797 assert(Index >= 0 && "the index used with __type_pack_element should be of "((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2798, __PRETTY_FUNCTION__))
2798 "type std::size_t, and hence be non-negative")((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2798, __PRETTY_FUNCTION__))
;
2799 if (Index >= Ts.pack_size()) {
2800 SemaRef.Diag(TemplateArgs[0].getLocation(),
2801 diag::err_type_pack_element_out_of_bounds);
2802 return QualType();
2803 }
2804
2805 // We simply return the type at index `Index`.
2806 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
2807 return Nth->getAsType();
2808 }
2809 llvm_unreachable("unexpected BuiltinTemplateDecl!")::llvm::llvm_unreachable_internal("unexpected BuiltinTemplateDecl!"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2809)
;
2810}
2811
2812/// Determine whether this alias template is "enable_if_t".
2813static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
2814 return AliasTemplate->getName().equals("enable_if_t");
2815}
2816
2817/// Collect all of the separable terms in the given condition, which
2818/// might be a conjunction.
2819///
2820/// FIXME: The right answer is to convert the logical expression into
2821/// disjunctive normal form, so we can find the first failed term
2822/// within each possible clause.
2823static void collectConjunctionTerms(Expr *Clause,
2824 SmallVectorImpl<Expr *> &Terms) {
2825 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
2826 if (BinOp->getOpcode() == BO_LAnd) {
2827 collectConjunctionTerms(BinOp->getLHS(), Terms);
2828 collectConjunctionTerms(BinOp->getRHS(), Terms);
2829 }
2830
2831 return;
2832 }
2833
2834 Terms.push_back(Clause);
2835}
2836
2837// The ranges-v3 library uses an odd pattern of a top-level "||" with
2838// a left-hand side that is value-dependent but never true. Identify
2839// the idiom and ignore that term.
2840static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
2841 // Top-level '||'.
2842 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
2843 if (!BinOp) return Cond;
2844
2845 if (BinOp->getOpcode() != BO_LOr) return Cond;
2846
2847 // With an inner '==' that has a literal on the right-hand side.
2848 Expr *LHS = BinOp->getLHS();
2849 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
2850 if (!InnerBinOp) return Cond;
2851
2852 if (InnerBinOp->getOpcode() != BO_EQ ||
2853 !isa<IntegerLiteral>(InnerBinOp->getRHS()))
2854 return Cond;
2855
2856 // If the inner binary operation came from a macro expansion named
2857 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
2858 // of the '||', which is the real, user-provided condition.
2859 SourceLocation Loc = InnerBinOp->getExprLoc();
2860 if (!Loc.isMacroID()) return Cond;
2861
2862 StringRef MacroName = PP.getImmediateMacroName(Loc);
2863 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
2864 return BinOp->getRHS();
2865
2866 return Cond;
2867}
2868
2869std::pair<Expr *, std::string>
2870Sema::findFailedBooleanCondition(Expr *Cond, bool AllowTopLevelCond) {
2871 Cond = lookThroughRangesV3Condition(PP, Cond);
2872
2873 // Separate out all of the terms in a conjunction.
2874 SmallVector<Expr *, 4> Terms;
2875 collectConjunctionTerms(Cond, Terms);
2876
2877 // Determine which term failed.
2878 Expr *FailedCond = nullptr;
2879 for (Expr *Term : Terms) {
2880 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
2881
2882 // Literals are uninteresting.
2883 if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
2884 isa<IntegerLiteral>(TermAsWritten))
2885 continue;
2886
2887 // The initialization of the parameter from the argument is
2888 // a constant-evaluated context.
2889 EnterExpressionEvaluationContext ConstantEvaluated(
2890 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
2891
2892 bool Succeeded;
2893 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
2894 !Succeeded) {
2895 FailedCond = TermAsWritten;
2896 break;
2897 }
2898 }
2899
2900 if (!FailedCond) {
2901 if (!AllowTopLevelCond)
2902 return { nullptr, "" };
2903
2904 FailedCond = Cond->IgnoreParenImpCasts();
2905 }
2906
2907 std::string Description;
2908 {
2909 llvm::raw_string_ostream Out(Description);
2910 FailedCond->printPretty(Out, nullptr, getPrintingPolicy());
2911 }
2912 return { FailedCond, Description };
2913}
2914
2915QualType Sema::CheckTemplateIdType(TemplateName Name,
2916 SourceLocation TemplateLoc,
2917 TemplateArgumentListInfo &TemplateArgs) {
2918 DependentTemplateName *DTN
2919 = Name.getUnderlying().getAsDependentTemplateName();
2920 if (DTN && DTN->isIdentifier())
2921 // When building a template-id where the template-name is dependent,
2922 // assume the template is a type template. Either our assumption is
2923 // correct, or the code is ill-formed and will be diagnosed when the
2924 // dependent name is substituted.
2925 return Context.getDependentTemplateSpecializationType(ETK_None,
2926 DTN->getQualifier(),
2927 DTN->getIdentifier(),
2928 TemplateArgs);
2929
2930 TemplateDecl *Template = Name.getAsTemplateDecl();
2931 if (!Template || isa<FunctionTemplateDecl>(Template) ||
2932 isa<VarTemplateDecl>(Template)) {
2933 // We might have a substituted template template parameter pack. If so,
2934 // build a template specialization type for it.
2935 if (Name.getAsSubstTemplateTemplateParmPack())
2936 return Context.getTemplateSpecializationType(Name, TemplateArgs);
2937
2938 Diag(TemplateLoc, diag::err_template_id_not_a_type)
2939 << Name;
2940 NoteAllFoundTemplates(Name);
2941 return QualType();
2942 }
2943
2944 // Check that the template argument list is well-formed for this
2945 // template.
2946 SmallVector<TemplateArgument, 4> Converted;
2947 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2948 false, Converted))
2949 return QualType();
2950
2951 QualType CanonType;
2952
2953 bool InstantiationDependent = false;
2954 if (TypeAliasTemplateDecl *AliasTemplate =
2955 dyn_cast<TypeAliasTemplateDecl>(Template)) {
2956 // Find the canonical type for this type alias template specialization.
2957 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2958 if (Pattern->isInvalidDecl())
2959 return QualType();
2960
2961 TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
2962 Converted);
2963
2964 // Only substitute for the innermost template argument list.
2965 MultiLevelTemplateArgumentList TemplateArgLists;
2966 TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
2967 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2968 for (unsigned I = 0; I < Depth; ++I)
2969 TemplateArgLists.addOuterTemplateArguments(None);
2970
2971 LocalInstantiationScope Scope(*this);
2972 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2973 if (Inst.isInvalid())
2974 return QualType();
2975
2976 CanonType = SubstType(Pattern->getUnderlyingType(),
2977 TemplateArgLists, AliasTemplate->getLocation(),
2978 AliasTemplate->getDeclName());
2979 if (CanonType.isNull()) {
2980 // If this was enable_if and we failed to find the nested type
2981 // within enable_if in a SFINAE context, dig out the specific
2982 // enable_if condition that failed and present that instead.
2983 if (isEnableIfAliasTemplate(AliasTemplate)) {
2984 if (auto DeductionInfo = isSFINAEContext()) {
2985 if (*DeductionInfo &&
2986 (*DeductionInfo)->hasSFINAEDiagnostic() &&
2987 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
2988 diag::err_typename_nested_not_found_enable_if &&
2989 TemplateArgs[0].getArgument().getKind()
2990 == TemplateArgument::Expression) {
2991 Expr *FailedCond;
2992 std::string FailedDescription;
2993 std::tie(FailedCond, FailedDescription) =
2994 findFailedBooleanCondition(
2995 TemplateArgs[0].getSourceExpression(),
2996 /*AllowTopLevelCond=*/true);
2997
2998 // Remove the old SFINAE diagnostic.
2999 PartialDiagnosticAt OldDiag =
3000 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3001 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3002
3003 // Add a new SFINAE diagnostic specifying which condition
3004 // failed.
3005 (*DeductionInfo)->addSFINAEDiagnostic(
3006 OldDiag.first,
3007 PDiag(diag::err_typename_nested_not_found_requirement)
3008 << FailedDescription
3009 << FailedCond->getSourceRange());
3010 }
3011 }
3012 }
3013
3014 return QualType();
3015 }
3016 } else if (Name.isDependent() ||
3017 TemplateSpecializationType::anyDependentTemplateArguments(
3018 TemplateArgs, InstantiationDependent)) {
3019 // This class template specialization is a dependent
3020 // type. Therefore, its canonical type is another class template
3021 // specialization type that contains all of the converted
3022 // arguments in canonical form. This ensures that, e.g., A<T> and
3023 // A<T, T> have identical types when A is declared as:
3024 //
3025 // template<typename T, typename U = T> struct A;
3026 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3027
3028 // This might work out to be a current instantiation, in which
3029 // case the canonical type needs to be the InjectedClassNameType.
3030 //
3031 // TODO: in theory this could be a simple hashtable lookup; most
3032 // changes to CurContext don't change the set of current
3033 // instantiations.
3034 if (isa<ClassTemplateDecl>(Template)) {
3035 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3036 // If we get out to a namespace, we're done.
3037 if (Ctx->isFileContext()) break;
3038
3039 // If this isn't a record, keep looking.
3040 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3041 if (!Record) continue;
3042
3043 // Look for one of the two cases with InjectedClassNameTypes
3044 // and check whether it's the same template.
3045 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3046 !Record->getDescribedClassTemplate())
3047 continue;
3048
3049 // Fetch the injected class name type and check whether its
3050 // injected type is equal to the type we just built.
3051 QualType ICNT = Context.getTypeDeclType(Record);
3052 QualType Injected = cast<InjectedClassNameType>(ICNT)
3053 ->getInjectedSpecializationType();
3054
3055 if (CanonType != Injected->getCanonicalTypeInternal())
3056 continue;
3057
3058 // If so, the canonical type of this TST is the injected
3059 // class name type of the record we just found.
3060 assert(ICNT.isCanonical())((ICNT.isCanonical()) ? static_cast<void> (0) : __assert_fail
("ICNT.isCanonical()", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3060, __PRETTY_FUNCTION__))
;
3061 CanonType = ICNT;
3062 break;
3063 }
3064 }
3065 } else if (ClassTemplateDecl *ClassTemplate
3066 = dyn_cast<ClassTemplateDecl>(Template)) {
3067 // Find the class template specialization declaration that
3068 // corresponds to these arguments.
3069 void *InsertPos = nullptr;
3070 ClassTemplateSpecializationDecl *Decl
3071 = ClassTemplate->findSpecialization(Converted, InsertPos);
3072 if (!Decl) {
3073 // This is the first time we have referenced this class template
3074 // specialization. Create the canonical declaration and add it to
3075 // the set of specializations.
3076 Decl = ClassTemplateSpecializationDecl::Create(Context,
3077 ClassTemplate->getTemplatedDecl()->getTagKind(),
3078 ClassTemplate->getDeclContext(),
3079 ClassTemplate->getTemplatedDecl()->getLocStart(),
3080 ClassTemplate->getLocation(),
3081 ClassTemplate,
3082 Converted, nullptr);
3083 ClassTemplate->AddSpecialization(Decl, InsertPos);
3084 if (ClassTemplate->isOutOfLine())
3085 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3086 }
3087
3088 if (Decl->getSpecializationKind() == TSK_Undeclared) {
3089 MultiLevelTemplateArgumentList TemplateArgLists;
3090 TemplateArgLists.addOuterTemplateArguments(Converted);
3091 InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(),
3092 Decl);
3093 }
3094
3095 // Diagnose uses of this specialization.
3096 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3097
3098 CanonType = Context.getTypeDeclType(Decl);
3099 assert(isa<RecordType>(CanonType) &&((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3100, __PRETTY_FUNCTION__))
3100 "type of non-dependent specialization is not a RecordType")((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3100, __PRETTY_FUNCTION__))
;
3101 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3102 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3103 TemplateArgs);
3104 }
3105
3106 // Build the fully-sugared type for this class template
3107 // specialization, which refers back to the class template
3108 // specialization we created or found.
3109 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3110}
3111
3112TypeResult
3113Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3114 TemplateTy TemplateD, IdentifierInfo *TemplateII,
3115 SourceLocation TemplateIILoc,
3116 SourceLocation LAngleLoc,
3117 ASTTemplateArgsPtr TemplateArgsIn,
3118 SourceLocation RAngleLoc,
3119 bool IsCtorOrDtorName, bool IsClassName) {
3120 if (SS.isInvalid())
3121 return true;
3122
3123 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3124 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3125
3126 // C++ [temp.res]p3:
3127 // A qualified-id that refers to a type and in which the
3128 // nested-name-specifier depends on a template-parameter (14.6.2)
3129 // shall be prefixed by the keyword typename to indicate that the
3130 // qualified-id denotes a type, forming an
3131 // elaborated-type-specifier (7.1.5.3).
3132 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3133 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3134 << SS.getScopeRep() << TemplateII->getName();
3135 // Recover as if 'typename' were specified.
3136 // FIXME: This is not quite correct recovery as we don't transform SS
3137 // into the corresponding dependent form (and we don't diagnose missing
3138 // 'template' keywords within SS as a result).
3139 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3140 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3141 TemplateArgsIn, RAngleLoc);
3142 }
3143
3144 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3145 // it's not actually allowed to be used as a type in most cases. Because
3146 // we annotate it before we know whether it's valid, we have to check for
3147 // this case here.
3148 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3149 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3150 Diag(TemplateIILoc,
3151 TemplateKWLoc.isInvalid()
3152 ? diag::err_out_of_line_qualified_id_type_names_constructor
3153 : diag::ext_out_of_line_qualified_id_type_names_constructor)
3154 << TemplateII << 0 /*injected-class-name used as template name*/
3155 << 1 /*if any keyword was present, it was 'template'*/;
3156 }
3157 }
3158
3159 TemplateName Template = TemplateD.get();
3160
3161 // Translate the parser's template argument list in our AST format.
3162 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3163 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3164
3165 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3166 QualType T
3167 = Context.getDependentTemplateSpecializationType(ETK_None,
3168 DTN->getQualifier(),
3169 DTN->getIdentifier(),
3170 TemplateArgs);
3171 // Build type-source information.
3172 TypeLocBuilder TLB;
3173 DependentTemplateSpecializationTypeLoc SpecTL
3174 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3175 SpecTL.setElaboratedKeywordLoc(SourceLocation());
3176 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3177 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3178 SpecTL.setTemplateNameLoc(TemplateIILoc);
3179 SpecTL.setLAngleLoc(LAngleLoc);
3180 SpecTL.setRAngleLoc(RAngleLoc);
3181 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3182 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3183 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3184 }
3185
3186 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
3187 if (Result.isNull())
3188 return true;
3189
3190 // Build type-source information.
3191 TypeLocBuilder TLB;
3192 TemplateSpecializationTypeLoc SpecTL
3193 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3194 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3195 SpecTL.setTemplateNameLoc(TemplateIILoc);
3196 SpecTL.setLAngleLoc(LAngleLoc);
3197 SpecTL.setRAngleLoc(RAngleLoc);
3198 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3199 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3200
3201 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
3202 // constructor or destructor name (in such a case, the scope specifier
3203 // will be attached to the enclosing Decl or Expr node).
3204 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
3205 // Create an elaborated-type-specifier containing the nested-name-specifier.
3206 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
3207 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3208 ElabTL.setElaboratedKeywordLoc(SourceLocation());
3209 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3210 }
3211
3212 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3213}
3214
3215TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
3216 TypeSpecifierType TagSpec,
3217 SourceLocation TagLoc,
3218 CXXScopeSpec &SS,
3219 SourceLocation TemplateKWLoc,
3220 TemplateTy TemplateD,
3221 SourceLocation TemplateLoc,
3222 SourceLocation LAngleLoc,
3223 ASTTemplateArgsPtr TemplateArgsIn,
3224 SourceLocation RAngleLoc) {
3225 TemplateName Template = TemplateD.get();
3226
3227 // Translate the parser's template argument list in our AST format.
3228 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3229 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3230
3231 // Determine the tag kind
3232 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3233 ElaboratedTypeKeyword Keyword
3234 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
3235
3236 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3237 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
3238 DTN->getQualifier(),
3239 DTN->getIdentifier(),
3240 TemplateArgs);
3241
3242 // Build type-source information.
3243 TypeLocBuilder TLB;
3244 DependentTemplateSpecializationTypeLoc SpecTL
3245 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3246 SpecTL.setElaboratedKeywordLoc(TagLoc);
3247 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3248 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3249 SpecTL.setTemplateNameLoc(TemplateLoc);
3250 SpecTL.setLAngleLoc(LAngleLoc);
3251 SpecTL.setRAngleLoc(RAngleLoc);
3252 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3253 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3254 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3255 }
3256
3257 if (TypeAliasTemplateDecl *TAT =
3258 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
3259 // C++0x [dcl.type.elab]p2:
3260 // If the identifier resolves to a typedef-name or the simple-template-id
3261 // resolves to an alias template specialization, the
3262 // elaborated-type-specifier is ill-formed.
3263 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
3264 << TAT << NTK_TypeAliasTemplate << TagKind;
3265 Diag(TAT->getLocation(), diag::note_declared_at);
3266 }
3267
3268 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
3269 if (Result.isNull())
3270 return TypeResult(true);
3271
3272 // Check the tag kind
3273 if (const RecordType *RT = Result->getAs<RecordType>()) {
3274 RecordDecl *D = RT->getDecl();
3275
3276 IdentifierInfo *Id = D->getIdentifier();
3277 assert(Id && "templated class must have an identifier")((Id && "templated class must have an identifier") ? static_cast
<void> (0) : __assert_fail ("Id && \"templated class must have an identifier\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3277, __PRETTY_FUNCTION__))
;
3278
3279 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
3280 TagLoc, Id)) {
3281 Diag(TagLoc, diag::err_use_with_wrong_tag)
3282 << Result
3283 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
3284 Diag(D->getLocation(), diag::note_previous_use);
3285 }
3286 }
3287
3288 // Provide source-location information for the template specialization.
3289 TypeLocBuilder TLB;
3290 TemplateSpecializationTypeLoc SpecTL
3291 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3292 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3293 SpecTL.setTemplateNameLoc(TemplateLoc);
3294 SpecTL.setLAngleLoc(LAngleLoc);
3295 SpecTL.setRAngleLoc(RAngleLoc);
3296 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3297 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3298
3299 // Construct an elaborated type containing the nested-name-specifier (if any)
3300 // and tag keyword.
3301 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
3302 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3303 ElabTL.setElaboratedKeywordLoc(TagLoc);
3304 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3305 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3306}
3307
3308static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
3309 NamedDecl *PrevDecl,
3310 SourceLocation Loc,
3311 bool IsPartialSpecialization);
3312
3313static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
3314
3315static bool isTemplateArgumentTemplateParameter(
3316 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
3317 switch (Arg.getKind()) {
3318 case TemplateArgument::Null:
3319 case TemplateArgument::NullPtr:
3320 case TemplateArgument::Integral:
3321 case TemplateArgument::Declaration:
3322 case TemplateArgument::Pack:
3323 case TemplateArgument::TemplateExpansion:
3324 return false;
3325
3326 case TemplateArgument::Type: {
3327 QualType Type = Arg.getAsType();
3328 const TemplateTypeParmType *TPT =
3329 Arg.getAsType()->getAs<TemplateTypeParmType>();
3330 return TPT && !Type.hasQualifiers() &&
3331 TPT->getDepth() == Depth && TPT->getIndex() == Index;
3332 }
3333
3334 case TemplateArgument::Expression: {
3335 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
3336 if (!DRE || !DRE->getDecl())
3337 return false;
3338 const NonTypeTemplateParmDecl *NTTP =
3339 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3340 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
3341 }
3342
3343 case TemplateArgument::Template:
3344 const TemplateTemplateParmDecl *TTP =
3345 dyn_cast_or_null<TemplateTemplateParmDecl>(
3346 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
3347 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
3348 }
3349 llvm_unreachable("unexpected kind of template argument")::llvm::llvm_unreachable_internal("unexpected kind of template argument"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3349)
;
3350}
3351
3352static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
3353 ArrayRef<TemplateArgument> Args) {
3354 if (Params->size() != Args.size())
3355 return false;
3356
3357 unsigned Depth = Params->getDepth();
3358
3359 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3360 TemplateArgument Arg = Args[I];
3361
3362 // If the parameter is a pack expansion, the argument must be a pack
3363 // whose only element is a pack expansion.
3364 if (Params->getParam(I)->isParameterPack()) {
3365 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
3366 !Arg.pack_begin()->isPackExpansion())
3367 return false;
3368 Arg = Arg.pack_begin()->getPackExpansionPattern();
3369 }
3370
3371 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
3372 return false;
3373 }
3374
3375 return true;
3376}
3377
3378/// Convert the parser's template argument list representation into our form.
3379static TemplateArgumentListInfo
3380makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
3381 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
3382 TemplateId.RAngleLoc);
3383 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
3384 TemplateId.NumArgs);
3385 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
3386 return TemplateArgs;
3387}
3388
3389template<typename PartialSpecDecl>
3390static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
3391 if (Partial->getDeclContext()->isDependentContext())
3392 return;
3393
3394 // FIXME: Get the TDK from deduction in order to provide better diagnostics
3395 // for non-substitution-failure issues?
3396 TemplateDeductionInfo Info(Partial->getLocation());
3397 if (S.isMoreSpecializedThanPrimary(Partial, Info))
3398 return;
3399
3400 auto *Template = Partial->getSpecializedTemplate();
3401 S.Diag(Partial->getLocation(),
3402 diag::ext_partial_spec_not_more_specialized_than_primary)
3403 << isa<VarTemplateDecl>(Template);
3404
3405 if (Info.hasSFINAEDiagnostic()) {
3406 PartialDiagnosticAt Diag = {SourceLocation(),
3407 PartialDiagnostic::NullDiagnostic()};
3408 Info.takeSFINAEDiagnostic(Diag);
3409 SmallString<128> SFINAEArgString;
3410 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
3411 S.Diag(Diag.first,
3412 diag::note_partial_spec_not_more_specialized_than_primary)
3413 << SFINAEArgString;
3414 }
3415
3416 S.Diag(Template->getLocation(), diag::note_template_decl_here);
3417}
3418
3419static void
3420noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
3421 const llvm::SmallBitVector &DeducibleParams) {
3422 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3423 if (!DeducibleParams[I]) {
3424 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3425 if (Param->getDeclName())
3426 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3427 << Param->getDeclName();
3428 else
3429 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3430 << "(anonymous)";
3431 }
3432 }
3433}
3434
3435
3436template<typename PartialSpecDecl>
3437static void checkTemplatePartialSpecialization(Sema &S,
3438 PartialSpecDecl *Partial) {
3439 // C++1z [temp.class.spec]p8: (DR1495)
3440 // - The specialization shall be more specialized than the primary
3441 // template (14.5.5.2).
3442 checkMoreSpecializedThanPrimary(S, Partial);
3443
3444 // C++ [temp.class.spec]p8: (DR1315)
3445 // - Each template-parameter shall appear at least once in the
3446 // template-id outside a non-deduced context.
3447 // C++1z [temp.class.spec.match]p3 (P0127R2)
3448 // If the template arguments of a partial specialization cannot be
3449 // deduced because of the structure of its template-parameter-list
3450 // and the template-id, the program is ill-formed.
3451 auto *TemplateParams = Partial->getTemplateParameters();
3452 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3453 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3454 TemplateParams->getDepth(), DeducibleParams);
3455
3456 if (!DeducibleParams.all()) {
3457 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3458 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
3459 << isa<VarTemplatePartialSpecializationDecl>(Partial)
3460 << (NumNonDeducible > 1)
3461 << SourceRange(Partial->getLocation(),
3462 Partial->getTemplateArgsAsWritten()->RAngleLoc);
3463 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
3464 }
3465}
3466
3467void Sema::CheckTemplatePartialSpecialization(
3468 ClassTemplatePartialSpecializationDecl *Partial) {
3469 checkTemplatePartialSpecialization(*this, Partial);
3470}
3471
3472void Sema::CheckTemplatePartialSpecialization(
3473 VarTemplatePartialSpecializationDecl *Partial) {
3474 checkTemplatePartialSpecialization(*this, Partial);
3475}
3476
3477void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
3478 // C++1z [temp.param]p11:
3479 // A template parameter of a deduction guide template that does not have a
3480 // default-argument shall be deducible from the parameter-type-list of the
3481 // deduction guide template.
3482 auto *TemplateParams = TD->getTemplateParameters();
3483 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3484 MarkDeducedTemplateParameters(TD, DeducibleParams);
3485 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
3486 // A parameter pack is deducible (to an empty pack).
3487 auto *Param = TemplateParams->getParam(I);
3488 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
3489 DeducibleParams[I] = true;
3490 }
3491
3492 if (!DeducibleParams.all()) {
3493 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3494 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
3495 << (NumNonDeducible > 1);
3496 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
3497 }
3498}
3499
3500DeclResult Sema::ActOnVarTemplateSpecialization(
3501 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
3502 TemplateParameterList *TemplateParams, StorageClass SC,
3503 bool IsPartialSpecialization) {
3504 // D must be variable template id.
3505 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&((D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedId::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3506, __PRETTY_FUNCTION__))
3506 "Variable template specialization is declared with a template it.")((D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedId::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3506, __PRETTY_FUNCTION__))
;
3507
3508 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3509 TemplateArgumentListInfo TemplateArgs =
3510 makeTemplateArgumentListInfo(*this, *TemplateId);
3511 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
3512 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
3513 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
3514
3515 TemplateName Name = TemplateId->Template.get();
3516
3517 // The template-id must name a variable template.
3518 VarTemplateDecl *VarTemplate =
3519 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
3520 if (!VarTemplate) {
3521 NamedDecl *FnTemplate;
3522 if (auto *OTS = Name.getAsOverloadedTemplate())
3523 FnTemplate = *OTS->begin();
3524 else
3525 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
3526 if (FnTemplate)
3527 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
3528 << FnTemplate->getDeclName();
3529 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
3530 << IsPartialSpecialization;
3531 }
3532
3533 // Check for unexpanded parameter packs in any of the template arguments.
3534 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3535 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
3536 UPPC_PartialSpecialization))
3537 return true;
3538
3539 // Check that the template argument list is well-formed for this
3540 // template.
3541 SmallVector<TemplateArgument, 4> Converted;
3542 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
3543 false, Converted))
3544 return true;
3545
3546 // Find the variable template (partial) specialization declaration that
3547 // corresponds to these arguments.
3548 if (IsPartialSpecialization) {
3549 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
3550 TemplateArgs.size(), Converted))
3551 return true;
3552
3553 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
3554 // also do them during instantiation.
3555 bool InstantiationDependent;
3556 if (!Name.isDependent() &&
3557 !TemplateSpecializationType::anyDependentTemplateArguments(
3558 TemplateArgs.arguments(),
3559 InstantiationDependent)) {
3560 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3561 << VarTemplate->getDeclName();
3562 IsPartialSpecialization = false;
3563 }
3564
3565 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
3566 Converted)) {
3567 // C++ [temp.class.spec]p9b3:
3568 //
3569 // -- The argument list of the specialization shall not be identical
3570 // to the implicit argument list of the primary template.
3571 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3572 << /*variable template*/ 1
3573 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
3574 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3575 // FIXME: Recover from this by treating the declaration as a redeclaration
3576 // of the primary template.
3577 return true;
3578 }
3579 }
3580
3581 void *InsertPos = nullptr;
3582 VarTemplateSpecializationDecl *PrevDecl = nullptr;
3583
3584 if (IsPartialSpecialization)
3585 // FIXME: Template parameter list matters too
3586 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
3587 else
3588 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
3589
3590 VarTemplateSpecializationDecl *Specialization = nullptr;
3591
3592 // Check whether we can declare a variable template specialization in
3593 // the current scope.
3594 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
3595 TemplateNameLoc,
3596 IsPartialSpecialization))
3597 return true;
3598
3599 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3600 // Since the only prior variable template specialization with these
3601 // arguments was referenced but not declared, reuse that
3602 // declaration node as our own, updating its source location and
3603 // the list of outer template parameters to reflect our new declaration.
3604 Specialization = PrevDecl;
3605 Specialization->setLocation(TemplateNameLoc);
3606 PrevDecl = nullptr;
3607 } else if (IsPartialSpecialization) {
3608 // Create a new class template partial specialization declaration node.
3609 VarTemplatePartialSpecializationDecl *PrevPartial =
3610 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
3611 VarTemplatePartialSpecializationDecl *Partial =
3612 VarTemplatePartialSpecializationDecl::Create(
3613 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
3614 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
3615 Converted, TemplateArgs);
3616
3617 if (!PrevPartial)
3618 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
3619 Specialization = Partial;
3620
3621 // If we are providing an explicit specialization of a member variable
3622 // template specialization, make a note of that.
3623 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3624 PrevPartial->setMemberSpecialization();
3625
3626 CheckTemplatePartialSpecialization(Partial);
3627 } else {
3628 // Create a new class template specialization declaration node for
3629 // this explicit specialization or friend declaration.
3630 Specialization = VarTemplateSpecializationDecl::Create(
3631 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
3632 VarTemplate, DI->getType(), DI, SC, Converted);
3633 Specialization->setTemplateArgsInfo(TemplateArgs);
3634
3635 if (!PrevDecl)
3636 VarTemplate->AddSpecialization(Specialization, InsertPos);
3637 }
3638
3639 // C++ [temp.expl.spec]p6:
3640 // If a template, a member template or the member of a class template is
3641 // explicitly specialized then that specialization shall be declared
3642 // before the first use of that specialization that would cause an implicit
3643 // instantiation to take place, in every translation unit in which such a
3644 // use occurs; no diagnostic is required.
3645 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3646 bool Okay = false;
3647 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
3648 // Is there any previous explicit specialization declaration?
3649 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3650 Okay = true;
3651 break;
3652 }
3653 }
3654
3655 if (!Okay) {
3656 SourceRange Range(TemplateNameLoc, RAngleLoc);
3657 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3658 << Name << Range;
3659
3660 Diag(PrevDecl->getPointOfInstantiation(),
3661 diag::note_instantiation_required_here)
3662 << (PrevDecl->getTemplateSpecializationKind() !=
3663 TSK_ImplicitInstantiation);
3664 return true;
3665 }
3666 }
3667
3668 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
3669 Specialization->setLexicalDeclContext(CurContext);
3670
3671 // Add the specialization into its lexical context, so that it can
3672 // be seen when iterating through the list of declarations in that
3673 // context. However, specializations are not found by name lookup.
3674 CurContext->addDecl(Specialization);
3675
3676 // Note that this is an explicit specialization.
3677 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3678
3679 if (PrevDecl) {
3680 // Check that this isn't a redefinition of this specialization,
3681 // merging with previous declarations.
3682 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
3683 forRedeclarationInCurContext());
3684 PrevSpec.addDecl(PrevDecl);
3685 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
3686 } else if (Specialization->isStaticDataMember() &&
3687 Specialization->isOutOfLine()) {
3688 Specialization->setAccess(VarTemplate->getAccess());
3689 }
3690
3691 // Link instantiations of static data members back to the template from
3692 // which they were instantiated.
3693 if (Specialization->isStaticDataMember())
3694 Specialization->setInstantiationOfStaticDataMember(
3695 VarTemplate->getTemplatedDecl(),
3696 Specialization->getSpecializationKind());
3697
3698 return Specialization;
3699}
3700
3701namespace {
3702/// \brief A partial specialization whose template arguments have matched
3703/// a given template-id.
3704struct PartialSpecMatchResult {
3705 VarTemplatePartialSpecializationDecl *Partial;
3706 TemplateArgumentList *Args;
3707};
3708} // end anonymous namespace
3709
3710DeclResult
3711Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
3712 SourceLocation TemplateNameLoc,
3713 const TemplateArgumentListInfo &TemplateArgs) {
3714 assert(Template && "A variable template id without template?")((Template && "A variable template id without template?"
) ? static_cast<void> (0) : __assert_fail ("Template && \"A variable template id without template?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3714, __PRETTY_FUNCTION__))
;
3715
3716 // Check that the template argument list is well-formed for this template.
3717 SmallVector<TemplateArgument, 4> Converted;
3718 if (CheckTemplateArgumentList(
3719 Template, TemplateNameLoc,
3720 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
3721 Converted))
3722 return true;
3723
3724 // Find the variable template specialization declaration that
3725 // corresponds to these arguments.
3726 void *InsertPos = nullptr;
3727 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
3728 Converted, InsertPos)) {
3729 checkSpecializationVisibility(TemplateNameLoc, Spec);
3730 // If we already have a variable template specialization, return it.
3731 return Spec;
3732 }
3733
3734 // This is the first time we have referenced this variable template
3735 // specialization. Create the canonical declaration and add it to
3736 // the set of specializations, based on the closest partial specialization
3737 // that it represents. That is,
3738 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
3739 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
3740 Converted);
3741 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
3742 bool AmbiguousPartialSpec = false;
3743 typedef PartialSpecMatchResult MatchResult;
3744 SmallVector<MatchResult, 4> Matched;
3745 SourceLocation PointOfInstantiation = TemplateNameLoc;
3746 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
3747 /*ForTakingAddress=*/false);
3748
3749 // 1. Attempt to find the closest partial specialization that this
3750 // specializes, if any.
3751 // If any of the template arguments is dependent, then this is probably
3752 // a placeholder for an incomplete declarative context; which must be
3753 // complete by instantiation time. Thus, do not search through the partial
3754 // specializations yet.
3755 // TODO: Unify with InstantiateClassTemplateSpecialization()?
3756 // Perhaps better after unification of DeduceTemplateArguments() and
3757 // getMoreSpecializedPartialSpecialization().
3758 bool InstantiationDependent = false;
3759 if (!TemplateSpecializationType::anyDependentTemplateArguments(
3760 TemplateArgs, InstantiationDependent)) {
3761
3762 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
3763 Template->getPartialSpecializations(PartialSpecs);
3764
3765 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
3766 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
3767 TemplateDeductionInfo Info(FailedCandidates.getLocation());
3768
3769 if (TemplateDeductionResult Result =
3770 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
3771 // Store the failed-deduction information for use in diagnostics, later.
3772 // TODO: Actually use the failed-deduction info?
3773 FailedCandidates.addCandidate().set(
3774 DeclAccessPair::make(Template, AS_public), Partial,
3775 MakeDeductionFailureInfo(Context, Result, Info));
3776 (void)Result;
3777 } else {
3778 Matched.push_back(PartialSpecMatchResult());
3779 Matched.back().Partial = Partial;
3780 Matched.back().Args = Info.take();
3781 }
3782 }
3783
3784 if (Matched.size() >= 1) {
3785 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
3786 if (Matched.size() == 1) {
3787 // -- If exactly one matching specialization is found, the
3788 // instantiation is generated from that specialization.
3789 // We don't need to do anything for this.
3790 } else {
3791 // -- If more than one matching specialization is found, the
3792 // partial order rules (14.5.4.2) are used to determine
3793 // whether one of the specializations is more specialized
3794 // than the others. If none of the specializations is more
3795 // specialized than all of the other matching
3796 // specializations, then the use of the variable template is
3797 // ambiguous and the program is ill-formed.
3798 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
3799 PEnd = Matched.end();
3800 P != PEnd; ++P) {
3801 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
3802 PointOfInstantiation) ==
3803 P->Partial)
3804 Best = P;
3805 }
3806
3807 // Determine if the best partial specialization is more specialized than
3808 // the others.
3809 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
3810 PEnd = Matched.end();
3811 P != PEnd; ++P) {
3812 if (P != Best && getMoreSpecializedPartialSpecialization(
3813 P->Partial, Best->Partial,
3814 PointOfInstantiation) != Best->Partial) {
3815 AmbiguousPartialSpec = true;
3816 break;
3817 }
3818 }
3819 }
3820
3821 // Instantiate using the best variable template partial specialization.
3822 InstantiationPattern = Best->Partial;
3823 InstantiationArgs = Best->Args;
3824 } else {
3825 // -- If no match is found, the instantiation is generated
3826 // from the primary template.
3827 // InstantiationPattern = Template->getTemplatedDecl();
3828 }
3829 }
3830
3831 // 2. Create the canonical declaration.
3832 // Note that we do not instantiate a definition until we see an odr-use
3833 // in DoMarkVarDeclReferenced().
3834 // FIXME: LateAttrs et al.?
3835 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
3836 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
3837 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
3838 if (!Decl)
3839 return true;
3840
3841 if (AmbiguousPartialSpec) {
3842 // Partial ordering did not produce a clear winner. Complain.
3843 Decl->setInvalidDecl();
3844 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
3845 << Decl;
3846
3847 // Print the matching partial specializations.
3848 for (MatchResult P : Matched)
3849 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
3850 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
3851 *P.Args);
3852 return true;
3853 }
3854
3855 if (VarTemplatePartialSpecializationDecl *D =
3856 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
3857 Decl->setInstantiationOf(D, InstantiationArgs);
3858
3859 checkSpecializationVisibility(TemplateNameLoc, Decl);
3860
3861 assert(Decl && "No variable template specialization?")((Decl && "No variable template specialization?") ? static_cast
<void> (0) : __assert_fail ("Decl && \"No variable template specialization?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3861, __PRETTY_FUNCTION__))
;
3862 return Decl;
3863}
3864
3865ExprResult
3866Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
3867 const DeclarationNameInfo &NameInfo,
3868 VarTemplateDecl *Template, SourceLocation TemplateLoc,
3869 const TemplateArgumentListInfo *TemplateArgs) {
3870
3871 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
3872 *TemplateArgs);
3873 if (Decl.isInvalid())
3874 return ExprError();
3875
3876 VarDecl *Var = cast<VarDecl>(Decl.get());
3877 if (!Var->getTemplateSpecializationKind())
3878 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
3879 NameInfo.getLoc());
3880
3881 // Build an ordinary singleton decl ref.
3882 return BuildDeclarationNameExpr(SS, NameInfo, Var,
3883 /*FoundD=*/nullptr, TemplateArgs);
3884}
3885
3886ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
3887 SourceLocation TemplateKWLoc,
3888 LookupResult &R,
3889 bool RequiresADL,
3890 const TemplateArgumentListInfo *TemplateArgs) {
3891 // FIXME: Can we do any checking at this point? I guess we could check the
3892 // template arguments that we have against the template name, if the template
3893 // name refers to a single template. That's not a terribly common case,
3894 // though.
3895 // foo<int> could identify a single function unambiguously
3896 // This approach does NOT work, since f<int>(1);
3897 // gets resolved prior to resorting to overload resolution
3898 // i.e., template<class T> void f(double);
3899 // vs template<class T, class U> void f(U);
3900
3901 // These should be filtered out by our callers.
3902 assert(!R.empty() && "empty lookup results when building templateid")((!R.empty() && "empty lookup results when building templateid"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"empty lookup results when building templateid\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3902, __PRETTY_FUNCTION__))
;
3903 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid")((!R.isAmbiguous() && "ambiguous lookup when building templateid"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"ambiguous lookup when building templateid\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3903, __PRETTY_FUNCTION__))
;
3904
3905 // In C++1y, check variable template ids.
3906 bool InstantiationDependent;
3907 if (R.getAsSingle<VarTemplateDecl>() &&
3908 !TemplateSpecializationType::anyDependentTemplateArguments(
3909 *TemplateArgs, InstantiationDependent)) {
3910 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
3911 R.getAsSingle<VarTemplateDecl>(),
3912 TemplateKWLoc, TemplateArgs);
3913 }
3914
3915 // We don't want lookup warnings at this point.
3916 R.suppressDiagnostics();
3917
3918 UnresolvedLookupExpr *ULE
3919 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3920 SS.getWithLocInContext(Context),
3921 TemplateKWLoc,
3922 R.getLookupNameInfo(),
3923 RequiresADL, TemplateArgs,
3924 R.begin(), R.end());
3925
3926 return ULE;
3927}
3928
3929// We actually only call this from template instantiation.
3930ExprResult
3931Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
3932 SourceLocation TemplateKWLoc,
3933 const DeclarationNameInfo &NameInfo,
3934 const TemplateArgumentListInfo *TemplateArgs) {
3935
3936 assert(TemplateArgs || TemplateKWLoc.isValid())((TemplateArgs || TemplateKWLoc.isValid()) ? static_cast<void
> (0) : __assert_fail ("TemplateArgs || TemplateKWLoc.isValid()"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3936, __PRETTY_FUNCTION__))
;
3937 DeclContext *DC;
3938 if (!(DC = computeDeclContext(SS, false)) ||
3939 DC->isDependentContext() ||
3940 RequireCompleteDeclContext(SS, DC))
3941 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
3942
3943 bool MemberOfUnknownSpecialization;
3944 LookupResult R(*this, NameInfo, LookupOrdinaryName);
3945 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
3946 MemberOfUnknownSpecialization);
3947
3948 if (R.isAmbiguous())
3949 return ExprError();
3950
3951 if (R.empty()) {
3952 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
3953 << NameInfo.getName() << SS.getRange();
3954 return ExprError();
3955 }
3956
3957 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
3958 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
3959 << SS.getScopeRep()
3960 << NameInfo.getName().getAsString() << SS.getRange();
3961 Diag(Temp->getLocation(), diag::note_referenced_class_template);
3962 return ExprError();
3963 }
3964
3965 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
3966}
3967
3968/// \brief Form a dependent template name.
3969///
3970/// This action forms a dependent template name given the template
3971/// name and its (presumably dependent) scope specifier. For
3972/// example, given "MetaFun::template apply", the scope specifier \p
3973/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
3974/// of the "template" keyword, and "apply" is the \p Name.
3975TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
3976 CXXScopeSpec &SS,
3977 SourceLocation TemplateKWLoc,
3978 UnqualifiedId &Name,
3979 ParsedType ObjectType,
3980 bool EnteringContext,
3981 TemplateTy &Result,
3982 bool AllowInjectedClassName) {
3983 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
3984 Diag(TemplateKWLoc,
3985 getLangOpts().CPlusPlus11 ?
3986 diag::warn_cxx98_compat_template_outside_of_template :
3987 diag::ext_template_outside_of_template)
3988 << FixItHint::CreateRemoval(TemplateKWLoc);
3989
3990 DeclContext *LookupCtx = nullptr;
3991 if (SS.isSet())
3992 LookupCtx = computeDeclContext(SS, EnteringContext);
3993 if (!LookupCtx && ObjectType)
3994 LookupCtx = computeDeclContext(ObjectType.get());
3995 if (LookupCtx) {
3996 // C++0x [temp.names]p5:
3997 // If a name prefixed by the keyword template is not the name of
3998 // a template, the program is ill-formed. [Note: the keyword
3999 // template may not be applied to non-template members of class
4000 // templates. -end note ] [ Note: as is the case with the
4001 // typename prefix, the template prefix is allowed in cases
4002 // where it is not strictly necessary; i.e., when the
4003 // nested-name-specifier or the expression on the left of the ->
4004 // or . is not dependent on a template-parameter, or the use
4005 // does not appear in the scope of a template. -end note]
4006 //
4007 // Note: C++03 was more strict here, because it banned the use of
4008 // the "template" keyword prior to a template-name that was not a
4009 // dependent name. C++ DR468 relaxed this requirement (the
4010 // "template" keyword is now permitted). We follow the C++0x
4011 // rules, even in C++03 mode with a warning, retroactively applying the DR.
4012 bool MemberOfUnknownSpecialization;
4013 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4014 ObjectType, EnteringContext, Result,
4015 MemberOfUnknownSpecialization);
4016 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
4017 isa<CXXRecordDecl>(LookupCtx) &&
4018 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
4019 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
4020 // This is a dependent template. Handle it below.
4021 } else if (TNK == TNK_Non_template) {
4022 Diag(Name.getLocStart(),
4023 diag::err_template_kw_refers_to_non_template)
4024 << GetNameFromUnqualifiedId(Name).getName()
4025 << Name.getSourceRange()
4026 << TemplateKWLoc;
4027 return TNK_Non_template;
4028 } else {
4029 // We found something; return it.
4030 auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx);
4031 if (!AllowInjectedClassName && SS.isSet() && LookupRD &&
4032 Name.getKind() == UnqualifiedId::IK_Identifier && Name.Identifier &&
4033 LookupRD->getIdentifier() == Name.Identifier) {
4034 // C++14 [class.qual]p2:
4035 // In a lookup in which function names are not ignored and the
4036 // nested-name-specifier nominates a class C, if the name specified
4037 // [...] is the injected-class-name of C, [...] the name is instead
4038 // considered to name the constructor
4039 //
4040 // We don't get here if naming the constructor would be valid, so we
4041 // just reject immediately and recover by treating the
4042 // injected-class-name as naming the template.
4043 Diag(Name.getLocStart(),
4044 diag::ext_out_of_line_qualified_id_type_names_constructor)
4045 << Name.Identifier << 0 /*injected-class-name used as template name*/
4046 << 1 /*'template' keyword was used*/;
4047 }
4048 return TNK;
4049 }
4050 }
4051
4052 NestedNameSpecifier *Qualifier = SS.getScopeRep();
4053
4054 switch (Name.getKind()) {
4055 case UnqualifiedId::IK_Identifier:
4056 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4057 Name.Identifier));
4058 return TNK_Dependent_template_name;
4059
4060 case UnqualifiedId::IK_OperatorFunctionId:
4061 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4062 Name.OperatorFunctionId.Operator));
4063 return TNK_Function_template;
4064
4065 case UnqualifiedId::IK_LiteralOperatorId:
4066 llvm_unreachable("literal operator id cannot have a dependent scope")::llvm::llvm_unreachable_internal("literal operator id cannot have a dependent scope"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4066)
;
4067
4068 default:
4069 break;
4070 }
4071
4072 Diag(Name.getLocStart(),
4073 diag::err_template_kw_refers_to_non_template)
4074 << GetNameFromUnqualifiedId(Name).getName()
4075 << Name.getSourceRange()
4076 << TemplateKWLoc;
4077 return TNK_Non_template;
4078}
4079
4080bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
4081 TemplateArgumentLoc &AL,
4082 SmallVectorImpl<TemplateArgument> &Converted) {
4083 const TemplateArgument &Arg = AL.getArgument();
4084 QualType ArgType;
4085 TypeSourceInfo *TSI = nullptr;
4086
4087 // Check template type parameter.
4088 switch(Arg.getKind()) {
4089 case TemplateArgument::Type:
4090 // C++ [temp.arg.type]p1:
4091 // A template-argument for a template-parameter which is a
4092 // type shall be a type-id.
4093 ArgType = Arg.getAsType();
4094 TSI = AL.getTypeSourceInfo();
4095 break;
4096 case TemplateArgument::Template: {
4097 // We have a template type parameter but the template argument
4098 // is a template without any arguments.
4099 SourceRange SR = AL.getSourceRange();
4100 TemplateName Name = Arg.getAsTemplate();
4101 Diag(SR.getBegin(), diag::err_template_missing_args)
4102 << (int)getTemplateNameKindForDiagnostics(Name) << Name << SR;
4103 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
4104 Diag(Decl->getLocation(), diag::note_template_decl_here);
4105
4106 return true;
4107 }
4108 case TemplateArgument::Expression: {
4109 // We have a template type parameter but the template argument is an
4110 // expression; see if maybe it is missing the "typename" keyword.
4111 CXXScopeSpec SS;
4112 DeclarationNameInfo NameInfo;
4113
4114 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
4115 SS.Adopt(ArgExpr->getQualifierLoc());
4116 NameInfo = ArgExpr->getNameInfo();
4117 } else if (DependentScopeDeclRefExpr *ArgExpr =
4118 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
4119 SS.Adopt(ArgExpr->getQualifierLoc());
4120 NameInfo = ArgExpr->getNameInfo();
4121 } else if (CXXDependentScopeMemberExpr *ArgExpr =
4122 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
4123 if (ArgExpr->isImplicitAccess()) {
4124 SS.Adopt(ArgExpr->getQualifierLoc());
4125 NameInfo = ArgExpr->getMemberNameInfo();
4126 }
4127 }
4128
4129 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
4130 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
4131 LookupParsedName(Result, CurScope, &SS);
4132
4133 if (Result.getAsSingle<TypeDecl>() ||
4134 Result.getResultKind() ==
4135 LookupResult::NotFoundInCurrentInstantiation) {
4136 // Suggest that the user add 'typename' before the NNS.
4137 SourceLocation Loc = AL.getSourceRange().getBegin();
4138 Diag(Loc, getLangOpts().MSVCCompat
4139 ? diag::ext_ms_template_type_arg_missing_typename
4140 : diag::err_template_arg_must_be_type_suggest)
4141 << FixItHint::CreateInsertion(Loc, "typename ");
4142 Diag(Param->getLocation(), diag::note_template_param_here);
4143
4144 // Recover by synthesizing a type using the location information that we
4145 // already have.
4146 ArgType =
4147 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
4148 TypeLocBuilder TLB;
4149 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
4150 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
4151 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4152 TL.setNameLoc(NameInfo.getLoc());
4153 TSI = TLB.getTypeSourceInfo(Context, ArgType);
4154
4155 // Overwrite our input TemplateArgumentLoc so that we can recover
4156 // properly.
4157 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
4158 TemplateArgumentLocInfo(TSI));
4159
4160 break;
4161 }
4162 }
4163 // fallthrough
4164 LLVM_FALLTHROUGH[[clang::fallthrough]];
4165 }
4166 default: {
4167 // We have a template type parameter but the template argument
4168 // is not a type.
4169 SourceRange SR = AL.getSourceRange();
4170 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
4171 Diag(Param->getLocation(), diag::note_template_param_here);
4172
4173 return true;
4174 }
4175 }
4176
4177 if (CheckTemplateArgument(Param, TSI))
4178 return true;
4179
4180 // Add the converted template type argument.
4181 ArgType = Context.getCanonicalType(ArgType);
4182
4183 // Objective-C ARC:
4184 // If an explicitly-specified template argument type is a lifetime type
4185 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
4186 if (getLangOpts().ObjCAutoRefCount &&
4187 ArgType->isObjCLifetimeType() &&
4188 !ArgType.getObjCLifetime()) {
4189 Qualifiers Qs;
4190 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
4191 ArgType = Context.getQualifiedType(ArgType, Qs);
4192 }
4193
4194 Converted.push_back(TemplateArgument(ArgType));
4195 return false;
4196}
4197
4198/// \brief Substitute template arguments into the default template argument for
4199/// the given template type parameter.
4200///
4201/// \param SemaRef the semantic analysis object for which we are performing
4202/// the substitution.
4203///
4204/// \param Template the template that we are synthesizing template arguments
4205/// for.
4206///
4207/// \param TemplateLoc the location of the template name that started the
4208/// template-id we are checking.
4209///
4210/// \param RAngleLoc the location of the right angle bracket ('>') that
4211/// terminates the template-id.
4212///
4213/// \param Param the template template parameter whose default we are
4214/// substituting into.
4215///
4216/// \param Converted the list of template arguments provided for template
4217/// parameters that precede \p Param in the template parameter list.
4218/// \returns the substituted template argument, or NULL if an error occurred.
4219static TypeSourceInfo *
4220SubstDefaultTemplateArgument(Sema &SemaRef,
4221 TemplateDecl *Template,
4222 SourceLocation TemplateLoc,
4223 SourceLocation RAngleLoc,
4224 TemplateTypeParmDecl *Param,
4225 SmallVectorImpl<TemplateArgument> &Converted) {
4226 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
4227
4228 // If the argument type is dependent, instantiate it now based
4229 // on the previously-computed template arguments.
4230 if (ArgType->getType()->isDependentType()) {
4231 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4232 Param, Template, Converted,
4233 SourceRange(TemplateLoc, RAngleLoc));
4234 if (Inst.isInvalid())
4235 return nullptr;
4236
4237 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4238
4239 // Only substitute for the innermost template argument list.
4240 MultiLevelTemplateArgumentList TemplateArgLists;
4241 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4242 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4243 TemplateArgLists.addOuterTemplateArguments(None);
4244
4245 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4246 ArgType =
4247 SemaRef.SubstType(ArgType, TemplateArgLists,
4248 Param->getDefaultArgumentLoc(), Param->getDeclName());
4249 }
4250
4251 return ArgType;
4252}
4253
4254/// \brief Substitute template arguments into the default template argument for
4255/// the given non-type template parameter.
4256///
4257/// \param SemaRef the semantic analysis object for which we are performing
4258/// the substitution.
4259///
4260/// \param Template the template that we are synthesizing template arguments
4261/// for.
4262///
4263/// \param TemplateLoc the location of the template name that started the
4264/// template-id we are checking.
4265///
4266/// \param RAngleLoc the location of the right angle bracket ('>') that
4267/// terminates the template-id.
4268///
4269/// \param Param the non-type template parameter whose default we are
4270/// substituting into.
4271///
4272/// \param Converted the list of template arguments provided for template
4273/// parameters that precede \p Param in the template parameter list.
4274///
4275/// \returns the substituted template argument, or NULL if an error occurred.
4276static ExprResult
4277SubstDefaultTemplateArgument(Sema &SemaRef,
4278 TemplateDecl *Template,
4279 SourceLocation TemplateLoc,
4280 SourceLocation RAngleLoc,
4281 NonTypeTemplateParmDecl *Param,
4282 SmallVectorImpl<TemplateArgument> &Converted) {
4283 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4284 Param, Template, Converted,
4285 SourceRange(TemplateLoc, RAngleLoc));
4286 if (Inst.isInvalid())
4287 return ExprError();
4288
4289 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4290
4291 // Only substitute for the innermost template argument list.
4292 MultiLevelTemplateArgumentList TemplateArgLists;
4293 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4294 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4295 TemplateArgLists.addOuterTemplateArguments(None);
4296
4297 EnterExpressionEvaluationContext ConstantEvaluated(
4298 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4299 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
4300}
4301
4302/// \brief Substitute template arguments into the default template argument for
4303/// the given template template parameter.
4304///
4305/// \param SemaRef the semantic analysis object for which we are performing
4306/// the substitution.
4307///
4308/// \param Template the template that we are synthesizing template arguments
4309/// for.
4310///
4311/// \param TemplateLoc the location of the template name that started the
4312/// template-id we are checking.
4313///
4314/// \param RAngleLoc the location of the right angle bracket ('>') that
4315/// terminates the template-id.
4316///
4317/// \param Param the template template parameter whose default we are
4318/// substituting into.
4319///
4320/// \param Converted the list of template arguments provided for template
4321/// parameters that precede \p Param in the template parameter list.
4322///
4323/// \param QualifierLoc Will be set to the nested-name-specifier (with
4324/// source-location information) that precedes the template name.
4325///
4326/// \returns the substituted template argument, or NULL if an error occurred.
4327static TemplateName
4328SubstDefaultTemplateArgument(Sema &SemaRef,
4329 TemplateDecl *Template,
4330 SourceLocation TemplateLoc,
4331 SourceLocation RAngleLoc,
4332 TemplateTemplateParmDecl *Param,
4333 SmallVectorImpl<TemplateArgument> &Converted,
4334 NestedNameSpecifierLoc &QualifierLoc) {
4335 Sema::InstantiatingTemplate Inst(
4336 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
4337 SourceRange(TemplateLoc, RAngleLoc));
4338 if (Inst.isInvalid())
4339 return TemplateName();
4340
4341 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4342
4343 // Only substitute for the innermost template argument list.
4344 MultiLevelTemplateArgumentList TemplateArgLists;
4345 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4346 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4347 TemplateArgLists.addOuterTemplateArguments(None);
4348
4349 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4350 // Substitute into the nested-name-specifier first,
4351 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
4352 if (QualifierLoc) {
4353 QualifierLoc =
4354 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
4355 if (!QualifierLoc)
4356 return TemplateName();
4357 }
4358
4359 return SemaRef.SubstTemplateName(
4360 QualifierLoc,
4361 Param->getDefaultArgument().getArgument().getAsTemplate(),
4362 Param->getDefaultArgument().getTemplateNameLoc(),
4363 TemplateArgLists);
4364}
4365
4366/// \brief If the given template parameter has a default template
4367/// argument, substitute into that default template argument and
4368/// return the corresponding template argument.
4369TemplateArgumentLoc
4370Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
4371 SourceLocation TemplateLoc,
4372 SourceLocation RAngleLoc,
4373 Decl *Param,
4374 SmallVectorImpl<TemplateArgument>
4375 &Converted,
4376 bool &HasDefaultArg) {
4377 HasDefaultArg = false;
4378
4379 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
4380 if (!hasVisibleDefaultArgument(TypeParm))
4381 return TemplateArgumentLoc();
4382
4383 HasDefaultArg = true;
4384 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
4385 TemplateLoc,
4386 RAngleLoc,
4387 TypeParm,
4388 Converted);
4389 if (DI)
4390 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
4391
4392 return TemplateArgumentLoc();
4393 }
4394
4395 if (NonTypeTemplateParmDecl *NonTypeParm
4396 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4397 if (!hasVisibleDefaultArgument(NonTypeParm))
4398 return TemplateArgumentLoc();
4399
4400 HasDefaultArg = true;
4401 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
4402 TemplateLoc,
4403 RAngleLoc,
4404 NonTypeParm,
4405 Converted);
4406 if (Arg.isInvalid())
4407 return TemplateArgumentLoc();
4408
4409 Expr *ArgE = Arg.getAs<Expr>();
4410 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
4411 }
4412
4413 TemplateTemplateParmDecl *TempTempParm
4414 = cast<TemplateTemplateParmDecl>(Param);
4415 if (!hasVisibleDefaultArgument(TempTempParm))
4416 return TemplateArgumentLoc();
4417
4418 HasDefaultArg = true;
4419 NestedNameSpecifierLoc QualifierLoc;
4420 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
4421 TemplateLoc,
4422 RAngleLoc,
4423 TempTempParm,
4424 Converted,
4425 QualifierLoc);
4426 if (TName.isNull())
4427 return TemplateArgumentLoc();
4428
4429 return TemplateArgumentLoc(TemplateArgument(TName),
4430 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
4431 TempTempParm->getDefaultArgument().getTemplateNameLoc());
4432}
4433
4434/// Convert a template-argument that we parsed as a type into a template, if
4435/// possible. C++ permits injected-class-names to perform dual service as
4436/// template template arguments and as template type arguments.
4437static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) {
4438 // Extract and step over any surrounding nested-name-specifier.
4439 NestedNameSpecifierLoc QualLoc;
4440 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
4441 if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
4442 return TemplateArgumentLoc();
4443
4444 QualLoc = ETLoc.getQualifierLoc();
4445 TLoc = ETLoc.getNamedTypeLoc();
4446 }
4447
4448 // If this type was written as an injected-class-name, it can be used as a
4449 // template template argument.
4450 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
4451 return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(),
4452 QualLoc, InjLoc.getNameLoc());
4453
4454 // If this type was written as an injected-class-name, it may have been
4455 // converted to a RecordType during instantiation. If the RecordType is
4456 // *not* wrapped in a TemplateSpecializationType and denotes a class
4457 // template specialization, it must have come from an injected-class-name.
4458 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
4459 if (auto *CTSD =
4460 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
4461 return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()),
4462 QualLoc, RecLoc.getNameLoc());
4463
4464 return TemplateArgumentLoc();
4465}
4466
4467/// \brief Check that the given template argument corresponds to the given
4468/// template parameter.
4469///
4470/// \param Param The template parameter against which the argument will be
4471/// checked.
4472///
4473/// \param Arg The template argument, which may be updated due to conversions.
4474///
4475/// \param Template The template in which the template argument resides.
4476///
4477/// \param TemplateLoc The location of the template name for the template
4478/// whose argument list we're matching.
4479///
4480/// \param RAngleLoc The location of the right angle bracket ('>') that closes
4481/// the template argument list.
4482///
4483/// \param ArgumentPackIndex The index into the argument pack where this
4484/// argument will be placed. Only valid if the parameter is a parameter pack.
4485///
4486/// \param Converted The checked, converted argument will be added to the
4487/// end of this small vector.
4488///
4489/// \param CTAK Describes how we arrived at this particular template argument:
4490/// explicitly written, deduced, etc.
4491///
4492/// \returns true on error, false otherwise.
4493bool Sema::CheckTemplateArgument(NamedDecl *Param,
4494 TemplateArgumentLoc &Arg,
4495 NamedDecl *Template,
4496 SourceLocation TemplateLoc,
4497 SourceLocation RAngleLoc,
4498 unsigned ArgumentPackIndex,
4499 SmallVectorImpl<TemplateArgument> &Converted,
4500 CheckTemplateArgumentKind CTAK) {
4501 // Check template type parameters.
4502 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
4503 return CheckTemplateTypeArgument(TTP, Arg, Converted);
4504
4505 // Check non-type template parameters.
4506 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4507 // Do substitution on the type of the non-type template parameter
4508 // with the template arguments we've seen thus far. But if the
4509 // template has a dependent context then we cannot substitute yet.
4510 QualType NTTPType = NTTP->getType();
4511 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
4512 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
4513
4514 if (NTTPType->isDependentType() &&
4515 !isa<TemplateTemplateParmDecl>(Template) &&
4516 !Template->getDeclContext()->isDependentContext()) {
4517 // Do substitution on the type of the non-type template parameter.
4518 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
4519 NTTP, Converted,
4520 SourceRange(TemplateLoc, RAngleLoc));
4521 if (Inst.isInvalid())
4522 return true;
4523
4524 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
4525 Converted);
4526 NTTPType = SubstType(NTTPType,
4527 MultiLevelTemplateArgumentList(TemplateArgs),
4528 NTTP->getLocation(),
4529 NTTP->getDeclName());
4530 // If that worked, check the non-type template parameter type
4531 // for validity.
4532 if (!NTTPType.isNull())
4533 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
4534 NTTP->getLocation());
4535 if (NTTPType.isNull())
4536 return true;
4537 }
4538
4539 switch (Arg.getArgument().getKind()) {
4540 case TemplateArgument::Null:
4541 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4541)
;
4542
4543 case TemplateArgument::Expression: {
4544 TemplateArgument Result;
4545 ExprResult Res =
4546 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
4547 Result, CTAK);
4548 if (Res.isInvalid())
4549 return true;
4550
4551 // If the resulting expression is new, then use it in place of the
4552 // old expression in the template argument.
4553 if (Res.get() != Arg.getArgument().getAsExpr()) {
4554 TemplateArgument TA(Res.get());
4555 Arg = TemplateArgumentLoc(TA, Res.get());
4556 }
4557
4558 Converted.push_back(Result);
4559 break;
4560 }
4561
4562 case TemplateArgument::Declaration:
4563 case TemplateArgument::Integral:
4564 case TemplateArgument::NullPtr:
4565 // We've already checked this template argument, so just copy
4566 // it to the list of converted arguments.
4567 Converted.push_back(Arg.getArgument());
4568 break;
4569
4570 case TemplateArgument::Template:
4571 case TemplateArgument::TemplateExpansion:
4572 // We were given a template template argument. It may not be ill-formed;
4573 // see below.
4574 if (DependentTemplateName *DTN
4575 = Arg.getArgument().getAsTemplateOrTemplatePattern()
4576 .getAsDependentTemplateName()) {
4577 // We have a template argument such as \c T::template X, which we
4578 // parsed as a template template argument. However, since we now
4579 // know that we need a non-type template argument, convert this
4580 // template name into an expression.
4581
4582 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
4583 Arg.getTemplateNameLoc());
4584
4585 CXXScopeSpec SS;
4586 SS.Adopt(Arg.getTemplateQualifierLoc());
4587 // FIXME: the template-template arg was a DependentTemplateName,
4588 // so it was provided with a template keyword. However, its source
4589 // location is not stored in the template argument structure.
4590 SourceLocation TemplateKWLoc;
4591 ExprResult E = DependentScopeDeclRefExpr::Create(
4592 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
4593 nullptr);
4594
4595 // If we parsed the template argument as a pack expansion, create a
4596 // pack expansion expression.
4597 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
4598 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
4599 if (E.isInvalid())
4600 return true;
4601 }
4602
4603 TemplateArgument Result;
4604 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
4605 if (E.isInvalid())
4606 return true;
4607
4608 Converted.push_back(Result);
4609 break;
4610 }
4611
4612 // We have a template argument that actually does refer to a class
4613 // template, alias template, or template template parameter, and
4614 // therefore cannot be a non-type template argument.
4615 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
4616 << Arg.getSourceRange();
4617
4618 Diag(Param->getLocation(), diag::note_template_param_here);
4619 return true;
4620
4621 case TemplateArgument::Type: {
4622 // We have a non-type template parameter but the template
4623 // argument is a type.
4624
4625 // C++ [temp.arg]p2:
4626 // In a template-argument, an ambiguity between a type-id and
4627 // an expression is resolved to a type-id, regardless of the
4628 // form of the corresponding template-parameter.
4629 //
4630 // We warn specifically about this case, since it can be rather
4631 // confusing for users.
4632 QualType T = Arg.getArgument().getAsType();
4633 SourceRange SR = Arg.getSourceRange();
4634 if (T->isFunctionType())
4635 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
4636 else
4637 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
4638 Diag(Param->getLocation(), diag::note_template_param_here);
4639 return true;
4640 }
4641
4642 case TemplateArgument::Pack:
4643 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4643)
;
4644 }
4645
4646 return false;
4647 }
4648
4649
4650 // Check template template parameters.
4651 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
4652
4653 // Substitute into the template parameter list of the template
4654 // template parameter, since previously-supplied template arguments
4655 // may appear within the template template parameter.
4656 {
4657 // Set up a template instantiation context.
4658 LocalInstantiationScope Scope(*this);
4659 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
4660 TempParm, Converted,
4661 SourceRange(TemplateLoc, RAngleLoc));
4662 if (Inst.isInvalid())
4663 return true;
4664
4665 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4666 TempParm = cast_or_null<TemplateTemplateParmDecl>(
4667 SubstDecl(TempParm, CurContext,
4668 MultiLevelTemplateArgumentList(TemplateArgs)));
4669 if (!TempParm)
4670 return true;
4671 }
4672
4673 // C++1z [temp.local]p1: (DR1004)
4674 // When [the injected-class-name] is used [...] as a template-argument for
4675 // a template template-parameter [...] it refers to the class template
4676 // itself.
4677 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
4678 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
4679 Arg.getTypeSourceInfo()->getTypeLoc());
4680 if (!ConvertedArg.getArgument().isNull())
4681 Arg = ConvertedArg;
4682 }
4683
4684 switch (Arg.getArgument().getKind()) {
4685 case TemplateArgument::Null:
4686 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4686)
;
4687
4688 case TemplateArgument::Template:
4689 case TemplateArgument::TemplateExpansion:
4690 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
4691 return true;
4692
4693 Converted.push_back(Arg.getArgument());
4694 break;
4695
4696 case TemplateArgument::Expression:
4697 case TemplateArgument::Type:
4698 // We have a template template parameter but the template
4699 // argument does not refer to a template.
4700 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
4701 << getLangOpts().CPlusPlus11;
4702 return true;
4703
4704 case TemplateArgument::Declaration:
4705 llvm_unreachable("Declaration argument with template template parameter")::llvm::llvm_unreachable_internal("Declaration argument with template template parameter"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4705)
;
4706 case TemplateArgument::Integral:
4707 llvm_unreachable("Integral argument with template template parameter")::llvm::llvm_unreachable_internal("Integral argument with template template parameter"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4707)
;
4708 case TemplateArgument::NullPtr:
4709 llvm_unreachable("Null pointer argument with template template parameter")::llvm::llvm_unreachable_internal("Null pointer argument with template template parameter"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4709)
;
4710
4711 case TemplateArgument::Pack:
4712 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4712)
;
4713 }
4714
4715 return false;
4716}
4717
4718/// \brief Diagnose an arity mismatch in the
4719static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
4720 SourceLocation TemplateLoc,
4721 TemplateArgumentListInfo &TemplateArgs) {
4722 TemplateParameterList *Params = Template->getTemplateParameters();
4723 unsigned NumParams = Params->size();
4724 unsigned NumArgs = TemplateArgs.size();
4725
4726 SourceRange Range;
4727 if (NumArgs > NumParams)
4728 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
4729 TemplateArgs.getRAngleLoc());
4730 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
4731 << (NumArgs > NumParams)
4732 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(Template))
4733 << Template << Range;
4734 S.Diag(Template->getLocation(), diag::note_template_decl_here)
4735 << Params->getSourceRange();
4736 return true;
4737}
4738
4739/// \brief Check whether the template parameter is a pack expansion, and if so,
4740/// determine the number of parameters produced by that expansion. For instance:
4741///
4742/// \code
4743/// template<typename ...Ts> struct A {
4744/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
4745/// };
4746/// \endcode
4747///
4748/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
4749/// is not a pack expansion, so returns an empty Optional.
4750static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
4751 if (NonTypeTemplateParmDecl *NTTP
4752 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4753 if (NTTP->isExpandedParameterPack())
4754 return NTTP->getNumExpansionTypes();
4755 }
4756
4757 if (TemplateTemplateParmDecl *TTP
4758 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
4759 if (TTP->isExpandedParameterPack())
4760 return TTP->getNumExpansionTemplateParameters();
4761 }
4762
4763 return None;
4764}
4765
4766/// Diagnose a missing template argument.
4767template<typename TemplateParmDecl>
4768static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
4769 TemplateDecl *TD,
4770 const TemplateParmDecl *D,
4771 TemplateArgumentListInfo &Args) {
4772 // Dig out the most recent declaration of the template parameter; there may be
4773 // declarations of the template that are more recent than TD.
4774 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
4775 ->getTemplateParameters()
4776 ->getParam(D->getIndex()));
4777
4778 // If there's a default argument that's not visible, diagnose that we're
4779 // missing a module import.
4780 llvm::SmallVector<Module*, 8> Modules;
4781 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
4782 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
4783 D->getDefaultArgumentLoc(), Modules,
4784 Sema::MissingImportKind::DefaultArgument,
4785 /*Recover*/true);
4786 return true;
4787 }
4788
4789 // FIXME: If there's a more recent default argument that *is* visible,
4790 // diagnose that it was declared too late.
4791
4792 return diagnoseArityMismatch(S, TD, Loc, Args);
4793}
4794
4795/// \brief Check that the given template argument list is well-formed
4796/// for specializing the given template.
4797bool Sema::CheckTemplateArgumentList(
4798 TemplateDecl *Template, SourceLocation TemplateLoc,
4799 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
4800 SmallVectorImpl<TemplateArgument> &Converted,
4801 bool UpdateArgsWithConversions) {
4802 // Make a copy of the template arguments for processing. Only make the
4803 // changes at the end when successful in matching the arguments to the
4804 // template.
4805 TemplateArgumentListInfo NewArgs = TemplateArgs;
4806
4807 TemplateParameterList *Params = Template->getTemplateParameters();
4808
4809 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
4810
4811 // C++ [temp.arg]p1:
4812 // [...] The type and form of each template-argument specified in
4813 // a template-id shall match the type and form specified for the
4814 // corresponding parameter declared by the template in its
4815 // template-parameter-list.
4816 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
4817 SmallVector<TemplateArgument, 2> ArgumentPack;
4818 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
4819 LocalInstantiationScope InstScope(*this, true);
4820 for (TemplateParameterList::iterator Param = Params->begin(),
4821 ParamEnd = Params->end();
4822 Param != ParamEnd; /* increment in loop */) {
4823 // If we have an expanded parameter pack, make sure we don't have too
4824 // many arguments.
4825 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
4826 if (*Expansions == ArgumentPack.size()) {
4827 // We're done with this parameter pack. Pack up its arguments and add
4828 // them to the list.
4829 Converted.push_back(
4830 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4831 ArgumentPack.clear();
4832
4833 // This argument is assigned to the next parameter.
4834 ++Param;
4835 continue;
4836 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
4837 // Not enough arguments for this parameter pack.
4838 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
4839 << false
4840 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
4841 << Template;
4842 Diag(Template->getLocation(), diag::note_template_decl_here)
4843 << Params->getSourceRange();
4844 return true;
4845 }
4846 }
4847
4848 if (ArgIdx < NumArgs) {
4849 // Check the template argument we were given.
4850 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
4851 TemplateLoc, RAngleLoc,
4852 ArgumentPack.size(), Converted))
4853 return true;
4854
4855 bool PackExpansionIntoNonPack =
4856 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
4857 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
4858 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
4859 // Core issue 1430: we have a pack expansion as an argument to an
4860 // alias template, and it's not part of a parameter pack. This
4861 // can't be canonicalized, so reject it now.
4862 Diag(NewArgs[ArgIdx].getLocation(),
4863 diag::err_alias_template_expansion_into_fixed_list)
4864 << NewArgs[ArgIdx].getSourceRange();
4865 Diag((*Param)->getLocation(), diag::note_template_param_here);
4866 return true;
4867 }
4868
4869 // We're now done with this argument.
4870 ++ArgIdx;
4871
4872 if ((*Param)->isTemplateParameterPack()) {
4873 // The template parameter was a template parameter pack, so take the
4874 // deduced argument and place it on the argument pack. Note that we
4875 // stay on the same template parameter so that we can deduce more
4876 // arguments.
4877 ArgumentPack.push_back(Converted.pop_back_val());
4878 } else {
4879 // Move to the next template parameter.
4880 ++Param;
4881 }
4882
4883 // If we just saw a pack expansion into a non-pack, then directly convert
4884 // the remaining arguments, because we don't know what parameters they'll
4885 // match up with.
4886 if (PackExpansionIntoNonPack) {
4887 if (!ArgumentPack.empty()) {
4888 // If we were part way through filling in an expanded parameter pack,
4889 // fall back to just producing individual arguments.
4890 Converted.insert(Converted.end(),
4891 ArgumentPack.begin(), ArgumentPack.end());
4892 ArgumentPack.clear();
4893 }
4894
4895 while (ArgIdx < NumArgs) {
4896 Converted.push_back(NewArgs[ArgIdx].getArgument());
4897 ++ArgIdx;
4898 }
4899
4900 return false;
4901 }
4902
4903 continue;
4904 }
4905
4906 // If we're checking a partial template argument list, we're done.
4907 if (PartialTemplateArgs) {
4908 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
4909 Converted.push_back(
4910 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4911
4912 return false;
4913 }
4914
4915 // If we have a template parameter pack with no more corresponding
4916 // arguments, just break out now and we'll fill in the argument pack below.
4917 if ((*Param)->isTemplateParameterPack()) {
4918 assert(!getExpandedPackSize(*Param) &&((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4919, __PRETTY_FUNCTION__))
4919 "Should have dealt with this already")((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4919, __PRETTY_FUNCTION__))
;
4920
4921 // A non-expanded parameter pack before the end of the parameter list
4922 // only occurs for an ill-formed template parameter list, unless we've
4923 // got a partial argument list for a function template, so just bail out.
4924 if (Param + 1 != ParamEnd)
4925 return true;
4926
4927 Converted.push_back(
4928 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4929 ArgumentPack.clear();
4930
4931 ++Param;
4932 continue;
4933 }
4934
4935 // Check whether we have a default argument.
4936 TemplateArgumentLoc Arg;
4937
4938 // Retrieve the default template argument from the template
4939 // parameter. For each kind of template parameter, we substitute the
4940 // template arguments provided thus far and any "outer" template arguments
4941 // (when the template parameter was part of a nested template) into
4942 // the default argument.
4943 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
4944 if (!hasVisibleDefaultArgument(TTP))
4945 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
4946 NewArgs);
4947
4948 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
4949 Template,
4950 TemplateLoc,
4951 RAngleLoc,
4952 TTP,
4953 Converted);
4954 if (!ArgType)
4955 return true;
4956
4957 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
4958 ArgType);
4959 } else if (NonTypeTemplateParmDecl *NTTP
4960 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
4961 if (!hasVisibleDefaultArgument(NTTP))
4962 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
4963 NewArgs);
4964
4965 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
4966 TemplateLoc,
4967 RAngleLoc,
4968 NTTP,
4969 Converted);
4970 if (E.isInvalid())
4971 return true;
4972
4973 Expr *Ex = E.getAs<Expr>();
4974 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
4975 } else {
4976 TemplateTemplateParmDecl *TempParm
4977 = cast<TemplateTemplateParmDecl>(*Param);
4978
4979 if (!hasVisibleDefaultArgument(TempParm))
4980 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
4981 NewArgs);
4982
4983 NestedNameSpecifierLoc QualifierLoc;
4984 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
4985 TemplateLoc,
4986 RAngleLoc,
4987 TempParm,
4988 Converted,
4989 QualifierLoc);
4990 if (Name.isNull())
4991 return true;
4992
4993 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
4994 TempParm->getDefaultArgument().getTemplateNameLoc());
4995 }
4996
4997 // Introduce an instantiation record that describes where we are using
4998 // the default template argument. We're not actually instantiating a
4999 // template here, we just create this object to put a note into the
5000 // context stack.
5001 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5002 SourceRange(TemplateLoc, RAngleLoc));
5003 if (Inst.isInvalid())
5004 return true;
5005
5006 // Check the default template argument.
5007 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5008 RAngleLoc, 0, Converted))
5009 return true;
5010
5011 // Core issue 150 (assumed resolution): if this is a template template
5012 // parameter, keep track of the default template arguments from the
5013 // template definition.
5014 if (isTemplateTemplateParameter)
5015 NewArgs.addArgument(Arg);
5016
5017 // Move to the next template parameter and argument.
5018 ++Param;
5019 ++ArgIdx;
5020 }
5021
5022 // If we're performing a partial argument substitution, allow any trailing
5023 // pack expansions; they might be empty. This can happen even if
5024 // PartialTemplateArgs is false (the list of arguments is complete but
5025 // still dependent).
5026 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5027 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5028 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5029 Converted.push_back(NewArgs[ArgIdx++].getArgument());
5030 }
5031
5032 // If we have any leftover arguments, then there were too many arguments.
5033 // Complain and fail.
5034 if (ArgIdx < NumArgs)
5035 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
5036
5037 // No problems found with the new argument list, propagate changes back
5038 // to caller.
5039 if (UpdateArgsWithConversions)
5040 TemplateArgs = std::move(NewArgs);
5041
5042 return false;
5043}
5044
5045namespace {
5046 class UnnamedLocalNoLinkageFinder
5047 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5048 {
5049 Sema &S;
5050 SourceRange SR;
5051
5052 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5053
5054 public:
5055 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
5056
5057 bool Visit(QualType T) {
5058 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
5059 }
5060
5061#define TYPE(Class, Parent) \
5062 bool Visit##Class##Type(const Class##Type *);
5063#define ABSTRACT_TYPE(Class, Parent) \
5064 bool Visit##Class##Type(const Class##Type *) { return false; }
5065#define NON_CANONICAL_TYPE(Class, Parent) \
5066 bool Visit##Class##Type(const Class##Type *) { return false; }
5067#include "clang/AST/TypeNodes.def"
5068
5069 bool VisitTagDecl(const TagDecl *Tag);
5070 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
5071 };
5072} // end anonymous namespace
5073
5074bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
5075 return false;
5076}
5077
5078bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
5079 return Visit(T->getElementType());
5080}
5081
5082bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
5083 return Visit(T->getPointeeType());
5084}
5085
5086bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
5087 const BlockPointerType* T) {
5088 return Visit(T->getPointeeType());
5089}
5090
5091bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
5092 const LValueReferenceType* T) {
5093 return Visit(T->getPointeeType());
5094}
5095
5096bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
5097 const RValueReferenceType* T) {
5098 return Visit(T->getPointeeType());
5099}
5100
5101bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
5102 const MemberPointerType* T) {
5103 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
5104}
5105
5106bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
5107 const ConstantArrayType* T) {
5108 return Visit(T->getElementType());
5109}
5110
5111bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
5112 const IncompleteArrayType* T) {
5113 return Visit(T->getElementType());
5114}
5115
5116bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
5117 const VariableArrayType* T) {
5118 return Visit(T->getElementType());
5119}
5120
5121bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
5122 const DependentSizedArrayType* T) {
5123 return Visit(T->getElementType());
5124}
5125
5126bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
5127 const DependentSizedExtVectorType* T) {
5128 return Visit(T->getElementType());
5129}
5130
5131bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
5132 const DependentAddressSpaceType *T) {
5133 return Visit(T->getPointeeType());
5134}
5135
5136bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
5137 return Visit(T->getElementType());
5138}
5139
5140bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
5141 return Visit(T->getElementType());
5142}
5143
5144bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
5145 const FunctionProtoType* T) {
5146 for (const auto &A : T->param_types()) {
5147 if (Visit(A))
5148 return true;
5149 }
5150
5151 return Visit(T->getReturnType());
5152}
5153
5154bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
5155 const FunctionNoProtoType* T) {
5156 return Visit(T->getReturnType());
5157}
5158
5159bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
5160 const UnresolvedUsingType*) {
5161 return false;
5162}
5163
5164bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
5165 return false;
5166}
5167
5168bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
5169 return Visit(T->getUnderlyingType());
5170}
5171
5172bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
5173 return false;
5174}
5175
5176bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
5177 const UnaryTransformType*) {
5178 return false;
5179}
5180
5181bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
5182 return Visit(T->getDeducedType());
5183}
5184
5185bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
5186 const DeducedTemplateSpecializationType *T) {
5187 return Visit(T->getDeducedType());
5188}
5189
5190bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
5191 return VisitTagDecl(T->getDecl());
5192}
5193
5194bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
5195 return VisitTagDecl(T->getDecl());
5196}
5197
5198bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
5199 const TemplateTypeParmType*) {
5200 return false;
5201}
5202
5203bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
5204 const SubstTemplateTypeParmPackType *) {
5205 return false;
5206}
5207
5208bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
5209 const TemplateSpecializationType*) {
5210 return false;
5211}
5212
5213bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
5214 const InjectedClassNameType* T) {
5215 return VisitTagDecl(T->getDecl());
5216}
5217
5218bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
5219 const DependentNameType* T) {
5220 return VisitNestedNameSpecifier(T->getQualifier());
5221}
5222
5223bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
5224 const DependentTemplateSpecializationType* T) {
5225 return VisitNestedNameSpecifier(T->getQualifier());
5226}
5227
5228bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
5229 const PackExpansionType* T) {
5230 return Visit(T->getPattern());
5231}
5232
5233bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
5234 return false;
5235}
5236
5237bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
5238 const ObjCInterfaceType *) {
5239 return false;
5240}
5241
5242bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
5243 const ObjCObjectPointerType *) {
5244 return false;
5245}
5246
5247bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
5248 return Visit(T->getValueType());
5249}
5250
5251bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
5252 return false;
5253}
5254
5255bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
5256 if (Tag->getDeclContext()->isFunctionOrMethod()) {
5257 S.Diag(SR.getBegin(),
5258 S.getLangOpts().CPlusPlus11 ?
5259 diag::warn_cxx98_compat_template_arg_local_type :
5260 diag::ext_template_arg_local_type)
5261 << S.Context.getTypeDeclType(Tag) << SR;
5262 return true;
5263 }
5264
5265 if (!Tag->hasNameForLinkage()) {
5266 S.Diag(SR.getBegin(),
5267 S.getLangOpts().CPlusPlus11 ?
5268 diag::warn_cxx98_compat_template_arg_unnamed_type :
5269 diag::ext_template_arg_unnamed_type) << SR;
5270 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
5271 return true;
5272 }
5273
5274 return false;
5275}
5276
5277bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
5278 NestedNameSpecifier *NNS) {
5279 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
5280 return true;
5281
5282 switch (NNS->getKind()) {
5283 case NestedNameSpecifier::Identifier:
5284 case NestedNameSpecifier::Namespace:
5285 case NestedNameSpecifier::NamespaceAlias:
5286 case NestedNameSpecifier::Global:
5287 case NestedNameSpecifier::Super:
5288 return false;
5289
5290 case NestedNameSpecifier::TypeSpec:
5291 case NestedNameSpecifier::TypeSpecWithTemplate:
5292 return Visit(QualType(NNS->getAsType(), 0));
5293 }
5294 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")::llvm::llvm_unreachable_internal("Invalid NestedNameSpecifier::Kind!"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5294)
;
5295}
5296
5297/// \brief Check a template argument against its corresponding
5298/// template type parameter.
5299///
5300/// This routine implements the semantics of C++ [temp.arg.type]. It
5301/// returns true if an error occurred, and false otherwise.
5302bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
5303 TypeSourceInfo *ArgInfo) {
5304 assert(ArgInfo && "invalid TypeSourceInfo")((ArgInfo && "invalid TypeSourceInfo") ? static_cast<
void> (0) : __assert_fail ("ArgInfo && \"invalid TypeSourceInfo\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5304, __PRETTY_FUNCTION__))
;
5305 QualType Arg = ArgInfo->getType();
5306 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
5307
5308 if (Arg->isVariablyModifiedType()) {
5309 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
5310 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
5311 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
5312 }
5313
5314 // C++03 [temp.arg.type]p2:
5315 // A local type, a type with no linkage, an unnamed type or a type
5316 // compounded from any of these types shall not be used as a
5317 // template-argument for a template type-parameter.
5318 //
5319 // C++11 allows these, and even in C++03 we allow them as an extension with
5320 // a warning.
5321 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
5322 UnnamedLocalNoLinkageFinder Finder(*this, SR);
5323 (void)Finder.Visit(Context.getCanonicalType(Arg));
5324 }
5325
5326 return false;
5327}
5328
5329enum NullPointerValueKind {
5330 NPV_NotNullPointer,
5331 NPV_NullPointer,
5332 NPV_Error
5333};
5334
5335/// \brief Determine whether the given template argument is a null pointer
5336/// value of the appropriate type.
5337static NullPointerValueKind
5338isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
5339 QualType ParamType, Expr *Arg,
5340 Decl *Entity = nullptr) {
5341 if (Arg->isValueDependent() || Arg->isTypeDependent())
5342 return NPV_NotNullPointer;
5343
5344 // dllimport'd entities aren't constant but are available inside of template
5345 // arguments.
5346 if (Entity && Entity->hasAttr<DLLImportAttr>())
5347 return NPV_NotNullPointer;
5348
5349 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
5350 llvm_unreachable(::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5351)
5351 "Incomplete parameter type in isNullPointerValueTemplateArgument!")::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5351)
;
5352
5353 if (!S.getLangOpts().CPlusPlus11)
5354 return NPV_NotNullPointer;
5355
5356 // Determine whether we have a constant expression.
5357 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
5358 if (ArgRV.isInvalid())
5359 return NPV_Error;
5360 Arg = ArgRV.get();
5361
5362 Expr::EvalResult EvalResult;
5363 SmallVector<PartialDiagnosticAt, 8> Notes;
5364 EvalResult.Diag = &Notes;
5365 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
5366 EvalResult.HasSideEffects) {
5367 SourceLocation DiagLoc = Arg->getExprLoc();
5368
5369 // If our only note is the usual "invalid subexpression" note, just point
5370 // the caret at its location rather than producing an essentially
5371 // redundant note.
5372 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
5373 diag::note_invalid_subexpr_in_const_expr) {
5374 DiagLoc = Notes[0].first;
5375 Notes.clear();
5376 }
5377
5378 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
5379 << Arg->getType() << Arg->getSourceRange();
5380 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
5381 S.Diag(Notes[I].first, Notes[I].second);
5382
5383 S.Diag(Param->getLocation(), diag::note_template_param_here);
5384 return NPV_Error;
5385 }
5386
5387 // C++11 [temp.arg.nontype]p1:
5388 // - an address constant expression of type std::nullptr_t
5389 if (Arg->getType()->isNullPtrType())
5390 return NPV_NullPointer;
5391
5392 // - a constant expression that evaluates to a null pointer value (4.10); or
5393 // - a constant expression that evaluates to a null member pointer value
5394 // (4.11); or
5395 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
5396 (EvalResult.Val.isMemberPointer() &&
5397 !EvalResult.Val.getMemberPointerDecl())) {
5398 // If our expression has an appropriate type, we've succeeded.
5399 bool ObjCLifetimeConversion;
5400 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
5401 S.IsQualificationConversion(Arg->getType(), ParamType, false,
5402 ObjCLifetimeConversion))
5403 return NPV_NullPointer;
5404
5405 // The types didn't match, but we know we got a null pointer; complain,
5406 // then recover as if the types were correct.
5407 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
5408 << Arg->getType() << ParamType << Arg->getSourceRange();
5409 S.Diag(Param->getLocation(), diag::note_template_param_here);
5410 return NPV_NullPointer;
5411 }
5412
5413 // If we don't have a null pointer value, but we do have a NULL pointer
5414 // constant, suggest a cast to the appropriate type.
5415 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
5416 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
5417 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
5418 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
5419 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
5420 ")");
5421 S.Diag(Param->getLocation(), diag::note_template_param_here);
5422 return NPV_NullPointer;
5423 }
5424
5425 // FIXME: If we ever want to support general, address-constant expressions
5426 // as non-type template arguments, we should return the ExprResult here to
5427 // be interpreted by the caller.
5428 return NPV_NotNullPointer;
5429}
5430
5431/// \brief Checks whether the given template argument is compatible with its
5432/// template parameter.
5433static bool CheckTemplateArgumentIsCompatibleWithParameter(
5434 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
5435 Expr *Arg, QualType ArgType) {
5436 bool ObjCLifetimeConversion;
5437 if (ParamType->isPointerType() &&
5438 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
5439 S.IsQualificationConversion(ArgType, ParamType, false,
5440 ObjCLifetimeConversion)) {
5441 // For pointer-to-object types, qualification conversions are
5442 // permitted.
5443 } else {
5444 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
5445 if (!ParamRef->getPointeeType()->isFunctionType()) {
5446 // C++ [temp.arg.nontype]p5b3:
5447 // For a non-type template-parameter of type reference to
5448 // object, no conversions apply. The type referred to by the
5449 // reference may be more cv-qualified than the (otherwise
5450 // identical) type of the template- argument. The
5451 // template-parameter is bound directly to the
5452 // template-argument, which shall be an lvalue.
5453
5454 // FIXME: Other qualifiers?
5455 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
5456 unsigned ArgQuals = ArgType.getCVRQualifiers();
5457
5458 if ((ParamQuals | ArgQuals) != ParamQuals) {
5459 S.Diag(Arg->getLocStart(),
5460 diag::err_template_arg_ref_bind_ignores_quals)
5461 << ParamType << Arg->getType() << Arg->getSourceRange();
5462 S.Diag(Param->getLocation(), diag::note_template_param_here);
5463 return true;
5464 }
5465 }
5466 }
5467
5468 // At this point, the template argument refers to an object or
5469 // function with external linkage. We now need to check whether the
5470 // argument and parameter types are compatible.
5471 if (!S.Context.hasSameUnqualifiedType(ArgType,
5472 ParamType.getNonReferenceType())) {
5473 // We can't perform this conversion or binding.
5474 if (ParamType->isReferenceType())
5475 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
5476 << ParamType << ArgIn->getType() << Arg->getSourceRange();
5477 else
5478 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
5479 << ArgIn->getType() << ParamType << Arg->getSourceRange();
5480 S.Diag(Param->getLocation(), diag::note_template_param_here);
5481 return true;
5482 }
5483 }
5484
5485 return false;
5486}
5487
5488/// \brief Checks whether the given template argument is the address
5489/// of an object or function according to C++ [temp.arg.nontype]p1.
5490static bool
5491CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
5492 NonTypeTemplateParmDecl *Param,
5493 QualType ParamType,
5494 Expr *ArgIn,
5495 TemplateArgument &Converted) {
5496 bool Invalid = false;
5497 Expr *Arg = ArgIn;
5498 QualType ArgType = Arg->getType();
5499
5500 bool AddressTaken = false;
5501 SourceLocation AddrOpLoc;
5502 if (S.getLangOpts().MicrosoftExt) {
5503 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
5504 // dereference and address-of operators.
5505 Arg = Arg->IgnoreParenCasts();
5506
5507 bool ExtWarnMSTemplateArg = false;
5508 UnaryOperatorKind FirstOpKind;
5509 SourceLocation FirstOpLoc;
5510 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5511 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
5512 if (UnOpKind == UO_Deref)
5513 ExtWarnMSTemplateArg = true;
5514 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
5515 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
5516 if (!AddrOpLoc.isValid()) {
5517 FirstOpKind = UnOpKind;
5518 FirstOpLoc = UnOp->getOperatorLoc();
5519 }
5520 } else
5521 break;
5522 }
5523 if (FirstOpLoc.isValid()) {
5524 if (ExtWarnMSTemplateArg)
5525 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
5526 << ArgIn->getSourceRange();
5527
5528 if (FirstOpKind == UO_AddrOf)
5529 AddressTaken = true;
5530 else if (Arg->getType()->isPointerType()) {
5531 // We cannot let pointers get dereferenced here, that is obviously not a
5532 // constant expression.
5533 assert(FirstOpKind == UO_Deref)((FirstOpKind == UO_Deref) ? static_cast<void> (0) : __assert_fail
("FirstOpKind == UO_Deref", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5533, __PRETTY_FUNCTION__))
;
5534 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5535 << Arg->getSourceRange();
5536 }
5537 }
5538 } else {
5539 // See through any implicit casts we added to fix the type.
5540 Arg = Arg->IgnoreImpCasts();
5541
5542 // C++ [temp.arg.nontype]p1:
5543 //
5544 // A template-argument for a non-type, non-template
5545 // template-parameter shall be one of: [...]
5546 //
5547 // -- the address of an object or function with external
5548 // linkage, including function templates and function
5549 // template-ids but excluding non-static class members,
5550 // expressed as & id-expression where the & is optional if
5551 // the name refers to a function or array, or if the
5552 // corresponding template-parameter is a reference; or
5553
5554 // In C++98/03 mode, give an extension warning on any extra parentheses.
5555 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
5556 bool ExtraParens = false;
5557 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
5558 if (!Invalid && !ExtraParens) {
5559 S.Diag(Arg->getLocStart(),
5560 S.getLangOpts().CPlusPlus11
5561 ? diag::warn_cxx98_compat_template_arg_extra_parens
5562 : diag::ext_template_arg_extra_parens)
5563 << Arg->getSourceRange();
5564 ExtraParens = true;
5565 }
5566
5567 Arg = Parens->getSubExpr();
5568 }
5569
5570 while (SubstNonTypeTemplateParmExpr *subst =
5571 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5572 Arg = subst->getReplacement()->IgnoreImpCasts();
5573
5574 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5575 if (UnOp->getOpcode() == UO_AddrOf) {
5576 Arg = UnOp->getSubExpr();
5577 AddressTaken = true;
5578 AddrOpLoc = UnOp->getOperatorLoc();
5579 }
5580 }
5581
5582 while (SubstNonTypeTemplateParmExpr *subst =
5583 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5584 Arg = subst->getReplacement()->IgnoreImpCasts();
5585 }
5586
5587 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
5588 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
5589
5590 // If our parameter has pointer type, check for a null template value.
5591 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
5592 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
5593 Entity)) {
5594 case NPV_NullPointer:
5595 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5596 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
5597 /*isNullPtr=*/true);
5598 return false;
5599
5600 case NPV_Error:
5601 return true;
5602
5603 case NPV_NotNullPointer:
5604 break;
5605 }
5606 }
5607
5608 // Stop checking the precise nature of the argument if it is value dependent,
5609 // it should be checked when instantiated.
5610 if (Arg->isValueDependent()) {
5611 Converted = TemplateArgument(ArgIn);
5612 return false;
5613 }
5614
5615 if (isa<CXXUuidofExpr>(Arg)) {
5616 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
5617 ArgIn, Arg, ArgType))
5618 return true;
5619
5620 Converted = TemplateArgument(ArgIn);
5621 return false;
5622 }
5623
5624 if (!DRE) {
5625 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5626 << Arg->getSourceRange();
5627 S.Diag(Param->getLocation(), diag::note_template_param_here);
5628 return true;
5629 }
5630
5631 // Cannot refer to non-static data members
5632 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
5633 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
5634 << Entity << Arg->getSourceRange();
5635 S.Diag(Param->getLocation(), diag::note_template_param_here);
5636 return true;
5637 }
5638
5639 // Cannot refer to non-static member functions
5640 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
5641 if (!Method->isStatic()) {
5642 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
5643 << Method << Arg->getSourceRange();
5644 S.Diag(Param->getLocation(), diag::note_template_param_here);
5645 return true;
5646 }
5647 }
5648
5649 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
5650 VarDecl *Var = dyn_cast<VarDecl>(Entity);
5651
5652 // A non-type template argument must refer to an object or function.
5653 if (!Func && !Var) {
5654 // We found something, but we don't know specifically what it is.
5655 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
5656 << Arg->getSourceRange();
5657 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
5658 return true;
5659 }
5660
5661 // Address / reference template args must have external linkage in C++98.
5662 if (Entity->getFormalLinkage() == InternalLinkage) {
5663 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
5664 diag::warn_cxx98_compat_template_arg_object_internal :
5665 diag::ext_template_arg_object_internal)
5666 << !Func << Entity << Arg->getSourceRange();
5667 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
5668 << !Func;
5669 } else if (!Entity->hasLinkage()) {
5670 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
5671 << !Func << Entity << Arg->getSourceRange();
5672 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
5673 << !Func;
5674 return true;
5675 }
5676
5677 if (Func) {
5678 // If the template parameter has pointer type, the function decays.
5679 if (ParamType->isPointerType() && !AddressTaken)
5680 ArgType = S.Context.getPointerType(Func->getType());
5681 else if (AddressTaken && ParamType->isReferenceType()) {
5682 // If we originally had an address-of operator, but the
5683 // parameter has reference type, complain and (if things look
5684 // like they will work) drop the address-of operator.
5685 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
5686 ParamType.getNonReferenceType())) {
5687 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5688 << ParamType;
5689 S.Diag(Param->getLocation(), diag::note_template_param_here);
5690 return true;
5691 }
5692
5693 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5694 << ParamType
5695 << FixItHint::CreateRemoval(AddrOpLoc);
5696 S.Diag(Param->getLocation(), diag::note_template_param_here);
5697
5698 ArgType = Func->getType();
5699 }
5700 } else {
5701 // A value of reference type is not an object.
5702 if (Var->getType()->isReferenceType()) {
5703 S.Diag(Arg->getLocStart(),
5704 diag::err_template_arg_reference_var)
5705 << Var->getType() << Arg->getSourceRange();
5706 S.Diag(Param->getLocation(), diag::note_template_param_here);
5707 return true;
5708 }
5709
5710 // A template argument must have static storage duration.
5711 if (Var->getTLSKind()) {
5712 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
5713 << Arg->getSourceRange();
5714 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
5715 return true;
5716 }
5717
5718 // If the template parameter has pointer type, we must have taken
5719 // the address of this object.
5720 if (ParamType->isReferenceType()) {
5721 if (AddressTaken) {
5722 // If we originally had an address-of operator, but the
5723 // parameter has reference type, complain and (if things look
5724 // like they will work) drop the address-of operator.
5725 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
5726 ParamType.getNonReferenceType())) {
5727 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5728 << ParamType;
5729 S.Diag(Param->getLocation(), diag::note_template_param_here);
5730 return true;
5731 }
5732
5733 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5734 << ParamType
5735 << FixItHint::CreateRemoval(AddrOpLoc);
5736 S.Diag(Param->getLocation(), diag::note_template_param_here);
5737
5738 ArgType = Var->getType();
5739 }
5740 } else if (!AddressTaken && ParamType->isPointerType()) {
5741 if (Var->getType()->isArrayType()) {
5742 // Array-to-pointer decay.
5743 ArgType = S.Context.getArrayDecayedType(Var->getType());
5744 } else {
5745 // If the template parameter has pointer type but the address of
5746 // this object was not taken, complain and (possibly) recover by
5747 // taking the address of the entity.
5748 ArgType = S.Context.getPointerType(Var->getType());
5749 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
5750 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
5751 << ParamType;
5752 S.Diag(Param->getLocation(), diag::note_template_param_here);
5753 return true;
5754 }
5755
5756 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
5757 << ParamType
5758 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
5759
5760 S.Diag(Param->getLocation(), diag::note_template_param_here);
5761 }
5762 }
5763 }
5764
5765 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
5766 Arg, ArgType))
5767 return true;
5768
5769 // Create the template argument.
5770 Converted =
5771 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
5772 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
5773 return false;
5774}
5775
5776/// \brief Checks whether the given template argument is a pointer to
5777/// member constant according to C++ [temp.arg.nontype]p1.
5778static bool CheckTemplateArgumentPointerToMember(Sema &S,
5779 NonTypeTemplateParmDecl *Param,
5780 QualType ParamType,
5781 Expr *&ResultArg,
5782 TemplateArgument &Converted) {
5783 bool Invalid = false;
5784
5785 Expr *Arg = ResultArg;
5786 bool ObjCLifetimeConversion;
5787
5788 // C++ [temp.arg.nontype]p1:
5789 //
5790 // A template-argument for a non-type, non-template
5791 // template-parameter shall be one of: [...]
5792 //
5793 // -- a pointer to member expressed as described in 5.3.1.
5794 DeclRefExpr *DRE = nullptr;
5795
5796 // In C++98/03 mode, give an extension warning on any extra parentheses.
5797 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
5798 bool ExtraParens = false;
5799 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
5800 if (!Invalid && !ExtraParens) {
5801 S.Diag(Arg->getLocStart(),
5802 S.getLangOpts().CPlusPlus11 ?
5803 diag::warn_cxx98_compat_template_arg_extra_parens :
5804 diag::ext_template_arg_extra_parens)
5805 << Arg->getSourceRange();
5806 ExtraParens = true;
5807 }
5808
5809 Arg = Parens->getSubExpr();
5810 }
5811
5812 while (SubstNonTypeTemplateParmExpr *subst =
5813 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5814 Arg = subst->getReplacement()->IgnoreImpCasts();
5815
5816 // A pointer-to-member constant written &Class::member.
5817 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5818 if (UnOp->getOpcode() == UO_AddrOf) {
5819 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
5820 if (DRE && !DRE->getQualifier())
5821 DRE = nullptr;
5822 }
5823 }
5824 // A constant of pointer-to-member type.
5825 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
5826 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
5827 if (VD->getType()->isMemberPointerType()) {
5828 if (isa<NonTypeTemplateParmDecl>(VD)) {
5829 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5830 Converted = TemplateArgument(Arg);
5831 } else {
5832 VD = cast<ValueDecl>(VD->getCanonicalDecl());
5833 Converted = TemplateArgument(VD, ParamType);
5834 }
5835 return Invalid;
5836 }
5837 }
5838 }
5839
5840 DRE = nullptr;
5841 }
5842
5843 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
5844
5845 // Check for a null pointer value.
5846 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
5847 Entity)) {
5848 case NPV_Error:
5849 return true;
5850 case NPV_NullPointer:
5851 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5852 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
5853 /*isNullPtr*/true);
5854 return false;
5855 case NPV_NotNullPointer:
5856 break;
5857 }
5858
5859 if (S.IsQualificationConversion(ResultArg->getType(),
5860 ParamType.getNonReferenceType(), false,
5861 ObjCLifetimeConversion)) {
5862 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
5863 ResultArg->getValueKind())
5864 .get();
5865 } else if (!S.Context.hasSameUnqualifiedType(
5866 ResultArg->getType(), ParamType.getNonReferenceType())) {
5867 // We can't perform this conversion.
5868 S.Diag(ResultArg->getLocStart(), diag::err_template_arg_not_convertible)
5869 << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
5870 S.Diag(Param->getLocation(), diag::note_template_param_here);
5871 return true;
5872 }
5873
5874 if (!DRE)
5875 return S.Diag(Arg->getLocStart(),
5876 diag::err_template_arg_not_pointer_to_member_form)
5877 << Arg->getSourceRange();
5878
5879 if (isa<FieldDecl>(DRE->getDecl()) ||
5880 isa<IndirectFieldDecl>(DRE->getDecl()) ||
5881 isa<CXXMethodDecl>(DRE->getDecl())) {
5882 assert((isa<FieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5885, __PRETTY_FUNCTION__))
5883 isa<IndirectFieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5885, __PRETTY_FUNCTION__))
5884 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5885, __PRETTY_FUNCTION__))
5885 "Only non-static member pointers can make it here")(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5885, __PRETTY_FUNCTION__))
;
5886
5887 // Okay: this is the address of a non-static member, and therefore
5888 // a member pointer constant.
5889 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5890 Converted = TemplateArgument(Arg);
5891 } else {
5892 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
5893 Converted = TemplateArgument(D, ParamType);
5894 }
5895 return Invalid;
5896 }
5897
5898 // We found something else, but we don't know specifically what it is.
5899 S.Diag(Arg->getLocStart(),
5900 diag::err_template_arg_not_pointer_to_member_form)
5901 << Arg->getSourceRange();
5902 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
5903 return true;
5904}
5905
5906/// \brief Check a template argument against its corresponding
5907/// non-type template parameter.
5908///
5909/// This routine implements the semantics of C++ [temp.arg.nontype].
5910/// If an error occurred, it returns ExprError(); otherwise, it
5911/// returns the converted template argument. \p ParamType is the
5912/// type of the non-type template parameter after it has been instantiated.
5913ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
5914 QualType ParamType, Expr *Arg,
5915 TemplateArgument &Converted,
5916 CheckTemplateArgumentKind CTAK) {
5917 SourceLocation StartLoc = Arg->getLocStart();
5918
5919 // If the parameter type somehow involves auto, deduce the type now.
5920 if (getLangOpts().CPlusPlus1z && ParamType->isUndeducedType()) {
5921 // During template argument deduction, we allow 'decltype(auto)' to
5922 // match an arbitrary dependent argument.
5923 // FIXME: The language rules don't say what happens in this case.
5924 // FIXME: We get an opaque dependent type out of decltype(auto) if the
5925 // expression is merely instantiation-dependent; is this enough?
5926 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
5927 auto *AT = dyn_cast<AutoType>(ParamType);
5928 if (AT && AT->isDecltypeAuto()) {
5929 Converted = TemplateArgument(Arg);
5930 return Arg;
5931 }
5932 }
5933
5934 // When checking a deduced template argument, deduce from its type even if
5935 // the type is dependent, in order to check the types of non-type template
5936 // arguments line up properly in partial ordering.
5937 Optional<unsigned> Depth;
5938 if (CTAK != CTAK_Specified)
5939 Depth = Param->getDepth() + 1;
5940 if (DeduceAutoType(
5941 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
5942 Arg, ParamType, Depth) == DAR_Failed) {
5943 Diag(Arg->getExprLoc(),
5944 diag::err_non_type_template_parm_type_deduction_failure)
5945 << Param->getDeclName() << Param->getType() << Arg->getType()
5946 << Arg->getSourceRange();
5947 Diag(Param->getLocation(), diag::note_template_param_here);
5948 return ExprError();
5949 }
5950 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
5951 // an error. The error message normally references the parameter
5952 // declaration, but here we'll pass the argument location because that's
5953 // where the parameter type is deduced.
5954 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
5955 if (ParamType.isNull()) {
5956 Diag(Param->getLocation(), diag::note_template_param_here);
5957 return ExprError();
5958 }
5959 }
5960
5961 // We should have already dropped all cv-qualifiers by now.
5962 assert(!ParamType.hasQualifiers() &&((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5963, __PRETTY_FUNCTION__))
5963 "non-type template parameter type cannot be qualified")((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5963, __PRETTY_FUNCTION__))
;
5964
5965 if (CTAK == CTAK_Deduced &&
5966 !Context.hasSameType(ParamType.getNonLValueExprType(Context),
5967 Arg->getType())) {
5968 // FIXME: If either type is dependent, we skip the check. This isn't
5969 // correct, since during deduction we're supposed to have replaced each
5970 // template parameter with some unique (non-dependent) placeholder.
5971 // FIXME: If the argument type contains 'auto', we carry on and fail the
5972 // type check in order to force specific types to be more specialized than
5973 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
5974 // work.
5975 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
5976 !Arg->getType()->getContainedAutoType()) {
5977 Converted = TemplateArgument(Arg);
5978 return Arg;
5979 }
5980 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
5981 // we should actually be checking the type of the template argument in P,
5982 // not the type of the template argument deduced from A, against the
5983 // template parameter type.
5984 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
5985 << Arg->getType()
5986 << ParamType.getUnqualifiedType();
5987 Diag(Param->getLocation(), diag::note_template_param_here);
5988 return ExprError();
5989 }
5990
5991 // If either the parameter has a dependent type or the argument is
5992 // type-dependent, there's nothing we can check now.
5993 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
5994 // FIXME: Produce a cloned, canonical expression?
5995 Converted = TemplateArgument(Arg);
5996 return Arg;
5997 }
5998
5999 // The initialization of the parameter from the argument is
6000 // a constant-evaluated context.
6001 EnterExpressionEvaluationContext ConstantEvaluated(
6002 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6003
6004 if (getLangOpts().CPlusPlus1z) {
6005 // C++1z [temp.arg.nontype]p1:
6006 // A template-argument for a non-type template parameter shall be
6007 // a converted constant expression of the type of the template-parameter.
6008 APValue Value;
6009 ExprResult ArgResult = CheckConvertedConstantExpression(
6010 Arg, ParamType, Value, CCEK_TemplateArg);
6011 if (ArgResult.isInvalid())
6012 return ExprError();
6013
6014 // For a value-dependent argument, CheckConvertedConstantExpression is
6015 // permitted (and expected) to be unable to determine a value.
6016 if (ArgResult.get()->isValueDependent()) {
6017 Converted = TemplateArgument(ArgResult.get());
6018 return ArgResult;
6019 }
6020
6021 QualType CanonParamType = Context.getCanonicalType(ParamType);
6022
6023 // Convert the APValue to a TemplateArgument.
6024 switch (Value.getKind()) {
6025 case APValue::Uninitialized:
6026 assert(ParamType->isNullPtrType())((ParamType->isNullPtrType()) ? static_cast<void> (0
) : __assert_fail ("ParamType->isNullPtrType()", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6026, __PRETTY_FUNCTION__))
;
6027 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
6028 break;
6029 case APValue::Int:
6030 assert(ParamType->isIntegralOrEnumerationType())((ParamType->isIntegralOrEnumerationType()) ? static_cast<
void> (0) : __assert_fail ("ParamType->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6030, __PRETTY_FUNCTION__))
;
6031 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
6032 break;
6033 case APValue::MemberPointer: {
6034 assert(ParamType->isMemberPointerType())((ParamType->isMemberPointerType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isMemberPointerType()", "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6034, __PRETTY_FUNCTION__))
;
6035
6036 // FIXME: We need TemplateArgument representation and mangling for these.
6037 if (!Value.getMemberPointerPath().empty()) {
6038 Diag(Arg->getLocStart(),
6039 diag::err_template_arg_member_ptr_base_derived_not_supported)
6040 << Value.getMemberPointerDecl() << ParamType
6041 << Arg->getSourceRange();
6042 return ExprError();
6043 }
6044
6045 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
6046 Converted = VD ? TemplateArgument(VD, CanonParamType)
6047 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6048 break;
6049 }
6050 case APValue::LValue: {
6051 // For a non-type template-parameter of pointer or reference type,
6052 // the value of the constant expression shall not refer to
6053 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6054, __PRETTY_FUNCTION__))
6054 ParamType->isNullPtrType())((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6054, __PRETTY_FUNCTION__))
;
6055 // -- a temporary object
6056 // -- a string literal
6057 // -- the result of a typeid expression, or
6058 // -- a predefined __func__ variable
6059 if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
6060 if (isa<CXXUuidofExpr>(E)) {
6061 Converted = TemplateArgument(const_cast<Expr*>(E));
6062 break;
6063 }
6064 Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
6065 << Arg->getSourceRange();
6066 return ExprError();
6067 }
6068 auto *VD = const_cast<ValueDecl *>(
6069 Value.getLValueBase().dyn_cast<const ValueDecl *>());
6070 // -- a subobject
6071 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
6072 VD && VD->getType()->isArrayType() &&
6073 Value.getLValuePath()[0].ArrayIndex == 0 &&
6074 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
6075 // Per defect report (no number yet):
6076 // ... other than a pointer to the first element of a complete array
6077 // object.
6078 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
6079 Value.isLValueOnePastTheEnd()) {
6080 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
6081 << Value.getAsString(Context, ParamType);
6082 return ExprError();
6083 }
6084 assert((VD || !ParamType->isReferenceType()) &&(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6085, __PRETTY_FUNCTION__))
6085 "null reference should not be a constant expression")(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6085, __PRETTY_FUNCTION__))
;
6086 assert((!VD || !ParamType->isNullPtrType()) &&(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6087, __PRETTY_FUNCTION__))
6087 "non-null value of type nullptr_t?")(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6087, __PRETTY_FUNCTION__))
;
6088 Converted = VD ? TemplateArgument(VD, CanonParamType)
6089 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6090 break;
6091 }
6092 case APValue::AddrLabelDiff:
6093 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
6094 case APValue::Float:
6095 case APValue::ComplexInt:
6096 case APValue::ComplexFloat:
6097 case APValue::Vector:
6098 case APValue::Array:
6099 case APValue::Struct:
6100 case APValue::Union:
6101 llvm_unreachable("invalid kind for template argument")::llvm::llvm_unreachable_internal("invalid kind for template argument"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6101)
;
6102 }
6103
6104 return ArgResult.get();
6105 }
6106
6107 // C++ [temp.arg.nontype]p5:
6108 // The following conversions are performed on each expression used
6109 // as a non-type template-argument. If a non-type
6110 // template-argument cannot be converted to the type of the
6111 // corresponding template-parameter then the program is
6112 // ill-formed.
6113 if (ParamType->isIntegralOrEnumerationType()) {
6114 // C++11:
6115 // -- for a non-type template-parameter of integral or
6116 // enumeration type, conversions permitted in a converted
6117 // constant expression are applied.
6118 //
6119 // C++98:
6120 // -- for a non-type template-parameter of integral or
6121 // enumeration type, integral promotions (4.5) and integral
6122 // conversions (4.7) are applied.
6123
6124 if (getLangOpts().CPlusPlus11) {
6125 // C++ [temp.arg.nontype]p1:
6126 // A template-argument for a non-type, non-template template-parameter
6127 // shall be one of:
6128 //
6129 // -- for a non-type template-parameter of integral or enumeration
6130 // type, a converted constant expression of the type of the
6131 // template-parameter; or
6132 llvm::APSInt Value;
6133 ExprResult ArgResult =
6134 CheckConvertedConstantExpression(Arg, ParamType, Value,
6135 CCEK_TemplateArg);
6136 if (ArgResult.isInvalid())
6137 return ExprError();
6138
6139 // We can't check arbitrary value-dependent arguments.
6140 if (ArgResult.get()->isValueDependent()) {
6141 Converted = TemplateArgument(ArgResult.get());
6142 return ArgResult;
6143 }
6144
6145 // Widen the argument value to sizeof(parameter type). This is almost
6146 // always a no-op, except when the parameter type is bool. In
6147 // that case, this may extend the argument from 1 bit to 8 bits.
6148 QualType IntegerType = ParamType;
6149 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6150 IntegerType = Enum->getDecl()->getIntegerType();
6151 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
6152
6153 Converted = TemplateArgument(Context, Value,
6154 Context.getCanonicalType(ParamType));
6155 return ArgResult;
6156 }
6157
6158 ExprResult ArgResult = DefaultLvalueConversion(Arg);
6159 if (ArgResult.isInvalid())
6160 return ExprError();
6161 Arg = ArgResult.get();
6162
6163 QualType ArgType = Arg->getType();
6164
6165 // C++ [temp.arg.nontype]p1:
6166 // A template-argument for a non-type, non-template
6167 // template-parameter shall be one of:
6168 //
6169 // -- an integral constant-expression of integral or enumeration
6170 // type; or
6171 // -- the name of a non-type template-parameter; or
6172 llvm::APSInt Value;
6173 if (!ArgType->isIntegralOrEnumerationType()) {
6174 Diag(Arg->getLocStart(),
6175 diag::err_template_arg_not_integral_or_enumeral)
6176 << ArgType << Arg->getSourceRange();
6177 Diag(Param->getLocation(), diag::note_template_param_here);
6178 return ExprError();
6179 } else if (!Arg->isValueDependent()) {
6180 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
6181 QualType T;
6182
6183 public:
6184 TmplArgICEDiagnoser(QualType T) : T(T) { }
6185
6186 void diagnoseNotICE(Sema &S, SourceLocation Loc,
6187 SourceRange SR) override {
6188 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
6189 }
6190 } Diagnoser(ArgType);
6191
6192 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
6193 false).get();
6194 if (!Arg)
6195 return ExprError();
6196 }
6197
6198 // From here on out, all we care about is the unqualified form
6199 // of the argument type.
6200 ArgType = ArgType.getUnqualifiedType();
6201
6202 // Try to convert the argument to the parameter's type.
6203 if (Context.hasSameType(ParamType, ArgType)) {
6204 // Okay: no conversion necessary
6205 } else if (ParamType->isBooleanType()) {
6206 // This is an integral-to-boolean conversion.
6207 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
6208 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
6209 !ParamType->isEnumeralType()) {
6210 // This is an integral promotion or conversion.
6211 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
6212 } else {
6213 // We can't perform this conversion.
6214 Diag(Arg->getLocStart(),
6215 diag::err_template_arg_not_convertible)
6216 << Arg->getType() << ParamType << Arg->getSourceRange();
6217 Diag(Param->getLocation(), diag::note_template_param_here);
6218 return ExprError();
6219 }
6220
6221 // Add the value of this argument to the list of converted
6222 // arguments. We use the bitwidth and signedness of the template
6223 // parameter.
6224 if (Arg->isValueDependent()) {
6225 // The argument is value-dependent. Create a new
6226 // TemplateArgument with the converted expression.
6227 Converted = TemplateArgument(Arg);
6228 return Arg;
6229 }
6230
6231 QualType IntegerType = Context.getCanonicalType(ParamType);
6232 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6233 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
6234
6235 if (ParamType->isBooleanType()) {
6236 // Value must be zero or one.
6237 Value = Value != 0;
6238 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6239 if (Value.getBitWidth() != AllowedBits)
6240 Value = Value.extOrTrunc(AllowedBits);
6241 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6242 } else {
6243 llvm::APSInt OldValue = Value;
6244
6245 // Coerce the template argument's value to the value it will have
6246 // based on the template parameter's type.
6247 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6248 if (Value.getBitWidth() != AllowedBits)
6249 Value = Value.extOrTrunc(AllowedBits);
6250 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6251
6252 // Complain if an unsigned parameter received a negative value.
6253 if (IntegerType->isUnsignedIntegerOrEnumerationType()
6254 && (OldValue.isSigned() && OldValue.isNegative())) {
6255 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
6256 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6257 << Arg->getSourceRange();
6258 Diag(Param->getLocation(), diag::note_template_param_here);
6259 }
6260
6261 // Complain if we overflowed the template parameter's type.
6262 unsigned RequiredBits;
6263 if (IntegerType->isUnsignedIntegerOrEnumerationType())
6264 RequiredBits = OldValue.getActiveBits();
6265 else if (OldValue.isUnsigned())
6266 RequiredBits = OldValue.getActiveBits() + 1;
6267 else
6268 RequiredBits = OldValue.getMinSignedBits();
6269 if (RequiredBits > AllowedBits) {
6270 Diag(Arg->getLocStart(),
6271 diag::warn_template_arg_too_large)
6272 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6273 << Arg->getSourceRange();
6274 Diag(Param->getLocation(), diag::note_template_param_here);
6275 }
6276 }
6277
6278 Converted = TemplateArgument(Context, Value,
6279 ParamType->isEnumeralType()
6280 ? Context.getCanonicalType(ParamType)
6281 : IntegerType);
6282 return Arg;
6283 }
6284
6285 QualType ArgType = Arg->getType();
6286 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
6287
6288 // Handle pointer-to-function, reference-to-function, and
6289 // pointer-to-member-function all in (roughly) the same way.
6290 if (// -- For a non-type template-parameter of type pointer to
6291 // function, only the function-to-pointer conversion (4.3) is
6292 // applied. If the template-argument represents a set of
6293 // overloaded functions (or a pointer to such), the matching
6294 // function is selected from the set (13.4).
6295 (ParamType->isPointerType() &&
6296 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
6297 // -- For a non-type template-parameter of type reference to
6298 // function, no conversions apply. If the template-argument
6299 // represents a set of overloaded functions, the matching
6300 // function is selected from the set (13.4).
6301 (ParamType->isReferenceType() &&
6302 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
6303 // -- For a non-type template-parameter of type pointer to
6304 // member function, no conversions apply. If the
6305 // template-argument represents a set of overloaded member
6306 // functions, the matching member function is selected from
6307 // the set (13.4).
6308 (ParamType->isMemberPointerType() &&
6309 ParamType->getAs<MemberPointerType>()->getPointeeType()
6310 ->isFunctionType())) {
6311
6312 if (Arg->getType() == Context.OverloadTy) {
6313 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
6314 true,
6315 FoundResult)) {
6316 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
6317 return ExprError();
6318
6319 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6320 ArgType = Arg->getType();
6321 } else
6322 return ExprError();
6323 }
6324
6325 if (!ParamType->isMemberPointerType()) {
6326 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6327 ParamType,
6328 Arg, Converted))
6329 return ExprError();
6330 return Arg;
6331 }
6332
6333 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6334 Converted))
6335 return ExprError();
6336 return Arg;
6337 }
6338
6339 if (ParamType->isPointerType()) {
6340 // -- for a non-type template-parameter of type pointer to
6341 // object, qualification conversions (4.4) and the
6342 // array-to-pointer conversion (4.2) are applied.
6343 // C++0x also allows a value of std::nullptr_t.
6344 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6345, __PRETTY_FUNCTION__))
6345 "Only object pointers allowed here")((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6345, __PRETTY_FUNCTION__))
;
6346
6347 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6348 ParamType,
6349 Arg, Converted))
6350 return ExprError();
6351 return Arg;
6352 }
6353
6354 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
6355 // -- For a non-type template-parameter of type reference to
6356 // object, no conversions apply. The type referred to by the
6357 // reference may be more cv-qualified than the (otherwise
6358 // identical) type of the template-argument. The
6359 // template-parameter is bound directly to the
6360 // template-argument, which must be an lvalue.
6361 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6362, __PRETTY_FUNCTION__))
6362 "Only object references allowed here")((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6362, __PRETTY_FUNCTION__))
;
6363
6364 if (Arg->getType() == Context.OverloadTy) {
6365 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
6366 ParamRefType->getPointeeType(),
6367 true,
6368 FoundResult)) {
6369 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
6370 return ExprError();
6371
6372 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6373 ArgType = Arg->getType();
6374 } else
6375 return ExprError();
6376 }
6377
6378 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6379 ParamType,
6380 Arg, Converted))
6381 return ExprError();
6382 return Arg;
6383 }
6384
6385 // Deal with parameters of type std::nullptr_t.
6386 if (ParamType->isNullPtrType()) {
6387 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6388 Converted = TemplateArgument(Arg);
6389 return Arg;
6390 }
6391
6392 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
6393 case NPV_NotNullPointer:
6394 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
6395 << Arg->getType() << ParamType;
6396 Diag(Param->getLocation(), diag::note_template_param_here);
6397 return ExprError();
6398
6399 case NPV_Error:
6400 return ExprError();
6401
6402 case NPV_NullPointer:
6403 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6404 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
6405 /*isNullPtr*/true);
6406 return Arg;
6407 }
6408 }
6409
6410 // -- For a non-type template-parameter of type pointer to data
6411 // member, qualification conversions (4.4) are applied.
6412 assert(ParamType->isMemberPointerType() && "Only pointers to members remain")((ParamType->isMemberPointerType() && "Only pointers to members remain"
) ? static_cast<void> (0) : __assert_fail ("ParamType->isMemberPointerType() && \"Only pointers to members remain\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6412, __PRETTY_FUNCTION__))
;
6413
6414 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6415 Converted))
6416 return ExprError();
6417 return Arg;
6418}
6419
6420static void DiagnoseTemplateParameterListArityMismatch(
6421 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
6422 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
6423
6424/// \brief Check a template argument against its corresponding
6425/// template template parameter.
6426///
6427/// This routine implements the semantics of C++ [temp.arg.template].
6428/// It returns true if an error occurred, and false otherwise.
6429bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
6430 TemplateArgumentLoc &Arg,
6431 unsigned ArgumentPackIndex) {
6432 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
6433 TemplateDecl *Template = Name.getAsTemplateDecl();
6434 if (!Template) {
6435 // Any dependent template name is fine.
6436 assert(Name.isDependent() && "Non-dependent template isn't a declaration?")((Name.isDependent() && "Non-dependent template isn't a declaration?"
) ? static_cast<void> (0) : __assert_fail ("Name.isDependent() && \"Non-dependent template isn't a declaration?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6436, __PRETTY_FUNCTION__))
;
6437 return false;
6438 }
6439
6440 if (Template->isInvalidDecl())
6441 return true;
6442
6443 // C++0x [temp.arg.template]p1:
6444 // A template-argument for a template template-parameter shall be
6445 // the name of a class template or an alias template, expressed as an
6446 // id-expression. When the template-argument names a class template, only
6447 // primary class templates are considered when matching the
6448 // template template argument with the corresponding parameter;
6449 // partial specializations are not considered even if their
6450 // parameter lists match that of the template template parameter.
6451 //
6452 // Note that we also allow template template parameters here, which
6453 // will happen when we are dealing with, e.g., class template
6454 // partial specializations.
6455 if (!isa<ClassTemplateDecl>(Template) &&
6456 !isa<TemplateTemplateParmDecl>(Template) &&
6457 !isa<TypeAliasTemplateDecl>(Template) &&
6458 !isa<BuiltinTemplateDecl>(Template)) {
6459 assert(isa<FunctionTemplateDecl>(Template) &&((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6460, __PRETTY_FUNCTION__))
6460 "Only function templates are possible here")((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6460, __PRETTY_FUNCTION__))
;
6461 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
6462 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
6463 << Template;
6464 }
6465
6466 TemplateParameterList *Params = Param->getTemplateParameters();
6467 if (Param->isExpandedParameterPack())
6468 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
6469
6470 // C++1z [temp.arg.template]p3: (DR 150)
6471 // A template-argument matches a template template-parameter P when P
6472 // is at least as specialized as the template-argument A.
6473 if (getLangOpts().RelaxedTemplateTemplateArgs) {
6474 // Quick check for the common case:
6475 // If P contains a parameter pack, then A [...] matches P if each of A's
6476 // template parameters matches the corresponding template parameter in
6477 // the template-parameter-list of P.
6478 if (TemplateParameterListsAreEqual(
6479 Template->getTemplateParameters(), Params, false,
6480 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()))
6481 return false;
6482
6483 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
6484 Arg.getLocation()))
6485 return false;
6486 // FIXME: Produce better diagnostics for deduction failures.
6487 }
6488
6489 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
6490 Params,
6491 true,
6492 TPL_TemplateTemplateArgumentMatch,
6493 Arg.getLocation());
6494}
6495
6496/// \brief Given a non-type template argument that refers to a
6497/// declaration and the type of its corresponding non-type template
6498/// parameter, produce an expression that properly refers to that
6499/// declaration.
6500ExprResult
6501Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
6502 QualType ParamType,
6503 SourceLocation Loc) {
6504 // C++ [temp.param]p8:
6505 //
6506 // A non-type template-parameter of type "array of T" or
6507 // "function returning T" is adjusted to be of type "pointer to
6508 // T" or "pointer to function returning T", respectively.
6509 if (ParamType->isArrayType())
6510 ParamType = Context.getArrayDecayedType(ParamType);
6511 else if (ParamType->isFunctionType())
6512 ParamType = Context.getPointerType(ParamType);
6513
6514 // For a NULL non-type template argument, return nullptr casted to the
6515 // parameter's type.
6516 if (Arg.getKind() == TemplateArgument::NullPtr) {
6517 return ImpCastExprToType(
6518 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
6519 ParamType,
6520 ParamType->getAs<MemberPointerType>()
6521 ? CK_NullToMemberPointer
6522 : CK_NullToPointer);
6523 }
6524 assert(Arg.getKind() == TemplateArgument::Declaration &&((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6525, __PRETTY_FUNCTION__))
6525 "Only declaration template arguments permitted here")((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6525, __PRETTY_FUNCTION__))
;
6526
6527 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
6528
6529 if (VD->getDeclContext()->isRecord() &&
6530 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
6531 isa<IndirectFieldDecl>(VD))) {
6532 // If the value is a class member, we might have a pointer-to-member.
6533 // Determine whether the non-type template template parameter is of
6534 // pointer-to-member type. If so, we need to build an appropriate
6535 // expression for a pointer-to-member, since a "normal" DeclRefExpr
6536 // would refer to the member itself.
6537 if (ParamType->isMemberPointerType()) {
6538 QualType ClassType
6539 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
6540 NestedNameSpecifier *Qualifier
6541 = NestedNameSpecifier::Create(Context, nullptr, false,
6542 ClassType.getTypePtr());
6543 CXXScopeSpec SS;
6544 SS.MakeTrivial(Context, Qualifier, Loc);
6545
6546 // The actual value-ness of this is unimportant, but for
6547 // internal consistency's sake, references to instance methods
6548 // are r-values.
6549 ExprValueKind VK = VK_LValue;
6550 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
6551 VK = VK_RValue;
6552
6553 ExprResult RefExpr = BuildDeclRefExpr(VD,
6554 VD->getType().getNonReferenceType(),
6555 VK,
6556 Loc,
6557 &SS);
6558 if (RefExpr.isInvalid())
6559 return ExprError();
6560
6561 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
6562
6563 // We might need to perform a trailing qualification conversion, since
6564 // the element type on the parameter could be more qualified than the
6565 // element type in the expression we constructed.
6566 bool ObjCLifetimeConversion;
6567 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
6568 ParamType.getUnqualifiedType(), false,
6569 ObjCLifetimeConversion))
6570 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
6571
6572 assert(!RefExpr.isInvalid() &&((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6574, __PRETTY_FUNCTION__))
6573 Context.hasSameType(((Expr*) RefExpr.get())->getType(),((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6574, __PRETTY_FUNCTION__))
6574 ParamType.getUnqualifiedType()))((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6574, __PRETTY_FUNCTION__))
;
6575 return RefExpr;
6576 }
6577 }
6578
6579 QualType T = VD->getType().getNonReferenceType();
6580
6581 if (ParamType->isPointerType()) {
6582 // When the non-type template parameter is a pointer, take the
6583 // address of the declaration.
6584 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
6585 if (RefExpr.isInvalid())
6586 return ExprError();
6587
6588 if (!Context.hasSameUnqualifiedType(ParamType->getPointeeType(), T) &&
6589 (T->isFunctionType() || T->isArrayType())) {
6590 // Decay functions and arrays unless we're forming a pointer to array.
6591 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
6592 if (RefExpr.isInvalid())
6593 return ExprError();
6594
6595 return RefExpr;
6596 }
6597
6598 // Take the address of everything else
6599 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
6600 }
6601
6602 ExprValueKind VK = VK_RValue;
6603
6604 // If the non-type template parameter has reference type, qualify the
6605 // resulting declaration reference with the extra qualifiers on the
6606 // type that the reference refers to.
6607 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
6608 VK = VK_LValue;
6609 T = Context.getQualifiedType(T,
6610 TargetRef->getPointeeType().getQualifiers());
6611 } else if (isa<FunctionDecl>(VD)) {
6612 // References to functions are always lvalues.
6613 VK = VK_LValue;
6614 }
6615
6616 return BuildDeclRefExpr(VD, T, VK, Loc);
6617}
6618
6619/// \brief Construct a new expression that refers to the given
6620/// integral template argument with the given source-location
6621/// information.
6622///
6623/// This routine takes care of the mapping from an integral template
6624/// argument (which may have any integral type) to the appropriate
6625/// literal value.
6626ExprResult
6627Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
6628 SourceLocation Loc) {
6629 assert(Arg.getKind() == TemplateArgument::Integral &&((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6630, __PRETTY_FUNCTION__))
6630 "Operation is only valid for integral template arguments")((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6630, __PRETTY_FUNCTION__))
;
6631 QualType OrigT = Arg.getIntegralType();
6632
6633 // If this is an enum type that we're instantiating, we need to use an integer
6634 // type the same size as the enumerator. We don't want to build an
6635 // IntegerLiteral with enum type. The integer type of an enum type can be of
6636 // any integral type with C++11 enum classes, make sure we create the right
6637 // type of literal for it.
6638 QualType T = OrigT;
6639 if (const EnumType *ET = OrigT->getAs<EnumType>())
6640 T = ET->getDecl()->getIntegerType();
6641
6642 Expr *E;
6643 if (T->isAnyCharacterType()) {
6644 // This does not need to handle u8 character literals because those are
6645 // of type char, and so can also be covered by an ASCII character literal.
6646 CharacterLiteral::CharacterKind Kind;
6647 if (T->isWideCharType())
6648 Kind = CharacterLiteral::Wide;
6649 else if (T->isChar16Type())
6650 Kind = CharacterLiteral::UTF16;
6651 else if (T->isChar32Type())
6652 Kind = CharacterLiteral::UTF32;
6653 else
6654 Kind = CharacterLiteral::Ascii;
6655
6656 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
6657 Kind, T, Loc);
6658 } else if (T->isBooleanType()) {
6659 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
6660 T, Loc);
6661 } else if (T->isNullPtrType()) {
6662 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
6663 } else {
6664 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
6665 }
6666
6667 if (OrigT->isEnumeralType()) {
6668 // FIXME: This is a hack. We need a better way to handle substituted
6669 // non-type template parameters.
6670 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
6671 nullptr,
6672 Context.getTrivialTypeSourceInfo(OrigT, Loc),
6673 Loc, Loc);
6674 }
6675
6676 return E;
6677}
6678
6679/// \brief Match two template parameters within template parameter lists.
6680static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
6681 bool Complain,
6682 Sema::TemplateParameterListEqualKind Kind,
6683 SourceLocation TemplateArgLoc) {
6684 // Check the actual kind (type, non-type, template).
6685 if (Old->getKind() != New->getKind()) {
6686 if (Complain) {
6687 unsigned NextDiag = diag::err_template_param_different_kind;
6688 if (TemplateArgLoc.isValid()) {
6689 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
6690 NextDiag = diag::note_template_param_different_kind;
6691 }
6692 S.Diag(New->getLocation(), NextDiag)
6693 << (Kind != Sema::TPL_TemplateMatch);
6694 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
6695 << (Kind != Sema::TPL_TemplateMatch);
6696 }
6697
6698 return false;
6699 }
6700
6701 // Check that both are parameter packs or neither are parameter packs.
6702 // However, if we are matching a template template argument to a
6703 // template template parameter, the template template parameter can have
6704 // a parameter pack where the template template argument does not.
6705 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
6706 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
6707 Old->isTemplateParameterPack())) {
6708 if (Complain) {
6709 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
6710 if (TemplateArgLoc.isValid()) {
6711 S.Diag(TemplateArgLoc,
6712 diag::err_template_arg_template_params_mismatch);
6713 NextDiag = diag::note_template_parameter_pack_non_pack;
6714 }
6715
6716 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
6717 : isa<NonTypeTemplateParmDecl>(New)? 1
6718 : 2;
6719 S.Diag(New->getLocation(), NextDiag)
6720 << ParamKind << New->isParameterPack();
6721 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
6722 << ParamKind << Old->isParameterPack();
6723 }
6724
6725 return false;
6726 }
6727
6728 // For non-type template parameters, check the type of the parameter.
6729 if (NonTypeTemplateParmDecl *OldNTTP
6730 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
6731 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
6732
6733 // If we are matching a template template argument to a template
6734 // template parameter and one of the non-type template parameter types
6735 // is dependent, then we must wait until template instantiation time
6736 // to actually compare the arguments.
6737 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
6738 (OldNTTP->getType()->isDependentType() ||
6739 NewNTTP->getType()->isDependentType()))
6740 return true;
6741
6742 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
6743 if (Complain) {
6744 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
6745 if (TemplateArgLoc.isValid()) {
6746 S.Diag(TemplateArgLoc,
6747 diag::err_template_arg_template_params_mismatch);
6748 NextDiag = diag::note_template_nontype_parm_different_type;
6749 }
6750 S.Diag(NewNTTP->getLocation(), NextDiag)
6751 << NewNTTP->getType()
6752 << (Kind != Sema::TPL_TemplateMatch);
6753 S.Diag(OldNTTP->getLocation(),
6754 diag::note_template_nontype_parm_prev_declaration)
6755 << OldNTTP->getType();
6756 }
6757
6758 return false;
6759 }
6760
6761 return true;
6762 }
6763
6764 // For template template parameters, check the template parameter types.
6765 // The template parameter lists of template template
6766 // parameters must agree.
6767 if (TemplateTemplateParmDecl *OldTTP
6768 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
6769 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
6770 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
6771 OldTTP->getTemplateParameters(),
6772 Complain,
6773 (Kind == Sema::TPL_TemplateMatch
6774 ? Sema::TPL_TemplateTemplateParmMatch
6775 : Kind),
6776 TemplateArgLoc);
6777 }
6778
6779 return true;
6780}
6781
6782/// \brief Diagnose a known arity mismatch when comparing template argument
6783/// lists.
6784static
6785void DiagnoseTemplateParameterListArityMismatch(Sema &S,
6786 TemplateParameterList *New,
6787 TemplateParameterList *Old,
6788 Sema::TemplateParameterListEqualKind Kind,
6789 SourceLocation TemplateArgLoc) {
6790 unsigned NextDiag = diag::err_template_param_list_different_arity;
6791 if (TemplateArgLoc.isValid()) {
6792 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
6793 NextDiag = diag::note_template_param_list_different_arity;
6794 }
6795 S.Diag(New->getTemplateLoc(), NextDiag)
6796 << (New->size() > Old->size())
6797 << (Kind != Sema::TPL_TemplateMatch)
6798 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
6799 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
6800 << (Kind != Sema::TPL_TemplateMatch)
6801 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
6802}
6803
6804/// \brief Determine whether the given template parameter lists are
6805/// equivalent.
6806///
6807/// \param New The new template parameter list, typically written in the
6808/// source code as part of a new template declaration.
6809///
6810/// \param Old The old template parameter list, typically found via
6811/// name lookup of the template declared with this template parameter
6812/// list.
6813///
6814/// \param Complain If true, this routine will produce a diagnostic if
6815/// the template parameter lists are not equivalent.
6816///
6817/// \param Kind describes how we are to match the template parameter lists.
6818///
6819/// \param TemplateArgLoc If this source location is valid, then we
6820/// are actually checking the template parameter list of a template
6821/// argument (New) against the template parameter list of its
6822/// corresponding template template parameter (Old). We produce
6823/// slightly different diagnostics in this scenario.
6824///
6825/// \returns True if the template parameter lists are equal, false
6826/// otherwise.
6827bool
6828Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
6829 TemplateParameterList *Old,
6830 bool Complain,
6831 TemplateParameterListEqualKind Kind,
6832 SourceLocation TemplateArgLoc) {
6833 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
6834 if (Complain)
6835 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6836 TemplateArgLoc);
6837
6838 return false;
6839 }
6840
6841 // C++0x [temp.arg.template]p3:
6842 // A template-argument matches a template template-parameter (call it P)
6843 // when each of the template parameters in the template-parameter-list of
6844 // the template-argument's corresponding class template or alias template
6845 // (call it A) matches the corresponding template parameter in the
6846 // template-parameter-list of P. [...]
6847 TemplateParameterList::iterator NewParm = New->begin();
6848 TemplateParameterList::iterator NewParmEnd = New->end();
6849 for (TemplateParameterList::iterator OldParm = Old->begin(),
6850 OldParmEnd = Old->end();
6851 OldParm != OldParmEnd; ++OldParm) {
6852 if (Kind != TPL_TemplateTemplateArgumentMatch ||
6853 !(*OldParm)->isTemplateParameterPack()) {
6854 if (NewParm == NewParmEnd) {
6855 if (Complain)
6856 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6857 TemplateArgLoc);
6858
6859 return false;
6860 }
6861
6862 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
6863 Kind, TemplateArgLoc))
6864 return false;
6865
6866 ++NewParm;
6867 continue;
6868 }
6869
6870 // C++0x [temp.arg.template]p3:
6871 // [...] When P's template- parameter-list contains a template parameter
6872 // pack (14.5.3), the template parameter pack will match zero or more
6873 // template parameters or template parameter packs in the
6874 // template-parameter-list of A with the same type and form as the
6875 // template parameter pack in P (ignoring whether those template
6876 // parameters are template parameter packs).
6877 for (; NewParm != NewParmEnd; ++NewParm) {
6878 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
6879 Kind, TemplateArgLoc))
6880 return false;
6881 }
6882 }
6883
6884 // Make sure we exhausted all of the arguments.
6885 if (NewParm != NewParmEnd) {
6886 if (Complain)
6887 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6888 TemplateArgLoc);
6889
6890 return false;
6891 }
6892
6893 return true;
6894}
6895
6896/// \brief Check whether a template can be declared within this scope.
6897///
6898/// If the template declaration is valid in this scope, returns
6899/// false. Otherwise, issues a diagnostic and returns true.
6900bool
6901Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
6902 if (!S)
2
Assuming 'S' is non-null
3
Taking false branch
6903 return false;
6904
6905 // Find the nearest enclosing declaration scope.
6906 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4
Assuming the condition is false
6
Loop condition is false. Execution continues on line 6912
6907 (S->getFlags() & Scope::TemplateParamScope) != 0)
5
Assuming the condition is false
6908 S = S->getParent();
6909
6910 // C++ [temp]p4:
6911 // A template [...] shall not have C linkage.
6912 DeclContext *Ctx = S->getEntity();
7
Calling 'Scope::getEntity'
8
Returning from 'Scope::getEntity'
9
'Ctx' initialized here
6913 if (Ctx && Ctx->isExternCContext()) {
10
Assuming 'Ctx' is null
11
Assuming pointer value is null
6914 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
6915 << TemplateParams->getSourceRange();
6916 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
6917 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
6918 return true;
6919 }
6920 Ctx = Ctx->getRedeclContext();
12
Called C++ object pointer is null
6921
6922 // C++ [temp]p2:
6923 // A template-declaration can appear only as a namespace scope or
6924 // class scope declaration.
6925 if (Ctx) {
6926 if (Ctx->isFileContext())
6927 return false;
6928 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
6929 // C++ [temp.mem]p2:
6930 // A local class shall not have member templates.
6931 if (RD->isLocalClass())
6932 return Diag(TemplateParams->getTemplateLoc(),
6933 diag::err_template_inside_local_class)
6934 << TemplateParams->getSourceRange();
6935 else
6936 return false;
6937 }
6938 }
6939
6940 return Diag(TemplateParams->getTemplateLoc(),
6941 diag::err_template_outside_namespace_or_class_scope)
6942 << TemplateParams->getSourceRange();
6943}
6944
6945/// \brief Determine what kind of template specialization the given declaration
6946/// is.
6947static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
6948 if (!D)
6949 return TSK_Undeclared;
6950
6951 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
6952 return Record->getTemplateSpecializationKind();
6953 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
6954 return Function->getTemplateSpecializationKind();
6955 if (VarDecl *Var = dyn_cast<VarDecl>(D))
6956 return Var->getTemplateSpecializationKind();
6957
6958 return TSK_Undeclared;
6959}
6960
6961/// \brief Check whether a specialization is well-formed in the current
6962/// context.
6963///
6964/// This routine determines whether a template specialization can be declared
6965/// in the current context (C++ [temp.expl.spec]p2).
6966///
6967/// \param S the semantic analysis object for which this check is being
6968/// performed.
6969///
6970/// \param Specialized the entity being specialized or instantiated, which
6971/// may be a kind of template (class template, function template, etc.) or
6972/// a member of a class template (member function, static data member,
6973/// member class).
6974///
6975/// \param PrevDecl the previous declaration of this entity, if any.
6976///
6977/// \param Loc the location of the explicit specialization or instantiation of
6978/// this entity.
6979///
6980/// \param IsPartialSpecialization whether this is a partial specialization of
6981/// a class template.
6982///
6983/// \returns true if there was an error that we cannot recover from, false
6984/// otherwise.
6985static bool CheckTemplateSpecializationScope(Sema &S,
6986 NamedDecl *Specialized,
6987 NamedDecl *PrevDecl,
6988 SourceLocation Loc,
6989 bool IsPartialSpecialization) {
6990 // Keep these "kind" numbers in sync with the %select statements in the
6991 // various diagnostics emitted by this routine.
6992 int EntityKind = 0;
6993 if (isa<ClassTemplateDecl>(Specialized))
6994 EntityKind = IsPartialSpecialization? 1 : 0;
6995 else if (isa<VarTemplateDecl>(Specialized))
6996 EntityKind = IsPartialSpecialization ? 3 : 2;
6997 else if (isa<FunctionTemplateDecl>(Specialized))
6998 EntityKind = 4;
6999 else if (isa<CXXMethodDecl>(Specialized))
7000 EntityKind = 5;
7001 else if (isa<VarDecl>(Specialized))
7002 EntityKind = 6;
7003 else if (isa<RecordDecl>(Specialized))
7004 EntityKind = 7;
7005 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
7006 EntityKind = 8;
7007 else {
7008 S.Diag(Loc, diag::err_template_spec_unknown_kind)
7009 << S.getLangOpts().CPlusPlus11;
7010 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7011 return true;
7012 }
7013
7014 // C++ [temp.expl.spec]p2:
7015 // An explicit specialization shall be declared in the namespace
7016 // of which the template is a member, or, for member templates, in
7017 // the namespace of which the enclosing class or enclosing class
7018 // template is a member. An explicit specialization of a member
7019 // function, member class or static data member of a class
7020 // template shall be declared in the namespace of which the class
7021 // template is a member. Such a declaration may also be a
7022 // definition. If the declaration is not a definition, the
7023 // specialization may be defined later in the name- space in which
7024 // the explicit specialization was declared, or in a namespace
7025 // that encloses the one in which the explicit specialization was
7026 // declared.
7027 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7028 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
7029 << Specialized;
7030 return true;
7031 }
7032
7033 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
7034 if (S.getLangOpts().MicrosoftExt) {
7035 // Do not warn for class scope explicit specialization during
7036 // instantiation, warning was already emitted during pattern
7037 // semantic analysis.
7038 if (!S.inTemplateInstantiation())
7039 S.Diag(Loc, diag::ext_function_specialization_in_class)
7040 << Specialized;
7041 } else {
7042 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
7043 << Specialized;
7044 return true;
7045 }
7046 }
7047
7048 if (S.CurContext->isRecord() &&
7049 !S.CurContext->Equals(Specialized->getDeclContext())) {
7050 // Make sure that we're specializing in the right record context.
7051 // Otherwise, things can go horribly wrong.
7052 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
7053 << Specialized;
7054 return true;
7055 }
7056
7057 // C++ [temp.class.spec]p6:
7058 // A class template partial specialization may be declared or redeclared
7059 // in any namespace scope in which its definition may be defined (14.5.1
7060 // and 14.5.2).
7061 DeclContext *SpecializedContext
7062 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
7063 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
7064
7065 // Make sure that this redeclaration (or definition) occurs in an enclosing
7066 // namespace.
7067 // Note that HandleDeclarator() performs this check for explicit
7068 // specializations of function templates, static data members, and member
7069 // functions, so we skip the check here for those kinds of entities.
7070 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
7071 // Should we refactor that check, so that it occurs later?
7072 if (!DC->Encloses(SpecializedContext) &&
7073 !(isa<FunctionTemplateDecl>(Specialized) ||
7074 isa<FunctionDecl>(Specialized) ||
7075 isa<VarTemplateDecl>(Specialized) ||
7076 isa<VarDecl>(Specialized))) {
7077 if (isa<TranslationUnitDecl>(SpecializedContext))
7078 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
7079 << EntityKind << Specialized;
7080 else if (isa<NamespaceDecl>(SpecializedContext)) {
7081 int Diag = diag::err_template_spec_redecl_out_of_scope;
7082 if (S.getLangOpts().MicrosoftExt)
7083 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
7084 S.Diag(Loc, Diag) << EntityKind << Specialized
7085 << cast<NamedDecl>(SpecializedContext);
7086 } else
7087 llvm_unreachable("unexpected namespace context for specialization")::llvm::llvm_unreachable_internal("unexpected namespace context for specialization"
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7087)
;
7088
7089 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7090 } else if ((!PrevDecl ||
7091 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
7092 getTemplateSpecializationKind(PrevDecl) ==
7093 TSK_ImplicitInstantiation)) {
7094 // C++ [temp.exp.spec]p2:
7095 // An explicit specialization shall be declared in the namespace of which
7096 // the template is a member, or, for member templates, in the namespace
7097 // of which the enclosing class or enclosing class template is a member.
7098 // An explicit specialization of a member function, member class or
7099 // static data member of a class template shall be declared in the
7100 // namespace of which the class template is a member.
7101 //
7102 // C++11 [temp.expl.spec]p2:
7103 // An explicit specialization shall be declared in a namespace enclosing
7104 // the specialized template.
7105 // C++11 [temp.explicit]p3:
7106 // An explicit instantiation shall appear in an enclosing namespace of its
7107 // template.
7108 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
7109 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
7110 if (isa<TranslationUnitDecl>(SpecializedContext)) {
7111 assert(!IsCPlusPlus11Extension &&((!IsCPlusPlus11Extension && "DC encloses TU but isn't in enclosing namespace set"
) ? static_cast<void> (0) : __assert_fail ("!IsCPlusPlus11Extension && \"DC encloses TU but isn't in enclosing namespace set\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7112, __PRETTY_FUNCTION__))
7112 "DC encloses TU but isn't in enclosing namespace set")((!IsCPlusPlus11Extension && "DC encloses TU but isn't in enclosing namespace set"
) ? static_cast<void> (0) : __assert_fail ("!IsCPlusPlus11Extension && \"DC encloses TU but isn't in enclosing namespace set\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7112, __PRETTY_FUNCTION__))
;
7113 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
7114 << EntityKind << Specialized;
7115 } else if (isa<NamespaceDecl>(SpecializedContext)) {
7116 int Diag;
7117 if (!IsCPlusPlus11Extension)
7118 Diag = diag::err_template_spec_decl_out_of_scope;
7119 else if (!S.getLangOpts().CPlusPlus11)
7120 Diag = diag::ext_template_spec_decl_out_of_scope;
7121 else
7122 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
7123 S.Diag(Loc, Diag)
7124 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
7125 }
7126
7127 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7128 }
7129 }
7130
7131 return false;
7132}
7133
7134static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
7135 if (!E->isTypeDependent())
7136 return SourceLocation();
7137 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7138 Checker.TraverseStmt(E);
7139 if (Checker.MatchLoc.isInvalid())
7140 return E->getSourceRange();
7141 return Checker.MatchLoc;
7142}
7143
7144static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
7145 if (!TL.getType()->isDependentType())
7146 return SourceLocation();
7147 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7148 Checker.TraverseTypeLoc(TL);
7149 if (Checker.MatchLoc.isInvalid())
7150 return TL.getSourceRange();
7151 return Checker.MatchLoc;
7152}
7153
7154/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
7155/// that checks non-type template partial specialization arguments.
7156static bool CheckNonTypeTemplatePartialSpecializationArgs(
7157 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
7158 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
7159 for (unsigned I = 0; I != NumArgs; ++I) {
7160 if (Args[I].getKind() == TemplateArgument::Pack) {
7161 if (CheckNonTypeTemplatePartialSpecializationArgs(
7162 S, TemplateNameLoc, Param, Args[I].pack_begin(),
7163 Args[I].pack_size(), IsDefaultArgument))
7164 return true;
7165
7166 continue;
7167 }
7168
7169 if (Args[I].getKind() != TemplateArgument::Expression)
7170 continue;
7171
7172 Expr *ArgExpr = Args[I].getAsExpr();
7173
7174 // We can have a pack expansion of any of the bullets below.
7175 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
7176 ArgExpr = Expansion->getPattern();
7177
7178 // Strip off any implicit casts we added as part of type checking.
7179 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
7180 ArgExpr = ICE->getSubExpr();
7181
7182 // C++ [temp.class.spec]p8:
7183 // A non-type argument is non-specialized if it is the name of a
7184 // non-type parameter. All other non-type arguments are
7185 // specialized.
7186 //
7187 // Below, we check the two conditions that only apply to
7188 // specialized non-type arguments, so skip any non-specialized
7189 // arguments.
7190 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
7191 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
7192 continue;
7193
7194 // C++ [temp.class.spec]p9:
7195 // Within the argument list of a class template partial
7196 // specialization, the following restrictions apply:
7197 // -- A partially specialized non-type argument expression
7198 // shall not involve a template parameter of the partial
7199 // specialization except when the argument expression is a
7200 // simple identifier.
7201 // -- The type of a template parameter corresponding to a
7202 // specialized non-type argument shall not be dependent on a
7203 // parameter of the specialization.
7204 // DR1315 removes the first bullet, leaving an incoherent set of rules.
7205 // We implement a compromise between the original rules and DR1315:
7206 // -- A specialized non-type template argument shall not be
7207 // type-dependent and the corresponding template parameter
7208 // shall have a non-dependent type.
7209 SourceRange ParamUseRange =
7210 findTemplateParameterInType(Param->getDepth(), ArgExpr);
7211 if (ParamUseRange.isValid()) {
7212 if (IsDefaultArgument) {
7213 S.Diag(TemplateNameLoc,
7214 diag::err_dependent_non_type_arg_in_partial_spec);
7215 S.Diag(ParamUseRange.getBegin(),
7216 diag::note_dependent_non_type_default_arg_in_partial_spec)
7217 << ParamUseRange;
7218 } else {
7219 S.Diag(ParamUseRange.getBegin(),
7220 diag::err_dependent_non_type_arg_in_partial_spec)
7221 << ParamUseRange;
7222 }
7223 return true;
7224 }
7225
7226 ParamUseRange = findTemplateParameter(
7227 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
7228 if (ParamUseRange.isValid()) {
7229 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
7230 diag::err_dependent_typed_non_type_arg_in_partial_spec)
7231 << Param->getType();
7232 S.Diag(Param->getLocation(), diag::note_template_param_here)
7233 << (IsDefaultArgument ? ParamUseRange : SourceRange())
7234 << ParamUseRange;
7235 return true;
7236 }
7237 }
7238
7239 return false;
7240}
7241
7242/// \brief Check the non-type template arguments of a class template
7243/// partial specialization according to C++ [temp.class.spec]p9.
7244///
7245/// \param TemplateNameLoc the location of the template name.
7246/// \param PrimaryTemplate the template parameters of the primary class
7247/// template.
7248/// \param NumExplicit the number of explicitly-specified template arguments.
7249/// \param TemplateArgs the template arguments of the class template
7250/// partial specialization.
7251///
7252/// \returns \c true if there was an error, \c false otherwise.
7253bool Sema::CheckTemplatePartialSpecializationArgs(
7254 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
7255 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
7256 // We have to be conservative when checking a template in a dependent
7257 // context.
7258 if (PrimaryTemplate->getDeclContext()->isDependentContext())
7259 return false;
7260
7261 TemplateParameterList *TemplateParams =
7262 PrimaryTemplate->getTemplateParameters();
7263 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7264 NonTypeTemplateParmDecl *Param
7265 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
7266 if (!Param)
7267 continue;
7268
7269 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
7270 Param, &TemplateArgs[I],
7271 1, I >= NumExplicit))
7272 return true;
7273 }
7274
7275 return false;
7276}
7277
7278DeclResult
7279Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
7280 TagUseKind TUK,
7281 SourceLocation KWLoc,
7282 SourceLocation ModulePrivateLoc,
7283 TemplateIdAnnotation &TemplateId,
7284 AttributeList *Attr,
7285 MultiTemplateParamsArg
7286 TemplateParameterLists,
7287 SkipBodyInfo *SkipBody) {
7288 assert(TUK != TUK_Reference && "References are not specializations")((TUK != TUK_Reference && "References are not specializations"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"References are not specializations\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7288, __PRETTY_FUNCTION__))
;
7289
7290 CXXScopeSpec &SS = TemplateId.SS;
7291
7292 // NOTE: KWLoc is the location of the tag keyword. This will instead
7293 // store the location of the outermost template keyword in the declaration.
7294 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
7295 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
7296 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
7297 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
7298 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
7299
7300 // Find the class template we're specializing
7301 TemplateName Name = TemplateId.Template.get();
7302 ClassTemplateDecl *ClassTemplate
7303 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
7304
7305 if (!ClassTemplate) {
7306 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
7307 << (Name.getAsTemplateDecl() &&
7308 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
7309 return true;
7310 }
7311
7312 bool isMemberSpecialization = false;
7313 bool isPartialSpecialization = false;
7314
7315 // Check the validity of the template headers that introduce this
7316 // template.
7317 // FIXME: We probably shouldn't complain about these headers for
7318 // friend declarations.
7319 bool Invalid = false;
7320 TemplateParameterList *TemplateParams =
7321 MatchTemplateParametersToScopeSpecifier(
7322 KWLoc, TemplateNameLoc, SS, &TemplateId,
7323 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
7324 Invalid);
7325 if (Invalid)
7326 return true;
7327
7328 if (TemplateParams && TemplateParams->size() > 0) {
7329 isPartialSpecialization = true;
7330
7331 if (TUK == TUK_Friend) {
7332 Diag(KWLoc, diag::err_partial_specialization_friend)
7333 << SourceRange(LAngleLoc, RAngleLoc);
7334 return true;
7335 }
7336
7337 // C++ [temp.class.spec]p10:
7338 // The template parameter list of a specialization shall not
7339 // contain default template argument values.
7340 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7341 Decl *Param = TemplateParams->getParam(I);
7342 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
7343 if (TTP->hasDefaultArgument()) {
7344 Diag(TTP->getDefaultArgumentLoc(),
7345 diag::err_default_arg_in_partial_spec);
7346 TTP->removeDefaultArgument();
7347 }
7348 } else if (NonTypeTemplateParmDecl *NTTP
7349 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
7350 if (Expr *DefArg = NTTP->getDefaultArgument()) {
7351 Diag(NTTP->getDefaultArgumentLoc(),
7352 diag::err_default_arg_in_partial_spec)
7353 << DefArg->getSourceRange();
7354 NTTP->removeDefaultArgument();
7355 }
7356 } else {
7357 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
7358 if (TTP->hasDefaultArgument()) {
7359 Diag(TTP->getDefaultArgument().getLocation(),
7360 diag::err_default_arg_in_partial_spec)
7361 << TTP->getDefaultArgument().getSourceRange();
7362 TTP->removeDefaultArgument();
7363 }
7364 }
7365 }
7366 } else if (TemplateParams) {
7367 if (TUK == TUK_Friend)
7368 Diag(KWLoc, diag::err_template_spec_friend)
7369 << FixItHint::CreateRemoval(
7370 SourceRange(TemplateParams->getTemplateLoc(),
7371 TemplateParams->getRAngleLoc()))
7372 << SourceRange(LAngleLoc, RAngleLoc);
7373 } else {
7374 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl")((TUK == TUK_Friend && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("TUK == TUK_Friend && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7374, __PRETTY_FUNCTION__))
;
7375 }
7376
7377 // Check that the specialization uses the same tag kind as the
7378 // original template.
7379 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7380 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!")((Kind != TTK_Enum && "Invalid enum tag in class template spec!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template spec!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7380, __PRETTY_FUNCTION__))
;
7381 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7382 Kind, TUK == TUK_Definition, KWLoc,
7383 ClassTemplate->getIdentifier())) {
7384 Diag(KWLoc, diag::err_use_with_wrong_tag)
7385 << ClassTemplate
7386 << FixItHint::CreateReplacement(KWLoc,
7387 ClassTemplate->getTemplatedDecl()->getKindName());
7388 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7389 diag::note_previous_use);
7390 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7391 }
7392
7393 // Translate the parser's template argument list in our AST format.
7394 TemplateArgumentListInfo TemplateArgs =
7395 makeTemplateArgumentListInfo(*this, TemplateId);
7396
7397 // Check for unexpanded parameter packs in any of the template arguments.
7398 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7399 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
7400 UPPC_PartialSpecialization))
7401 return true;
7402
7403 // Check that the template argument list is well-formed for this
7404 // template.
7405 SmallVector<TemplateArgument, 4> Converted;
7406 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7407 TemplateArgs, false, Converted))
7408 return true;
7409
7410 // Find the class template (partial) specialization declaration that
7411 // corresponds to these arguments.
7412 if (isPartialSpecialization) {
7413 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
7414 TemplateArgs.size(), Converted))
7415 return true;
7416
7417 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
7418 // also do it during instantiation.
7419 bool InstantiationDependent;
7420 if (!Name.isDependent() &&
7421 !TemplateSpecializationType::anyDependentTemplateArguments(
7422 TemplateArgs.arguments(), InstantiationDependent)) {
7423 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
7424 << ClassTemplate->getDeclName();
7425 isPartialSpecialization = false;
7426 }
7427 }
7428
7429 void *InsertPos = nullptr;
7430 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
7431
7432 if (isPartialSpecialization)
7433 // FIXME: Template parameter list matters, too
7434 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
7435 else
7436 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
7437
7438 ClassTemplateSpecializationDecl *Specialization = nullptr;
7439
7440 // Check whether we can declare a class template specialization in
7441 // the current scope.
7442 if (TUK != TUK_Friend &&
7443 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
7444 TemplateNameLoc,
7445 isPartialSpecialization))
7446 return true;
7447
7448 // The canonical type
7449 QualType CanonType;
7450 if (isPartialSpecialization) {
7451 // Build the canonical type that describes the converted template
7452 // arguments of the class template partial specialization.
7453 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7454 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
7455 Converted);
7456
7457 if (Context.hasSameType(CanonType,
7458 ClassTemplate->getInjectedClassNameSpecialization())) {
7459 // C++ [temp.class.spec]p9b3:
7460 //
7461 // -- The argument list of the specialization shall not be identical
7462 // to the implicit argument list of the primary template.
7463 //
7464 // This rule has since been removed, because it's redundant given DR1495,
7465 // but we keep it because it produces better diagnostics and recovery.
7466 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
7467 << /*class template*/0 << (TUK == TUK_Definition)
7468 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
7469 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
7470 ClassTemplate->getIdentifier(),
7471 TemplateNameLoc,
7472 Attr,
7473 TemplateParams,
7474 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
7475 /*FriendLoc*/SourceLocation(),
7476 TemplateParameterLists.size() - 1,
7477 TemplateParameterLists.data());
7478 }
7479
7480 // Create a new class template partial specialization declaration node.
7481 ClassTemplatePartialSpecializationDecl *PrevPartial
7482 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
7483 ClassTemplatePartialSpecializationDecl *Partial
7484 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
7485 ClassTemplate->getDeclContext(),
7486 KWLoc, TemplateNameLoc,
7487 TemplateParams,
7488 ClassTemplate,
7489 Converted,
7490 TemplateArgs,
7491 CanonType,
7492 PrevPartial);
7493 SetNestedNameSpecifier(Partial, SS);
7494 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
7495 Partial->setTemplateParameterListsInfo(
7496 Context, TemplateParameterLists.drop_back(1));
7497 }
7498
7499 if (!PrevPartial)
7500 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
7501 Specialization = Partial;
7502
7503 // If we are providing an explicit specialization of a member class
7504 // template specialization, make a note of that.
7505 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
7506 PrevPartial->setMemberSpecialization();
7507
7508 CheckTemplatePartialSpecialization(Partial);
7509 } else {
7510 // Create a new class template specialization declaration node for
7511 // this explicit specialization or friend declaration.
7512 Specialization
7513 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7514 ClassTemplate->getDeclContext(),
7515 KWLoc, TemplateNameLoc,
7516 ClassTemplate,
7517 Converted,
7518 PrevDecl);
7519 SetNestedNameSpecifier(Specialization, SS);
7520 if (TemplateParameterLists.size() > 0) {
7521 Specialization->setTemplateParameterListsInfo(Context,
7522 TemplateParameterLists);
7523 }
7524
7525 if (!PrevDecl)
7526 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7527
7528 if (CurContext->isDependentContext()) {
7529 // -fms-extensions permits specialization of nested classes without
7530 // fully specializing the outer class(es).
7531 assert(getLangOpts().MicrosoftExt &&((getLangOpts().MicrosoftExt && "Only possible with -fms-extensions!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MicrosoftExt && \"Only possible with -fms-extensions!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7532, __PRETTY_FUNCTION__))
7532 "Only possible with -fms-extensions!")((getLangOpts().MicrosoftExt && "Only possible with -fms-extensions!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MicrosoftExt && \"Only possible with -fms-extensions!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7532, __PRETTY_FUNCTION__))
;
7533 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7534 CanonType = Context.getTemplateSpecializationType(
7535 CanonTemplate, Converted);
7536 } else {
7537 CanonType = Context.getTypeDeclType(Specialization);
7538 }
7539 }
7540
7541 // C++ [temp.expl.spec]p6:
7542 // If a template, a member template or the member of a class template is
7543 // explicitly specialized then that specialization shall be declared
7544 // before the first use of that specialization that would cause an implicit
7545 // instantiation to take place, in every translation unit in which such a
7546 // use occurs; no diagnostic is required.
7547 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
7548 bool Okay = false;
7549 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7550 // Is there any previous explicit specialization declaration?
7551 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
7552 Okay = true;
7553 break;
7554 }
7555 }
7556
7557 if (!Okay) {
7558 SourceRange Range(TemplateNameLoc, RAngleLoc);
7559 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
7560 << Context.getTypeDeclType(Specialization) << Range;
7561
7562 Diag(PrevDecl->getPointOfInstantiation(),
7563 diag::note_instantiation_required_here)
7564 << (PrevDecl->getTemplateSpecializationKind()
7565 != TSK_ImplicitInstantiation);
7566 return true;
7567 }
7568 }
7569
7570 // If this is not a friend, note that this is an explicit specialization.
7571 if (TUK != TUK_Friend)
7572 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
7573
7574 // Check that this isn't a redefinition of this specialization.
7575 if (TUK == TUK_Definition) {
7576 RecordDecl *Def = Specialization->getDefinition();
7577 NamedDecl *Hidden = nullptr;
7578 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
7579 SkipBody->ShouldSkip = true;
7580 makeMergedDefinitionVisible(Hidden);
7581 // From here on out, treat this as just a redeclaration.
7582 TUK = TUK_Declaration;
7583 } else if (Def) {
7584 SourceRange Range(TemplateNameLoc, RAngleLoc);
7585 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
7586 Diag(Def->getLocation(), diag::note_previous_definition);
7587 Specialization->setInvalidDecl();
7588 return true;
7589 }
7590 }
7591
7592 if (Attr)
7593 ProcessDeclAttributeList(S, Specialization, Attr);
7594
7595 // Add alignment attributes if necessary; these attributes are checked when
7596 // the ASTContext lays out the structure.
7597 if (TUK == TUK_Definition) {
7598 AddAlignmentAttributesForRecord(Specialization);
7599 AddMsStructLayoutForRecord(Specialization);
7600 }
7601
7602 if (ModulePrivateLoc.isValid())
7603 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
7604 << (isPartialSpecialization? 1 : 0)
7605 << FixItHint::CreateRemoval(ModulePrivateLoc);
7606
7607 // Build the fully-sugared type for this class template
7608 // specialization as the user wrote in the specialization
7609 // itself. This means that we'll pretty-print the type retrieved
7610 // from the specialization's declaration the way that the user
7611 // actually wrote the specialization, rather than formatting the
7612 // name based on the "canonical" representation used to store the
7613 // template arguments in the specialization.
7614 TypeSourceInfo *WrittenTy
7615 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7616 TemplateArgs, CanonType);
7617 if (TUK != TUK_Friend) {
7618 Specialization->setTypeAsWritten(WrittenTy);
7619 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
7620 }
7621
7622 // C++ [temp.expl.spec]p9:
7623 // A template explicit specialization is in the scope of the
7624 // namespace in which the template was defined.
7625 //
7626 // We actually implement this paragraph where we set the semantic
7627 // context (in the creation of the ClassTemplateSpecializationDecl),
7628 // but we also maintain the lexical context where the actual
7629 // definition occurs.
7630 Specialization->setLexicalDeclContext(CurContext);
7631
7632 // We may be starting the definition of this specialization.
7633 if (TUK == TUK_Definition)
7634 Specialization->startDefinition();
7635
7636 if (TUK == TUK_Friend) {
7637 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
7638 TemplateNameLoc,
7639 WrittenTy,
7640 /*FIXME:*/KWLoc);
7641 Friend->setAccess(AS_public);
7642 CurContext->addDecl(Friend);
7643 } else {
7644 // Add the specialization into its lexical context, so that it can
7645 // be seen when iterating through the list of declarations in that
7646 // context. However, specializations are not found by name lookup.
7647 CurContext->addDecl(Specialization);
7648 }
7649 return Specialization;
7650}
7651
7652Decl *Sema::ActOnTemplateDeclarator(Scope *S,
7653 MultiTemplateParamsArg TemplateParameterLists,
7654 Declarator &D) {
7655 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
7656 ActOnDocumentableDecl(NewDecl);
7657 return NewDecl;
7658}
7659
7660/// \brief Strips various properties off an implicit instantiation
7661/// that has just been explicitly specialized.
7662static void StripImplicitInstantiation(NamedDecl *D) {
7663 D->dropAttr<DLLImportAttr>();
7664 D->dropAttr<DLLExportAttr>();
7665
7666 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
7667 FD->setInlineSpecified(false);
7668}
7669
7670/// \brief Compute the diagnostic location for an explicit instantiation
7671// declaration or definition.
7672static SourceLocation DiagLocForExplicitInstantiation(
7673 NamedDecl* D, SourceLocation PointOfInstantiation) {
7674 // Explicit instantiations following a specialization have no effect and
7675 // hence no PointOfInstantiation. In that case, walk decl backwards
7676 // until a valid name loc is found.
7677 SourceLocation PrevDiagLoc = PointOfInstantiation;
7678 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
7679 Prev = Prev->getPreviousDecl()) {
7680 PrevDiagLoc = Prev->getLocation();
7681 }
7682 assert(PrevDiagLoc.isValid() &&((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7683, __PRETTY_FUNCTION__))
7683 "Explicit instantiation without point of instantiation?")((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7683, __PRETTY_FUNCTION__))
;
7684 return PrevDiagLoc;
7685}
7686
7687/// \brief Diagnose cases where we have an explicit template specialization
7688/// before/after an explicit template instantiation, producing diagnostics
7689/// for those cases where they are required and determining whether the
7690/// new specialization/instantiation will have any effect.
7691///
7692/// \param NewLoc the location of the new explicit specialization or
7693/// instantiation.
7694///
7695/// \param NewTSK the kind of the new explicit specialization or instantiation.
7696///
7697/// \param PrevDecl the previous declaration of the entity.
7698///
7699/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
7700///
7701/// \param PrevPointOfInstantiation if valid, indicates where the previus
7702/// declaration was instantiated (either implicitly or explicitly).
7703///
7704/// \param HasNoEffect will be set to true to indicate that the new
7705/// specialization or instantiation has no effect and should be ignored.
7706///
7707/// \returns true if there was an error that should prevent the introduction of
7708/// the new declaration into the AST, false otherwise.
7709bool
7710Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7711 TemplateSpecializationKind NewTSK,
7712 NamedDecl *PrevDecl,
7713 TemplateSpecializationKind PrevTSK,
7714 SourceLocation PrevPointOfInstantiation,
7715 bool &HasNoEffect) {
7716 HasNoEffect = false;
7717
7718 switch (NewTSK) {
7719 case TSK_Undeclared:
7720 case TSK_ImplicitInstantiation:
7721 assert((((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7723, __PRETTY_FUNCTION__))
7722 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7723, __PRETTY_FUNCTION__))
7723 "previous declaration must be implicit!")(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7723, __PRETTY_FUNCTION__))
;
7724 return false;
7725
7726 case TSK_ExplicitSpecialization:
7727 switch (PrevTSK) {
7728 case TSK_Undeclared:
7729 case TSK_ExplicitSpecialization:
7730 // Okay, we're just specializing something that is either already
7731 // explicitly specialized or has merely been mentioned without any
7732 // instantiation.
7733 return false;
7734
7735 case TSK_ImplicitInstantiation:
7736 if (PrevPointOfInstantiation.isInvalid()) {
7737 // The declaration itself has not actually been instantiated, so it is
7738 // still okay to specialize it.
7739 StripImplicitInstantiation(PrevDecl);
7740 return false;
7741 }
7742 // Fall through
7743 LLVM_FALLTHROUGH[[clang::fallthrough]];
7744
7745 case TSK_ExplicitInstantiationDeclaration:
7746 case TSK_ExplicitInstantiationDefinition:
7747 assert((PrevTSK == TSK_ImplicitInstantiation ||(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7749, __PRETTY_FUNCTION__))
7748 PrevPointOfInstantiation.isValid()) &&(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7749, __PRETTY_FUNCTION__))
7749 "Explicit instantiation without point of instantiation?")(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7749, __PRETTY_FUNCTION__))
;
7750
7751 // C++ [temp.expl.spec]p6:
7752 // If a template, a member template or the member of a class template
7753 // is explicitly specialized then that specialization shall be declared
7754 // before the first use of that specialization that would cause an
7755 // implicit instantiation to take place, in every translation unit in
7756 // which such a use occurs; no diagnostic is required.
7757 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7758 // Is there any previous explicit specialization declaration?
7759 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
7760 return false;
7761 }
7762
7763 Diag(NewLoc, diag::err_specialization_after_instantiation)
7764 << PrevDecl;
7765 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
7766 << (PrevTSK != TSK_ImplicitInstantiation);
7767
7768 return true;
7769 }
7770 llvm_unreachable("The switch over PrevTSK must be exhaustive.")::llvm::llvm_unreachable_internal("The switch over PrevTSK must be exhaustive."
, "/build/llvm-toolchain-snapshot-6.0~svn315928/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7770)
;
7771
7772 case TSK_ExplicitInstantiationDeclaration:
7773 switch (PrevTSK) {
7774 case TSK_ExplicitInstantiationDeclaration:
7775 // This explicit instantiation declaration is redundant (that's okay).
7776 HasNoEffect = true;
7777 return false;
7778
7779 case TSK_Undeclared:
7780 case TSK_ImplicitInstantiation:
7781 // We're explicitly instantiating something that may have already been
7782 // implicitly instantiated; that's fine.
7783 return false;
7784
7785 case TSK_ExplicitSpecialization:
7786 // C++0x [temp.explicit]p4:
7787 // For a given set of template parameters, if an explicit instantiation
7788 // of a template appears after a declaration of an explicit
7789