Bug Summary

File:tools/clang/lib/Sema/SemaTemplate.cpp
Warning:line 6695, column 9
Called C++ object pointer is null

Annotated Source Code

1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===//
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclFriend.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/TypeVisitor.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/ParsedTemplate.h"
28#include "clang/Sema/Scope.h"
29#include "clang/Sema/SemaInternal.h"
30#include "clang/Sema/Template.h"
31#include "clang/Sema/TemplateDeduction.h"
32#include "llvm/ADT/SmallBitVector.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35
36#include <iterator>
37using namespace clang;
38using namespace sema;
39
40// Exported for use by Parser.
41SourceRange
42clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
43 unsigned N) {
44 if (!N) return SourceRange();
45 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
46}
47
48namespace clang {
49/// \brief [temp.constr.decl]p2: A template's associated constraints are
50/// defined as a single constraint-expression derived from the introduced
51/// constraint-expressions [ ... ].
52///
53/// \param Params The template parameter list and optional requires-clause.
54///
55/// \param FD The underlying templated function declaration for a function
56/// template.
57static Expr *formAssociatedConstraints(TemplateParameterList *Params,
58 FunctionDecl *FD);
59}
60
61static Expr *clang::formAssociatedConstraints(TemplateParameterList *Params,
62 FunctionDecl *FD) {
63 // FIXME: Concepts: collect additional introduced constraint-expressions
64 assert(!FD && "Cannot collect constraints from function declaration yet.")((!FD && "Cannot collect constraints from function declaration yet."
) ? static_cast<void> (0) : __assert_fail ("!FD && \"Cannot collect constraints from function declaration yet.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 64, __PRETTY_FUNCTION__))
;
65 return Params->getRequiresClause();
66}
67
68/// \brief Determine whether the declaration found is acceptable as the name
69/// of a template and, if so, return that template declaration. Otherwise,
70/// returns NULL.
71static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
72 NamedDecl *Orig,
73 bool AllowFunctionTemplates) {
74 NamedDecl *D = Orig->getUnderlyingDecl();
75
76 if (isa<TemplateDecl>(D)) {
77 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
78 return nullptr;
79
80 return Orig;
81 }
82
83 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
84 // C++ [temp.local]p1:
85 // Like normal (non-template) classes, class templates have an
86 // injected-class-name (Clause 9). The injected-class-name
87 // can be used with or without a template-argument-list. When
88 // it is used without a template-argument-list, it is
89 // equivalent to the injected-class-name followed by the
90 // template-parameters of the class template enclosed in
91 // <>. When it is used with a template-argument-list, it
92 // refers to the specified class template specialization,
93 // which could be the current specialization or another
94 // specialization.
95 if (Record->isInjectedClassName()) {
96 Record = cast<CXXRecordDecl>(Record->getDeclContext());
97 if (Record->getDescribedClassTemplate())
98 return Record->getDescribedClassTemplate();
99
100 if (ClassTemplateSpecializationDecl *Spec
101 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
102 return Spec->getSpecializedTemplate();
103 }
104
105 return nullptr;
106 }
107
108 return nullptr;
109}
110
111void Sema::FilterAcceptableTemplateNames(LookupResult &R,
112 bool AllowFunctionTemplates) {
113 // The set of class templates we've already seen.
114 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
115 LookupResult::Filter filter = R.makeFilter();
116 while (filter.hasNext()) {
117 NamedDecl *Orig = filter.next();
118 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
119 AllowFunctionTemplates);
120 if (!Repl)
121 filter.erase();
122 else if (Repl != Orig) {
123
124 // C++ [temp.local]p3:
125 // A lookup that finds an injected-class-name (10.2) can result in an
126 // ambiguity in certain cases (for example, if it is found in more than
127 // one base class). If all of the injected-class-names that are found
128 // refer to specializations of the same class template, and if the name
129 // is used as a template-name, the reference refers to the class
130 // template itself and not a specialization thereof, and is not
131 // ambiguous.
132 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
133 if (!ClassTemplates.insert(ClassTmpl).second) {
134 filter.erase();
135 continue;
136 }
137
138 // FIXME: we promote access to public here as a workaround to
139 // the fact that LookupResult doesn't let us remember that we
140 // found this template through a particular injected class name,
141 // which means we end up doing nasty things to the invariants.
142 // Pretending that access is public is *much* safer.
143 filter.replace(Repl, AS_public);
144 }
145 }
146 filter.done();
147}
148
149bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
150 bool AllowFunctionTemplates) {
151 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
152 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
153 return true;
154
155 return false;
156}
157
158TemplateNameKind Sema::isTemplateName(Scope *S,
159 CXXScopeSpec &SS,
160 bool hasTemplateKeyword,
161 UnqualifiedId &Name,
162 ParsedType ObjectTypePtr,
163 bool EnteringContext,
164 TemplateTy &TemplateResult,
165 bool &MemberOfUnknownSpecialization) {
166 assert(getLangOpts().CPlusPlus && "No template names in C!")((getLangOpts().CPlusPlus && "No template names in C!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No template names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 166, __PRETTY_FUNCTION__))
;
167
168 DeclarationName TName;
169 MemberOfUnknownSpecialization = false;
170
171 switch (Name.getKind()) {
172 case UnqualifiedId::IK_Identifier:
173 TName = DeclarationName(Name.Identifier);
174 break;
175
176 case UnqualifiedId::IK_OperatorFunctionId:
177 TName = Context.DeclarationNames.getCXXOperatorName(
178 Name.OperatorFunctionId.Operator);
179 break;
180
181 case UnqualifiedId::IK_LiteralOperatorId:
182 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
183 break;
184
185 default:
186 return TNK_Non_template;
187 }
188
189 QualType ObjectType = ObjectTypePtr.get();
190
191 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
192 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
193 MemberOfUnknownSpecialization);
194 if (R.empty()) return TNK_Non_template;
195 if (R.isAmbiguous()) {
196 // Suppress diagnostics; we'll redo this lookup later.
197 R.suppressDiagnostics();
198
199 // FIXME: we might have ambiguous templates, in which case we
200 // should at least parse them properly!
201 return TNK_Non_template;
202 }
203
204 TemplateName Template;
205 TemplateNameKind TemplateKind;
206
207 unsigned ResultCount = R.end() - R.begin();
208 if (ResultCount > 1) {
209 // We assume that we'll preserve the qualifier from a function
210 // template name in other ways.
211 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
212 TemplateKind = TNK_Function_template;
213
214 // We'll do this lookup again later.
215 R.suppressDiagnostics();
216 } else {
217 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
218
219 if (SS.isSet() && !SS.isInvalid()) {
220 NestedNameSpecifier *Qualifier = SS.getScopeRep();
221 Template = Context.getQualifiedTemplateName(Qualifier,
222 hasTemplateKeyword, TD);
223 } else {
224 Template = TemplateName(TD);
225 }
226
227 if (isa<FunctionTemplateDecl>(TD)) {
228 TemplateKind = TNK_Function_template;
229
230 // We'll do this lookup again later.
231 R.suppressDiagnostics();
232 } else {
233 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __PRETTY_FUNCTION__))
234 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __PRETTY_FUNCTION__))
235 isa<BuiltinTemplateDecl>(TD))((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __PRETTY_FUNCTION__))
;
236 TemplateKind =
237 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
238 }
239 }
240
241 TemplateResult = TemplateTy::make(Template);
242 return TemplateKind;
243}
244
245bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
246 SourceLocation NameLoc,
247 ParsedTemplateTy *Template) {
248 CXXScopeSpec SS;
249 bool MemberOfUnknownSpecialization = false;
250
251 // We could use redeclaration lookup here, but we don't need to: the
252 // syntactic form of a deduction guide is enough to identify it even
253 // if we can't look up the template name at all.
254 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
255 LookupTemplateName(R, S, SS, /*ObjectType*/QualType(),
256 /*EnteringContext*/false, MemberOfUnknownSpecialization);
257
258 if (R.empty()) return false;
259 if (R.isAmbiguous()) {
260 // FIXME: Diagnose an ambiguity if we find at least one template.
261 R.suppressDiagnostics();
262 return false;
263 }
264
265 // We only treat template-names that name type templates as valid deduction
266 // guide names.
267 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
268 if (!TD || !getAsTypeTemplateDecl(TD))
269 return false;
270
271 if (Template)
272 *Template = TemplateTy::make(TemplateName(TD));
273 return true;
274}
275
276bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
277 SourceLocation IILoc,
278 Scope *S,
279 const CXXScopeSpec *SS,
280 TemplateTy &SuggestedTemplate,
281 TemplateNameKind &SuggestedKind) {
282 // We can't recover unless there's a dependent scope specifier preceding the
283 // template name.
284 // FIXME: Typo correction?
285 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
286 computeDeclContext(*SS))
287 return false;
288
289 // The code is missing a 'template' keyword prior to the dependent template
290 // name.
291 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
292 Diag(IILoc, diag::err_template_kw_missing)
293 << Qualifier << II.getName()
294 << FixItHint::CreateInsertion(IILoc, "template ");
295 SuggestedTemplate
296 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
297 SuggestedKind = TNK_Dependent_template_name;
298 return true;
299}
300
301void Sema::LookupTemplateName(LookupResult &Found,
302 Scope *S, CXXScopeSpec &SS,
303 QualType ObjectType,
304 bool EnteringContext,
305 bool &MemberOfUnknownSpecialization) {
306 // Determine where to perform name lookup
307 MemberOfUnknownSpecialization = false;
308 DeclContext *LookupCtx = nullptr;
309 bool isDependent = false;
310 if (!ObjectType.isNull()) {
311 // This nested-name-specifier occurs in a member access expression, e.g.,
312 // x->B::f, and we are looking into the type of the object.
313 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist")((!SS.isSet() && "ObjectType and scope specifier cannot coexist"
) ? static_cast<void> (0) : __assert_fail ("!SS.isSet() && \"ObjectType and scope specifier cannot coexist\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 313, __PRETTY_FUNCTION__))
;
314 LookupCtx = computeDeclContext(ObjectType);
315 isDependent = ObjectType->isDependentType();
316 assert((isDependent || !ObjectType->isIncompleteType() ||(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __PRETTY_FUNCTION__))
317 ObjectType->castAs<TagType>()->isBeingDefined()) &&(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __PRETTY_FUNCTION__))
318 "Caller should have completed object type")(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __PRETTY_FUNCTION__))
;
319
320 // Template names cannot appear inside an Objective-C class or object type.
321 if (ObjectType->isObjCObjectOrInterfaceType()) {
322 Found.clear();
323 return;
324 }
325 } else if (SS.isSet()) {
326 // This nested-name-specifier occurs after another nested-name-specifier,
327 // so long into the context associated with the prior nested-name-specifier.
328 LookupCtx = computeDeclContext(SS, EnteringContext);
329 isDependent = isDependentScopeSpecifier(SS);
330
331 // The declaration context must be complete.
332 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
333 return;
334 }
335
336 bool ObjectTypeSearchedInScope = false;
337 bool AllowFunctionTemplatesInLookup = true;
338 if (LookupCtx) {
339 // Perform "qualified" name lookup into the declaration context we
340 // computed, which is either the type of the base of a member access
341 // expression or the declaration context associated with a prior
342 // nested-name-specifier.
343 LookupQualifiedName(Found, LookupCtx);
344 if (!ObjectType.isNull() && Found.empty()) {
345 // C++ [basic.lookup.classref]p1:
346 // In a class member access expression (5.2.5), if the . or -> token is
347 // immediately followed by an identifier followed by a <, the
348 // identifier must be looked up to determine whether the < is the
349 // beginning of a template argument list (14.2) or a less-than operator.
350 // The identifier is first looked up in the class of the object
351 // expression. If the identifier is not found, it is then looked up in
352 // the context of the entire postfix-expression and shall name a class
353 // or function template.
354 if (S) LookupName(Found, S);
355 ObjectTypeSearchedInScope = true;
356 AllowFunctionTemplatesInLookup = false;
357 }
358 } else if (isDependent && (!S || ObjectType.isNull())) {
359 // We cannot look into a dependent object type or nested nme
360 // specifier.
361 MemberOfUnknownSpecialization = true;
362 return;
363 } else {
364 // Perform unqualified name lookup in the current scope.
365 LookupName(Found, S);
366
367 if (!ObjectType.isNull())
368 AllowFunctionTemplatesInLookup = false;
369 }
370
371 if (Found.empty() && !isDependent) {
372 // If we did not find any names, attempt to correct any typos.
373 DeclarationName Name = Found.getLookupName();
374 Found.clear();
375 // Simple filter callback that, for keywords, only accepts the C++ *_cast
376 auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
377 FilterCCC->WantTypeSpecifiers = false;
378 FilterCCC->WantExpressionKeywords = false;
379 FilterCCC->WantRemainingKeywords = false;
380 FilterCCC->WantCXXNamedCasts = true;
381 if (TypoCorrection Corrected = CorrectTypo(
382 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
383 std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
384 Found.setLookupName(Corrected.getCorrection());
385 if (auto *ND = Corrected.getFoundDecl())
386 Found.addDecl(ND);
387 FilterAcceptableTemplateNames(Found);
388 if (!Found.empty()) {
389 if (LookupCtx) {
390 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
391 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
392 Name.getAsString() == CorrectedStr;
393 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
394 << Name << LookupCtx << DroppedSpecifier
395 << SS.getRange());
396 } else {
397 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
398 }
399 }
400 } else {
401 Found.setLookupName(Name);
402 }
403 }
404
405 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
406 if (Found.empty()) {
407 if (isDependent)
408 MemberOfUnknownSpecialization = true;
409 return;
410 }
411
412 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
413 !getLangOpts().CPlusPlus11) {
414 // C++03 [basic.lookup.classref]p1:
415 // [...] If the lookup in the class of the object expression finds a
416 // template, the name is also looked up in the context of the entire
417 // postfix-expression and [...]
418 //
419 // Note: C++11 does not perform this second lookup.
420 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
421 LookupOrdinaryName);
422 LookupName(FoundOuter, S);
423 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
424
425 if (FoundOuter.empty()) {
426 // - if the name is not found, the name found in the class of the
427 // object expression is used, otherwise
428 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
429 FoundOuter.isAmbiguous()) {
430 // - if the name is found in the context of the entire
431 // postfix-expression and does not name a class template, the name
432 // found in the class of the object expression is used, otherwise
433 FoundOuter.clear();
434 } else if (!Found.isSuppressingDiagnostics()) {
435 // - if the name found is a class template, it must refer to the same
436 // entity as the one found in the class of the object expression,
437 // otherwise the program is ill-formed.
438 if (!Found.isSingleResult() ||
439 Found.getFoundDecl()->getCanonicalDecl()
440 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
441 Diag(Found.getNameLoc(),
442 diag::ext_nested_name_member_ref_lookup_ambiguous)
443 << Found.getLookupName()
444 << ObjectType;
445 Diag(Found.getRepresentativeDecl()->getLocation(),
446 diag::note_ambig_member_ref_object_type)
447 << ObjectType;
448 Diag(FoundOuter.getFoundDecl()->getLocation(),
449 diag::note_ambig_member_ref_scope);
450
451 // Recover by taking the template that we found in the object
452 // expression's type.
453 }
454 }
455 }
456}
457
458/// ActOnDependentIdExpression - Handle a dependent id-expression that
459/// was just parsed. This is only possible with an explicit scope
460/// specifier naming a dependent type.
461ExprResult
462Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
463 SourceLocation TemplateKWLoc,
464 const DeclarationNameInfo &NameInfo,
465 bool isAddressOfOperand,
466 const TemplateArgumentListInfo *TemplateArgs) {
467 DeclContext *DC = getFunctionLevelDeclContext();
468
469 // C++11 [expr.prim.general]p12:
470 // An id-expression that denotes a non-static data member or non-static
471 // member function of a class can only be used:
472 // (...)
473 // - if that id-expression denotes a non-static data member and it
474 // appears in an unevaluated operand.
475 //
476 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
477 // CXXDependentScopeMemberExpr. The former can instantiate to either
478 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
479 // always a MemberExpr.
480 bool MightBeCxx11UnevalField =
481 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
482
483 // Check if the nested name specifier is an enum type.
484 bool IsEnum = false;
485 if (NestedNameSpecifier *NNS = SS.getScopeRep())
486 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
487
488 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
489 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
490 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
491
492 // Since the 'this' expression is synthesized, we don't need to
493 // perform the double-lookup check.
494 NamedDecl *FirstQualifierInScope = nullptr;
495
496 return CXXDependentScopeMemberExpr::Create(
497 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
498 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
499 FirstQualifierInScope, NameInfo, TemplateArgs);
500 }
501
502 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
503}
504
505ExprResult
506Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
507 SourceLocation TemplateKWLoc,
508 const DeclarationNameInfo &NameInfo,
509 const TemplateArgumentListInfo *TemplateArgs) {
510 return DependentScopeDeclRefExpr::Create(
511 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
512 TemplateArgs);
513}
514
515
516/// Determine whether we would be unable to instantiate this template (because
517/// it either has no definition, or is in the process of being instantiated).
518bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
519 NamedDecl *Instantiation,
520 bool InstantiatedFromMember,
521 const NamedDecl *Pattern,
522 const NamedDecl *PatternDef,
523 TemplateSpecializationKind TSK,
524 bool Complain /*= true*/) {
525 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 526, __PRETTY_FUNCTION__))
526 isa<VarDecl>(Instantiation))((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 526, __PRETTY_FUNCTION__))
;
527
528 bool IsEntityBeingDefined = false;
529 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
530 IsEntityBeingDefined = TD->isBeingDefined();
531
532 if (PatternDef && !IsEntityBeingDefined) {
533 NamedDecl *SuggestedDef = nullptr;
534 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
535 /*OnlyNeedComplete*/false)) {
536 // If we're allowed to diagnose this and recover, do so.
537 bool Recover = Complain && !isSFINAEContext();
538 if (Complain)
539 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
540 Sema::MissingImportKind::Definition, Recover);
541 return !Recover;
542 }
543 return false;
544 }
545
546 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
547 return true;
548
549 llvm::Optional<unsigned> Note;
550 QualType InstantiationTy;
551 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
552 InstantiationTy = Context.getTypeDeclType(TD);
553 if (PatternDef) {
554 Diag(PointOfInstantiation,
555 diag::err_template_instantiate_within_definition)
556 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
557 << InstantiationTy;
558 // Not much point in noting the template declaration here, since
559 // we're lexically inside it.
560 Instantiation->setInvalidDecl();
561 } else if (InstantiatedFromMember) {
562 if (isa<FunctionDecl>(Instantiation)) {
563 Diag(PointOfInstantiation,
564 diag::err_explicit_instantiation_undefined_member)
565 << /*member function*/ 1 << Instantiation->getDeclName()
566 << Instantiation->getDeclContext();
567 Note = diag::note_explicit_instantiation_here;
568 } else {
569 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!")((isa<TagDecl>(Instantiation) && "Must be a TagDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) && \"Must be a TagDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 569, __PRETTY_FUNCTION__))
;
570 Diag(PointOfInstantiation,
571 diag::err_implicit_instantiate_member_undefined)
572 << InstantiationTy;
573 Note = diag::note_member_declared_at;
574 }
575 } else {
576 if (isa<FunctionDecl>(Instantiation)) {
577 Diag(PointOfInstantiation,
578 diag::err_explicit_instantiation_undefined_func_template)
579 << Pattern;
580 Note = diag::note_explicit_instantiation_here;
581 } else if (isa<TagDecl>(Instantiation)) {
582 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
583 << (TSK != TSK_ImplicitInstantiation)
584 << InstantiationTy;
585 Note = diag::note_template_decl_here;
586 } else {
587 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!")((isa<VarDecl>(Instantiation) && "Must be a VarDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<VarDecl>(Instantiation) && \"Must be a VarDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 587, __PRETTY_FUNCTION__))
;
588 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
589 Diag(PointOfInstantiation,
590 diag::err_explicit_instantiation_undefined_var_template)
591 << Instantiation;
592 Instantiation->setInvalidDecl();
593 } else
594 Diag(PointOfInstantiation,
595 diag::err_explicit_instantiation_undefined_member)
596 << /*static data member*/ 2 << Instantiation->getDeclName()
597 << Instantiation->getDeclContext();
598 Note = diag::note_explicit_instantiation_here;
599 }
600 }
601 if (Note) // Diagnostics were emitted.
602 Diag(Pattern->getLocation(), Note.getValue());
603
604 // In general, Instantiation isn't marked invalid to get more than one
605 // error for multiple undefined instantiations. But the code that does
606 // explicit declaration -> explicit definition conversion can't handle
607 // invalid declarations, so mark as invalid in that case.
608 if (TSK == TSK_ExplicitInstantiationDeclaration)
609 Instantiation->setInvalidDecl();
610 return true;
611}
612
613/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
614/// that the template parameter 'PrevDecl' is being shadowed by a new
615/// declaration at location Loc. Returns true to indicate that this is
616/// an error, and false otherwise.
617void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
618 assert(PrevDecl->isTemplateParameter() && "Not a template parameter")((PrevDecl->isTemplateParameter() && "Not a template parameter"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->isTemplateParameter() && \"Not a template parameter\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 618, __PRETTY_FUNCTION__))
;
619
620 // Microsoft Visual C++ permits template parameters to be shadowed.
621 if (getLangOpts().MicrosoftExt)
622 return;
623
624 // C++ [temp.local]p4:
625 // A template-parameter shall not be redeclared within its
626 // scope (including nested scopes).
627 Diag(Loc, diag::err_template_param_shadow)
628 << cast<NamedDecl>(PrevDecl)->getDeclName();
629 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
630}
631
632/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
633/// the parameter D to reference the templated declaration and return a pointer
634/// to the template declaration. Otherwise, do nothing to D and return null.
635TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
636 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
637 D = Temp->getTemplatedDecl();
638 return Temp;
639 }
640 return nullptr;
641}
642
643ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
644 SourceLocation EllipsisLoc) const {
645 assert(Kind == Template &&((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 646, __PRETTY_FUNCTION__))
646 "Only template template arguments can be pack expansions here")((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 646, __PRETTY_FUNCTION__))
;
647 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 648, __PRETTY_FUNCTION__))
648 "Template template argument pack expansion without packs")((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 648, __PRETTY_FUNCTION__))
;
649 ParsedTemplateArgument Result(*this);
650 Result.EllipsisLoc = EllipsisLoc;
651 return Result;
652}
653
654static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
655 const ParsedTemplateArgument &Arg) {
656
657 switch (Arg.getKind()) {
658 case ParsedTemplateArgument::Type: {
659 TypeSourceInfo *DI;
660 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
661 if (!DI)
662 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
663 return TemplateArgumentLoc(TemplateArgument(T), DI);
664 }
665
666 case ParsedTemplateArgument::NonType: {
667 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
668 return TemplateArgumentLoc(TemplateArgument(E), E);
669 }
670
671 case ParsedTemplateArgument::Template: {
672 TemplateName Template = Arg.getAsTemplate().get();
673 TemplateArgument TArg;
674 if (Arg.getEllipsisLoc().isValid())
675 TArg = TemplateArgument(Template, Optional<unsigned int>());
676 else
677 TArg = Template;
678 return TemplateArgumentLoc(TArg,
679 Arg.getScopeSpec().getWithLocInContext(
680 SemaRef.Context),
681 Arg.getLocation(),
682 Arg.getEllipsisLoc());
683 }
684 }
685
686 llvm_unreachable("Unhandled parsed template argument")::llvm::llvm_unreachable_internal("Unhandled parsed template argument"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 686)
;
687}
688
689/// \brief Translates template arguments as provided by the parser
690/// into template arguments used by semantic analysis.
691void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
692 TemplateArgumentListInfo &TemplateArgs) {
693 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
694 TemplateArgs.addArgument(translateTemplateArgument(*this,
695 TemplateArgsIn[I]));
696}
697
698static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
699 SourceLocation Loc,
700 IdentifierInfo *Name) {
701 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
702 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
703 if (PrevDecl && PrevDecl->isTemplateParameter())
704 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
705}
706
707/// ActOnTypeParameter - Called when a C++ template type parameter
708/// (e.g., "typename T") has been parsed. Typename specifies whether
709/// the keyword "typename" was used to declare the type parameter
710/// (otherwise, "class" was used), and KeyLoc is the location of the
711/// "class" or "typename" keyword. ParamName is the name of the
712/// parameter (NULL indicates an unnamed template parameter) and
713/// ParamNameLoc is the location of the parameter name (if any).
714/// If the type parameter has a default argument, it will be added
715/// later via ActOnTypeParameterDefault.
716Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
717 SourceLocation EllipsisLoc,
718 SourceLocation KeyLoc,
719 IdentifierInfo *ParamName,
720 SourceLocation ParamNameLoc,
721 unsigned Depth, unsigned Position,
722 SourceLocation EqualLoc,
723 ParsedType DefaultArg) {
724 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 725, __PRETTY_FUNCTION__))
725 "Template type parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 725, __PRETTY_FUNCTION__))
;
726
727 SourceLocation Loc = ParamNameLoc;
728 if (!ParamName)
729 Loc = KeyLoc;
730
731 bool IsParameterPack = EllipsisLoc.isValid();
732 TemplateTypeParmDecl *Param
733 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
734 KeyLoc, Loc, Depth, Position, ParamName,
735 Typename, IsParameterPack);
736 Param->setAccess(AS_public);
737
738 if (ParamName) {
739 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
740
741 // Add the template parameter into the current scope.
742 S->AddDecl(Param);
743 IdResolver.AddDecl(Param);
744 }
745
746 // C++0x [temp.param]p9:
747 // A default template-argument may be specified for any kind of
748 // template-parameter that is not a template parameter pack.
749 if (DefaultArg && IsParameterPack) {
750 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
751 DefaultArg = nullptr;
752 }
753
754 // Handle the default argument, if provided.
755 if (DefaultArg) {
756 TypeSourceInfo *DefaultTInfo;
757 GetTypeFromParser(DefaultArg, &DefaultTInfo);
758
759 assert(DefaultTInfo && "expected source information for type")((DefaultTInfo && "expected source information for type"
) ? static_cast<void> (0) : __assert_fail ("DefaultTInfo && \"expected source information for type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 759, __PRETTY_FUNCTION__))
;
760
761 // Check for unexpanded parameter packs.
762 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
763 UPPC_DefaultArgument))
764 return Param;
765
766 // Check the template argument itself.
767 if (CheckTemplateArgument(Param, DefaultTInfo)) {
768 Param->setInvalidDecl();
769 return Param;
770 }
771
772 Param->setDefaultArgument(DefaultTInfo);
773 }
774
775 return Param;
776}
777
778/// \brief Check that the type of a non-type template parameter is
779/// well-formed.
780///
781/// \returns the (possibly-promoted) parameter type if valid;
782/// otherwise, produces a diagnostic and returns a NULL type.
783QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
784 SourceLocation Loc) {
785 if (TSI->getType()->isUndeducedType()) {
786 // C++1z [temp.dep.expr]p3:
787 // An id-expression is type-dependent if it contains
788 // - an identifier associated by name lookup with a non-type
789 // template-parameter declared with a type that contains a
790 // placeholder type (7.1.7.4),
791 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
792 }
793
794 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
795}
796
797QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
798 SourceLocation Loc) {
799 // We don't allow variably-modified types as the type of non-type template
800 // parameters.
801 if (T->isVariablyModifiedType()) {
802 Diag(Loc, diag::err_variably_modified_nontype_template_param)
803 << T;
804 return QualType();
805 }
806
807 // C++ [temp.param]p4:
808 //
809 // A non-type template-parameter shall have one of the following
810 // (optionally cv-qualified) types:
811 //
812 // -- integral or enumeration type,
813 if (T->isIntegralOrEnumerationType() ||
814 // -- pointer to object or pointer to function,
815 T->isPointerType() ||
816 // -- reference to object or reference to function,
817 T->isReferenceType() ||
818 // -- pointer to member,
819 T->isMemberPointerType() ||
820 // -- std::nullptr_t.
821 T->isNullPtrType() ||
822 // If T is a dependent type, we can't do the check now, so we
823 // assume that it is well-formed.
824 T->isDependentType() ||
825 // Allow use of auto in template parameter declarations.
826 T->isUndeducedType()) {
827 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
828 // are ignored when determining its type.
829 return T.getUnqualifiedType();
830 }
831
832 // C++ [temp.param]p8:
833 //
834 // A non-type template-parameter of type "array of T" or
835 // "function returning T" is adjusted to be of type "pointer to
836 // T" or "pointer to function returning T", respectively.
837 else if (T->isArrayType() || T->isFunctionType())
838 return Context.getDecayedType(T);
839
840 Diag(Loc, diag::err_template_nontype_parm_bad_type)
841 << T;
842
843 return QualType();
844}
845
846Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
847 unsigned Depth,
848 unsigned Position,
849 SourceLocation EqualLoc,
850 Expr *Default) {
851 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
852
853 if (TInfo->getType()->isUndeducedType()) {
854 Diag(D.getIdentifierLoc(),
855 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
856 << QualType(TInfo->getType()->getContainedAutoType(), 0);
857 }
858
859 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 860, __PRETTY_FUNCTION__))
860 "Non-type template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 860, __PRETTY_FUNCTION__))
;
861 bool Invalid = false;
862
863 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
864 if (T.isNull()) {
865 T = Context.IntTy; // Recover with an 'int' type.
866 Invalid = true;
867 }
868
869 IdentifierInfo *ParamName = D.getIdentifier();
870 bool IsParameterPack = D.hasEllipsis();
871 NonTypeTemplateParmDecl *Param
872 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
873 D.getLocStart(),
874 D.getIdentifierLoc(),
875 Depth, Position, ParamName, T,
876 IsParameterPack, TInfo);
877 Param->setAccess(AS_public);
878
879 if (Invalid)
880 Param->setInvalidDecl();
881
882 if (ParamName) {
883 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
884 ParamName);
885
886 // Add the template parameter into the current scope.
887 S->AddDecl(Param);
888 IdResolver.AddDecl(Param);
889 }
890
891 // C++0x [temp.param]p9:
892 // A default template-argument may be specified for any kind of
893 // template-parameter that is not a template parameter pack.
894 if (Default && IsParameterPack) {
895 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
896 Default = nullptr;
897 }
898
899 // Check the well-formedness of the default template argument, if provided.
900 if (Default) {
901 // Check for unexpanded parameter packs.
902 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
903 return Param;
904
905 TemplateArgument Converted;
906 ExprResult DefaultRes =
907 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
908 if (DefaultRes.isInvalid()) {
909 Param->setInvalidDecl();
910 return Param;
911 }
912 Default = DefaultRes.get();
913
914 Param->setDefaultArgument(Default);
915 }
916
917 return Param;
918}
919
920/// ActOnTemplateTemplateParameter - Called when a C++ template template
921/// parameter (e.g. T in template <template \<typename> class T> class array)
922/// has been parsed. S is the current scope.
923Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
924 SourceLocation TmpLoc,
925 TemplateParameterList *Params,
926 SourceLocation EllipsisLoc,
927 IdentifierInfo *Name,
928 SourceLocation NameLoc,
929 unsigned Depth,
930 unsigned Position,
931 SourceLocation EqualLoc,
932 ParsedTemplateArgument Default) {
933 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 934, __PRETTY_FUNCTION__))
934 "Template template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 934, __PRETTY_FUNCTION__))
;
935
936 // Construct the parameter object.
937 bool IsParameterPack = EllipsisLoc.isValid();
938 TemplateTemplateParmDecl *Param =
939 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
940 NameLoc.isInvalid()? TmpLoc : NameLoc,
941 Depth, Position, IsParameterPack,
942 Name, Params);
943 Param->setAccess(AS_public);
944
945 // If the template template parameter has a name, then link the identifier
946 // into the scope and lookup mechanisms.
947 if (Name) {
948 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
949
950 S->AddDecl(Param);
951 IdResolver.AddDecl(Param);
952 }
953
954 if (Params->size() == 0) {
955 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
956 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
957 Param->setInvalidDecl();
958 }
959
960 // C++0x [temp.param]p9:
961 // A default template-argument may be specified for any kind of
962 // template-parameter that is not a template parameter pack.
963 if (IsParameterPack && !Default.isInvalid()) {
964 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
965 Default = ParsedTemplateArgument();
966 }
967
968 if (!Default.isInvalid()) {
969 // Check only that we have a template template argument. We don't want to
970 // try to check well-formedness now, because our template template parameter
971 // might have dependent types in its template parameters, which we wouldn't
972 // be able to match now.
973 //
974 // If none of the template template parameter's template arguments mention
975 // other template parameters, we could actually perform more checking here.
976 // However, it isn't worth doing.
977 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
978 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
979 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
980 << DefaultArg.getSourceRange();
981 return Param;
982 }
983
984 // Check for unexpanded parameter packs.
985 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
986 DefaultArg.getArgument().getAsTemplate(),
987 UPPC_DefaultArgument))
988 return Param;
989
990 Param->setDefaultArgument(Context, DefaultArg);
991 }
992
993 return Param;
994}
995
996/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
997/// constrained by RequiresClause, that contains the template parameters in
998/// Params.
999TemplateParameterList *
1000Sema::ActOnTemplateParameterList(unsigned Depth,
1001 SourceLocation ExportLoc,
1002 SourceLocation TemplateLoc,
1003 SourceLocation LAngleLoc,
1004 ArrayRef<Decl *> Params,
1005 SourceLocation RAngleLoc,
1006 Expr *RequiresClause) {
1007 if (ExportLoc.isValid())
1008 Diag(ExportLoc, diag::warn_template_export_unsupported);
1009
1010 return TemplateParameterList::Create(
1011 Context, TemplateLoc, LAngleLoc,
1012 llvm::makeArrayRef((NamedDecl *const *)Params.data(), Params.size()),
1013 RAngleLoc, RequiresClause);
1014}
1015
1016static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
1017 if (SS.isSet())
1018 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
1019}
1020
1021DeclResult
1022Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
1023 SourceLocation KWLoc, CXXScopeSpec &SS,
1024 IdentifierInfo *Name, SourceLocation NameLoc,
1025 AttributeList *Attr,
1026 TemplateParameterList *TemplateParams,
1027 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1028 SourceLocation FriendLoc,
1029 unsigned NumOuterTemplateParamLists,
1030 TemplateParameterList** OuterTemplateParamLists,
1031 SkipBodyInfo *SkipBody) {
1032 assert(TemplateParams && TemplateParams->size() > 0 &&((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1033, __PRETTY_FUNCTION__))
1033 "No template parameters")((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1033, __PRETTY_FUNCTION__))
;
1034 assert(TUK != TUK_Reference && "Can only declare or define class templates")((TUK != TUK_Reference && "Can only declare or define class templates"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"Can only declare or define class templates\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1034, __PRETTY_FUNCTION__))
;
1035 bool Invalid = false;
1036
1037 // Check that we can declare a template here.
1038 if (CheckTemplateDeclScope(S, TemplateParams))
1
Calling 'Sema::CheckTemplateDeclScope'
1039 return true;
1040
1041 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1042 assert(Kind != TTK_Enum && "can't build template of enumerated type")((Kind != TTK_Enum && "can't build template of enumerated type"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"can't build template of enumerated type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1042, __PRETTY_FUNCTION__))
;
1043
1044 // There is no such thing as an unnamed class template.
1045 if (!Name) {
1046 Diag(KWLoc, diag::err_template_unnamed_class);
1047 return true;
1048 }
1049
1050 // Find any previous declaration with this name. For a friend with no
1051 // scope explicitly specified, we only look for tag declarations (per
1052 // C++11 [basic.lookup.elab]p2).
1053 DeclContext *SemanticContext;
1054 LookupResult Previous(*this, Name, NameLoc,
1055 (SS.isEmpty() && TUK == TUK_Friend)
1056 ? LookupTagName : LookupOrdinaryName,
1057 ForRedeclaration);
1058 if (SS.isNotEmpty() && !SS.isInvalid()) {
1059 SemanticContext = computeDeclContext(SS, true);
1060 if (!SemanticContext) {
1061 // FIXME: Horrible, horrible hack! We can't currently represent this
1062 // in the AST, and historically we have just ignored such friend
1063 // class templates, so don't complain here.
1064 Diag(NameLoc, TUK == TUK_Friend
1065 ? diag::warn_template_qualified_friend_ignored
1066 : diag::err_template_qualified_declarator_no_match)
1067 << SS.getScopeRep() << SS.getRange();
1068 return TUK != TUK_Friend;
1069 }
1070
1071 if (RequireCompleteDeclContext(SS, SemanticContext))
1072 return true;
1073
1074 // If we're adding a template to a dependent context, we may need to
1075 // rebuilding some of the types used within the template parameter list,
1076 // now that we know what the current instantiation is.
1077 if (SemanticContext->isDependentContext()) {
1078 ContextRAII SavedContext(*this, SemanticContext);
1079 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1080 Invalid = true;
1081 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1082 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
1083
1084 LookupQualifiedName(Previous, SemanticContext);
1085 } else {
1086 SemanticContext = CurContext;
1087
1088 // C++14 [class.mem]p14:
1089 // If T is the name of a class, then each of the following shall have a
1090 // name different from T:
1091 // -- every member template of class T
1092 if (TUK != TUK_Friend &&
1093 DiagnoseClassNameShadow(SemanticContext,
1094 DeclarationNameInfo(Name, NameLoc)))
1095 return true;
1096
1097 LookupName(Previous, S);
1098 }
1099
1100 if (Previous.isAmbiguous())
1101 return true;
1102
1103 NamedDecl *PrevDecl = nullptr;
1104 if (Previous.begin() != Previous.end())
1105 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1106
1107 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1108 // Maybe we will complain about the shadowed template parameter.
1109 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1110 // Just pretend that we didn't see the previous declaration.
1111 PrevDecl = nullptr;
1112 }
1113
1114 // If there is a previous declaration with the same name, check
1115 // whether this is a valid redeclaration.
1116 ClassTemplateDecl *PrevClassTemplate
1117 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1118
1119 // We may have found the injected-class-name of a class template,
1120 // class template partial specialization, or class template specialization.
1121 // In these cases, grab the template that is being defined or specialized.
1122 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1123 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1124 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1125 PrevClassTemplate
1126 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1127 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1128 PrevClassTemplate
1129 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1130 ->getSpecializedTemplate();
1131 }
1132 }
1133
1134 if (TUK == TUK_Friend) {
1135 // C++ [namespace.memdef]p3:
1136 // [...] When looking for a prior declaration of a class or a function
1137 // declared as a friend, and when the name of the friend class or
1138 // function is neither a qualified name nor a template-id, scopes outside
1139 // the innermost enclosing namespace scope are not considered.
1140 if (!SS.isSet()) {
1141 DeclContext *OutermostContext = CurContext;
1142 while (!OutermostContext->isFileContext())
1143 OutermostContext = OutermostContext->getLookupParent();
1144
1145 if (PrevDecl &&
1146 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1147 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1148 SemanticContext = PrevDecl->getDeclContext();
1149 } else {
1150 // Declarations in outer scopes don't matter. However, the outermost
1151 // context we computed is the semantic context for our new
1152 // declaration.
1153 PrevDecl = PrevClassTemplate = nullptr;
1154 SemanticContext = OutermostContext;
1155
1156 // Check that the chosen semantic context doesn't already contain a
1157 // declaration of this name as a non-tag type.
1158 Previous.clear(LookupOrdinaryName);
1159 DeclContext *LookupContext = SemanticContext;
1160 while (LookupContext->isTransparentContext())
1161 LookupContext = LookupContext->getLookupParent();
1162 LookupQualifiedName(Previous, LookupContext);
1163
1164 if (Previous.isAmbiguous())
1165 return true;
1166
1167 if (Previous.begin() != Previous.end())
1168 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1169 }
1170 }
1171 } else if (PrevDecl &&
1172 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1173 S, SS.isValid()))
1174 PrevDecl = PrevClassTemplate = nullptr;
1175
1176 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1177 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1178 if (SS.isEmpty() &&
1179 !(PrevClassTemplate &&
1180 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1181 SemanticContext->getRedeclContext()))) {
1182 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1183 Diag(Shadow->getTargetDecl()->getLocation(),
1184 diag::note_using_decl_target);
1185 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1186 // Recover by ignoring the old declaration.
1187 PrevDecl = PrevClassTemplate = nullptr;
1188 }
1189 }
1190
1191 // TODO Memory management; associated constraints are not always stored.
1192 Expr *const CurAC = formAssociatedConstraints(TemplateParams, nullptr);
1193
1194 if (PrevClassTemplate) {
1195 // Ensure that the template parameter lists are compatible. Skip this check
1196 // for a friend in a dependent context: the template parameter list itself
1197 // could be dependent.
1198 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1199 !TemplateParameterListsAreEqual(TemplateParams,
1200 PrevClassTemplate->getTemplateParameters(),
1201 /*Complain=*/true,
1202 TPL_TemplateMatch))
1203 return true;
1204
1205 // Check for matching associated constraints on redeclarations.
1206 const Expr *const PrevAC = PrevClassTemplate->getAssociatedConstraints();
1207 const bool RedeclACMismatch = [&] {
1208 if (!(CurAC || PrevAC))
1209 return false; // Nothing to check; no mismatch.
1210 if (CurAC && PrevAC) {
1211 llvm::FoldingSetNodeID CurACInfo, PrevACInfo;
1212 CurAC->Profile(CurACInfo, Context, /*Canonical=*/true);
1213 PrevAC->Profile(PrevACInfo, Context, /*Canonical=*/true);
1214 if (CurACInfo == PrevACInfo)
1215 return false; // All good; no mismatch.
1216 }
1217 return true;
1218 }();
1219
1220 if (RedeclACMismatch) {
1221 Diag(CurAC ? CurAC->getLocStart() : NameLoc,
1222 diag::err_template_different_associated_constraints);
1223 Diag(PrevAC ? PrevAC->getLocStart() : PrevClassTemplate->getLocation(),
1224 diag::note_template_prev_declaration) << /*declaration*/0;
1225 return true;
1226 }
1227
1228 // C++ [temp.class]p4:
1229 // In a redeclaration, partial specialization, explicit
1230 // specialization or explicit instantiation of a class template,
1231 // the class-key shall agree in kind with the original class
1232 // template declaration (7.1.5.3).
1233 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1234 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1235 TUK == TUK_Definition, KWLoc, Name)) {
1236 Diag(KWLoc, diag::err_use_with_wrong_tag)
1237 << Name
1238 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1239 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1240 Kind = PrevRecordDecl->getTagKind();
1241 }
1242
1243 // Check for redefinition of this class template.
1244 if (TUK == TUK_Definition) {
1245 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1246 // If we have a prior definition that is not visible, treat this as
1247 // simply making that previous definition visible.
1248 NamedDecl *Hidden = nullptr;
1249 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1250 SkipBody->ShouldSkip = true;
1251 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1252 assert(Tmpl && "original definition of a class template is not a "((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1253, __PRETTY_FUNCTION__))
1253 "class template?")((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1253, __PRETTY_FUNCTION__))
;
1254 makeMergedDefinitionVisible(Hidden, KWLoc);
1255 makeMergedDefinitionVisible(Tmpl, KWLoc);
1256 return Def;
1257 }
1258
1259 Diag(NameLoc, diag::err_redefinition) << Name;
1260 Diag(Def->getLocation(), diag::note_previous_definition);
1261 // FIXME: Would it make sense to try to "forget" the previous
1262 // definition, as part of error recovery?
1263 return true;
1264 }
1265 }
1266 } else if (PrevDecl) {
1267 // C++ [temp]p5:
1268 // A class template shall not have the same name as any other
1269 // template, class, function, object, enumeration, enumerator,
1270 // namespace, or type in the same scope (3.3), except as specified
1271 // in (14.5.4).
1272 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1273 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1274 return true;
1275 }
1276
1277 // Check the template parameter list of this declaration, possibly
1278 // merging in the template parameter list from the previous class
1279 // template declaration. Skip this check for a friend in a dependent
1280 // context, because the template parameter list might be dependent.
1281 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1282 CheckTemplateParameterList(
1283 TemplateParams,
1284 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1285 : nullptr,
1286 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1287 SemanticContext->isDependentContext())
1288 ? TPC_ClassTemplateMember
1289 : TUK == TUK_Friend ? TPC_FriendClassTemplate
1290 : TPC_ClassTemplate))
1291 Invalid = true;
1292
1293 if (SS.isSet()) {
1294 // If the name of the template was qualified, we must be defining the
1295 // template out-of-line.
1296 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1297 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1298 : diag::err_member_decl_does_not_match)
1299 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1300 Invalid = true;
1301 }
1302 }
1303
1304 // If this is a templated friend in a dependent context we should not put it
1305 // on the redecl chain. In some cases, the templated friend can be the most
1306 // recent declaration tricking the template instantiator to make substitutions
1307 // there.
1308 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1309 bool ShouldAddRedecl
1310 = !(TUK == TUK_Friend && CurContext->isDependentContext());
1311
1312 CXXRecordDecl *NewClass =
1313 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1314 PrevClassTemplate && ShouldAddRedecl ?
1315 PrevClassTemplate->getTemplatedDecl() : nullptr,
1316 /*DelayTypeCreation=*/true);
1317 SetNestedNameSpecifier(NewClass, SS);
1318 if (NumOuterTemplateParamLists > 0)
1319 NewClass->setTemplateParameterListsInfo(
1320 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1321 NumOuterTemplateParamLists));
1322
1323 // Add alignment attributes if necessary; these attributes are checked when
1324 // the ASTContext lays out the structure.
1325 if (TUK == TUK_Definition) {
1326 AddAlignmentAttributesForRecord(NewClass);
1327 AddMsStructLayoutForRecord(NewClass);
1328 }
1329
1330 // Attach the associated constraints when the declaration will not be part of
1331 // a decl chain.
1332 Expr *const ACtoAttach =
1333 PrevClassTemplate && ShouldAddRedecl ? nullptr : CurAC;
1334
1335 ClassTemplateDecl *NewTemplate
1336 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1337 DeclarationName(Name), TemplateParams,
1338 NewClass, ACtoAttach);
1339
1340 if (ShouldAddRedecl)
1341 NewTemplate->setPreviousDecl(PrevClassTemplate);
1342
1343 NewClass->setDescribedClassTemplate(NewTemplate);
1344
1345 if (ModulePrivateLoc.isValid())
1346 NewTemplate->setModulePrivate();
1347
1348 // Build the type for the class template declaration now.
1349 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1350 T = Context.getInjectedClassNameType(NewClass, T);
1351 assert(T->isDependentType() && "Class template type is not dependent?")((T->isDependentType() && "Class template type is not dependent?"
) ? static_cast<void> (0) : __assert_fail ("T->isDependentType() && \"Class template type is not dependent?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1351, __PRETTY_FUNCTION__))
;
1352 (void)T;
1353
1354 // If we are providing an explicit specialization of a member that is a
1355 // class template, make a note of that.
1356 if (PrevClassTemplate &&
1357 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1358 PrevClassTemplate->setMemberSpecialization();
1359
1360 // Set the access specifier.
1361 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1362 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1363
1364 // Set the lexical context of these templates
1365 NewClass->setLexicalDeclContext(CurContext);
1366 NewTemplate->setLexicalDeclContext(CurContext);
1367
1368 if (TUK == TUK_Definition)
1369 NewClass->startDefinition();
1370
1371 if (Attr)
1372 ProcessDeclAttributeList(S, NewClass, Attr);
1373
1374 if (PrevClassTemplate)
1375 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1376
1377 AddPushedVisibilityAttribute(NewClass);
1378
1379 if (TUK != TUK_Friend) {
1380 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1381 Scope *Outer = S;
1382 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1383 Outer = Outer->getParent();
1384 PushOnScopeChains(NewTemplate, Outer);
1385 } else {
1386 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1387 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1388 NewClass->setAccess(PrevClassTemplate->getAccess());
1389 }
1390
1391 NewTemplate->setObjectOfFriendDecl();
1392
1393 // Friend templates are visible in fairly strange ways.
1394 if (!CurContext->isDependentContext()) {
1395 DeclContext *DC = SemanticContext->getRedeclContext();
1396 DC->makeDeclVisibleInContext(NewTemplate);
1397 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1398 PushOnScopeChains(NewTemplate, EnclosingScope,
1399 /* AddToContext = */ false);
1400 }
1401
1402 FriendDecl *Friend = FriendDecl::Create(
1403 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1404 Friend->setAccess(AS_public);
1405 CurContext->addDecl(Friend);
1406 }
1407
1408 if (Invalid) {
1409 NewTemplate->setInvalidDecl();
1410 NewClass->setInvalidDecl();
1411 }
1412
1413 ActOnDocumentableDecl(NewTemplate);
1414
1415 return NewTemplate;
1416}
1417
1418namespace {
1419/// Transform to convert portions of a constructor declaration into the
1420/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
1421struct ConvertConstructorToDeductionGuideTransform {
1422 ConvertConstructorToDeductionGuideTransform(Sema &S,
1423 ClassTemplateDecl *Template)
1424 : SemaRef(S), Template(Template) {}
1425
1426 Sema &SemaRef;
1427 ClassTemplateDecl *Template;
1428
1429 DeclContext *DC = Template->getDeclContext();
1430 CXXRecordDecl *Primary = Template->getTemplatedDecl();
1431 DeclarationName DeductionGuideName =
1432 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
1433
1434 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
1435
1436 // Index adjustment to apply to convert depth-1 template parameters into
1437 // depth-0 template parameters.
1438 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
1439
1440 /// Transform a constructor declaration into a deduction guide.
1441 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
1442 CXXConstructorDecl *CD) {
1443 SmallVector<TemplateArgument, 16> SubstArgs;
1444
1445 LocalInstantiationScope Scope(SemaRef);
1446
1447 // C++ [over.match.class.deduct]p1:
1448 // -- For each constructor of the class template designated by the
1449 // template-name, a function template with the following properties:
1450
1451 // -- The template parameters are the template parameters of the class
1452 // template followed by the template parameters (including default
1453 // template arguments) of the constructor, if any.
1454 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
1455 if (FTD) {
1456 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
1457 SmallVector<NamedDecl *, 16> AllParams;
1458 AllParams.reserve(TemplateParams->size() + InnerParams->size());
1459 AllParams.insert(AllParams.begin(),
1460 TemplateParams->begin(), TemplateParams->end());
1461 SubstArgs.reserve(InnerParams->size());
1462
1463 // Later template parameters could refer to earlier ones, so build up
1464 // a list of substituted template arguments as we go.
1465 for (NamedDecl *Param : *InnerParams) {
1466 MultiLevelTemplateArgumentList Args;
1467 Args.addOuterTemplateArguments(SubstArgs);
1468 Args.addOuterRetainedLevel();
1469 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
1470 if (!NewParam)
1471 return nullptr;
1472 AllParams.push_back(NewParam);
1473 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
1474 SemaRef.Context.getInjectedTemplateArg(NewParam)));
1475 }
1476 TemplateParams = TemplateParameterList::Create(
1477 SemaRef.Context, InnerParams->getTemplateLoc(),
1478 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
1479 /*FIXME: RequiresClause*/ nullptr);
1480 }
1481
1482 // If we built a new template-parameter-list, track that we need to
1483 // substitute references to the old parameters into references to the
1484 // new ones.
1485 MultiLevelTemplateArgumentList Args;
1486 if (FTD) {
1487 Args.addOuterTemplateArguments(SubstArgs);
1488 Args.addOuterRetainedLevel();
1489 }
1490
1491 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
1492 .getAsAdjusted<FunctionProtoTypeLoc>();
1493 assert(FPTL && "no prototype for constructor declaration")((FPTL && "no prototype for constructor declaration")
? static_cast<void> (0) : __assert_fail ("FPTL && \"no prototype for constructor declaration\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1493, __PRETTY_FUNCTION__))
;
1494
1495 // Transform the type of the function, adjusting the return type and
1496 // replacing references to the old parameters with references to the
1497 // new ones.
1498 TypeLocBuilder TLB;
1499 SmallVector<ParmVarDecl*, 8> Params;
1500 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args);
1501 if (NewType.isNull())
1502 return nullptr;
1503 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
1504
1505 return buildDeductionGuide(TemplateParams, CD->isExplicit(), NewTInfo,
1506 CD->getLocStart(), CD->getLocation(),
1507 CD->getLocEnd());
1508 }
1509
1510 /// Build a deduction guide with the specified parameter types.
1511 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
1512 SourceLocation Loc = Template->getLocation();
1513
1514 // Build the requested type.
1515 FunctionProtoType::ExtProtoInfo EPI;
1516 EPI.HasTrailingReturn = true;
1517 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
1518 DeductionGuideName, EPI);
1519 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
1520
1521 FunctionProtoTypeLoc FPTL =
1522 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
1523
1524 // Build the parameters, needed during deduction / substitution.
1525 SmallVector<ParmVarDecl*, 4> Params;
1526 for (auto T : ParamTypes) {
1527 ParmVarDecl *NewParam = ParmVarDecl::Create(
1528 SemaRef.Context, DC, Loc, Loc, nullptr, T,
1529 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
1530 NewParam->setScopeInfo(0, Params.size());
1531 FPTL.setParam(Params.size(), NewParam);
1532 Params.push_back(NewParam);
1533 }
1534
1535 return buildDeductionGuide(Template->getTemplateParameters(), false, TSI,
1536 Loc, Loc, Loc);
1537 }
1538
1539private:
1540 /// Transform a constructor template parameter into a deduction guide template
1541 /// parameter, rebuilding any internal references to earlier parameters and
1542 /// renumbering as we go.
1543 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
1544 MultiLevelTemplateArgumentList &Args) {
1545 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
1546 // TemplateTypeParmDecl's index cannot be changed after creation, so
1547 // substitute it directly.
1548 auto *NewTTP = TemplateTypeParmDecl::Create(
1549 SemaRef.Context, DC, TTP->getLocStart(), TTP->getLocation(),
1550 /*Depth*/0, Depth1IndexAdjustment + TTP->getIndex(),
1551 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
1552 TTP->isParameterPack());
1553 if (TTP->hasDefaultArgument()) {
1554 TypeSourceInfo *InstantiatedDefaultArg =
1555 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
1556 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
1557 if (InstantiatedDefaultArg)
1558 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
1559 }
1560 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
1561 NewTTP);
1562 return NewTTP;
1563 }
1564
1565 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
1566 return transformTemplateParameterImpl(TTP, Args);
1567
1568 return transformTemplateParameterImpl(
1569 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
1570 }
1571 template<typename TemplateParmDecl>
1572 TemplateParmDecl *
1573 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
1574 MultiLevelTemplateArgumentList &Args) {
1575 // Ask the template instantiator to do the heavy lifting for us, then adjust
1576 // the index of the parameter once it's done.
1577 auto *NewParam =
1578 cast_or_null<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
1579 assert(NewParam->getDepth() == 0 && "unexpected template param depth")((NewParam->getDepth() == 0 && "unexpected template param depth"
) ? static_cast<void> (0) : __assert_fail ("NewParam->getDepth() == 0 && \"unexpected template param depth\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1579, __PRETTY_FUNCTION__))
;
1580 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
1581 return NewParam;
1582 }
1583
1584 QualType transformFunctionProtoType(TypeLocBuilder &TLB,
1585 FunctionProtoTypeLoc TL,
1586 SmallVectorImpl<ParmVarDecl*> &Params,
1587 MultiLevelTemplateArgumentList &Args) {
1588 SmallVector<QualType, 4> ParamTypes;
1589 const FunctionProtoType *T = TL.getTypePtr();
1590
1591 // -- The types of the function parameters are those of the constructor.
1592 for (auto *OldParam : TL.getParams()) {
1593 ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args);
1594 if (!NewParam)
1595 return QualType();
1596 ParamTypes.push_back(NewParam->getType());
1597 Params.push_back(NewParam);
1598 }
1599
1600 // -- The return type is the class template specialization designated by
1601 // the template-name and template arguments corresponding to the
1602 // template parameters obtained from the class template.
1603 //
1604 // We use the injected-class-name type of the primary template instead.
1605 // This has the convenient property that it is different from any type that
1606 // the user can write in a deduction-guide (because they cannot enter the
1607 // context of the template), so implicit deduction guides can never collide
1608 // with explicit ones.
1609 QualType ReturnType = DeducedType;
1610 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
1611
1612 // Resolving a wording defect, we also inherit the variadicness of the
1613 // constructor.
1614 FunctionProtoType::ExtProtoInfo EPI;
1615 EPI.Variadic = T->isVariadic();
1616 EPI.HasTrailingReturn = true;
1617
1618 QualType Result = SemaRef.BuildFunctionType(
1619 ReturnType, ParamTypes, TL.getLocStart(), DeductionGuideName, EPI);
1620 if (Result.isNull())
1621 return QualType();
1622
1623 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
1624 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
1625 NewTL.setLParenLoc(TL.getLParenLoc());
1626 NewTL.setRParenLoc(TL.getRParenLoc());
1627 NewTL.setExceptionSpecRange(SourceRange());
1628 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
1629 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
1630 NewTL.setParam(I, Params[I]);
1631
1632 return Result;
1633 }
1634
1635 ParmVarDecl *
1636 transformFunctionTypeParam(ParmVarDecl *OldParam,
1637 MultiLevelTemplateArgumentList &Args) {
1638 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
1639 TypeSourceInfo *NewDI;
1640 if (!Args.getNumLevels())
1641 NewDI = OldDI;
1642 else if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
1643 // Expand out the one and only element in each inner pack.
1644 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
1645 NewDI =
1646 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
1647 OldParam->getLocation(), OldParam->getDeclName());
1648 if (!NewDI) return nullptr;
1649 NewDI =
1650 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
1651 PackTL.getTypePtr()->getNumExpansions());
1652 } else
1653 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
1654 OldParam->getDeclName());
1655 if (!NewDI)
1656 return nullptr;
1657
1658 // Canonicalize the type. This (for instance) replaces references to
1659 // typedef members of the current instantiations with the definitions of
1660 // those typedefs, avoiding triggering instantiation of the deduced type
1661 // during deduction.
1662 // FIXME: It would be preferable to retain type sugar and source
1663 // information here (and handle this in substitution instead).
1664 NewDI = SemaRef.Context.getTrivialTypeSourceInfo(
1665 SemaRef.Context.getCanonicalType(NewDI->getType()),
1666 OldParam->getLocation());
1667
1668 // Resolving a wording defect, we also inherit default arguments from the
1669 // constructor.
1670 ExprResult NewDefArg;
1671 if (OldParam->hasDefaultArg()) {
1672 NewDefArg = Args.getNumLevels()
1673 ? SemaRef.SubstExpr(OldParam->getDefaultArg(), Args)
1674 : OldParam->getDefaultArg();
1675 if (NewDefArg.isInvalid())
1676 return nullptr;
1677 }
1678
1679 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
1680 OldParam->getInnerLocStart(),
1681 OldParam->getLocation(),
1682 OldParam->getIdentifier(),
1683 NewDI->getType(),
1684 NewDI,
1685 OldParam->getStorageClass(),
1686 NewDefArg.get());
1687 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
1688 OldParam->getFunctionScopeIndex());
1689 return NewParam;
1690 }
1691
1692 NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams,
1693 bool Explicit, TypeSourceInfo *TInfo,
1694 SourceLocation LocStart, SourceLocation Loc,
1695 SourceLocation LocEnd) {
1696 DeclarationNameInfo Name(DeductionGuideName, Loc);
1697 ArrayRef<ParmVarDecl *> Params =
1698 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
1699
1700 // Build the implicit deduction guide template.
1701 auto *Guide =
1702 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, Explicit,
1703 Name, TInfo->getType(), TInfo, LocEnd);
1704 Guide->setImplicit();
1705 Guide->setParams(Params);
1706
1707 for (auto *Param : Params)
1708 Param->setDeclContext(Guide);
1709
1710 auto *GuideTemplate = FunctionTemplateDecl::Create(
1711 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
1712 GuideTemplate->setImplicit();
1713 Guide->setDescribedFunctionTemplate(GuideTemplate);
1714
1715 if (isa<CXXRecordDecl>(DC)) {
1716 Guide->setAccess(AS_public);
1717 GuideTemplate->setAccess(AS_public);
1718 }
1719
1720 DC->addDecl(GuideTemplate);
1721 return GuideTemplate;
1722 }
1723};
1724}
1725
1726void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
1727 SourceLocation Loc) {
1728 DeclContext *DC = Template->getDeclContext();
1729 if (DC->isDependentContext())
1730 return;
1731
1732 ConvertConstructorToDeductionGuideTransform Transform(
1733 *this, cast<ClassTemplateDecl>(Template));
1734 if (!isCompleteType(Loc, Transform.DeducedType))
1735 return;
1736
1737 // Check whether we've already declared deduction guides for this template.
1738 // FIXME: Consider storing a flag on the template to indicate this.
1739 auto Existing = DC->lookup(Transform.DeductionGuideName);
1740 for (auto *D : Existing)
1741 if (D->isImplicit())
1742 return;
1743
1744 // In case we were expanding a pack when we attempted to declare deduction
1745 // guides, turn off pack expansion for everything we're about to do.
1746 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
1747 // Create a template instantiation record to track the "instantiation" of
1748 // constructors into deduction guides.
1749 // FIXME: Add a kind for this to give more meaningful diagnostics. But can
1750 // this substitution process actually fail?
1751 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
1752
1753 // Convert declared constructors into deduction guide templates.
1754 // FIXME: Skip constructors for which deduction must necessarily fail (those
1755 // for which some class template parameter without a default argument never
1756 // appears in a deduced context).
1757 bool AddedAny = false;
1758 bool AddedCopyOrMove = false;
1759 for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
1760 D = D->getUnderlyingDecl();
1761 if (D->isInvalidDecl() || D->isImplicit())
1762 continue;
1763 D = cast<NamedDecl>(D->getCanonicalDecl());
1764
1765 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
1766 auto *CD =
1767 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
1768 // Class-scope explicit specializations (MS extension) do not result in
1769 // deduction guides.
1770 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
1771 continue;
1772
1773 Transform.transformConstructor(FTD, CD);
1774 AddedAny = true;
1775
1776 AddedCopyOrMove |= CD->isCopyOrMoveConstructor();
1777 }
1778
1779 // Synthesize an X() -> X<...> guide if there were no declared constructors.
1780 // FIXME: The standard doesn't say (how) to do this.
1781 if (!AddedAny)
1782 Transform.buildSimpleDeductionGuide(None);
1783
1784 // Synthesize an X(X<...>) -> X<...> guide if there was no declared constructor
1785 // resembling a copy or move constructor.
1786 // FIXME: The standard doesn't say (how) to do this.
1787 if (!AddedCopyOrMove)
1788 Transform.buildSimpleDeductionGuide(Transform.DeducedType);
1789}
1790
1791/// \brief Diagnose the presence of a default template argument on a
1792/// template parameter, which is ill-formed in certain contexts.
1793///
1794/// \returns true if the default template argument should be dropped.
1795static bool DiagnoseDefaultTemplateArgument(Sema &S,
1796 Sema::TemplateParamListContext TPC,
1797 SourceLocation ParamLoc,
1798 SourceRange DefArgRange) {
1799 switch (TPC) {
1800 case Sema::TPC_ClassTemplate:
1801 case Sema::TPC_VarTemplate:
1802 case Sema::TPC_TypeAliasTemplate:
1803 return false;
1804
1805 case Sema::TPC_FunctionTemplate:
1806 case Sema::TPC_FriendFunctionTemplateDefinition:
1807 // C++ [temp.param]p9:
1808 // A default template-argument shall not be specified in a
1809 // function template declaration or a function template
1810 // definition [...]
1811 // If a friend function template declaration specifies a default
1812 // template-argument, that declaration shall be a definition and shall be
1813 // the only declaration of the function template in the translation unit.
1814 // (C++98/03 doesn't have this wording; see DR226).
1815 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1816 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1817 : diag::ext_template_parameter_default_in_function_template)
1818 << DefArgRange;
1819 return false;
1820
1821 case Sema::TPC_ClassTemplateMember:
1822 // C++0x [temp.param]p9:
1823 // A default template-argument shall not be specified in the
1824 // template-parameter-lists of the definition of a member of a
1825 // class template that appears outside of the member's class.
1826 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1827 << DefArgRange;
1828 return true;
1829
1830 case Sema::TPC_FriendClassTemplate:
1831 case Sema::TPC_FriendFunctionTemplate:
1832 // C++ [temp.param]p9:
1833 // A default template-argument shall not be specified in a
1834 // friend template declaration.
1835 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1836 << DefArgRange;
1837 return true;
1838
1839 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1840 // for friend function templates if there is only a single
1841 // declaration (and it is a definition). Strange!
1842 }
1843
1844 llvm_unreachable("Invalid TemplateParamListContext!")::llvm::llvm_unreachable_internal("Invalid TemplateParamListContext!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1844)
;
1845}
1846
1847/// \brief Check for unexpanded parameter packs within the template parameters
1848/// of a template template parameter, recursively.
1849static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1850 TemplateTemplateParmDecl *TTP) {
1851 // A template template parameter which is a parameter pack is also a pack
1852 // expansion.
1853 if (TTP->isParameterPack())
1854 return false;
1855
1856 TemplateParameterList *Params = TTP->getTemplateParameters();
1857 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1858 NamedDecl *P = Params->getParam(I);
1859 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1860 if (!NTTP->isParameterPack() &&
1861 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1862 NTTP->getTypeSourceInfo(),
1863 Sema::UPPC_NonTypeTemplateParameterType))
1864 return true;
1865
1866 continue;
1867 }
1868
1869 if (TemplateTemplateParmDecl *InnerTTP
1870 = dyn_cast<TemplateTemplateParmDecl>(P))
1871 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1872 return true;
1873 }
1874
1875 return false;
1876}
1877
1878/// \brief Checks the validity of a template parameter list, possibly
1879/// considering the template parameter list from a previous
1880/// declaration.
1881///
1882/// If an "old" template parameter list is provided, it must be
1883/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1884/// template parameter list.
1885///
1886/// \param NewParams Template parameter list for a new template
1887/// declaration. This template parameter list will be updated with any
1888/// default arguments that are carried through from the previous
1889/// template parameter list.
1890///
1891/// \param OldParams If provided, template parameter list from a
1892/// previous declaration of the same template. Default template
1893/// arguments will be merged from the old template parameter list to
1894/// the new template parameter list.
1895///
1896/// \param TPC Describes the context in which we are checking the given
1897/// template parameter list.
1898///
1899/// \returns true if an error occurred, false otherwise.
1900bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1901 TemplateParameterList *OldParams,
1902 TemplateParamListContext TPC) {
1903 bool Invalid = false;
1904
1905 // C++ [temp.param]p10:
1906 // The set of default template-arguments available for use with a
1907 // template declaration or definition is obtained by merging the
1908 // default arguments from the definition (if in scope) and all
1909 // declarations in scope in the same way default function
1910 // arguments are (8.3.6).
1911 bool SawDefaultArgument = false;
1912 SourceLocation PreviousDefaultArgLoc;
1913
1914 // Dummy initialization to avoid warnings.
1915 TemplateParameterList::iterator OldParam = NewParams->end();
1916 if (OldParams)
1917 OldParam = OldParams->begin();
1918
1919 bool RemoveDefaultArguments = false;
1920 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1921 NewParamEnd = NewParams->end();
1922 NewParam != NewParamEnd; ++NewParam) {
1923 // Variables used to diagnose redundant default arguments
1924 bool RedundantDefaultArg = false;
1925 SourceLocation OldDefaultLoc;
1926 SourceLocation NewDefaultLoc;
1927
1928 // Variable used to diagnose missing default arguments
1929 bool MissingDefaultArg = false;
1930
1931 // Variable used to diagnose non-final parameter packs
1932 bool SawParameterPack = false;
1933
1934 if (TemplateTypeParmDecl *NewTypeParm
1935 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1936 // Check the presence of a default argument here.
1937 if (NewTypeParm->hasDefaultArgument() &&
1938 DiagnoseDefaultTemplateArgument(*this, TPC,
1939 NewTypeParm->getLocation(),
1940 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1941 .getSourceRange()))
1942 NewTypeParm->removeDefaultArgument();
1943
1944 // Merge default arguments for template type parameters.
1945 TemplateTypeParmDecl *OldTypeParm
1946 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
1947 if (NewTypeParm->isParameterPack()) {
1948 assert(!NewTypeParm->hasDefaultArgument() &&((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1949, __PRETTY_FUNCTION__))
1949 "Parameter packs can't have a default argument!")((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1949, __PRETTY_FUNCTION__))
;
1950 SawParameterPack = true;
1951 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
1952 NewTypeParm->hasDefaultArgument()) {
1953 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1954 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1955 SawDefaultArgument = true;
1956 RedundantDefaultArg = true;
1957 PreviousDefaultArgLoc = NewDefaultLoc;
1958 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1959 // Merge the default argument from the old declaration to the
1960 // new declaration.
1961 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
1962 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1963 } else if (NewTypeParm->hasDefaultArgument()) {
1964 SawDefaultArgument = true;
1965 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1966 } else if (SawDefaultArgument)
1967 MissingDefaultArg = true;
1968 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1969 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1970 // Check for unexpanded parameter packs.
1971 if (!NewNonTypeParm->isParameterPack() &&
1972 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1973 NewNonTypeParm->getTypeSourceInfo(),
1974 UPPC_NonTypeTemplateParameterType)) {
1975 Invalid = true;
1976 continue;
1977 }
1978
1979 // Check the presence of a default argument here.
1980 if (NewNonTypeParm->hasDefaultArgument() &&
1981 DiagnoseDefaultTemplateArgument(*this, TPC,
1982 NewNonTypeParm->getLocation(),
1983 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1984 NewNonTypeParm->removeDefaultArgument();
1985 }
1986
1987 // Merge default arguments for non-type template parameters
1988 NonTypeTemplateParmDecl *OldNonTypeParm
1989 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
1990 if (NewNonTypeParm->isParameterPack()) {
1991 assert(!NewNonTypeParm->hasDefaultArgument() &&((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1992, __PRETTY_FUNCTION__))
1992 "Parameter packs can't have a default argument!")((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1992, __PRETTY_FUNCTION__))
;
1993 if (!NewNonTypeParm->isPackExpansion())
1994 SawParameterPack = true;
1995 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
1996 NewNonTypeParm->hasDefaultArgument()) {
1997 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1998 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1999 SawDefaultArgument = true;
2000 RedundantDefaultArg = true;
2001 PreviousDefaultArgLoc = NewDefaultLoc;
2002 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2003 // Merge the default argument from the old declaration to the
2004 // new declaration.
2005 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2006 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2007 } else if (NewNonTypeParm->hasDefaultArgument()) {
2008 SawDefaultArgument = true;
2009 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2010 } else if (SawDefaultArgument)
2011 MissingDefaultArg = true;
2012 } else {
2013 TemplateTemplateParmDecl *NewTemplateParm
2014 = cast<TemplateTemplateParmDecl>(*NewParam);
2015
2016 // Check for unexpanded parameter packs, recursively.
2017 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2018 Invalid = true;
2019 continue;
2020 }
2021
2022 // Check the presence of a default argument here.
2023 if (NewTemplateParm->hasDefaultArgument() &&
2024 DiagnoseDefaultTemplateArgument(*this, TPC,
2025 NewTemplateParm->getLocation(),
2026 NewTemplateParm->getDefaultArgument().getSourceRange()))
2027 NewTemplateParm->removeDefaultArgument();
2028
2029 // Merge default arguments for template template parameters
2030 TemplateTemplateParmDecl *OldTemplateParm
2031 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2032 if (NewTemplateParm->isParameterPack()) {
2033 assert(!NewTemplateParm->hasDefaultArgument() &&((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2034, __PRETTY_FUNCTION__))
2034 "Parameter packs can't have a default argument!")((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2034, __PRETTY_FUNCTION__))
;
2035 if (!NewTemplateParm->isPackExpansion())
2036 SawParameterPack = true;
2037 } else if (OldTemplateParm &&
2038 hasVisibleDefaultArgument(OldTemplateParm) &&
2039 NewTemplateParm->hasDefaultArgument()) {
2040 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2041 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2042 SawDefaultArgument = true;
2043 RedundantDefaultArg = true;
2044 PreviousDefaultArgLoc = NewDefaultLoc;
2045 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2046 // Merge the default argument from the old declaration to the
2047 // new declaration.
2048 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2049 PreviousDefaultArgLoc
2050 = OldTemplateParm->getDefaultArgument().getLocation();
2051 } else if (NewTemplateParm->hasDefaultArgument()) {
2052 SawDefaultArgument = true;
2053 PreviousDefaultArgLoc
2054 = NewTemplateParm->getDefaultArgument().getLocation();
2055 } else if (SawDefaultArgument)
2056 MissingDefaultArg = true;
2057 }
2058
2059 // C++11 [temp.param]p11:
2060 // If a template parameter of a primary class template or alias template
2061 // is a template parameter pack, it shall be the last template parameter.
2062 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2063 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2064 TPC == TPC_TypeAliasTemplate)) {
2065 Diag((*NewParam)->getLocation(),
2066 diag::err_template_param_pack_must_be_last_template_parameter);
2067 Invalid = true;
2068 }
2069
2070 if (RedundantDefaultArg) {
2071 // C++ [temp.param]p12:
2072 // A template-parameter shall not be given default arguments
2073 // by two different declarations in the same scope.
2074 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2075 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2076 Invalid = true;
2077 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2078 // C++ [temp.param]p11:
2079 // If a template-parameter of a class template has a default
2080 // template-argument, each subsequent template-parameter shall either
2081 // have a default template-argument supplied or be a template parameter
2082 // pack.
2083 Diag((*NewParam)->getLocation(),
2084 diag::err_template_param_default_arg_missing);
2085 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2086 Invalid = true;
2087 RemoveDefaultArguments = true;
2088 }
2089
2090 // If we have an old template parameter list that we're merging
2091 // in, move on to the next parameter.
2092 if (OldParams)
2093 ++OldParam;
2094 }
2095
2096 // We were missing some default arguments at the end of the list, so remove
2097 // all of the default arguments.
2098 if (RemoveDefaultArguments) {
2099 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2100 NewParamEnd = NewParams->end();
2101 NewParam != NewParamEnd; ++NewParam) {
2102 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2103 TTP->removeDefaultArgument();
2104 else if (NonTypeTemplateParmDecl *NTTP
2105 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2106 NTTP->removeDefaultArgument();
2107 else
2108 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2109 }
2110 }
2111
2112 return Invalid;
2113}
2114
2115namespace {
2116
2117/// A class which looks for a use of a certain level of template
2118/// parameter.
2119struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2120 typedef RecursiveASTVisitor<DependencyChecker> super;
2121
2122 unsigned Depth;
2123
2124 // Whether we're looking for a use of a template parameter that makes the
2125 // overall construct type-dependent / a dependent type. This is strictly
2126 // best-effort for now; we may fail to match at all for a dependent type
2127 // in some cases if this is set.
2128 bool IgnoreNonTypeDependent;
2129
2130 bool Match;
2131 SourceLocation MatchLoc;
2132
2133 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2134 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2135 Match(false) {}
2136
2137 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2138 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2139 NamedDecl *ND = Params->getParam(0);
2140 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2141 Depth = PD->getDepth();
2142 } else if (NonTypeTemplateParmDecl *PD =
2143 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2144 Depth = PD->getDepth();
2145 } else {
2146 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2147 }
2148 }
2149
2150 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2151 if (ParmDepth >= Depth) {
2152 Match = true;
2153 MatchLoc = Loc;
2154 return true;
2155 }
2156 return false;
2157 }
2158
2159 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2160 // Prune out non-type-dependent expressions if requested. This can
2161 // sometimes result in us failing to find a template parameter reference
2162 // (if a value-dependent expression creates a dependent type), but this
2163 // mode is best-effort only.
2164 if (auto *E = dyn_cast_or_null<Expr>(S))
2165 if (IgnoreNonTypeDependent && !E->isTypeDependent())
2166 return true;
2167 return super::TraverseStmt(S, Q);
2168 }
2169
2170 bool TraverseTypeLoc(TypeLoc TL) {
2171 if (IgnoreNonTypeDependent && !TL.isNull() &&
2172 !TL.getType()->isDependentType())
2173 return true;
2174 return super::TraverseTypeLoc(TL);
2175 }
2176
2177 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2178 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2179 }
2180
2181 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2182 // For a best-effort search, keep looking until we find a location.
2183 return IgnoreNonTypeDependent || !Matches(T->getDepth());
2184 }
2185
2186 bool TraverseTemplateName(TemplateName N) {
2187 if (TemplateTemplateParmDecl *PD =
2188 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2189 if (Matches(PD->getDepth()))
2190 return false;
2191 return super::TraverseTemplateName(N);
2192 }
2193
2194 bool VisitDeclRefExpr(DeclRefExpr *E) {
2195 if (NonTypeTemplateParmDecl *PD =
2196 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2197 if (Matches(PD->getDepth(), E->getExprLoc()))
2198 return false;
2199 return super::VisitDeclRefExpr(E);
2200 }
2201
2202 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2203 return TraverseType(T->getReplacementType());
2204 }
2205
2206 bool
2207 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2208 return TraverseTemplateArgument(T->getArgumentPack());
2209 }
2210
2211 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2212 return TraverseType(T->getInjectedSpecializationType());
2213 }
2214};
2215} // end anonymous namespace
2216
2217/// Determines whether a given type depends on the given parameter
2218/// list.
2219static bool
2220DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2221 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2222 Checker.TraverseType(T);
2223 return Checker.Match;
2224}
2225
2226// Find the source range corresponding to the named type in the given
2227// nested-name-specifier, if any.
2228static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2229 QualType T,
2230 const CXXScopeSpec &SS) {
2231 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2232 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2233 if (const Type *CurType = NNS->getAsType()) {
2234 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2235 return NNSLoc.getTypeLoc().getSourceRange();
2236 } else
2237 break;
2238
2239 NNSLoc = NNSLoc.getPrefix();
2240 }
2241
2242 return SourceRange();
2243}
2244
2245/// \brief Match the given template parameter lists to the given scope
2246/// specifier, returning the template parameter list that applies to the
2247/// name.
2248///
2249/// \param DeclStartLoc the start of the declaration that has a scope
2250/// specifier or a template parameter list.
2251///
2252/// \param DeclLoc The location of the declaration itself.
2253///
2254/// \param SS the scope specifier that will be matched to the given template
2255/// parameter lists. This scope specifier precedes a qualified name that is
2256/// being declared.
2257///
2258/// \param TemplateId The template-id following the scope specifier, if there
2259/// is one. Used to check for a missing 'template<>'.
2260///
2261/// \param ParamLists the template parameter lists, from the outermost to the
2262/// innermost template parameter lists.
2263///
2264/// \param IsFriend Whether to apply the slightly different rules for
2265/// matching template parameters to scope specifiers in friend
2266/// declarations.
2267///
2268/// \param IsMemberSpecialization will be set true if the scope specifier
2269/// denotes a fully-specialized type, and therefore this is a declaration of
2270/// a member specialization.
2271///
2272/// \returns the template parameter list, if any, that corresponds to the
2273/// name that is preceded by the scope specifier @p SS. This template
2274/// parameter list may have template parameters (if we're declaring a
2275/// template) or may have no template parameters (if we're declaring a
2276/// template specialization), or may be NULL (if what we're declaring isn't
2277/// itself a template).
2278TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
2279 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
2280 TemplateIdAnnotation *TemplateId,
2281 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
2282 bool &IsMemberSpecialization, bool &Invalid) {
2283 IsMemberSpecialization = false;
2284 Invalid = false;
2285
2286 // The sequence of nested types to which we will match up the template
2287 // parameter lists. We first build this list by starting with the type named
2288 // by the nested-name-specifier and walking out until we run out of types.
2289 SmallVector<QualType, 4> NestedTypes;
2290 QualType T;
2291 if (SS.getScopeRep()) {
2292 if (CXXRecordDecl *Record
2293 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
2294 T = Context.getTypeDeclType(Record);
2295 else
2296 T = QualType(SS.getScopeRep()->getAsType(), 0);
2297 }
2298
2299 // If we found an explicit specialization that prevents us from needing
2300 // 'template<>' headers, this will be set to the location of that
2301 // explicit specialization.
2302 SourceLocation ExplicitSpecLoc;
2303
2304 while (!T.isNull()) {
2305 NestedTypes.push_back(T);
2306
2307 // Retrieve the parent of a record type.
2308 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2309 // If this type is an explicit specialization, we're done.
2310 if (ClassTemplateSpecializationDecl *Spec
2311 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2312 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
2313 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
2314 ExplicitSpecLoc = Spec->getLocation();
2315 break;
2316 }
2317 } else if (Record->getTemplateSpecializationKind()
2318 == TSK_ExplicitSpecialization) {
2319 ExplicitSpecLoc = Record->getLocation();
2320 break;
2321 }
2322
2323 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
2324 T = Context.getTypeDeclType(Parent);
2325 else
2326 T = QualType();
2327 continue;
2328 }
2329
2330 if (const TemplateSpecializationType *TST
2331 = T->getAs<TemplateSpecializationType>()) {
2332 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2333 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
2334 T = Context.getTypeDeclType(Parent);
2335 else
2336 T = QualType();
2337 continue;
2338 }
2339 }
2340
2341 // Look one step prior in a dependent template specialization type.
2342 if (const DependentTemplateSpecializationType *DependentTST
2343 = T->getAs<DependentTemplateSpecializationType>()) {
2344 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
2345 T = QualType(NNS->getAsType(), 0);
2346 else
2347 T = QualType();
2348 continue;
2349 }
2350
2351 // Look one step prior in a dependent name type.
2352 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
2353 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
2354 T = QualType(NNS->getAsType(), 0);
2355 else
2356 T = QualType();
2357 continue;
2358 }
2359
2360 // Retrieve the parent of an enumeration type.
2361 if (const EnumType *EnumT = T->getAs<EnumType>()) {
2362 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
2363 // check here.
2364 EnumDecl *Enum = EnumT->getDecl();
2365
2366 // Get to the parent type.
2367 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
2368 T = Context.getTypeDeclType(Parent);
2369 else
2370 T = QualType();
2371 continue;
2372 }
2373
2374 T = QualType();
2375 }
2376 // Reverse the nested types list, since we want to traverse from the outermost
2377 // to the innermost while checking template-parameter-lists.
2378 std::reverse(NestedTypes.begin(), NestedTypes.end());
2379
2380 // C++0x [temp.expl.spec]p17:
2381 // A member or a member template may be nested within many
2382 // enclosing class templates. In an explicit specialization for
2383 // such a member, the member declaration shall be preceded by a
2384 // template<> for each enclosing class template that is
2385 // explicitly specialized.
2386 bool SawNonEmptyTemplateParameterList = false;
2387
2388 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
2389 if (SawNonEmptyTemplateParameterList) {
2390 Diag(DeclLoc, diag::err_specialize_member_of_template)
2391 << !Recovery << Range;
2392 Invalid = true;
2393 IsMemberSpecialization = false;
2394 return true;
2395 }
2396
2397 return false;
2398 };
2399
2400 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
2401 // Check that we can have an explicit specialization here.
2402 if (CheckExplicitSpecialization(Range, true))
2403 return true;
2404
2405 // We don't have a template header, but we should.
2406 SourceLocation ExpectedTemplateLoc;
2407 if (!ParamLists.empty())
2408 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
2409 else
2410 ExpectedTemplateLoc = DeclStartLoc;
2411
2412 Diag(DeclLoc, diag::err_template_spec_needs_header)
2413 << Range
2414 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
2415 return false;
2416 };
2417
2418 unsigned ParamIdx = 0;
2419 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
2420 ++TypeIdx) {
2421 T = NestedTypes[TypeIdx];
2422
2423 // Whether we expect a 'template<>' header.
2424 bool NeedEmptyTemplateHeader = false;
2425
2426 // Whether we expect a template header with parameters.
2427 bool NeedNonemptyTemplateHeader = false;
2428
2429 // For a dependent type, the set of template parameters that we
2430 // expect to see.
2431 TemplateParameterList *ExpectedTemplateParams = nullptr;
2432
2433 // C++0x [temp.expl.spec]p15:
2434 // A member or a member template may be nested within many enclosing
2435 // class templates. In an explicit specialization for such a member, the
2436 // member declaration shall be preceded by a template<> for each
2437 // enclosing class template that is explicitly specialized.
2438 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2439 if (ClassTemplatePartialSpecializationDecl *Partial
2440 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
2441 ExpectedTemplateParams = Partial->getTemplateParameters();
2442 NeedNonemptyTemplateHeader = true;
2443 } else if (Record->isDependentType()) {
2444 if (Record->getDescribedClassTemplate()) {
2445 ExpectedTemplateParams = Record->getDescribedClassTemplate()
2446 ->getTemplateParameters();
2447 NeedNonemptyTemplateHeader = true;
2448 }
2449 } else if (ClassTemplateSpecializationDecl *Spec
2450 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2451 // C++0x [temp.expl.spec]p4:
2452 // Members of an explicitly specialized class template are defined
2453 // in the same manner as members of normal classes, and not using
2454 // the template<> syntax.
2455 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
2456 NeedEmptyTemplateHeader = true;
2457 else
2458 continue;
2459 } else if (Record->getTemplateSpecializationKind()) {
2460 if (Record->getTemplateSpecializationKind()
2461 != TSK_ExplicitSpecialization &&
2462 TypeIdx == NumTypes - 1)
2463 IsMemberSpecialization = true;
2464
2465 continue;
2466 }
2467 } else if (const TemplateSpecializationType *TST
2468 = T->getAs<TemplateSpecializationType>()) {
2469 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2470 ExpectedTemplateParams = Template->getTemplateParameters();
2471 NeedNonemptyTemplateHeader = true;
2472 }
2473 } else if (T->getAs<DependentTemplateSpecializationType>()) {
2474 // FIXME: We actually could/should check the template arguments here
2475 // against the corresponding template parameter list.
2476 NeedNonemptyTemplateHeader = false;
2477 }
2478
2479 // C++ [temp.expl.spec]p16:
2480 // In an explicit specialization declaration for a member of a class
2481 // template or a member template that ap- pears in namespace scope, the
2482 // member template and some of its enclosing class templates may remain
2483 // unspecialized, except that the declaration shall not explicitly
2484 // specialize a class member template if its en- closing class templates
2485 // are not explicitly specialized as well.
2486 if (ParamIdx < ParamLists.size()) {
2487 if (ParamLists[ParamIdx]->size() == 0) {
2488 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2489 false))
2490 return nullptr;
2491 } else
2492 SawNonEmptyTemplateParameterList = true;
2493 }
2494
2495 if (NeedEmptyTemplateHeader) {
2496 // If we're on the last of the types, and we need a 'template<>' header
2497 // here, then it's a member specialization.
2498 if (TypeIdx == NumTypes - 1)
2499 IsMemberSpecialization = true;
2500
2501 if (ParamIdx < ParamLists.size()) {
2502 if (ParamLists[ParamIdx]->size() > 0) {
2503 // The header has template parameters when it shouldn't. Complain.
2504 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2505 diag::err_template_param_list_matches_nontemplate)
2506 << T
2507 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
2508 ParamLists[ParamIdx]->getRAngleLoc())
2509 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2510 Invalid = true;
2511 return nullptr;
2512 }
2513
2514 // Consume this template header.
2515 ++ParamIdx;
2516 continue;
2517 }
2518
2519 if (!IsFriend)
2520 if (DiagnoseMissingExplicitSpecialization(
2521 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
2522 return nullptr;
2523
2524 continue;
2525 }
2526
2527 if (NeedNonemptyTemplateHeader) {
2528 // In friend declarations we can have template-ids which don't
2529 // depend on the corresponding template parameter lists. But
2530 // assume that empty parameter lists are supposed to match this
2531 // template-id.
2532 if (IsFriend && T->isDependentType()) {
2533 if (ParamIdx < ParamLists.size() &&
2534 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
2535 ExpectedTemplateParams = nullptr;
2536 else
2537 continue;
2538 }
2539
2540 if (ParamIdx < ParamLists.size()) {
2541 // Check the template parameter list, if we can.
2542 if (ExpectedTemplateParams &&
2543 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
2544 ExpectedTemplateParams,
2545 true, TPL_TemplateMatch))
2546 Invalid = true;
2547
2548 if (!Invalid &&
2549 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
2550 TPC_ClassTemplateMember))
2551 Invalid = true;
2552
2553 ++ParamIdx;
2554 continue;
2555 }
2556
2557 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
2558 << T
2559 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2560 Invalid = true;
2561 continue;
2562 }
2563 }
2564
2565 // If there were at least as many template-ids as there were template
2566 // parameter lists, then there are no template parameter lists remaining for
2567 // the declaration itself.
2568 if (ParamIdx >= ParamLists.size()) {
2569 if (TemplateId && !IsFriend) {
2570 // We don't have a template header for the declaration itself, but we
2571 // should.
2572 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
2573 TemplateId->RAngleLoc));
2574
2575 // Fabricate an empty template parameter list for the invented header.
2576 return TemplateParameterList::Create(Context, SourceLocation(),
2577 SourceLocation(), None,
2578 SourceLocation(), nullptr);
2579 }
2580
2581 return nullptr;
2582 }
2583
2584 // If there were too many template parameter lists, complain about that now.
2585 if (ParamIdx < ParamLists.size() - 1) {
2586 bool HasAnyExplicitSpecHeader = false;
2587 bool AllExplicitSpecHeaders = true;
2588 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
2589 if (ParamLists[I]->size() == 0)
2590 HasAnyExplicitSpecHeader = true;
2591 else
2592 AllExplicitSpecHeaders = false;
2593 }
2594
2595 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2596 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
2597 : diag::err_template_spec_extra_headers)
2598 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
2599 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
2600
2601 // If there was a specialization somewhere, such that 'template<>' is
2602 // not required, and there were any 'template<>' headers, note where the
2603 // specialization occurred.
2604 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
2605 Diag(ExplicitSpecLoc,
2606 diag::note_explicit_template_spec_does_not_need_header)
2607 << NestedTypes.back();
2608
2609 // We have a template parameter list with no corresponding scope, which
2610 // means that the resulting template declaration can't be instantiated
2611 // properly (we'll end up with dependent nodes when we shouldn't).
2612 if (!AllExplicitSpecHeaders)
2613 Invalid = true;
2614 }
2615
2616 // C++ [temp.expl.spec]p16:
2617 // In an explicit specialization declaration for a member of a class
2618 // template or a member template that ap- pears in namespace scope, the
2619 // member template and some of its enclosing class templates may remain
2620 // unspecialized, except that the declaration shall not explicitly
2621 // specialize a class member template if its en- closing class templates
2622 // are not explicitly specialized as well.
2623 if (ParamLists.back()->size() == 0 &&
2624 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2625 false))
2626 return nullptr;
2627
2628 // Return the last template parameter list, which corresponds to the
2629 // entity being declared.
2630 return ParamLists.back();
2631}
2632
2633void Sema::NoteAllFoundTemplates(TemplateName Name) {
2634 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2635 Diag(Template->getLocation(), diag::note_template_declared_here)
2636 << (isa<FunctionTemplateDecl>(Template)
2637 ? 0
2638 : isa<ClassTemplateDecl>(Template)
2639 ? 1
2640 : isa<VarTemplateDecl>(Template)
2641 ? 2
2642 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
2643 << Template->getDeclName();
2644 return;
2645 }
2646
2647 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
2648 for (OverloadedTemplateStorage::iterator I = OST->begin(),
2649 IEnd = OST->end();
2650 I != IEnd; ++I)
2651 Diag((*I)->getLocation(), diag::note_template_declared_here)
2652 << 0 << (*I)->getDeclName();
2653
2654 return;
2655 }
2656}
2657
2658static QualType
2659checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
2660 const SmallVectorImpl<TemplateArgument> &Converted,
2661 SourceLocation TemplateLoc,
2662 TemplateArgumentListInfo &TemplateArgs) {
2663 ASTContext &Context = SemaRef.getASTContext();
2664 switch (BTD->getBuiltinTemplateKind()) {
2665 case BTK__make_integer_seq: {
2666 // Specializations of __make_integer_seq<S, T, N> are treated like
2667 // S<T, 0, ..., N-1>.
2668
2669 // C++14 [inteseq.intseq]p1:
2670 // T shall be an integer type.
2671 if (!Converted[1].getAsType()->isIntegralType(Context)) {
2672 SemaRef.Diag(TemplateArgs[1].getLocation(),
2673 diag::err_integer_sequence_integral_element_type);
2674 return QualType();
2675 }
2676
2677 // C++14 [inteseq.make]p1:
2678 // If N is negative the program is ill-formed.
2679 TemplateArgument NumArgsArg = Converted[2];
2680 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
2681 if (NumArgs < 0) {
2682 SemaRef.Diag(TemplateArgs[2].getLocation(),
2683 diag::err_integer_sequence_negative_length);
2684 return QualType();
2685 }
2686
2687 QualType ArgTy = NumArgsArg.getIntegralType();
2688 TemplateArgumentListInfo SyntheticTemplateArgs;
2689 // The type argument gets reused as the first template argument in the
2690 // synthetic template argument list.
2691 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
2692 // Expand N into 0 ... N-1.
2693 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
2694 I < NumArgs; ++I) {
2695 TemplateArgument TA(Context, I, ArgTy);
2696 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
2697 TA, ArgTy, TemplateArgs[2].getLocation()));
2698 }
2699 // The first template argument will be reused as the template decl that
2700 // our synthetic template arguments will be applied to.
2701 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
2702 TemplateLoc, SyntheticTemplateArgs);
2703 }
2704
2705 case BTK__type_pack_element:
2706 // Specializations of
2707 // __type_pack_element<Index, T_1, ..., T_N>
2708 // are treated like T_Index.
2709 assert(Converted.size() == 2 &&((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2710, __PRETTY_FUNCTION__))
2710 "__type_pack_element should be given an index and a parameter pack")((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2710, __PRETTY_FUNCTION__))
;
2711
2712 // If the Index is out of bounds, the program is ill-formed.
2713 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
2714 llvm::APSInt Index = IndexArg.getAsIntegral();
2715 assert(Index >= 0 && "the index used with __type_pack_element should be of "((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2716, __PRETTY_FUNCTION__))
2716 "type std::size_t, and hence be non-negative")((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2716, __PRETTY_FUNCTION__))
;
2717 if (Index >= Ts.pack_size()) {
2718 SemaRef.Diag(TemplateArgs[0].getLocation(),
2719 diag::err_type_pack_element_out_of_bounds);
2720 return QualType();
2721 }
2722
2723 // We simply return the type at index `Index`.
2724 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
2725 return Nth->getAsType();
2726 }
2727 llvm_unreachable("unexpected BuiltinTemplateDecl!")::llvm::llvm_unreachable_internal("unexpected BuiltinTemplateDecl!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2727)
;
2728}
2729
2730QualType Sema::CheckTemplateIdType(TemplateName Name,
2731 SourceLocation TemplateLoc,
2732 TemplateArgumentListInfo &TemplateArgs) {
2733 DependentTemplateName *DTN
2734 = Name.getUnderlying().getAsDependentTemplateName();
2735 if (DTN && DTN->isIdentifier())
2736 // When building a template-id where the template-name is dependent,
2737 // assume the template is a type template. Either our assumption is
2738 // correct, or the code is ill-formed and will be diagnosed when the
2739 // dependent name is substituted.
2740 return Context.getDependentTemplateSpecializationType(ETK_None,
2741 DTN->getQualifier(),
2742 DTN->getIdentifier(),
2743 TemplateArgs);
2744
2745 TemplateDecl *Template = Name.getAsTemplateDecl();
2746 if (!Template || isa<FunctionTemplateDecl>(Template) ||
2747 isa<VarTemplateDecl>(Template)) {
2748 // We might have a substituted template template parameter pack. If so,
2749 // build a template specialization type for it.
2750 if (Name.getAsSubstTemplateTemplateParmPack())
2751 return Context.getTemplateSpecializationType(Name, TemplateArgs);
2752
2753 Diag(TemplateLoc, diag::err_template_id_not_a_type)
2754 << Name;
2755 NoteAllFoundTemplates(Name);
2756 return QualType();
2757 }
2758
2759 // Check that the template argument list is well-formed for this
2760 // template.
2761 SmallVector<TemplateArgument, 4> Converted;
2762 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2763 false, Converted))
2764 return QualType();
2765
2766 QualType CanonType;
2767
2768 bool InstantiationDependent = false;
2769 if (TypeAliasTemplateDecl *AliasTemplate =
2770 dyn_cast<TypeAliasTemplateDecl>(Template)) {
2771 // Find the canonical type for this type alias template specialization.
2772 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2773 if (Pattern->isInvalidDecl())
2774 return QualType();
2775
2776 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2777 Converted);
2778
2779 // Only substitute for the innermost template argument list.
2780 MultiLevelTemplateArgumentList TemplateArgLists;
2781 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2782 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2783 for (unsigned I = 0; I < Depth; ++I)
2784 TemplateArgLists.addOuterTemplateArguments(None);
2785
2786 LocalInstantiationScope Scope(*this);
2787 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2788 if (Inst.isInvalid())
2789 return QualType();
2790
2791 CanonType = SubstType(Pattern->getUnderlyingType(),
2792 TemplateArgLists, AliasTemplate->getLocation(),
2793 AliasTemplate->getDeclName());
2794 if (CanonType.isNull())
2795 return QualType();
2796 } else if (Name.isDependent() ||
2797 TemplateSpecializationType::anyDependentTemplateArguments(
2798 TemplateArgs, InstantiationDependent)) {
2799 // This class template specialization is a dependent
2800 // type. Therefore, its canonical type is another class template
2801 // specialization type that contains all of the converted
2802 // arguments in canonical form. This ensures that, e.g., A<T> and
2803 // A<T, T> have identical types when A is declared as:
2804 //
2805 // template<typename T, typename U = T> struct A;
2806 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
2807
2808 // This might work out to be a current instantiation, in which
2809 // case the canonical type needs to be the InjectedClassNameType.
2810 //
2811 // TODO: in theory this could be a simple hashtable lookup; most
2812 // changes to CurContext don't change the set of current
2813 // instantiations.
2814 if (isa<ClassTemplateDecl>(Template)) {
2815 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2816 // If we get out to a namespace, we're done.
2817 if (Ctx->isFileContext()) break;
2818
2819 // If this isn't a record, keep looking.
2820 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2821 if (!Record) continue;
2822
2823 // Look for one of the two cases with InjectedClassNameTypes
2824 // and check whether it's the same template.
2825 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2826 !Record->getDescribedClassTemplate())
2827 continue;
2828
2829 // Fetch the injected class name type and check whether its
2830 // injected type is equal to the type we just built.
2831 QualType ICNT = Context.getTypeDeclType(Record);
2832 QualType Injected = cast<InjectedClassNameType>(ICNT)
2833 ->getInjectedSpecializationType();
2834
2835 if (CanonType != Injected->getCanonicalTypeInternal())
2836 continue;
2837
2838 // If so, the canonical type of this TST is the injected
2839 // class name type of the record we just found.
2840 assert(ICNT.isCanonical())((ICNT.isCanonical()) ? static_cast<void> (0) : __assert_fail
("ICNT.isCanonical()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2840, __PRETTY_FUNCTION__))
;
2841 CanonType = ICNT;
2842 break;
2843 }
2844 }
2845 } else if (ClassTemplateDecl *ClassTemplate
2846 = dyn_cast<ClassTemplateDecl>(Template)) {
2847 // Find the class template specialization declaration that
2848 // corresponds to these arguments.
2849 void *InsertPos = nullptr;
2850 ClassTemplateSpecializationDecl *Decl
2851 = ClassTemplate->findSpecialization(Converted, InsertPos);
2852 if (!Decl) {
2853 // This is the first time we have referenced this class template
2854 // specialization. Create the canonical declaration and add it to
2855 // the set of specializations.
2856 Decl = ClassTemplateSpecializationDecl::Create(Context,
2857 ClassTemplate->getTemplatedDecl()->getTagKind(),
2858 ClassTemplate->getDeclContext(),
2859 ClassTemplate->getTemplatedDecl()->getLocStart(),
2860 ClassTemplate->getLocation(),
2861 ClassTemplate,
2862 Converted, nullptr);
2863 ClassTemplate->AddSpecialization(Decl, InsertPos);
2864 if (ClassTemplate->isOutOfLine())
2865 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2866 }
2867
2868 if (Decl->getSpecializationKind() == TSK_Undeclared) {
2869 MultiLevelTemplateArgumentList TemplateArgLists;
2870 TemplateArgLists.addOuterTemplateArguments(Converted);
2871 InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(),
2872 Decl);
2873 }
2874
2875 // Diagnose uses of this specialization.
2876 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2877
2878 CanonType = Context.getTypeDeclType(Decl);
2879 assert(isa<RecordType>(CanonType) &&((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2880, __PRETTY_FUNCTION__))
2880 "type of non-dependent specialization is not a RecordType")((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2880, __PRETTY_FUNCTION__))
;
2881 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
2882 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
2883 TemplateArgs);
2884 }
2885
2886 // Build the fully-sugared type for this class template
2887 // specialization, which refers back to the class template
2888 // specialization we created or found.
2889 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2890}
2891
2892TypeResult
2893Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2894 TemplateTy TemplateD, IdentifierInfo *TemplateII,
2895 SourceLocation TemplateIILoc,
2896 SourceLocation LAngleLoc,
2897 ASTTemplateArgsPtr TemplateArgsIn,
2898 SourceLocation RAngleLoc,
2899 bool IsCtorOrDtorName, bool IsClassName) {
2900 if (SS.isInvalid())
2901 return true;
2902
2903 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
2904 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
2905
2906 // C++ [temp.res]p3:
2907 // A qualified-id that refers to a type and in which the
2908 // nested-name-specifier depends on a template-parameter (14.6.2)
2909 // shall be prefixed by the keyword typename to indicate that the
2910 // qualified-id denotes a type, forming an
2911 // elaborated-type-specifier (7.1.5.3).
2912 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
2913 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
2914 << SS.getScopeRep() << TemplateII->getName();
2915 // Recover as if 'typename' were specified.
2916 // FIXME: This is not quite correct recovery as we don't transform SS
2917 // into the corresponding dependent form (and we don't diagnose missing
2918 // 'template' keywords within SS as a result).
2919 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
2920 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
2921 TemplateArgsIn, RAngleLoc);
2922 }
2923
2924 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
2925 // it's not actually allowed to be used as a type in most cases. Because
2926 // we annotate it before we know whether it's valid, we have to check for
2927 // this case here.
2928 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
2929 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
2930 Diag(TemplateIILoc,
2931 TemplateKWLoc.isInvalid()
2932 ? diag::err_out_of_line_qualified_id_type_names_constructor
2933 : diag::ext_out_of_line_qualified_id_type_names_constructor)
2934 << TemplateII << 0 /*injected-class-name used as template name*/
2935 << 1 /*if any keyword was present, it was 'template'*/;
2936 }
2937 }
2938
2939 TemplateName Template = TemplateD.get();
2940
2941 // Translate the parser's template argument list in our AST format.
2942 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2943 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2944
2945 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2946 QualType T
2947 = Context.getDependentTemplateSpecializationType(ETK_None,
2948 DTN->getQualifier(),
2949 DTN->getIdentifier(),
2950 TemplateArgs);
2951 // Build type-source information.
2952 TypeLocBuilder TLB;
2953 DependentTemplateSpecializationTypeLoc SpecTL
2954 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2955 SpecTL.setElaboratedKeywordLoc(SourceLocation());
2956 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2957 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2958 SpecTL.setTemplateNameLoc(TemplateIILoc);
2959 SpecTL.setLAngleLoc(LAngleLoc);
2960 SpecTL.setRAngleLoc(RAngleLoc);
2961 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2962 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2963 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2964 }
2965
2966 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
2967 if (Result.isNull())
2968 return true;
2969
2970 // Build type-source information.
2971 TypeLocBuilder TLB;
2972 TemplateSpecializationTypeLoc SpecTL
2973 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2974 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2975 SpecTL.setTemplateNameLoc(TemplateIILoc);
2976 SpecTL.setLAngleLoc(LAngleLoc);
2977 SpecTL.setRAngleLoc(RAngleLoc);
2978 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2979 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2980
2981 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2982 // constructor or destructor name (in such a case, the scope specifier
2983 // will be attached to the enclosing Decl or Expr node).
2984 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2985 // Create an elaborated-type-specifier containing the nested-name-specifier.
2986 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2987 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2988 ElabTL.setElaboratedKeywordLoc(SourceLocation());
2989 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2990 }
2991
2992 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2993}
2994
2995TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2996 TypeSpecifierType TagSpec,
2997 SourceLocation TagLoc,
2998 CXXScopeSpec &SS,
2999 SourceLocation TemplateKWLoc,
3000 TemplateTy TemplateD,
3001 SourceLocation TemplateLoc,
3002 SourceLocation LAngleLoc,
3003 ASTTemplateArgsPtr TemplateArgsIn,
3004 SourceLocation RAngleLoc) {
3005 TemplateName Template = TemplateD.get();
3006
3007 // Translate the parser's template argument list in our AST format.
3008 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3009 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3010
3011 // Determine the tag kind
3012 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3013 ElaboratedTypeKeyword Keyword
3014 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
3015
3016 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3017 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
3018 DTN->getQualifier(),
3019 DTN->getIdentifier(),
3020 TemplateArgs);
3021
3022 // Build type-source information.
3023 TypeLocBuilder TLB;
3024 DependentTemplateSpecializationTypeLoc SpecTL
3025 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3026 SpecTL.setElaboratedKeywordLoc(TagLoc);
3027 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3028 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3029 SpecTL.setTemplateNameLoc(TemplateLoc);
3030 SpecTL.setLAngleLoc(LAngleLoc);
3031 SpecTL.setRAngleLoc(RAngleLoc);
3032 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3033 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3034 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3035 }
3036
3037 if (TypeAliasTemplateDecl *TAT =
3038 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
3039 // C++0x [dcl.type.elab]p2:
3040 // If the identifier resolves to a typedef-name or the simple-template-id
3041 // resolves to an alias template specialization, the
3042 // elaborated-type-specifier is ill-formed.
3043 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
3044 << TAT << NTK_TypeAliasTemplate << TagKind;
3045 Diag(TAT->getLocation(), diag::note_declared_at);
3046 }
3047
3048 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
3049 if (Result.isNull())
3050 return TypeResult(true);
3051
3052 // Check the tag kind
3053 if (const RecordType *RT = Result->getAs<RecordType>()) {
3054 RecordDecl *D = RT->getDecl();
3055
3056 IdentifierInfo *Id = D->getIdentifier();
3057 assert(Id && "templated class must have an identifier")((Id && "templated class must have an identifier") ? static_cast
<void> (0) : __assert_fail ("Id && \"templated class must have an identifier\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3057, __PRETTY_FUNCTION__))
;
3058
3059 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
3060 TagLoc, Id)) {
3061 Diag(TagLoc, diag::err_use_with_wrong_tag)
3062 << Result
3063 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
3064 Diag(D->getLocation(), diag::note_previous_use);
3065 }
3066 }
3067
3068 // Provide source-location information for the template specialization.
3069 TypeLocBuilder TLB;
3070 TemplateSpecializationTypeLoc SpecTL
3071 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3072 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3073 SpecTL.setTemplateNameLoc(TemplateLoc);
3074 SpecTL.setLAngleLoc(LAngleLoc);
3075 SpecTL.setRAngleLoc(RAngleLoc);
3076 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3077 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3078
3079 // Construct an elaborated type containing the nested-name-specifier (if any)
3080 // and tag keyword.
3081 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
3082 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3083 ElabTL.setElaboratedKeywordLoc(TagLoc);
3084 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3085 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3086}
3087
3088static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
3089 NamedDecl *PrevDecl,
3090 SourceLocation Loc,
3091 bool IsPartialSpecialization);
3092
3093static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
3094
3095static bool isTemplateArgumentTemplateParameter(
3096 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
3097 switch (Arg.getKind()) {
3098 case TemplateArgument::Null:
3099 case TemplateArgument::NullPtr:
3100 case TemplateArgument::Integral:
3101 case TemplateArgument::Declaration:
3102 case TemplateArgument::Pack:
3103 case TemplateArgument::TemplateExpansion:
3104 return false;
3105
3106 case TemplateArgument::Type: {
3107 QualType Type = Arg.getAsType();
3108 const TemplateTypeParmType *TPT =
3109 Arg.getAsType()->getAs<TemplateTypeParmType>();
3110 return TPT && !Type.hasQualifiers() &&
3111 TPT->getDepth() == Depth && TPT->getIndex() == Index;
3112 }
3113
3114 case TemplateArgument::Expression: {
3115 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
3116 if (!DRE || !DRE->getDecl())
3117 return false;
3118 const NonTypeTemplateParmDecl *NTTP =
3119 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3120 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
3121 }
3122
3123 case TemplateArgument::Template:
3124 const TemplateTemplateParmDecl *TTP =
3125 dyn_cast_or_null<TemplateTemplateParmDecl>(
3126 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
3127 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
3128 }
3129 llvm_unreachable("unexpected kind of template argument")::llvm::llvm_unreachable_internal("unexpected kind of template argument"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3129)
;
3130}
3131
3132static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
3133 ArrayRef<TemplateArgument> Args) {
3134 if (Params->size() != Args.size())
3135 return false;
3136
3137 unsigned Depth = Params->getDepth();
3138
3139 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3140 TemplateArgument Arg = Args[I];
3141
3142 // If the parameter is a pack expansion, the argument must be a pack
3143 // whose only element is a pack expansion.
3144 if (Params->getParam(I)->isParameterPack()) {
3145 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
3146 !Arg.pack_begin()->isPackExpansion())
3147 return false;
3148 Arg = Arg.pack_begin()->getPackExpansionPattern();
3149 }
3150
3151 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
3152 return false;
3153 }
3154
3155 return true;
3156}
3157
3158/// Convert the parser's template argument list representation into our form.
3159static TemplateArgumentListInfo
3160makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
3161 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
3162 TemplateId.RAngleLoc);
3163 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
3164 TemplateId.NumArgs);
3165 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
3166 return TemplateArgs;
3167}
3168
3169template<typename PartialSpecDecl>
3170static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
3171 if (Partial->getDeclContext()->isDependentContext())
3172 return;
3173
3174 // FIXME: Get the TDK from deduction in order to provide better diagnostics
3175 // for non-substitution-failure issues?
3176 TemplateDeductionInfo Info(Partial->getLocation());
3177 if (S.isMoreSpecializedThanPrimary(Partial, Info))
3178 return;
3179
3180 auto *Template = Partial->getSpecializedTemplate();
3181 S.Diag(Partial->getLocation(),
3182 diag::ext_partial_spec_not_more_specialized_than_primary)
3183 << isa<VarTemplateDecl>(Template);
3184
3185 if (Info.hasSFINAEDiagnostic()) {
3186 PartialDiagnosticAt Diag = {SourceLocation(),
3187 PartialDiagnostic::NullDiagnostic()};
3188 Info.takeSFINAEDiagnostic(Diag);
3189 SmallString<128> SFINAEArgString;
3190 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
3191 S.Diag(Diag.first,
3192 diag::note_partial_spec_not_more_specialized_than_primary)
3193 << SFINAEArgString;
3194 }
3195
3196 S.Diag(Template->getLocation(), diag::note_template_decl_here);
3197}
3198
3199static void
3200noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
3201 const llvm::SmallBitVector &DeducibleParams) {
3202 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3203 if (!DeducibleParams[I]) {
3204 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3205 if (Param->getDeclName())
3206 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3207 << Param->getDeclName();
3208 else
3209 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3210 << "(anonymous)";
3211 }
3212 }
3213}
3214
3215
3216template<typename PartialSpecDecl>
3217static void checkTemplatePartialSpecialization(Sema &S,
3218 PartialSpecDecl *Partial) {
3219 // C++1z [temp.class.spec]p8: (DR1495)
3220 // - The specialization shall be more specialized than the primary
3221 // template (14.5.5.2).
3222 checkMoreSpecializedThanPrimary(S, Partial);
3223
3224 // C++ [temp.class.spec]p8: (DR1315)
3225 // - Each template-parameter shall appear at least once in the
3226 // template-id outside a non-deduced context.
3227 // C++1z [temp.class.spec.match]p3 (P0127R2)
3228 // If the template arguments of a partial specialization cannot be
3229 // deduced because of the structure of its template-parameter-list
3230 // and the template-id, the program is ill-formed.
3231 auto *TemplateParams = Partial->getTemplateParameters();
3232 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3233 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3234 TemplateParams->getDepth(), DeducibleParams);
3235
3236 if (!DeducibleParams.all()) {
3237 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3238 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
3239 << isa<VarTemplatePartialSpecializationDecl>(Partial)
3240 << (NumNonDeducible > 1)
3241 << SourceRange(Partial->getLocation(),
3242 Partial->getTemplateArgsAsWritten()->RAngleLoc);
3243 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
3244 }
3245}
3246
3247void Sema::CheckTemplatePartialSpecialization(
3248 ClassTemplatePartialSpecializationDecl *Partial) {
3249 checkTemplatePartialSpecialization(*this, Partial);
3250}
3251
3252void Sema::CheckTemplatePartialSpecialization(
3253 VarTemplatePartialSpecializationDecl *Partial) {
3254 checkTemplatePartialSpecialization(*this, Partial);
3255}
3256
3257void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
3258 // C++1z [temp.param]p11:
3259 // A template parameter of a deduction guide template that does not have a
3260 // default-argument shall be deducible from the parameter-type-list of the
3261 // deduction guide template.
3262 auto *TemplateParams = TD->getTemplateParameters();
3263 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3264 MarkDeducedTemplateParameters(TD, DeducibleParams);
3265 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
3266 // A parameter pack is deducible (to an empty pack).
3267 auto *Param = TemplateParams->getParam(I);
3268 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
3269 DeducibleParams[I] = true;
3270 }
3271
3272 if (!DeducibleParams.all()) {
3273 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3274 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
3275 << (NumNonDeducible > 1);
3276 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
3277 }
3278}
3279
3280DeclResult Sema::ActOnVarTemplateSpecialization(
3281 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
3282 TemplateParameterList *TemplateParams, StorageClass SC,
3283 bool IsPartialSpecialization) {
3284 // D must be variable template id.
3285 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&((D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedId::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3286, __PRETTY_FUNCTION__))
3286 "Variable template specialization is declared with a template it.")((D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedId::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3286, __PRETTY_FUNCTION__))
;
3287
3288 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3289 TemplateArgumentListInfo TemplateArgs =
3290 makeTemplateArgumentListInfo(*this, *TemplateId);
3291 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
3292 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
3293 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
3294
3295 TemplateName Name = TemplateId->Template.get();
3296
3297 // The template-id must name a variable template.
3298 VarTemplateDecl *VarTemplate =
3299 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
3300 if (!VarTemplate) {
3301 NamedDecl *FnTemplate;
3302 if (auto *OTS = Name.getAsOverloadedTemplate())
3303 FnTemplate = *OTS->begin();
3304 else
3305 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
3306 if (FnTemplate)
3307 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
3308 << FnTemplate->getDeclName();
3309 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
3310 << IsPartialSpecialization;
3311 }
3312
3313 // Check for unexpanded parameter packs in any of the template arguments.
3314 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3315 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
3316 UPPC_PartialSpecialization))
3317 return true;
3318
3319 // Check that the template argument list is well-formed for this
3320 // template.
3321 SmallVector<TemplateArgument, 4> Converted;
3322 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
3323 false, Converted))
3324 return true;
3325
3326 // Find the variable template (partial) specialization declaration that
3327 // corresponds to these arguments.
3328 if (IsPartialSpecialization) {
3329 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
3330 TemplateArgs.size(), Converted))
3331 return true;
3332
3333 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
3334 // also do them during instantiation.
3335 bool InstantiationDependent;
3336 if (!Name.isDependent() &&
3337 !TemplateSpecializationType::anyDependentTemplateArguments(
3338 TemplateArgs.arguments(),
3339 InstantiationDependent)) {
3340 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3341 << VarTemplate->getDeclName();
3342 IsPartialSpecialization = false;
3343 }
3344
3345 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
3346 Converted)) {
3347 // C++ [temp.class.spec]p9b3:
3348 //
3349 // -- The argument list of the specialization shall not be identical
3350 // to the implicit argument list of the primary template.
3351 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3352 << /*variable template*/ 1
3353 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
3354 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3355 // FIXME: Recover from this by treating the declaration as a redeclaration
3356 // of the primary template.
3357 return true;
3358 }
3359 }
3360
3361 void *InsertPos = nullptr;
3362 VarTemplateSpecializationDecl *PrevDecl = nullptr;
3363
3364 if (IsPartialSpecialization)
3365 // FIXME: Template parameter list matters too
3366 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
3367 else
3368 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
3369
3370 VarTemplateSpecializationDecl *Specialization = nullptr;
3371
3372 // Check whether we can declare a variable template specialization in
3373 // the current scope.
3374 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
3375 TemplateNameLoc,
3376 IsPartialSpecialization))
3377 return true;
3378
3379 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3380 // Since the only prior variable template specialization with these
3381 // arguments was referenced but not declared, reuse that
3382 // declaration node as our own, updating its source location and
3383 // the list of outer template parameters to reflect our new declaration.
3384 Specialization = PrevDecl;
3385 Specialization->setLocation(TemplateNameLoc);
3386 PrevDecl = nullptr;
3387 } else if (IsPartialSpecialization) {
3388 // Create a new class template partial specialization declaration node.
3389 VarTemplatePartialSpecializationDecl *PrevPartial =
3390 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
3391 VarTemplatePartialSpecializationDecl *Partial =
3392 VarTemplatePartialSpecializationDecl::Create(
3393 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
3394 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
3395 Converted, TemplateArgs);
3396
3397 if (!PrevPartial)
3398 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
3399 Specialization = Partial;
3400
3401 // If we are providing an explicit specialization of a member variable
3402 // template specialization, make a note of that.
3403 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3404 PrevPartial->setMemberSpecialization();
3405
3406 CheckTemplatePartialSpecialization(Partial);
3407 } else {
3408 // Create a new class template specialization declaration node for
3409 // this explicit specialization or friend declaration.
3410 Specialization = VarTemplateSpecializationDecl::Create(
3411 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
3412 VarTemplate, DI->getType(), DI, SC, Converted);
3413 Specialization->setTemplateArgsInfo(TemplateArgs);
3414
3415 if (!PrevDecl)
3416 VarTemplate->AddSpecialization(Specialization, InsertPos);
3417 }
3418
3419 // C++ [temp.expl.spec]p6:
3420 // If a template, a member template or the member of a class template is
3421 // explicitly specialized then that specialization shall be declared
3422 // before the first use of that specialization that would cause an implicit
3423 // instantiation to take place, in every translation unit in which such a
3424 // use occurs; no diagnostic is required.
3425 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3426 bool Okay = false;
3427 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
3428 // Is there any previous explicit specialization declaration?
3429 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3430 Okay = true;
3431 break;
3432 }
3433 }
3434
3435 if (!Okay) {
3436 SourceRange Range(TemplateNameLoc, RAngleLoc);
3437 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3438 << Name << Range;
3439
3440 Diag(PrevDecl->getPointOfInstantiation(),
3441 diag::note_instantiation_required_here)
3442 << (PrevDecl->getTemplateSpecializationKind() !=
3443 TSK_ImplicitInstantiation);
3444 return true;
3445 }
3446 }
3447
3448 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
3449 Specialization->setLexicalDeclContext(CurContext);
3450
3451 // Add the specialization into its lexical context, so that it can
3452 // be seen when iterating through the list of declarations in that
3453 // context. However, specializations are not found by name lookup.
3454 CurContext->addDecl(Specialization);
3455
3456 // Note that this is an explicit specialization.
3457 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3458
3459 if (PrevDecl) {
3460 // Check that this isn't a redefinition of this specialization,
3461 // merging with previous declarations.
3462 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
3463 ForRedeclaration);
3464 PrevSpec.addDecl(PrevDecl);
3465 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
3466 } else if (Specialization->isStaticDataMember() &&
3467 Specialization->isOutOfLine()) {
3468 Specialization->setAccess(VarTemplate->getAccess());
3469 }
3470
3471 // Link instantiations of static data members back to the template from
3472 // which they were instantiated.
3473 if (Specialization->isStaticDataMember())
3474 Specialization->setInstantiationOfStaticDataMember(
3475 VarTemplate->getTemplatedDecl(),
3476 Specialization->getSpecializationKind());
3477
3478 return Specialization;
3479}
3480
3481namespace {
3482/// \brief A partial specialization whose template arguments have matched
3483/// a given template-id.
3484struct PartialSpecMatchResult {
3485 VarTemplatePartialSpecializationDecl *Partial;
3486 TemplateArgumentList *Args;
3487};
3488} // end anonymous namespace
3489
3490DeclResult
3491Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
3492 SourceLocation TemplateNameLoc,
3493 const TemplateArgumentListInfo &TemplateArgs) {
3494 assert(Template && "A variable template id without template?")((Template && "A variable template id without template?"
) ? static_cast<void> (0) : __assert_fail ("Template && \"A variable template id without template?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3494, __PRETTY_FUNCTION__))
;
3495
3496 // Check that the template argument list is well-formed for this template.
3497 SmallVector<TemplateArgument, 4> Converted;
3498 if (CheckTemplateArgumentList(
3499 Template, TemplateNameLoc,
3500 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
3501 Converted))
3502 return true;
3503
3504 // Find the variable template specialization declaration that
3505 // corresponds to these arguments.
3506 void *InsertPos = nullptr;
3507 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
3508 Converted, InsertPos)) {
3509 checkSpecializationVisibility(TemplateNameLoc, Spec);
3510 // If we already have a variable template specialization, return it.
3511 return Spec;
3512 }
3513
3514 // This is the first time we have referenced this variable template
3515 // specialization. Create the canonical declaration and add it to
3516 // the set of specializations, based on the closest partial specialization
3517 // that it represents. That is,
3518 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
3519 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
3520 Converted);
3521 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
3522 bool AmbiguousPartialSpec = false;
3523 typedef PartialSpecMatchResult MatchResult;
3524 SmallVector<MatchResult, 4> Matched;
3525 SourceLocation PointOfInstantiation = TemplateNameLoc;
3526 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
3527 /*ForTakingAddress=*/false);
3528
3529 // 1. Attempt to find the closest partial specialization that this
3530 // specializes, if any.
3531 // If any of the template arguments is dependent, then this is probably
3532 // a placeholder for an incomplete declarative context; which must be
3533 // complete by instantiation time. Thus, do not search through the partial
3534 // specializations yet.
3535 // TODO: Unify with InstantiateClassTemplateSpecialization()?
3536 // Perhaps better after unification of DeduceTemplateArguments() and
3537 // getMoreSpecializedPartialSpecialization().
3538 bool InstantiationDependent = false;
3539 if (!TemplateSpecializationType::anyDependentTemplateArguments(
3540 TemplateArgs, InstantiationDependent)) {
3541
3542 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
3543 Template->getPartialSpecializations(PartialSpecs);
3544
3545 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
3546 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
3547 TemplateDeductionInfo Info(FailedCandidates.getLocation());
3548
3549 if (TemplateDeductionResult Result =
3550 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
3551 // Store the failed-deduction information for use in diagnostics, later.
3552 // TODO: Actually use the failed-deduction info?
3553 FailedCandidates.addCandidate().set(
3554 DeclAccessPair::make(Template, AS_public), Partial,
3555 MakeDeductionFailureInfo(Context, Result, Info));
3556 (void)Result;
3557 } else {
3558 Matched.push_back(PartialSpecMatchResult());
3559 Matched.back().Partial = Partial;
3560 Matched.back().Args = Info.take();
3561 }
3562 }
3563
3564 if (Matched.size() >= 1) {
3565 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
3566 if (Matched.size() == 1) {
3567 // -- If exactly one matching specialization is found, the
3568 // instantiation is generated from that specialization.
3569 // We don't need to do anything for this.
3570 } else {
3571 // -- If more than one matching specialization is found, the
3572 // partial order rules (14.5.4.2) are used to determine
3573 // whether one of the specializations is more specialized
3574 // than the others. If none of the specializations is more
3575 // specialized than all of the other matching
3576 // specializations, then the use of the variable template is
3577 // ambiguous and the program is ill-formed.
3578 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
3579 PEnd = Matched.end();
3580 P != PEnd; ++P) {
3581 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
3582 PointOfInstantiation) ==
3583 P->Partial)
3584 Best = P;
3585 }
3586
3587 // Determine if the best partial specialization is more specialized than
3588 // the others.
3589 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
3590 PEnd = Matched.end();
3591 P != PEnd; ++P) {
3592 if (P != Best && getMoreSpecializedPartialSpecialization(
3593 P->Partial, Best->Partial,
3594 PointOfInstantiation) != Best->Partial) {
3595 AmbiguousPartialSpec = true;
3596 break;
3597 }
3598 }
3599 }
3600
3601 // Instantiate using the best variable template partial specialization.
3602 InstantiationPattern = Best->Partial;
3603 InstantiationArgs = Best->Args;
3604 } else {
3605 // -- If no match is found, the instantiation is generated
3606 // from the primary template.
3607 // InstantiationPattern = Template->getTemplatedDecl();
3608 }
3609 }
3610
3611 // 2. Create the canonical declaration.
3612 // Note that we do not instantiate a definition until we see an odr-use
3613 // in DoMarkVarDeclReferenced().
3614 // FIXME: LateAttrs et al.?
3615 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
3616 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
3617 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
3618 if (!Decl)
3619 return true;
3620
3621 if (AmbiguousPartialSpec) {
3622 // Partial ordering did not produce a clear winner. Complain.
3623 Decl->setInvalidDecl();
3624 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
3625 << Decl;
3626
3627 // Print the matching partial specializations.
3628 for (MatchResult P : Matched)
3629 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
3630 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
3631 *P.Args);
3632 return true;
3633 }
3634
3635 if (VarTemplatePartialSpecializationDecl *D =
3636 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
3637 Decl->setInstantiationOf(D, InstantiationArgs);
3638
3639 checkSpecializationVisibility(TemplateNameLoc, Decl);
3640
3641 assert(Decl && "No variable template specialization?")((Decl && "No variable template specialization?") ? static_cast
<void> (0) : __assert_fail ("Decl && \"No variable template specialization?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3641, __PRETTY_FUNCTION__))
;
3642 return Decl;
3643}
3644
3645ExprResult
3646Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
3647 const DeclarationNameInfo &NameInfo,
3648 VarTemplateDecl *Template, SourceLocation TemplateLoc,
3649 const TemplateArgumentListInfo *TemplateArgs) {
3650
3651 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
3652 *TemplateArgs);
3653 if (Decl.isInvalid())
3654 return ExprError();
3655
3656 VarDecl *Var = cast<VarDecl>(Decl.get());
3657 if (!Var->getTemplateSpecializationKind())
3658 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
3659 NameInfo.getLoc());
3660
3661 // Build an ordinary singleton decl ref.
3662 return BuildDeclarationNameExpr(SS, NameInfo, Var,
3663 /*FoundD=*/nullptr, TemplateArgs);
3664}
3665
3666ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
3667 SourceLocation TemplateKWLoc,
3668 LookupResult &R,
3669 bool RequiresADL,
3670 const TemplateArgumentListInfo *TemplateArgs) {
3671 // FIXME: Can we do any checking at this point? I guess we could check the
3672 // template arguments that we have against the template name, if the template
3673 // name refers to a single template. That's not a terribly common case,
3674 // though.
3675 // foo<int> could identify a single function unambiguously
3676 // This approach does NOT work, since f<int>(1);
3677 // gets resolved prior to resorting to overload resolution
3678 // i.e., template<class T> void f(double);
3679 // vs template<class T, class U> void f(U);
3680
3681 // These should be filtered out by our callers.
3682 assert(!R.empty() && "empty lookup results when building templateid")((!R.empty() && "empty lookup results when building templateid"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"empty lookup results when building templateid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3682, __PRETTY_FUNCTION__))
;
3683 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid")((!R.isAmbiguous() && "ambiguous lookup when building templateid"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"ambiguous lookup when building templateid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3683, __PRETTY_FUNCTION__))
;
3684
3685 // In C++1y, check variable template ids.
3686 bool InstantiationDependent;
3687 if (R.getAsSingle<VarTemplateDecl>() &&
3688 !TemplateSpecializationType::anyDependentTemplateArguments(
3689 *TemplateArgs, InstantiationDependent)) {
3690 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
3691 R.getAsSingle<VarTemplateDecl>(),
3692 TemplateKWLoc, TemplateArgs);
3693 }
3694
3695 // We don't want lookup warnings at this point.
3696 R.suppressDiagnostics();
3697
3698 UnresolvedLookupExpr *ULE
3699 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3700 SS.getWithLocInContext(Context),
3701 TemplateKWLoc,
3702 R.getLookupNameInfo(),
3703 RequiresADL, TemplateArgs,
3704 R.begin(), R.end());
3705
3706 return ULE;
3707}
3708
3709// We actually only call this from template instantiation.
3710ExprResult
3711Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
3712 SourceLocation TemplateKWLoc,
3713 const DeclarationNameInfo &NameInfo,
3714 const TemplateArgumentListInfo *TemplateArgs) {
3715
3716 assert(TemplateArgs || TemplateKWLoc.isValid())((TemplateArgs || TemplateKWLoc.isValid()) ? static_cast<void
> (0) : __assert_fail ("TemplateArgs || TemplateKWLoc.isValid()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3716, __PRETTY_FUNCTION__))
;
3717 DeclContext *DC;
3718 if (!(DC = computeDeclContext(SS, false)) ||
3719 DC->isDependentContext() ||
3720 RequireCompleteDeclContext(SS, DC))
3721 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
3722
3723 bool MemberOfUnknownSpecialization;
3724 LookupResult R(*this, NameInfo, LookupOrdinaryName);
3725 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
3726 MemberOfUnknownSpecialization);
3727
3728 if (R.isAmbiguous())
3729 return ExprError();
3730
3731 if (R.empty()) {
3732 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
3733 << NameInfo.getName() << SS.getRange();
3734 return ExprError();
3735 }
3736
3737 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
3738 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
3739 << SS.getScopeRep()
3740 << NameInfo.getName().getAsString() << SS.getRange();
3741 Diag(Temp->getLocation(), diag::note_referenced_class_template);
3742 return ExprError();
3743 }
3744
3745 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
3746}
3747
3748/// \brief Form a dependent template name.
3749///
3750/// This action forms a dependent template name given the template
3751/// name and its (presumably dependent) scope specifier. For
3752/// example, given "MetaFun::template apply", the scope specifier \p
3753/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
3754/// of the "template" keyword, and "apply" is the \p Name.
3755TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
3756 CXXScopeSpec &SS,
3757 SourceLocation TemplateKWLoc,
3758 UnqualifiedId &Name,
3759 ParsedType ObjectType,
3760 bool EnteringContext,
3761 TemplateTy &Result,
3762 bool AllowInjectedClassName) {
3763 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
3764 Diag(TemplateKWLoc,
3765 getLangOpts().CPlusPlus11 ?
3766 diag::warn_cxx98_compat_template_outside_of_template :
3767 diag::ext_template_outside_of_template)
3768 << FixItHint::CreateRemoval(TemplateKWLoc);
3769
3770 DeclContext *LookupCtx = nullptr;
3771 if (SS.isSet())
3772 LookupCtx = computeDeclContext(SS, EnteringContext);
3773 if (!LookupCtx && ObjectType)
3774 LookupCtx = computeDeclContext(ObjectType.get());
3775 if (LookupCtx) {
3776 // C++0x [temp.names]p5:
3777 // If a name prefixed by the keyword template is not the name of
3778 // a template, the program is ill-formed. [Note: the keyword
3779 // template may not be applied to non-template members of class
3780 // templates. -end note ] [ Note: as is the case with the
3781 // typename prefix, the template prefix is allowed in cases
3782 // where it is not strictly necessary; i.e., when the
3783 // nested-name-specifier or the expression on the left of the ->
3784 // or . is not dependent on a template-parameter, or the use
3785 // does not appear in the scope of a template. -end note]
3786 //
3787 // Note: C++03 was more strict here, because it banned the use of
3788 // the "template" keyword prior to a template-name that was not a
3789 // dependent name. C++ DR468 relaxed this requirement (the
3790 // "template" keyword is now permitted). We follow the C++0x
3791 // rules, even in C++03 mode with a warning, retroactively applying the DR.
3792 bool MemberOfUnknownSpecialization;
3793 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
3794 ObjectType, EnteringContext, Result,
3795 MemberOfUnknownSpecialization);
3796 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
3797 isa<CXXRecordDecl>(LookupCtx) &&
3798 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
3799 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
3800 // This is a dependent template. Handle it below.
3801 } else if (TNK == TNK_Non_template) {
3802 Diag(Name.getLocStart(),
3803 diag::err_template_kw_refers_to_non_template)
3804 << GetNameFromUnqualifiedId(Name).getName()
3805 << Name.getSourceRange()
3806 << TemplateKWLoc;
3807 return TNK_Non_template;
3808 } else {
3809 // We found something; return it.
3810 auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx);
3811 if (!AllowInjectedClassName && SS.isSet() && LookupRD &&
3812 Name.getKind() == UnqualifiedId::IK_Identifier && Name.Identifier &&
3813 LookupRD->getIdentifier() == Name.Identifier) {
3814 // C++14 [class.qual]p2:
3815 // In a lookup in which function names are not ignored and the
3816 // nested-name-specifier nominates a class C, if the name specified
3817 // [...] is the injected-class-name of C, [...] the name is instead
3818 // considered to name the constructor
3819 //
3820 // We don't get here if naming the constructor would be valid, so we
3821 // just reject immediately and recover by treating the
3822 // injected-class-name as naming the template.
3823 Diag(Name.getLocStart(),
3824 diag::ext_out_of_line_qualified_id_type_names_constructor)
3825 << Name.Identifier << 0 /*injected-class-name used as template name*/
3826 << 1 /*'template' keyword was used*/;
3827 }
3828 return TNK;
3829 }
3830 }
3831
3832 NestedNameSpecifier *Qualifier = SS.getScopeRep();
3833
3834 switch (Name.getKind()) {
3835 case UnqualifiedId::IK_Identifier:
3836 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3837 Name.Identifier));
3838 return TNK_Dependent_template_name;
3839
3840 case UnqualifiedId::IK_OperatorFunctionId:
3841 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3842 Name.OperatorFunctionId.Operator));
3843 return TNK_Function_template;
3844
3845 case UnqualifiedId::IK_LiteralOperatorId:
3846 llvm_unreachable("literal operator id cannot have a dependent scope")::llvm::llvm_unreachable_internal("literal operator id cannot have a dependent scope"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3846)
;
3847
3848 default:
3849 break;
3850 }
3851
3852 Diag(Name.getLocStart(),
3853 diag::err_template_kw_refers_to_non_template)
3854 << GetNameFromUnqualifiedId(Name).getName()
3855 << Name.getSourceRange()
3856 << TemplateKWLoc;
3857 return TNK_Non_template;
3858}
3859
3860bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
3861 TemplateArgumentLoc &AL,
3862 SmallVectorImpl<TemplateArgument> &Converted) {
3863 const TemplateArgument &Arg = AL.getArgument();
3864 QualType ArgType;
3865 TypeSourceInfo *TSI = nullptr;
3866
3867 // Check template type parameter.
3868 switch(Arg.getKind()) {
3869 case TemplateArgument::Type:
3870 // C++ [temp.arg.type]p1:
3871 // A template-argument for a template-parameter which is a
3872 // type shall be a type-id.
3873 ArgType = Arg.getAsType();
3874 TSI = AL.getTypeSourceInfo();
3875 break;
3876 case TemplateArgument::Template: {
3877 // We have a template type parameter but the template argument
3878 // is a template without any arguments.
3879 SourceRange SR = AL.getSourceRange();
3880 TemplateName Name = Arg.getAsTemplate();
3881 Diag(SR.getBegin(), diag::err_template_missing_args)
3882 << (int)getTemplateNameKindForDiagnostics(Name) << Name << SR;
3883 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
3884 Diag(Decl->getLocation(), diag::note_template_decl_here);
3885
3886 return true;
3887 }
3888 case TemplateArgument::Expression: {
3889 // We have a template type parameter but the template argument is an
3890 // expression; see if maybe it is missing the "typename" keyword.
3891 CXXScopeSpec SS;
3892 DeclarationNameInfo NameInfo;
3893
3894 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
3895 SS.Adopt(ArgExpr->getQualifierLoc());
3896 NameInfo = ArgExpr->getNameInfo();
3897 } else if (DependentScopeDeclRefExpr *ArgExpr =
3898 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
3899 SS.Adopt(ArgExpr->getQualifierLoc());
3900 NameInfo = ArgExpr->getNameInfo();
3901 } else if (CXXDependentScopeMemberExpr *ArgExpr =
3902 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
3903 if (ArgExpr->isImplicitAccess()) {
3904 SS.Adopt(ArgExpr->getQualifierLoc());
3905 NameInfo = ArgExpr->getMemberNameInfo();
3906 }
3907 }
3908
3909 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
3910 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
3911 LookupParsedName(Result, CurScope, &SS);
3912
3913 if (Result.getAsSingle<TypeDecl>() ||
3914 Result.getResultKind() ==
3915 LookupResult::NotFoundInCurrentInstantiation) {
3916 // Suggest that the user add 'typename' before the NNS.
3917 SourceLocation Loc = AL.getSourceRange().getBegin();
3918 Diag(Loc, getLangOpts().MSVCCompat
3919 ? diag::ext_ms_template_type_arg_missing_typename
3920 : diag::err_template_arg_must_be_type_suggest)
3921 << FixItHint::CreateInsertion(Loc, "typename ");
3922 Diag(Param->getLocation(), diag::note_template_param_here);
3923
3924 // Recover by synthesizing a type using the location information that we
3925 // already have.
3926 ArgType =
3927 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
3928 TypeLocBuilder TLB;
3929 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
3930 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
3931 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3932 TL.setNameLoc(NameInfo.getLoc());
3933 TSI = TLB.getTypeSourceInfo(Context, ArgType);
3934
3935 // Overwrite our input TemplateArgumentLoc so that we can recover
3936 // properly.
3937 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
3938 TemplateArgumentLocInfo(TSI));
3939
3940 break;
3941 }
3942 }
3943 // fallthrough
3944 }
3945 default: {
3946 // We have a template type parameter but the template argument
3947 // is not a type.
3948 SourceRange SR = AL.getSourceRange();
3949 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3950 Diag(Param->getLocation(), diag::note_template_param_here);
3951
3952 return true;
3953 }
3954 }
3955
3956 if (CheckTemplateArgument(Param, TSI))
3957 return true;
3958
3959 // Add the converted template type argument.
3960 ArgType = Context.getCanonicalType(ArgType);
3961
3962 // Objective-C ARC:
3963 // If an explicitly-specified template argument type is a lifetime type
3964 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3965 if (getLangOpts().ObjCAutoRefCount &&
3966 ArgType->isObjCLifetimeType() &&
3967 !ArgType.getObjCLifetime()) {
3968 Qualifiers Qs;
3969 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3970 ArgType = Context.getQualifiedType(ArgType, Qs);
3971 }
3972
3973 Converted.push_back(TemplateArgument(ArgType));
3974 return false;
3975}
3976
3977/// \brief Substitute template arguments into the default template argument for
3978/// the given template type parameter.
3979///
3980/// \param SemaRef the semantic analysis object for which we are performing
3981/// the substitution.
3982///
3983/// \param Template the template that we are synthesizing template arguments
3984/// for.
3985///
3986/// \param TemplateLoc the location of the template name that started the
3987/// template-id we are checking.
3988///
3989/// \param RAngleLoc the location of the right angle bracket ('>') that
3990/// terminates the template-id.
3991///
3992/// \param Param the template template parameter whose default we are
3993/// substituting into.
3994///
3995/// \param Converted the list of template arguments provided for template
3996/// parameters that precede \p Param in the template parameter list.
3997/// \returns the substituted template argument, or NULL if an error occurred.
3998static TypeSourceInfo *
3999SubstDefaultTemplateArgument(Sema &SemaRef,
4000 TemplateDecl *Template,
4001 SourceLocation TemplateLoc,
4002 SourceLocation RAngleLoc,
4003 TemplateTypeParmDecl *Param,
4004 SmallVectorImpl<TemplateArgument> &Converted) {
4005 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
4006
4007 // If the argument type is dependent, instantiate it now based
4008 // on the previously-computed template arguments.
4009 if (ArgType->getType()->isDependentType()) {
4010 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4011 Param, Template, Converted,
4012 SourceRange(TemplateLoc, RAngleLoc));
4013 if (Inst.isInvalid())
4014 return nullptr;
4015
4016 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4017
4018 // Only substitute for the innermost template argument list.
4019 MultiLevelTemplateArgumentList TemplateArgLists;
4020 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4021 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4022 TemplateArgLists.addOuterTemplateArguments(None);
4023
4024 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4025 ArgType =
4026 SemaRef.SubstType(ArgType, TemplateArgLists,
4027 Param->getDefaultArgumentLoc(), Param->getDeclName());
4028 }
4029
4030 return ArgType;
4031}
4032
4033/// \brief Substitute template arguments into the default template argument for
4034/// the given non-type template parameter.
4035///
4036/// \param SemaRef the semantic analysis object for which we are performing
4037/// the substitution.
4038///
4039/// \param Template the template that we are synthesizing template arguments
4040/// for.
4041///
4042/// \param TemplateLoc the location of the template name that started the
4043/// template-id we are checking.
4044///
4045/// \param RAngleLoc the location of the right angle bracket ('>') that
4046/// terminates the template-id.
4047///
4048/// \param Param the non-type template parameter whose default we are
4049/// substituting into.
4050///
4051/// \param Converted the list of template arguments provided for template
4052/// parameters that precede \p Param in the template parameter list.
4053///
4054/// \returns the substituted template argument, or NULL if an error occurred.
4055static ExprResult
4056SubstDefaultTemplateArgument(Sema &SemaRef,
4057 TemplateDecl *Template,
4058 SourceLocation TemplateLoc,
4059 SourceLocation RAngleLoc,
4060 NonTypeTemplateParmDecl *Param,
4061 SmallVectorImpl<TemplateArgument> &Converted) {
4062 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4063 Param, Template, Converted,
4064 SourceRange(TemplateLoc, RAngleLoc));
4065 if (Inst.isInvalid())
4066 return ExprError();
4067
4068 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4069
4070 // Only substitute for the innermost template argument list.
4071 MultiLevelTemplateArgumentList TemplateArgLists;
4072 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4073 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4074 TemplateArgLists.addOuterTemplateArguments(None);
4075
4076 EnterExpressionEvaluationContext ConstantEvaluated(
4077 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4078 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
4079}
4080
4081/// \brief Substitute template arguments into the default template argument for
4082/// the given template template parameter.
4083///
4084/// \param SemaRef the semantic analysis object for which we are performing
4085/// the substitution.
4086///
4087/// \param Template the template that we are synthesizing template arguments
4088/// for.
4089///
4090/// \param TemplateLoc the location of the template name that started the
4091/// template-id we are checking.
4092///
4093/// \param RAngleLoc the location of the right angle bracket ('>') that
4094/// terminates the template-id.
4095///
4096/// \param Param the template template parameter whose default we are
4097/// substituting into.
4098///
4099/// \param Converted the list of template arguments provided for template
4100/// parameters that precede \p Param in the template parameter list.
4101///
4102/// \param QualifierLoc Will be set to the nested-name-specifier (with
4103/// source-location information) that precedes the template name.
4104///
4105/// \returns the substituted template argument, or NULL if an error occurred.
4106static TemplateName
4107SubstDefaultTemplateArgument(Sema &SemaRef,
4108 TemplateDecl *Template,
4109 SourceLocation TemplateLoc,
4110 SourceLocation RAngleLoc,
4111 TemplateTemplateParmDecl *Param,
4112 SmallVectorImpl<TemplateArgument> &Converted,
4113 NestedNameSpecifierLoc &QualifierLoc) {
4114 Sema::InstantiatingTemplate Inst(
4115 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
4116 SourceRange(TemplateLoc, RAngleLoc));
4117 if (Inst.isInvalid())
4118 return TemplateName();
4119
4120 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4121
4122 // Only substitute for the innermost template argument list.
4123 MultiLevelTemplateArgumentList TemplateArgLists;
4124 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4125 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4126 TemplateArgLists.addOuterTemplateArguments(None);
4127
4128 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4129 // Substitute into the nested-name-specifier first,
4130 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
4131 if (QualifierLoc) {
4132 QualifierLoc =
4133 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
4134 if (!QualifierLoc)
4135 return TemplateName();
4136 }
4137
4138 return SemaRef.SubstTemplateName(
4139 QualifierLoc,
4140 Param->getDefaultArgument().getArgument().getAsTemplate(),
4141 Param->getDefaultArgument().getTemplateNameLoc(),
4142 TemplateArgLists);
4143}
4144
4145/// \brief If the given template parameter has a default template
4146/// argument, substitute into that default template argument and
4147/// return the corresponding template argument.
4148TemplateArgumentLoc
4149Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
4150 SourceLocation TemplateLoc,
4151 SourceLocation RAngleLoc,
4152 Decl *Param,
4153 SmallVectorImpl<TemplateArgument>
4154 &Converted,
4155 bool &HasDefaultArg) {
4156 HasDefaultArg = false;
4157
4158 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
4159 if (!hasVisibleDefaultArgument(TypeParm))
4160 return TemplateArgumentLoc();
4161
4162 HasDefaultArg = true;
4163 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
4164 TemplateLoc,
4165 RAngleLoc,
4166 TypeParm,
4167 Converted);
4168 if (DI)
4169 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
4170
4171 return TemplateArgumentLoc();
4172 }
4173
4174 if (NonTypeTemplateParmDecl *NonTypeParm
4175 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4176 if (!hasVisibleDefaultArgument(NonTypeParm))
4177 return TemplateArgumentLoc();
4178
4179 HasDefaultArg = true;
4180 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
4181 TemplateLoc,
4182 RAngleLoc,
4183 NonTypeParm,
4184 Converted);
4185 if (Arg.isInvalid())
4186 return TemplateArgumentLoc();
4187
4188 Expr *ArgE = Arg.getAs<Expr>();
4189 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
4190 }
4191
4192 TemplateTemplateParmDecl *TempTempParm
4193 = cast<TemplateTemplateParmDecl>(Param);
4194 if (!hasVisibleDefaultArgument(TempTempParm))
4195 return TemplateArgumentLoc();
4196
4197 HasDefaultArg = true;
4198 NestedNameSpecifierLoc QualifierLoc;
4199 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
4200 TemplateLoc,
4201 RAngleLoc,
4202 TempTempParm,
4203 Converted,
4204 QualifierLoc);
4205 if (TName.isNull())
4206 return TemplateArgumentLoc();
4207
4208 return TemplateArgumentLoc(TemplateArgument(TName),
4209 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
4210 TempTempParm->getDefaultArgument().getTemplateNameLoc());
4211}
4212
4213/// Convert a template-argument that we parsed as a type into a template, if
4214/// possible. C++ permits injected-class-names to perform dual service as
4215/// template template arguments and as template type arguments.
4216static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) {
4217 // Extract and step over any surrounding nested-name-specifier.
4218 NestedNameSpecifierLoc QualLoc;
4219 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
4220 if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
4221 return TemplateArgumentLoc();
4222
4223 QualLoc = ETLoc.getQualifierLoc();
4224 TLoc = ETLoc.getNamedTypeLoc();
4225 }
4226
4227 // If this type was written as an injected-class-name, it can be used as a
4228 // template template argument.
4229 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
4230 return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(),
4231 QualLoc, InjLoc.getNameLoc());
4232
4233 // If this type was written as an injected-class-name, it may have been
4234 // converted to a RecordType during instantiation. If the RecordType is
4235 // *not* wrapped in a TemplateSpecializationType and denotes a class
4236 // template specialization, it must have come from an injected-class-name.
4237 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
4238 if (auto *CTSD =
4239 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
4240 return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()),
4241 QualLoc, RecLoc.getNameLoc());
4242
4243 return TemplateArgumentLoc();
4244}
4245
4246/// \brief Check that the given template argument corresponds to the given
4247/// template parameter.
4248///
4249/// \param Param The template parameter against which the argument will be
4250/// checked.
4251///
4252/// \param Arg The template argument, which may be updated due to conversions.
4253///
4254/// \param Template The template in which the template argument resides.
4255///
4256/// \param TemplateLoc The location of the template name for the template
4257/// whose argument list we're matching.
4258///
4259/// \param RAngleLoc The location of the right angle bracket ('>') that closes
4260/// the template argument list.
4261///
4262/// \param ArgumentPackIndex The index into the argument pack where this
4263/// argument will be placed. Only valid if the parameter is a parameter pack.
4264///
4265/// \param Converted The checked, converted argument will be added to the
4266/// end of this small vector.
4267///
4268/// \param CTAK Describes how we arrived at this particular template argument:
4269/// explicitly written, deduced, etc.
4270///
4271/// \returns true on error, false otherwise.
4272bool Sema::CheckTemplateArgument(NamedDecl *Param,
4273 TemplateArgumentLoc &Arg,
4274 NamedDecl *Template,
4275 SourceLocation TemplateLoc,
4276 SourceLocation RAngleLoc,
4277 unsigned ArgumentPackIndex,
4278 SmallVectorImpl<TemplateArgument> &Converted,
4279 CheckTemplateArgumentKind CTAK) {
4280 // Check template type parameters.
4281 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
4282 return CheckTemplateTypeArgument(TTP, Arg, Converted);
4283
4284 // Check non-type template parameters.
4285 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4286 // Do substitution on the type of the non-type template parameter
4287 // with the template arguments we've seen thus far. But if the
4288 // template has a dependent context then we cannot substitute yet.
4289 QualType NTTPType = NTTP->getType();
4290 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
4291 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
4292
4293 if (NTTPType->isDependentType() &&
4294 !isa<TemplateTemplateParmDecl>(Template) &&
4295 !Template->getDeclContext()->isDependentContext()) {
4296 // Do substitution on the type of the non-type template parameter.
4297 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
4298 NTTP, Converted,
4299 SourceRange(TemplateLoc, RAngleLoc));
4300 if (Inst.isInvalid())
4301 return true;
4302
4303 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
4304 Converted);
4305 NTTPType = SubstType(NTTPType,
4306 MultiLevelTemplateArgumentList(TemplateArgs),
4307 NTTP->getLocation(),
4308 NTTP->getDeclName());
4309 // If that worked, check the non-type template parameter type
4310 // for validity.
4311 if (!NTTPType.isNull())
4312 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
4313 NTTP->getLocation());
4314 if (NTTPType.isNull())
4315 return true;
4316 }
4317
4318 switch (Arg.getArgument().getKind()) {
4319 case TemplateArgument::Null:
4320 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4320)
;
4321
4322 case TemplateArgument::Expression: {
4323 TemplateArgument Result;
4324 ExprResult Res =
4325 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
4326 Result, CTAK);
4327 if (Res.isInvalid())
4328 return true;
4329
4330 // If the resulting expression is new, then use it in place of the
4331 // old expression in the template argument.
4332 if (Res.get() != Arg.getArgument().getAsExpr()) {
4333 TemplateArgument TA(Res.get());
4334 Arg = TemplateArgumentLoc(TA, Res.get());
4335 }
4336
4337 Converted.push_back(Result);
4338 break;
4339 }
4340
4341 case TemplateArgument::Declaration:
4342 case TemplateArgument::Integral:
4343 case TemplateArgument::NullPtr:
4344 // We've already checked this template argument, so just copy
4345 // it to the list of converted arguments.
4346 Converted.push_back(Arg.getArgument());
4347 break;
4348
4349 case TemplateArgument::Template:
4350 case TemplateArgument::TemplateExpansion:
4351 // We were given a template template argument. It may not be ill-formed;
4352 // see below.
4353 if (DependentTemplateName *DTN
4354 = Arg.getArgument().getAsTemplateOrTemplatePattern()
4355 .getAsDependentTemplateName()) {
4356 // We have a template argument such as \c T::template X, which we
4357 // parsed as a template template argument. However, since we now
4358 // know that we need a non-type template argument, convert this
4359 // template name into an expression.
4360
4361 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
4362 Arg.getTemplateNameLoc());
4363
4364 CXXScopeSpec SS;
4365 SS.Adopt(Arg.getTemplateQualifierLoc());
4366 // FIXME: the template-template arg was a DependentTemplateName,
4367 // so it was provided with a template keyword. However, its source
4368 // location is not stored in the template argument structure.
4369 SourceLocation TemplateKWLoc;
4370 ExprResult E = DependentScopeDeclRefExpr::Create(
4371 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
4372 nullptr);
4373
4374 // If we parsed the template argument as a pack expansion, create a
4375 // pack expansion expression.
4376 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
4377 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
4378 if (E.isInvalid())
4379 return true;
4380 }
4381
4382 TemplateArgument Result;
4383 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
4384 if (E.isInvalid())
4385 return true;
4386
4387 Converted.push_back(Result);
4388 break;
4389 }
4390
4391 // We have a template argument that actually does refer to a class
4392 // template, alias template, or template template parameter, and
4393 // therefore cannot be a non-type template argument.
4394 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
4395 << Arg.getSourceRange();
4396
4397 Diag(Param->getLocation(), diag::note_template_param_here);
4398 return true;
4399
4400 case TemplateArgument::Type: {
4401 // We have a non-type template parameter but the template
4402 // argument is a type.
4403
4404 // C++ [temp.arg]p2:
4405 // In a template-argument, an ambiguity between a type-id and
4406 // an expression is resolved to a type-id, regardless of the
4407 // form of the corresponding template-parameter.
4408 //
4409 // We warn specifically about this case, since it can be rather
4410 // confusing for users.
4411 QualType T = Arg.getArgument().getAsType();
4412 SourceRange SR = Arg.getSourceRange();
4413 if (T->isFunctionType())
4414 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
4415 else
4416 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
4417 Diag(Param->getLocation(), diag::note_template_param_here);
4418 return true;
4419 }
4420
4421 case TemplateArgument::Pack:
4422 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4422)
;
4423 }
4424
4425 return false;
4426 }
4427
4428
4429 // Check template template parameters.
4430 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
4431
4432 // Substitute into the template parameter list of the template
4433 // template parameter, since previously-supplied template arguments
4434 // may appear within the template template parameter.
4435 {
4436 // Set up a template instantiation context.
4437 LocalInstantiationScope Scope(*this);
4438 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
4439 TempParm, Converted,
4440 SourceRange(TemplateLoc, RAngleLoc));
4441 if (Inst.isInvalid())
4442 return true;
4443
4444 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4445 TempParm = cast_or_null<TemplateTemplateParmDecl>(
4446 SubstDecl(TempParm, CurContext,
4447 MultiLevelTemplateArgumentList(TemplateArgs)));
4448 if (!TempParm)
4449 return true;
4450 }
4451
4452 // C++1z [temp.local]p1: (DR1004)
4453 // When [the injected-class-name] is used [...] as a template-argument for
4454 // a template template-parameter [...] it refers to the class template
4455 // itself.
4456 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
4457 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
4458 Arg.getTypeSourceInfo()->getTypeLoc());
4459 if (!ConvertedArg.getArgument().isNull())
4460 Arg = ConvertedArg;
4461 }
4462
4463 switch (Arg.getArgument().getKind()) {
4464 case TemplateArgument::Null:
4465 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4465)
;
4466
4467 case TemplateArgument::Template:
4468 case TemplateArgument::TemplateExpansion:
4469 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
4470 return true;
4471
4472 Converted.push_back(Arg.getArgument());
4473 break;
4474
4475 case TemplateArgument::Expression:
4476 case TemplateArgument::Type:
4477 // We have a template template parameter but the template
4478 // argument does not refer to a template.
4479 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
4480 << getLangOpts().CPlusPlus11;
4481 return true;
4482
4483 case TemplateArgument::Declaration:
4484 llvm_unreachable("Declaration argument with template template parameter")::llvm::llvm_unreachable_internal("Declaration argument with template template parameter"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4484)
;
4485 case TemplateArgument::Integral:
4486 llvm_unreachable("Integral argument with template template parameter")::llvm::llvm_unreachable_internal("Integral argument with template template parameter"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4486)
;
4487 case TemplateArgument::NullPtr:
4488 llvm_unreachable("Null pointer argument with template template parameter")::llvm::llvm_unreachable_internal("Null pointer argument with template template parameter"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4488)
;
4489
4490 case TemplateArgument::Pack:
4491 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4491)
;
4492 }
4493
4494 return false;
4495}
4496
4497/// \brief Diagnose an arity mismatch in the
4498static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
4499 SourceLocation TemplateLoc,
4500 TemplateArgumentListInfo &TemplateArgs) {
4501 TemplateParameterList *Params = Template->getTemplateParameters();
4502 unsigned NumParams = Params->size();
4503 unsigned NumArgs = TemplateArgs.size();
4504
4505 SourceRange Range;
4506 if (NumArgs > NumParams)
4507 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
4508 TemplateArgs.getRAngleLoc());
4509 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
4510 << (NumArgs > NumParams)
4511 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(Template))
4512 << Template << Range;
4513 S.Diag(Template->getLocation(), diag::note_template_decl_here)
4514 << Params->getSourceRange();
4515 return true;
4516}
4517
4518/// \brief Check whether the template parameter is a pack expansion, and if so,
4519/// determine the number of parameters produced by that expansion. For instance:
4520///
4521/// \code
4522/// template<typename ...Ts> struct A {
4523/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
4524/// };
4525/// \endcode
4526///
4527/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
4528/// is not a pack expansion, so returns an empty Optional.
4529static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
4530 if (NonTypeTemplateParmDecl *NTTP
4531 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4532 if (NTTP->isExpandedParameterPack())
4533 return NTTP->getNumExpansionTypes();
4534 }
4535
4536 if (TemplateTemplateParmDecl *TTP
4537 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
4538 if (TTP->isExpandedParameterPack())
4539 return TTP->getNumExpansionTemplateParameters();
4540 }
4541
4542 return None;
4543}
4544
4545/// Diagnose a missing template argument.
4546template<typename TemplateParmDecl>
4547static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
4548 TemplateDecl *TD,
4549 const TemplateParmDecl *D,
4550 TemplateArgumentListInfo &Args) {
4551 // Dig out the most recent declaration of the template parameter; there may be
4552 // declarations of the template that are more recent than TD.
4553 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
4554 ->getTemplateParameters()
4555 ->getParam(D->getIndex()));
4556
4557 // If there's a default argument that's not visible, diagnose that we're
4558 // missing a module import.
4559 llvm::SmallVector<Module*, 8> Modules;
4560 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
4561 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
4562 D->getDefaultArgumentLoc(), Modules,
4563 Sema::MissingImportKind::DefaultArgument,
4564 /*Recover*/true);
4565 return true;
4566 }
4567
4568 // FIXME: If there's a more recent default argument that *is* visible,
4569 // diagnose that it was declared too late.
4570
4571 return diagnoseArityMismatch(S, TD, Loc, Args);
4572}
4573
4574/// \brief Check that the given template argument list is well-formed
4575/// for specializing the given template.
4576bool Sema::CheckTemplateArgumentList(
4577 TemplateDecl *Template, SourceLocation TemplateLoc,
4578 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
4579 SmallVectorImpl<TemplateArgument> &Converted,
4580 bool UpdateArgsWithConversions) {
4581 // Make a copy of the template arguments for processing. Only make the
4582 // changes at the end when successful in matching the arguments to the
4583 // template.
4584 TemplateArgumentListInfo NewArgs = TemplateArgs;
4585
4586 TemplateParameterList *Params = Template->getTemplateParameters();
4587
4588 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
4589
4590 // C++ [temp.arg]p1:
4591 // [...] The type and form of each template-argument specified in
4592 // a template-id shall match the type and form specified for the
4593 // corresponding parameter declared by the template in its
4594 // template-parameter-list.
4595 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
4596 SmallVector<TemplateArgument, 2> ArgumentPack;
4597 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
4598 LocalInstantiationScope InstScope(*this, true);
4599 for (TemplateParameterList::iterator Param = Params->begin(),
4600 ParamEnd = Params->end();
4601 Param != ParamEnd; /* increment in loop */) {
4602 // If we have an expanded parameter pack, make sure we don't have too
4603 // many arguments.
4604 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
4605 if (*Expansions == ArgumentPack.size()) {
4606 // We're done with this parameter pack. Pack up its arguments and add
4607 // them to the list.
4608 Converted.push_back(
4609 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4610 ArgumentPack.clear();
4611
4612 // This argument is assigned to the next parameter.
4613 ++Param;
4614 continue;
4615 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
4616 // Not enough arguments for this parameter pack.
4617 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
4618 << false
4619 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
4620 << Template;
4621 Diag(Template->getLocation(), diag::note_template_decl_here)
4622 << Params->getSourceRange();
4623 return true;
4624 }
4625 }
4626
4627 if (ArgIdx < NumArgs) {
4628 // Check the template argument we were given.
4629 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
4630 TemplateLoc, RAngleLoc,
4631 ArgumentPack.size(), Converted))
4632 return true;
4633
4634 bool PackExpansionIntoNonPack =
4635 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
4636 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
4637 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
4638 // Core issue 1430: we have a pack expansion as an argument to an
4639 // alias template, and it's not part of a parameter pack. This
4640 // can't be canonicalized, so reject it now.
4641 Diag(NewArgs[ArgIdx].getLocation(),
4642 diag::err_alias_template_expansion_into_fixed_list)
4643 << NewArgs[ArgIdx].getSourceRange();
4644 Diag((*Param)->getLocation(), diag::note_template_param_here);
4645 return true;
4646 }
4647
4648 // We're now done with this argument.
4649 ++ArgIdx;
4650
4651 if ((*Param)->isTemplateParameterPack()) {
4652 // The template parameter was a template parameter pack, so take the
4653 // deduced argument and place it on the argument pack. Note that we
4654 // stay on the same template parameter so that we can deduce more
4655 // arguments.
4656 ArgumentPack.push_back(Converted.pop_back_val());
4657 } else {
4658 // Move to the next template parameter.
4659 ++Param;
4660 }
4661
4662 // If we just saw a pack expansion into a non-pack, then directly convert
4663 // the remaining arguments, because we don't know what parameters they'll
4664 // match up with.
4665 if (PackExpansionIntoNonPack) {
4666 if (!ArgumentPack.empty()) {
4667 // If we were part way through filling in an expanded parameter pack,
4668 // fall back to just producing individual arguments.
4669 Converted.insert(Converted.end(),
4670 ArgumentPack.begin(), ArgumentPack.end());
4671 ArgumentPack.clear();
4672 }
4673
4674 while (ArgIdx < NumArgs) {
4675 Converted.push_back(NewArgs[ArgIdx].getArgument());
4676 ++ArgIdx;
4677 }
4678
4679 return false;
4680 }
4681
4682 continue;
4683 }
4684
4685 // If we're checking a partial template argument list, we're done.
4686 if (PartialTemplateArgs) {
4687 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
4688 Converted.push_back(
4689 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4690
4691 return false;
4692 }
4693
4694 // If we have a template parameter pack with no more corresponding
4695 // arguments, just break out now and we'll fill in the argument pack below.
4696 if ((*Param)->isTemplateParameterPack()) {
4697 assert(!getExpandedPackSize(*Param) &&((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4698, __PRETTY_FUNCTION__))
4698 "Should have dealt with this already")((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4698, __PRETTY_FUNCTION__))
;
4699
4700 // A non-expanded parameter pack before the end of the parameter list
4701 // only occurs for an ill-formed template parameter list, unless we've
4702 // got a partial argument list for a function template, so just bail out.
4703 if (Param + 1 != ParamEnd)
4704 return true;
4705
4706 Converted.push_back(
4707 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4708 ArgumentPack.clear();
4709
4710 ++Param;
4711 continue;
4712 }
4713
4714 // Check whether we have a default argument.
4715 TemplateArgumentLoc Arg;
4716
4717 // Retrieve the default template argument from the template
4718 // parameter. For each kind of template parameter, we substitute the
4719 // template arguments provided thus far and any "outer" template arguments
4720 // (when the template parameter was part of a nested template) into
4721 // the default argument.
4722 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
4723 if (!hasVisibleDefaultArgument(TTP))
4724 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
4725 NewArgs);
4726
4727 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
4728 Template,
4729 TemplateLoc,
4730 RAngleLoc,
4731 TTP,
4732 Converted);
4733 if (!ArgType)
4734 return true;
4735
4736 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
4737 ArgType);
4738 } else if (NonTypeTemplateParmDecl *NTTP
4739 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
4740 if (!hasVisibleDefaultArgument(NTTP))
4741 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
4742 NewArgs);
4743
4744 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
4745 TemplateLoc,
4746 RAngleLoc,
4747 NTTP,
4748 Converted);
4749 if (E.isInvalid())
4750 return true;
4751
4752 Expr *Ex = E.getAs<Expr>();
4753 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
4754 } else {
4755 TemplateTemplateParmDecl *TempParm
4756 = cast<TemplateTemplateParmDecl>(*Param);
4757
4758 if (!hasVisibleDefaultArgument(TempParm))
4759 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
4760 NewArgs);
4761
4762 NestedNameSpecifierLoc QualifierLoc;
4763 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
4764 TemplateLoc,
4765 RAngleLoc,
4766 TempParm,
4767 Converted,
4768 QualifierLoc);
4769 if (Name.isNull())
4770 return true;
4771
4772 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
4773 TempParm->getDefaultArgument().getTemplateNameLoc());
4774 }
4775
4776 // Introduce an instantiation record that describes where we are using
4777 // the default template argument. We're not actually instantiating a
4778 // template here, we just create this object to put a note into the
4779 // context stack.
4780 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
4781 SourceRange(TemplateLoc, RAngleLoc));
4782 if (Inst.isInvalid())
4783 return true;
4784
4785 // Check the default template argument.
4786 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
4787 RAngleLoc, 0, Converted))
4788 return true;
4789
4790 // Core issue 150 (assumed resolution): if this is a template template
4791 // parameter, keep track of the default template arguments from the
4792 // template definition.
4793 if (isTemplateTemplateParameter)
4794 NewArgs.addArgument(Arg);
4795
4796 // Move to the next template parameter and argument.
4797 ++Param;
4798 ++ArgIdx;
4799 }
4800
4801 // If we're performing a partial argument substitution, allow any trailing
4802 // pack expansions; they might be empty. This can happen even if
4803 // PartialTemplateArgs is false (the list of arguments is complete but
4804 // still dependent).
4805 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
4806 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
4807 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
4808 Converted.push_back(NewArgs[ArgIdx++].getArgument());
4809 }
4810
4811 // If we have any leftover arguments, then there were too many arguments.
4812 // Complain and fail.
4813 if (ArgIdx < NumArgs)
4814 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
4815
4816 // No problems found with the new argument list, propagate changes back
4817 // to caller.
4818 if (UpdateArgsWithConversions)
4819 TemplateArgs = std::move(NewArgs);
4820
4821 return false;
4822}
4823
4824namespace {
4825 class UnnamedLocalNoLinkageFinder
4826 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
4827 {
4828 Sema &S;
4829 SourceRange SR;
4830
4831 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
4832
4833 public:
4834 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
4835
4836 bool Visit(QualType T) {
4837 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
4838 }
4839
4840#define TYPE(Class, Parent) \
4841 bool Visit##Class##Type(const Class##Type *);
4842#define ABSTRACT_TYPE(Class, Parent) \
4843 bool Visit##Class##Type(const Class##Type *) { return false; }
4844#define NON_CANONICAL_TYPE(Class, Parent) \
4845 bool Visit##Class##Type(const Class##Type *) { return false; }
4846#include "clang/AST/TypeNodes.def"
4847
4848 bool VisitTagDecl(const TagDecl *Tag);
4849 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
4850 };
4851} // end anonymous namespace
4852
4853bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
4854 return false;
4855}
4856
4857bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
4858 return Visit(T->getElementType());
4859}
4860
4861bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
4862 return Visit(T->getPointeeType());
4863}
4864
4865bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
4866 const BlockPointerType* T) {
4867 return Visit(T->getPointeeType());
4868}
4869
4870bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
4871 const LValueReferenceType* T) {
4872 return Visit(T->getPointeeType());
4873}
4874
4875bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
4876 const RValueReferenceType* T) {
4877 return Visit(T->getPointeeType());
4878}
4879
4880bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
4881 const MemberPointerType* T) {
4882 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
4883}
4884
4885bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
4886 const ConstantArrayType* T) {
4887 return Visit(T->getElementType());
4888}
4889
4890bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
4891 const IncompleteArrayType* T) {
4892 return Visit(T->getElementType());
4893}
4894
4895bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
4896 const VariableArrayType* T) {
4897 return Visit(T->getElementType());
4898}
4899
4900bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
4901 const DependentSizedArrayType* T) {
4902 return Visit(T->getElementType());
4903}
4904
4905bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
4906 const DependentSizedExtVectorType* T) {
4907 return Visit(T->getElementType());
4908}
4909
4910bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
4911 return Visit(T->getElementType());
4912}
4913
4914bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
4915 return Visit(T->getElementType());
4916}
4917
4918bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
4919 const FunctionProtoType* T) {
4920 for (const auto &A : T->param_types()) {
4921 if (Visit(A))
4922 return true;
4923 }
4924
4925 return Visit(T->getReturnType());
4926}
4927
4928bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
4929 const FunctionNoProtoType* T) {
4930 return Visit(T->getReturnType());
4931}
4932
4933bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
4934 const UnresolvedUsingType*) {
4935 return false;
4936}
4937
4938bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
4939 return false;
4940}
4941
4942bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
4943 return Visit(T->getUnderlyingType());
4944}
4945
4946bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
4947 return false;
4948}
4949
4950bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
4951 const UnaryTransformType*) {
4952 return false;
4953}
4954
4955bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
4956 return Visit(T->getDeducedType());
4957}
4958
4959bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
4960 const DeducedTemplateSpecializationType *T) {
4961 return Visit(T->getDeducedType());
4962}
4963
4964bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
4965 return VisitTagDecl(T->getDecl());
4966}
4967
4968bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
4969 return VisitTagDecl(T->getDecl());
4970}
4971
4972bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
4973 const TemplateTypeParmType*) {
4974 return false;
4975}
4976
4977bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
4978 const SubstTemplateTypeParmPackType *) {
4979 return false;
4980}
4981
4982bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
4983 const TemplateSpecializationType*) {
4984 return false;
4985}
4986
4987bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
4988 const InjectedClassNameType* T) {
4989 return VisitTagDecl(T->getDecl());
4990}
4991
4992bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
4993 const DependentNameType* T) {
4994 return VisitNestedNameSpecifier(T->getQualifier());
4995}
4996
4997bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
4998 const DependentTemplateSpecializationType* T) {
4999 return VisitNestedNameSpecifier(T->getQualifier());
5000}
5001
5002bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
5003 const PackExpansionType* T) {
5004 return Visit(T->getPattern());
5005}
5006
5007bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
5008 return false;
5009}
5010
5011bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
5012 const ObjCInterfaceType *) {
5013 return false;
5014}
5015
5016bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
5017 const ObjCObjectPointerType *) {
5018 return false;
5019}
5020
5021bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
5022 return Visit(T->getValueType());
5023}
5024
5025bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
5026 return false;
5027}
5028
5029bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
5030 if (Tag->getDeclContext()->isFunctionOrMethod()) {
5031 S.Diag(SR.getBegin(),
5032 S.getLangOpts().CPlusPlus11 ?
5033 diag::warn_cxx98_compat_template_arg_local_type :
5034 diag::ext_template_arg_local_type)
5035 << S.Context.getTypeDeclType(Tag) << SR;
5036 return true;
5037 }
5038
5039 if (!Tag->hasNameForLinkage()) {
5040 S.Diag(SR.getBegin(),
5041 S.getLangOpts().CPlusPlus11 ?
5042 diag::warn_cxx98_compat_template_arg_unnamed_type :
5043 diag::ext_template_arg_unnamed_type) << SR;
5044 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
5045 return true;
5046 }
5047
5048 return false;
5049}
5050
5051bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
5052 NestedNameSpecifier *NNS) {
5053 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
5054 return true;
5055
5056 switch (NNS->getKind()) {
5057 case NestedNameSpecifier::Identifier:
5058 case NestedNameSpecifier::Namespace:
5059 case NestedNameSpecifier::NamespaceAlias:
5060 case NestedNameSpecifier::Global:
5061 case NestedNameSpecifier::Super:
5062 return false;
5063
5064 case NestedNameSpecifier::TypeSpec:
5065 case NestedNameSpecifier::TypeSpecWithTemplate:
5066 return Visit(QualType(NNS->getAsType(), 0));
5067 }
5068 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")::llvm::llvm_unreachable_internal("Invalid NestedNameSpecifier::Kind!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5068)
;
5069}
5070
5071/// \brief Check a template argument against its corresponding
5072/// template type parameter.
5073///
5074/// This routine implements the semantics of C++ [temp.arg.type]. It
5075/// returns true if an error occurred, and false otherwise.
5076bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
5077 TypeSourceInfo *ArgInfo) {
5078 assert(ArgInfo && "invalid TypeSourceInfo")((ArgInfo && "invalid TypeSourceInfo") ? static_cast<
void> (0) : __assert_fail ("ArgInfo && \"invalid TypeSourceInfo\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5078, __PRETTY_FUNCTION__))
;
5079 QualType Arg = ArgInfo->getType();
5080 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
5081
5082 if (Arg->isVariablyModifiedType()) {
5083 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
5084 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
5085 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
5086 }
5087
5088 // C++03 [temp.arg.type]p2:
5089 // A local type, a type with no linkage, an unnamed type or a type
5090 // compounded from any of these types shall not be used as a
5091 // template-argument for a template type-parameter.
5092 //
5093 // C++11 allows these, and even in C++03 we allow them as an extension with
5094 // a warning.
5095 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
5096 UnnamedLocalNoLinkageFinder Finder(*this, SR);
5097 (void)Finder.Visit(Context.getCanonicalType(Arg));
5098 }
5099
5100 return false;
5101}
5102
5103enum NullPointerValueKind {
5104 NPV_NotNullPointer,
5105 NPV_NullPointer,
5106 NPV_Error
5107};
5108
5109/// \brief Determine whether the given template argument is a null pointer
5110/// value of the appropriate type.
5111static NullPointerValueKind
5112isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
5113 QualType ParamType, Expr *Arg) {
5114 if (Arg->isValueDependent() || Arg->isTypeDependent())
5115 return NPV_NotNullPointer;
5116
5117 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
5118 llvm_unreachable(::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5119)
5119 "Incomplete parameter type in isNullPointerValueTemplateArgument!")::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5119)
;
5120
5121 if (!S.getLangOpts().CPlusPlus11)
5122 return NPV_NotNullPointer;
5123
5124 // Determine whether we have a constant expression.
5125 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
5126 if (ArgRV.isInvalid())
5127 return NPV_Error;
5128 Arg = ArgRV.get();
5129
5130 Expr::EvalResult EvalResult;
5131 SmallVector<PartialDiagnosticAt, 8> Notes;
5132 EvalResult.Diag = &Notes;
5133 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
5134 EvalResult.HasSideEffects) {
5135 SourceLocation DiagLoc = Arg->getExprLoc();
5136
5137 // If our only note is the usual "invalid subexpression" note, just point
5138 // the caret at its location rather than producing an essentially
5139 // redundant note.
5140 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
5141 diag::note_invalid_subexpr_in_const_expr) {
5142 DiagLoc = Notes[0].first;
5143 Notes.clear();
5144 }
5145
5146 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
5147 << Arg->getType() << Arg->getSourceRange();
5148 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
5149 S.Diag(Notes[I].first, Notes[I].second);
5150
5151 S.Diag(Param->getLocation(), diag::note_template_param_here);
5152 return NPV_Error;
5153 }
5154
5155 // C++11 [temp.arg.nontype]p1:
5156 // - an address constant expression of type std::nullptr_t
5157 if (Arg->getType()->isNullPtrType())
5158 return NPV_NullPointer;
5159
5160 // - a constant expression that evaluates to a null pointer value (4.10); or
5161 // - a constant expression that evaluates to a null member pointer value
5162 // (4.11); or
5163 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
5164 (EvalResult.Val.isMemberPointer() &&
5165 !EvalResult.Val.getMemberPointerDecl())) {
5166 // If our expression has an appropriate type, we've succeeded.
5167 bool ObjCLifetimeConversion;
5168 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
5169 S.IsQualificationConversion(Arg->getType(), ParamType, false,
5170 ObjCLifetimeConversion))
5171 return NPV_NullPointer;
5172
5173 // The types didn't match, but we know we got a null pointer; complain,
5174 // then recover as if the types were correct.
5175 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
5176 << Arg->getType() << ParamType << Arg->getSourceRange();
5177 S.Diag(Param->getLocation(), diag::note_template_param_here);
5178 return NPV_NullPointer;
5179 }
5180
5181 // If we don't have a null pointer value, but we do have a NULL pointer
5182 // constant, suggest a cast to the appropriate type.
5183 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
5184 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
5185 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
5186 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
5187 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
5188 ")");
5189 S.Diag(Param->getLocation(), diag::note_template_param_here);
5190 return NPV_NullPointer;
5191 }
5192
5193 // FIXME: If we ever want to support general, address-constant expressions
5194 // as non-type template arguments, we should return the ExprResult here to
5195 // be interpreted by the caller.
5196 return NPV_NotNullPointer;
5197}
5198
5199/// \brief Checks whether the given template argument is compatible with its
5200/// template parameter.
5201static bool CheckTemplateArgumentIsCompatibleWithParameter(
5202 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
5203 Expr *Arg, QualType ArgType) {
5204 bool ObjCLifetimeConversion;
5205 if (ParamType->isPointerType() &&
5206 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
5207 S.IsQualificationConversion(ArgType, ParamType, false,
5208 ObjCLifetimeConversion)) {
5209 // For pointer-to-object types, qualification conversions are
5210 // permitted.
5211 } else {
5212 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
5213 if (!ParamRef->getPointeeType()->isFunctionType()) {
5214 // C++ [temp.arg.nontype]p5b3:
5215 // For a non-type template-parameter of type reference to
5216 // object, no conversions apply. The type referred to by the
5217 // reference may be more cv-qualified than the (otherwise
5218 // identical) type of the template- argument. The
5219 // template-parameter is bound directly to the
5220 // template-argument, which shall be an lvalue.
5221
5222 // FIXME: Other qualifiers?
5223 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
5224 unsigned ArgQuals = ArgType.getCVRQualifiers();
5225
5226 if ((ParamQuals | ArgQuals) != ParamQuals) {
5227 S.Diag(Arg->getLocStart(),
5228 diag::err_template_arg_ref_bind_ignores_quals)
5229 << ParamType << Arg->getType() << Arg->getSourceRange();
5230 S.Diag(Param->getLocation(), diag::note_template_param_here);
5231 return true;
5232 }
5233 }
5234 }
5235
5236 // At this point, the template argument refers to an object or
5237 // function with external linkage. We now need to check whether the
5238 // argument and parameter types are compatible.
5239 if (!S.Context.hasSameUnqualifiedType(ArgType,
5240 ParamType.getNonReferenceType())) {
5241 // We can't perform this conversion or binding.
5242 if (ParamType->isReferenceType())
5243 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
5244 << ParamType << ArgIn->getType() << Arg->getSourceRange();
5245 else
5246 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
5247 << ArgIn->getType() << ParamType << Arg->getSourceRange();
5248 S.Diag(Param->getLocation(), diag::note_template_param_here);
5249 return true;
5250 }
5251 }
5252
5253 return false;
5254}
5255
5256/// \brief Checks whether the given template argument is the address
5257/// of an object or function according to C++ [temp.arg.nontype]p1.
5258static bool
5259CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
5260 NonTypeTemplateParmDecl *Param,
5261 QualType ParamType,
5262 Expr *ArgIn,
5263 TemplateArgument &Converted) {
5264 bool Invalid = false;
5265 Expr *Arg = ArgIn;
5266 QualType ArgType = Arg->getType();
5267
5268 bool AddressTaken = false;
5269 SourceLocation AddrOpLoc;
5270 if (S.getLangOpts().MicrosoftExt) {
5271 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
5272 // dereference and address-of operators.
5273 Arg = Arg->IgnoreParenCasts();
5274
5275 bool ExtWarnMSTemplateArg = false;
5276 UnaryOperatorKind FirstOpKind;
5277 SourceLocation FirstOpLoc;
5278 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5279 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
5280 if (UnOpKind == UO_Deref)
5281 ExtWarnMSTemplateArg = true;
5282 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
5283 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
5284 if (!AddrOpLoc.isValid()) {
5285 FirstOpKind = UnOpKind;
5286 FirstOpLoc = UnOp->getOperatorLoc();
5287 }
5288 } else
5289 break;
5290 }
5291 if (FirstOpLoc.isValid()) {
5292 if (ExtWarnMSTemplateArg)
5293 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
5294 << ArgIn->getSourceRange();
5295
5296 if (FirstOpKind == UO_AddrOf)
5297 AddressTaken = true;
5298 else if (Arg->getType()->isPointerType()) {
5299 // We cannot let pointers get dereferenced here, that is obviously not a
5300 // constant expression.
5301 assert(FirstOpKind == UO_Deref)((FirstOpKind == UO_Deref) ? static_cast<void> (0) : __assert_fail
("FirstOpKind == UO_Deref", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5301, __PRETTY_FUNCTION__))
;
5302 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5303 << Arg->getSourceRange();
5304 }
5305 }
5306 } else {
5307 // See through any implicit casts we added to fix the type.
5308 Arg = Arg->IgnoreImpCasts();
5309
5310 // C++ [temp.arg.nontype]p1:
5311 //
5312 // A template-argument for a non-type, non-template
5313 // template-parameter shall be one of: [...]
5314 //
5315 // -- the address of an object or function with external
5316 // linkage, including function templates and function
5317 // template-ids but excluding non-static class members,
5318 // expressed as & id-expression where the & is optional if
5319 // the name refers to a function or array, or if the
5320 // corresponding template-parameter is a reference; or
5321
5322 // In C++98/03 mode, give an extension warning on any extra parentheses.
5323 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
5324 bool ExtraParens = false;
5325 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
5326 if (!Invalid && !ExtraParens) {
5327 S.Diag(Arg->getLocStart(),
5328 S.getLangOpts().CPlusPlus11
5329 ? diag::warn_cxx98_compat_template_arg_extra_parens
5330 : diag::ext_template_arg_extra_parens)
5331 << Arg->getSourceRange();
5332 ExtraParens = true;
5333 }
5334
5335 Arg = Parens->getSubExpr();
5336 }
5337
5338 while (SubstNonTypeTemplateParmExpr *subst =
5339 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5340 Arg = subst->getReplacement()->IgnoreImpCasts();
5341
5342 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5343 if (UnOp->getOpcode() == UO_AddrOf) {
5344 Arg = UnOp->getSubExpr();
5345 AddressTaken = true;
5346 AddrOpLoc = UnOp->getOperatorLoc();
5347 }
5348 }
5349
5350 while (SubstNonTypeTemplateParmExpr *subst =
5351 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5352 Arg = subst->getReplacement()->IgnoreImpCasts();
5353 }
5354
5355 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
5356 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
5357
5358 // If our parameter has pointer type, check for a null template value.
5359 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
5360 NullPointerValueKind NPV;
5361 // dllimport'd entities aren't constant but are available inside of template
5362 // arguments.
5363 if (Entity && Entity->hasAttr<DLLImportAttr>())
5364 NPV = NPV_NotNullPointer;
5365 else
5366 NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
5367 switch (NPV) {
5368 case NPV_NullPointer:
5369 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5370 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
5371 /*isNullPtr=*/true);
5372 return false;
5373
5374 case NPV_Error:
5375 return true;
5376
5377 case NPV_NotNullPointer:
5378 break;
5379 }
5380 }
5381
5382 // Stop checking the precise nature of the argument if it is value dependent,
5383 // it should be checked when instantiated.
5384 if (Arg->isValueDependent()) {
5385 Converted = TemplateArgument(ArgIn);
5386 return false;
5387 }
5388
5389 if (isa<CXXUuidofExpr>(Arg)) {
5390 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
5391 ArgIn, Arg, ArgType))
5392 return true;
5393
5394 Converted = TemplateArgument(ArgIn);
5395 return false;
5396 }
5397
5398 if (!DRE) {
5399 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5400 << Arg->getSourceRange();
5401 S.Diag(Param->getLocation(), diag::note_template_param_here);
5402 return true;
5403 }
5404
5405 // Cannot refer to non-static data members
5406 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
5407 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
5408 << Entity << Arg->getSourceRange();
5409 S.Diag(Param->getLocation(), diag::note_template_param_here);
5410 return true;
5411 }
5412
5413 // Cannot refer to non-static member functions
5414 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
5415 if (!Method->isStatic()) {
5416 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
5417 << Method << Arg->getSourceRange();
5418 S.Diag(Param->getLocation(), diag::note_template_param_here);
5419 return true;
5420 }
5421 }
5422
5423 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
5424 VarDecl *Var = dyn_cast<VarDecl>(Entity);
5425
5426 // A non-type template argument must refer to an object or function.
5427 if (!Func && !Var) {
5428 // We found something, but we don't know specifically what it is.
5429 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
5430 << Arg->getSourceRange();
5431 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
5432 return true;
5433 }
5434
5435 // Address / reference template args must have external linkage in C++98.
5436 if (Entity->getFormalLinkage() == InternalLinkage) {
5437 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
5438 diag::warn_cxx98_compat_template_arg_object_internal :
5439 diag::ext_template_arg_object_internal)
5440 << !Func << Entity << Arg->getSourceRange();
5441 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
5442 << !Func;
5443 } else if (!Entity->hasLinkage()) {
5444 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
5445 << !Func << Entity << Arg->getSourceRange();
5446 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
5447 << !Func;
5448 return true;
5449 }
5450
5451 if (Func) {
5452 // If the template parameter has pointer type, the function decays.
5453 if (ParamType->isPointerType() && !AddressTaken)
5454 ArgType = S.Context.getPointerType(Func->getType());
5455 else if (AddressTaken && ParamType->isReferenceType()) {
5456 // If we originally had an address-of operator, but the
5457 // parameter has reference type, complain and (if things look
5458 // like they will work) drop the address-of operator.
5459 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
5460 ParamType.getNonReferenceType())) {
5461 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5462 << ParamType;
5463 S.Diag(Param->getLocation(), diag::note_template_param_here);
5464 return true;
5465 }
5466
5467 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5468 << ParamType
5469 << FixItHint::CreateRemoval(AddrOpLoc);
5470 S.Diag(Param->getLocation(), diag::note_template_param_here);
5471
5472 ArgType = Func->getType();
5473 }
5474 } else {
5475 // A value of reference type is not an object.
5476 if (Var->getType()->isReferenceType()) {
5477 S.Diag(Arg->getLocStart(),
5478 diag::err_template_arg_reference_var)
5479 << Var->getType() << Arg->getSourceRange();
5480 S.Diag(Param->getLocation(), diag::note_template_param_here);
5481 return true;
5482 }
5483
5484 // A template argument must have static storage duration.
5485 if (Var->getTLSKind()) {
5486 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
5487 << Arg->getSourceRange();
5488 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
5489 return true;
5490 }
5491
5492 // If the template parameter has pointer type, we must have taken
5493 // the address of this object.
5494 if (ParamType->isReferenceType()) {
5495 if (AddressTaken) {
5496 // If we originally had an address-of operator, but the
5497 // parameter has reference type, complain and (if things look
5498 // like they will work) drop the address-of operator.
5499 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
5500 ParamType.getNonReferenceType())) {
5501 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5502 << ParamType;
5503 S.Diag(Param->getLocation(), diag::note_template_param_here);
5504 return true;
5505 }
5506
5507 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5508 << ParamType
5509 << FixItHint::CreateRemoval(AddrOpLoc);
5510 S.Diag(Param->getLocation(), diag::note_template_param_here);
5511
5512 ArgType = Var->getType();
5513 }
5514 } else if (!AddressTaken && ParamType->isPointerType()) {
5515 if (Var->getType()->isArrayType()) {
5516 // Array-to-pointer decay.
5517 ArgType = S.Context.getArrayDecayedType(Var->getType());
5518 } else {
5519 // If the template parameter has pointer type but the address of
5520 // this object was not taken, complain and (possibly) recover by
5521 // taking the address of the entity.
5522 ArgType = S.Context.getPointerType(Var->getType());
5523 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
5524 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
5525 << ParamType;
5526 S.Diag(Param->getLocation(), diag::note_template_param_here);
5527 return true;
5528 }
5529
5530 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
5531 << ParamType
5532 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
5533
5534 S.Diag(Param->getLocation(), diag::note_template_param_here);
5535 }
5536 }
5537 }
5538
5539 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
5540 Arg, ArgType))
5541 return true;
5542
5543 // Create the template argument.
5544 Converted =
5545 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
5546 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
5547 return false;
5548}
5549
5550/// \brief Checks whether the given template argument is a pointer to
5551/// member constant according to C++ [temp.arg.nontype]p1.
5552static bool CheckTemplateArgumentPointerToMember(Sema &S,
5553 NonTypeTemplateParmDecl *Param,
5554 QualType ParamType,
5555 Expr *&ResultArg,
5556 TemplateArgument &Converted) {
5557 bool Invalid = false;
5558
5559 // Check for a null pointer value.
5560 Expr *Arg = ResultArg;
5561 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
5562 case NPV_Error:
5563 return true;
5564 case NPV_NullPointer:
5565 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5566 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
5567 /*isNullPtr*/true);
5568 return false;
5569 case NPV_NotNullPointer:
5570 break;
5571 }
5572
5573 bool ObjCLifetimeConversion;
5574 if (S.IsQualificationConversion(Arg->getType(),
5575 ParamType.getNonReferenceType(),
5576 false, ObjCLifetimeConversion)) {
5577 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
5578 Arg->getValueKind()).get();
5579 ResultArg = Arg;
5580 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
5581 ParamType.getNonReferenceType())) {
5582 // We can't perform this conversion.
5583 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
5584 << Arg->getType() << ParamType << Arg->getSourceRange();
5585 S.Diag(Param->getLocation(), diag::note_template_param_here);
5586 return true;
5587 }
5588
5589 // See through any implicit casts we added to fix the type.
5590 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
5591 Arg = Cast->getSubExpr();
5592
5593 // C++ [temp.arg.nontype]p1:
5594 //
5595 // A template-argument for a non-type, non-template
5596 // template-parameter shall be one of: [...]
5597 //
5598 // -- a pointer to member expressed as described in 5.3.1.
5599 DeclRefExpr *DRE = nullptr;
5600
5601 // In C++98/03 mode, give an extension warning on any extra parentheses.
5602 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
5603 bool ExtraParens = false;
5604 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
5605 if (!Invalid && !ExtraParens) {
5606 S.Diag(Arg->getLocStart(),
5607 S.getLangOpts().CPlusPlus11 ?
5608 diag::warn_cxx98_compat_template_arg_extra_parens :
5609 diag::ext_template_arg_extra_parens)
5610 << Arg->getSourceRange();
5611 ExtraParens = true;
5612 }
5613
5614 Arg = Parens->getSubExpr();
5615 }
5616
5617 while (SubstNonTypeTemplateParmExpr *subst =
5618 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5619 Arg = subst->getReplacement()->IgnoreImpCasts();
5620
5621 // A pointer-to-member constant written &Class::member.
5622 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5623 if (UnOp->getOpcode() == UO_AddrOf) {
5624 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
5625 if (DRE && !DRE->getQualifier())
5626 DRE = nullptr;
5627 }
5628 }
5629 // A constant of pointer-to-member type.
5630 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
5631 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
5632 if (VD->getType()->isMemberPointerType()) {
5633 if (isa<NonTypeTemplateParmDecl>(VD)) {
5634 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5635 Converted = TemplateArgument(Arg);
5636 } else {
5637 VD = cast<ValueDecl>(VD->getCanonicalDecl());
5638 Converted = TemplateArgument(VD, ParamType);
5639 }
5640 return Invalid;
5641 }
5642 }
5643 }
5644
5645 DRE = nullptr;
5646 }
5647
5648 if (!DRE)
5649 return S.Diag(Arg->getLocStart(),
5650 diag::err_template_arg_not_pointer_to_member_form)
5651 << Arg->getSourceRange();
5652
5653 if (isa<FieldDecl>(DRE->getDecl()) ||
5654 isa<IndirectFieldDecl>(DRE->getDecl()) ||
5655 isa<CXXMethodDecl>(DRE->getDecl())) {
5656 assert((isa<FieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5659, __PRETTY_FUNCTION__))
5657 isa<IndirectFieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5659, __PRETTY_FUNCTION__))
5658 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5659, __PRETTY_FUNCTION__))
5659 "Only non-static member pointers can make it here")(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5659, __PRETTY_FUNCTION__))
;
5660
5661 // Okay: this is the address of a non-static member, and therefore
5662 // a member pointer constant.
5663 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5664 Converted = TemplateArgument(Arg);
5665 } else {
5666 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
5667 Converted = TemplateArgument(D, ParamType);
5668 }
5669 return Invalid;
5670 }
5671
5672 // We found something else, but we don't know specifically what it is.
5673 S.Diag(Arg->getLocStart(),
5674 diag::err_template_arg_not_pointer_to_member_form)
5675 << Arg->getSourceRange();
5676 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
5677 return true;
5678}
5679
5680/// \brief Check a template argument against its corresponding
5681/// non-type template parameter.
5682///
5683/// This routine implements the semantics of C++ [temp.arg.nontype].
5684/// If an error occurred, it returns ExprError(); otherwise, it
5685/// returns the converted template argument. \p ParamType is the
5686/// type of the non-type template parameter after it has been instantiated.
5687ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
5688 QualType ParamType, Expr *Arg,
5689 TemplateArgument &Converted,
5690 CheckTemplateArgumentKind CTAK) {
5691 SourceLocation StartLoc = Arg->getLocStart();
5692
5693 // If the parameter type somehow involves auto, deduce the type now.
5694 if (getLangOpts().CPlusPlus1z && ParamType->isUndeducedType()) {
5695 // During template argument deduction, we allow 'decltype(auto)' to
5696 // match an arbitrary dependent argument.
5697 // FIXME: The language rules don't say what happens in this case.
5698 // FIXME: We get an opaque dependent type out of decltype(auto) if the
5699 // expression is merely instantiation-dependent; is this enough?
5700 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
5701 auto *AT = dyn_cast<AutoType>(ParamType);
5702 if (AT && AT->isDecltypeAuto()) {
5703 Converted = TemplateArgument(Arg);
5704 return Arg;
5705 }
5706 }
5707
5708 // When checking a deduced template argument, deduce from its type even if
5709 // the type is dependent, in order to check the types of non-type template
5710 // arguments line up properly in partial ordering.
5711 Optional<unsigned> Depth;
5712 if (CTAK != CTAK_Specified)
5713 Depth = Param->getDepth() + 1;
5714 if (DeduceAutoType(
5715 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
5716 Arg, ParamType, Depth) == DAR_Failed) {
5717 Diag(Arg->getExprLoc(),
5718 diag::err_non_type_template_parm_type_deduction_failure)
5719 << Param->getDeclName() << Param->getType() << Arg->getType()
5720 << Arg->getSourceRange();
5721 Diag(Param->getLocation(), diag::note_template_param_here);
5722 return ExprError();
5723 }
5724 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
5725 // an error. The error message normally references the parameter
5726 // declaration, but here we'll pass the argument location because that's
5727 // where the parameter type is deduced.
5728 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
5729 if (ParamType.isNull()) {
5730 Diag(Param->getLocation(), diag::note_template_param_here);
5731 return ExprError();
5732 }
5733 }
5734
5735 // We should have already dropped all cv-qualifiers by now.
5736 assert(!ParamType.hasQualifiers() &&((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5737, __PRETTY_FUNCTION__))
5737 "non-type template parameter type cannot be qualified")((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5737, __PRETTY_FUNCTION__))
;
5738
5739 if (CTAK == CTAK_Deduced &&
5740 !Context.hasSameType(ParamType.getNonLValueExprType(Context),
5741 Arg->getType())) {
5742 // FIXME: If either type is dependent, we skip the check. This isn't
5743 // correct, since during deduction we're supposed to have replaced each
5744 // template parameter with some unique (non-dependent) placeholder.
5745 // FIXME: If the argument type contains 'auto', we carry on and fail the
5746 // type check in order to force specific types to be more specialized than
5747 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
5748 // work.
5749 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
5750 !Arg->getType()->getContainedAutoType()) {
5751 Converted = TemplateArgument(Arg);
5752 return Arg;
5753 }
5754 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
5755 // we should actually be checking the type of the template argument in P,
5756 // not the type of the template argument deduced from A, against the
5757 // template parameter type.
5758 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
5759 << Arg->getType()
5760 << ParamType.getUnqualifiedType();
5761 Diag(Param->getLocation(), diag::note_template_param_here);
5762 return ExprError();
5763 }
5764
5765 // If either the parameter has a dependent type or the argument is
5766 // type-dependent, there's nothing we can check now.
5767 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
5768 // FIXME: Produce a cloned, canonical expression?
5769 Converted = TemplateArgument(Arg);
5770 return Arg;
5771 }
5772
5773 // The initialization of the parameter from the argument is
5774 // a constant-evaluated context.
5775 EnterExpressionEvaluationContext ConstantEvaluated(
5776 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5777
5778 if (getLangOpts().CPlusPlus1z) {
5779 // C++1z [temp.arg.nontype]p1:
5780 // A template-argument for a non-type template parameter shall be
5781 // a converted constant expression of the type of the template-parameter.
5782 APValue Value;
5783 ExprResult ArgResult = CheckConvertedConstantExpression(
5784 Arg, ParamType, Value, CCEK_TemplateArg);
5785 if (ArgResult.isInvalid())
5786 return ExprError();
5787
5788 // For a value-dependent argument, CheckConvertedConstantExpression is
5789 // permitted (and expected) to be unable to determine a value.
5790 if (ArgResult.get()->isValueDependent()) {
5791 Converted = TemplateArgument(ArgResult.get());
5792 return ArgResult;
5793 }
5794
5795 QualType CanonParamType = Context.getCanonicalType(ParamType);
5796
5797 // Convert the APValue to a TemplateArgument.
5798 switch (Value.getKind()) {
5799 case APValue::Uninitialized:
5800 assert(ParamType->isNullPtrType())((ParamType->isNullPtrType()) ? static_cast<void> (0
) : __assert_fail ("ParamType->isNullPtrType()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5800, __PRETTY_FUNCTION__))
;
5801 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
5802 break;
5803 case APValue::Int:
5804 assert(ParamType->isIntegralOrEnumerationType())((ParamType->isIntegralOrEnumerationType()) ? static_cast<
void> (0) : __assert_fail ("ParamType->isIntegralOrEnumerationType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5804, __PRETTY_FUNCTION__))
;
5805 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
5806 break;
5807 case APValue::MemberPointer: {
5808 assert(ParamType->isMemberPointerType())((ParamType->isMemberPointerType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isMemberPointerType()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5808, __PRETTY_FUNCTION__))
;
5809
5810 // FIXME: We need TemplateArgument representation and mangling for these.
5811 if (!Value.getMemberPointerPath().empty()) {
5812 Diag(Arg->getLocStart(),
5813 diag::err_template_arg_member_ptr_base_derived_not_supported)
5814 << Value.getMemberPointerDecl() << ParamType
5815 << Arg->getSourceRange();
5816 return ExprError();
5817 }
5818
5819 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
5820 Converted = VD ? TemplateArgument(VD, CanonParamType)
5821 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
5822 break;
5823 }
5824 case APValue::LValue: {
5825 // For a non-type template-parameter of pointer or reference type,
5826 // the value of the constant expression shall not refer to
5827 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5828, __PRETTY_FUNCTION__))
5828 ParamType->isNullPtrType())((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5828, __PRETTY_FUNCTION__))
;
5829 // -- a temporary object
5830 // -- a string literal
5831 // -- the result of a typeid expression, or
5832 // -- a predefined __func__ variable
5833 if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
5834 if (isa<CXXUuidofExpr>(E)) {
5835 Converted = TemplateArgument(const_cast<Expr*>(E));
5836 break;
5837 }
5838 Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5839 << Arg->getSourceRange();
5840 return ExprError();
5841 }
5842 auto *VD = const_cast<ValueDecl *>(
5843 Value.getLValueBase().dyn_cast<const ValueDecl *>());
5844 // -- a subobject
5845 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
5846 VD && VD->getType()->isArrayType() &&
5847 Value.getLValuePath()[0].ArrayIndex == 0 &&
5848 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
5849 // Per defect report (no number yet):
5850 // ... other than a pointer to the first element of a complete array
5851 // object.
5852 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
5853 Value.isLValueOnePastTheEnd()) {
5854 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
5855 << Value.getAsString(Context, ParamType);
5856 return ExprError();
5857 }
5858 assert((VD || !ParamType->isReferenceType()) &&(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5859, __PRETTY_FUNCTION__))
5859 "null reference should not be a constant expression")(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5859, __PRETTY_FUNCTION__))
;
5860 assert((!VD || !ParamType->isNullPtrType()) &&(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5861, __PRETTY_FUNCTION__))
5861 "non-null value of type nullptr_t?")(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5861, __PRETTY_FUNCTION__))
;
5862 Converted = VD ? TemplateArgument(VD, CanonParamType)
5863 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
5864 break;
5865 }
5866 case APValue::AddrLabelDiff:
5867 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
5868 case APValue::Float:
5869 case APValue::ComplexInt:
5870 case APValue::ComplexFloat:
5871 case APValue::Vector:
5872 case APValue::Array:
5873 case APValue::Struct:
5874 case APValue::Union:
5875 llvm_unreachable("invalid kind for template argument")::llvm::llvm_unreachable_internal("invalid kind for template argument"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5875)
;
5876 }
5877
5878 return ArgResult.get();
5879 }
5880
5881 // C++ [temp.arg.nontype]p5:
5882 // The following conversions are performed on each expression used
5883 // as a non-type template-argument. If a non-type
5884 // template-argument cannot be converted to the type of the
5885 // corresponding template-parameter then the program is
5886 // ill-formed.
5887 if (ParamType->isIntegralOrEnumerationType()) {
5888 // C++11:
5889 // -- for a non-type template-parameter of integral or
5890 // enumeration type, conversions permitted in a converted
5891 // constant expression are applied.
5892 //
5893 // C++98:
5894 // -- for a non-type template-parameter of integral or
5895 // enumeration type, integral promotions (4.5) and integral
5896 // conversions (4.7) are applied.
5897
5898 if (getLangOpts().CPlusPlus11) {
5899 // C++ [temp.arg.nontype]p1:
5900 // A template-argument for a non-type, non-template template-parameter
5901 // shall be one of:
5902 //
5903 // -- for a non-type template-parameter of integral or enumeration
5904 // type, a converted constant expression of the type of the
5905 // template-parameter; or
5906 llvm::APSInt Value;
5907 ExprResult ArgResult =
5908 CheckConvertedConstantExpression(Arg, ParamType, Value,
5909 CCEK_TemplateArg);
5910 if (ArgResult.isInvalid())
5911 return ExprError();
5912
5913 // We can't check arbitrary value-dependent arguments.
5914 if (ArgResult.get()->isValueDependent()) {
5915 Converted = TemplateArgument(ArgResult.get());
5916 return ArgResult;
5917 }
5918
5919 // Widen the argument value to sizeof(parameter type). This is almost
5920 // always a no-op, except when the parameter type is bool. In
5921 // that case, this may extend the argument from 1 bit to 8 bits.
5922 QualType IntegerType = ParamType;
5923 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5924 IntegerType = Enum->getDecl()->getIntegerType();
5925 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
5926
5927 Converted = TemplateArgument(Context, Value,
5928 Context.getCanonicalType(ParamType));
5929 return ArgResult;
5930 }
5931
5932 ExprResult ArgResult = DefaultLvalueConversion(Arg);
5933 if (ArgResult.isInvalid())
5934 return ExprError();
5935 Arg = ArgResult.get();
5936
5937 QualType ArgType = Arg->getType();
5938
5939 // C++ [temp.arg.nontype]p1:
5940 // A template-argument for a non-type, non-template
5941 // template-parameter shall be one of:
5942 //
5943 // -- an integral constant-expression of integral or enumeration
5944 // type; or
5945 // -- the name of a non-type template-parameter; or
5946 SourceLocation NonConstantLoc;
5947 llvm::APSInt Value;
5948 if (!ArgType->isIntegralOrEnumerationType()) {
5949 Diag(Arg->getLocStart(),
5950 diag::err_template_arg_not_integral_or_enumeral)
5951 << ArgType << Arg->getSourceRange();
5952 Diag(Param->getLocation(), diag::note_template_param_here);
5953 return ExprError();
5954 } else if (!Arg->isValueDependent()) {
5955 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
5956 QualType T;
5957
5958 public:
5959 TmplArgICEDiagnoser(QualType T) : T(T) { }
5960
5961 void diagnoseNotICE(Sema &S, SourceLocation Loc,
5962 SourceRange SR) override {
5963 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
5964 }
5965 } Diagnoser(ArgType);
5966
5967 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
5968 false).get();
5969 if (!Arg)
5970 return ExprError();
5971 }
5972
5973 // From here on out, all we care about is the unqualified form
5974 // of the argument type.
5975 ArgType = ArgType.getUnqualifiedType();
5976
5977 // Try to convert the argument to the parameter's type.
5978 if (Context.hasSameType(ParamType, ArgType)) {
5979 // Okay: no conversion necessary
5980 } else if (ParamType->isBooleanType()) {
5981 // This is an integral-to-boolean conversion.
5982 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
5983 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
5984 !ParamType->isEnumeralType()) {
5985 // This is an integral promotion or conversion.
5986 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
5987 } else {
5988 // We can't perform this conversion.
5989 Diag(Arg->getLocStart(),
5990 diag::err_template_arg_not_convertible)
5991 << Arg->getType() << ParamType << Arg->getSourceRange();
5992 Diag(Param->getLocation(), diag::note_template_param_here);
5993 return ExprError();
5994 }
5995
5996 // Add the value of this argument to the list of converted
5997 // arguments. We use the bitwidth and signedness of the template
5998 // parameter.
5999 if (Arg->isValueDependent()) {
6000 // The argument is value-dependent. Create a new
6001 // TemplateArgument with the converted expression.
6002 Converted = TemplateArgument(Arg);
6003 return Arg;
6004 }
6005
6006 QualType IntegerType = Context.getCanonicalType(ParamType);
6007 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6008 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
6009
6010 if (ParamType->isBooleanType()) {
6011 // Value must be zero or one.
6012 Value = Value != 0;
6013 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6014 if (Value.getBitWidth() != AllowedBits)
6015 Value = Value.extOrTrunc(AllowedBits);
6016 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6017 } else {
6018 llvm::APSInt OldValue = Value;
6019
6020 // Coerce the template argument's value to the value it will have
6021 // based on the template parameter's type.
6022 unsigned AllowedBits = Context.getTypeSize(IntegerType);
6023 if (Value.getBitWidth() != AllowedBits)
6024 Value = Value.extOrTrunc(AllowedBits);
6025 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6026
6027 // Complain if an unsigned parameter received a negative value.
6028 if (IntegerType->isUnsignedIntegerOrEnumerationType()
6029 && (OldValue.isSigned() && OldValue.isNegative())) {
6030 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
6031 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6032 << Arg->getSourceRange();
6033 Diag(Param->getLocation(), diag::note_template_param_here);
6034 }
6035
6036 // Complain if we overflowed the template parameter's type.
6037 unsigned RequiredBits;
6038 if (IntegerType->isUnsignedIntegerOrEnumerationType())
6039 RequiredBits = OldValue.getActiveBits();
6040 else if (OldValue.isUnsigned())
6041 RequiredBits = OldValue.getActiveBits() + 1;
6042 else
6043 RequiredBits = OldValue.getMinSignedBits();
6044 if (RequiredBits > AllowedBits) {
6045 Diag(Arg->getLocStart(),
6046 diag::warn_template_arg_too_large)
6047 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6048 << Arg->getSourceRange();
6049 Diag(Param->getLocation(), diag::note_template_param_here);
6050 }
6051 }
6052
6053 Converted = TemplateArgument(Context, Value,
6054 ParamType->isEnumeralType()
6055 ? Context.getCanonicalType(ParamType)
6056 : IntegerType);
6057 return Arg;
6058 }
6059
6060 QualType ArgType = Arg->getType();
6061 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
6062
6063 // Handle pointer-to-function, reference-to-function, and
6064 // pointer-to-member-function all in (roughly) the same way.
6065 if (// -- For a non-type template-parameter of type pointer to
6066 // function, only the function-to-pointer conversion (4.3) is
6067 // applied. If the template-argument represents a set of
6068 // overloaded functions (or a pointer to such), the matching
6069 // function is selected from the set (13.4).
6070 (ParamType->isPointerType() &&
6071 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
6072 // -- For a non-type template-parameter of type reference to
6073 // function, no conversions apply. If the template-argument
6074 // represents a set of overloaded functions, the matching
6075 // function is selected from the set (13.4).
6076 (ParamType->isReferenceType() &&
6077 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
6078 // -- For a non-type template-parameter of type pointer to
6079 // member function, no conversions apply. If the
6080 // template-argument represents a set of overloaded member
6081 // functions, the matching member function is selected from
6082 // the set (13.4).
6083 (ParamType->isMemberPointerType() &&
6084 ParamType->getAs<MemberPointerType>()->getPointeeType()
6085 ->isFunctionType())) {
6086
6087 if (Arg->getType() == Context.OverloadTy) {
6088 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
6089 true,
6090 FoundResult)) {
6091 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
6092 return ExprError();
6093
6094 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6095 ArgType = Arg->getType();
6096 } else
6097 return ExprError();
6098 }
6099
6100 if (!ParamType->isMemberPointerType()) {
6101 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6102 ParamType,
6103 Arg, Converted))
6104 return ExprError();
6105 return Arg;
6106 }
6107
6108 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6109 Converted))
6110 return ExprError();
6111 return Arg;
6112 }
6113
6114 if (ParamType->isPointerType()) {
6115 // -- for a non-type template-parameter of type pointer to
6116 // object, qualification conversions (4.4) and the
6117 // array-to-pointer conversion (4.2) are applied.
6118 // C++0x also allows a value of std::nullptr_t.
6119 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6120, __PRETTY_FUNCTION__))
6120 "Only object pointers allowed here")((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6120, __PRETTY_FUNCTION__))
;
6121
6122 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6123 ParamType,
6124 Arg, Converted))
6125 return ExprError();
6126 return Arg;
6127 }
6128
6129 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
6130 // -- For a non-type template-parameter of type reference to
6131 // object, no conversions apply. The type referred to by the
6132 // reference may be more cv-qualified than the (otherwise
6133 // identical) type of the template-argument. The
6134 // template-parameter is bound directly to the
6135 // template-argument, which must be an lvalue.
6136 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6137, __PRETTY_FUNCTION__))
6137 "Only object references allowed here")((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6137, __PRETTY_FUNCTION__))
;
6138
6139 if (Arg->getType() == Context.OverloadTy) {
6140 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
6141 ParamRefType->getPointeeType(),
6142 true,
6143 FoundResult)) {
6144 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
6145 return ExprError();
6146
6147 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6148 ArgType = Arg->getType();
6149 } else
6150 return ExprError();
6151 }
6152
6153 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6154 ParamType,
6155 Arg, Converted))
6156 return ExprError();
6157 return Arg;
6158 }
6159
6160 // Deal with parameters of type std::nullptr_t.
6161 if (ParamType->isNullPtrType()) {
6162 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6163 Converted = TemplateArgument(Arg);
6164 return Arg;
6165 }
6166
6167 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
6168 case NPV_NotNullPointer:
6169 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
6170 << Arg->getType() << ParamType;
6171 Diag(Param->getLocation(), diag::note_template_param_here);
6172 return ExprError();
6173
6174 case NPV_Error:
6175 return ExprError();
6176
6177 case NPV_NullPointer:
6178 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6179 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
6180 /*isNullPtr*/true);
6181 return Arg;
6182 }
6183 }
6184
6185 // -- For a non-type template-parameter of type pointer to data
6186 // member, qualification conversions (4.4) are applied.
6187 assert(ParamType->isMemberPointerType() && "Only pointers to members remain")((ParamType->isMemberPointerType() && "Only pointers to members remain"
) ? static_cast<void> (0) : __assert_fail ("ParamType->isMemberPointerType() && \"Only pointers to members remain\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6187, __PRETTY_FUNCTION__))
;
6188
6189 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6190 Converted))
6191 return ExprError();
6192 return Arg;
6193}
6194
6195static void DiagnoseTemplateParameterListArityMismatch(
6196 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
6197 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
6198
6199/// \brief Check a template argument against its corresponding
6200/// template template parameter.
6201///
6202/// This routine implements the semantics of C++ [temp.arg.template].
6203/// It returns true if an error occurred, and false otherwise.
6204bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
6205 TemplateArgumentLoc &Arg,
6206 unsigned ArgumentPackIndex) {
6207 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
6208 TemplateDecl *Template = Name.getAsTemplateDecl();
6209 if (!Template) {
6210 // Any dependent template name is fine.
6211 assert(Name.isDependent() && "Non-dependent template isn't a declaration?")((Name.isDependent() && "Non-dependent template isn't a declaration?"
) ? static_cast<void> (0) : __assert_fail ("Name.isDependent() && \"Non-dependent template isn't a declaration?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6211, __PRETTY_FUNCTION__))
;
6212 return false;
6213 }
6214
6215 if (Template->isInvalidDecl())
6216 return true;
6217
6218 // C++0x [temp.arg.template]p1:
6219 // A template-argument for a template template-parameter shall be
6220 // the name of a class template or an alias template, expressed as an
6221 // id-expression. When the template-argument names a class template, only
6222 // primary class templates are considered when matching the
6223 // template template argument with the corresponding parameter;
6224 // partial specializations are not considered even if their
6225 // parameter lists match that of the template template parameter.
6226 //
6227 // Note that we also allow template template parameters here, which
6228 // will happen when we are dealing with, e.g., class template
6229 // partial specializations.
6230 if (!isa<ClassTemplateDecl>(Template) &&
6231 !isa<TemplateTemplateParmDecl>(Template) &&
6232 !isa<TypeAliasTemplateDecl>(Template) &&
6233 !isa<BuiltinTemplateDecl>(Template)) {
6234 assert(isa<FunctionTemplateDecl>(Template) &&((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6235, __PRETTY_FUNCTION__))
6235 "Only function templates are possible here")((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6235, __PRETTY_FUNCTION__))
;
6236 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
6237 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
6238 << Template;
6239 }
6240
6241 TemplateParameterList *Params = Param->getTemplateParameters();
6242 if (Param->isExpandedParameterPack())
6243 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
6244
6245 // C++1z [temp.arg.template]p3: (DR 150)
6246 // A template-argument matches a template template-parameter P when P
6247 // is at least as specialized as the template-argument A.
6248 if (getLangOpts().RelaxedTemplateTemplateArgs) {
6249 // Quick check for the common case:
6250 // If P contains a parameter pack, then A [...] matches P if each of A's
6251 // template parameters matches the corresponding template parameter in
6252 // the template-parameter-list of P.
6253 if (TemplateParameterListsAreEqual(
6254 Template->getTemplateParameters(), Params, false,
6255 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()))
6256 return false;
6257
6258 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
6259 Arg.getLocation()))
6260 return false;
6261 // FIXME: Produce better diagnostics for deduction failures.
6262 }
6263
6264 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
6265 Params,
6266 true,
6267 TPL_TemplateTemplateArgumentMatch,
6268 Arg.getLocation());
6269}
6270
6271/// \brief Given a non-type template argument that refers to a
6272/// declaration and the type of its corresponding non-type template
6273/// parameter, produce an expression that properly refers to that
6274/// declaration.
6275ExprResult
6276Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
6277 QualType ParamType,
6278 SourceLocation Loc) {
6279 // C++ [temp.param]p8:
6280 //
6281 // A non-type template-parameter of type "array of T" or
6282 // "function returning T" is adjusted to be of type "pointer to
6283 // T" or "pointer to function returning T", respectively.
6284 if (ParamType->isArrayType())
6285 ParamType = Context.getArrayDecayedType(ParamType);
6286 else if (ParamType->isFunctionType())
6287 ParamType = Context.getPointerType(ParamType);
6288
6289 // For a NULL non-type template argument, return nullptr casted to the
6290 // parameter's type.
6291 if (Arg.getKind() == TemplateArgument::NullPtr) {
6292 return ImpCastExprToType(
6293 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
6294 ParamType,
6295 ParamType->getAs<MemberPointerType>()
6296 ? CK_NullToMemberPointer
6297 : CK_NullToPointer);
6298 }
6299 assert(Arg.getKind() == TemplateArgument::Declaration &&((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6300, __PRETTY_FUNCTION__))
6300 "Only declaration template arguments permitted here")((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6300, __PRETTY_FUNCTION__))
;
6301
6302 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
6303
6304 if (VD->getDeclContext()->isRecord() &&
6305 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
6306 isa<IndirectFieldDecl>(VD))) {
6307 // If the value is a class member, we might have a pointer-to-member.
6308 // Determine whether the non-type template template parameter is of
6309 // pointer-to-member type. If so, we need to build an appropriate
6310 // expression for a pointer-to-member, since a "normal" DeclRefExpr
6311 // would refer to the member itself.
6312 if (ParamType->isMemberPointerType()) {
6313 QualType ClassType
6314 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
6315 NestedNameSpecifier *Qualifier
6316 = NestedNameSpecifier::Create(Context, nullptr, false,
6317 ClassType.getTypePtr());
6318 CXXScopeSpec SS;
6319 SS.MakeTrivial(Context, Qualifier, Loc);
6320
6321 // The actual value-ness of this is unimportant, but for
6322 // internal consistency's sake, references to instance methods
6323 // are r-values.
6324 ExprValueKind VK = VK_LValue;
6325 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
6326 VK = VK_RValue;
6327
6328 ExprResult RefExpr = BuildDeclRefExpr(VD,
6329 VD->getType().getNonReferenceType(),
6330 VK,
6331 Loc,
6332 &SS);
6333 if (RefExpr.isInvalid())
6334 return ExprError();
6335
6336 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
6337
6338 // We might need to perform a trailing qualification conversion, since
6339 // the element type on the parameter could be more qualified than the
6340 // element type in the expression we constructed.
6341 bool ObjCLifetimeConversion;
6342 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
6343 ParamType.getUnqualifiedType(), false,
6344 ObjCLifetimeConversion))
6345 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
6346
6347 assert(!RefExpr.isInvalid() &&((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6349, __PRETTY_FUNCTION__))
6348 Context.hasSameType(((Expr*) RefExpr.get())->getType(),((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6349, __PRETTY_FUNCTION__))
6349 ParamType.getUnqualifiedType()))((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6349, __PRETTY_FUNCTION__))
;
6350 return RefExpr;
6351 }
6352 }
6353
6354 QualType T = VD->getType().getNonReferenceType();
6355
6356 if (ParamType->isPointerType()) {
6357 // When the non-type template parameter is a pointer, take the
6358 // address of the declaration.
6359 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
6360 if (RefExpr.isInvalid())
6361 return ExprError();
6362
6363 if (!Context.hasSameUnqualifiedType(ParamType->getPointeeType(), T) &&
6364 (T->isFunctionType() || T->isArrayType())) {
6365 // Decay functions and arrays unless we're forming a pointer to array.
6366 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
6367 if (RefExpr.isInvalid())
6368 return ExprError();
6369
6370 return RefExpr;
6371 }
6372
6373 // Take the address of everything else
6374 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
6375 }
6376
6377 ExprValueKind VK = VK_RValue;
6378
6379 // If the non-type template parameter has reference type, qualify the
6380 // resulting declaration reference with the extra qualifiers on the
6381 // type that the reference refers to.
6382 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
6383 VK = VK_LValue;
6384 T = Context.getQualifiedType(T,
6385 TargetRef->getPointeeType().getQualifiers());
6386 } else if (isa<FunctionDecl>(VD)) {
6387 // References to functions are always lvalues.
6388 VK = VK_LValue;
6389 }
6390
6391 return BuildDeclRefExpr(VD, T, VK, Loc);
6392}
6393
6394/// \brief Construct a new expression that refers to the given
6395/// integral template argument with the given source-location
6396/// information.
6397///
6398/// This routine takes care of the mapping from an integral template
6399/// argument (which may have any integral type) to the appropriate
6400/// literal value.
6401ExprResult
6402Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
6403 SourceLocation Loc) {
6404 assert(Arg.getKind() == TemplateArgument::Integral &&((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6405, __PRETTY_FUNCTION__))
6405 "Operation is only valid for integral template arguments")((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6405, __PRETTY_FUNCTION__))
;
6406 QualType OrigT = Arg.getIntegralType();
6407
6408 // If this is an enum type that we're instantiating, we need to use an integer
6409 // type the same size as the enumerator. We don't want to build an
6410 // IntegerLiteral with enum type. The integer type of an enum type can be of
6411 // any integral type with C++11 enum classes, make sure we create the right
6412 // type of literal for it.
6413 QualType T = OrigT;
6414 if (const EnumType *ET = OrigT->getAs<EnumType>())
6415 T = ET->getDecl()->getIntegerType();
6416
6417 Expr *E;
6418 if (T->isAnyCharacterType()) {
6419 // This does not need to handle u8 character literals because those are
6420 // of type char, and so can also be covered by an ASCII character literal.
6421 CharacterLiteral::CharacterKind Kind;
6422 if (T->isWideCharType())
6423 Kind = CharacterLiteral::Wide;
6424 else if (T->isChar16Type())
6425 Kind = CharacterLiteral::UTF16;
6426 else if (T->isChar32Type())
6427 Kind = CharacterLiteral::UTF32;
6428 else
6429 Kind = CharacterLiteral::Ascii;
6430
6431 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
6432 Kind, T, Loc);
6433 } else if (T->isBooleanType()) {
6434 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
6435 T, Loc);
6436 } else if (T->isNullPtrType()) {
6437 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
6438 } else {
6439 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
6440 }
6441
6442 if (OrigT->isEnumeralType()) {
6443 // FIXME: This is a hack. We need a better way to handle substituted
6444 // non-type template parameters.
6445 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
6446 nullptr,
6447 Context.getTrivialTypeSourceInfo(OrigT, Loc),
6448 Loc, Loc);
6449 }
6450
6451 return E;
6452}
6453
6454/// \brief Match two template parameters within template parameter lists.
6455static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
6456 bool Complain,
6457 Sema::TemplateParameterListEqualKind Kind,
6458 SourceLocation TemplateArgLoc) {
6459 // Check the actual kind (type, non-type, template).
6460 if (Old->getKind() != New->getKind()) {
6461 if (Complain) {
6462 unsigned NextDiag = diag::err_template_param_different_kind;
6463 if (TemplateArgLoc.isValid()) {
6464 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
6465 NextDiag = diag::note_template_param_different_kind;
6466 }
6467 S.Diag(New->getLocation(), NextDiag)
6468 << (Kind != Sema::TPL_TemplateMatch);
6469 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
6470 << (Kind != Sema::TPL_TemplateMatch);
6471 }
6472
6473 return false;
6474 }
6475
6476 // Check that both are parameter packs or neither are parameter packs.
6477 // However, if we are matching a template template argument to a
6478 // template template parameter, the template template parameter can have
6479 // a parameter pack where the template template argument does not.
6480 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
6481 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
6482 Old->isTemplateParameterPack())) {
6483 if (Complain) {
6484 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
6485 if (TemplateArgLoc.isValid()) {
6486 S.Diag(TemplateArgLoc,
6487 diag::err_template_arg_template_params_mismatch);
6488 NextDiag = diag::note_template_parameter_pack_non_pack;
6489 }
6490
6491 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
6492 : isa<NonTypeTemplateParmDecl>(New)? 1
6493 : 2;
6494 S.Diag(New->getLocation(), NextDiag)
6495 << ParamKind << New->isParameterPack();
6496 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
6497 << ParamKind << Old->isParameterPack();
6498 }
6499
6500 return false;
6501 }
6502
6503 // For non-type template parameters, check the type of the parameter.
6504 if (NonTypeTemplateParmDecl *OldNTTP
6505 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
6506 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
6507
6508 // If we are matching a template template argument to a template
6509 // template parameter and one of the non-type template parameter types
6510 // is dependent, then we must wait until template instantiation time
6511 // to actually compare the arguments.
6512 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
6513 (OldNTTP->getType()->isDependentType() ||
6514 NewNTTP->getType()->isDependentType()))
6515 return true;
6516
6517 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
6518 if (Complain) {
6519 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
6520 if (TemplateArgLoc.isValid()) {
6521 S.Diag(TemplateArgLoc,
6522 diag::err_template_arg_template_params_mismatch);
6523 NextDiag = diag::note_template_nontype_parm_different_type;
6524 }
6525 S.Diag(NewNTTP->getLocation(), NextDiag)
6526 << NewNTTP->getType()
6527 << (Kind != Sema::TPL_TemplateMatch);
6528 S.Diag(OldNTTP->getLocation(),
6529 diag::note_template_nontype_parm_prev_declaration)
6530 << OldNTTP->getType();
6531 }
6532
6533 return false;
6534 }
6535
6536 return true;
6537 }
6538
6539 // For template template parameters, check the template parameter types.
6540 // The template parameter lists of template template
6541 // parameters must agree.
6542 if (TemplateTemplateParmDecl *OldTTP
6543 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
6544 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
6545 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
6546 OldTTP->getTemplateParameters(),
6547 Complain,
6548 (Kind == Sema::TPL_TemplateMatch
6549 ? Sema::TPL_TemplateTemplateParmMatch
6550 : Kind),
6551 TemplateArgLoc);
6552 }
6553
6554 return true;
6555}
6556
6557/// \brief Diagnose a known arity mismatch when comparing template argument
6558/// lists.
6559static
6560void DiagnoseTemplateParameterListArityMismatch(Sema &S,
6561 TemplateParameterList *New,
6562 TemplateParameterList *Old,
6563 Sema::TemplateParameterListEqualKind Kind,
6564 SourceLocation TemplateArgLoc) {
6565 unsigned NextDiag = diag::err_template_param_list_different_arity;
6566 if (TemplateArgLoc.isValid()) {
6567 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
6568 NextDiag = diag::note_template_param_list_different_arity;
6569 }
6570 S.Diag(New->getTemplateLoc(), NextDiag)
6571 << (New->size() > Old->size())
6572 << (Kind != Sema::TPL_TemplateMatch)
6573 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
6574 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
6575 << (Kind != Sema::TPL_TemplateMatch)
6576 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
6577}
6578
6579/// \brief Determine whether the given template parameter lists are
6580/// equivalent.
6581///
6582/// \param New The new template parameter list, typically written in the
6583/// source code as part of a new template declaration.
6584///
6585/// \param Old The old template parameter list, typically found via
6586/// name lookup of the template declared with this template parameter
6587/// list.
6588///
6589/// \param Complain If true, this routine will produce a diagnostic if
6590/// the template parameter lists are not equivalent.
6591///
6592/// \param Kind describes how we are to match the template parameter lists.
6593///
6594/// \param TemplateArgLoc If this source location is valid, then we
6595/// are actually checking the template parameter list of a template
6596/// argument (New) against the template parameter list of its
6597/// corresponding template template parameter (Old). We produce
6598/// slightly different diagnostics in this scenario.
6599///
6600/// \returns True if the template parameter lists are equal, false
6601/// otherwise.
6602bool
6603Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
6604 TemplateParameterList *Old,
6605 bool Complain,
6606 TemplateParameterListEqualKind Kind,
6607 SourceLocation TemplateArgLoc) {
6608 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
6609 if (Complain)
6610 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6611 TemplateArgLoc);
6612
6613 return false;
6614 }
6615
6616 // C++0x [temp.arg.template]p3:
6617 // A template-argument matches a template template-parameter (call it P)
6618 // when each of the template parameters in the template-parameter-list of
6619 // the template-argument's corresponding class template or alias template
6620 // (call it A) matches the corresponding template parameter in the
6621 // template-parameter-list of P. [...]
6622 TemplateParameterList::iterator NewParm = New->begin();
6623 TemplateParameterList::iterator NewParmEnd = New->end();
6624 for (TemplateParameterList::iterator OldParm = Old->begin(),
6625 OldParmEnd = Old->end();
6626 OldParm != OldParmEnd; ++OldParm) {
6627 if (Kind != TPL_TemplateTemplateArgumentMatch ||
6628 !(*OldParm)->isTemplateParameterPack()) {
6629 if (NewParm == NewParmEnd) {
6630 if (Complain)
6631 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6632 TemplateArgLoc);
6633
6634 return false;
6635 }
6636
6637 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
6638 Kind, TemplateArgLoc))
6639 return false;
6640
6641 ++NewParm;
6642 continue;
6643 }
6644
6645 // C++0x [temp.arg.template]p3:
6646 // [...] When P's template- parameter-list contains a template parameter
6647 // pack (14.5.3), the template parameter pack will match zero or more
6648 // template parameters or template parameter packs in the
6649 // template-parameter-list of A with the same type and form as the
6650 // template parameter pack in P (ignoring whether those template
6651 // parameters are template parameter packs).
6652 for (; NewParm != NewParmEnd; ++NewParm) {
6653 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
6654 Kind, TemplateArgLoc))
6655 return false;
6656 }
6657 }
6658
6659 // Make sure we exhausted all of the arguments.
6660 if (NewParm != NewParmEnd) {
6661 if (Complain)
6662 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6663 TemplateArgLoc);
6664
6665 return false;
6666 }
6667
6668 return true;
6669}
6670
6671/// \brief Check whether a template can be declared within this scope.
6672///
6673/// If the template declaration is valid in this scope, returns
6674/// false. Otherwise, issues a diagnostic and returns true.
6675bool
6676Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
6677 if (!S)
2
Assuming 'S' is non-null
3
Taking false branch
6678 return false;
6679
6680 // Find the nearest enclosing declaration scope.
6681 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4
Assuming the condition is false
6
Loop condition is false. Execution continues on line 6687
6682 (S->getFlags() & Scope::TemplateParamScope) != 0)
5
Assuming the condition is false
6683 S = S->getParent();
6684
6685 // C++ [temp]p4:
6686 // A template [...] shall not have C linkage.
6687 DeclContext *Ctx = S->getEntity();
7
Calling 'Scope::getEntity'
8
Returning from 'Scope::getEntity'
9
'Ctx' initialized here
6688 if (Ctx && Ctx->isExternCContext()) {
10
Assuming 'Ctx' is null
11
Assuming pointer value is null
6689 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
6690 << TemplateParams->getSourceRange();
6691 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
6692 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
6693 return true;
6694 }
6695 Ctx = Ctx->getRedeclContext();
12
Called C++ object pointer is null
6696
6697 // C++ [temp]p2:
6698 // A template-declaration can appear only as a namespace scope or
6699 // class scope declaration.
6700 if (Ctx) {
6701 if (Ctx->isFileContext())
6702 return false;
6703 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
6704 // C++ [temp.mem]p2:
6705 // A local class shall not have member templates.
6706 if (RD->isLocalClass())
6707 return Diag(TemplateParams->getTemplateLoc(),
6708 diag::err_template_inside_local_class)
6709 << TemplateParams->getSourceRange();
6710 else
6711 return false;
6712 }
6713 }
6714
6715 return Diag(TemplateParams->getTemplateLoc(),
6716 diag::err_template_outside_namespace_or_class_scope)
6717 << TemplateParams->getSourceRange();
6718}
6719
6720/// \brief Determine what kind of template specialization the given declaration
6721/// is.
6722static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
6723 if (!D)
6724 return TSK_Undeclared;
6725
6726 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
6727 return Record->getTemplateSpecializationKind();
6728 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
6729 return Function->getTemplateSpecializationKind();
6730 if (VarDecl *Var = dyn_cast<VarDecl>(D))
6731 return Var->getTemplateSpecializationKind();
6732
6733 return TSK_Undeclared;
6734}
6735
6736/// \brief Check whether a specialization is well-formed in the current
6737/// context.
6738///
6739/// This routine determines whether a template specialization can be declared
6740/// in the current context (C++ [temp.expl.spec]p2).
6741///
6742/// \param S the semantic analysis object for which this check is being
6743/// performed.
6744///
6745/// \param Specialized the entity being specialized or instantiated, which
6746/// may be a kind of template (class template, function template, etc.) or
6747/// a member of a class template (member function, static data member,
6748/// member class).
6749///
6750/// \param PrevDecl the previous declaration of this entity, if any.
6751///
6752/// \param Loc the location of the explicit specialization or instantiation of
6753/// this entity.
6754///
6755/// \param IsPartialSpecialization whether this is a partial specialization of
6756/// a class template.
6757///
6758/// \returns true if there was an error that we cannot recover from, false
6759/// otherwise.
6760static bool CheckTemplateSpecializationScope(Sema &S,
6761 NamedDecl *Specialized,
6762 NamedDecl *PrevDecl,
6763 SourceLocation Loc,
6764 bool IsPartialSpecialization) {
6765 // Keep these "kind" numbers in sync with the %select statements in the
6766 // various diagnostics emitted by this routine.
6767 int EntityKind = 0;
6768 if (isa<ClassTemplateDecl>(Specialized))
6769 EntityKind = IsPartialSpecialization? 1 : 0;
6770 else if (isa<VarTemplateDecl>(Specialized))
6771 EntityKind = IsPartialSpecialization ? 3 : 2;
6772 else if (isa<FunctionTemplateDecl>(Specialized))
6773 EntityKind = 4;
6774 else if (isa<CXXMethodDecl>(Specialized))
6775 EntityKind = 5;
6776 else if (isa<VarDecl>(Specialized))
6777 EntityKind = 6;
6778 else if (isa<RecordDecl>(Specialized))
6779 EntityKind = 7;
6780 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
6781 EntityKind = 8;
6782 else {
6783 S.Diag(Loc, diag::err_template_spec_unknown_kind)
6784 << S.getLangOpts().CPlusPlus11;
6785 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
6786 return true;
6787 }
6788
6789 // C++ [temp.expl.spec]p2:
6790 // An explicit specialization shall be declared in the namespace
6791 // of which the template is a member, or, for member templates, in
6792 // the namespace of which the enclosing class or enclosing class
6793 // template is a member. An explicit specialization of a member
6794 // function, member class or static data member of a class
6795 // template shall be declared in the namespace of which the class
6796 // template is a member. Such a declaration may also be a
6797 // definition. If the declaration is not a definition, the
6798 // specialization may be defined later in the name- space in which
6799 // the explicit specialization was declared, or in a namespace
6800 // that encloses the one in which the explicit specialization was
6801 // declared.
6802 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6803 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
6804 << Specialized;
6805 return true;
6806 }
6807
6808 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
6809 if (S.getLangOpts().MicrosoftExt) {
6810 // Do not warn for class scope explicit specialization during
6811 // instantiation, warning was already emitted during pattern
6812 // semantic analysis.
6813 if (!S.inTemplateInstantiation())
6814 S.Diag(Loc, diag::ext_function_specialization_in_class)
6815 << Specialized;
6816 } else {
6817 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
6818 << Specialized;
6819 return true;
6820 }
6821 }
6822
6823 if (S.CurContext->isRecord() &&
6824 !S.CurContext->Equals(Specialized->getDeclContext())) {
6825 // Make sure that we're specializing in the right record context.
6826 // Otherwise, things can go horribly wrong.
6827 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
6828 << Specialized;
6829 return true;
6830 }
6831
6832 // C++ [temp.class.spec]p6:
6833 // A class template partial specialization may be declared or redeclared
6834 // in any namespace scope in which its definition may be defined (14.5.1
6835 // and 14.5.2).
6836 DeclContext *SpecializedContext
6837 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
6838 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
6839
6840 // Make sure that this redeclaration (or definition) occurs in an enclosing
6841 // namespace.
6842 // Note that HandleDeclarator() performs this check for explicit
6843 // specializations of function templates, static data members, and member
6844 // functions, so we skip the check here for those kinds of entities.
6845 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
6846 // Should we refactor that check, so that it occurs later?
6847 if (!DC->Encloses(SpecializedContext) &&
6848 !(isa<FunctionTemplateDecl>(Specialized) ||
6849 isa<FunctionDecl>(Specialized) ||
6850 isa<VarTemplateDecl>(Specialized) ||
6851 isa<VarDecl>(Specialized))) {
6852 if (isa<TranslationUnitDecl>(SpecializedContext))
6853 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
6854 << EntityKind << Specialized;
6855 else if (isa<NamespaceDecl>(SpecializedContext)) {
6856 int Diag = diag::err_template_spec_redecl_out_of_scope;
6857 if (S.getLangOpts().MicrosoftExt)
6858 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
6859 S.Diag(Loc, Diag) << EntityKind << Specialized
6860 << cast<NamedDecl>(SpecializedContext);
6861 } else
6862 llvm_unreachable("unexpected namespace context for specialization")::llvm::llvm_unreachable_internal("unexpected namespace context for specialization"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6862)
;
6863
6864 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
6865 } else if ((!PrevDecl ||
6866 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
6867 getTemplateSpecializationKind(PrevDecl) ==
6868 TSK_ImplicitInstantiation)) {
6869 // C++ [temp.exp.spec]p2:
6870 // An explicit specialization shall be declared in the namespace of which
6871 // the template is a member, or, for member templates, in the namespace
6872 // of which the enclosing class or enclosing class template is a member.
6873 // An explicit specialization of a member function, member class or
6874 // static data member of a class template shall be declared in the
6875 // namespace of which the class template is a member.
6876 //
6877 // C++11 [temp.expl.spec]p2:
6878 // An explicit specialization shall be declared in a namespace enclosing
6879 // the specialized template.
6880 // C++11 [temp.explicit]p3:
6881 // An explicit instantiation shall appear in an enclosing namespace of its
6882 // template.
6883 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
6884 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
6885 if (isa<TranslationUnitDecl>(SpecializedContext)) {
6886 assert(!IsCPlusPlus11Extension &&((!IsCPlusPlus11Extension && "DC encloses TU but isn't in enclosing namespace set"
) ? static_cast<void> (0) : __assert_fail ("!IsCPlusPlus11Extension && \"DC encloses TU but isn't in enclosing namespace set\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6887, __PRETTY_FUNCTION__))
6887 "DC encloses TU but isn't in enclosing namespace set")((!IsCPlusPlus11Extension && "DC encloses TU but isn't in enclosing namespace set"
) ? static_cast<void> (0) : __assert_fail ("!IsCPlusPlus11Extension && \"DC encloses TU but isn't in enclosing namespace set\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6887, __PRETTY_FUNCTION__))
;
6888 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
6889 << EntityKind << Specialized;
6890 } else if (isa<NamespaceDecl>(SpecializedContext)) {
6891 int Diag;
6892 if (!IsCPlusPlus11Extension)
6893 Diag = diag::err_template_spec_decl_out_of_scope;
6894 else if (!S.getLangOpts().CPlusPlus11)
6895 Diag = diag::ext_template_spec_decl_out_of_scope;
6896 else
6897 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
6898 S.Diag(Loc, Diag)
6899 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
6900 }
6901
6902 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
6903 }
6904 }
6905
6906 return false;
6907}
6908
6909static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
6910 if (!E->isTypeDependent())
6911 return SourceLocation();
6912 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
6913 Checker.TraverseStmt(E);
6914 if (Checker.MatchLoc.isInvalid())
6915 return E->getSourceRange();
6916 return Checker.MatchLoc;
6917}
6918
6919static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
6920 if (!TL.getType()->isDependentType())
6921 return SourceLocation();
6922 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
6923 Checker.TraverseTypeLoc(TL);
6924 if (Checker.MatchLoc.isInvalid())
6925 return TL.getSourceRange();
6926 return Checker.MatchLoc;
6927}
6928
6929/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
6930/// that checks non-type template partial specialization arguments.
6931static bool CheckNonTypeTemplatePartialSpecializationArgs(
6932 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
6933 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
6934 for (unsigned I = 0; I != NumArgs; ++I) {
6935 if (Args[I].getKind() == TemplateArgument::Pack) {
6936 if (CheckNonTypeTemplatePartialSpecializationArgs(
6937 S, TemplateNameLoc, Param, Args[I].pack_begin(),
6938 Args[I].pack_size(), IsDefaultArgument))
6939 return true;
6940
6941 continue;
6942 }
6943
6944 if (Args[I].getKind() != TemplateArgument::Expression)
6945 continue;
6946
6947 Expr *ArgExpr = Args[I].getAsExpr();
6948
6949 // We can have a pack expansion of any of the bullets below.
6950 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
6951 ArgExpr = Expansion->getPattern();
6952
6953 // Strip off any implicit casts we added as part of type checking.
6954 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
6955 ArgExpr = ICE->getSubExpr();
6956
6957 // C++ [temp.class.spec]p8:
6958 // A non-type argument is non-specialized if it is the name of a
6959 // non-type parameter. All other non-type arguments are
6960 // specialized.
6961 //
6962 // Below, we check the two conditions that only apply to
6963 // specialized non-type arguments, so skip any non-specialized
6964 // arguments.
6965 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
6966 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
6967 continue;
6968
6969 // C++ [temp.class.spec]p9:
6970 // Within the argument list of a class template partial
6971 // specialization, the following restrictions apply:
6972 // -- A partially specialized non-type argument expression
6973 // shall not involve a template parameter of the partial
6974 // specialization except when the argument expression is a
6975 // simple identifier.
6976 // -- The type of a template parameter corresponding to a
6977 // specialized non-type argument shall not be dependent on a
6978 // parameter of the specialization.
6979 // DR1315 removes the first bullet, leaving an incoherent set of rules.
6980 // We implement a compromise between the original rules and DR1315:
6981 // -- A specialized non-type template argument shall not be
6982 // type-dependent and the corresponding template parameter
6983 // shall have a non-dependent type.
6984 SourceRange ParamUseRange =
6985 findTemplateParameterInType(Param->getDepth(), ArgExpr);
6986 if (ParamUseRange.isValid()) {
6987 if (IsDefaultArgument) {
6988 S.Diag(TemplateNameLoc,
6989 diag::err_dependent_non_type_arg_in_partial_spec);
6990 S.Diag(ParamUseRange.getBegin(),
6991 diag::note_dependent_non_type_default_arg_in_partial_spec)
6992 << ParamUseRange;
6993 } else {
6994 S.Diag(ParamUseRange.getBegin(),
6995 diag::err_dependent_non_type_arg_in_partial_spec)
6996 << ParamUseRange;
6997 }
6998 return true;
6999 }
7000
7001 ParamUseRange = findTemplateParameter(
7002 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
7003 if (ParamUseRange.isValid()) {
7004 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
7005 diag::err_dependent_typed_non_type_arg_in_partial_spec)
7006 << Param->getType();
7007 S.Diag(Param->getLocation(), diag::note_template_param_here)
7008 << (IsDefaultArgument ? ParamUseRange : SourceRange())
7009 << ParamUseRange;
7010 return true;
7011 }
7012 }
7013
7014 return false;
7015}
7016
7017/// \brief Check the non-type template arguments of a class template
7018/// partial specialization according to C++ [temp.class.spec]p9.
7019///
7020/// \param TemplateNameLoc the location of the template name.
7021/// \param PrimaryTemplate the template parameters of the primary class
7022/// template.
7023/// \param NumExplicit the number of explicitly-specified template arguments.
7024/// \param TemplateArgs the template arguments of the class template
7025/// partial specialization.
7026///
7027/// \returns \c true if there was an error, \c false otherwise.
7028bool Sema::CheckTemplatePartialSpecializationArgs(
7029 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
7030 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
7031 // We have to be conservative when checking a template in a dependent
7032 // context.
7033 if (PrimaryTemplate->getDeclContext()->isDependentContext())
7034 return false;
7035
7036 TemplateParameterList *TemplateParams =
7037 PrimaryTemplate->getTemplateParameters();
7038 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7039 NonTypeTemplateParmDecl *Param
7040 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
7041 if (!Param)
7042 continue;
7043
7044 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
7045 Param, &TemplateArgs[I],
7046 1, I >= NumExplicit))
7047 return true;
7048 }
7049
7050 return false;
7051}
7052
7053DeclResult
7054Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
7055 TagUseKind TUK,
7056 SourceLocation KWLoc,
7057 SourceLocation ModulePrivateLoc,
7058 TemplateIdAnnotation &TemplateId,
7059 AttributeList *Attr,
7060 MultiTemplateParamsArg
7061 TemplateParameterLists,
7062 SkipBodyInfo *SkipBody) {
7063 assert(TUK != TUK_Reference && "References are not specializations")((TUK != TUK_Reference && "References are not specializations"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"References are not specializations\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7063, __PRETTY_FUNCTION__))
;
7064
7065 CXXScopeSpec &SS = TemplateId.SS;
7066
7067 // NOTE: KWLoc is the location of the tag keyword. This will instead
7068 // store the location of the outermost template keyword in the declaration.
7069 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
7070 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
7071 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
7072 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
7073 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
7074
7075 // Find the class template we're specializing
7076 TemplateName Name = TemplateId.Template.get();
7077 ClassTemplateDecl *ClassTemplate
7078 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
7079
7080 if (!ClassTemplate) {
7081 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
7082 << (Name.getAsTemplateDecl() &&
7083 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
7084 return true;
7085 }
7086
7087 bool isMemberSpecialization = false;
7088 bool isPartialSpecialization = false;
7089
7090 // Check the validity of the template headers that introduce this
7091 // template.
7092 // FIXME: We probably shouldn't complain about these headers for
7093 // friend declarations.
7094 bool Invalid = false;
7095 TemplateParameterList *TemplateParams =
7096 MatchTemplateParametersToScopeSpecifier(
7097 KWLoc, TemplateNameLoc, SS, &TemplateId,
7098 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
7099 Invalid);
7100 if (Invalid)
7101 return true;
7102
7103 if (TemplateParams && TemplateParams->size() > 0) {
7104 isPartialSpecialization = true;
7105
7106 if (TUK == TUK_Friend) {
7107 Diag(KWLoc, diag::err_partial_specialization_friend)
7108 << SourceRange(LAngleLoc, RAngleLoc);
7109 return true;
7110 }
7111
7112 // C++ [temp.class.spec]p10:
7113 // The template parameter list of a specialization shall not
7114 // contain default template argument values.
7115 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7116 Decl *Param = TemplateParams->getParam(I);
7117 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
7118 if (TTP->hasDefaultArgument()) {
7119 Diag(TTP->getDefaultArgumentLoc(),
7120 diag::err_default_arg_in_partial_spec);
7121 TTP->removeDefaultArgument();
7122 }
7123 } else if (NonTypeTemplateParmDecl *NTTP
7124 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
7125 if (Expr *DefArg = NTTP->getDefaultArgument()) {
7126 Diag(NTTP->getDefaultArgumentLoc(),
7127 diag::err_default_arg_in_partial_spec)
7128 << DefArg->getSourceRange();
7129 NTTP->removeDefaultArgument();
7130 }
7131 } else {
7132 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
7133 if (TTP->hasDefaultArgument()) {
7134 Diag(TTP->getDefaultArgument().getLocation(),
7135 diag::err_default_arg_in_partial_spec)
7136 << TTP->getDefaultArgument().getSourceRange();
7137 TTP->removeDefaultArgument();
7138 }
7139 }
7140 }
7141 } else if (TemplateParams) {
7142 if (TUK == TUK_Friend)
7143 Diag(KWLoc, diag::err_template_spec_friend)
7144 << FixItHint::CreateRemoval(
7145 SourceRange(TemplateParams->getTemplateLoc(),
7146 TemplateParams->getRAngleLoc()))
7147 << SourceRange(LAngleLoc, RAngleLoc);
7148 } else {
7149 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl")((TUK == TUK_Friend && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("TUK == TUK_Friend && \"should have a 'template<>' for this decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7149, __PRETTY_FUNCTION__))
;
7150 }
7151
7152 // Check that the specialization uses the same tag kind as the
7153 // original template.
7154 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7155 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!")((Kind != TTK_Enum && "Invalid enum tag in class template spec!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template spec!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7155, __PRETTY_FUNCTION__))
;
7156 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7157 Kind, TUK == TUK_Definition, KWLoc,
7158 ClassTemplate->getIdentifier())) {
7159 Diag(KWLoc, diag::err_use_with_wrong_tag)
7160 << ClassTemplate
7161 << FixItHint::CreateReplacement(KWLoc,
7162 ClassTemplate->getTemplatedDecl()->getKindName());
7163 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7164 diag::note_previous_use);
7165 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7166 }
7167
7168 // Translate the parser's template argument list in our AST format.
7169 TemplateArgumentListInfo TemplateArgs =
7170 makeTemplateArgumentListInfo(*this, TemplateId);
7171
7172 // Check for unexpanded parameter packs in any of the template arguments.
7173 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7174 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
7175 UPPC_PartialSpecialization))
7176 return true;
7177
7178 // Check that the template argument list is well-formed for this
7179 // template.
7180 SmallVector<TemplateArgument, 4> Converted;
7181 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7182 TemplateArgs, false, Converted))
7183 return true;
7184
7185 // Find the class template (partial) specialization declaration that
7186 // corresponds to these arguments.
7187 if (isPartialSpecialization) {
7188 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
7189 TemplateArgs.size(), Converted))
7190 return true;
7191
7192 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
7193 // also do it during instantiation.
7194 bool InstantiationDependent;
7195 if (!Name.isDependent() &&
7196 !TemplateSpecializationType::anyDependentTemplateArguments(
7197 TemplateArgs.arguments(), InstantiationDependent)) {
7198 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
7199 << ClassTemplate->getDeclName();
7200 isPartialSpecialization = false;
7201 }
7202 }
7203
7204 void *InsertPos = nullptr;
7205 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
7206
7207 if (isPartialSpecialization)
7208 // FIXME: Template parameter list matters, too
7209 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
7210 else
7211 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
7212
7213 ClassTemplateSpecializationDecl *Specialization = nullptr;
7214
7215 // Check whether we can declare a class template specialization in
7216 // the current scope.
7217 if (TUK != TUK_Friend &&
7218 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
7219 TemplateNameLoc,
7220 isPartialSpecialization))
7221 return true;
7222
7223 // The canonical type
7224 QualType CanonType;
7225 if (isPartialSpecialization) {
7226 // Build the canonical type that describes the converted template
7227 // arguments of the class template partial specialization.
7228 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7229 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
7230 Converted);
7231
7232 if (Context.hasSameType(CanonType,
7233 ClassTemplate->getInjectedClassNameSpecialization())) {
7234 // C++ [temp.class.spec]p9b3:
7235 //
7236 // -- The argument list of the specialization shall not be identical
7237 // to the implicit argument list of the primary template.
7238 //
7239 // This rule has since been removed, because it's redundant given DR1495,
7240 // but we keep it because it produces better diagnostics and recovery.
7241 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
7242 << /*class template*/0 << (TUK == TUK_Definition)
7243 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
7244 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
7245 ClassTemplate->getIdentifier(),
7246 TemplateNameLoc,
7247 Attr,
7248 TemplateParams,
7249 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
7250 /*FriendLoc*/SourceLocation(),
7251 TemplateParameterLists.size() - 1,
7252 TemplateParameterLists.data());
7253 }
7254
7255 // Create a new class template partial specialization declaration node.
7256 ClassTemplatePartialSpecializationDecl *PrevPartial
7257 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
7258 ClassTemplatePartialSpecializationDecl *Partial
7259 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
7260 ClassTemplate->getDeclContext(),
7261 KWLoc, TemplateNameLoc,
7262 TemplateParams,
7263 ClassTemplate,
7264 Converted,
7265 TemplateArgs,
7266 CanonType,
7267 PrevPartial);
7268 SetNestedNameSpecifier(Partial, SS);
7269 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
7270 Partial->setTemplateParameterListsInfo(
7271 Context, TemplateParameterLists.drop_back(1));
7272 }
7273
7274 if (!PrevPartial)
7275 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
7276 Specialization = Partial;
7277
7278 // If we are providing an explicit specialization of a member class
7279 // template specialization, make a note of that.
7280 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
7281 PrevPartial->setMemberSpecialization();
7282
7283 CheckTemplatePartialSpecialization(Partial);
7284 } else {
7285 // Create a new class template specialization declaration node for
7286 // this explicit specialization or friend declaration.
7287 Specialization
7288 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7289 ClassTemplate->getDeclContext(),
7290 KWLoc, TemplateNameLoc,
7291 ClassTemplate,
7292 Converted,
7293 PrevDecl);
7294 SetNestedNameSpecifier(Specialization, SS);
7295 if (TemplateParameterLists.size() > 0) {
7296 Specialization->setTemplateParameterListsInfo(Context,
7297 TemplateParameterLists);
7298 }
7299
7300 if (!PrevDecl)
7301 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7302
7303 if (CurContext->isDependentContext()) {
7304 // -fms-extensions permits specialization of nested classes without
7305 // fully specializing the outer class(es).
7306 assert(getLangOpts().MicrosoftExt &&((getLangOpts().MicrosoftExt && "Only possible with -fms-extensions!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MicrosoftExt && \"Only possible with -fms-extensions!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7307, __PRETTY_FUNCTION__))
7307 "Only possible with -fms-extensions!")((getLangOpts().MicrosoftExt && "Only possible with -fms-extensions!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MicrosoftExt && \"Only possible with -fms-extensions!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7307, __PRETTY_FUNCTION__))
;
7308 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7309 CanonType = Context.getTemplateSpecializationType(
7310 CanonTemplate, Converted);
7311 } else {
7312 CanonType = Context.getTypeDeclType(Specialization);
7313 }
7314 }
7315
7316 // C++ [temp.expl.spec]p6:
7317 // If a template, a member template or the member of a class template is
7318 // explicitly specialized then that specialization shall be declared
7319 // before the first use of that specialization that would cause an implicit
7320 // instantiation to take place, in every translation unit in which such a
7321 // use occurs; no diagnostic is required.
7322 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
7323 bool Okay = false;
7324 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7325 // Is there any previous explicit specialization declaration?
7326 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
7327 Okay = true;
7328 break;
7329 }
7330 }
7331
7332 if (!Okay) {
7333 SourceRange Range(TemplateNameLoc, RAngleLoc);
7334 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
7335 << Context.getTypeDeclType(Specialization) << Range;
7336
7337 Diag(PrevDecl->getPointOfInstantiation(),
7338 diag::note_instantiation_required_here)
7339 << (PrevDecl->getTemplateSpecializationKind()
7340 != TSK_ImplicitInstantiation);
7341 return true;
7342 }
7343 }
7344
7345 // If this is not a friend, note that this is an explicit specialization.
7346 if (TUK != TUK_Friend)
7347 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
7348
7349 // Check that this isn't a redefinition of this specialization.
7350 if (TUK == TUK_Definition) {
7351 RecordDecl *Def = Specialization->getDefinition();
7352 NamedDecl *Hidden = nullptr;
7353 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
7354 SkipBody->ShouldSkip = true;
7355 makeMergedDefinitionVisible(Hidden, KWLoc);
7356 // From here on out, treat this as just a redeclaration.
7357 TUK = TUK_Declaration;
7358 } else if (Def) {
7359 SourceRange Range(TemplateNameLoc, RAngleLoc);
7360 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
7361 Diag(Def->getLocation(), diag::note_previous_definition);
7362 Specialization->setInvalidDecl();
7363 return true;
7364 }
7365 }
7366
7367 if (Attr)
7368 ProcessDeclAttributeList(S, Specialization, Attr);
7369
7370 // Add alignment attributes if necessary; these attributes are checked when
7371 // the ASTContext lays out the structure.
7372 if (TUK == TUK_Definition) {
7373 AddAlignmentAttributesForRecord(Specialization);
7374 AddMsStructLayoutForRecord(Specialization);
7375 }
7376
7377 if (ModulePrivateLoc.isValid())
7378 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
7379 << (isPartialSpecialization? 1 : 0)
7380 << FixItHint::CreateRemoval(ModulePrivateLoc);
7381
7382 // Build the fully-sugared type for this class template
7383 // specialization as the user wrote in the specialization
7384 // itself. This means that we'll pretty-print the type retrieved
7385 // from the specialization's declaration the way that the user
7386 // actually wrote the specialization, rather than formatting the
7387 // name based on the "canonical" representation used to store the
7388 // template arguments in the specialization.
7389 TypeSourceInfo *WrittenTy
7390 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7391 TemplateArgs, CanonType);
7392 if (TUK != TUK_Friend) {
7393 Specialization->setTypeAsWritten(WrittenTy);
7394 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
7395 }
7396
7397 // C++ [temp.expl.spec]p9:
7398 // A template explicit specialization is in the scope of the
7399 // namespace in which the template was defined.
7400 //
7401 // We actually implement this paragraph where we set the semantic
7402 // context (in the creation of the ClassTemplateSpecializationDecl),
7403 // but we also maintain the lexical context where the actual
7404 // definition occurs.
7405 Specialization->setLexicalDeclContext(CurContext);
7406
7407 // We may be starting the definition of this specialization.
7408 if (TUK == TUK_Definition)
7409 Specialization->startDefinition();
7410
7411 if (TUK == TUK_Friend) {
7412 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
7413 TemplateNameLoc,
7414 WrittenTy,
7415 /*FIXME:*/KWLoc);
7416 Friend->setAccess(AS_public);
7417 CurContext->addDecl(Friend);
7418 } else {
7419 // Add the specialization into its lexical context, so that it can
7420 // be seen when iterating through the list of declarations in that
7421 // context. However, specializations are not found by name lookup.
7422 CurContext->addDecl(Specialization);
7423 }
7424 return Specialization;
7425}
7426
7427Decl *Sema::ActOnTemplateDeclarator(Scope *S,
7428 MultiTemplateParamsArg TemplateParameterLists,
7429 Declarator &D) {
7430 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
7431 ActOnDocumentableDecl(NewDecl);
7432 return NewDecl;
7433}
7434
7435/// \brief Strips various properties off an implicit instantiation
7436/// that has just been explicitly specialized.
7437static void StripImplicitInstantiation(NamedDecl *D) {
7438 D->dropAttr<DLLImportAttr>();
7439 D->dropAttr<DLLExportAttr>();
7440
7441 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
7442 FD->setInlineSpecified(false);
7443}
7444
7445/// \brief Compute the diagnostic location for an explicit instantiation
7446// declaration or definition.
7447static SourceLocation DiagLocForExplicitInstantiation(
7448 NamedDecl* D, SourceLocation PointOfInstantiation) {
7449 // Explicit instantiations following a specialization have no effect and
7450 // hence no PointOfInstantiation. In that case, walk decl backwards
7451 // until a valid name loc is found.
7452 SourceLocation PrevDiagLoc = PointOfInstantiation;
7453 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
7454 Prev = Prev->getPreviousDecl()) {
7455 PrevDiagLoc = Prev->getLocation();
7456 }
7457 assert(PrevDiagLoc.isValid() &&((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7458, __PRETTY_FUNCTION__))
7458 "Explicit instantiation without point of instantiation?")((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7458, __PRETTY_FUNCTION__))
;
7459 return PrevDiagLoc;
7460}
7461
7462/// \brief Diagnose cases where we have an explicit template specialization
7463/// before/after an explicit template instantiation, producing diagnostics
7464/// for those cases where they are required and determining whether the
7465/// new specialization/instantiation will have any effect.
7466///
7467/// \param NewLoc the location of the new explicit specialization or
7468/// instantiation.
7469///
7470/// \param NewTSK the kind of the new explicit specialization or instantiation.
7471///
7472/// \param PrevDecl the previous declaration of the entity.
7473///
7474/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
7475///
7476/// \param PrevPointOfInstantiation if valid, indicates where the previus
7477/// declaration was instantiated (either implicitly or explicitly).
7478///
7479/// \param HasNoEffect will be set to true to indicate that the new
7480/// specialization or instantiation has no effect and should be ignored.
7481///
7482/// \returns true if there was an error that should prevent the introduction of
7483/// the new declaration into the AST, false otherwise.
7484bool
7485Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7486 TemplateSpecializationKind NewTSK,
7487 NamedDecl *PrevDecl,
7488 TemplateSpecializationKind PrevTSK,
7489 SourceLocation PrevPointOfInstantiation,
7490 bool &HasNoEffect) {
7491 HasNoEffect = false;
7492
7493 switch (NewTSK) {
7494 case TSK_Undeclared:
7495 case TSK_ImplicitInstantiation:
7496 assert((((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7498, __PRETTY_FUNCTION__))
7497 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7498, __PRETTY_FUNCTION__))
7498 "previous declaration must be implicit!")(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7498, __PRETTY_FUNCTION__))
;
7499 return false;
7500
7501 case TSK_ExplicitSpecialization:
7502 switch (PrevTSK) {
7503 case TSK_Undeclared:
7504 case TSK_ExplicitSpecialization:
7505 // Okay, we're just specializing something that is either already
7506 // explicitly specialized or has merely been mentioned without any
7507 // instantiation.
7508 return false;
7509
7510 case TSK_ImplicitInstantiation:
7511 if (PrevPointOfInstantiation.isInvalid()) {
7512 // The declaration itself has not actually been instantiated, so it is
7513 // still okay to specialize it.
7514 StripImplicitInstantiation(PrevDecl);
7515 return false;
7516 }
7517 // Fall through
7518
7519 case TSK_ExplicitInstantiationDeclaration:
7520 case TSK_ExplicitInstantiationDefinition:
7521 assert((PrevTSK == TSK_ImplicitInstantiation ||(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7523, __PRETTY_FUNCTION__))
7522 PrevPointOfInstantiation.isValid()) &&(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7523, __PRETTY_FUNCTION__))
7523 "Explicit instantiation without point of instantiation?")(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7523, __PRETTY_FUNCTION__))
;
7524
7525 // C++ [temp.expl.spec]p6:
7526 // If a template, a member template or the member of a class template
7527 // is explicitly specialized then that specialization shall be declared
7528 // before the first use of that specialization that would cause an
7529 // implicit instantiation to take place, in every translation unit in
7530 // which such a use occurs; no diagnostic is required.
7531 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7532 // Is there any previous explicit specialization declaration?
7533 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
7534 return false;
7535 }
7536
7537 Diag(NewLoc, diag::err_specialization_after_instantiation)
7538 << PrevDecl;
7539 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
7540 << (PrevTSK != TSK_ImplicitInstantiation);
7541
7542 return true;
7543 }
7544
7545 case TSK_ExplicitInstantiationDeclaration:
7546 switch (PrevTSK) {
7547 case TSK_ExplicitInstantiationDeclaration:
7548 // This explicit instantiation declaration is redundant (that's okay).
7549 HasNoEffect = true;
7550 return false;
7551
7552 case TSK_Undeclared:
7553 case TSK_ImplicitInstantiation:
7554 // We're explicitly instantiating something that may have already been
7555 // implicitly instantiated; that's fine.
7556 return false;
7557
7558 case TSK_ExplicitSpecialization:
7559 // C++0x [temp.explicit]p4:
7560 // For a given set of template parameters, if an explicit instantiation
7561 // of a template appears after a declaration of an explicit
7562 // specialization for that template, the explicit instantiation has no
7563 // effect.
7564 HasNoEffect = true;
7565 return false;
7566
7567 case TSK_ExplicitInstantiationDefinition:
7568 // C++0x [temp.explicit]p10:
7569 // If an entity is the subject of both an explicit instantiation
7570 // declaration and an explicit instantiation definition in the same
7571 // translation unit, the definition shall follow the declaration.
7572 Diag(NewLoc,
7573 diag::err_explicit_instantiation_declaration_after_definition);
7574
7575 // Explicit instantiations following a specialization have no effect and
7576 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
7577 // until a valid name loc is found.
7578 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
7579 diag::note_explicit_instantiation_definition_here);
7580 HasNoEffect = true;
7581 return false;
7582 }
7583
7584 case TSK_ExplicitInstantiationDefinition:
7585 switch (PrevTSK) {
7586 case TSK_Undeclared:
7587 case TSK_ImplicitInstantiation:
7588 // We're explicitly instantiating something that may have already been
7589 // implicitly instantiated; that's fine.
7590 return false;
7591
7592 case TSK_ExplicitSpecialization:
7593 // C++ DR 259, C++0x [temp.explicit]p4:
7594 // For a given set of template parameters, if an explicit
7595 // instantiation of a template appears after a declaration of
7596 // an explicit specialization for that template, the explicit
7597 // instantiation has no effect.
7598 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
7599 << PrevDecl;
7600 Diag(PrevDecl->getLocation(),
7601 diag::note_previous_template_specialization);
7602 HasNoEffect = true;
7603 return false;
7604
7605 case TSK_ExplicitInstantiationDeclaration:
7606 // We're explicity instantiating a definition for something for which we
7607 // were previously asked to suppress instantiations. That's fine.
7608
7609 // C++0x [temp.explicit]p4:
7610 // For a given set of template parameters, if an explicit instantiation
7611 // of a template appears after a declaration of an explicit
7612 // specialization for that template, the explicit instantiation has no
7613 // effect.
7614 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7615 // Is there any previous explicit specialization declaration?
7616 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
7617 HasNoEffect = true;
7618 break;
7619 }
7620 }
7621
7622 return false;
7623
7624 case TSK_ExplicitInstantiationDefinition:
7625 // C++0x [temp.spec]p5:
7626 // For a given template and a given set of template-arguments,
7627 // - an explicit instantiation definition shall appear at most once
7628 // in a program,
7629
7630 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
7631 Diag(NewLoc, (getLangOpts().MSVCCompat)
7632 ? diag::ext_explicit_instantiation_duplicate
7633 : diag::err_explicit_instantiation_duplicate)
7634 << PrevDecl;
7635 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
7636 diag::note_previous_explicit_instantiation);
7637 HasNoEffect = true;
7638 return false;
7639 }
7640 }
7641
7642 llvm_unreachable("Missing specialization/instantiation case?")::llvm::llvm_unreachable_internal("Missing specialization/instantiation case?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301756/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7642)
;
7643}
7644
7645/// \brief Perform semantic analysis for the given dependent function
7646/// template specialization.
7647///
7648/// The only possible way to get a dependent function template specialization
7649/// is with a friend declaration, like so:
7650///
7651/// \code
7652/// template \<class T> void foo(T);
7653/// template \<class T> class A {
7654/// friend void foo<>(T);
7655/// };
7656/// \endcode
7657///
7658/// There really isn't any useful analysis we can do here, so we
7659/// just store the information.
7660bool
7661Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
7662 const TemplateArgumentListInfo &ExplicitTemplateArgs,
7663 LookupResult &Previous) {
7664 // Remove anything from Previous that isn't a function template in
7665 // the correct context.
7666 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
7667 LookupResult::Filter F = Previous.makeFilter();
7668 while (F.hasNext()) {
7669 NamedDecl *D = F.next()->getUnderlyingDecl();
7670 if (!isa<FunctionTemplateDecl>(D) ||
7671 !FDLookupContext->InEnclosingNamespaceSetOf(
7672 D->getDeclContext()->getRedeclContext()))
7673 F.erase();
7674 }
7675 F.done();
7676
7677 // Should this be diagnosed here?
7678 if (Previous.empty()) return true;
7679
7680 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
7681 ExplicitTemplateArgs);
7682 return false;
7683}
7684
7685/// \brief Perform semantic analysis for the given function template
7686/// specialization.
7687///
7688/// This routine performs all of the semantic analysis required for an
7689/// explicit function template specialization. On successful completion,
7690/// the function declaration \p FD will become a function template
7691/// specialization.
7692///
7693/// \param FD the function declaration, which will be updated to become a
7694/// function template specialization.
7695///
7696/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
7697/// if any. Note that this may be valid info even when 0 arguments are
7698/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
7699/// as it anyway contains info on the angle brackets locations.
7700///
7701/// \param Previous the set of declarations that may be specialized by
7702/// this function specialization.
7703bool Sema::CheckFunctionTemplateSpecialization(
7704 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
7705 LookupResult &Previous) {
7706 // The set of function template specializations that could match this
7707 // explicit function template specialization.
7708 UnresolvedSet<8> Candidates;
7709 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
7710 /*ForTakingAddress=*/false);
7711
7712 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
7713 ConvertedTemplateArgs;
7714
7715 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
7716 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7717 I != E; ++I) {
7718 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
7719 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
7720 // Only consider templates found within the same semantic lookup scope as
7721 // FD.
7722 if (!FDLookupContext->InEnclosingNamespaceSetOf(
7723 Ovl->getDeclContext()->getRedeclContext()))
7724 continue;
7725
7726 // When matching a constexpr member function template specialization
7727 // against the primary template, we don't yet know whether the
7728 // specialization has an implicit 'const' (because we don't know whether
7729 // it will be a static member function until we know which template it
7730 // specializes), so adjust it now assuming it specializes this template.
7731 QualType FT = FD->getType();
7732 if (FD->isConstexpr()) {
7733 CXXMethodDecl *OldMD =
7734 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
7735 if (OldMD && OldMD->isConst()) {
7736 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
7737 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7738 EPI.TypeQuals |= Qualifiers::Const;
7739 FT = Context.getFunctionType(FPT->getReturnType(),
7740 FPT->getParamTypes(), EPI);
7741 }
7742 }
7743
7744 TemplateArgumentListInfo Args;
7745 if (ExplicitTemplateArgs)
7746 Args = *ExplicitTemplateArgs;
7747
7748 // C++ [temp.expl.spec]p11:
7749 // A trailing template-argument can be left unspecified in the
7750 // template-id naming an explicit function template specialization
7751 // provided it can be deduced from the function argument type.
7752 // Perform template argument deduction to determine whether we may be
7753 // specializing this template.
7754 // FIXME: It is somewhat wasteful to build
7755 TemplateDeductionInfo Info(FailedCandidates.getLocation());
7756 FunctionDecl *Specialization = nullptr;
7757 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
7758 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
7759 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
7760 Info)) {
7761 // Template argument deduction failed; record why it failed, so
7762 // that we can provide nifty diagnostics.
7763 FailedCandidates.addCandidate().set(
7764 I.getPair(), FunTmpl->getTemplatedDecl(),
7765 MakeDeductionFailureInfo(Context, TDK, Info));
7766 (void)TDK;
7767 continue;
7768 }
7769
7770 // Target attributes are part of the cuda function signature, so