Bug Summary

File:tools/clang/lib/Sema/SemaTemplate.cpp
Warning:line 6677, column 9
Called C++ object pointer is null

Annotated Source Code

1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===//
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclFriend.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/TypeVisitor.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/ParsedTemplate.h"
28#include "clang/Sema/Scope.h"
29#include "clang/Sema/SemaInternal.h"
30#include "clang/Sema/Template.h"
31#include "clang/Sema/TemplateDeduction.h"
32#include "llvm/ADT/SmallBitVector.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35
36#include <iterator>
37using namespace clang;
38using namespace sema;
39
40// Exported for use by Parser.
41SourceRange
42clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
43 unsigned N) {
44 if (!N) return SourceRange();
45 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
46}
47
48namespace clang {
49/// \brief [temp.constr.decl]p2: A template's associated constraints are
50/// defined as a single constraint-expression derived from the introduced
51/// constraint-expressions [ ... ].
52///
53/// \param Params The template parameter list and optional requires-clause.
54///
55/// \param FD The underlying templated function declaration for a function
56/// template.
57static Expr *formAssociatedConstraints(TemplateParameterList *Params,
58 FunctionDecl *FD);
59}
60
61static Expr *clang::formAssociatedConstraints(TemplateParameterList *Params,
62 FunctionDecl *FD) {
63 // FIXME: Concepts: collect additional introduced constraint-expressions
64 assert(!FD && "Cannot collect constraints from function declaration yet.")((!FD && "Cannot collect constraints from function declaration yet."
) ? static_cast<void> (0) : __assert_fail ("!FD && \"Cannot collect constraints from function declaration yet.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 64, __PRETTY_FUNCTION__))
;
65 return Params->getRequiresClause();
66}
67
68/// \brief Determine whether the declaration found is acceptable as the name
69/// of a template and, if so, return that template declaration. Otherwise,
70/// returns NULL.
71static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
72 NamedDecl *Orig,
73 bool AllowFunctionTemplates) {
74 NamedDecl *D = Orig->getUnderlyingDecl();
75
76 if (isa<TemplateDecl>(D)) {
77 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
78 return nullptr;
79
80 return Orig;
81 }
82
83 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
84 // C++ [temp.local]p1:
85 // Like normal (non-template) classes, class templates have an
86 // injected-class-name (Clause 9). The injected-class-name
87 // can be used with or without a template-argument-list. When
88 // it is used without a template-argument-list, it is
89 // equivalent to the injected-class-name followed by the
90 // template-parameters of the class template enclosed in
91 // <>. When it is used with a template-argument-list, it
92 // refers to the specified class template specialization,
93 // which could be the current specialization or another
94 // specialization.
95 if (Record->isInjectedClassName()) {
96 Record = cast<CXXRecordDecl>(Record->getDeclContext());
97 if (Record->getDescribedClassTemplate())
98 return Record->getDescribedClassTemplate();
99
100 if (ClassTemplateSpecializationDecl *Spec
101 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
102 return Spec->getSpecializedTemplate();
103 }
104
105 return nullptr;
106 }
107
108 return nullptr;
109}
110
111void Sema::FilterAcceptableTemplateNames(LookupResult &R,
112 bool AllowFunctionTemplates) {
113 // The set of class templates we've already seen.
114 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
115 LookupResult::Filter filter = R.makeFilter();
116 while (filter.hasNext()) {
117 NamedDecl *Orig = filter.next();
118 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
119 AllowFunctionTemplates);
120 if (!Repl)
121 filter.erase();
122 else if (Repl != Orig) {
123
124 // C++ [temp.local]p3:
125 // A lookup that finds an injected-class-name (10.2) can result in an
126 // ambiguity in certain cases (for example, if it is found in more than
127 // one base class). If all of the injected-class-names that are found
128 // refer to specializations of the same class template, and if the name
129 // is used as a template-name, the reference refers to the class
130 // template itself and not a specialization thereof, and is not
131 // ambiguous.
132 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
133 if (!ClassTemplates.insert(ClassTmpl).second) {
134 filter.erase();
135 continue;
136 }
137
138 // FIXME: we promote access to public here as a workaround to
139 // the fact that LookupResult doesn't let us remember that we
140 // found this template through a particular injected class name,
141 // which means we end up doing nasty things to the invariants.
142 // Pretending that access is public is *much* safer.
143 filter.replace(Repl, AS_public);
144 }
145 }
146 filter.done();
147}
148
149bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
150 bool AllowFunctionTemplates) {
151 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
152 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
153 return true;
154
155 return false;
156}
157
158TemplateNameKind Sema::isTemplateName(Scope *S,
159 CXXScopeSpec &SS,
160 bool hasTemplateKeyword,
161 UnqualifiedId &Name,
162 ParsedType ObjectTypePtr,
163 bool EnteringContext,
164 TemplateTy &TemplateResult,
165 bool &MemberOfUnknownSpecialization) {
166 assert(getLangOpts().CPlusPlus && "No template names in C!")((getLangOpts().CPlusPlus && "No template names in C!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No template names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 166, __PRETTY_FUNCTION__))
;
167
168 DeclarationName TName;
169 MemberOfUnknownSpecialization = false;
170
171 switch (Name.getKind()) {
172 case UnqualifiedId::IK_Identifier:
173 TName = DeclarationName(Name.Identifier);
174 break;
175
176 case UnqualifiedId::IK_OperatorFunctionId:
177 TName = Context.DeclarationNames.getCXXOperatorName(
178 Name.OperatorFunctionId.Operator);
179 break;
180
181 case UnqualifiedId::IK_LiteralOperatorId:
182 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
183 break;
184
185 default:
186 return TNK_Non_template;
187 }
188
189 QualType ObjectType = ObjectTypePtr.get();
190
191 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
192 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
193 MemberOfUnknownSpecialization);
194 if (R.empty()) return TNK_Non_template;
195 if (R.isAmbiguous()) {
196 // Suppress diagnostics; we'll redo this lookup later.
197 R.suppressDiagnostics();
198
199 // FIXME: we might have ambiguous templates, in which case we
200 // should at least parse them properly!
201 return TNK_Non_template;
202 }
203
204 TemplateName Template;
205 TemplateNameKind TemplateKind;
206
207 unsigned ResultCount = R.end() - R.begin();
208 if (ResultCount > 1) {
209 // We assume that we'll preserve the qualifier from a function
210 // template name in other ways.
211 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
212 TemplateKind = TNK_Function_template;
213
214 // We'll do this lookup again later.
215 R.suppressDiagnostics();
216 } else {
217 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
218
219 if (SS.isSet() && !SS.isInvalid()) {
220 NestedNameSpecifier *Qualifier = SS.getScopeRep();
221 Template = Context.getQualifiedTemplateName(Qualifier,
222 hasTemplateKeyword, TD);
223 } else {
224 Template = TemplateName(TD);
225 }
226
227 if (isa<FunctionTemplateDecl>(TD)) {
228 TemplateKind = TNK_Function_template;
229
230 // We'll do this lookup again later.
231 R.suppressDiagnostics();
232 } else {
233 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __PRETTY_FUNCTION__))
234 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __PRETTY_FUNCTION__))
235 isa<BuiltinTemplateDecl>(TD))((isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl
>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl
>(TD) || isa<BuiltinTemplateDecl>(TD)) ? static_cast
<void> (0) : __assert_fail ("isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || isa<BuiltinTemplateDecl>(TD)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 235, __PRETTY_FUNCTION__))
;
236 TemplateKind =
237 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
238 }
239 }
240
241 TemplateResult = TemplateTy::make(Template);
242 return TemplateKind;
243}
244
245bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
246 SourceLocation NameLoc,
247 ParsedTemplateTy *Template) {
248 CXXScopeSpec SS;
249 bool MemberOfUnknownSpecialization = false;
250
251 // We could use redeclaration lookup here, but we don't need to: the
252 // syntactic form of a deduction guide is enough to identify it even
253 // if we can't look up the template name at all.
254 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
255 LookupTemplateName(R, S, SS, /*ObjectType*/QualType(),
256 /*EnteringContext*/false, MemberOfUnknownSpecialization);
257
258 if (R.empty()) return false;
259 if (R.isAmbiguous()) {
260 // FIXME: Diagnose an ambiguity if we find at least one template.
261 R.suppressDiagnostics();
262 return false;
263 }
264
265 // We only treat template-names that name type templates as valid deduction
266 // guide names.
267 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
268 if (!TD || !getAsTypeTemplateDecl(TD))
269 return false;
270
271 if (Template)
272 *Template = TemplateTy::make(TemplateName(TD));
273 return true;
274}
275
276bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
277 SourceLocation IILoc,
278 Scope *S,
279 const CXXScopeSpec *SS,
280 TemplateTy &SuggestedTemplate,
281 TemplateNameKind &SuggestedKind) {
282 // We can't recover unless there's a dependent scope specifier preceding the
283 // template name.
284 // FIXME: Typo correction?
285 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
286 computeDeclContext(*SS))
287 return false;
288
289 // The code is missing a 'template' keyword prior to the dependent template
290 // name.
291 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
292 Diag(IILoc, diag::err_template_kw_missing)
293 << Qualifier << II.getName()
294 << FixItHint::CreateInsertion(IILoc, "template ");
295 SuggestedTemplate
296 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
297 SuggestedKind = TNK_Dependent_template_name;
298 return true;
299}
300
301void Sema::LookupTemplateName(LookupResult &Found,
302 Scope *S, CXXScopeSpec &SS,
303 QualType ObjectType,
304 bool EnteringContext,
305 bool &MemberOfUnknownSpecialization) {
306 // Determine where to perform name lookup
307 MemberOfUnknownSpecialization = false;
308 DeclContext *LookupCtx = nullptr;
309 bool isDependent = false;
310 if (!ObjectType.isNull()) {
311 // This nested-name-specifier occurs in a member access expression, e.g.,
312 // x->B::f, and we are looking into the type of the object.
313 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist")((!SS.isSet() && "ObjectType and scope specifier cannot coexist"
) ? static_cast<void> (0) : __assert_fail ("!SS.isSet() && \"ObjectType and scope specifier cannot coexist\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 313, __PRETTY_FUNCTION__))
;
314 LookupCtx = computeDeclContext(ObjectType);
315 isDependent = ObjectType->isDependentType();
316 assert((isDependent || !ObjectType->isIncompleteType() ||(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __PRETTY_FUNCTION__))
317 ObjectType->castAs<TagType>()->isBeingDefined()) &&(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __PRETTY_FUNCTION__))
318 "Caller should have completed object type")(((isDependent || !ObjectType->isIncompleteType() || ObjectType
->castAs<TagType>()->isBeingDefined()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !ObjectType->isIncompleteType() || ObjectType->castAs<TagType>()->isBeingDefined()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 318, __PRETTY_FUNCTION__))
;
319
320 // Template names cannot appear inside an Objective-C class or object type.
321 if (ObjectType->isObjCObjectOrInterfaceType()) {
322 Found.clear();
323 return;
324 }
325 } else if (SS.isSet()) {
326 // This nested-name-specifier occurs after another nested-name-specifier,
327 // so long into the context associated with the prior nested-name-specifier.
328 LookupCtx = computeDeclContext(SS, EnteringContext);
329 isDependent = isDependentScopeSpecifier(SS);
330
331 // The declaration context must be complete.
332 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
333 return;
334 }
335
336 bool ObjectTypeSearchedInScope = false;
337 bool AllowFunctionTemplatesInLookup = true;
338 if (LookupCtx) {
339 // Perform "qualified" name lookup into the declaration context we
340 // computed, which is either the type of the base of a member access
341 // expression or the declaration context associated with a prior
342 // nested-name-specifier.
343 LookupQualifiedName(Found, LookupCtx);
344 if (!ObjectType.isNull() && Found.empty()) {
345 // C++ [basic.lookup.classref]p1:
346 // In a class member access expression (5.2.5), if the . or -> token is
347 // immediately followed by an identifier followed by a <, the
348 // identifier must be looked up to determine whether the < is the
349 // beginning of a template argument list (14.2) or a less-than operator.
350 // The identifier is first looked up in the class of the object
351 // expression. If the identifier is not found, it is then looked up in
352 // the context of the entire postfix-expression and shall name a class
353 // or function template.
354 if (S) LookupName(Found, S);
355 ObjectTypeSearchedInScope = true;
356 AllowFunctionTemplatesInLookup = false;
357 }
358 } else if (isDependent && (!S || ObjectType.isNull())) {
359 // We cannot look into a dependent object type or nested nme
360 // specifier.
361 MemberOfUnknownSpecialization = true;
362 return;
363 } else {
364 // Perform unqualified name lookup in the current scope.
365 LookupName(Found, S);
366
367 if (!ObjectType.isNull())
368 AllowFunctionTemplatesInLookup = false;
369 }
370
371 if (Found.empty() && !isDependent) {
372 // If we did not find any names, attempt to correct any typos.
373 DeclarationName Name = Found.getLookupName();
374 Found.clear();
375 // Simple filter callback that, for keywords, only accepts the C++ *_cast
376 auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
377 FilterCCC->WantTypeSpecifiers = false;
378 FilterCCC->WantExpressionKeywords = false;
379 FilterCCC->WantRemainingKeywords = false;
380 FilterCCC->WantCXXNamedCasts = true;
381 if (TypoCorrection Corrected = CorrectTypo(
382 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
383 std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
384 Found.setLookupName(Corrected.getCorrection());
385 if (auto *ND = Corrected.getFoundDecl())
386 Found.addDecl(ND);
387 FilterAcceptableTemplateNames(Found);
388 if (!Found.empty()) {
389 if (LookupCtx) {
390 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
391 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
392 Name.getAsString() == CorrectedStr;
393 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
394 << Name << LookupCtx << DroppedSpecifier
395 << SS.getRange());
396 } else {
397 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
398 }
399 }
400 } else {
401 Found.setLookupName(Name);
402 }
403 }
404
405 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
406 if (Found.empty()) {
407 if (isDependent)
408 MemberOfUnknownSpecialization = true;
409 return;
410 }
411
412 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
413 !getLangOpts().CPlusPlus11) {
414 // C++03 [basic.lookup.classref]p1:
415 // [...] If the lookup in the class of the object expression finds a
416 // template, the name is also looked up in the context of the entire
417 // postfix-expression and [...]
418 //
419 // Note: C++11 does not perform this second lookup.
420 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
421 LookupOrdinaryName);
422 LookupName(FoundOuter, S);
423 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
424
425 if (FoundOuter.empty()) {
426 // - if the name is not found, the name found in the class of the
427 // object expression is used, otherwise
428 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
429 FoundOuter.isAmbiguous()) {
430 // - if the name is found in the context of the entire
431 // postfix-expression and does not name a class template, the name
432 // found in the class of the object expression is used, otherwise
433 FoundOuter.clear();
434 } else if (!Found.isSuppressingDiagnostics()) {
435 // - if the name found is a class template, it must refer to the same
436 // entity as the one found in the class of the object expression,
437 // otherwise the program is ill-formed.
438 if (!Found.isSingleResult() ||
439 Found.getFoundDecl()->getCanonicalDecl()
440 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
441 Diag(Found.getNameLoc(),
442 diag::ext_nested_name_member_ref_lookup_ambiguous)
443 << Found.getLookupName()
444 << ObjectType;
445 Diag(Found.getRepresentativeDecl()->getLocation(),
446 diag::note_ambig_member_ref_object_type)
447 << ObjectType;
448 Diag(FoundOuter.getFoundDecl()->getLocation(),
449 diag::note_ambig_member_ref_scope);
450
451 // Recover by taking the template that we found in the object
452 // expression's type.
453 }
454 }
455 }
456}
457
458/// ActOnDependentIdExpression - Handle a dependent id-expression that
459/// was just parsed. This is only possible with an explicit scope
460/// specifier naming a dependent type.
461ExprResult
462Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
463 SourceLocation TemplateKWLoc,
464 const DeclarationNameInfo &NameInfo,
465 bool isAddressOfOperand,
466 const TemplateArgumentListInfo *TemplateArgs) {
467 DeclContext *DC = getFunctionLevelDeclContext();
468
469 // C++11 [expr.prim.general]p12:
470 // An id-expression that denotes a non-static data member or non-static
471 // member function of a class can only be used:
472 // (...)
473 // - if that id-expression denotes a non-static data member and it
474 // appears in an unevaluated operand.
475 //
476 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
477 // CXXDependentScopeMemberExpr. The former can instantiate to either
478 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
479 // always a MemberExpr.
480 bool MightBeCxx11UnevalField =
481 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
482
483 // Check if the nested name specifier is an enum type.
484 bool IsEnum = false;
485 if (NestedNameSpecifier *NNS = SS.getScopeRep())
486 IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
487
488 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
489 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
490 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
491
492 // Since the 'this' expression is synthesized, we don't need to
493 // perform the double-lookup check.
494 NamedDecl *FirstQualifierInScope = nullptr;
495
496 return CXXDependentScopeMemberExpr::Create(
497 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
498 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
499 FirstQualifierInScope, NameInfo, TemplateArgs);
500 }
501
502 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
503}
504
505ExprResult
506Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
507 SourceLocation TemplateKWLoc,
508 const DeclarationNameInfo &NameInfo,
509 const TemplateArgumentListInfo *TemplateArgs) {
510 return DependentScopeDeclRefExpr::Create(
511 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
512 TemplateArgs);
513}
514
515
516/// Determine whether we would be unable to instantiate this template (because
517/// it either has no definition, or is in the process of being instantiated).
518bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
519 NamedDecl *Instantiation,
520 bool InstantiatedFromMember,
521 const NamedDecl *Pattern,
522 const NamedDecl *PatternDef,
523 TemplateSpecializationKind TSK,
524 bool Complain /*= true*/) {
525 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 526, __PRETTY_FUNCTION__))
526 isa<VarDecl>(Instantiation))((isa<TagDecl>(Instantiation) || isa<FunctionDecl>
(Instantiation) || isa<VarDecl>(Instantiation)) ? static_cast
<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || isa<VarDecl>(Instantiation)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 526, __PRETTY_FUNCTION__))
;
527
528 bool IsEntityBeingDefined = false;
529 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
530 IsEntityBeingDefined = TD->isBeingDefined();
531
532 if (PatternDef && !IsEntityBeingDefined) {
533 NamedDecl *SuggestedDef = nullptr;
534 if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
535 /*OnlyNeedComplete*/false)) {
536 // If we're allowed to diagnose this and recover, do so.
537 bool Recover = Complain && !isSFINAEContext();
538 if (Complain)
539 diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
540 Sema::MissingImportKind::Definition, Recover);
541 return !Recover;
542 }
543 return false;
544 }
545
546 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
547 return true;
548
549 llvm::Optional<unsigned> Note;
550 QualType InstantiationTy;
551 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
552 InstantiationTy = Context.getTypeDeclType(TD);
553 if (PatternDef) {
554 Diag(PointOfInstantiation,
555 diag::err_template_instantiate_within_definition)
556 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
557 << InstantiationTy;
558 // Not much point in noting the template declaration here, since
559 // we're lexically inside it.
560 Instantiation->setInvalidDecl();
561 } else if (InstantiatedFromMember) {
562 if (isa<FunctionDecl>(Instantiation)) {
563 Diag(PointOfInstantiation,
564 diag::err_explicit_instantiation_undefined_member)
565 << /*member function*/ 1 << Instantiation->getDeclName()
566 << Instantiation->getDeclContext();
567 Note = diag::note_explicit_instantiation_here;
568 } else {
569 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!")((isa<TagDecl>(Instantiation) && "Must be a TagDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(Instantiation) && \"Must be a TagDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 569, __PRETTY_FUNCTION__))
;
570 Diag(PointOfInstantiation,
571 diag::err_implicit_instantiate_member_undefined)
572 << InstantiationTy;
573 Note = diag::note_member_declared_at;
574 }
575 } else {
576 if (isa<FunctionDecl>(Instantiation)) {
577 Diag(PointOfInstantiation,
578 diag::err_explicit_instantiation_undefined_func_template)
579 << Pattern;
580 Note = diag::note_explicit_instantiation_here;
581 } else if (isa<TagDecl>(Instantiation)) {
582 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
583 << (TSK != TSK_ImplicitInstantiation)
584 << InstantiationTy;
585 Note = diag::note_template_decl_here;
586 } else {
587 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!")((isa<VarDecl>(Instantiation) && "Must be a VarDecl!"
) ? static_cast<void> (0) : __assert_fail ("isa<VarDecl>(Instantiation) && \"Must be a VarDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 587, __PRETTY_FUNCTION__))
;
588 if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
589 Diag(PointOfInstantiation,
590 diag::err_explicit_instantiation_undefined_var_template)
591 << Instantiation;
592 Instantiation->setInvalidDecl();
593 } else
594 Diag(PointOfInstantiation,
595 diag::err_explicit_instantiation_undefined_member)
596 << /*static data member*/ 2 << Instantiation->getDeclName()
597 << Instantiation->getDeclContext();
598 Note = diag::note_explicit_instantiation_here;
599 }
600 }
601 if (Note) // Diagnostics were emitted.
602 Diag(Pattern->getLocation(), Note.getValue());
603
604 // In general, Instantiation isn't marked invalid to get more than one
605 // error for multiple undefined instantiations. But the code that does
606 // explicit declaration -> explicit definition conversion can't handle
607 // invalid declarations, so mark as invalid in that case.
608 if (TSK == TSK_ExplicitInstantiationDeclaration)
609 Instantiation->setInvalidDecl();
610 return true;
611}
612
613/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
614/// that the template parameter 'PrevDecl' is being shadowed by a new
615/// declaration at location Loc. Returns true to indicate that this is
616/// an error, and false otherwise.
617void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
618 assert(PrevDecl->isTemplateParameter() && "Not a template parameter")((PrevDecl->isTemplateParameter() && "Not a template parameter"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->isTemplateParameter() && \"Not a template parameter\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 618, __PRETTY_FUNCTION__))
;
619
620 // Microsoft Visual C++ permits template parameters to be shadowed.
621 if (getLangOpts().MicrosoftExt)
622 return;
623
624 // C++ [temp.local]p4:
625 // A template-parameter shall not be redeclared within its
626 // scope (including nested scopes).
627 Diag(Loc, diag::err_template_param_shadow)
628 << cast<NamedDecl>(PrevDecl)->getDeclName();
629 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
630}
631
632/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
633/// the parameter D to reference the templated declaration and return a pointer
634/// to the template declaration. Otherwise, do nothing to D and return null.
635TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
636 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
637 D = Temp->getTemplatedDecl();
638 return Temp;
639 }
640 return nullptr;
641}
642
643ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
644 SourceLocation EllipsisLoc) const {
645 assert(Kind == Template &&((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 646, __PRETTY_FUNCTION__))
646 "Only template template arguments can be pack expansions here")((Kind == Template && "Only template template arguments can be pack expansions here"
) ? static_cast<void> (0) : __assert_fail ("Kind == Template && \"Only template template arguments can be pack expansions here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 646, __PRETTY_FUNCTION__))
;
647 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 648, __PRETTY_FUNCTION__))
648 "Template template argument pack expansion without packs")((getAsTemplate().get().containsUnexpandedParameterPack() &&
"Template template argument pack expansion without packs") ?
static_cast<void> (0) : __assert_fail ("getAsTemplate().get().containsUnexpandedParameterPack() && \"Template template argument pack expansion without packs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 648, __PRETTY_FUNCTION__))
;
649 ParsedTemplateArgument Result(*this);
650 Result.EllipsisLoc = EllipsisLoc;
651 return Result;
652}
653
654static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
655 const ParsedTemplateArgument &Arg) {
656
657 switch (Arg.getKind()) {
658 case ParsedTemplateArgument::Type: {
659 TypeSourceInfo *DI;
660 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
661 if (!DI)
662 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
663 return TemplateArgumentLoc(TemplateArgument(T), DI);
664 }
665
666 case ParsedTemplateArgument::NonType: {
667 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
668 return TemplateArgumentLoc(TemplateArgument(E), E);
669 }
670
671 case ParsedTemplateArgument::Template: {
672 TemplateName Template = Arg.getAsTemplate().get();
673 TemplateArgument TArg;
674 if (Arg.getEllipsisLoc().isValid())
675 TArg = TemplateArgument(Template, Optional<unsigned int>());
676 else
677 TArg = Template;
678 return TemplateArgumentLoc(TArg,
679 Arg.getScopeSpec().getWithLocInContext(
680 SemaRef.Context),
681 Arg.getLocation(),
682 Arg.getEllipsisLoc());
683 }
684 }
685
686 llvm_unreachable("Unhandled parsed template argument")::llvm::llvm_unreachable_internal("Unhandled parsed template argument"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 686)
;
687}
688
689/// \brief Translates template arguments as provided by the parser
690/// into template arguments used by semantic analysis.
691void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
692 TemplateArgumentListInfo &TemplateArgs) {
693 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
694 TemplateArgs.addArgument(translateTemplateArgument(*this,
695 TemplateArgsIn[I]));
696}
697
698static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
699 SourceLocation Loc,
700 IdentifierInfo *Name) {
701 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
702 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
703 if (PrevDecl && PrevDecl->isTemplateParameter())
704 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
705}
706
707/// ActOnTypeParameter - Called when a C++ template type parameter
708/// (e.g., "typename T") has been parsed. Typename specifies whether
709/// the keyword "typename" was used to declare the type parameter
710/// (otherwise, "class" was used), and KeyLoc is the location of the
711/// "class" or "typename" keyword. ParamName is the name of the
712/// parameter (NULL indicates an unnamed template parameter) and
713/// ParamNameLoc is the location of the parameter name (if any).
714/// If the type parameter has a default argument, it will be added
715/// later via ActOnTypeParameterDefault.
716Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
717 SourceLocation EllipsisLoc,
718 SourceLocation KeyLoc,
719 IdentifierInfo *ParamName,
720 SourceLocation ParamNameLoc,
721 unsigned Depth, unsigned Position,
722 SourceLocation EqualLoc,
723 ParsedType DefaultArg) {
724 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 725, __PRETTY_FUNCTION__))
725 "Template type parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template type parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 725, __PRETTY_FUNCTION__))
;
726
727 SourceLocation Loc = ParamNameLoc;
728 if (!ParamName)
729 Loc = KeyLoc;
730
731 bool IsParameterPack = EllipsisLoc.isValid();
732 TemplateTypeParmDecl *Param
733 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
734 KeyLoc, Loc, Depth, Position, ParamName,
735 Typename, IsParameterPack);
736 Param->setAccess(AS_public);
737
738 if (ParamName) {
739 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
740
741 // Add the template parameter into the current scope.
742 S->AddDecl(Param);
743 IdResolver.AddDecl(Param);
744 }
745
746 // C++0x [temp.param]p9:
747 // A default template-argument may be specified for any kind of
748 // template-parameter that is not a template parameter pack.
749 if (DefaultArg && IsParameterPack) {
750 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
751 DefaultArg = nullptr;
752 }
753
754 // Handle the default argument, if provided.
755 if (DefaultArg) {
756 TypeSourceInfo *DefaultTInfo;
757 GetTypeFromParser(DefaultArg, &DefaultTInfo);
758
759 assert(DefaultTInfo && "expected source information for type")((DefaultTInfo && "expected source information for type"
) ? static_cast<void> (0) : __assert_fail ("DefaultTInfo && \"expected source information for type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 759, __PRETTY_FUNCTION__))
;
760
761 // Check for unexpanded parameter packs.
762 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
763 UPPC_DefaultArgument))
764 return Param;
765
766 // Check the template argument itself.
767 if (CheckTemplateArgument(Param, DefaultTInfo)) {
768 Param->setInvalidDecl();
769 return Param;
770 }
771
772 Param->setDefaultArgument(DefaultTInfo);
773 }
774
775 return Param;
776}
777
778/// \brief Check that the type of a non-type template parameter is
779/// well-formed.
780///
781/// \returns the (possibly-promoted) parameter type if valid;
782/// otherwise, produces a diagnostic and returns a NULL type.
783QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
784 SourceLocation Loc) {
785 if (TSI->getType()->isUndeducedType()) {
786 // C++1z [temp.dep.expr]p3:
787 // An id-expression is type-dependent if it contains
788 // - an identifier associated by name lookup with a non-type
789 // template-parameter declared with a type that contains a
790 // placeholder type (7.1.7.4),
791 TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
792 }
793
794 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
795}
796
797QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
798 SourceLocation Loc) {
799 // We don't allow variably-modified types as the type of non-type template
800 // parameters.
801 if (T->isVariablyModifiedType()) {
802 Diag(Loc, diag::err_variably_modified_nontype_template_param)
803 << T;
804 return QualType();
805 }
806
807 // C++ [temp.param]p4:
808 //
809 // A non-type template-parameter shall have one of the following
810 // (optionally cv-qualified) types:
811 //
812 // -- integral or enumeration type,
813 if (T->isIntegralOrEnumerationType() ||
814 // -- pointer to object or pointer to function,
815 T->isPointerType() ||
816 // -- reference to object or reference to function,
817 T->isReferenceType() ||
818 // -- pointer to member,
819 T->isMemberPointerType() ||
820 // -- std::nullptr_t.
821 T->isNullPtrType() ||
822 // If T is a dependent type, we can't do the check now, so we
823 // assume that it is well-formed.
824 T->isDependentType() ||
825 // Allow use of auto in template parameter declarations.
826 T->isUndeducedType()) {
827 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
828 // are ignored when determining its type.
829 return T.getUnqualifiedType();
830 }
831
832 // C++ [temp.param]p8:
833 //
834 // A non-type template-parameter of type "array of T" or
835 // "function returning T" is adjusted to be of type "pointer to
836 // T" or "pointer to function returning T", respectively.
837 else if (T->isArrayType() || T->isFunctionType())
838 return Context.getDecayedType(T);
839
840 Diag(Loc, diag::err_template_nontype_parm_bad_type)
841 << T;
842
843 return QualType();
844}
845
846Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
847 unsigned Depth,
848 unsigned Position,
849 SourceLocation EqualLoc,
850 Expr *Default) {
851 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
852
853 if (TInfo->getType()->isUndeducedType()) {
854 Diag(D.getIdentifierLoc(),
855 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
856 << QualType(TInfo->getType()->getContainedAutoType(), 0);
857 }
858
859 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 860, __PRETTY_FUNCTION__))
860 "Non-type template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Non-type template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 860, __PRETTY_FUNCTION__))
;
861 bool Invalid = false;
862
863 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
864 if (T.isNull()) {
865 T = Context.IntTy; // Recover with an 'int' type.
866 Invalid = true;
867 }
868
869 IdentifierInfo *ParamName = D.getIdentifier();
870 bool IsParameterPack = D.hasEllipsis();
871 NonTypeTemplateParmDecl *Param
872 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
873 D.getLocStart(),
874 D.getIdentifierLoc(),
875 Depth, Position, ParamName, T,
876 IsParameterPack, TInfo);
877 Param->setAccess(AS_public);
878
879 if (Invalid)
880 Param->setInvalidDecl();
881
882 if (ParamName) {
883 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
884 ParamName);
885
886 // Add the template parameter into the current scope.
887 S->AddDecl(Param);
888 IdResolver.AddDecl(Param);
889 }
890
891 // C++0x [temp.param]p9:
892 // A default template-argument may be specified for any kind of
893 // template-parameter that is not a template parameter pack.
894 if (Default && IsParameterPack) {
895 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
896 Default = nullptr;
897 }
898
899 // Check the well-formedness of the default template argument, if provided.
900 if (Default) {
901 // Check for unexpanded parameter packs.
902 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
903 return Param;
904
905 TemplateArgument Converted;
906 ExprResult DefaultRes =
907 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
908 if (DefaultRes.isInvalid()) {
909 Param->setInvalidDecl();
910 return Param;
911 }
912 Default = DefaultRes.get();
913
914 Param->setDefaultArgument(Default);
915 }
916
917 return Param;
918}
919
920/// ActOnTemplateTemplateParameter - Called when a C++ template template
921/// parameter (e.g. T in template <template \<typename> class T> class array)
922/// has been parsed. S is the current scope.
923Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
924 SourceLocation TmpLoc,
925 TemplateParameterList *Params,
926 SourceLocation EllipsisLoc,
927 IdentifierInfo *Name,
928 SourceLocation NameLoc,
929 unsigned Depth,
930 unsigned Position,
931 SourceLocation EqualLoc,
932 ParsedTemplateArgument Default) {
933 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 934, __PRETTY_FUNCTION__))
934 "Template template parameter not in template parameter scope!")((S->isTemplateParamScope() && "Template template parameter not in template parameter scope!"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"Template template parameter not in template parameter scope!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 934, __PRETTY_FUNCTION__))
;
935
936 // Construct the parameter object.
937 bool IsParameterPack = EllipsisLoc.isValid();
938 TemplateTemplateParmDecl *Param =
939 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
940 NameLoc.isInvalid()? TmpLoc : NameLoc,
941 Depth, Position, IsParameterPack,
942 Name, Params);
943 Param->setAccess(AS_public);
944
945 // If the template template parameter has a name, then link the identifier
946 // into the scope and lookup mechanisms.
947 if (Name) {
948 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
949
950 S->AddDecl(Param);
951 IdResolver.AddDecl(Param);
952 }
953
954 if (Params->size() == 0) {
955 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
956 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
957 Param->setInvalidDecl();
958 }
959
960 // C++0x [temp.param]p9:
961 // A default template-argument may be specified for any kind of
962 // template-parameter that is not a template parameter pack.
963 if (IsParameterPack && !Default.isInvalid()) {
964 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
965 Default = ParsedTemplateArgument();
966 }
967
968 if (!Default.isInvalid()) {
969 // Check only that we have a template template argument. We don't want to
970 // try to check well-formedness now, because our template template parameter
971 // might have dependent types in its template parameters, which we wouldn't
972 // be able to match now.
973 //
974 // If none of the template template parameter's template arguments mention
975 // other template parameters, we could actually perform more checking here.
976 // However, it isn't worth doing.
977 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
978 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
979 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
980 << DefaultArg.getSourceRange();
981 return Param;
982 }
983
984 // Check for unexpanded parameter packs.
985 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
986 DefaultArg.getArgument().getAsTemplate(),
987 UPPC_DefaultArgument))
988 return Param;
989
990 Param->setDefaultArgument(Context, DefaultArg);
991 }
992
993 return Param;
994}
995
996/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
997/// constrained by RequiresClause, that contains the template parameters in
998/// Params.
999TemplateParameterList *
1000Sema::ActOnTemplateParameterList(unsigned Depth,
1001 SourceLocation ExportLoc,
1002 SourceLocation TemplateLoc,
1003 SourceLocation LAngleLoc,
1004 ArrayRef<Decl *> Params,
1005 SourceLocation RAngleLoc,
1006 Expr *RequiresClause) {
1007 if (ExportLoc.isValid())
1008 Diag(ExportLoc, diag::warn_template_export_unsupported);
1009
1010 return TemplateParameterList::Create(
1011 Context, TemplateLoc, LAngleLoc,
1012 llvm::makeArrayRef((NamedDecl *const *)Params.data(), Params.size()),
1013 RAngleLoc, RequiresClause);
1014}
1015
1016static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
1017 if (SS.isSet())
1018 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
1019}
1020
1021DeclResult
1022Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
1023 SourceLocation KWLoc, CXXScopeSpec &SS,
1024 IdentifierInfo *Name, SourceLocation NameLoc,
1025 AttributeList *Attr,
1026 TemplateParameterList *TemplateParams,
1027 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1028 SourceLocation FriendLoc,
1029 unsigned NumOuterTemplateParamLists,
1030 TemplateParameterList** OuterTemplateParamLists,
1031 SkipBodyInfo *SkipBody) {
1032 assert(TemplateParams && TemplateParams->size() > 0 &&((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1033, __PRETTY_FUNCTION__))
1033 "No template parameters")((TemplateParams && TemplateParams->size() > 0 &&
"No template parameters") ? static_cast<void> (0) : __assert_fail
("TemplateParams && TemplateParams->size() > 0 && \"No template parameters\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1033, __PRETTY_FUNCTION__))
;
1034 assert(TUK != TUK_Reference && "Can only declare or define class templates")((TUK != TUK_Reference && "Can only declare or define class templates"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"Can only declare or define class templates\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1034, __PRETTY_FUNCTION__))
;
1035 bool Invalid = false;
1036
1037 // Check that we can declare a template here.
1038 if (CheckTemplateDeclScope(S, TemplateParams))
1
Calling 'Sema::CheckTemplateDeclScope'
1039 return true;
1040
1041 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1042 assert(Kind != TTK_Enum && "can't build template of enumerated type")((Kind != TTK_Enum && "can't build template of enumerated type"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"can't build template of enumerated type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1042, __PRETTY_FUNCTION__))
;
1043
1044 // There is no such thing as an unnamed class template.
1045 if (!Name) {
1046 Diag(KWLoc, diag::err_template_unnamed_class);
1047 return true;
1048 }
1049
1050 // Find any previous declaration with this name. For a friend with no
1051 // scope explicitly specified, we only look for tag declarations (per
1052 // C++11 [basic.lookup.elab]p2).
1053 DeclContext *SemanticContext;
1054 LookupResult Previous(*this, Name, NameLoc,
1055 (SS.isEmpty() && TUK == TUK_Friend)
1056 ? LookupTagName : LookupOrdinaryName,
1057 ForRedeclaration);
1058 if (SS.isNotEmpty() && !SS.isInvalid()) {
1059 SemanticContext = computeDeclContext(SS, true);
1060 if (!SemanticContext) {
1061 // FIXME: Horrible, horrible hack! We can't currently represent this
1062 // in the AST, and historically we have just ignored such friend
1063 // class templates, so don't complain here.
1064 Diag(NameLoc, TUK == TUK_Friend
1065 ? diag::warn_template_qualified_friend_ignored
1066 : diag::err_template_qualified_declarator_no_match)
1067 << SS.getScopeRep() << SS.getRange();
1068 return TUK != TUK_Friend;
1069 }
1070
1071 if (RequireCompleteDeclContext(SS, SemanticContext))
1072 return true;
1073
1074 // If we're adding a template to a dependent context, we may need to
1075 // rebuilding some of the types used within the template parameter list,
1076 // now that we know what the current instantiation is.
1077 if (SemanticContext->isDependentContext()) {
1078 ContextRAII SavedContext(*this, SemanticContext);
1079 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1080 Invalid = true;
1081 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1082 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
1083
1084 LookupQualifiedName(Previous, SemanticContext);
1085 } else {
1086 SemanticContext = CurContext;
1087
1088 // C++14 [class.mem]p14:
1089 // If T is the name of a class, then each of the following shall have a
1090 // name different from T:
1091 // -- every member template of class T
1092 if (TUK != TUK_Friend &&
1093 DiagnoseClassNameShadow(SemanticContext,
1094 DeclarationNameInfo(Name, NameLoc)))
1095 return true;
1096
1097 LookupName(Previous, S);
1098 }
1099
1100 if (Previous.isAmbiguous())
1101 return true;
1102
1103 NamedDecl *PrevDecl = nullptr;
1104 if (Previous.begin() != Previous.end())
1105 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1106
1107 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1108 // Maybe we will complain about the shadowed template parameter.
1109 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1110 // Just pretend that we didn't see the previous declaration.
1111 PrevDecl = nullptr;
1112 }
1113
1114 // If there is a previous declaration with the same name, check
1115 // whether this is a valid redeclaration.
1116 ClassTemplateDecl *PrevClassTemplate
1117 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1118
1119 // We may have found the injected-class-name of a class template,
1120 // class template partial specialization, or class template specialization.
1121 // In these cases, grab the template that is being defined or specialized.
1122 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1123 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1124 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1125 PrevClassTemplate
1126 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1127 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1128 PrevClassTemplate
1129 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1130 ->getSpecializedTemplate();
1131 }
1132 }
1133
1134 if (TUK == TUK_Friend) {
1135 // C++ [namespace.memdef]p3:
1136 // [...] When looking for a prior declaration of a class or a function
1137 // declared as a friend, and when the name of the friend class or
1138 // function is neither a qualified name nor a template-id, scopes outside
1139 // the innermost enclosing namespace scope are not considered.
1140 if (!SS.isSet()) {
1141 DeclContext *OutermostContext = CurContext;
1142 while (!OutermostContext->isFileContext())
1143 OutermostContext = OutermostContext->getLookupParent();
1144
1145 if (PrevDecl &&
1146 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1147 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1148 SemanticContext = PrevDecl->getDeclContext();
1149 } else {
1150 // Declarations in outer scopes don't matter. However, the outermost
1151 // context we computed is the semantic context for our new
1152 // declaration.
1153 PrevDecl = PrevClassTemplate = nullptr;
1154 SemanticContext = OutermostContext;
1155
1156 // Check that the chosen semantic context doesn't already contain a
1157 // declaration of this name as a non-tag type.
1158 Previous.clear(LookupOrdinaryName);
1159 DeclContext *LookupContext = SemanticContext;
1160 while (LookupContext->isTransparentContext())
1161 LookupContext = LookupContext->getLookupParent();
1162 LookupQualifiedName(Previous, LookupContext);
1163
1164 if (Previous.isAmbiguous())
1165 return true;
1166
1167 if (Previous.begin() != Previous.end())
1168 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1169 }
1170 }
1171 } else if (PrevDecl &&
1172 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1173 S, SS.isValid()))
1174 PrevDecl = PrevClassTemplate = nullptr;
1175
1176 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1177 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1178 if (SS.isEmpty() &&
1179 !(PrevClassTemplate &&
1180 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1181 SemanticContext->getRedeclContext()))) {
1182 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1183 Diag(Shadow->getTargetDecl()->getLocation(),
1184 diag::note_using_decl_target);
1185 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1186 // Recover by ignoring the old declaration.
1187 PrevDecl = PrevClassTemplate = nullptr;
1188 }
1189 }
1190
1191 // TODO Memory management; associated constraints are not always stored.
1192 Expr *const CurAC = formAssociatedConstraints(TemplateParams, nullptr);
1193
1194 if (PrevClassTemplate) {
1195 // Ensure that the template parameter lists are compatible. Skip this check
1196 // for a friend in a dependent context: the template parameter list itself
1197 // could be dependent.
1198 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1199 !TemplateParameterListsAreEqual(TemplateParams,
1200 PrevClassTemplate->getTemplateParameters(),
1201 /*Complain=*/true,
1202 TPL_TemplateMatch))
1203 return true;
1204
1205 // Check for matching associated constraints on redeclarations.
1206 const Expr *const PrevAC = PrevClassTemplate->getAssociatedConstraints();
1207 const bool RedeclACMismatch = [&] {
1208 if (!(CurAC || PrevAC))
1209 return false; // Nothing to check; no mismatch.
1210 if (CurAC && PrevAC) {
1211 llvm::FoldingSetNodeID CurACInfo, PrevACInfo;
1212 CurAC->Profile(CurACInfo, Context, /*Canonical=*/true);
1213 PrevAC->Profile(PrevACInfo, Context, /*Canonical=*/true);
1214 if (CurACInfo == PrevACInfo)
1215 return false; // All good; no mismatch.
1216 }
1217 return true;
1218 }();
1219
1220 if (RedeclACMismatch) {
1221 Diag(CurAC ? CurAC->getLocStart() : NameLoc,
1222 diag::err_template_different_associated_constraints);
1223 Diag(PrevAC ? PrevAC->getLocStart() : PrevClassTemplate->getLocation(),
1224 diag::note_template_prev_declaration) << /*declaration*/0;
1225 return true;
1226 }
1227
1228 // C++ [temp.class]p4:
1229 // In a redeclaration, partial specialization, explicit
1230 // specialization or explicit instantiation of a class template,
1231 // the class-key shall agree in kind with the original class
1232 // template declaration (7.1.5.3).
1233 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1234 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1235 TUK == TUK_Definition, KWLoc, Name)) {
1236 Diag(KWLoc, diag::err_use_with_wrong_tag)
1237 << Name
1238 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1239 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1240 Kind = PrevRecordDecl->getTagKind();
1241 }
1242
1243 // Check for redefinition of this class template.
1244 if (TUK == TUK_Definition) {
1245 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1246 // If we have a prior definition that is not visible, treat this as
1247 // simply making that previous definition visible.
1248 NamedDecl *Hidden = nullptr;
1249 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1250 SkipBody->ShouldSkip = true;
1251 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1252 assert(Tmpl && "original definition of a class template is not a "((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1253, __PRETTY_FUNCTION__))
1253 "class template?")((Tmpl && "original definition of a class template is not a "
"class template?") ? static_cast<void> (0) : __assert_fail
("Tmpl && \"original definition of a class template is not a \" \"class template?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1253, __PRETTY_FUNCTION__))
;
1254 makeMergedDefinitionVisible(Hidden, KWLoc);
1255 makeMergedDefinitionVisible(Tmpl, KWLoc);
1256 return Def;
1257 }
1258
1259 Diag(NameLoc, diag::err_redefinition) << Name;
1260 Diag(Def->getLocation(), diag::note_previous_definition);
1261 // FIXME: Would it make sense to try to "forget" the previous
1262 // definition, as part of error recovery?
1263 return true;
1264 }
1265 }
1266 } else if (PrevDecl) {
1267 // C++ [temp]p5:
1268 // A class template shall not have the same name as any other
1269 // template, class, function, object, enumeration, enumerator,
1270 // namespace, or type in the same scope (3.3), except as specified
1271 // in (14.5.4).
1272 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1273 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1274 return true;
1275 }
1276
1277 // Check the template parameter list of this declaration, possibly
1278 // merging in the template parameter list from the previous class
1279 // template declaration. Skip this check for a friend in a dependent
1280 // context, because the template parameter list might be dependent.
1281 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1282 CheckTemplateParameterList(
1283 TemplateParams,
1284 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1285 : nullptr,
1286 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1287 SemanticContext->isDependentContext())
1288 ? TPC_ClassTemplateMember
1289 : TUK == TUK_Friend ? TPC_FriendClassTemplate
1290 : TPC_ClassTemplate))
1291 Invalid = true;
1292
1293 if (SS.isSet()) {
1294 // If the name of the template was qualified, we must be defining the
1295 // template out-of-line.
1296 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1297 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1298 : diag::err_member_decl_does_not_match)
1299 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1300 Invalid = true;
1301 }
1302 }
1303
1304 // If this is a templated friend in a dependent context we should not put it
1305 // on the redecl chain. In some cases, the templated friend can be the most
1306 // recent declaration tricking the template instantiator to make substitutions
1307 // there.
1308 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1309 bool ShouldAddRedecl
1310 = !(TUK == TUK_Friend && CurContext->isDependentContext());
1311
1312 CXXRecordDecl *NewClass =
1313 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1314 PrevClassTemplate && ShouldAddRedecl ?
1315 PrevClassTemplate->getTemplatedDecl() : nullptr,
1316 /*DelayTypeCreation=*/true);
1317 SetNestedNameSpecifier(NewClass, SS);
1318 if (NumOuterTemplateParamLists > 0)
1319 NewClass->setTemplateParameterListsInfo(
1320 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1321 NumOuterTemplateParamLists));
1322
1323 // Add alignment attributes if necessary; these attributes are checked when
1324 // the ASTContext lays out the structure.
1325 if (TUK == TUK_Definition) {
1326 AddAlignmentAttributesForRecord(NewClass);
1327 AddMsStructLayoutForRecord(NewClass);
1328 }
1329
1330 // Attach the associated constraints when the declaration will not be part of
1331 // a decl chain.
1332 Expr *const ACtoAttach =
1333 PrevClassTemplate && ShouldAddRedecl ? nullptr : CurAC;
1334
1335 ClassTemplateDecl *NewTemplate
1336 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1337 DeclarationName(Name), TemplateParams,
1338 NewClass, ACtoAttach);
1339
1340 if (ShouldAddRedecl)
1341 NewTemplate->setPreviousDecl(PrevClassTemplate);
1342
1343 NewClass->setDescribedClassTemplate(NewTemplate);
1344
1345 if (ModulePrivateLoc.isValid())
1346 NewTemplate->setModulePrivate();
1347
1348 // Build the type for the class template declaration now.
1349 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1350 T = Context.getInjectedClassNameType(NewClass, T);
1351 assert(T->isDependentType() && "Class template type is not dependent?")((T->isDependentType() && "Class template type is not dependent?"
) ? static_cast<void> (0) : __assert_fail ("T->isDependentType() && \"Class template type is not dependent?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1351, __PRETTY_FUNCTION__))
;
1352 (void)T;
1353
1354 // If we are providing an explicit specialization of a member that is a
1355 // class template, make a note of that.
1356 if (PrevClassTemplate &&
1357 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1358 PrevClassTemplate->setMemberSpecialization();
1359
1360 // Set the access specifier.
1361 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1362 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1363
1364 // Set the lexical context of these templates
1365 NewClass->setLexicalDeclContext(CurContext);
1366 NewTemplate->setLexicalDeclContext(CurContext);
1367
1368 if (TUK == TUK_Definition)
1369 NewClass->startDefinition();
1370
1371 if (Attr)
1372 ProcessDeclAttributeList(S, NewClass, Attr);
1373
1374 if (PrevClassTemplate)
1375 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1376
1377 AddPushedVisibilityAttribute(NewClass);
1378
1379 if (TUK != TUK_Friend) {
1380 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1381 Scope *Outer = S;
1382 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1383 Outer = Outer->getParent();
1384 PushOnScopeChains(NewTemplate, Outer);
1385 } else {
1386 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1387 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1388 NewClass->setAccess(PrevClassTemplate->getAccess());
1389 }
1390
1391 NewTemplate->setObjectOfFriendDecl();
1392
1393 // Friend templates are visible in fairly strange ways.
1394 if (!CurContext->isDependentContext()) {
1395 DeclContext *DC = SemanticContext->getRedeclContext();
1396 DC->makeDeclVisibleInContext(NewTemplate);
1397 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1398 PushOnScopeChains(NewTemplate, EnclosingScope,
1399 /* AddToContext = */ false);
1400 }
1401
1402 FriendDecl *Friend = FriendDecl::Create(
1403 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1404 Friend->setAccess(AS_public);
1405 CurContext->addDecl(Friend);
1406 }
1407
1408 if (Invalid) {
1409 NewTemplate->setInvalidDecl();
1410 NewClass->setInvalidDecl();
1411 }
1412
1413 ActOnDocumentableDecl(NewTemplate);
1414
1415 return NewTemplate;
1416}
1417
1418namespace {
1419/// Transform to convert portions of a constructor declaration into the
1420/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
1421struct ConvertConstructorToDeductionGuideTransform {
1422 ConvertConstructorToDeductionGuideTransform(Sema &S,
1423 ClassTemplateDecl *Template)
1424 : SemaRef(S), Template(Template) {}
1425
1426 Sema &SemaRef;
1427 ClassTemplateDecl *Template;
1428
1429 DeclContext *DC = Template->getDeclContext();
1430 CXXRecordDecl *Primary = Template->getTemplatedDecl();
1431 DeclarationName DeductionGuideName =
1432 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
1433
1434 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
1435
1436 // Index adjustment to apply to convert depth-1 template parameters into
1437 // depth-0 template parameters.
1438 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
1439
1440 /// Transform a constructor declaration into a deduction guide.
1441 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
1442 CXXConstructorDecl *CD) {
1443 SmallVector<TemplateArgument, 16> SubstArgs;
1444
1445 LocalInstantiationScope Scope(SemaRef);
1446
1447 // C++ [over.match.class.deduct]p1:
1448 // -- For each constructor of the class template designated by the
1449 // template-name, a function template with the following properties:
1450
1451 // -- The template parameters are the template parameters of the class
1452 // template followed by the template parameters (including default
1453 // template arguments) of the constructor, if any.
1454 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
1455 if (FTD) {
1456 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
1457 SmallVector<NamedDecl *, 16> AllParams;
1458 AllParams.reserve(TemplateParams->size() + InnerParams->size());
1459 AllParams.insert(AllParams.begin(),
1460 TemplateParams->begin(), TemplateParams->end());
1461 SubstArgs.reserve(InnerParams->size());
1462
1463 // Later template parameters could refer to earlier ones, so build up
1464 // a list of substituted template arguments as we go.
1465 for (NamedDecl *Param : *InnerParams) {
1466 MultiLevelTemplateArgumentList Args;
1467 Args.addOuterTemplateArguments(SubstArgs);
1468 Args.addOuterRetainedLevel();
1469 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
1470 if (!NewParam)
1471 return nullptr;
1472 AllParams.push_back(NewParam);
1473 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
1474 SemaRef.Context.getInjectedTemplateArg(NewParam)));
1475 }
1476 TemplateParams = TemplateParameterList::Create(
1477 SemaRef.Context, InnerParams->getTemplateLoc(),
1478 InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
1479 /*FIXME: RequiresClause*/ nullptr);
1480 }
1481
1482 // If we built a new template-parameter-list, track that we need to
1483 // substitute references to the old parameters into references to the
1484 // new ones.
1485 MultiLevelTemplateArgumentList Args;
1486 if (FTD) {
1487 Args.addOuterTemplateArguments(SubstArgs);
1488 Args.addOuterRetainedLevel();
1489 }
1490
1491 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
1492 .getAsAdjusted<FunctionProtoTypeLoc>();
1493 assert(FPTL && "no prototype for constructor declaration")((FPTL && "no prototype for constructor declaration")
? static_cast<void> (0) : __assert_fail ("FPTL && \"no prototype for constructor declaration\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1493, __PRETTY_FUNCTION__))
;
1494
1495 // Transform the type of the function, adjusting the return type and
1496 // replacing references to the old parameters with references to the
1497 // new ones.
1498 TypeLocBuilder TLB;
1499 SmallVector<ParmVarDecl*, 8> Params;
1500 QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args);
1501 if (NewType.isNull())
1502 return nullptr;
1503 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
1504
1505 return buildDeductionGuide(TemplateParams, CD->isExplicit(), NewTInfo,
1506 CD->getLocStart(), CD->getLocation(),
1507 CD->getLocEnd());
1508 }
1509
1510 /// Build a deduction guide with the specified parameter types.
1511 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
1512 SourceLocation Loc = Template->getLocation();
1513
1514 // Build the requested type.
1515 FunctionProtoType::ExtProtoInfo EPI;
1516 EPI.HasTrailingReturn = true;
1517 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
1518 DeductionGuideName, EPI);
1519 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
1520
1521 FunctionProtoTypeLoc FPTL =
1522 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
1523
1524 // Build the parameters, needed during deduction / substitution.
1525 SmallVector<ParmVarDecl*, 4> Params;
1526 for (auto T : ParamTypes) {
1527 ParmVarDecl *NewParam = ParmVarDecl::Create(
1528 SemaRef.Context, DC, Loc, Loc, nullptr, T,
1529 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
1530 NewParam->setScopeInfo(0, Params.size());
1531 FPTL.setParam(Params.size(), NewParam);
1532 Params.push_back(NewParam);
1533 }
1534
1535 return buildDeductionGuide(Template->getTemplateParameters(), false, TSI,
1536 Loc, Loc, Loc);
1537 }
1538
1539private:
1540 /// Transform a constructor template parameter into a deduction guide template
1541 /// parameter, rebuilding any internal references to earlier parameters and
1542 /// renumbering as we go.
1543 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
1544 MultiLevelTemplateArgumentList &Args) {
1545 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
1546 // TemplateTypeParmDecl's index cannot be changed after creation, so
1547 // substitute it directly.
1548 auto *NewTTP = TemplateTypeParmDecl::Create(
1549 SemaRef.Context, DC, TTP->getLocStart(), TTP->getLocation(),
1550 /*Depth*/0, Depth1IndexAdjustment + TTP->getIndex(),
1551 TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
1552 TTP->isParameterPack());
1553 if (TTP->hasDefaultArgument()) {
1554 TypeSourceInfo *InstantiatedDefaultArg =
1555 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
1556 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
1557 if (InstantiatedDefaultArg)
1558 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
1559 }
1560 SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
1561 NewTTP);
1562 return NewTTP;
1563 }
1564
1565 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
1566 return transformTemplateParameterImpl(TTP, Args);
1567
1568 return transformTemplateParameterImpl(
1569 cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
1570 }
1571 template<typename TemplateParmDecl>
1572 TemplateParmDecl *
1573 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
1574 MultiLevelTemplateArgumentList &Args) {
1575 // Ask the template instantiator to do the heavy lifting for us, then adjust
1576 // the index of the parameter once it's done.
1577 auto *NewParam =
1578 cast_or_null<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
1579 assert(NewParam->getDepth() == 0 && "unexpected template param depth")((NewParam->getDepth() == 0 && "unexpected template param depth"
) ? static_cast<void> (0) : __assert_fail ("NewParam->getDepth() == 0 && \"unexpected template param depth\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1579, __PRETTY_FUNCTION__))
;
1580 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
1581 return NewParam;
1582 }
1583
1584 QualType transformFunctionProtoType(TypeLocBuilder &TLB,
1585 FunctionProtoTypeLoc TL,
1586 SmallVectorImpl<ParmVarDecl*> &Params,
1587 MultiLevelTemplateArgumentList &Args) {
1588 SmallVector<QualType, 4> ParamTypes;
1589 const FunctionProtoType *T = TL.getTypePtr();
1590
1591 // -- The types of the function parameters are those of the constructor.
1592 for (auto *OldParam : TL.getParams()) {
1593 ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args);
1594 if (!NewParam)
1595 return QualType();
1596 ParamTypes.push_back(NewParam->getType());
1597 Params.push_back(NewParam);
1598 }
1599
1600 // -- The return type is the class template specialization designated by
1601 // the template-name and template arguments corresponding to the
1602 // template parameters obtained from the class template.
1603 //
1604 // We use the injected-class-name type of the primary template instead.
1605 // This has the convenient property that it is different from any type that
1606 // the user can write in a deduction-guide (because they cannot enter the
1607 // context of the template), so implicit deduction guides can never collide
1608 // with explicit ones.
1609 QualType ReturnType = DeducedType;
1610 TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
1611
1612 // Resolving a wording defect, we also inherit the variadicness of the
1613 // constructor.
1614 FunctionProtoType::ExtProtoInfo EPI;
1615 EPI.Variadic = T->isVariadic();
1616 EPI.HasTrailingReturn = true;
1617
1618 QualType Result = SemaRef.BuildFunctionType(
1619 ReturnType, ParamTypes, TL.getLocStart(), DeductionGuideName, EPI);
1620 if (Result.isNull())
1621 return QualType();
1622
1623 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
1624 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
1625 NewTL.setLParenLoc(TL.getLParenLoc());
1626 NewTL.setRParenLoc(TL.getRParenLoc());
1627 NewTL.setExceptionSpecRange(SourceRange());
1628 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
1629 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
1630 NewTL.setParam(I, Params[I]);
1631
1632 return Result;
1633 }
1634
1635 ParmVarDecl *
1636 transformFunctionTypeParam(ParmVarDecl *OldParam,
1637 MultiLevelTemplateArgumentList &Args) {
1638 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
1639 TypeSourceInfo *NewDI =
1640 Args.getNumLevels()
1641 ? SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
1642 OldParam->getDeclName())
1643 : OldDI;
1644 if (!NewDI)
1645 return nullptr;
1646
1647 // Canonicalize the type. This (for instance) replaces references to
1648 // typedef members of the current instantiations with the definitions of
1649 // those typedefs, avoiding triggering instantiation of the deduced type
1650 // during deduction.
1651 // FIXME: It would be preferable to retain type sugar and source
1652 // information here (and handle this in substitution instead).
1653 NewDI = SemaRef.Context.getTrivialTypeSourceInfo(
1654 SemaRef.Context.getCanonicalType(NewDI->getType()),
1655 OldParam->getLocation());
1656
1657 // Resolving a wording defect, we also inherit default arguments from the
1658 // constructor.
1659 ExprResult NewDefArg;
1660 if (OldParam->hasDefaultArg()) {
1661 NewDefArg = Args.getNumLevels()
1662 ? SemaRef.SubstExpr(OldParam->getDefaultArg(), Args)
1663 : OldParam->getDefaultArg();
1664 if (NewDefArg.isInvalid())
1665 return nullptr;
1666 }
1667
1668 ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
1669 OldParam->getInnerLocStart(),
1670 OldParam->getLocation(),
1671 OldParam->getIdentifier(),
1672 NewDI->getType(),
1673 NewDI,
1674 OldParam->getStorageClass(),
1675 NewDefArg.get());
1676 NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
1677 OldParam->getFunctionScopeIndex());
1678 return NewParam;
1679 }
1680
1681 NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams,
1682 bool Explicit, TypeSourceInfo *TInfo,
1683 SourceLocation LocStart, SourceLocation Loc,
1684 SourceLocation LocEnd) {
1685 DeclarationNameInfo Name(DeductionGuideName, Loc);
1686 ArrayRef<ParmVarDecl *> Params =
1687 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
1688
1689 // Build the implicit deduction guide template.
1690 auto *Guide =
1691 CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, Explicit,
1692 Name, TInfo->getType(), TInfo, LocEnd);
1693 Guide->setImplicit();
1694 Guide->setParams(Params);
1695
1696 for (auto *Param : Params)
1697 Param->setDeclContext(Guide);
1698
1699 auto *GuideTemplate = FunctionTemplateDecl::Create(
1700 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
1701 GuideTemplate->setImplicit();
1702 Guide->setDescribedFunctionTemplate(GuideTemplate);
1703
1704 if (isa<CXXRecordDecl>(DC)) {
1705 Guide->setAccess(AS_public);
1706 GuideTemplate->setAccess(AS_public);
1707 }
1708
1709 DC->addDecl(GuideTemplate);
1710 return GuideTemplate;
1711 }
1712};
1713}
1714
1715void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
1716 SourceLocation Loc) {
1717 DeclContext *DC = Template->getDeclContext();
1718 if (DC->isDependentContext())
1719 return;
1720
1721 ConvertConstructorToDeductionGuideTransform Transform(
1722 *this, cast<ClassTemplateDecl>(Template));
1723 if (!isCompleteType(Loc, Transform.DeducedType))
1724 return;
1725
1726 // Check whether we've already declared deduction guides for this template.
1727 // FIXME: Consider storing a flag on the template to indicate this.
1728 auto Existing = DC->lookup(Transform.DeductionGuideName);
1729 for (auto *D : Existing)
1730 if (D->isImplicit())
1731 return;
1732
1733 // In case we were expanding a pack when we attempted to declare deduction
1734 // guides, turn off pack expansion for everything we're about to do.
1735 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
1736 // Create a template instantiation record to track the "instantiation" of
1737 // constructors into deduction guides.
1738 // FIXME: Add a kind for this to give more meaningful diagnostics. But can
1739 // this substitution process actually fail?
1740 InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
1741
1742 // Convert declared constructors into deduction guide templates.
1743 // FIXME: Skip constructors for which deduction must necessarily fail (those
1744 // for which some class template parameter without a default argument never
1745 // appears in a deduced context).
1746 bool AddedAny = false;
1747 bool AddedCopyOrMove = false;
1748 for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
1749 D = D->getUnderlyingDecl();
1750 if (D->isInvalidDecl() || D->isImplicit())
1751 continue;
1752 D = cast<NamedDecl>(D->getCanonicalDecl());
1753
1754 auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
1755 auto *CD =
1756 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
1757 // Class-scope explicit specializations (MS extension) do not result in
1758 // deduction guides.
1759 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
1760 continue;
1761
1762 Transform.transformConstructor(FTD, CD);
1763 AddedAny = true;
1764
1765 AddedCopyOrMove |= CD->isCopyOrMoveConstructor();
1766 }
1767
1768 // Synthesize an X() -> X<...> guide if there were no declared constructors.
1769 // FIXME: The standard doesn't say (how) to do this.
1770 if (!AddedAny)
1771 Transform.buildSimpleDeductionGuide(None);
1772
1773 // Synthesize an X(X<...>) -> X<...> guide if there was no declared constructor
1774 // resembling a copy or move constructor.
1775 // FIXME: The standard doesn't say (how) to do this.
1776 if (!AddedCopyOrMove)
1777 Transform.buildSimpleDeductionGuide(Transform.DeducedType);
1778}
1779
1780/// \brief Diagnose the presence of a default template argument on a
1781/// template parameter, which is ill-formed in certain contexts.
1782///
1783/// \returns true if the default template argument should be dropped.
1784static bool DiagnoseDefaultTemplateArgument(Sema &S,
1785 Sema::TemplateParamListContext TPC,
1786 SourceLocation ParamLoc,
1787 SourceRange DefArgRange) {
1788 switch (TPC) {
1789 case Sema::TPC_ClassTemplate:
1790 case Sema::TPC_VarTemplate:
1791 case Sema::TPC_TypeAliasTemplate:
1792 return false;
1793
1794 case Sema::TPC_FunctionTemplate:
1795 case Sema::TPC_FriendFunctionTemplateDefinition:
1796 // C++ [temp.param]p9:
1797 // A default template-argument shall not be specified in a
1798 // function template declaration or a function template
1799 // definition [...]
1800 // If a friend function template declaration specifies a default
1801 // template-argument, that declaration shall be a definition and shall be
1802 // the only declaration of the function template in the translation unit.
1803 // (C++98/03 doesn't have this wording; see DR226).
1804 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1805 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1806 : diag::ext_template_parameter_default_in_function_template)
1807 << DefArgRange;
1808 return false;
1809
1810 case Sema::TPC_ClassTemplateMember:
1811 // C++0x [temp.param]p9:
1812 // A default template-argument shall not be specified in the
1813 // template-parameter-lists of the definition of a member of a
1814 // class template that appears outside of the member's class.
1815 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1816 << DefArgRange;
1817 return true;
1818
1819 case Sema::TPC_FriendClassTemplate:
1820 case Sema::TPC_FriendFunctionTemplate:
1821 // C++ [temp.param]p9:
1822 // A default template-argument shall not be specified in a
1823 // friend template declaration.
1824 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1825 << DefArgRange;
1826 return true;
1827
1828 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1829 // for friend function templates if there is only a single
1830 // declaration (and it is a definition). Strange!
1831 }
1832
1833 llvm_unreachable("Invalid TemplateParamListContext!")::llvm::llvm_unreachable_internal("Invalid TemplateParamListContext!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1833)
;
1834}
1835
1836/// \brief Check for unexpanded parameter packs within the template parameters
1837/// of a template template parameter, recursively.
1838static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1839 TemplateTemplateParmDecl *TTP) {
1840 // A template template parameter which is a parameter pack is also a pack
1841 // expansion.
1842 if (TTP->isParameterPack())
1843 return false;
1844
1845 TemplateParameterList *Params = TTP->getTemplateParameters();
1846 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1847 NamedDecl *P = Params->getParam(I);
1848 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1849 if (!NTTP->isParameterPack() &&
1850 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1851 NTTP->getTypeSourceInfo(),
1852 Sema::UPPC_NonTypeTemplateParameterType))
1853 return true;
1854
1855 continue;
1856 }
1857
1858 if (TemplateTemplateParmDecl *InnerTTP
1859 = dyn_cast<TemplateTemplateParmDecl>(P))
1860 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1861 return true;
1862 }
1863
1864 return false;
1865}
1866
1867/// \brief Checks the validity of a template parameter list, possibly
1868/// considering the template parameter list from a previous
1869/// declaration.
1870///
1871/// If an "old" template parameter list is provided, it must be
1872/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1873/// template parameter list.
1874///
1875/// \param NewParams Template parameter list for a new template
1876/// declaration. This template parameter list will be updated with any
1877/// default arguments that are carried through from the previous
1878/// template parameter list.
1879///
1880/// \param OldParams If provided, template parameter list from a
1881/// previous declaration of the same template. Default template
1882/// arguments will be merged from the old template parameter list to
1883/// the new template parameter list.
1884///
1885/// \param TPC Describes the context in which we are checking the given
1886/// template parameter list.
1887///
1888/// \returns true if an error occurred, false otherwise.
1889bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1890 TemplateParameterList *OldParams,
1891 TemplateParamListContext TPC) {
1892 bool Invalid = false;
1893
1894 // C++ [temp.param]p10:
1895 // The set of default template-arguments available for use with a
1896 // template declaration or definition is obtained by merging the
1897 // default arguments from the definition (if in scope) and all
1898 // declarations in scope in the same way default function
1899 // arguments are (8.3.6).
1900 bool SawDefaultArgument = false;
1901 SourceLocation PreviousDefaultArgLoc;
1902
1903 // Dummy initialization to avoid warnings.
1904 TemplateParameterList::iterator OldParam = NewParams->end();
1905 if (OldParams)
1906 OldParam = OldParams->begin();
1907
1908 bool RemoveDefaultArguments = false;
1909 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1910 NewParamEnd = NewParams->end();
1911 NewParam != NewParamEnd; ++NewParam) {
1912 // Variables used to diagnose redundant default arguments
1913 bool RedundantDefaultArg = false;
1914 SourceLocation OldDefaultLoc;
1915 SourceLocation NewDefaultLoc;
1916
1917 // Variable used to diagnose missing default arguments
1918 bool MissingDefaultArg = false;
1919
1920 // Variable used to diagnose non-final parameter packs
1921 bool SawParameterPack = false;
1922
1923 if (TemplateTypeParmDecl *NewTypeParm
1924 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1925 // Check the presence of a default argument here.
1926 if (NewTypeParm->hasDefaultArgument() &&
1927 DiagnoseDefaultTemplateArgument(*this, TPC,
1928 NewTypeParm->getLocation(),
1929 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1930 .getSourceRange()))
1931 NewTypeParm->removeDefaultArgument();
1932
1933 // Merge default arguments for template type parameters.
1934 TemplateTypeParmDecl *OldTypeParm
1935 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
1936 if (NewTypeParm->isParameterPack()) {
1937 assert(!NewTypeParm->hasDefaultArgument() &&((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1938, __PRETTY_FUNCTION__))
1938 "Parameter packs can't have a default argument!")((!NewTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1938, __PRETTY_FUNCTION__))
;
1939 SawParameterPack = true;
1940 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
1941 NewTypeParm->hasDefaultArgument()) {
1942 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1943 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1944 SawDefaultArgument = true;
1945 RedundantDefaultArg = true;
1946 PreviousDefaultArgLoc = NewDefaultLoc;
1947 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1948 // Merge the default argument from the old declaration to the
1949 // new declaration.
1950 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
1951 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1952 } else if (NewTypeParm->hasDefaultArgument()) {
1953 SawDefaultArgument = true;
1954 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1955 } else if (SawDefaultArgument)
1956 MissingDefaultArg = true;
1957 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1958 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1959 // Check for unexpanded parameter packs.
1960 if (!NewNonTypeParm->isParameterPack() &&
1961 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1962 NewNonTypeParm->getTypeSourceInfo(),
1963 UPPC_NonTypeTemplateParameterType)) {
1964 Invalid = true;
1965 continue;
1966 }
1967
1968 // Check the presence of a default argument here.
1969 if (NewNonTypeParm->hasDefaultArgument() &&
1970 DiagnoseDefaultTemplateArgument(*this, TPC,
1971 NewNonTypeParm->getLocation(),
1972 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1973 NewNonTypeParm->removeDefaultArgument();
1974 }
1975
1976 // Merge default arguments for non-type template parameters
1977 NonTypeTemplateParmDecl *OldNonTypeParm
1978 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
1979 if (NewNonTypeParm->isParameterPack()) {
1980 assert(!NewNonTypeParm->hasDefaultArgument() &&((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1981, __PRETTY_FUNCTION__))
1981 "Parameter packs can't have a default argument!")((!NewNonTypeParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewNonTypeParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 1981, __PRETTY_FUNCTION__))
;
1982 if (!NewNonTypeParm->isPackExpansion())
1983 SawParameterPack = true;
1984 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
1985 NewNonTypeParm->hasDefaultArgument()) {
1986 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1987 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1988 SawDefaultArgument = true;
1989 RedundantDefaultArg = true;
1990 PreviousDefaultArgLoc = NewDefaultLoc;
1991 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1992 // Merge the default argument from the old declaration to the
1993 // new declaration.
1994 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
1995 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1996 } else if (NewNonTypeParm->hasDefaultArgument()) {
1997 SawDefaultArgument = true;
1998 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1999 } else if (SawDefaultArgument)
2000 MissingDefaultArg = true;
2001 } else {
2002 TemplateTemplateParmDecl *NewTemplateParm
2003 = cast<TemplateTemplateParmDecl>(*NewParam);
2004
2005 // Check for unexpanded parameter packs, recursively.
2006 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2007 Invalid = true;
2008 continue;
2009 }
2010
2011 // Check the presence of a default argument here.
2012 if (NewTemplateParm->hasDefaultArgument() &&
2013 DiagnoseDefaultTemplateArgument(*this, TPC,
2014 NewTemplateParm->getLocation(),
2015 NewTemplateParm->getDefaultArgument().getSourceRange()))
2016 NewTemplateParm->removeDefaultArgument();
2017
2018 // Merge default arguments for template template parameters
2019 TemplateTemplateParmDecl *OldTemplateParm
2020 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2021 if (NewTemplateParm->isParameterPack()) {
2022 assert(!NewTemplateParm->hasDefaultArgument() &&((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2023, __PRETTY_FUNCTION__))
2023 "Parameter packs can't have a default argument!")((!NewTemplateParm->hasDefaultArgument() && "Parameter packs can't have a default argument!"
) ? static_cast<void> (0) : __assert_fail ("!NewTemplateParm->hasDefaultArgument() && \"Parameter packs can't have a default argument!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2023, __PRETTY_FUNCTION__))
;
2024 if (!NewTemplateParm->isPackExpansion())
2025 SawParameterPack = true;
2026 } else if (OldTemplateParm &&
2027 hasVisibleDefaultArgument(OldTemplateParm) &&
2028 NewTemplateParm->hasDefaultArgument()) {
2029 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2030 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2031 SawDefaultArgument = true;
2032 RedundantDefaultArg = true;
2033 PreviousDefaultArgLoc = NewDefaultLoc;
2034 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2035 // Merge the default argument from the old declaration to the
2036 // new declaration.
2037 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2038 PreviousDefaultArgLoc
2039 = OldTemplateParm->getDefaultArgument().getLocation();
2040 } else if (NewTemplateParm->hasDefaultArgument()) {
2041 SawDefaultArgument = true;
2042 PreviousDefaultArgLoc
2043 = NewTemplateParm->getDefaultArgument().getLocation();
2044 } else if (SawDefaultArgument)
2045 MissingDefaultArg = true;
2046 }
2047
2048 // C++11 [temp.param]p11:
2049 // If a template parameter of a primary class template or alias template
2050 // is a template parameter pack, it shall be the last template parameter.
2051 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2052 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2053 TPC == TPC_TypeAliasTemplate)) {
2054 Diag((*NewParam)->getLocation(),
2055 diag::err_template_param_pack_must_be_last_template_parameter);
2056 Invalid = true;
2057 }
2058
2059 if (RedundantDefaultArg) {
2060 // C++ [temp.param]p12:
2061 // A template-parameter shall not be given default arguments
2062 // by two different declarations in the same scope.
2063 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2064 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2065 Invalid = true;
2066 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2067 // C++ [temp.param]p11:
2068 // If a template-parameter of a class template has a default
2069 // template-argument, each subsequent template-parameter shall either
2070 // have a default template-argument supplied or be a template parameter
2071 // pack.
2072 Diag((*NewParam)->getLocation(),
2073 diag::err_template_param_default_arg_missing);
2074 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2075 Invalid = true;
2076 RemoveDefaultArguments = true;
2077 }
2078
2079 // If we have an old template parameter list that we're merging
2080 // in, move on to the next parameter.
2081 if (OldParams)
2082 ++OldParam;
2083 }
2084
2085 // We were missing some default arguments at the end of the list, so remove
2086 // all of the default arguments.
2087 if (RemoveDefaultArguments) {
2088 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2089 NewParamEnd = NewParams->end();
2090 NewParam != NewParamEnd; ++NewParam) {
2091 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2092 TTP->removeDefaultArgument();
2093 else if (NonTypeTemplateParmDecl *NTTP
2094 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2095 NTTP->removeDefaultArgument();
2096 else
2097 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2098 }
2099 }
2100
2101 return Invalid;
2102}
2103
2104namespace {
2105
2106/// A class which looks for a use of a certain level of template
2107/// parameter.
2108struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2109 typedef RecursiveASTVisitor<DependencyChecker> super;
2110
2111 unsigned Depth;
2112 bool FindLessThanDepth;
2113
2114 // Whether we're looking for a use of a template parameter that makes the
2115 // overall construct type-dependent / a dependent type. This is strictly
2116 // best-effort for now; we may fail to match at all for a dependent type
2117 // in some cases if this is set.
2118 bool IgnoreNonTypeDependent;
2119
2120 bool Match;
2121 SourceLocation MatchLoc;
2122
2123 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent,
2124 bool FindLessThanDepth = false)
2125 : Depth(Depth), FindLessThanDepth(FindLessThanDepth),
2126 IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {}
2127
2128 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2129 : DependencyChecker(Params->getDepth(), IgnoreNonTypeDependent) {}
2130
2131 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2132 if (FindLessThanDepth ^ (ParmDepth >= Depth)) {
2133 Match = true;
2134 MatchLoc = Loc;
2135 return true;
2136 }
2137 return false;
2138 }
2139
2140 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2141 // Prune out non-type-dependent expressions if requested. This can
2142 // sometimes result in us failing to find a template parameter reference
2143 // (if a value-dependent expression creates a dependent type), but this
2144 // mode is best-effort only.
2145 if (auto *E = dyn_cast_or_null<Expr>(S))
2146 if (IgnoreNonTypeDependent && !E->isTypeDependent())
2147 return true;
2148 return super::TraverseStmt(S, Q);
2149 }
2150
2151 bool TraverseTypeLoc(TypeLoc TL) {
2152 if (IgnoreNonTypeDependent && !TL.isNull() &&
2153 !TL.getType()->isDependentType())
2154 return true;
2155 return super::TraverseTypeLoc(TL);
2156 }
2157
2158 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2159 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2160 }
2161
2162 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2163 // For a best-effort search, keep looking until we find a location.
2164 return IgnoreNonTypeDependent || !Matches(T->getDepth());
2165 }
2166
2167 bool TraverseTemplateName(TemplateName N) {
2168 if (TemplateTemplateParmDecl *PD =
2169 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2170 if (Matches(PD->getDepth()))
2171 return false;
2172 return super::TraverseTemplateName(N);
2173 }
2174
2175 bool VisitDeclRefExpr(DeclRefExpr *E) {
2176 if (NonTypeTemplateParmDecl *PD =
2177 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2178 if (Matches(PD->getDepth(), E->getExprLoc()))
2179 return false;
2180 return super::VisitDeclRefExpr(E);
2181 }
2182
2183 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2184 return TraverseType(T->getReplacementType());
2185 }
2186
2187 bool
2188 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2189 return TraverseTemplateArgument(T->getArgumentPack());
2190 }
2191
2192 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2193 return TraverseType(T->getInjectedSpecializationType());
2194 }
2195};
2196} // end anonymous namespace
2197
2198/// Determines whether a given type depends on the given parameter
2199/// list.
2200static bool
2201DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2202 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2203 Checker.TraverseType(T);
2204 return Checker.Match;
2205}
2206
2207// Find the source range corresponding to the named type in the given
2208// nested-name-specifier, if any.
2209static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2210 QualType T,
2211 const CXXScopeSpec &SS) {
2212 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2213 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2214 if (const Type *CurType = NNS->getAsType()) {
2215 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2216 return NNSLoc.getTypeLoc().getSourceRange();
2217 } else
2218 break;
2219
2220 NNSLoc = NNSLoc.getPrefix();
2221 }
2222
2223 return SourceRange();
2224}
2225
2226/// \brief Match the given template parameter lists to the given scope
2227/// specifier, returning the template parameter list that applies to the
2228/// name.
2229///
2230/// \param DeclStartLoc the start of the declaration that has a scope
2231/// specifier or a template parameter list.
2232///
2233/// \param DeclLoc The location of the declaration itself.
2234///
2235/// \param SS the scope specifier that will be matched to the given template
2236/// parameter lists. This scope specifier precedes a qualified name that is
2237/// being declared.
2238///
2239/// \param TemplateId The template-id following the scope specifier, if there
2240/// is one. Used to check for a missing 'template<>'.
2241///
2242/// \param ParamLists the template parameter lists, from the outermost to the
2243/// innermost template parameter lists.
2244///
2245/// \param IsFriend Whether to apply the slightly different rules for
2246/// matching template parameters to scope specifiers in friend
2247/// declarations.
2248///
2249/// \param IsMemberSpecialization will be set true if the scope specifier
2250/// denotes a fully-specialized type, and therefore this is a declaration of
2251/// a member specialization.
2252///
2253/// \returns the template parameter list, if any, that corresponds to the
2254/// name that is preceded by the scope specifier @p SS. This template
2255/// parameter list may have template parameters (if we're declaring a
2256/// template) or may have no template parameters (if we're declaring a
2257/// template specialization), or may be NULL (if what we're declaring isn't
2258/// itself a template).
2259TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
2260 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
2261 TemplateIdAnnotation *TemplateId,
2262 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
2263 bool &IsMemberSpecialization, bool &Invalid) {
2264 IsMemberSpecialization = false;
2265 Invalid = false;
2266
2267 // The sequence of nested types to which we will match up the template
2268 // parameter lists. We first build this list by starting with the type named
2269 // by the nested-name-specifier and walking out until we run out of types.
2270 SmallVector<QualType, 4> NestedTypes;
2271 QualType T;
2272 if (SS.getScopeRep()) {
2273 if (CXXRecordDecl *Record
2274 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
2275 T = Context.getTypeDeclType(Record);
2276 else
2277 T = QualType(SS.getScopeRep()->getAsType(), 0);
2278 }
2279
2280 // If we found an explicit specialization that prevents us from needing
2281 // 'template<>' headers, this will be set to the location of that
2282 // explicit specialization.
2283 SourceLocation ExplicitSpecLoc;
2284
2285 while (!T.isNull()) {
2286 NestedTypes.push_back(T);
2287
2288 // Retrieve the parent of a record type.
2289 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2290 // If this type is an explicit specialization, we're done.
2291 if (ClassTemplateSpecializationDecl *Spec
2292 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2293 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
2294 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
2295 ExplicitSpecLoc = Spec->getLocation();
2296 break;
2297 }
2298 } else if (Record->getTemplateSpecializationKind()
2299 == TSK_ExplicitSpecialization) {
2300 ExplicitSpecLoc = Record->getLocation();
2301 break;
2302 }
2303
2304 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
2305 T = Context.getTypeDeclType(Parent);
2306 else
2307 T = QualType();
2308 continue;
2309 }
2310
2311 if (const TemplateSpecializationType *TST
2312 = T->getAs<TemplateSpecializationType>()) {
2313 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2314 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
2315 T = Context.getTypeDeclType(Parent);
2316 else
2317 T = QualType();
2318 continue;
2319 }
2320 }
2321
2322 // Look one step prior in a dependent template specialization type.
2323 if (const DependentTemplateSpecializationType *DependentTST
2324 = T->getAs<DependentTemplateSpecializationType>()) {
2325 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
2326 T = QualType(NNS->getAsType(), 0);
2327 else
2328 T = QualType();
2329 continue;
2330 }
2331
2332 // Look one step prior in a dependent name type.
2333 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
2334 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
2335 T = QualType(NNS->getAsType(), 0);
2336 else
2337 T = QualType();
2338 continue;
2339 }
2340
2341 // Retrieve the parent of an enumeration type.
2342 if (const EnumType *EnumT = T->getAs<EnumType>()) {
2343 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
2344 // check here.
2345 EnumDecl *Enum = EnumT->getDecl();
2346
2347 // Get to the parent type.
2348 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
2349 T = Context.getTypeDeclType(Parent);
2350 else
2351 T = QualType();
2352 continue;
2353 }
2354
2355 T = QualType();
2356 }
2357 // Reverse the nested types list, since we want to traverse from the outermost
2358 // to the innermost while checking template-parameter-lists.
2359 std::reverse(NestedTypes.begin(), NestedTypes.end());
2360
2361 // C++0x [temp.expl.spec]p17:
2362 // A member or a member template may be nested within many
2363 // enclosing class templates. In an explicit specialization for
2364 // such a member, the member declaration shall be preceded by a
2365 // template<> for each enclosing class template that is
2366 // explicitly specialized.
2367 bool SawNonEmptyTemplateParameterList = false;
2368
2369 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
2370 if (SawNonEmptyTemplateParameterList) {
2371 Diag(DeclLoc, diag::err_specialize_member_of_template)
2372 << !Recovery << Range;
2373 Invalid = true;
2374 IsMemberSpecialization = false;
2375 return true;
2376 }
2377
2378 return false;
2379 };
2380
2381 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
2382 // Check that we can have an explicit specialization here.
2383 if (CheckExplicitSpecialization(Range, true))
2384 return true;
2385
2386 // We don't have a template header, but we should.
2387 SourceLocation ExpectedTemplateLoc;
2388 if (!ParamLists.empty())
2389 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
2390 else
2391 ExpectedTemplateLoc = DeclStartLoc;
2392
2393 Diag(DeclLoc, diag::err_template_spec_needs_header)
2394 << Range
2395 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
2396 return false;
2397 };
2398
2399 unsigned ParamIdx = 0;
2400 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
2401 ++TypeIdx) {
2402 T = NestedTypes[TypeIdx];
2403
2404 // Whether we expect a 'template<>' header.
2405 bool NeedEmptyTemplateHeader = false;
2406
2407 // Whether we expect a template header with parameters.
2408 bool NeedNonemptyTemplateHeader = false;
2409
2410 // For a dependent type, the set of template parameters that we
2411 // expect to see.
2412 TemplateParameterList *ExpectedTemplateParams = nullptr;
2413
2414 // C++0x [temp.expl.spec]p15:
2415 // A member or a member template may be nested within many enclosing
2416 // class templates. In an explicit specialization for such a member, the
2417 // member declaration shall be preceded by a template<> for each
2418 // enclosing class template that is explicitly specialized.
2419 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2420 if (ClassTemplatePartialSpecializationDecl *Partial
2421 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
2422 ExpectedTemplateParams = Partial->getTemplateParameters();
2423 NeedNonemptyTemplateHeader = true;
2424 } else if (Record->isDependentType()) {
2425 if (Record->getDescribedClassTemplate()) {
2426 ExpectedTemplateParams = Record->getDescribedClassTemplate()
2427 ->getTemplateParameters();
2428 NeedNonemptyTemplateHeader = true;
2429 }
2430 } else if (ClassTemplateSpecializationDecl *Spec
2431 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2432 // C++0x [temp.expl.spec]p4:
2433 // Members of an explicitly specialized class template are defined
2434 // in the same manner as members of normal classes, and not using
2435 // the template<> syntax.
2436 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
2437 NeedEmptyTemplateHeader = true;
2438 else
2439 continue;
2440 } else if (Record->getTemplateSpecializationKind()) {
2441 if (Record->getTemplateSpecializationKind()
2442 != TSK_ExplicitSpecialization &&
2443 TypeIdx == NumTypes - 1)
2444 IsMemberSpecialization = true;
2445
2446 continue;
2447 }
2448 } else if (const TemplateSpecializationType *TST
2449 = T->getAs<TemplateSpecializationType>()) {
2450 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2451 ExpectedTemplateParams = Template->getTemplateParameters();
2452 NeedNonemptyTemplateHeader = true;
2453 }
2454 } else if (T->getAs<DependentTemplateSpecializationType>()) {
2455 // FIXME: We actually could/should check the template arguments here
2456 // against the corresponding template parameter list.
2457 NeedNonemptyTemplateHeader = false;
2458 }
2459
2460 // C++ [temp.expl.spec]p16:
2461 // In an explicit specialization declaration for a member of a class
2462 // template or a member template that ap- pears in namespace scope, the
2463 // member template and some of its enclosing class templates may remain
2464 // unspecialized, except that the declaration shall not explicitly
2465 // specialize a class member template if its en- closing class templates
2466 // are not explicitly specialized as well.
2467 if (ParamIdx < ParamLists.size()) {
2468 if (ParamLists[ParamIdx]->size() == 0) {
2469 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2470 false))
2471 return nullptr;
2472 } else
2473 SawNonEmptyTemplateParameterList = true;
2474 }
2475
2476 if (NeedEmptyTemplateHeader) {
2477 // If we're on the last of the types, and we need a 'template<>' header
2478 // here, then it's a member specialization.
2479 if (TypeIdx == NumTypes - 1)
2480 IsMemberSpecialization = true;
2481
2482 if (ParamIdx < ParamLists.size()) {
2483 if (ParamLists[ParamIdx]->size() > 0) {
2484 // The header has template parameters when it shouldn't. Complain.
2485 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2486 diag::err_template_param_list_matches_nontemplate)
2487 << T
2488 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
2489 ParamLists[ParamIdx]->getRAngleLoc())
2490 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2491 Invalid = true;
2492 return nullptr;
2493 }
2494
2495 // Consume this template header.
2496 ++ParamIdx;
2497 continue;
2498 }
2499
2500 if (!IsFriend)
2501 if (DiagnoseMissingExplicitSpecialization(
2502 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
2503 return nullptr;
2504
2505 continue;
2506 }
2507
2508 if (NeedNonemptyTemplateHeader) {
2509 // In friend declarations we can have template-ids which don't
2510 // depend on the corresponding template parameter lists. But
2511 // assume that empty parameter lists are supposed to match this
2512 // template-id.
2513 if (IsFriend && T->isDependentType()) {
2514 if (ParamIdx < ParamLists.size() &&
2515 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
2516 ExpectedTemplateParams = nullptr;
2517 else
2518 continue;
2519 }
2520
2521 if (ParamIdx < ParamLists.size()) {
2522 // Check the template parameter list, if we can.
2523 if (ExpectedTemplateParams &&
2524 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
2525 ExpectedTemplateParams,
2526 true, TPL_TemplateMatch))
2527 Invalid = true;
2528
2529 if (!Invalid &&
2530 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
2531 TPC_ClassTemplateMember))
2532 Invalid = true;
2533
2534 ++ParamIdx;
2535 continue;
2536 }
2537
2538 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
2539 << T
2540 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
2541 Invalid = true;
2542 continue;
2543 }
2544 }
2545
2546 // If there were at least as many template-ids as there were template
2547 // parameter lists, then there are no template parameter lists remaining for
2548 // the declaration itself.
2549 if (ParamIdx >= ParamLists.size()) {
2550 if (TemplateId && !IsFriend) {
2551 // We don't have a template header for the declaration itself, but we
2552 // should.
2553 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
2554 TemplateId->RAngleLoc));
2555
2556 // Fabricate an empty template parameter list for the invented header.
2557 return TemplateParameterList::Create(Context, SourceLocation(),
2558 SourceLocation(), None,
2559 SourceLocation(), nullptr);
2560 }
2561
2562 return nullptr;
2563 }
2564
2565 // If there were too many template parameter lists, complain about that now.
2566 if (ParamIdx < ParamLists.size() - 1) {
2567 bool HasAnyExplicitSpecHeader = false;
2568 bool AllExplicitSpecHeaders = true;
2569 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
2570 if (ParamLists[I]->size() == 0)
2571 HasAnyExplicitSpecHeader = true;
2572 else
2573 AllExplicitSpecHeaders = false;
2574 }
2575
2576 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
2577 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
2578 : diag::err_template_spec_extra_headers)
2579 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
2580 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
2581
2582 // If there was a specialization somewhere, such that 'template<>' is
2583 // not required, and there were any 'template<>' headers, note where the
2584 // specialization occurred.
2585 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
2586 Diag(ExplicitSpecLoc,
2587 diag::note_explicit_template_spec_does_not_need_header)
2588 << NestedTypes.back();
2589
2590 // We have a template parameter list with no corresponding scope, which
2591 // means that the resulting template declaration can't be instantiated
2592 // properly (we'll end up with dependent nodes when we shouldn't).
2593 if (!AllExplicitSpecHeaders)
2594 Invalid = true;
2595 }
2596
2597 // C++ [temp.expl.spec]p16:
2598 // In an explicit specialization declaration for a member of a class
2599 // template or a member template that ap- pears in namespace scope, the
2600 // member template and some of its enclosing class templates may remain
2601 // unspecialized, except that the declaration shall not explicitly
2602 // specialize a class member template if its en- closing class templates
2603 // are not explicitly specialized as well.
2604 if (ParamLists.back()->size() == 0 &&
2605 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2606 false))
2607 return nullptr;
2608
2609 // Return the last template parameter list, which corresponds to the
2610 // entity being declared.
2611 return ParamLists.back();
2612}
2613
2614void Sema::NoteAllFoundTemplates(TemplateName Name) {
2615 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2616 Diag(Template->getLocation(), diag::note_template_declared_here)
2617 << (isa<FunctionTemplateDecl>(Template)
2618 ? 0
2619 : isa<ClassTemplateDecl>(Template)
2620 ? 1
2621 : isa<VarTemplateDecl>(Template)
2622 ? 2
2623 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
2624 << Template->getDeclName();
2625 return;
2626 }
2627
2628 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
2629 for (OverloadedTemplateStorage::iterator I = OST->begin(),
2630 IEnd = OST->end();
2631 I != IEnd; ++I)
2632 Diag((*I)->getLocation(), diag::note_template_declared_here)
2633 << 0 << (*I)->getDeclName();
2634
2635 return;
2636 }
2637}
2638
2639static QualType
2640checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
2641 const SmallVectorImpl<TemplateArgument> &Converted,
2642 SourceLocation TemplateLoc,
2643 TemplateArgumentListInfo &TemplateArgs) {
2644 ASTContext &Context = SemaRef.getASTContext();
2645 switch (BTD->getBuiltinTemplateKind()) {
2646 case BTK__make_integer_seq: {
2647 // Specializations of __make_integer_seq<S, T, N> are treated like
2648 // S<T, 0, ..., N-1>.
2649
2650 // C++14 [inteseq.intseq]p1:
2651 // T shall be an integer type.
2652 if (!Converted[1].getAsType()->isIntegralType(Context)) {
2653 SemaRef.Diag(TemplateArgs[1].getLocation(),
2654 diag::err_integer_sequence_integral_element_type);
2655 return QualType();
2656 }
2657
2658 // C++14 [inteseq.make]p1:
2659 // If N is negative the program is ill-formed.
2660 TemplateArgument NumArgsArg = Converted[2];
2661 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
2662 if (NumArgs < 0) {
2663 SemaRef.Diag(TemplateArgs[2].getLocation(),
2664 diag::err_integer_sequence_negative_length);
2665 return QualType();
2666 }
2667
2668 QualType ArgTy = NumArgsArg.getIntegralType();
2669 TemplateArgumentListInfo SyntheticTemplateArgs;
2670 // The type argument gets reused as the first template argument in the
2671 // synthetic template argument list.
2672 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
2673 // Expand N into 0 ... N-1.
2674 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
2675 I < NumArgs; ++I) {
2676 TemplateArgument TA(Context, I, ArgTy);
2677 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
2678 TA, ArgTy, TemplateArgs[2].getLocation()));
2679 }
2680 // The first template argument will be reused as the template decl that
2681 // our synthetic template arguments will be applied to.
2682 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
2683 TemplateLoc, SyntheticTemplateArgs);
2684 }
2685
2686 case BTK__type_pack_element:
2687 // Specializations of
2688 // __type_pack_element<Index, T_1, ..., T_N>
2689 // are treated like T_Index.
2690 assert(Converted.size() == 2 &&((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2691, __PRETTY_FUNCTION__))
2691 "__type_pack_element should be given an index and a parameter pack")((Converted.size() == 2 && "__type_pack_element should be given an index and a parameter pack"
) ? static_cast<void> (0) : __assert_fail ("Converted.size() == 2 && \"__type_pack_element should be given an index and a parameter pack\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2691, __PRETTY_FUNCTION__))
;
2692
2693 // If the Index is out of bounds, the program is ill-formed.
2694 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
2695 llvm::APSInt Index = IndexArg.getAsIntegral();
2696 assert(Index >= 0 && "the index used with __type_pack_element should be of "((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2697, __PRETTY_FUNCTION__))
2697 "type std::size_t, and hence be non-negative")((Index >= 0 && "the index used with __type_pack_element should be of "
"type std::size_t, and hence be non-negative") ? static_cast
<void> (0) : __assert_fail ("Index >= 0 && \"the index used with __type_pack_element should be of \" \"type std::size_t, and hence be non-negative\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2697, __PRETTY_FUNCTION__))
;
2698 if (Index >= Ts.pack_size()) {
2699 SemaRef.Diag(TemplateArgs[0].getLocation(),
2700 diag::err_type_pack_element_out_of_bounds);
2701 return QualType();
2702 }
2703
2704 // We simply return the type at index `Index`.
2705 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
2706 return Nth->getAsType();
2707 }
2708 llvm_unreachable("unexpected BuiltinTemplateDecl!")::llvm::llvm_unreachable_internal("unexpected BuiltinTemplateDecl!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2708)
;
2709}
2710
2711QualType Sema::CheckTemplateIdType(TemplateName Name,
2712 SourceLocation TemplateLoc,
2713 TemplateArgumentListInfo &TemplateArgs) {
2714 DependentTemplateName *DTN
2715 = Name.getUnderlying().getAsDependentTemplateName();
2716 if (DTN && DTN->isIdentifier())
2717 // When building a template-id where the template-name is dependent,
2718 // assume the template is a type template. Either our assumption is
2719 // correct, or the code is ill-formed and will be diagnosed when the
2720 // dependent name is substituted.
2721 return Context.getDependentTemplateSpecializationType(ETK_None,
2722 DTN->getQualifier(),
2723 DTN->getIdentifier(),
2724 TemplateArgs);
2725
2726 TemplateDecl *Template = Name.getAsTemplateDecl();
2727 if (!Template || isa<FunctionTemplateDecl>(Template) ||
2728 isa<VarTemplateDecl>(Template)) {
2729 // We might have a substituted template template parameter pack. If so,
2730 // build a template specialization type for it.
2731 if (Name.getAsSubstTemplateTemplateParmPack())
2732 return Context.getTemplateSpecializationType(Name, TemplateArgs);
2733
2734 Diag(TemplateLoc, diag::err_template_id_not_a_type)
2735 << Name;
2736 NoteAllFoundTemplates(Name);
2737 return QualType();
2738 }
2739
2740 // Check that the template argument list is well-formed for this
2741 // template.
2742 SmallVector<TemplateArgument, 4> Converted;
2743 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2744 false, Converted))
2745 return QualType();
2746
2747 QualType CanonType;
2748
2749 bool InstantiationDependent = false;
2750 if (TypeAliasTemplateDecl *AliasTemplate =
2751 dyn_cast<TypeAliasTemplateDecl>(Template)) {
2752 // Find the canonical type for this type alias template specialization.
2753 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2754 if (Pattern->isInvalidDecl())
2755 return QualType();
2756
2757 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2758 Converted);
2759
2760 // Only substitute for the innermost template argument list.
2761 MultiLevelTemplateArgumentList TemplateArgLists;
2762 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2763 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2764 for (unsigned I = 0; I < Depth; ++I)
2765 TemplateArgLists.addOuterTemplateArguments(None);
2766
2767 LocalInstantiationScope Scope(*this);
2768 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2769 if (Inst.isInvalid())
2770 return QualType();
2771
2772 CanonType = SubstType(Pattern->getUnderlyingType(),
2773 TemplateArgLists, AliasTemplate->getLocation(),
2774 AliasTemplate->getDeclName());
2775 if (CanonType.isNull())
2776 return QualType();
2777 } else if (Name.isDependent() ||
2778 TemplateSpecializationType::anyDependentTemplateArguments(
2779 TemplateArgs, InstantiationDependent)) {
2780 // This class template specialization is a dependent
2781 // type. Therefore, its canonical type is another class template
2782 // specialization type that contains all of the converted
2783 // arguments in canonical form. This ensures that, e.g., A<T> and
2784 // A<T, T> have identical types when A is declared as:
2785 //
2786 // template<typename T, typename U = T> struct A;
2787 CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
2788
2789 // This might work out to be a current instantiation, in which
2790 // case the canonical type needs to be the InjectedClassNameType.
2791 //
2792 // TODO: in theory this could be a simple hashtable lookup; most
2793 // changes to CurContext don't change the set of current
2794 // instantiations.
2795 if (isa<ClassTemplateDecl>(Template)) {
2796 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2797 // If we get out to a namespace, we're done.
2798 if (Ctx->isFileContext()) break;
2799
2800 // If this isn't a record, keep looking.
2801 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2802 if (!Record) continue;
2803
2804 // Look for one of the two cases with InjectedClassNameTypes
2805 // and check whether it's the same template.
2806 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2807 !Record->getDescribedClassTemplate())
2808 continue;
2809
2810 // Fetch the injected class name type and check whether its
2811 // injected type is equal to the type we just built.
2812 QualType ICNT = Context.getTypeDeclType(Record);
2813 QualType Injected = cast<InjectedClassNameType>(ICNT)
2814 ->getInjectedSpecializationType();
2815
2816 if (CanonType != Injected->getCanonicalTypeInternal())
2817 continue;
2818
2819 // If so, the canonical type of this TST is the injected
2820 // class name type of the record we just found.
2821 assert(ICNT.isCanonical())((ICNT.isCanonical()) ? static_cast<void> (0) : __assert_fail
("ICNT.isCanonical()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2821, __PRETTY_FUNCTION__))
;
2822 CanonType = ICNT;
2823 break;
2824 }
2825 }
2826 } else if (ClassTemplateDecl *ClassTemplate
2827 = dyn_cast<ClassTemplateDecl>(Template)) {
2828 // Find the class template specialization declaration that
2829 // corresponds to these arguments.
2830 void *InsertPos = nullptr;
2831 ClassTemplateSpecializationDecl *Decl
2832 = ClassTemplate->findSpecialization(Converted, InsertPos);
2833 if (!Decl) {
2834 // This is the first time we have referenced this class template
2835 // specialization. Create the canonical declaration and add it to
2836 // the set of specializations.
2837 Decl = ClassTemplateSpecializationDecl::Create(Context,
2838 ClassTemplate->getTemplatedDecl()->getTagKind(),
2839 ClassTemplate->getDeclContext(),
2840 ClassTemplate->getTemplatedDecl()->getLocStart(),
2841 ClassTemplate->getLocation(),
2842 ClassTemplate,
2843 Converted, nullptr);
2844 ClassTemplate->AddSpecialization(Decl, InsertPos);
2845 if (ClassTemplate->isOutOfLine())
2846 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2847 }
2848
2849 // Diagnose uses of this specialization.
2850 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2851
2852 CanonType = Context.getTypeDeclType(Decl);
2853 assert(isa<RecordType>(CanonType) &&((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2854, __PRETTY_FUNCTION__))
2854 "type of non-dependent specialization is not a RecordType")((isa<RecordType>(CanonType) && "type of non-dependent specialization is not a RecordType"
) ? static_cast<void> (0) : __assert_fail ("isa<RecordType>(CanonType) && \"type of non-dependent specialization is not a RecordType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 2854, __PRETTY_FUNCTION__))
;
2855 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
2856 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
2857 TemplateArgs);
2858 }
2859
2860 // Build the fully-sugared type for this class template
2861 // specialization, which refers back to the class template
2862 // specialization we created or found.
2863 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2864}
2865
2866TypeResult
2867Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2868 TemplateTy TemplateD, IdentifierInfo *TemplateII,
2869 SourceLocation TemplateIILoc,
2870 SourceLocation LAngleLoc,
2871 ASTTemplateArgsPtr TemplateArgsIn,
2872 SourceLocation RAngleLoc,
2873 bool IsCtorOrDtorName, bool IsClassName) {
2874 if (SS.isInvalid())
2875 return true;
2876
2877 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
2878 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
2879
2880 // C++ [temp.res]p3:
2881 // A qualified-id that refers to a type and in which the
2882 // nested-name-specifier depends on a template-parameter (14.6.2)
2883 // shall be prefixed by the keyword typename to indicate that the
2884 // qualified-id denotes a type, forming an
2885 // elaborated-type-specifier (7.1.5.3).
2886 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
2887 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
2888 << SS.getScopeRep() << TemplateII->getName();
2889 // Recover as if 'typename' were specified.
2890 // FIXME: This is not quite correct recovery as we don't transform SS
2891 // into the corresponding dependent form (and we don't diagnose missing
2892 // 'template' keywords within SS as a result).
2893 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
2894 TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
2895 TemplateArgsIn, RAngleLoc);
2896 }
2897
2898 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
2899 // it's not actually allowed to be used as a type in most cases. Because
2900 // we annotate it before we know whether it's valid, we have to check for
2901 // this case here.
2902 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
2903 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
2904 Diag(TemplateIILoc,
2905 TemplateKWLoc.isInvalid()
2906 ? diag::err_out_of_line_qualified_id_type_names_constructor
2907 : diag::ext_out_of_line_qualified_id_type_names_constructor)
2908 << TemplateII << 0 /*injected-class-name used as template name*/
2909 << 1 /*if any keyword was present, it was 'template'*/;
2910 }
2911 }
2912
2913 TemplateName Template = TemplateD.get();
2914
2915 // Translate the parser's template argument list in our AST format.
2916 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2917 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2918
2919 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2920 QualType T
2921 = Context.getDependentTemplateSpecializationType(ETK_None,
2922 DTN->getQualifier(),
2923 DTN->getIdentifier(),
2924 TemplateArgs);
2925 // Build type-source information.
2926 TypeLocBuilder TLB;
2927 DependentTemplateSpecializationTypeLoc SpecTL
2928 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2929 SpecTL.setElaboratedKeywordLoc(SourceLocation());
2930 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2931 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2932 SpecTL.setTemplateNameLoc(TemplateIILoc);
2933 SpecTL.setLAngleLoc(LAngleLoc);
2934 SpecTL.setRAngleLoc(RAngleLoc);
2935 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2936 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2937 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2938 }
2939
2940 QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
2941 if (Result.isNull())
2942 return true;
2943
2944 // Build type-source information.
2945 TypeLocBuilder TLB;
2946 TemplateSpecializationTypeLoc SpecTL
2947 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2948 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2949 SpecTL.setTemplateNameLoc(TemplateIILoc);
2950 SpecTL.setLAngleLoc(LAngleLoc);
2951 SpecTL.setRAngleLoc(RAngleLoc);
2952 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2953 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2954
2955 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2956 // constructor or destructor name (in such a case, the scope specifier
2957 // will be attached to the enclosing Decl or Expr node).
2958 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2959 // Create an elaborated-type-specifier containing the nested-name-specifier.
2960 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2961 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2962 ElabTL.setElaboratedKeywordLoc(SourceLocation());
2963 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2964 }
2965
2966 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2967}
2968
2969TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2970 TypeSpecifierType TagSpec,
2971 SourceLocation TagLoc,
2972 CXXScopeSpec &SS,
2973 SourceLocation TemplateKWLoc,
2974 TemplateTy TemplateD,
2975 SourceLocation TemplateLoc,
2976 SourceLocation LAngleLoc,
2977 ASTTemplateArgsPtr TemplateArgsIn,
2978 SourceLocation RAngleLoc) {
2979 TemplateName Template = TemplateD.get();
2980
2981 // Translate the parser's template argument list in our AST format.
2982 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2983 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2984
2985 // Determine the tag kind
2986 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2987 ElaboratedTypeKeyword Keyword
2988 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2989
2990 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2991 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2992 DTN->getQualifier(),
2993 DTN->getIdentifier(),
2994 TemplateArgs);
2995
2996 // Build type-source information.
2997 TypeLocBuilder TLB;
2998 DependentTemplateSpecializationTypeLoc SpecTL
2999 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3000 SpecTL.setElaboratedKeywordLoc(TagLoc);
3001 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3002 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3003 SpecTL.setTemplateNameLoc(TemplateLoc);
3004 SpecTL.setLAngleLoc(LAngleLoc);
3005 SpecTL.setRAngleLoc(RAngleLoc);
3006 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3007 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3008 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3009 }
3010
3011 if (TypeAliasTemplateDecl *TAT =
3012 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
3013 // C++0x [dcl.type.elab]p2:
3014 // If the identifier resolves to a typedef-name or the simple-template-id
3015 // resolves to an alias template specialization, the
3016 // elaborated-type-specifier is ill-formed.
3017 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
3018 << TAT << NTK_TypeAliasTemplate << TagKind;
3019 Diag(TAT->getLocation(), diag::note_declared_at);
3020 }
3021
3022 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
3023 if (Result.isNull())
3024 return TypeResult(true);
3025
3026 // Check the tag kind
3027 if (const RecordType *RT = Result->getAs<RecordType>()) {
3028 RecordDecl *D = RT->getDecl();
3029
3030 IdentifierInfo *Id = D->getIdentifier();
3031 assert(Id && "templated class must have an identifier")((Id && "templated class must have an identifier") ? static_cast
<void> (0) : __assert_fail ("Id && \"templated class must have an identifier\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3031, __PRETTY_FUNCTION__))
;
3032
3033 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
3034 TagLoc, Id)) {
3035 Diag(TagLoc, diag::err_use_with_wrong_tag)
3036 << Result
3037 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
3038 Diag(D->getLocation(), diag::note_previous_use);
3039 }
3040 }
3041
3042 // Provide source-location information for the template specialization.
3043 TypeLocBuilder TLB;
3044 TemplateSpecializationTypeLoc SpecTL
3045 = TLB.push<TemplateSpecializationTypeLoc>(Result);
3046 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3047 SpecTL.setTemplateNameLoc(TemplateLoc);
3048 SpecTL.setLAngleLoc(LAngleLoc);
3049 SpecTL.setRAngleLoc(RAngleLoc);
3050 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3051 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3052
3053 // Construct an elaborated type containing the nested-name-specifier (if any)
3054 // and tag keyword.
3055 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
3056 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3057 ElabTL.setElaboratedKeywordLoc(TagLoc);
3058 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3059 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3060}
3061
3062static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
3063 NamedDecl *PrevDecl,
3064 SourceLocation Loc,
3065 bool IsPartialSpecialization);
3066
3067static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
3068
3069static bool isTemplateArgumentTemplateParameter(
3070 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
3071 switch (Arg.getKind()) {
3072 case TemplateArgument::Null:
3073 case TemplateArgument::NullPtr:
3074 case TemplateArgument::Integral:
3075 case TemplateArgument::Declaration:
3076 case TemplateArgument::Pack:
3077 case TemplateArgument::TemplateExpansion:
3078 return false;
3079
3080 case TemplateArgument::Type: {
3081 QualType Type = Arg.getAsType();
3082 const TemplateTypeParmType *TPT =
3083 Arg.getAsType()->getAs<TemplateTypeParmType>();
3084 return TPT && !Type.hasQualifiers() &&
3085 TPT->getDepth() == Depth && TPT->getIndex() == Index;
3086 }
3087
3088 case TemplateArgument::Expression: {
3089 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
3090 if (!DRE || !DRE->getDecl())
3091 return false;
3092 const NonTypeTemplateParmDecl *NTTP =
3093 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3094 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
3095 }
3096
3097 case TemplateArgument::Template:
3098 const TemplateTemplateParmDecl *TTP =
3099 dyn_cast_or_null<TemplateTemplateParmDecl>(
3100 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
3101 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
3102 }
3103 llvm_unreachable("unexpected kind of template argument")::llvm::llvm_unreachable_internal("unexpected kind of template argument"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3103)
;
3104}
3105
3106static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
3107 ArrayRef<TemplateArgument> Args) {
3108 if (Params->size() != Args.size())
3109 return false;
3110
3111 unsigned Depth = Params->getDepth();
3112
3113 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3114 TemplateArgument Arg = Args[I];
3115
3116 // If the parameter is a pack expansion, the argument must be a pack
3117 // whose only element is a pack expansion.
3118 if (Params->getParam(I)->isParameterPack()) {
3119 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
3120 !Arg.pack_begin()->isPackExpansion())
3121 return false;
3122 Arg = Arg.pack_begin()->getPackExpansionPattern();
3123 }
3124
3125 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
3126 return false;
3127 }
3128
3129 return true;
3130}
3131
3132/// Convert the parser's template argument list representation into our form.
3133static TemplateArgumentListInfo
3134makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
3135 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
3136 TemplateId.RAngleLoc);
3137 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
3138 TemplateId.NumArgs);
3139 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
3140 return TemplateArgs;
3141}
3142
3143template<typename PartialSpecDecl>
3144static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
3145 if (Partial->getDeclContext()->isDependentContext())
3146 return;
3147
3148 // FIXME: Get the TDK from deduction in order to provide better diagnostics
3149 // for non-substitution-failure issues?
3150 TemplateDeductionInfo Info(Partial->getLocation());
3151 if (S.isMoreSpecializedThanPrimary(Partial, Info))
3152 return;
3153
3154 auto *Template = Partial->getSpecializedTemplate();
3155 S.Diag(Partial->getLocation(),
3156 diag::ext_partial_spec_not_more_specialized_than_primary)
3157 << isa<VarTemplateDecl>(Template);
3158
3159 if (Info.hasSFINAEDiagnostic()) {
3160 PartialDiagnosticAt Diag = {SourceLocation(),
3161 PartialDiagnostic::NullDiagnostic()};
3162 Info.takeSFINAEDiagnostic(Diag);
3163 SmallString<128> SFINAEArgString;
3164 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
3165 S.Diag(Diag.first,
3166 diag::note_partial_spec_not_more_specialized_than_primary)
3167 << SFINAEArgString;
3168 }
3169
3170 S.Diag(Template->getLocation(), diag::note_template_decl_here);
3171}
3172
3173static void
3174noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
3175 const llvm::SmallBitVector &DeducibleParams) {
3176 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3177 if (!DeducibleParams[I]) {
3178 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3179 if (Param->getDeclName())
3180 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3181 << Param->getDeclName();
3182 else
3183 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
3184 << "(anonymous)";
3185 }
3186 }
3187}
3188
3189
3190template<typename PartialSpecDecl>
3191static void checkTemplatePartialSpecialization(Sema &S,
3192 PartialSpecDecl *Partial) {
3193 // C++1z [temp.class.spec]p8: (DR1495)
3194 // - The specialization shall be more specialized than the primary
3195 // template (14.5.5.2).
3196 checkMoreSpecializedThanPrimary(S, Partial);
3197
3198 // C++ [temp.class.spec]p8: (DR1315)
3199 // - Each template-parameter shall appear at least once in the
3200 // template-id outside a non-deduced context.
3201 // C++1z [temp.class.spec.match]p3 (P0127R2)
3202 // If the template arguments of a partial specialization cannot be
3203 // deduced because of the structure of its template-parameter-list
3204 // and the template-id, the program is ill-formed.
3205 auto *TemplateParams = Partial->getTemplateParameters();
3206 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3207 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3208 TemplateParams->getDepth(), DeducibleParams);
3209
3210 if (!DeducibleParams.all()) {
3211 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3212 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
3213 << isa<VarTemplatePartialSpecializationDecl>(Partial)
3214 << (NumNonDeducible > 1)
3215 << SourceRange(Partial->getLocation(),
3216 Partial->getTemplateArgsAsWritten()->RAngleLoc);
3217 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
3218 }
3219}
3220
3221void Sema::CheckTemplatePartialSpecialization(
3222 ClassTemplatePartialSpecializationDecl *Partial) {
3223 checkTemplatePartialSpecialization(*this, Partial);
3224}
3225
3226void Sema::CheckTemplatePartialSpecialization(
3227 VarTemplatePartialSpecializationDecl *Partial) {
3228 checkTemplatePartialSpecialization(*this, Partial);
3229}
3230
3231void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
3232 // C++1z [temp.param]p11:
3233 // A template parameter of a deduction guide template that does not have a
3234 // default-argument shall be deducible from the parameter-type-list of the
3235 // deduction guide template.
3236 auto *TemplateParams = TD->getTemplateParameters();
3237 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
3238 MarkDeducedTemplateParameters(TD, DeducibleParams);
3239 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
3240 // A parameter pack is deducible (to an empty pack).
3241 auto *Param = TemplateParams->getParam(I);
3242 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
3243 DeducibleParams[I] = true;
3244 }
3245
3246 if (!DeducibleParams.all()) {
3247 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
3248 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
3249 << (NumNonDeducible > 1);
3250 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
3251 }
3252}
3253
3254DeclResult Sema::ActOnVarTemplateSpecialization(
3255 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
3256 TemplateParameterList *TemplateParams, StorageClass SC,
3257 bool IsPartialSpecialization) {
3258 // D must be variable template id.
3259 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&((D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedId::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3260, __PRETTY_FUNCTION__))
3260 "Variable template specialization is declared with a template it.")((D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
"Variable template specialization is declared with a template it."
) ? static_cast<void> (0) : __assert_fail ("D.getName().getKind() == UnqualifiedId::IK_TemplateId && \"Variable template specialization is declared with a template it.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3260, __PRETTY_FUNCTION__))
;
3261
3262 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3263 TemplateArgumentListInfo TemplateArgs =
3264 makeTemplateArgumentListInfo(*this, *TemplateId);
3265 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
3266 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
3267 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
3268
3269 TemplateName Name = TemplateId->Template.get();
3270
3271 // The template-id must name a variable template.
3272 VarTemplateDecl *VarTemplate =
3273 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
3274 if (!VarTemplate) {
3275 NamedDecl *FnTemplate;
3276 if (auto *OTS = Name.getAsOverloadedTemplate())
3277 FnTemplate = *OTS->begin();
3278 else
3279 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
3280 if (FnTemplate)
3281 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
3282 << FnTemplate->getDeclName();
3283 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
3284 << IsPartialSpecialization;
3285 }
3286
3287 // Check for unexpanded parameter packs in any of the template arguments.
3288 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3289 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
3290 UPPC_PartialSpecialization))
3291 return true;
3292
3293 // Check that the template argument list is well-formed for this
3294 // template.
3295 SmallVector<TemplateArgument, 4> Converted;
3296 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
3297 false, Converted))
3298 return true;
3299
3300 // Find the variable template (partial) specialization declaration that
3301 // corresponds to these arguments.
3302 if (IsPartialSpecialization) {
3303 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
3304 TemplateArgs.size(), Converted))
3305 return true;
3306
3307 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
3308 // also do them during instantiation.
3309 bool InstantiationDependent;
3310 if (!Name.isDependent() &&
3311 !TemplateSpecializationType::anyDependentTemplateArguments(
3312 TemplateArgs.arguments(),
3313 InstantiationDependent)) {
3314 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3315 << VarTemplate->getDeclName();
3316 IsPartialSpecialization = false;
3317 }
3318
3319 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
3320 Converted)) {
3321 // C++ [temp.class.spec]p9b3:
3322 //
3323 // -- The argument list of the specialization shall not be identical
3324 // to the implicit argument list of the primary template.
3325 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3326 << /*variable template*/ 1
3327 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
3328 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3329 // FIXME: Recover from this by treating the declaration as a redeclaration
3330 // of the primary template.
3331 return true;
3332 }
3333 }
3334
3335 void *InsertPos = nullptr;
3336 VarTemplateSpecializationDecl *PrevDecl = nullptr;
3337
3338 if (IsPartialSpecialization)
3339 // FIXME: Template parameter list matters too
3340 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
3341 else
3342 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
3343
3344 VarTemplateSpecializationDecl *Specialization = nullptr;
3345
3346 // Check whether we can declare a variable template specialization in
3347 // the current scope.
3348 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
3349 TemplateNameLoc,
3350 IsPartialSpecialization))
3351 return true;
3352
3353 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3354 // Since the only prior variable template specialization with these
3355 // arguments was referenced but not declared, reuse that
3356 // declaration node as our own, updating its source location and
3357 // the list of outer template parameters to reflect our new declaration.
3358 Specialization = PrevDecl;
3359 Specialization->setLocation(TemplateNameLoc);
3360 PrevDecl = nullptr;
3361 } else if (IsPartialSpecialization) {
3362 // Create a new class template partial specialization declaration node.
3363 VarTemplatePartialSpecializationDecl *PrevPartial =
3364 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
3365 VarTemplatePartialSpecializationDecl *Partial =
3366 VarTemplatePartialSpecializationDecl::Create(
3367 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
3368 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
3369 Converted, TemplateArgs);
3370
3371 if (!PrevPartial)
3372 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
3373 Specialization = Partial;
3374
3375 // If we are providing an explicit specialization of a member variable
3376 // template specialization, make a note of that.
3377 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3378 PrevPartial->setMemberSpecialization();
3379
3380 CheckTemplatePartialSpecialization(Partial);
3381 } else {
3382 // Create a new class template specialization declaration node for
3383 // this explicit specialization or friend declaration.
3384 Specialization = VarTemplateSpecializationDecl::Create(
3385 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
3386 VarTemplate, DI->getType(), DI, SC, Converted);
3387 Specialization->setTemplateArgsInfo(TemplateArgs);
3388
3389 if (!PrevDecl)
3390 VarTemplate->AddSpecialization(Specialization, InsertPos);
3391 }
3392
3393 // C++ [temp.expl.spec]p6:
3394 // If a template, a member template or the member of a class template is
3395 // explicitly specialized then that specialization shall be declared
3396 // before the first use of that specialization that would cause an implicit
3397 // instantiation to take place, in every translation unit in which such a
3398 // use occurs; no diagnostic is required.
3399 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3400 bool Okay = false;
3401 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
3402 // Is there any previous explicit specialization declaration?
3403 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3404 Okay = true;
3405 break;
3406 }
3407 }
3408
3409 if (!Okay) {
3410 SourceRange Range(TemplateNameLoc, RAngleLoc);
3411 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3412 << Name << Range;
3413
3414 Diag(PrevDecl->getPointOfInstantiation(),
3415 diag::note_instantiation_required_here)
3416 << (PrevDecl->getTemplateSpecializationKind() !=
3417 TSK_ImplicitInstantiation);
3418 return true;
3419 }
3420 }
3421
3422 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
3423 Specialization->setLexicalDeclContext(CurContext);
3424
3425 // Add the specialization into its lexical context, so that it can
3426 // be seen when iterating through the list of declarations in that
3427 // context. However, specializations are not found by name lookup.
3428 CurContext->addDecl(Specialization);
3429
3430 // Note that this is an explicit specialization.
3431 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3432
3433 if (PrevDecl) {
3434 // Check that this isn't a redefinition of this specialization,
3435 // merging with previous declarations.
3436 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
3437 ForRedeclaration);
3438 PrevSpec.addDecl(PrevDecl);
3439 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
3440 } else if (Specialization->isStaticDataMember() &&
3441 Specialization->isOutOfLine()) {
3442 Specialization->setAccess(VarTemplate->getAccess());
3443 }
3444
3445 // Link instantiations of static data members back to the template from
3446 // which they were instantiated.
3447 if (Specialization->isStaticDataMember())
3448 Specialization->setInstantiationOfStaticDataMember(
3449 VarTemplate->getTemplatedDecl(),
3450 Specialization->getSpecializationKind());
3451
3452 return Specialization;
3453}
3454
3455namespace {
3456/// \brief A partial specialization whose template arguments have matched
3457/// a given template-id.
3458struct PartialSpecMatchResult {
3459 VarTemplatePartialSpecializationDecl *Partial;
3460 TemplateArgumentList *Args;
3461};
3462} // end anonymous namespace
3463
3464DeclResult
3465Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
3466 SourceLocation TemplateNameLoc,
3467 const TemplateArgumentListInfo &TemplateArgs) {
3468 assert(Template && "A variable template id without template?")((Template && "A variable template id without template?"
) ? static_cast<void> (0) : __assert_fail ("Template && \"A variable template id without template?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3468, __PRETTY_FUNCTION__))
;
3469
3470 // Check that the template argument list is well-formed for this template.
3471 SmallVector<TemplateArgument, 4> Converted;
3472 if (CheckTemplateArgumentList(
3473 Template, TemplateNameLoc,
3474 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
3475 Converted))
3476 return true;
3477
3478 // Find the variable template specialization declaration that
3479 // corresponds to these arguments.
3480 void *InsertPos = nullptr;
3481 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
3482 Converted, InsertPos)) {
3483 checkSpecializationVisibility(TemplateNameLoc, Spec);
3484 // If we already have a variable template specialization, return it.
3485 return Spec;
3486 }
3487
3488 // This is the first time we have referenced this variable template
3489 // specialization. Create the canonical declaration and add it to
3490 // the set of specializations, based on the closest partial specialization
3491 // that it represents. That is,
3492 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
3493 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
3494 Converted);
3495 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
3496 bool AmbiguousPartialSpec = false;
3497 typedef PartialSpecMatchResult MatchResult;
3498 SmallVector<MatchResult, 4> Matched;
3499 SourceLocation PointOfInstantiation = TemplateNameLoc;
3500 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
3501 /*ForTakingAddress=*/false);
3502
3503 // 1. Attempt to find the closest partial specialization that this
3504 // specializes, if any.
3505 // If any of the template arguments is dependent, then this is probably
3506 // a placeholder for an incomplete declarative context; which must be
3507 // complete by instantiation time. Thus, do not search through the partial
3508 // specializations yet.
3509 // TODO: Unify with InstantiateClassTemplateSpecialization()?
3510 // Perhaps better after unification of DeduceTemplateArguments() and
3511 // getMoreSpecializedPartialSpecialization().
3512 bool InstantiationDependent = false;
3513 if (!TemplateSpecializationType::anyDependentTemplateArguments(
3514 TemplateArgs, InstantiationDependent)) {
3515
3516 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
3517 Template->getPartialSpecializations(PartialSpecs);
3518
3519 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
3520 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
3521 TemplateDeductionInfo Info(FailedCandidates.getLocation());
3522
3523 if (TemplateDeductionResult Result =
3524 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
3525 // Store the failed-deduction information for use in diagnostics, later.
3526 // TODO: Actually use the failed-deduction info?
3527 FailedCandidates.addCandidate().set(
3528 DeclAccessPair::make(Template, AS_public), Partial,
3529 MakeDeductionFailureInfo(Context, Result, Info));
3530 (void)Result;
3531 } else {
3532 Matched.push_back(PartialSpecMatchResult());
3533 Matched.back().Partial = Partial;
3534 Matched.back().Args = Info.take();
3535 }
3536 }
3537
3538 if (Matched.size() >= 1) {
3539 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
3540 if (Matched.size() == 1) {
3541 // -- If exactly one matching specialization is found, the
3542 // instantiation is generated from that specialization.
3543 // We don't need to do anything for this.
3544 } else {
3545 // -- If more than one matching specialization is found, the
3546 // partial order rules (14.5.4.2) are used to determine
3547 // whether one of the specializations is more specialized
3548 // than the others. If none of the specializations is more
3549 // specialized than all of the other matching
3550 // specializations, then the use of the variable template is
3551 // ambiguous and the program is ill-formed.
3552 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
3553 PEnd = Matched.end();
3554 P != PEnd; ++P) {
3555 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
3556 PointOfInstantiation) ==
3557 P->Partial)
3558 Best = P;
3559 }
3560
3561 // Determine if the best partial specialization is more specialized than
3562 // the others.
3563 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
3564 PEnd = Matched.end();
3565 P != PEnd; ++P) {
3566 if (P != Best && getMoreSpecializedPartialSpecialization(
3567 P->Partial, Best->Partial,
3568 PointOfInstantiation) != Best->Partial) {
3569 AmbiguousPartialSpec = true;
3570 break;
3571 }
3572 }
3573 }
3574
3575 // Instantiate using the best variable template partial specialization.
3576 InstantiationPattern = Best->Partial;
3577 InstantiationArgs = Best->Args;
3578 } else {
3579 // -- If no match is found, the instantiation is generated
3580 // from the primary template.
3581 // InstantiationPattern = Template->getTemplatedDecl();
3582 }
3583 }
3584
3585 // 2. Create the canonical declaration.
3586 // Note that we do not instantiate a definition until we see an odr-use
3587 // in DoMarkVarDeclReferenced().
3588 // FIXME: LateAttrs et al.?
3589 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
3590 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
3591 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
3592 if (!Decl)
3593 return true;
3594
3595 if (AmbiguousPartialSpec) {
3596 // Partial ordering did not produce a clear winner. Complain.
3597 Decl->setInvalidDecl();
3598 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
3599 << Decl;
3600
3601 // Print the matching partial specializations.
3602 for (MatchResult P : Matched)
3603 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
3604 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
3605 *P.Args);
3606 return true;
3607 }
3608
3609 if (VarTemplatePartialSpecializationDecl *D =
3610 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
3611 Decl->setInstantiationOf(D, InstantiationArgs);
3612
3613 checkSpecializationVisibility(TemplateNameLoc, Decl);
3614
3615 assert(Decl && "No variable template specialization?")((Decl && "No variable template specialization?") ? static_cast
<void> (0) : __assert_fail ("Decl && \"No variable template specialization?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3615, __PRETTY_FUNCTION__))
;
3616 return Decl;
3617}
3618
3619ExprResult
3620Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
3621 const DeclarationNameInfo &NameInfo,
3622 VarTemplateDecl *Template, SourceLocation TemplateLoc,
3623 const TemplateArgumentListInfo *TemplateArgs) {
3624
3625 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
3626 *TemplateArgs);
3627 if (Decl.isInvalid())
3628 return ExprError();
3629
3630 VarDecl *Var = cast<VarDecl>(Decl.get());
3631 if (!Var->getTemplateSpecializationKind())
3632 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
3633 NameInfo.getLoc());
3634
3635 // Build an ordinary singleton decl ref.
3636 return BuildDeclarationNameExpr(SS, NameInfo, Var,
3637 /*FoundD=*/nullptr, TemplateArgs);
3638}
3639
3640ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
3641 SourceLocation TemplateKWLoc,
3642 LookupResult &R,
3643 bool RequiresADL,
3644 const TemplateArgumentListInfo *TemplateArgs) {
3645 // FIXME: Can we do any checking at this point? I guess we could check the
3646 // template arguments that we have against the template name, if the template
3647 // name refers to a single template. That's not a terribly common case,
3648 // though.
3649 // foo<int> could identify a single function unambiguously
3650 // This approach does NOT work, since f<int>(1);
3651 // gets resolved prior to resorting to overload resolution
3652 // i.e., template<class T> void f(double);
3653 // vs template<class T, class U> void f(U);
3654
3655 // These should be filtered out by our callers.
3656 assert(!R.empty() && "empty lookup results when building templateid")((!R.empty() && "empty lookup results when building templateid"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"empty lookup results when building templateid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3656, __PRETTY_FUNCTION__))
;
3657 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid")((!R.isAmbiguous() && "ambiguous lookup when building templateid"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"ambiguous lookup when building templateid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3657, __PRETTY_FUNCTION__))
;
3658
3659 // In C++1y, check variable template ids.
3660 bool InstantiationDependent;
3661 if (R.getAsSingle<VarTemplateDecl>() &&
3662 !TemplateSpecializationType::anyDependentTemplateArguments(
3663 *TemplateArgs, InstantiationDependent)) {
3664 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
3665 R.getAsSingle<VarTemplateDecl>(),
3666 TemplateKWLoc, TemplateArgs);
3667 }
3668
3669 // We don't want lookup warnings at this point.
3670 R.suppressDiagnostics();
3671
3672 UnresolvedLookupExpr *ULE
3673 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3674 SS.getWithLocInContext(Context),
3675 TemplateKWLoc,
3676 R.getLookupNameInfo(),
3677 RequiresADL, TemplateArgs,
3678 R.begin(), R.end());
3679
3680 return ULE;
3681}
3682
3683// We actually only call this from template instantiation.
3684ExprResult
3685Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
3686 SourceLocation TemplateKWLoc,
3687 const DeclarationNameInfo &NameInfo,
3688 const TemplateArgumentListInfo *TemplateArgs) {
3689
3690 assert(TemplateArgs || TemplateKWLoc.isValid())((TemplateArgs || TemplateKWLoc.isValid()) ? static_cast<void
> (0) : __assert_fail ("TemplateArgs || TemplateKWLoc.isValid()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3690, __PRETTY_FUNCTION__))
;
3691 DeclContext *DC;
3692 if (!(DC = computeDeclContext(SS, false)) ||
3693 DC->isDependentContext() ||
3694 RequireCompleteDeclContext(SS, DC))
3695 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
3696
3697 bool MemberOfUnknownSpecialization;
3698 LookupResult R(*this, NameInfo, LookupOrdinaryName);
3699 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
3700 MemberOfUnknownSpecialization);
3701
3702 if (R.isAmbiguous())
3703 return ExprError();
3704
3705 if (R.empty()) {
3706 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
3707 << NameInfo.getName() << SS.getRange();
3708 return ExprError();
3709 }
3710
3711 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
3712 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
3713 << SS.getScopeRep()
3714 << NameInfo.getName().getAsString() << SS.getRange();
3715 Diag(Temp->getLocation(), diag::note_referenced_class_template);
3716 return ExprError();
3717 }
3718
3719 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
3720}
3721
3722/// \brief Form a dependent template name.
3723///
3724/// This action forms a dependent template name given the template
3725/// name and its (presumably dependent) scope specifier. For
3726/// example, given "MetaFun::template apply", the scope specifier \p
3727/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
3728/// of the "template" keyword, and "apply" is the \p Name.
3729TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
3730 CXXScopeSpec &SS,
3731 SourceLocation TemplateKWLoc,
3732 UnqualifiedId &Name,
3733 ParsedType ObjectType,
3734 bool EnteringContext,
3735 TemplateTy &Result,
3736 bool AllowInjectedClassName) {
3737 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
3738 Diag(TemplateKWLoc,
3739 getLangOpts().CPlusPlus11 ?
3740 diag::warn_cxx98_compat_template_outside_of_template :
3741 diag::ext_template_outside_of_template)
3742 << FixItHint::CreateRemoval(TemplateKWLoc);
3743
3744 DeclContext *LookupCtx = nullptr;
3745 if (SS.isSet())
3746 LookupCtx = computeDeclContext(SS, EnteringContext);
3747 if (!LookupCtx && ObjectType)
3748 LookupCtx = computeDeclContext(ObjectType.get());
3749 if (LookupCtx) {
3750 // C++0x [temp.names]p5:
3751 // If a name prefixed by the keyword template is not the name of
3752 // a template, the program is ill-formed. [Note: the keyword
3753 // template may not be applied to non-template members of class
3754 // templates. -end note ] [ Note: as is the case with the
3755 // typename prefix, the template prefix is allowed in cases
3756 // where it is not strictly necessary; i.e., when the
3757 // nested-name-specifier or the expression on the left of the ->
3758 // or . is not dependent on a template-parameter, or the use
3759 // does not appear in the scope of a template. -end note]
3760 //
3761 // Note: C++03 was more strict here, because it banned the use of
3762 // the "template" keyword prior to a template-name that was not a
3763 // dependent name. C++ DR468 relaxed this requirement (the
3764 // "template" keyword is now permitted). We follow the C++0x
3765 // rules, even in C++03 mode with a warning, retroactively applying the DR.
3766 bool MemberOfUnknownSpecialization;
3767 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
3768 ObjectType, EnteringContext, Result,
3769 MemberOfUnknownSpecialization);
3770 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
3771 isa<CXXRecordDecl>(LookupCtx) &&
3772 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
3773 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
3774 // This is a dependent template. Handle it below.
3775 } else if (TNK == TNK_Non_template) {
3776 Diag(Name.getLocStart(),
3777 diag::err_template_kw_refers_to_non_template)
3778 << GetNameFromUnqualifiedId(Name).getName()
3779 << Name.getSourceRange()
3780 << TemplateKWLoc;
3781 return TNK_Non_template;
3782 } else {
3783 // We found something; return it.
3784 auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx);
3785 if (!AllowInjectedClassName && SS.isSet() && LookupRD &&
3786 Name.getKind() == UnqualifiedId::IK_Identifier && Name.Identifier &&
3787 LookupRD->getIdentifier() == Name.Identifier) {
3788 // C++14 [class.qual]p2:
3789 // In a lookup in which function names are not ignored and the
3790 // nested-name-specifier nominates a class C, if the name specified
3791 // [...] is the injected-class-name of C, [...] the name is instead
3792 // considered to name the constructor
3793 //
3794 // We don't get here if naming the constructor would be valid, so we
3795 // just reject immediately and recover by treating the
3796 // injected-class-name as naming the template.
3797 Diag(Name.getLocStart(),
3798 diag::ext_out_of_line_qualified_id_type_names_constructor)
3799 << Name.Identifier << 0 /*injected-class-name used as template name*/
3800 << 1 /*'template' keyword was used*/;
3801 }
3802 return TNK;
3803 }
3804 }
3805
3806 NestedNameSpecifier *Qualifier = SS.getScopeRep();
3807
3808 switch (Name.getKind()) {
3809 case UnqualifiedId::IK_Identifier:
3810 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3811 Name.Identifier));
3812 return TNK_Dependent_template_name;
3813
3814 case UnqualifiedId::IK_OperatorFunctionId:
3815 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3816 Name.OperatorFunctionId.Operator));
3817 return TNK_Function_template;
3818
3819 case UnqualifiedId::IK_LiteralOperatorId:
3820 llvm_unreachable("literal operator id cannot have a dependent scope")::llvm::llvm_unreachable_internal("literal operator id cannot have a dependent scope"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 3820)
;
3821
3822 default:
3823 break;
3824 }
3825
3826 Diag(Name.getLocStart(),
3827 diag::err_template_kw_refers_to_non_template)
3828 << GetNameFromUnqualifiedId(Name).getName()
3829 << Name.getSourceRange()
3830 << TemplateKWLoc;
3831 return TNK_Non_template;
3832}
3833
3834bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
3835 TemplateArgumentLoc &AL,
3836 SmallVectorImpl<TemplateArgument> &Converted) {
3837 const TemplateArgument &Arg = AL.getArgument();
3838 QualType ArgType;
3839 TypeSourceInfo *TSI = nullptr;
3840
3841 // Check template type parameter.
3842 switch(Arg.getKind()) {
3843 case TemplateArgument::Type:
3844 // C++ [temp.arg.type]p1:
3845 // A template-argument for a template-parameter which is a
3846 // type shall be a type-id.
3847 ArgType = Arg.getAsType();
3848 TSI = AL.getTypeSourceInfo();
3849 break;
3850 case TemplateArgument::Template: {
3851 // We have a template type parameter but the template argument
3852 // is a template without any arguments.
3853 SourceRange SR = AL.getSourceRange();
3854 TemplateName Name = Arg.getAsTemplate();
3855 Diag(SR.getBegin(), diag::err_template_missing_args)
3856 << (int)getTemplateNameKindForDiagnostics(Name) << Name << SR;
3857 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
3858 Diag(Decl->getLocation(), diag::note_template_decl_here);
3859
3860 return true;
3861 }
3862 case TemplateArgument::Expression: {
3863 // We have a template type parameter but the template argument is an
3864 // expression; see if maybe it is missing the "typename" keyword.
3865 CXXScopeSpec SS;
3866 DeclarationNameInfo NameInfo;
3867
3868 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
3869 SS.Adopt(ArgExpr->getQualifierLoc());
3870 NameInfo = ArgExpr->getNameInfo();
3871 } else if (DependentScopeDeclRefExpr *ArgExpr =
3872 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
3873 SS.Adopt(ArgExpr->getQualifierLoc());
3874 NameInfo = ArgExpr->getNameInfo();
3875 } else if (CXXDependentScopeMemberExpr *ArgExpr =
3876 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
3877 if (ArgExpr->isImplicitAccess()) {
3878 SS.Adopt(ArgExpr->getQualifierLoc());
3879 NameInfo = ArgExpr->getMemberNameInfo();
3880 }
3881 }
3882
3883 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
3884 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
3885 LookupParsedName(Result, CurScope, &SS);
3886
3887 if (Result.getAsSingle<TypeDecl>() ||
3888 Result.getResultKind() ==
3889 LookupResult::NotFoundInCurrentInstantiation) {
3890 // Suggest that the user add 'typename' before the NNS.
3891 SourceLocation Loc = AL.getSourceRange().getBegin();
3892 Diag(Loc, getLangOpts().MSVCCompat
3893 ? diag::ext_ms_template_type_arg_missing_typename
3894 : diag::err_template_arg_must_be_type_suggest)
3895 << FixItHint::CreateInsertion(Loc, "typename ");
3896 Diag(Param->getLocation(), diag::note_template_param_here);
3897
3898 // Recover by synthesizing a type using the location information that we
3899 // already have.
3900 ArgType =
3901 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
3902 TypeLocBuilder TLB;
3903 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
3904 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
3905 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3906 TL.setNameLoc(NameInfo.getLoc());
3907 TSI = TLB.getTypeSourceInfo(Context, ArgType);
3908
3909 // Overwrite our input TemplateArgumentLoc so that we can recover
3910 // properly.
3911 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
3912 TemplateArgumentLocInfo(TSI));
3913
3914 break;
3915 }
3916 }
3917 // fallthrough
3918 }
3919 default: {
3920 // We have a template type parameter but the template argument
3921 // is not a type.
3922 SourceRange SR = AL.getSourceRange();
3923 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3924 Diag(Param->getLocation(), diag::note_template_param_here);
3925
3926 return true;
3927 }
3928 }
3929
3930 if (CheckTemplateArgument(Param, TSI))
3931 return true;
3932
3933 // Add the converted template type argument.
3934 ArgType = Context.getCanonicalType(ArgType);
3935
3936 // Objective-C ARC:
3937 // If an explicitly-specified template argument type is a lifetime type
3938 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3939 if (getLangOpts().ObjCAutoRefCount &&
3940 ArgType->isObjCLifetimeType() &&
3941 !ArgType.getObjCLifetime()) {
3942 Qualifiers Qs;
3943 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3944 ArgType = Context.getQualifiedType(ArgType, Qs);
3945 }
3946
3947 Converted.push_back(TemplateArgument(ArgType));
3948 return false;
3949}
3950
3951/// \brief Substitute template arguments into the default template argument for
3952/// the given template type parameter.
3953///
3954/// \param SemaRef the semantic analysis object for which we are performing
3955/// the substitution.
3956///
3957/// \param Template the template that we are synthesizing template arguments
3958/// for.
3959///
3960/// \param TemplateLoc the location of the template name that started the
3961/// template-id we are checking.
3962///
3963/// \param RAngleLoc the location of the right angle bracket ('>') that
3964/// terminates the template-id.
3965///
3966/// \param Param the template template parameter whose default we are
3967/// substituting into.
3968///
3969/// \param Converted the list of template arguments provided for template
3970/// parameters that precede \p Param in the template parameter list.
3971/// \returns the substituted template argument, or NULL if an error occurred.
3972static TypeSourceInfo *
3973SubstDefaultTemplateArgument(Sema &SemaRef,
3974 TemplateDecl *Template,
3975 SourceLocation TemplateLoc,
3976 SourceLocation RAngleLoc,
3977 TemplateTypeParmDecl *Param,
3978 SmallVectorImpl<TemplateArgument> &Converted) {
3979 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3980
3981 // If the argument type is dependent, instantiate it now based
3982 // on the previously-computed template arguments.
3983 if (ArgType->getType()->isDependentType()) {
3984 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3985 Param, Template, Converted,
3986 SourceRange(TemplateLoc, RAngleLoc));
3987 if (Inst.isInvalid())
3988 return nullptr;
3989
3990 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
3991
3992 // Only substitute for the innermost template argument list.
3993 MultiLevelTemplateArgumentList TemplateArgLists;
3994 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3995 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3996 TemplateArgLists.addOuterTemplateArguments(None);
3997
3998 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3999 ArgType =
4000 SemaRef.SubstType(ArgType, TemplateArgLists,
4001 Param->getDefaultArgumentLoc(), Param->getDeclName());
4002 }
4003
4004 return ArgType;
4005}
4006
4007/// \brief Substitute template arguments into the default template argument for
4008/// the given non-type template parameter.
4009///
4010/// \param SemaRef the semantic analysis object for which we are performing
4011/// the substitution.
4012///
4013/// \param Template the template that we are synthesizing template arguments
4014/// for.
4015///
4016/// \param TemplateLoc the location of the template name that started the
4017/// template-id we are checking.
4018///
4019/// \param RAngleLoc the location of the right angle bracket ('>') that
4020/// terminates the template-id.
4021///
4022/// \param Param the non-type template parameter whose default we are
4023/// substituting into.
4024///
4025/// \param Converted the list of template arguments provided for template
4026/// parameters that precede \p Param in the template parameter list.
4027///
4028/// \returns the substituted template argument, or NULL if an error occurred.
4029static ExprResult
4030SubstDefaultTemplateArgument(Sema &SemaRef,
4031 TemplateDecl *Template,
4032 SourceLocation TemplateLoc,
4033 SourceLocation RAngleLoc,
4034 NonTypeTemplateParmDecl *Param,
4035 SmallVectorImpl<TemplateArgument> &Converted) {
4036 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4037 Param, Template, Converted,
4038 SourceRange(TemplateLoc, RAngleLoc));
4039 if (Inst.isInvalid())
4040 return ExprError();
4041
4042 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4043
4044 // Only substitute for the innermost template argument list.
4045 MultiLevelTemplateArgumentList TemplateArgLists;
4046 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4047 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4048 TemplateArgLists.addOuterTemplateArguments(None);
4049
4050 EnterExpressionEvaluationContext ConstantEvaluated(SemaRef,
4051 Sema::ConstantEvaluated);
4052 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
4053}
4054
4055/// \brief Substitute template arguments into the default template argument for
4056/// the given template template parameter.
4057///
4058/// \param SemaRef the semantic analysis object for which we are performing
4059/// the substitution.
4060///
4061/// \param Template the template that we are synthesizing template arguments
4062/// for.
4063///
4064/// \param TemplateLoc the location of the template name that started the
4065/// template-id we are checking.
4066///
4067/// \param RAngleLoc the location of the right angle bracket ('>') that
4068/// terminates the template-id.
4069///
4070/// \param Param the template template parameter whose default we are
4071/// substituting into.
4072///
4073/// \param Converted the list of template arguments provided for template
4074/// parameters that precede \p Param in the template parameter list.
4075///
4076/// \param QualifierLoc Will be set to the nested-name-specifier (with
4077/// source-location information) that precedes the template name.
4078///
4079/// \returns the substituted template argument, or NULL if an error occurred.
4080static TemplateName
4081SubstDefaultTemplateArgument(Sema &SemaRef,
4082 TemplateDecl *Template,
4083 SourceLocation TemplateLoc,
4084 SourceLocation RAngleLoc,
4085 TemplateTemplateParmDecl *Param,
4086 SmallVectorImpl<TemplateArgument> &Converted,
4087 NestedNameSpecifierLoc &QualifierLoc) {
4088 Sema::InstantiatingTemplate Inst(
4089 SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
4090 SourceRange(TemplateLoc, RAngleLoc));
4091 if (Inst.isInvalid())
4092 return TemplateName();
4093
4094 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4095
4096 // Only substitute for the innermost template argument list.
4097 MultiLevelTemplateArgumentList TemplateArgLists;
4098 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4099 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4100 TemplateArgLists.addOuterTemplateArguments(None);
4101
4102 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4103 // Substitute into the nested-name-specifier first,
4104 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
4105 if (QualifierLoc) {
4106 QualifierLoc =
4107 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
4108 if (!QualifierLoc)
4109 return TemplateName();
4110 }
4111
4112 return SemaRef.SubstTemplateName(
4113 QualifierLoc,
4114 Param->getDefaultArgument().getArgument().getAsTemplate(),
4115 Param->getDefaultArgument().getTemplateNameLoc(),
4116 TemplateArgLists);
4117}
4118
4119/// \brief If the given template parameter has a default template
4120/// argument, substitute into that default template argument and
4121/// return the corresponding template argument.
4122TemplateArgumentLoc
4123Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
4124 SourceLocation TemplateLoc,
4125 SourceLocation RAngleLoc,
4126 Decl *Param,
4127 SmallVectorImpl<TemplateArgument>
4128 &Converted,
4129 bool &HasDefaultArg) {
4130 HasDefaultArg = false;
4131
4132 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
4133 if (!hasVisibleDefaultArgument(TypeParm))
4134 return TemplateArgumentLoc();
4135
4136 HasDefaultArg = true;
4137 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
4138 TemplateLoc,
4139 RAngleLoc,
4140 TypeParm,
4141 Converted);
4142 if (DI)
4143 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
4144
4145 return TemplateArgumentLoc();
4146 }
4147
4148 if (NonTypeTemplateParmDecl *NonTypeParm
4149 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4150 if (!hasVisibleDefaultArgument(NonTypeParm))
4151 return TemplateArgumentLoc();
4152
4153 HasDefaultArg = true;
4154 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
4155 TemplateLoc,
4156 RAngleLoc,
4157 NonTypeParm,
4158 Converted);
4159 if (Arg.isInvalid())
4160 return TemplateArgumentLoc();
4161
4162 Expr *ArgE = Arg.getAs<Expr>();
4163 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
4164 }
4165
4166 TemplateTemplateParmDecl *TempTempParm
4167 = cast<TemplateTemplateParmDecl>(Param);
4168 if (!hasVisibleDefaultArgument(TempTempParm))
4169 return TemplateArgumentLoc();
4170
4171 HasDefaultArg = true;
4172 NestedNameSpecifierLoc QualifierLoc;
4173 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
4174 TemplateLoc,
4175 RAngleLoc,
4176 TempTempParm,
4177 Converted,
4178 QualifierLoc);
4179 if (TName.isNull())
4180 return TemplateArgumentLoc();
4181
4182 return TemplateArgumentLoc(TemplateArgument(TName),
4183 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
4184 TempTempParm->getDefaultArgument().getTemplateNameLoc());
4185}
4186
4187/// Convert a template-argument that we parsed as a type into a template, if
4188/// possible. C++ permits injected-class-names to perform dual service as
4189/// template template arguments and as template type arguments.
4190static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) {
4191 // Extract and step over any surrounding nested-name-specifier.
4192 NestedNameSpecifierLoc QualLoc;
4193 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
4194 if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
4195 return TemplateArgumentLoc();
4196
4197 QualLoc = ETLoc.getQualifierLoc();
4198 TLoc = ETLoc.getNamedTypeLoc();
4199 }
4200
4201 // If this type was written as an injected-class-name, it can be used as a
4202 // template template argument.
4203 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
4204 return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(),
4205 QualLoc, InjLoc.getNameLoc());
4206
4207 // If this type was written as an injected-class-name, it may have been
4208 // converted to a RecordType during instantiation. If the RecordType is
4209 // *not* wrapped in a TemplateSpecializationType and denotes a class
4210 // template specialization, it must have come from an injected-class-name.
4211 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
4212 if (auto *CTSD =
4213 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
4214 return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()),
4215 QualLoc, RecLoc.getNameLoc());
4216
4217 return TemplateArgumentLoc();
4218}
4219
4220/// \brief Check that the given template argument corresponds to the given
4221/// template parameter.
4222///
4223/// \param Param The template parameter against which the argument will be
4224/// checked.
4225///
4226/// \param Arg The template argument, which may be updated due to conversions.
4227///
4228/// \param Template The template in which the template argument resides.
4229///
4230/// \param TemplateLoc The location of the template name for the template
4231/// whose argument list we're matching.
4232///
4233/// \param RAngleLoc The location of the right angle bracket ('>') that closes
4234/// the template argument list.
4235///
4236/// \param ArgumentPackIndex The index into the argument pack where this
4237/// argument will be placed. Only valid if the parameter is a parameter pack.
4238///
4239/// \param Converted The checked, converted argument will be added to the
4240/// end of this small vector.
4241///
4242/// \param CTAK Describes how we arrived at this particular template argument:
4243/// explicitly written, deduced, etc.
4244///
4245/// \returns true on error, false otherwise.
4246bool Sema::CheckTemplateArgument(NamedDecl *Param,
4247 TemplateArgumentLoc &Arg,
4248 NamedDecl *Template,
4249 SourceLocation TemplateLoc,
4250 SourceLocation RAngleLoc,
4251 unsigned ArgumentPackIndex,
4252 SmallVectorImpl<TemplateArgument> &Converted,
4253 CheckTemplateArgumentKind CTAK) {
4254 // Check template type parameters.
4255 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
4256 return CheckTemplateTypeArgument(TTP, Arg, Converted);
4257
4258 // Check non-type template parameters.
4259 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4260 // Do substitution on the type of the non-type template parameter
4261 // with the template arguments we've seen thus far. But if the
4262 // template has a dependent context then we cannot substitute yet.
4263 QualType NTTPType = NTTP->getType();
4264 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
4265 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
4266
4267 if (NTTPType->isDependentType() &&
4268 !isa<TemplateTemplateParmDecl>(Template) &&
4269 !Template->getDeclContext()->isDependentContext()) {
4270 // Do substitution on the type of the non-type template parameter.
4271 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
4272 NTTP, Converted,
4273 SourceRange(TemplateLoc, RAngleLoc));
4274 if (Inst.isInvalid())
4275 return true;
4276
4277 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
4278 Converted);
4279 NTTPType = SubstType(NTTPType,
4280 MultiLevelTemplateArgumentList(TemplateArgs),
4281 NTTP->getLocation(),
4282 NTTP->getDeclName());
4283 // If that worked, check the non-type template parameter type
4284 // for validity.
4285 if (!NTTPType.isNull())
4286 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
4287 NTTP->getLocation());
4288 if (NTTPType.isNull())
4289 return true;
4290 }
4291
4292 switch (Arg.getArgument().getKind()) {
4293 case TemplateArgument::Null:
4294 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4294)
;
4295
4296 case TemplateArgument::Expression: {
4297 TemplateArgument Result;
4298 ExprResult Res =
4299 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
4300 Result, CTAK);
4301 if (Res.isInvalid())
4302 return true;
4303
4304 // If the resulting expression is new, then use it in place of the
4305 // old expression in the template argument.
4306 if (Res.get() != Arg.getArgument().getAsExpr()) {
4307 TemplateArgument TA(Res.get());
4308 Arg = TemplateArgumentLoc(TA, Res.get());
4309 }
4310
4311 Converted.push_back(Result);
4312 break;
4313 }
4314
4315 case TemplateArgument::Declaration:
4316 case TemplateArgument::Integral:
4317 case TemplateArgument::NullPtr:
4318 // We've already checked this template argument, so just copy
4319 // it to the list of converted arguments.
4320 Converted.push_back(Arg.getArgument());
4321 break;
4322
4323 case TemplateArgument::Template:
4324 case TemplateArgument::TemplateExpansion:
4325 // We were given a template template argument. It may not be ill-formed;
4326 // see below.
4327 if (DependentTemplateName *DTN
4328 = Arg.getArgument().getAsTemplateOrTemplatePattern()
4329 .getAsDependentTemplateName()) {
4330 // We have a template argument such as \c T::template X, which we
4331 // parsed as a template template argument. However, since we now
4332 // know that we need a non-type template argument, convert this
4333 // template name into an expression.
4334
4335 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
4336 Arg.getTemplateNameLoc());
4337
4338 CXXScopeSpec SS;
4339 SS.Adopt(Arg.getTemplateQualifierLoc());
4340 // FIXME: the template-template arg was a DependentTemplateName,
4341 // so it was provided with a template keyword. However, its source
4342 // location is not stored in the template argument structure.
4343 SourceLocation TemplateKWLoc;
4344 ExprResult E = DependentScopeDeclRefExpr::Create(
4345 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
4346 nullptr);
4347
4348 // If we parsed the template argument as a pack expansion, create a
4349 // pack expansion expression.
4350 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
4351 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
4352 if (E.isInvalid())
4353 return true;
4354 }
4355
4356 TemplateArgument Result;
4357 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
4358 if (E.isInvalid())
4359 return true;
4360
4361 Converted.push_back(Result);
4362 break;
4363 }
4364
4365 // We have a template argument that actually does refer to a class
4366 // template, alias template, or template template parameter, and
4367 // therefore cannot be a non-type template argument.
4368 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
4369 << Arg.getSourceRange();
4370
4371 Diag(Param->getLocation(), diag::note_template_param_here);
4372 return true;
4373
4374 case TemplateArgument::Type: {
4375 // We have a non-type template parameter but the template
4376 // argument is a type.
4377
4378 // C++ [temp.arg]p2:
4379 // In a template-argument, an ambiguity between a type-id and
4380 // an expression is resolved to a type-id, regardless of the
4381 // form of the corresponding template-parameter.
4382 //
4383 // We warn specifically about this case, since it can be rather
4384 // confusing for users.
4385 QualType T = Arg.getArgument().getAsType();
4386 SourceRange SR = Arg.getSourceRange();
4387 if (T->isFunctionType())
4388 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
4389 else
4390 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
4391 Diag(Param->getLocation(), diag::note_template_param_here);
4392 return true;
4393 }
4394
4395 case TemplateArgument::Pack:
4396 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4396)
;
4397 }
4398
4399 return false;
4400 }
4401
4402
4403 // Check template template parameters.
4404 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
4405
4406 // Substitute into the template parameter list of the template
4407 // template parameter, since previously-supplied template arguments
4408 // may appear within the template template parameter.
4409 {
4410 // Set up a template instantiation context.
4411 LocalInstantiationScope Scope(*this);
4412 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
4413 TempParm, Converted,
4414 SourceRange(TemplateLoc, RAngleLoc));
4415 if (Inst.isInvalid())
4416 return true;
4417
4418 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4419 TempParm = cast_or_null<TemplateTemplateParmDecl>(
4420 SubstDecl(TempParm, CurContext,
4421 MultiLevelTemplateArgumentList(TemplateArgs)));
4422 if (!TempParm)
4423 return true;
4424 }
4425
4426 // C++1z [temp.local]p1: (DR1004)
4427 // When [the injected-class-name] is used [...] as a template-argument for
4428 // a template template-parameter [...] it refers to the class template
4429 // itself.
4430 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
4431 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
4432 Arg.getTypeSourceInfo()->getTypeLoc());
4433 if (!ConvertedArg.getArgument().isNull())
4434 Arg = ConvertedArg;
4435 }
4436
4437 switch (Arg.getArgument().getKind()) {
4438 case TemplateArgument::Null:
4439 llvm_unreachable("Should never see a NULL template argument here")::llvm::llvm_unreachable_internal("Should never see a NULL template argument here"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4439)
;
4440
4441 case TemplateArgument::Template:
4442 case TemplateArgument::TemplateExpansion:
4443 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
4444 return true;
4445
4446 Converted.push_back(Arg.getArgument());
4447 break;
4448
4449 case TemplateArgument::Expression:
4450 case TemplateArgument::Type:
4451 // We have a template template parameter but the template
4452 // argument does not refer to a template.
4453 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
4454 << getLangOpts().CPlusPlus11;
4455 return true;
4456
4457 case TemplateArgument::Declaration:
4458 llvm_unreachable("Declaration argument with template template parameter")::llvm::llvm_unreachable_internal("Declaration argument with template template parameter"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4458)
;
4459 case TemplateArgument::Integral:
4460 llvm_unreachable("Integral argument with template template parameter")::llvm::llvm_unreachable_internal("Integral argument with template template parameter"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4460)
;
4461 case TemplateArgument::NullPtr:
4462 llvm_unreachable("Null pointer argument with template template parameter")::llvm::llvm_unreachable_internal("Null pointer argument with template template parameter"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4462)
;
4463
4464 case TemplateArgument::Pack:
4465 llvm_unreachable("Caller must expand template argument packs")::llvm::llvm_unreachable_internal("Caller must expand template argument packs"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4465)
;
4466 }
4467
4468 return false;
4469}
4470
4471/// \brief Diagnose an arity mismatch in the
4472static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
4473 SourceLocation TemplateLoc,
4474 TemplateArgumentListInfo &TemplateArgs) {
4475 TemplateParameterList *Params = Template->getTemplateParameters();
4476 unsigned NumParams = Params->size();
4477 unsigned NumArgs = TemplateArgs.size();
4478
4479 SourceRange Range;
4480 if (NumArgs > NumParams)
4481 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
4482 TemplateArgs.getRAngleLoc());
4483 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
4484 << (NumArgs > NumParams)
4485 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(Template))
4486 << Template << Range;
4487 S.Diag(Template->getLocation(), diag::note_template_decl_here)
4488 << Params->getSourceRange();
4489 return true;
4490}
4491
4492/// \brief Check whether the template parameter is a pack expansion, and if so,
4493/// determine the number of parameters produced by that expansion. For instance:
4494///
4495/// \code
4496/// template<typename ...Ts> struct A {
4497/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
4498/// };
4499/// \endcode
4500///
4501/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
4502/// is not a pack expansion, so returns an empty Optional.
4503static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
4504 if (NonTypeTemplateParmDecl *NTTP
4505 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4506 if (NTTP->isExpandedParameterPack())
4507 return NTTP->getNumExpansionTypes();
4508 }
4509
4510 if (TemplateTemplateParmDecl *TTP
4511 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
4512 if (TTP->isExpandedParameterPack())
4513 return TTP->getNumExpansionTemplateParameters();
4514 }
4515
4516 return None;
4517}
4518
4519/// Diagnose a missing template argument.
4520template<typename TemplateParmDecl>
4521static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
4522 TemplateDecl *TD,
4523 const TemplateParmDecl *D,
4524 TemplateArgumentListInfo &Args) {
4525 // Dig out the most recent declaration of the template parameter; there may be
4526 // declarations of the template that are more recent than TD.
4527 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
4528 ->getTemplateParameters()
4529 ->getParam(D->getIndex()));
4530
4531 // If there's a default argument that's not visible, diagnose that we're
4532 // missing a module import.
4533 llvm::SmallVector<Module*, 8> Modules;
4534 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
4535 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
4536 D->getDefaultArgumentLoc(), Modules,
4537 Sema::MissingImportKind::DefaultArgument,
4538 /*Recover*/true);
4539 return true;
4540 }
4541
4542 // FIXME: If there's a more recent default argument that *is* visible,
4543 // diagnose that it was declared too late.
4544
4545 return diagnoseArityMismatch(S, TD, Loc, Args);
4546}
4547
4548/// \brief Check that the given template argument list is well-formed
4549/// for specializing the given template.
4550bool Sema::CheckTemplateArgumentList(
4551 TemplateDecl *Template, SourceLocation TemplateLoc,
4552 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
4553 SmallVectorImpl<TemplateArgument> &Converted,
4554 bool UpdateArgsWithConversions) {
4555 // Make a copy of the template arguments for processing. Only make the
4556 // changes at the end when successful in matching the arguments to the
4557 // template.
4558 TemplateArgumentListInfo NewArgs = TemplateArgs;
4559
4560 TemplateParameterList *Params = Template->getTemplateParameters();
4561
4562 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
4563
4564 // C++ [temp.arg]p1:
4565 // [...] The type and form of each template-argument specified in
4566 // a template-id shall match the type and form specified for the
4567 // corresponding parameter declared by the template in its
4568 // template-parameter-list.
4569 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
4570 SmallVector<TemplateArgument, 2> ArgumentPack;
4571 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
4572 LocalInstantiationScope InstScope(*this, true);
4573 for (TemplateParameterList::iterator Param = Params->begin(),
4574 ParamEnd = Params->end();
4575 Param != ParamEnd; /* increment in loop */) {
4576 // If we have an expanded parameter pack, make sure we don't have too
4577 // many arguments.
4578 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
4579 if (*Expansions == ArgumentPack.size()) {
4580 // We're done with this parameter pack. Pack up its arguments and add
4581 // them to the list.
4582 Converted.push_back(
4583 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4584 ArgumentPack.clear();
4585
4586 // This argument is assigned to the next parameter.
4587 ++Param;
4588 continue;
4589 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
4590 // Not enough arguments for this parameter pack.
4591 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
4592 << false
4593 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
4594 << Template;
4595 Diag(Template->getLocation(), diag::note_template_decl_here)
4596 << Params->getSourceRange();
4597 return true;
4598 }
4599 }
4600
4601 if (ArgIdx < NumArgs) {
4602 // Check the template argument we were given.
4603 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
4604 TemplateLoc, RAngleLoc,
4605 ArgumentPack.size(), Converted))
4606 return true;
4607
4608 bool PackExpansionIntoNonPack =
4609 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
4610 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
4611 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
4612 // Core issue 1430: we have a pack expansion as an argument to an
4613 // alias template, and it's not part of a parameter pack. This
4614 // can't be canonicalized, so reject it now.
4615 Diag(NewArgs[ArgIdx].getLocation(),
4616 diag::err_alias_template_expansion_into_fixed_list)
4617 << NewArgs[ArgIdx].getSourceRange();
4618 Diag((*Param)->getLocation(), diag::note_template_param_here);
4619 return true;
4620 }
4621
4622 // We're now done with this argument.
4623 ++ArgIdx;
4624
4625 if ((*Param)->isTemplateParameterPack()) {
4626 // The template parameter was a template parameter pack, so take the
4627 // deduced argument and place it on the argument pack. Note that we
4628 // stay on the same template parameter so that we can deduce more
4629 // arguments.
4630 ArgumentPack.push_back(Converted.pop_back_val());
4631 } else {
4632 // Move to the next template parameter.
4633 ++Param;
4634 }
4635
4636 // If we just saw a pack expansion into a non-pack, then directly convert
4637 // the remaining arguments, because we don't know what parameters they'll
4638 // match up with.
4639 if (PackExpansionIntoNonPack) {
4640 if (!ArgumentPack.empty()) {
4641 // If we were part way through filling in an expanded parameter pack,
4642 // fall back to just producing individual arguments.
4643 Converted.insert(Converted.end(),
4644 ArgumentPack.begin(), ArgumentPack.end());
4645 ArgumentPack.clear();
4646 }
4647
4648 while (ArgIdx < NumArgs) {
4649 Converted.push_back(NewArgs[ArgIdx].getArgument());
4650 ++ArgIdx;
4651 }
4652
4653 return false;
4654 }
4655
4656 continue;
4657 }
4658
4659 // If we're checking a partial template argument list, we're done.
4660 if (PartialTemplateArgs) {
4661 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
4662 Converted.push_back(
4663 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4664
4665 return false;
4666 }
4667
4668 // If we have a template parameter pack with no more corresponding
4669 // arguments, just break out now and we'll fill in the argument pack below.
4670 if ((*Param)->isTemplateParameterPack()) {
4671 assert(!getExpandedPackSize(*Param) &&((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4672, __PRETTY_FUNCTION__))
4672 "Should have dealt with this already")((!getExpandedPackSize(*Param) && "Should have dealt with this already"
) ? static_cast<void> (0) : __assert_fail ("!getExpandedPackSize(*Param) && \"Should have dealt with this already\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 4672, __PRETTY_FUNCTION__))
;
4673
4674 // A non-expanded parameter pack before the end of the parameter list
4675 // only occurs for an ill-formed template parameter list, unless we've
4676 // got a partial argument list for a function template, so just bail out.
4677 if (Param + 1 != ParamEnd)
4678 return true;
4679
4680 Converted.push_back(
4681 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
4682 ArgumentPack.clear();
4683
4684 ++Param;
4685 continue;
4686 }
4687
4688 // Check whether we have a default argument.
4689 TemplateArgumentLoc Arg;
4690
4691 // Retrieve the default template argument from the template
4692 // parameter. For each kind of template parameter, we substitute the
4693 // template arguments provided thus far and any "outer" template arguments
4694 // (when the template parameter was part of a nested template) into
4695 // the default argument.
4696 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
4697 if (!hasVisibleDefaultArgument(TTP))
4698 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
4699 NewArgs);
4700
4701 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
4702 Template,
4703 TemplateLoc,
4704 RAngleLoc,
4705 TTP,
4706 Converted);
4707 if (!ArgType)
4708 return true;
4709
4710 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
4711 ArgType);
4712 } else if (NonTypeTemplateParmDecl *NTTP
4713 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
4714 if (!hasVisibleDefaultArgument(NTTP))
4715 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
4716 NewArgs);
4717
4718 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
4719 TemplateLoc,
4720 RAngleLoc,
4721 NTTP,
4722 Converted);
4723 if (E.isInvalid())
4724 return true;
4725
4726 Expr *Ex = E.getAs<Expr>();
4727 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
4728 } else {
4729 TemplateTemplateParmDecl *TempParm
4730 = cast<TemplateTemplateParmDecl>(*Param);
4731
4732 if (!hasVisibleDefaultArgument(TempParm))
4733 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
4734 NewArgs);
4735
4736 NestedNameSpecifierLoc QualifierLoc;
4737 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
4738 TemplateLoc,
4739 RAngleLoc,
4740 TempParm,
4741 Converted,
4742 QualifierLoc);
4743 if (Name.isNull())
4744 return true;
4745
4746 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
4747 TempParm->getDefaultArgument().getTemplateNameLoc());
4748 }
4749
4750 // Introduce an instantiation record that describes where we are using
4751 // the default template argument. We're not actually instantiating a
4752 // template here, we just create this object to put a note into the
4753 // context stack.
4754 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
4755 SourceRange(TemplateLoc, RAngleLoc));
4756 if (Inst.isInvalid())
4757 return true;
4758
4759 // Check the default template argument.
4760 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
4761 RAngleLoc, 0, Converted))
4762 return true;
4763
4764 // Core issue 150 (assumed resolution): if this is a template template
4765 // parameter, keep track of the default template arguments from the
4766 // template definition.
4767 if (isTemplateTemplateParameter)
4768 NewArgs.addArgument(Arg);
4769
4770 // Move to the next template parameter and argument.
4771 ++Param;
4772 ++ArgIdx;
4773 }
4774
4775 // If we're performing a partial argument substitution, allow any trailing
4776 // pack expansions; they might be empty. This can happen even if
4777 // PartialTemplateArgs is false (the list of arguments is complete but
4778 // still dependent).
4779 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
4780 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
4781 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
4782 Converted.push_back(NewArgs[ArgIdx++].getArgument());
4783 }
4784
4785 // If we have any leftover arguments, then there were too many arguments.
4786 // Complain and fail.
4787 if (ArgIdx < NumArgs)
4788 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
4789
4790 // No problems found with the new argument list, propagate changes back
4791 // to caller.
4792 if (UpdateArgsWithConversions)
4793 TemplateArgs = std::move(NewArgs);
4794
4795 return false;
4796}
4797
4798namespace {
4799 class UnnamedLocalNoLinkageFinder
4800 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
4801 {
4802 Sema &S;
4803 SourceRange SR;
4804
4805 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
4806
4807 public:
4808 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
4809
4810 bool Visit(QualType T) {
4811 return T.isNull() ? false : inherited::Visit(T.getTypePtr());
4812 }
4813
4814#define TYPE(Class, Parent) \
4815 bool Visit##Class##Type(const Class##Type *);
4816#define ABSTRACT_TYPE(Class, Parent) \
4817 bool Visit##Class##Type(const Class##Type *) { return false; }
4818#define NON_CANONICAL_TYPE(Class, Parent) \
4819 bool Visit##Class##Type(const Class##Type *) { return false; }
4820#include "clang/AST/TypeNodes.def"
4821
4822 bool VisitTagDecl(const TagDecl *Tag);
4823 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
4824 };
4825} // end anonymous namespace
4826
4827bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
4828 return false;
4829}
4830
4831bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
4832 return Visit(T->getElementType());
4833}
4834
4835bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
4836 return Visit(T->getPointeeType());
4837}
4838
4839bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
4840 const BlockPointerType* T) {
4841 return Visit(T->getPointeeType());
4842}
4843
4844bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
4845 const LValueReferenceType* T) {
4846 return Visit(T->getPointeeType());
4847}
4848
4849bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
4850 const RValueReferenceType* T) {
4851 return Visit(T->getPointeeType());
4852}
4853
4854bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
4855 const MemberPointerType* T) {
4856 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
4857}
4858
4859bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
4860 const ConstantArrayType* T) {
4861 return Visit(T->getElementType());
4862}
4863
4864bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
4865 const IncompleteArrayType* T) {
4866 return Visit(T->getElementType());
4867}
4868
4869bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
4870 const VariableArrayType* T) {
4871 return Visit(T->getElementType());
4872}
4873
4874bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
4875 const DependentSizedArrayType* T) {
4876 return Visit(T->getElementType());
4877}
4878
4879bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
4880 const DependentSizedExtVectorType* T) {
4881 return Visit(T->getElementType());
4882}
4883
4884bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
4885 return Visit(T->getElementType());
4886}
4887
4888bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
4889 return Visit(T->getElementType());
4890}
4891
4892bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
4893 const FunctionProtoType* T) {
4894 for (const auto &A : T->param_types()) {
4895 if (Visit(A))
4896 return true;
4897 }
4898
4899 return Visit(T->getReturnType());
4900}
4901
4902bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
4903 const FunctionNoProtoType* T) {
4904 return Visit(T->getReturnType());
4905}
4906
4907bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
4908 const UnresolvedUsingType*) {
4909 return false;
4910}
4911
4912bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
4913 return false;
4914}
4915
4916bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
4917 return Visit(T->getUnderlyingType());
4918}
4919
4920bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
4921 return false;
4922}
4923
4924bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
4925 const UnaryTransformType*) {
4926 return false;
4927}
4928
4929bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
4930 return Visit(T->getDeducedType());
4931}
4932
4933bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
4934 const DeducedTemplateSpecializationType *T) {
4935 return Visit(T->getDeducedType());
4936}
4937
4938bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
4939 return VisitTagDecl(T->getDecl());
4940}
4941
4942bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
4943 return VisitTagDecl(T->getDecl());
4944}
4945
4946bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
4947 const TemplateTypeParmType*) {
4948 return false;
4949}
4950
4951bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
4952 const SubstTemplateTypeParmPackType *) {
4953 return false;
4954}
4955
4956bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
4957 const TemplateSpecializationType*) {
4958 return false;
4959}
4960
4961bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
4962 const InjectedClassNameType* T) {
4963 return VisitTagDecl(T->getDecl());
4964}
4965
4966bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
4967 const DependentNameType* T) {
4968 return VisitNestedNameSpecifier(T->getQualifier());
4969}
4970
4971bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
4972 const DependentTemplateSpecializationType* T) {
4973 return VisitNestedNameSpecifier(T->getQualifier());
4974}
4975
4976bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
4977 const PackExpansionType* T) {
4978 return Visit(T->getPattern());
4979}
4980
4981bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
4982 return false;
4983}
4984
4985bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
4986 const ObjCInterfaceType *) {
4987 return false;
4988}
4989
4990bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
4991 const ObjCObjectPointerType *) {
4992 return false;
4993}
4994
4995bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
4996 return Visit(T->getValueType());
4997}
4998
4999bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
5000 return false;
5001}
5002
5003bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
5004 if (Tag->getDeclContext()->isFunctionOrMethod()) {
5005 S.Diag(SR.getBegin(),
5006 S.getLangOpts().CPlusPlus11 ?
5007 diag::warn_cxx98_compat_template_arg_local_type :
5008 diag::ext_template_arg_local_type)
5009 << S.Context.getTypeDeclType(Tag) << SR;
5010 return true;
5011 }
5012
5013 if (!Tag->hasNameForLinkage()) {
5014 S.Diag(SR.getBegin(),
5015 S.getLangOpts().CPlusPlus11 ?
5016 diag::warn_cxx98_compat_template_arg_unnamed_type :
5017 diag::ext_template_arg_unnamed_type) << SR;
5018 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
5019 return true;
5020 }
5021
5022 return false;
5023}
5024
5025bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
5026 NestedNameSpecifier *NNS) {
5027 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
5028 return true;
5029
5030 switch (NNS->getKind()) {
5031 case NestedNameSpecifier::Identifier:
5032 case NestedNameSpecifier::Namespace:
5033 case NestedNameSpecifier::NamespaceAlias:
5034 case NestedNameSpecifier::Global:
5035 case NestedNameSpecifier::Super:
5036 return false;
5037
5038 case NestedNameSpecifier::TypeSpec:
5039 case NestedNameSpecifier::TypeSpecWithTemplate:
5040 return Visit(QualType(NNS->getAsType(), 0));
5041 }
5042 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")::llvm::llvm_unreachable_internal("Invalid NestedNameSpecifier::Kind!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5042)
;
5043}
5044
5045/// \brief Check a template argument against its corresponding
5046/// template type parameter.
5047///
5048/// This routine implements the semantics of C++ [temp.arg.type]. It
5049/// returns true if an error occurred, and false otherwise.
5050bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
5051 TypeSourceInfo *ArgInfo) {
5052 assert(ArgInfo && "invalid TypeSourceInfo")((ArgInfo && "invalid TypeSourceInfo") ? static_cast<
void> (0) : __assert_fail ("ArgInfo && \"invalid TypeSourceInfo\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5052, __PRETTY_FUNCTION__))
;
5053 QualType Arg = ArgInfo->getType();
5054 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
5055
5056 if (Arg->isVariablyModifiedType()) {
5057 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
5058 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
5059 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
5060 }
5061
5062 // C++03 [temp.arg.type]p2:
5063 // A local type, a type with no linkage, an unnamed type or a type
5064 // compounded from any of these types shall not be used as a
5065 // template-argument for a template type-parameter.
5066 //
5067 // C++11 allows these, and even in C++03 we allow them as an extension with
5068 // a warning.
5069 if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
5070 UnnamedLocalNoLinkageFinder Finder(*this, SR);
5071 (void)Finder.Visit(Context.getCanonicalType(Arg));
5072 }
5073
5074 return false;
5075}
5076
5077enum NullPointerValueKind {
5078 NPV_NotNullPointer,
5079 NPV_NullPointer,
5080 NPV_Error
5081};
5082
5083/// \brief Determine whether the given template argument is a null pointer
5084/// value of the appropriate type.
5085static NullPointerValueKind
5086isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
5087 QualType ParamType, Expr *Arg) {
5088 if (Arg->isValueDependent() || Arg->isTypeDependent())
5089 return NPV_NotNullPointer;
5090
5091 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
5092 llvm_unreachable(::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5093)
5093 "Incomplete parameter type in isNullPointerValueTemplateArgument!")::llvm::llvm_unreachable_internal("Incomplete parameter type in isNullPointerValueTemplateArgument!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5093)
;
5094
5095 if (!S.getLangOpts().CPlusPlus11)
5096 return NPV_NotNullPointer;
5097
5098 // Determine whether we have a constant expression.
5099 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
5100 if (ArgRV.isInvalid())
5101 return NPV_Error;
5102 Arg = ArgRV.get();
5103
5104 Expr::EvalResult EvalResult;
5105 SmallVector<PartialDiagnosticAt, 8> Notes;
5106 EvalResult.Diag = &Notes;
5107 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
5108 EvalResult.HasSideEffects) {
5109 SourceLocation DiagLoc = Arg->getExprLoc();
5110
5111 // If our only note is the usual "invalid subexpression" note, just point
5112 // the caret at its location rather than producing an essentially
5113 // redundant note.
5114 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
5115 diag::note_invalid_subexpr_in_const_expr) {
5116 DiagLoc = Notes[0].first;
5117 Notes.clear();
5118 }
5119
5120 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
5121 << Arg->getType() << Arg->getSourceRange();
5122 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
5123 S.Diag(Notes[I].first, Notes[I].second);
5124
5125 S.Diag(Param->getLocation(), diag::note_template_param_here);
5126 return NPV_Error;
5127 }
5128
5129 // C++11 [temp.arg.nontype]p1:
5130 // - an address constant expression of type std::nullptr_t
5131 if (Arg->getType()->isNullPtrType())
5132 return NPV_NullPointer;
5133
5134 // - a constant expression that evaluates to a null pointer value (4.10); or
5135 // - a constant expression that evaluates to a null member pointer value
5136 // (4.11); or
5137 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
5138 (EvalResult.Val.isMemberPointer() &&
5139 !EvalResult.Val.getMemberPointerDecl())) {
5140 // If our expression has an appropriate type, we've succeeded.
5141 bool ObjCLifetimeConversion;
5142 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
5143 S.IsQualificationConversion(Arg->getType(), ParamType, false,
5144 ObjCLifetimeConversion))
5145 return NPV_NullPointer;
5146
5147 // The types didn't match, but we know we got a null pointer; complain,
5148 // then recover as if the types were correct.
5149 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
5150 << Arg->getType() << ParamType << Arg->getSourceRange();
5151 S.Diag(Param->getLocation(), diag::note_template_param_here);
5152 return NPV_NullPointer;
5153 }
5154
5155 // If we don't have a null pointer value, but we do have a NULL pointer
5156 // constant, suggest a cast to the appropriate type.
5157 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
5158 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
5159 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
5160 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
5161 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
5162 ")");
5163 S.Diag(Param->getLocation(), diag::note_template_param_here);
5164 return NPV_NullPointer;
5165 }
5166
5167 // FIXME: If we ever want to support general, address-constant expressions
5168 // as non-type template arguments, we should return the ExprResult here to
5169 // be interpreted by the caller.
5170 return NPV_NotNullPointer;
5171}
5172
5173/// \brief Checks whether the given template argument is compatible with its
5174/// template parameter.
5175static bool CheckTemplateArgumentIsCompatibleWithParameter(
5176 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
5177 Expr *Arg, QualType ArgType) {
5178 bool ObjCLifetimeConversion;
5179 if (ParamType->isPointerType() &&
5180 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
5181 S.IsQualificationConversion(ArgType, ParamType, false,
5182 ObjCLifetimeConversion)) {
5183 // For pointer-to-object types, qualification conversions are
5184 // permitted.
5185 } else {
5186 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
5187 if (!ParamRef->getPointeeType()->isFunctionType()) {
5188 // C++ [temp.arg.nontype]p5b3:
5189 // For a non-type template-parameter of type reference to
5190 // object, no conversions apply. The type referred to by the
5191 // reference may be more cv-qualified than the (otherwise
5192 // identical) type of the template- argument. The
5193 // template-parameter is bound directly to the
5194 // template-argument, which shall be an lvalue.
5195
5196 // FIXME: Other qualifiers?
5197 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
5198 unsigned ArgQuals = ArgType.getCVRQualifiers();
5199
5200 if ((ParamQuals | ArgQuals) != ParamQuals) {
5201 S.Diag(Arg->getLocStart(),
5202 diag::err_template_arg_ref_bind_ignores_quals)
5203 << ParamType << Arg->getType() << Arg->getSourceRange();
5204 S.Diag(Param->getLocation(), diag::note_template_param_here);
5205 return true;
5206 }
5207 }
5208 }
5209
5210 // At this point, the template argument refers to an object or
5211 // function with external linkage. We now need to check whether the
5212 // argument and parameter types are compatible.
5213 if (!S.Context.hasSameUnqualifiedType(ArgType,
5214 ParamType.getNonReferenceType())) {
5215 // We can't perform this conversion or binding.
5216 if (ParamType->isReferenceType())
5217 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
5218 << ParamType << ArgIn->getType() << Arg->getSourceRange();
5219 else
5220 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
5221 << ArgIn->getType() << ParamType << Arg->getSourceRange();
5222 S.Diag(Param->getLocation(), diag::note_template_param_here);
5223 return true;
5224 }
5225 }
5226
5227 return false;
5228}
5229
5230/// \brief Checks whether the given template argument is the address
5231/// of an object or function according to C++ [temp.arg.nontype]p1.
5232static bool
5233CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
5234 NonTypeTemplateParmDecl *Param,
5235 QualType ParamType,
5236 Expr *ArgIn,
5237 TemplateArgument &Converted) {
5238 bool Invalid = false;
5239 Expr *Arg = ArgIn;
5240 QualType ArgType = Arg->getType();
5241
5242 bool AddressTaken = false;
5243 SourceLocation AddrOpLoc;
5244 if (S.getLangOpts().MicrosoftExt) {
5245 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
5246 // dereference and address-of operators.
5247 Arg = Arg->IgnoreParenCasts();
5248
5249 bool ExtWarnMSTemplateArg = false;
5250 UnaryOperatorKind FirstOpKind;
5251 SourceLocation FirstOpLoc;
5252 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5253 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
5254 if (UnOpKind == UO_Deref)
5255 ExtWarnMSTemplateArg = true;
5256 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
5257 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
5258 if (!AddrOpLoc.isValid()) {
5259 FirstOpKind = UnOpKind;
5260 FirstOpLoc = UnOp->getOperatorLoc();
5261 }
5262 } else
5263 break;
5264 }
5265 if (FirstOpLoc.isValid()) {
5266 if (ExtWarnMSTemplateArg)
5267 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
5268 << ArgIn->getSourceRange();
5269
5270 if (FirstOpKind == UO_AddrOf)
5271 AddressTaken = true;
5272 else if (Arg->getType()->isPointerType()) {
5273 // We cannot let pointers get dereferenced here, that is obviously not a
5274 // constant expression.
5275 assert(FirstOpKind == UO_Deref)((FirstOpKind == UO_Deref) ? static_cast<void> (0) : __assert_fail
("FirstOpKind == UO_Deref", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5275, __PRETTY_FUNCTION__))
;
5276 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5277 << Arg->getSourceRange();
5278 }
5279 }
5280 } else {
5281 // See through any implicit casts we added to fix the type.
5282 Arg = Arg->IgnoreImpCasts();
5283
5284 // C++ [temp.arg.nontype]p1:
5285 //
5286 // A template-argument for a non-type, non-template
5287 // template-parameter shall be one of: [...]
5288 //
5289 // -- the address of an object or function with external
5290 // linkage, including function templates and function
5291 // template-ids but excluding non-static class members,
5292 // expressed as & id-expression where the & is optional if
5293 // the name refers to a function or array, or if the
5294 // corresponding template-parameter is a reference; or
5295
5296 // In C++98/03 mode, give an extension warning on any extra parentheses.
5297 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
5298 bool ExtraParens = false;
5299 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
5300 if (!Invalid && !ExtraParens) {
5301 S.Diag(Arg->getLocStart(),
5302 S.getLangOpts().CPlusPlus11
5303 ? diag::warn_cxx98_compat_template_arg_extra_parens
5304 : diag::ext_template_arg_extra_parens)
5305 << Arg->getSourceRange();
5306 ExtraParens = true;
5307 }
5308
5309 Arg = Parens->getSubExpr();
5310 }
5311
5312 while (SubstNonTypeTemplateParmExpr *subst =
5313 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5314 Arg = subst->getReplacement()->IgnoreImpCasts();
5315
5316 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5317 if (UnOp->getOpcode() == UO_AddrOf) {
5318 Arg = UnOp->getSubExpr();
5319 AddressTaken = true;
5320 AddrOpLoc = UnOp->getOperatorLoc();
5321 }
5322 }
5323
5324 while (SubstNonTypeTemplateParmExpr *subst =
5325 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5326 Arg = subst->getReplacement()->IgnoreImpCasts();
5327 }
5328
5329 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
5330 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
5331
5332 // If our parameter has pointer type, check for a null template value.
5333 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
5334 NullPointerValueKind NPV;
5335 // dllimport'd entities aren't constant but are available inside of template
5336 // arguments.
5337 if (Entity && Entity->hasAttr<DLLImportAttr>())
5338 NPV = NPV_NotNullPointer;
5339 else
5340 NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
5341 switch (NPV) {
5342 case NPV_NullPointer:
5343 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5344 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
5345 /*isNullPtr=*/true);
5346 return false;
5347
5348 case NPV_Error:
5349 return true;
5350
5351 case NPV_NotNullPointer:
5352 break;
5353 }
5354 }
5355
5356 // Stop checking the precise nature of the argument if it is value dependent,
5357 // it should be checked when instantiated.
5358 if (Arg->isValueDependent()) {
5359 Converted = TemplateArgument(ArgIn);
5360 return false;
5361 }
5362
5363 if (isa<CXXUuidofExpr>(Arg)) {
5364 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
5365 ArgIn, Arg, ArgType))
5366 return true;
5367
5368 Converted = TemplateArgument(ArgIn);
5369 return false;
5370 }
5371
5372 if (!DRE) {
5373 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5374 << Arg->getSourceRange();
5375 S.Diag(Param->getLocation(), diag::note_template_param_here);
5376 return true;
5377 }
5378
5379 // Cannot refer to non-static data members
5380 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
5381 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
5382 << Entity << Arg->getSourceRange();
5383 S.Diag(Param->getLocation(), diag::note_template_param_here);
5384 return true;
5385 }
5386
5387 // Cannot refer to non-static member functions
5388 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
5389 if (!Method->isStatic()) {
5390 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
5391 << Method << Arg->getSourceRange();
5392 S.Diag(Param->getLocation(), diag::note_template_param_here);
5393 return true;
5394 }
5395 }
5396
5397 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
5398 VarDecl *Var = dyn_cast<VarDecl>(Entity);
5399
5400 // A non-type template argument must refer to an object or function.
5401 if (!Func && !Var) {
5402 // We found something, but we don't know specifically what it is.
5403 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
5404 << Arg->getSourceRange();
5405 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
5406 return true;
5407 }
5408
5409 // Address / reference template args must have external linkage in C++98.
5410 if (Entity->getFormalLinkage() == InternalLinkage) {
5411 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
5412 diag::warn_cxx98_compat_template_arg_object_internal :
5413 diag::ext_template_arg_object_internal)
5414 << !Func << Entity << Arg->getSourceRange();
5415 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
5416 << !Func;
5417 } else if (!Entity->hasLinkage()) {
5418 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
5419 << !Func << Entity << Arg->getSourceRange();
5420 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
5421 << !Func;
5422 return true;
5423 }
5424
5425 if (Func) {
5426 // If the template parameter has pointer type, the function decays.
5427 if (ParamType->isPointerType() && !AddressTaken)
5428 ArgType = S.Context.getPointerType(Func->getType());
5429 else if (AddressTaken && ParamType->isReferenceType()) {
5430 // If we originally had an address-of operator, but the
5431 // parameter has reference type, complain and (if things look
5432 // like they will work) drop the address-of operator.
5433 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
5434 ParamType.getNonReferenceType())) {
5435 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5436 << ParamType;
5437 S.Diag(Param->getLocation(), diag::note_template_param_here);
5438 return true;
5439 }
5440
5441 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5442 << ParamType
5443 << FixItHint::CreateRemoval(AddrOpLoc);
5444 S.Diag(Param->getLocation(), diag::note_template_param_here);
5445
5446 ArgType = Func->getType();
5447 }
5448 } else {
5449 // A value of reference type is not an object.
5450 if (Var->getType()->isReferenceType()) {
5451 S.Diag(Arg->getLocStart(),
5452 diag::err_template_arg_reference_var)
5453 << Var->getType() << Arg->getSourceRange();
5454 S.Diag(Param->getLocation(), diag::note_template_param_here);
5455 return true;
5456 }
5457
5458 // A template argument must have static storage duration.
5459 if (Var->getTLSKind()) {
5460 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
5461 << Arg->getSourceRange();
5462 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
5463 return true;
5464 }
5465
5466 // If the template parameter has pointer type, we must have taken
5467 // the address of this object.
5468 if (ParamType->isReferenceType()) {
5469 if (AddressTaken) {
5470 // If we originally had an address-of operator, but the
5471 // parameter has reference type, complain and (if things look
5472 // like they will work) drop the address-of operator.
5473 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
5474 ParamType.getNonReferenceType())) {
5475 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5476 << ParamType;
5477 S.Diag(Param->getLocation(), diag::note_template_param_here);
5478 return true;
5479 }
5480
5481 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
5482 << ParamType
5483 << FixItHint::CreateRemoval(AddrOpLoc);
5484 S.Diag(Param->getLocation(), diag::note_template_param_here);
5485
5486 ArgType = Var->getType();
5487 }
5488 } else if (!AddressTaken && ParamType->isPointerType()) {
5489 if (Var->getType()->isArrayType()) {
5490 // Array-to-pointer decay.
5491 ArgType = S.Context.getArrayDecayedType(Var->getType());
5492 } else {
5493 // If the template parameter has pointer type but the address of
5494 // this object was not taken, complain and (possibly) recover by
5495 // taking the address of the entity.
5496 ArgType = S.Context.getPointerType(Var->getType());
5497 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
5498 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
5499 << ParamType;
5500 S.Diag(Param->getLocation(), diag::note_template_param_here);
5501 return true;
5502 }
5503
5504 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
5505 << ParamType
5506 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
5507
5508 S.Diag(Param->getLocation(), diag::note_template_param_here);
5509 }
5510 }
5511 }
5512
5513 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
5514 Arg, ArgType))
5515 return true;
5516
5517 // Create the template argument.
5518 Converted =
5519 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
5520 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
5521 return false;
5522}
5523
5524/// \brief Checks whether the given template argument is a pointer to
5525/// member constant according to C++ [temp.arg.nontype]p1.
5526static bool CheckTemplateArgumentPointerToMember(Sema &S,
5527 NonTypeTemplateParmDecl *Param,
5528 QualType ParamType,
5529 Expr *&ResultArg,
5530 TemplateArgument &Converted) {
5531 bool Invalid = false;
5532
5533 // Check for a null pointer value.
5534 Expr *Arg = ResultArg;
5535 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
5536 case NPV_Error:
5537 return true;
5538 case NPV_NullPointer:
5539 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5540 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
5541 /*isNullPtr*/true);
5542 return false;
5543 case NPV_NotNullPointer:
5544 break;
5545 }
5546
5547 bool ObjCLifetimeConversion;
5548 if (S.IsQualificationConversion(Arg->getType(),
5549 ParamType.getNonReferenceType(),
5550 false, ObjCLifetimeConversion)) {
5551 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
5552 Arg->getValueKind()).get();
5553 ResultArg = Arg;
5554 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
5555 ParamType.getNonReferenceType())) {
5556 // We can't perform this conversion.
5557 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
5558 << Arg->getType() << ParamType << Arg->getSourceRange();
5559 S.Diag(Param->getLocation(), diag::note_template_param_here);
5560 return true;
5561 }
5562
5563 // See through any implicit casts we added to fix the type.
5564 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
5565 Arg = Cast->getSubExpr();
5566
5567 // C++ [temp.arg.nontype]p1:
5568 //
5569 // A template-argument for a non-type, non-template
5570 // template-parameter shall be one of: [...]
5571 //
5572 // -- a pointer to member expressed as described in 5.3.1.
5573 DeclRefExpr *DRE = nullptr;
5574
5575 // In C++98/03 mode, give an extension warning on any extra parentheses.
5576 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
5577 bool ExtraParens = false;
5578 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
5579 if (!Invalid && !ExtraParens) {
5580 S.Diag(Arg->getLocStart(),
5581 S.getLangOpts().CPlusPlus11 ?
5582 diag::warn_cxx98_compat_template_arg_extra_parens :
5583 diag::ext_template_arg_extra_parens)
5584 << Arg->getSourceRange();
5585 ExtraParens = true;
5586 }
5587
5588 Arg = Parens->getSubExpr();
5589 }
5590
5591 while (SubstNonTypeTemplateParmExpr *subst =
5592 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
5593 Arg = subst->getReplacement()->IgnoreImpCasts();
5594
5595 // A pointer-to-member constant written &Class::member.
5596 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
5597 if (UnOp->getOpcode() == UO_AddrOf) {
5598 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
5599 if (DRE && !DRE->getQualifier())
5600 DRE = nullptr;
5601 }
5602 }
5603 // A constant of pointer-to-member type.
5604 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
5605 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
5606 if (VD->getType()->isMemberPointerType()) {
5607 if (isa<NonTypeTemplateParmDecl>(VD)) {
5608 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5609 Converted = TemplateArgument(Arg);
5610 } else {
5611 VD = cast<ValueDecl>(VD->getCanonicalDecl());
5612 Converted = TemplateArgument(VD, ParamType);
5613 }
5614 return Invalid;
5615 }
5616 }
5617 }
5618
5619 DRE = nullptr;
5620 }
5621
5622 if (!DRE)
5623 return S.Diag(Arg->getLocStart(),
5624 diag::err_template_arg_not_pointer_to_member_form)
5625 << Arg->getSourceRange();
5626
5627 if (isa<FieldDecl>(DRE->getDecl()) ||
5628 isa<IndirectFieldDecl>(DRE->getDecl()) ||
5629 isa<CXXMethodDecl>(DRE->getDecl())) {
5630 assert((isa<FieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5633, __PRETTY_FUNCTION__))
5631 isa<IndirectFieldDecl>(DRE->getDecl()) ||(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5633, __PRETTY_FUNCTION__))
5632 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5633, __PRETTY_FUNCTION__))
5633 "Only non-static member pointers can make it here")(((isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl
>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->
getDecl())->isStatic()) && "Only non-static member pointers can make it here"
) ? static_cast<void> (0) : __assert_fail ("(isa<FieldDecl>(DRE->getDecl()) || isa<IndirectFieldDecl>(DRE->getDecl()) || !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && \"Only non-static member pointers can make it here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5633, __PRETTY_FUNCTION__))
;
5634
5635 // Okay: this is the address of a non-static member, and therefore
5636 // a member pointer constant.
5637 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5638 Converted = TemplateArgument(Arg);
5639 } else {
5640 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
5641 Converted = TemplateArgument(D, ParamType);
5642 }
5643 return Invalid;
5644 }
5645
5646 // We found something else, but we don't know specifically what it is.
5647 S.Diag(Arg->getLocStart(),
5648 diag::err_template_arg_not_pointer_to_member_form)
5649 << Arg->getSourceRange();
5650 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
5651 return true;
5652}
5653
5654/// \brief Check a template argument against its corresponding
5655/// non-type template parameter.
5656///
5657/// This routine implements the semantics of C++ [temp.arg.nontype].
5658/// If an error occurred, it returns ExprError(); otherwise, it
5659/// returns the converted template argument. \p ParamType is the
5660/// type of the non-type template parameter after it has been instantiated.
5661ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
5662 QualType ParamType, Expr *Arg,
5663 TemplateArgument &Converted,
5664 CheckTemplateArgumentKind CTAK) {
5665 SourceLocation StartLoc = Arg->getLocStart();
5666
5667 // If the parameter type somehow involves auto, deduce the type now.
5668 if (getLangOpts().CPlusPlus1z && ParamType->isUndeducedType()) {
5669 // During template argument deduction, we allow 'decltype(auto)' to
5670 // match an arbitrary dependent argument.
5671 // FIXME: The language rules don't say what happens in this case.
5672 // FIXME: We get an opaque dependent type out of decltype(auto) if the
5673 // expression is merely instantiation-dependent; is this enough?
5674 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
5675 auto *AT = dyn_cast<AutoType>(ParamType);
5676 if (AT && AT->isDecltypeAuto()) {
5677 Converted = TemplateArgument(Arg);
5678 return Arg;
5679 }
5680 }
5681
5682 // When checking a deduced template argument, deduce from its type even if
5683 // the type is dependent, in order to check the types of non-type template
5684 // arguments line up properly in partial ordering.
5685 Optional<unsigned> Depth;
5686 if (CTAK != CTAK_Specified)
5687 Depth = Param->getDepth() + 1;
5688 if (DeduceAutoType(
5689 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
5690 Arg, ParamType, Depth) == DAR_Failed) {
5691 Diag(Arg->getExprLoc(),
5692 diag::err_non_type_template_parm_type_deduction_failure)
5693 << Param->getDeclName() << Param->getType() << Arg->getType()
5694 << Arg->getSourceRange();
5695 Diag(Param->getLocation(), diag::note_template_param_here);
5696 return ExprError();
5697 }
5698 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
5699 // an error. The error message normally references the parameter
5700 // declaration, but here we'll pass the argument location because that's
5701 // where the parameter type is deduced.
5702 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
5703 if (ParamType.isNull()) {
5704 Diag(Param->getLocation(), diag::note_template_param_here);
5705 return ExprError();
5706 }
5707 }
5708
5709 // We should have already dropped all cv-qualifiers by now.
5710 assert(!ParamType.hasQualifiers() &&((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5711, __PRETTY_FUNCTION__))
5711 "non-type template parameter type cannot be qualified")((!ParamType.hasQualifiers() && "non-type template parameter type cannot be qualified"
) ? static_cast<void> (0) : __assert_fail ("!ParamType.hasQualifiers() && \"non-type template parameter type cannot be qualified\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5711, __PRETTY_FUNCTION__))
;
5712
5713 if (CTAK == CTAK_Deduced &&
5714 !Context.hasSameType(ParamType.getNonLValueExprType(Context),
5715 Arg->getType())) {
5716 // FIXME: If either type is dependent, we skip the check. This isn't
5717 // correct, since during deduction we're supposed to have replaced each
5718 // template parameter with some unique (non-dependent) placeholder.
5719 // FIXME: If the argument type contains 'auto', we carry on and fail the
5720 // type check in order to force specific types to be more specialized than
5721 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
5722 // work.
5723 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
5724 !Arg->getType()->getContainedAutoType()) {
5725 Converted = TemplateArgument(Arg);
5726 return Arg;
5727 }
5728 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
5729 // we should actually be checking the type of the template argument in P,
5730 // not the type of the template argument deduced from A, against the
5731 // template parameter type.
5732 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
5733 << Arg->getType()
5734 << ParamType.getUnqualifiedType();
5735 Diag(Param->getLocation(), diag::note_template_param_here);
5736 return ExprError();
5737 }
5738
5739 // If either the parameter has a dependent type or the argument is
5740 // type-dependent, there's nothing we can check now.
5741 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
5742 // FIXME: Produce a cloned, canonical expression?
5743 Converted = TemplateArgument(Arg);
5744 return Arg;
5745 }
5746
5747 // The initialization of the parameter from the argument is
5748 // a constant-evaluated context.
5749 EnterExpressionEvaluationContext ConstantEvaluated(*this,
5750 Sema::ConstantEvaluated);
5751
5752 if (getLangOpts().CPlusPlus1z) {
5753 // C++1z [temp.arg.nontype]p1:
5754 // A template-argument for a non-type template parameter shall be
5755 // a converted constant expression of the type of the template-parameter.
5756 APValue Value;
5757 ExprResult ArgResult = CheckConvertedConstantExpression(
5758 Arg, ParamType, Value, CCEK_TemplateArg);
5759 if (ArgResult.isInvalid())
5760 return ExprError();
5761
5762 // For a value-dependent argument, CheckConvertedConstantExpression is
5763 // permitted (and expected) to be unable to determine a value.
5764 if (ArgResult.get()->isValueDependent()) {
5765 Converted = TemplateArgument(ArgResult.get());
5766 return ArgResult;
5767 }
5768
5769 QualType CanonParamType = Context.getCanonicalType(ParamType);
5770
5771 // Convert the APValue to a TemplateArgument.
5772 switch (Value.getKind()) {
5773 case APValue::Uninitialized:
5774 assert(ParamType->isNullPtrType())((ParamType->isNullPtrType()) ? static_cast<void> (0
) : __assert_fail ("ParamType->isNullPtrType()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5774, __PRETTY_FUNCTION__))
;
5775 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
5776 break;
5777 case APValue::Int:
5778 assert(ParamType->isIntegralOrEnumerationType())((ParamType->isIntegralOrEnumerationType()) ? static_cast<
void> (0) : __assert_fail ("ParamType->isIntegralOrEnumerationType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5778, __PRETTY_FUNCTION__))
;
5779 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
5780 break;
5781 case APValue::MemberPointer: {
5782 assert(ParamType->isMemberPointerType())((ParamType->isMemberPointerType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isMemberPointerType()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5782, __PRETTY_FUNCTION__))
;
5783
5784 // FIXME: We need TemplateArgument representation and mangling for these.
5785 if (!Value.getMemberPointerPath().empty()) {
5786 Diag(Arg->getLocStart(),
5787 diag::err_template_arg_member_ptr_base_derived_not_supported)
5788 << Value.getMemberPointerDecl() << ParamType
5789 << Arg->getSourceRange();
5790 return ExprError();
5791 }
5792
5793 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
5794 Converted = VD ? TemplateArgument(VD, CanonParamType)
5795 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
5796 break;
5797 }
5798 case APValue::LValue: {
5799 // For a non-type template-parameter of pointer or reference type,
5800 // the value of the constant expression shall not refer to
5801 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5802, __PRETTY_FUNCTION__))
5802 ParamType->isNullPtrType())((ParamType->isPointerType() || ParamType->isReferenceType
() || ParamType->isNullPtrType()) ? static_cast<void>
(0) : __assert_fail ("ParamType->isPointerType() || ParamType->isReferenceType() || ParamType->isNullPtrType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5802, __PRETTY_FUNCTION__))
;
5803 // -- a temporary object
5804 // -- a string literal
5805 // -- the result of a typeid expression, or
5806 // -- a predefind __func__ variable
5807 if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
5808 if (isa<CXXUuidofExpr>(E)) {
5809 Converted = TemplateArgument(const_cast<Expr*>(E));
5810 break;
5811 }
5812 Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
5813 << Arg->getSourceRange();
5814 return ExprError();
5815 }
5816 auto *VD = const_cast<ValueDecl *>(
5817 Value.getLValueBase().dyn_cast<const ValueDecl *>());
5818 // -- a subobject
5819 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
5820 VD && VD->getType()->isArrayType() &&
5821 Value.getLValuePath()[0].ArrayIndex == 0 &&
5822 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
5823 // Per defect report (no number yet):
5824 // ... other than a pointer to the first element of a complete array
5825 // object.
5826 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
5827 Value.isLValueOnePastTheEnd()) {
5828 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
5829 << Value.getAsString(Context, ParamType);
5830 return ExprError();
5831 }
5832 assert((VD || !ParamType->isReferenceType()) &&(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5833, __PRETTY_FUNCTION__))
5833 "null reference should not be a constant expression")(((VD || !ParamType->isReferenceType()) && "null reference should not be a constant expression"
) ? static_cast<void> (0) : __assert_fail ("(VD || !ParamType->isReferenceType()) && \"null reference should not be a constant expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5833, __PRETTY_FUNCTION__))
;
5834 assert((!VD || !ParamType->isNullPtrType()) &&(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5835, __PRETTY_FUNCTION__))
5835 "non-null value of type nullptr_t?")(((!VD || !ParamType->isNullPtrType()) && "non-null value of type nullptr_t?"
) ? static_cast<void> (0) : __assert_fail ("(!VD || !ParamType->isNullPtrType()) && \"non-null value of type nullptr_t?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5835, __PRETTY_FUNCTION__))
;
5836 Converted = VD ? TemplateArgument(VD, CanonParamType)
5837 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
5838 break;
5839 }
5840 case APValue::AddrLabelDiff:
5841 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
5842 case APValue::Float:
5843 case APValue::ComplexInt:
5844 case APValue::ComplexFloat:
5845 case APValue::Vector:
5846 case APValue::Array:
5847 case APValue::Struct:
5848 case APValue::Union:
5849 llvm_unreachable("invalid kind for template argument")::llvm::llvm_unreachable_internal("invalid kind for template argument"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 5849)
;
5850 }
5851
5852 return ArgResult.get();
5853 }
5854
5855 // C++ [temp.arg.nontype]p5:
5856 // The following conversions are performed on each expression used
5857 // as a non-type template-argument. If a non-type
5858 // template-argument cannot be converted to the type of the
5859 // corresponding template-parameter then the program is
5860 // ill-formed.
5861 if (ParamType->isIntegralOrEnumerationType()) {
5862 // C++11:
5863 // -- for a non-type template-parameter of integral or
5864 // enumeration type, conversions permitted in a converted
5865 // constant expression are applied.
5866 //
5867 // C++98:
5868 // -- for a non-type template-parameter of integral or
5869 // enumeration type, integral promotions (4.5) and integral
5870 // conversions (4.7) are applied.
5871
5872 if (getLangOpts().CPlusPlus11) {
5873 // C++ [temp.arg.nontype]p1:
5874 // A template-argument for a non-type, non-template template-parameter
5875 // shall be one of:
5876 //
5877 // -- for a non-type template-parameter of integral or enumeration
5878 // type, a converted constant expression of the type of the
5879 // template-parameter; or
5880 llvm::APSInt Value;
5881 ExprResult ArgResult =
5882 CheckConvertedConstantExpression(Arg, ParamType, Value,
5883 CCEK_TemplateArg);
5884 if (ArgResult.isInvalid())
5885 return ExprError();
5886
5887 // We can't check arbitrary value-dependent arguments.
5888 if (ArgResult.get()->isValueDependent()) {
5889 Converted = TemplateArgument(ArgResult.get());
5890 return ArgResult;
5891 }
5892
5893 // Widen the argument value to sizeof(parameter type). This is almost
5894 // always a no-op, except when the parameter type is bool. In
5895 // that case, this may extend the argument from 1 bit to 8 bits.
5896 QualType IntegerType = ParamType;
5897 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5898 IntegerType = Enum->getDecl()->getIntegerType();
5899 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
5900
5901 Converted = TemplateArgument(Context, Value,
5902 Context.getCanonicalType(ParamType));
5903 return ArgResult;
5904 }
5905
5906 ExprResult ArgResult = DefaultLvalueConversion(Arg);
5907 if (ArgResult.isInvalid())
5908 return ExprError();
5909 Arg = ArgResult.get();
5910
5911 QualType ArgType = Arg->getType();
5912
5913 // C++ [temp.arg.nontype]p1:
5914 // A template-argument for a non-type, non-template
5915 // template-parameter shall be one of:
5916 //
5917 // -- an integral constant-expression of integral or enumeration
5918 // type; or
5919 // -- the name of a non-type template-parameter; or
5920 SourceLocation NonConstantLoc;
5921 llvm::APSInt Value;
5922 if (!ArgType->isIntegralOrEnumerationType()) {
5923 Diag(Arg->getLocStart(),
5924 diag::err_template_arg_not_integral_or_enumeral)
5925 << ArgType << Arg->getSourceRange();
5926 Diag(Param->getLocation(), diag::note_template_param_here);
5927 return ExprError();
5928 } else if (!Arg->isValueDependent()) {
5929 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
5930 QualType T;
5931
5932 public:
5933 TmplArgICEDiagnoser(QualType T) : T(T) { }
5934
5935 void diagnoseNotICE(Sema &S, SourceLocation Loc,
5936 SourceRange SR) override {
5937 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
5938 }
5939 } Diagnoser(ArgType);
5940
5941 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
5942 false).get();
5943 if (!Arg)
5944 return ExprError();
5945 }
5946
5947 // From here on out, all we care about is the unqualified form
5948 // of the argument type.
5949 ArgType = ArgType.getUnqualifiedType();
5950
5951 // Try to convert the argument to the parameter's type.
5952 if (Context.hasSameType(ParamType, ArgType)) {
5953 // Okay: no conversion necessary
5954 } else if (ParamType->isBooleanType()) {
5955 // This is an integral-to-boolean conversion.
5956 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
5957 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
5958 !ParamType->isEnumeralType()) {
5959 // This is an integral promotion or conversion.
5960 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
5961 } else {
5962 // We can't perform this conversion.
5963 Diag(Arg->getLocStart(),
5964 diag::err_template_arg_not_convertible)
5965 << Arg->getType() << ParamType << Arg->getSourceRange();
5966 Diag(Param->getLocation(), diag::note_template_param_here);
5967 return ExprError();
5968 }
5969
5970 // Add the value of this argument to the list of converted
5971 // arguments. We use the bitwidth and signedness of the template
5972 // parameter.
5973 if (Arg->isValueDependent()) {
5974 // The argument is value-dependent. Create a new
5975 // TemplateArgument with the converted expression.
5976 Converted = TemplateArgument(Arg);
5977 return Arg;
5978 }
5979
5980 QualType IntegerType = Context.getCanonicalType(ParamType);
5981 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5982 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
5983
5984 if (ParamType->isBooleanType()) {
5985 // Value must be zero or one.
5986 Value = Value != 0;
5987 unsigned AllowedBits = Context.getTypeSize(IntegerType);
5988 if (Value.getBitWidth() != AllowedBits)
5989 Value = Value.extOrTrunc(AllowedBits);
5990 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5991 } else {
5992 llvm::APSInt OldValue = Value;
5993
5994 // Coerce the template argument's value to the value it will have
5995 // based on the template parameter's type.
5996 unsigned AllowedBits = Context.getTypeSize(IntegerType);
5997 if (Value.getBitWidth() != AllowedBits)
5998 Value = Value.extOrTrunc(AllowedBits);
5999 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6000
6001 // Complain if an unsigned parameter received a negative value.
6002 if (IntegerType->isUnsignedIntegerOrEnumerationType()
6003 && (OldValue.isSigned() && OldValue.isNegative())) {
6004 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
6005 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6006 << Arg->getSourceRange();
6007 Diag(Param->getLocation(), diag::note_template_param_here);
6008 }
6009
6010 // Complain if we overflowed the template parameter's type.
6011 unsigned RequiredBits;
6012 if (IntegerType->isUnsignedIntegerOrEnumerationType())
6013 RequiredBits = OldValue.getActiveBits();
6014 else if (OldValue.isUnsigned())
6015 RequiredBits = OldValue.getActiveBits() + 1;
6016 else
6017 RequiredBits = OldValue.getMinSignedBits();
6018 if (RequiredBits > AllowedBits) {
6019 Diag(Arg->getLocStart(),
6020 diag::warn_template_arg_too_large)
6021 << OldValue.toString(10) << Value.toString(10) << Param->getType()
6022 << Arg->getSourceRange();
6023 Diag(Param->getLocation(), diag::note_template_param_here);
6024 }
6025 }
6026
6027 Converted = TemplateArgument(Context, Value,
6028 ParamType->isEnumeralType()
6029 ? Context.getCanonicalType(ParamType)
6030 : IntegerType);
6031 return Arg;
6032 }
6033
6034 QualType ArgType = Arg->getType();
6035 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
6036
6037 // Handle pointer-to-function, reference-to-function, and
6038 // pointer-to-member-function all in (roughly) the same way.
6039 if (// -- For a non-type template-parameter of type pointer to
6040 // function, only the function-to-pointer conversion (4.3) is
6041 // applied. If the template-argument represents a set of
6042 // overloaded functions (or a pointer to such), the matching
6043 // function is selected from the set (13.4).
6044 (ParamType->isPointerType() &&
6045 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
6046 // -- For a non-type template-parameter of type reference to
6047 // function, no conversions apply. If the template-argument
6048 // represents a set of overloaded functions, the matching
6049 // function is selected from the set (13.4).
6050 (ParamType->isReferenceType() &&
6051 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
6052 // -- For a non-type template-parameter of type pointer to
6053 // member function, no conversions apply. If the
6054 // template-argument represents a set of overloaded member
6055 // functions, the matching member function is selected from
6056 // the set (13.4).
6057 (ParamType->isMemberPointerType() &&
6058 ParamType->getAs<MemberPointerType>()->getPointeeType()
6059 ->isFunctionType())) {
6060
6061 if (Arg->getType() == Context.OverloadTy) {
6062 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
6063 true,
6064 FoundResult)) {
6065 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
6066 return ExprError();
6067
6068 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6069 ArgType = Arg->getType();
6070 } else
6071 return ExprError();
6072 }
6073
6074 if (!ParamType->isMemberPointerType()) {
6075 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6076 ParamType,
6077 Arg, Converted))
6078 return ExprError();
6079 return Arg;
6080 }
6081
6082 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6083 Converted))
6084 return ExprError();
6085 return Arg;
6086 }
6087
6088 if (ParamType->isPointerType()) {
6089 // -- for a non-type template-parameter of type pointer to
6090 // object, qualification conversions (4.4) and the
6091 // array-to-pointer conversion (4.2) are applied.
6092 // C++0x also allows a value of std::nullptr_t.
6093 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6094, __PRETTY_FUNCTION__))
6094 "Only object pointers allowed here")((ParamType->getPointeeType()->isIncompleteOrObjectType
() && "Only object pointers allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamType->getPointeeType()->isIncompleteOrObjectType() && \"Only object pointers allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6094, __PRETTY_FUNCTION__))
;
6095
6096 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6097 ParamType,
6098 Arg, Converted))
6099 return ExprError();
6100 return Arg;
6101 }
6102
6103 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
6104 // -- For a non-type template-parameter of type reference to
6105 // object, no conversions apply. The type referred to by the
6106 // reference may be more cv-qualified than the (otherwise
6107 // identical) type of the template-argument. The
6108 // template-parameter is bound directly to the
6109 // template-argument, which must be an lvalue.
6110 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6111, __PRETTY_FUNCTION__))
6111 "Only object references allowed here")((ParamRefType->getPointeeType()->isIncompleteOrObjectType
() && "Only object references allowed here") ? static_cast
<void> (0) : __assert_fail ("ParamRefType->getPointeeType()->isIncompleteOrObjectType() && \"Only object references allowed here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6111, __PRETTY_FUNCTION__))
;
6112
6113 if (Arg->getType() == Context.OverloadTy) {
6114 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
6115 ParamRefType->getPointeeType(),
6116 true,
6117 FoundResult)) {
6118 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
6119 return ExprError();
6120
6121 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
6122 ArgType = Arg->getType();
6123 } else
6124 return ExprError();
6125 }
6126
6127 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
6128 ParamType,
6129 Arg, Converted))
6130 return ExprError();
6131 return Arg;
6132 }
6133
6134 // Deal with parameters of type std::nullptr_t.
6135 if (ParamType->isNullPtrType()) {
6136 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6137 Converted = TemplateArgument(Arg);
6138 return Arg;
6139 }
6140
6141 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
6142 case NPV_NotNullPointer:
6143 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
6144 << Arg->getType() << ParamType;
6145 Diag(Param->getLocation(), diag::note_template_param_here);
6146 return ExprError();
6147
6148 case NPV_Error:
6149 return ExprError();
6150
6151 case NPV_NullPointer:
6152 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6153 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
6154 /*isNullPtr*/true);
6155 return Arg;
6156 }
6157 }
6158
6159 // -- For a non-type template-parameter of type pointer to data
6160 // member, qualification conversions (4.4) are applied.
6161 assert(ParamType->isMemberPointerType() && "Only pointers to members remain")((ParamType->isMemberPointerType() && "Only pointers to members remain"
) ? static_cast<void> (0) : __assert_fail ("ParamType->isMemberPointerType() && \"Only pointers to members remain\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6161, __PRETTY_FUNCTION__))
;
6162
6163 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
6164 Converted))
6165 return ExprError();
6166 return Arg;
6167}
6168
6169static void DiagnoseTemplateParameterListArityMismatch(
6170 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
6171 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
6172
6173/// \brief Check a template argument against its corresponding
6174/// template template parameter.
6175///
6176/// This routine implements the semantics of C++ [temp.arg.template].
6177/// It returns true if an error occurred, and false otherwise.
6178bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
6179 TemplateArgumentLoc &Arg,
6180 unsigned ArgumentPackIndex) {
6181 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
6182 TemplateDecl *Template = Name.getAsTemplateDecl();
6183 if (!Template) {
6184 // Any dependent template name is fine.
6185 assert(Name.isDependent() && "Non-dependent template isn't a declaration?")((Name.isDependent() && "Non-dependent template isn't a declaration?"
) ? static_cast<void> (0) : __assert_fail ("Name.isDependent() && \"Non-dependent template isn't a declaration?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6185, __PRETTY_FUNCTION__))
;
6186 return false;
6187 }
6188
6189 if (Template->isInvalidDecl())
6190 return true;
6191
6192 // C++0x [temp.arg.template]p1:
6193 // A template-argument for a template template-parameter shall be
6194 // the name of a class template or an alias template, expressed as an
6195 // id-expression. When the template-argument names a class template, only
6196 // primary class templates are considered when matching the
6197 // template template argument with the corresponding parameter;
6198 // partial specializations are not considered even if their
6199 // parameter lists match that of the template template parameter.
6200 //
6201 // Note that we also allow template template parameters here, which
6202 // will happen when we are dealing with, e.g., class template
6203 // partial specializations.
6204 if (!isa<ClassTemplateDecl>(Template) &&
6205 !isa<TemplateTemplateParmDecl>(Template) &&
6206 !isa<TypeAliasTemplateDecl>(Template) &&
6207 !isa<BuiltinTemplateDecl>(Template)) {
6208 assert(isa<FunctionTemplateDecl>(Template) &&((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6209, __PRETTY_FUNCTION__))
6209 "Only function templates are possible here")((isa<FunctionTemplateDecl>(Template) && "Only function templates are possible here"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionTemplateDecl>(Template) && \"Only function templates are possible here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6209, __PRETTY_FUNCTION__))
;
6210 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
6211 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
6212 << Template;
6213 }
6214
6215 TemplateParameterList *Params = Param->getTemplateParameters();
6216 if (Param->isExpandedParameterPack())
6217 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
6218
6219 // C++1z [temp.arg.template]p3: (DR 150)
6220 // A template-argument matches a template template-parameter P when P
6221 // is at least as specialized as the template-argument A.
6222 if (getLangOpts().RelaxedTemplateTemplateArgs) {
6223 // Quick check for the common case:
6224 // If P contains a parameter pack, then A [...] matches P if each of A's
6225 // template parameters matches the corresponding template parameter in
6226 // the template-parameter-list of P.
6227 if (TemplateParameterListsAreEqual(
6228 Template->getTemplateParameters(), Params, false,
6229 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()))
6230 return false;
6231
6232 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
6233 Arg.getLocation()))
6234 return false;
6235 // FIXME: Produce better diagnostics for deduction failures.
6236 }
6237
6238 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
6239 Params,
6240 true,
6241 TPL_TemplateTemplateArgumentMatch,
6242 Arg.getLocation());
6243}
6244
6245/// \brief Given a non-type template argument that refers to a
6246/// declaration and the type of its corresponding non-type template
6247/// parameter, produce an expression that properly refers to that
6248/// declaration.
6249ExprResult
6250Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
6251 QualType ParamType,
6252 SourceLocation Loc) {
6253 // C++ [temp.param]p8:
6254 //
6255 // A non-type template-parameter of type "array of T" or
6256 // "function returning T" is adjusted to be of type "pointer to
6257 // T" or "pointer to function returning T", respectively.
6258 if (ParamType->isArrayType())
6259 ParamType = Context.getArrayDecayedType(ParamType);
6260 else if (ParamType->isFunctionType())
6261 ParamType = Context.getPointerType(ParamType);
6262
6263 // For a NULL non-type template argument, return nullptr casted to the
6264 // parameter's type.
6265 if (Arg.getKind() == TemplateArgument::NullPtr) {
6266 return ImpCastExprToType(
6267 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
6268 ParamType,
6269 ParamType->getAs<MemberPointerType>()
6270 ? CK_NullToMemberPointer
6271 : CK_NullToPointer);
6272 }
6273 assert(Arg.getKind() == TemplateArgument::Declaration &&((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6274, __PRETTY_FUNCTION__))
6274 "Only declaration template arguments permitted here")((Arg.getKind() == TemplateArgument::Declaration && "Only declaration template arguments permitted here"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Declaration && \"Only declaration template arguments permitted here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6274, __PRETTY_FUNCTION__))
;
6275
6276 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
6277
6278 if (VD->getDeclContext()->isRecord() &&
6279 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
6280 isa<IndirectFieldDecl>(VD))) {
6281 // If the value is a class member, we might have a pointer-to-member.
6282 // Determine whether the non-type template template parameter is of
6283 // pointer-to-member type. If so, we need to build an appropriate
6284 // expression for a pointer-to-member, since a "normal" DeclRefExpr
6285 // would refer to the member itself.
6286 if (ParamType->isMemberPointerType()) {
6287 QualType ClassType
6288 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
6289 NestedNameSpecifier *Qualifier
6290 = NestedNameSpecifier::Create(Context, nullptr, false,
6291 ClassType.getTypePtr());
6292 CXXScopeSpec SS;
6293 SS.MakeTrivial(Context, Qualifier, Loc);
6294
6295 // The actual value-ness of this is unimportant, but for
6296 // internal consistency's sake, references to instance methods
6297 // are r-values.
6298 ExprValueKind VK = VK_LValue;
6299 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
6300 VK = VK_RValue;
6301
6302 ExprResult RefExpr = BuildDeclRefExpr(VD,
6303 VD->getType().getNonReferenceType(),
6304 VK,
6305 Loc,
6306 &SS);
6307 if (RefExpr.isInvalid())
6308 return ExprError();
6309
6310 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
6311
6312 // We might need to perform a trailing qualification conversion, since
6313 // the element type on the parameter could be more qualified than the
6314 // element type in the expression we constructed.
6315 bool ObjCLifetimeConversion;
6316 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
6317 ParamType.getUnqualifiedType(), false,
6318 ObjCLifetimeConversion))
6319 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
6320
6321 assert(!RefExpr.isInvalid() &&((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6323, __PRETTY_FUNCTION__))
6322 Context.hasSameType(((Expr*) RefExpr.get())->getType(),((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6323, __PRETTY_FUNCTION__))
6323 ParamType.getUnqualifiedType()))((!RefExpr.isInvalid() && Context.hasSameType(((Expr*
) RefExpr.get())->getType(), ParamType.getUnqualifiedType(
))) ? static_cast<void> (0) : __assert_fail ("!RefExpr.isInvalid() && Context.hasSameType(((Expr*) RefExpr.get())->getType(), ParamType.getUnqualifiedType())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6323, __PRETTY_FUNCTION__))
;
6324 return RefExpr;
6325 }
6326 }
6327
6328 QualType T = VD->getType().getNonReferenceType();
6329
6330 if (ParamType->isPointerType()) {
6331 // When the non-type template parameter is a pointer, take the
6332 // address of the declaration.
6333 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
6334 if (RefExpr.isInvalid())
6335 return ExprError();
6336
6337 if (!Context.hasSameUnqualifiedType(ParamType->getPointeeType(), T) &&
6338 (T->isFunctionType() || T->isArrayType())) {
6339 // Decay functions and arrays unless we're forming a pointer to array.
6340 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
6341 if (RefExpr.isInvalid())
6342 return ExprError();
6343
6344 return RefExpr;
6345 }
6346
6347 // Take the address of everything else
6348 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
6349 }
6350
6351 ExprValueKind VK = VK_RValue;
6352
6353 // If the non-type template parameter has reference type, qualify the
6354 // resulting declaration reference with the extra qualifiers on the
6355 // type that the reference refers to.
6356 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
6357 VK = VK_LValue;
6358 T = Context.getQualifiedType(T,
6359 TargetRef->getPointeeType().getQualifiers());
6360 } else if (isa<FunctionDecl>(VD)) {
6361 // References to functions are always lvalues.
6362 VK = VK_LValue;
6363 }
6364
6365 return BuildDeclRefExpr(VD, T, VK, Loc);
6366}
6367
6368/// \brief Construct a new expression that refers to the given
6369/// integral template argument with the given source-location
6370/// information.
6371///
6372/// This routine takes care of the mapping from an integral template
6373/// argument (which may have any integral type) to the appropriate
6374/// literal value.
6375ExprResult
6376Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
6377 SourceLocation Loc) {
6378 assert(Arg.getKind() == TemplateArgument::Integral &&((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6379, __PRETTY_FUNCTION__))
6379 "Operation is only valid for integral template arguments")((Arg.getKind() == TemplateArgument::Integral && "Operation is only valid for integral template arguments"
) ? static_cast<void> (0) : __assert_fail ("Arg.getKind() == TemplateArgument::Integral && \"Operation is only valid for integral template arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6379, __PRETTY_FUNCTION__))
;
6380 QualType OrigT = Arg.getIntegralType();
6381
6382 // If this is an enum type that we're instantiating, we need to use an integer
6383 // type the same size as the enumerator. We don't want to build an
6384 // IntegerLiteral with enum type. The integer type of an enum type can be of
6385 // any integral type with C++11 enum classes, make sure we create the right
6386 // type of literal for it.
6387 QualType T = OrigT;
6388 if (const EnumType *ET = OrigT->getAs<EnumType>())
6389 T = ET->getDecl()->getIntegerType();
6390
6391 Expr *E;
6392 if (T->isAnyCharacterType()) {
6393 // This does not need to handle u8 character literals because those are
6394 // of type char, and so can also be covered by an ASCII character literal.
6395 CharacterLiteral::CharacterKind Kind;
6396 if (T->isWideCharType())
6397 Kind = CharacterLiteral::Wide;
6398 else if (T->isChar16Type())
6399 Kind = CharacterLiteral::UTF16;
6400 else if (T->isChar32Type())
6401 Kind = CharacterLiteral::UTF32;
6402 else
6403 Kind = CharacterLiteral::Ascii;
6404
6405 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
6406 Kind, T, Loc);
6407 } else if (T->isBooleanType()) {
6408 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
6409 T, Loc);
6410 } else if (T->isNullPtrType()) {
6411 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
6412 } else {
6413 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
6414 }
6415
6416 if (OrigT->isEnumeralType()) {
6417 // FIXME: This is a hack. We need a better way to handle substituted
6418 // non-type template parameters.
6419 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
6420 nullptr,
6421 Context.getTrivialTypeSourceInfo(OrigT, Loc),
6422 Loc, Loc);
6423 }
6424
6425 return E;
6426}
6427
6428static bool isDependentOnOuter(NonTypeTemplateParmDecl *NTTP) {
6429 if (NTTP->getDepth() == 0 || !NTTP->getType()->isDependentType())
6430 return false;
6431 DependencyChecker Checker(NTTP->getDepth(), /*IgnoreNonTypeDependent*/ false,
6432 /*FindLessThanDepth*/ true);
6433 Checker.TraverseType(NTTP->getType());
6434 return Checker.Match;
6435}
6436
6437/// \brief Match two template parameters within template parameter lists.
6438static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
6439 bool Complain,
6440 Sema::TemplateParameterListEqualKind Kind,
6441 SourceLocation TemplateArgLoc) {
6442 // Check the actual kind (type, non-type, template).
6443 if (Old->getKind() != New->getKind()) {
6444 if (Complain) {
6445 unsigned NextDiag = diag::err_template_param_different_kind;
6446 if (TemplateArgLoc.isValid()) {
6447 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
6448 NextDiag = diag::note_template_param_different_kind;
6449 }
6450 S.Diag(New->getLocation(), NextDiag)
6451 << (Kind != Sema::TPL_TemplateMatch);
6452 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
6453 << (Kind != Sema::TPL_TemplateMatch);
6454 }
6455
6456 return false;
6457 }
6458
6459 // Check that both are parameter packs or neither are parameter packs.
6460 // However, if we are matching a template template argument to a
6461 // template template parameter, the template template parameter can have
6462 // a parameter pack where the template template argument does not.
6463 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
6464 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
6465 Old->isTemplateParameterPack())) {
6466 if (Complain) {
6467 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
6468 if (TemplateArgLoc.isValid()) {
6469 S.Diag(TemplateArgLoc,
6470 diag::err_template_arg_template_params_mismatch);
6471 NextDiag = diag::note_template_parameter_pack_non_pack;
6472 }
6473
6474 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
6475 : isa<NonTypeTemplateParmDecl>(New)? 1
6476 : 2;
6477 S.Diag(New->getLocation(), NextDiag)
6478 << ParamKind << New->isParameterPack();
6479 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
6480 << ParamKind << Old->isParameterPack();
6481 }
6482
6483 return false;
6484 }
6485
6486 // For non-type template parameters, check the type of the parameter.
6487 if (NonTypeTemplateParmDecl *OldNTTP
6488 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
6489 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
6490
6491 // If we are matching a template template argument to a template
6492 // template parameter and one of the non-type template parameter types
6493 // is dependent on an outer template's parameter, then we must wait until
6494 // template instantiation time to actually compare the arguments.
6495 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
6496 (isDependentOnOuter(OldNTTP) || isDependentOnOuter(NewNTTP)))
6497 return true;
6498
6499 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
6500 if (Complain) {
6501 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
6502 if (TemplateArgLoc.isValid()) {
6503 S.Diag(TemplateArgLoc,
6504 diag::err_template_arg_template_params_mismatch);
6505 NextDiag = diag::note_template_nontype_parm_different_type;
6506 }
6507 S.Diag(NewNTTP->getLocation(), NextDiag)
6508 << NewNTTP->getType()
6509 << (Kind != Sema::TPL_TemplateMatch);
6510 S.Diag(OldNTTP->getLocation(),
6511 diag::note_template_nontype_parm_prev_declaration)
6512 << OldNTTP->getType();
6513 }
6514
6515 return false;
6516 }
6517
6518 return true;
6519 }
6520
6521 // For template template parameters, check the template parameter types.
6522 // The template parameter lists of template template
6523 // parameters must agree.
6524 if (TemplateTemplateParmDecl *OldTTP
6525 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
6526 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
6527 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
6528 OldTTP->getTemplateParameters(),
6529 Complain,
6530 (Kind == Sema::TPL_TemplateMatch
6531 ? Sema::TPL_TemplateTemplateParmMatch
6532 : Kind),
6533 TemplateArgLoc);
6534 }
6535
6536 return true;
6537}
6538
6539/// \brief Diagnose a known arity mismatch when comparing template argument
6540/// lists.
6541static
6542void DiagnoseTemplateParameterListArityMismatch(Sema &S,
6543 TemplateParameterList *New,
6544 TemplateParameterList *Old,
6545 Sema::TemplateParameterListEqualKind Kind,
6546 SourceLocation TemplateArgLoc) {
6547 unsigned NextDiag = diag::err_template_param_list_different_arity;
6548 if (TemplateArgLoc.isValid()) {
6549 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
6550 NextDiag = diag::note_template_param_list_different_arity;
6551 }
6552 S.Diag(New->getTemplateLoc(), NextDiag)
6553 << (New->size() > Old->size())
6554 << (Kind != Sema::TPL_TemplateMatch)
6555 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
6556 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
6557 << (Kind != Sema::TPL_TemplateMatch)
6558 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
6559}
6560
6561/// \brief Determine whether the given template parameter lists are
6562/// equivalent.
6563///
6564/// \param New The new template parameter list, typically written in the
6565/// source code as part of a new template declaration.
6566///
6567/// \param Old The old template parameter list, typically found via
6568/// name lookup of the template declared with this template parameter
6569/// list.
6570///
6571/// \param Complain If true, this routine will produce a diagnostic if
6572/// the template parameter lists are not equivalent.
6573///
6574/// \param Kind describes how we are to match the template parameter lists.
6575///
6576/// \param TemplateArgLoc If this source location is valid, then we
6577/// are actually checking the template parameter list of a template
6578/// argument (New) against the template parameter list of its
6579/// corresponding template template parameter (Old). We produce
6580/// slightly different diagnostics in this scenario.
6581///
6582/// \returns True if the template parameter lists are equal, false
6583/// otherwise.
6584bool
6585Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
6586 TemplateParameterList *Old,
6587 bool Complain,
6588 TemplateParameterListEqualKind Kind,
6589 SourceLocation TemplateArgLoc) {
6590 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
6591 if (Complain)
6592 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6593 TemplateArgLoc);
6594
6595 return false;
6596 }
6597
6598 // C++0x [temp.arg.template]p3:
6599 // A template-argument matches a template template-parameter (call it P)
6600 // when each of the template parameters in the template-parameter-list of
6601 // the template-argument's corresponding class template or alias template
6602 // (call it A) matches the corresponding template parameter in the
6603 // template-parameter-list of P. [...]
6604 TemplateParameterList::iterator NewParm = New->begin();
6605 TemplateParameterList::iterator NewParmEnd = New->end();
6606 for (TemplateParameterList::iterator OldParm = Old->begin(),
6607 OldParmEnd = Old->end();
6608 OldParm != OldParmEnd; ++OldParm) {
6609 if (Kind != TPL_TemplateTemplateArgumentMatch ||
6610 !(*OldParm)->isTemplateParameterPack()) {
6611 if (NewParm == NewParmEnd) {
6612 if (Complain)
6613 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6614 TemplateArgLoc);
6615
6616 return false;
6617 }
6618
6619 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
6620 Kind, TemplateArgLoc))
6621 return false;
6622
6623 ++NewParm;
6624 continue;
6625 }
6626
6627 // C++0x [temp.arg.template]p3:
6628 // [...] When P's template- parameter-list contains a template parameter
6629 // pack (14.5.3), the template parameter pack will match zero or more
6630 // template parameters or template parameter packs in the
6631 // template-parameter-list of A with the same type and form as the
6632 // template parameter pack in P (ignoring whether those template
6633 // parameters are template parameter packs).
6634 for (; NewParm != NewParmEnd; ++NewParm) {
6635 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
6636 Kind, TemplateArgLoc))
6637 return false;
6638 }
6639 }
6640
6641 // Make sure we exhausted all of the arguments.
6642 if (NewParm != NewParmEnd) {
6643 if (Complain)
6644 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
6645 TemplateArgLoc);
6646
6647 return false;
6648 }
6649
6650 return true;
6651}
6652
6653/// \brief Check whether a template can be declared within this scope.
6654///
6655/// If the template declaration is valid in this scope, returns
6656/// false. Otherwise, issues a diagnostic and returns true.
6657bool
6658Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
6659 if (!S)
2
Assuming 'S' is non-null
3
Taking false branch
6660 return false;
6661
6662 // Find the nearest enclosing declaration scope.
6663 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4
Assuming the condition is false
6
Loop condition is false. Execution continues on line 6669
6664 (S->getFlags() & Scope::TemplateParamScope) != 0)
5
Assuming the condition is false
6665 S = S->getParent();
6666
6667 // C++ [temp]p4:
6668 // A template [...] shall not have C linkage.
6669 DeclContext *Ctx = S->getEntity();
7
Calling 'Scope::getEntity'
8
Returning from 'Scope::getEntity'
9
'Ctx' initialized here
6670 if (Ctx && Ctx->isExternCContext()) {
10
Assuming 'Ctx' is null
11
Assuming pointer value is null
6671 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
6672 << TemplateParams->getSourceRange();
6673 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
6674 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
6675 return true;
6676 }
6677 Ctx = Ctx->getRedeclContext();
12
Called C++ object pointer is null
6678
6679 // C++ [temp]p2:
6680 // A template-declaration can appear only as a namespace scope or
6681 // class scope declaration.
6682 if (Ctx) {
6683 if (Ctx->isFileContext())
6684 return false;
6685 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
6686 // C++ [temp.mem]p2:
6687 // A local class shall not have member templates.
6688 if (RD->isLocalClass())
6689 return Diag(TemplateParams->getTemplateLoc(),
6690 diag::err_template_inside_local_class)
6691 << TemplateParams->getSourceRange();
6692 else
6693 return false;
6694 }
6695 }
6696
6697 return Diag(TemplateParams->getTemplateLoc(),
6698 diag::err_template_outside_namespace_or_class_scope)
6699 << TemplateParams->getSourceRange();
6700}
6701
6702/// \brief Determine what kind of template specialization the given declaration
6703/// is.
6704static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
6705 if (!D)
6706 return TSK_Undeclared;
6707
6708 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
6709 return Record->getTemplateSpecializationKind();
6710 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
6711 return Function->getTemplateSpecializationKind();
6712 if (VarDecl *Var = dyn_cast<VarDecl>(D))
6713 return Var->getTemplateSpecializationKind();
6714
6715 return TSK_Undeclared;
6716}
6717
6718/// \brief Check whether a specialization is well-formed in the current
6719/// context.
6720///
6721/// This routine determines whether a template specialization can be declared
6722/// in the current context (C++ [temp.expl.spec]p2).
6723///
6724/// \param S the semantic analysis object for which this check is being
6725/// performed.
6726///
6727/// \param Specialized the entity being specialized or instantiated, which
6728/// may be a kind of template (class template, function template, etc.) or
6729/// a member of a class template (member function, static data member,
6730/// member class).
6731///
6732/// \param PrevDecl the previous declaration of this entity, if any.
6733///
6734/// \param Loc the location of the explicit specialization or instantiation of
6735/// this entity.
6736///
6737/// \param IsPartialSpecialization whether this is a partial specialization of
6738/// a class template.
6739///
6740/// \returns true if there was an error that we cannot recover from, false
6741/// otherwise.
6742static bool CheckTemplateSpecializationScope(Sema &S,
6743 NamedDecl *Specialized,
6744 NamedDecl *PrevDecl,
6745 SourceLocation Loc,
6746 bool IsPartialSpecialization) {
6747 // Keep these "kind" numbers in sync with the %select statements in the
6748 // various diagnostics emitted by this routine.
6749 int EntityKind = 0;
6750 if (isa<ClassTemplateDecl>(Specialized))
6751 EntityKind = IsPartialSpecialization? 1 : 0;
6752 else if (isa<VarTemplateDecl>(Specialized))
6753 EntityKind = IsPartialSpecialization ? 3 : 2;
6754 else if (isa<FunctionTemplateDecl>(Specialized))
6755 EntityKind = 4;
6756 else if (isa<CXXMethodDecl>(Specialized))
6757 EntityKind = 5;
6758 else if (isa<VarDecl>(Specialized))
6759 EntityKind = 6;
6760 else if (isa<RecordDecl>(Specialized))
6761 EntityKind = 7;
6762 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
6763 EntityKind = 8;
6764 else {
6765 S.Diag(Loc, diag::err_template_spec_unknown_kind)
6766 << S.getLangOpts().CPlusPlus11;
6767 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
6768 return true;
6769 }
6770
6771 // C++ [temp.expl.spec]p2:
6772 // An explicit specialization shall be declared in the namespace
6773 // of which the template is a member, or, for member templates, in
6774 // the namespace of which the enclosing class or enclosing class
6775 // template is a member. An explicit specialization of a member
6776 // function, member class or static data member of a class
6777 // template shall be declared in the namespace of which the class
6778 // template is a member. Such a declaration may also be a
6779 // definition. If the declaration is not a definition, the
6780 // specialization may be defined later in the name- space in which
6781 // the explicit specialization was declared, or in a namespace
6782 // that encloses the one in which the explicit specialization was
6783 // declared.
6784 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6785 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
6786 << Specialized;
6787 return true;
6788 }
6789
6790 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
6791 if (S.getLangOpts().MicrosoftExt) {
6792 // Do not warn for class scope explicit specialization during
6793 // instantiation, warning was already emitted during pattern
6794 // semantic analysis.
6795 if (!S.inTemplateInstantiation())
6796 S.Diag(Loc, diag::ext_function_specialization_in_class)
6797 << Specialized;
6798 } else {
6799 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
6800 << Specialized;
6801 return true;
6802 }
6803 }
6804
6805 if (S.CurContext->isRecord() &&
6806 !S.CurContext->Equals(Specialized->getDeclContext())) {
6807 // Make sure that we're specializing in the right record context.
6808 // Otherwise, things can go horribly wrong.
6809 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
6810 << Specialized;
6811 return true;
6812 }
6813
6814 // C++ [temp.class.spec]p6:
6815 // A class template partial specialization may be declared or redeclared
6816 // in any namespace scope in which its definition may be defined (14.5.1
6817 // and 14.5.2).
6818 DeclContext *SpecializedContext
6819 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
6820 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
6821
6822 // Make sure that this redeclaration (or definition) occurs in an enclosing
6823 // namespace.
6824 // Note that HandleDeclarator() performs this check for explicit
6825 // specializations of function templates, static data members, and member
6826 // functions, so we skip the check here for those kinds of entities.
6827 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
6828 // Should we refactor that check, so that it occurs later?
6829 if (!DC->Encloses(SpecializedContext) &&
6830 !(isa<FunctionTemplateDecl>(Specialized) ||
6831 isa<FunctionDecl>(Specialized) ||
6832 isa<VarTemplateDecl>(Specialized) ||
6833 isa<VarDecl>(Specialized))) {
6834 if (isa<TranslationUnitDecl>(SpecializedContext))
6835 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
6836 << EntityKind << Specialized;
6837 else if (isa<NamespaceDecl>(SpecializedContext)) {
6838 int Diag = diag::err_template_spec_redecl_out_of_scope;
6839 if (S.getLangOpts().MicrosoftExt)
6840 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
6841 S.Diag(Loc, Diag) << EntityKind << Specialized
6842 << cast<NamedDecl>(SpecializedContext);
6843 } else
6844 llvm_unreachable("unexpected namespace context for specialization")::llvm::llvm_unreachable_internal("unexpected namespace context for specialization"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6844)
;
6845
6846 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
6847 } else if ((!PrevDecl ||
6848 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
6849 getTemplateSpecializationKind(PrevDecl) ==
6850 TSK_ImplicitInstantiation)) {
6851 // C++ [temp.exp.spec]p2:
6852 // An explicit specialization shall be declared in the namespace of which
6853 // the template is a member, or, for member templates, in the namespace
6854 // of which the enclosing class or enclosing class template is a member.
6855 // An explicit specialization of a member function, member class or
6856 // static data member of a class template shall be declared in the
6857 // namespace of which the class template is a member.
6858 //
6859 // C++11 [temp.expl.spec]p2:
6860 // An explicit specialization shall be declared in a namespace enclosing
6861 // the specialized template.
6862 // C++11 [temp.explicit]p3:
6863 // An explicit instantiation shall appear in an enclosing namespace of its
6864 // template.
6865 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
6866 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
6867 if (isa<TranslationUnitDecl>(SpecializedContext)) {
6868 assert(!IsCPlusPlus11Extension &&((!IsCPlusPlus11Extension && "DC encloses TU but isn't in enclosing namespace set"
) ? static_cast<void> (0) : __assert_fail ("!IsCPlusPlus11Extension && \"DC encloses TU but isn't in enclosing namespace set\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6869, __PRETTY_FUNCTION__))
6869 "DC encloses TU but isn't in enclosing namespace set")((!IsCPlusPlus11Extension && "DC encloses TU but isn't in enclosing namespace set"
) ? static_cast<void> (0) : __assert_fail ("!IsCPlusPlus11Extension && \"DC encloses TU but isn't in enclosing namespace set\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 6869, __PRETTY_FUNCTION__))
;
6870 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
6871 << EntityKind << Specialized;
6872 } else if (isa<NamespaceDecl>(SpecializedContext)) {
6873 int Diag;
6874 if (!IsCPlusPlus11Extension)
6875 Diag = diag::err_template_spec_decl_out_of_scope;
6876 else if (!S.getLangOpts().CPlusPlus11)
6877 Diag = diag::ext_template_spec_decl_out_of_scope;
6878 else
6879 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
6880 S.Diag(Loc, Diag)
6881 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
6882 }
6883
6884 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
6885 }
6886 }
6887
6888 return false;
6889}
6890
6891static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
6892 if (!E->isTypeDependent())
6893 return SourceLocation();
6894 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
6895 Checker.TraverseStmt(E);
6896 if (Checker.MatchLoc.isInvalid())
6897 return E->getSourceRange();
6898 return Checker.MatchLoc;
6899}
6900
6901static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
6902 if (!TL.getType()->isDependentType())
6903 return SourceLocation();
6904 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
6905 Checker.TraverseTypeLoc(TL);
6906 if (Checker.MatchLoc.isInvalid())
6907 return TL.getSourceRange();
6908 return Checker.MatchLoc;
6909}
6910
6911/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
6912/// that checks non-type template partial specialization arguments.
6913static bool CheckNonTypeTemplatePartialSpecializationArgs(
6914 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
6915 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
6916 for (unsigned I = 0; I != NumArgs; ++I) {
6917 if (Args[I].getKind() == TemplateArgument::Pack) {
6918 if (CheckNonTypeTemplatePartialSpecializationArgs(
6919 S, TemplateNameLoc, Param, Args[I].pack_begin(),
6920 Args[I].pack_size(), IsDefaultArgument))
6921 return true;
6922
6923 continue;
6924 }
6925
6926 if (Args[I].getKind() != TemplateArgument::Expression)
6927 continue;
6928
6929 Expr *ArgExpr = Args[I].getAsExpr();
6930
6931 // We can have a pack expansion of any of the bullets below.
6932 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
6933 ArgExpr = Expansion->getPattern();
6934
6935 // Strip off any implicit casts we added as part of type checking.
6936 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
6937 ArgExpr = ICE->getSubExpr();
6938
6939 // C++ [temp.class.spec]p8:
6940 // A non-type argument is non-specialized if it is the name of a
6941 // non-type parameter. All other non-type arguments are
6942 // specialized.
6943 //
6944 // Below, we check the two conditions that only apply to
6945 // specialized non-type arguments, so skip any non-specialized
6946 // arguments.
6947 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
6948 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
6949 continue;
6950
6951 // C++ [temp.class.spec]p9:
6952 // Within the argument list of a class template partial
6953 // specialization, the following restrictions apply:
6954 // -- A partially specialized non-type argument expression
6955 // shall not involve a template parameter of the partial
6956 // specialization except when the argument expression is a
6957 // simple identifier.
6958 // -- The type of a template parameter corresponding to a
6959 // specialized non-type argument shall not be dependent on a
6960 // parameter of the specialization.
6961 // DR1315 removes the first bullet, leaving an incoherent set of rules.
6962 // We implement a compromise between the original rules and DR1315:
6963 // -- A specialized non-type template argument shall not be
6964 // type-dependent and the corresponding template parameter
6965 // shall have a non-dependent type.
6966 SourceRange ParamUseRange =
6967 findTemplateParameterInType(Param->getDepth(), ArgExpr);
6968 if (ParamUseRange.isValid()) {
6969 if (IsDefaultArgument) {
6970 S.Diag(TemplateNameLoc,
6971 diag::err_dependent_non_type_arg_in_partial_spec);
6972 S.Diag(ParamUseRange.getBegin(),
6973 diag::note_dependent_non_type_default_arg_in_partial_spec)
6974 << ParamUseRange;
6975 } else {
6976 S.Diag(ParamUseRange.getBegin(),
6977 diag::err_dependent_non_type_arg_in_partial_spec)
6978 << ParamUseRange;
6979 }
6980 return true;
6981 }
6982
6983 ParamUseRange = findTemplateParameter(
6984 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
6985 if (ParamUseRange.isValid()) {
6986 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
6987 diag::err_dependent_typed_non_type_arg_in_partial_spec)
6988 << Param->getType();
6989 S.Diag(Param->getLocation(), diag::note_template_param_here)
6990 << (IsDefaultArgument ? ParamUseRange : SourceRange())
6991 << ParamUseRange;
6992 return true;
6993 }
6994 }
6995
6996 return false;
6997}
6998
6999/// \brief Check the non-type template arguments of a class template
7000/// partial specialization according to C++ [temp.class.spec]p9.
7001///
7002/// \param TemplateNameLoc the location of the template name.
7003/// \param PrimaryTemplate the template parameters of the primary class
7004/// template.
7005/// \param NumExplicit the number of explicitly-specified template arguments.
7006/// \param TemplateArgs the template arguments of the class template
7007/// partial specialization.
7008///
7009/// \returns \c true if there was an error, \c false otherwise.
7010bool Sema::CheckTemplatePartialSpecializationArgs(
7011 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
7012 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
7013 // We have to be conservative when checking a template in a dependent
7014 // context.
7015 if (PrimaryTemplate->getDeclContext()->isDependentContext())
7016 return false;
7017
7018 TemplateParameterList *TemplateParams =
7019 PrimaryTemplate->getTemplateParameters();
7020 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7021 NonTypeTemplateParmDecl *Param
7022 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
7023 if (!Param)
7024 continue;
7025
7026 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
7027 Param, &TemplateArgs[I],
7028 1, I >= NumExplicit))
7029 return true;
7030 }
7031
7032 return false;
7033}
7034
7035DeclResult
7036Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
7037 TagUseKind TUK,
7038 SourceLocation KWLoc,
7039 SourceLocation ModulePrivateLoc,
7040 TemplateIdAnnotation &TemplateId,
7041 AttributeList *Attr,
7042 MultiTemplateParamsArg
7043 TemplateParameterLists,
7044 SkipBodyInfo *SkipBody) {
7045 assert(TUK != TUK_Reference && "References are not specializations")((TUK != TUK_Reference && "References are not specializations"
) ? static_cast<void> (0) : __assert_fail ("TUK != TUK_Reference && \"References are not specializations\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7045, __PRETTY_FUNCTION__))
;
7046
7047 CXXScopeSpec &SS = TemplateId.SS;
7048
7049 // NOTE: KWLoc is the location of the tag keyword. This will instead
7050 // store the location of the outermost template keyword in the declaration.
7051 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
7052 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
7053 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
7054 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
7055 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
7056
7057 // Find the class template we're specializing
7058 TemplateName Name = TemplateId.Template.get();
7059 ClassTemplateDecl *ClassTemplate
7060 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
7061
7062 if (!ClassTemplate) {
7063 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
7064 << (Name.getAsTemplateDecl() &&
7065 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
7066 return true;
7067 }
7068
7069 bool isMemberSpecialization = false;
7070 bool isPartialSpecialization = false;
7071
7072 // Check the validity of the template headers that introduce this
7073 // template.
7074 // FIXME: We probably shouldn't complain about these headers for
7075 // friend declarations.
7076 bool Invalid = false;
7077 TemplateParameterList *TemplateParams =
7078 MatchTemplateParametersToScopeSpecifier(
7079 KWLoc, TemplateNameLoc, SS, &TemplateId,
7080 TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
7081 Invalid);
7082 if (Invalid)
7083 return true;
7084
7085 if (TemplateParams && TemplateParams->size() > 0) {
7086 isPartialSpecialization = true;
7087
7088 if (TUK == TUK_Friend) {
7089 Diag(KWLoc, diag::err_partial_specialization_friend)
7090 << SourceRange(LAngleLoc, RAngleLoc);
7091 return true;
7092 }
7093
7094 // C++ [temp.class.spec]p10:
7095 // The template parameter list of a specialization shall not
7096 // contain default template argument values.
7097 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7098 Decl *Param = TemplateParams->getParam(I);
7099 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
7100 if (TTP->hasDefaultArgument()) {
7101 Diag(TTP->getDefaultArgumentLoc(),
7102 diag::err_default_arg_in_partial_spec);
7103 TTP->removeDefaultArgument();
7104 }
7105 } else if (NonTypeTemplateParmDecl *NTTP
7106 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
7107 if (Expr *DefArg = NTTP->getDefaultArgument()) {
7108 Diag(NTTP->getDefaultArgumentLoc(),
7109 diag::err_default_arg_in_partial_spec)
7110 << DefArg->getSourceRange();
7111 NTTP->removeDefaultArgument();
7112 }
7113 } else {
7114 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
7115 if (TTP->hasDefaultArgument()) {
7116 Diag(TTP->getDefaultArgument().getLocation(),
7117 diag::err_default_arg_in_partial_spec)
7118 << TTP->getDefaultArgument().getSourceRange();
7119 TTP->removeDefaultArgument();
7120 }
7121 }
7122 }
7123 } else if (TemplateParams) {
7124 if (TUK == TUK_Friend)
7125 Diag(KWLoc, diag::err_template_spec_friend)
7126 << FixItHint::CreateRemoval(
7127 SourceRange(TemplateParams->getTemplateLoc(),
7128 TemplateParams->getRAngleLoc()))
7129 << SourceRange(LAngleLoc, RAngleLoc);
7130 } else {
7131 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl")((TUK == TUK_Friend && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("TUK == TUK_Friend && \"should have a 'template<>' for this decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7131, __PRETTY_FUNCTION__))
;
7132 }
7133
7134 // Check that the specialization uses the same tag kind as the
7135 // original template.
7136 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7137 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!")((Kind != TTK_Enum && "Invalid enum tag in class template spec!"
) ? static_cast<void> (0) : __assert_fail ("Kind != TTK_Enum && \"Invalid enum tag in class template spec!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7137, __PRETTY_FUNCTION__))
;
7138 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7139 Kind, TUK == TUK_Definition, KWLoc,
7140 ClassTemplate->getIdentifier())) {
7141 Diag(KWLoc, diag::err_use_with_wrong_tag)
7142 << ClassTemplate
7143 << FixItHint::CreateReplacement(KWLoc,
7144 ClassTemplate->getTemplatedDecl()->getKindName());
7145 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7146 diag::note_previous_use);
7147 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7148 }
7149
7150 // Translate the parser's template argument list in our AST format.
7151 TemplateArgumentListInfo TemplateArgs =
7152 makeTemplateArgumentListInfo(*this, TemplateId);
7153
7154 // Check for unexpanded parameter packs in any of the template arguments.
7155 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7156 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
7157 UPPC_PartialSpecialization))
7158 return true;
7159
7160 // Check that the template argument list is well-formed for this
7161 // template.
7162 SmallVector<TemplateArgument, 4> Converted;
7163 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7164 TemplateArgs, false, Converted))
7165 return true;
7166
7167 // Find the class template (partial) specialization declaration that
7168 // corresponds to these arguments.
7169 if (isPartialSpecialization) {
7170 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
7171 TemplateArgs.size(), Converted))
7172 return true;
7173
7174 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
7175 // also do it during instantiation.
7176 bool InstantiationDependent;
7177 if (!Name.isDependent() &&
7178 !TemplateSpecializationType::anyDependentTemplateArguments(
7179 TemplateArgs.arguments(), InstantiationDependent)) {
7180 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
7181 << ClassTemplate->getDeclName();
7182 isPartialSpecialization = false;
7183 }
7184 }
7185
7186 void *InsertPos = nullptr;
7187 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
7188
7189 if (isPartialSpecialization)
7190 // FIXME: Template parameter list matters, too
7191 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
7192 else
7193 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
7194
7195 ClassTemplateSpecializationDecl *Specialization = nullptr;
7196
7197 // Check whether we can declare a class template specialization in
7198 // the current scope.
7199 if (TUK != TUK_Friend &&
7200 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
7201 TemplateNameLoc,
7202 isPartialSpecialization))
7203 return true;
7204
7205 // The canonical type
7206 QualType CanonType;
7207 if (isPartialSpecialization) {
7208 // Build the canonical type that describes the converted template
7209 // arguments of the class template partial specialization.
7210 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7211 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
7212 Converted);
7213
7214 if (Context.hasSameType(CanonType,
7215 ClassTemplate->getInjectedClassNameSpecialization())) {
7216 // C++ [temp.class.spec]p9b3:
7217 //
7218 // -- The argument list of the specialization shall not be identical
7219 // to the implicit argument list of the primary template.
7220 //
7221 // This rule has since been removed, because it's redundant given DR1495,
7222 // but we keep it because it produces better diagnostics and recovery.
7223 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
7224 << /*class template*/0 << (TUK == TUK_Definition)
7225 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
7226 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
7227 ClassTemplate->getIdentifier(),
7228 TemplateNameLoc,
7229 Attr,
7230 TemplateParams,
7231 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
7232 /*FriendLoc*/SourceLocation(),
7233 TemplateParameterLists.size() - 1,
7234 TemplateParameterLists.data());
7235 }
7236
7237 // Create a new class template partial specialization declaration node.
7238 ClassTemplatePartialSpecializationDecl *PrevPartial
7239 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
7240 ClassTemplatePartialSpecializationDecl *Partial
7241 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
7242 ClassTemplate->getDeclContext(),
7243 KWLoc, TemplateNameLoc,
7244 TemplateParams,
7245 ClassTemplate,
7246 Converted,
7247 TemplateArgs,
7248 CanonType,
7249 PrevPartial);
7250 SetNestedNameSpecifier(Partial, SS);
7251 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
7252 Partial->setTemplateParameterListsInfo(
7253 Context, TemplateParameterLists.drop_back(1));
7254 }
7255
7256 if (!PrevPartial)
7257 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
7258 Specialization = Partial;
7259
7260 // If we are providing an explicit specialization of a member class
7261 // template specialization, make a note of that.
7262 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
7263 PrevPartial->setMemberSpecialization();
7264
7265 CheckTemplatePartialSpecialization(Partial);
7266 } else {
7267 // Create a new class template specialization declaration node for
7268 // this explicit specialization or friend declaration.
7269 Specialization
7270 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7271 ClassTemplate->getDeclContext(),
7272 KWLoc, TemplateNameLoc,
7273 ClassTemplate,
7274 Converted,
7275 PrevDecl);
7276 SetNestedNameSpecifier(Specialization, SS);
7277 if (TemplateParameterLists.size() > 0) {
7278 Specialization->setTemplateParameterListsInfo(Context,
7279 TemplateParameterLists);
7280 }
7281
7282 if (!PrevDecl)
7283 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7284
7285 if (CurContext->isDependentContext()) {
7286 // -fms-extensions permits specialization of nested classes without
7287 // fully specializing the outer class(es).
7288 assert(getLangOpts().MicrosoftExt &&((getLangOpts().MicrosoftExt && "Only possible with -fms-extensions!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MicrosoftExt && \"Only possible with -fms-extensions!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7289, __PRETTY_FUNCTION__))
7289 "Only possible with -fms-extensions!")((getLangOpts().MicrosoftExt && "Only possible with -fms-extensions!"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MicrosoftExt && \"Only possible with -fms-extensions!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7289, __PRETTY_FUNCTION__))
;
7290 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
7291 CanonType = Context.getTemplateSpecializationType(
7292 CanonTemplate, Converted);
7293 } else {
7294 CanonType = Context.getTypeDeclType(Specialization);
7295 }
7296 }
7297
7298 // C++ [temp.expl.spec]p6:
7299 // If a template, a member template or the member of a class template is
7300 // explicitly specialized then that specialization shall be declared
7301 // before the first use of that specialization that would cause an implicit
7302 // instantiation to take place, in every translation unit in which such a
7303 // use occurs; no diagnostic is required.
7304 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
7305 bool Okay = false;
7306 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7307 // Is there any previous explicit specialization declaration?
7308 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
7309 Okay = true;
7310 break;
7311 }
7312 }
7313
7314 if (!Okay) {
7315 SourceRange Range(TemplateNameLoc, RAngleLoc);
7316 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
7317 << Context.getTypeDeclType(Specialization) << Range;
7318
7319 Diag(PrevDecl->getPointOfInstantiation(),
7320 diag::note_instantiation_required_here)
7321 << (PrevDecl->getTemplateSpecializationKind()
7322 != TSK_ImplicitInstantiation);
7323 return true;
7324 }
7325 }
7326
7327 // If this is not a friend, note that this is an explicit specialization.
7328 if (TUK != TUK_Friend)
7329 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
7330
7331 // Check that this isn't a redefinition of this specialization.
7332 if (TUK == TUK_Definition) {
7333 RecordDecl *Def = Specialization->getDefinition();
7334 NamedDecl *Hidden = nullptr;
7335 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
7336 SkipBody->ShouldSkip = true;
7337 makeMergedDefinitionVisible(Hidden, KWLoc);
7338 // From here on out, treat this as just a redeclaration.
7339 TUK = TUK_Declaration;
7340 } else if (Def) {
7341 SourceRange Range(TemplateNameLoc, RAngleLoc);
7342 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
7343 Diag(Def->getLocation(), diag::note_previous_definition);
7344 Specialization->setInvalidDecl();
7345 return true;
7346 }
7347 }
7348
7349 if (Attr)
7350 ProcessDeclAttributeList(S, Specialization, Attr);
7351
7352 // Add alignment attributes if necessary; these attributes are checked when
7353 // the ASTContext lays out the structure.
7354 if (TUK == TUK_Definition) {
7355 AddAlignmentAttributesForRecord(Specialization);
7356 AddMsStructLayoutForRecord(Specialization);
7357 }
7358
7359 if (ModulePrivateLoc.isValid())
7360 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
7361 << (isPartialSpecialization? 1 : 0)
7362 << FixItHint::CreateRemoval(ModulePrivateLoc);
7363
7364 // Build the fully-sugared type for this class template
7365 // specialization as the user wrote in the specialization
7366 // itself. This means that we'll pretty-print the type retrieved
7367 // from the specialization's declaration the way that the user
7368 // actually wrote the specialization, rather than formatting the
7369 // name based on the "canonical" representation used to store the
7370 // template arguments in the specialization.
7371 TypeSourceInfo *WrittenTy
7372 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7373 TemplateArgs, CanonType);
7374 if (TUK != TUK_Friend) {
7375 Specialization->setTypeAsWritten(WrittenTy);
7376 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
7377 }
7378
7379 // C++ [temp.expl.spec]p9:
7380 // A template explicit specialization is in the scope of the
7381 // namespace in which the template was defined.
7382 //
7383 // We actually implement this paragraph where we set the semantic
7384 // context (in the creation of the ClassTemplateSpecializationDecl),
7385 // but we also maintain the lexical context where the actual
7386 // definition occurs.
7387 Specialization->setLexicalDeclContext(CurContext);
7388
7389 // We may be starting the definition of this specialization.
7390 if (TUK == TUK_Definition)
7391 Specialization->startDefinition();
7392
7393 if (TUK == TUK_Friend) {
7394 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
7395 TemplateNameLoc,
7396 WrittenTy,
7397 /*FIXME:*/KWLoc);
7398 Friend->setAccess(AS_public);
7399 CurContext->addDecl(Friend);
7400 } else {
7401 // Add the specialization into its lexical context, so that it can
7402 // be seen when iterating through the list of declarations in that
7403 // context. However, specializations are not found by name lookup.
7404 CurContext->addDecl(Specialization);
7405 }
7406 return Specialization;
7407}
7408
7409Decl *Sema::ActOnTemplateDeclarator(Scope *S,
7410 MultiTemplateParamsArg TemplateParameterLists,
7411 Declarator &D) {
7412 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
7413 ActOnDocumentableDecl(NewDecl);
7414 return NewDecl;
7415}
7416
7417/// \brief Strips various properties off an implicit instantiation
7418/// that has just been explicitly specialized.
7419static void StripImplicitInstantiation(NamedDecl *D) {
7420 D->dropAttr<DLLImportAttr>();
7421 D->dropAttr<DLLExportAttr>();
7422
7423 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
7424 FD->setInlineSpecified(false);
7425}
7426
7427/// \brief Compute the diagnostic location for an explicit instantiation
7428// declaration or definition.
7429static SourceLocation DiagLocForExplicitInstantiation(
7430 NamedDecl* D, SourceLocation PointOfInstantiation) {
7431 // Explicit instantiations following a specialization have no effect and
7432 // hence no PointOfInstantiation. In that case, walk decl backwards
7433 // until a valid name loc is found.
7434 SourceLocation PrevDiagLoc = PointOfInstantiation;
7435 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
7436 Prev = Prev->getPreviousDecl()) {
7437 PrevDiagLoc = Prev->getLocation();
7438 }
7439 assert(PrevDiagLoc.isValid() &&((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7440, __PRETTY_FUNCTION__))
7440 "Explicit instantiation without point of instantiation?")((PrevDiagLoc.isValid() && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("PrevDiagLoc.isValid() && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7440, __PRETTY_FUNCTION__))
;
7441 return PrevDiagLoc;
7442}
7443
7444/// \brief Diagnose cases where we have an explicit template specialization
7445/// before/after an explicit template instantiation, producing diagnostics
7446/// for those cases where they are required and determining whether the
7447/// new specialization/instantiation will have any effect.
7448///
7449/// \param NewLoc the location of the new explicit specialization or
7450/// instantiation.
7451///
7452/// \param NewTSK the kind of the new explicit specialization or instantiation.
7453///
7454/// \param PrevDecl the previous declaration of the entity.
7455///
7456/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
7457///
7458/// \param PrevPointOfInstantiation if valid, indicates where the previus
7459/// declaration was instantiated (either implicitly or explicitly).
7460///
7461/// \param HasNoEffect will be set to true to indicate that the new
7462/// specialization or instantiation has no effect and should be ignored.
7463///
7464/// \returns true if there was an error that should prevent the introduction of
7465/// the new declaration into the AST, false otherwise.
7466bool
7467Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7468 TemplateSpecializationKind NewTSK,
7469 NamedDecl *PrevDecl,
7470 TemplateSpecializationKind PrevTSK,
7471 SourceLocation PrevPointOfInstantiation,
7472 bool &HasNoEffect) {
7473 HasNoEffect = false;
7474
7475 switch (NewTSK) {
7476 case TSK_Undeclared:
7477 case TSK_ImplicitInstantiation:
7478 assert((((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7480, __PRETTY_FUNCTION__))
7479 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7480, __PRETTY_FUNCTION__))
7480 "previous declaration must be implicit!")(((PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation
) && "previous declaration must be implicit!") ? static_cast
<void> (0) : __assert_fail ("(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && \"previous declaration must be implicit!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7480, __PRETTY_FUNCTION__))
;
7481 return false;
7482
7483 case TSK_ExplicitSpecialization:
7484 switch (PrevTSK) {
7485 case TSK_Undeclared:
7486 case TSK_ExplicitSpecialization:
7487 // Okay, we're just specializing something that is either already
7488 // explicitly specialized or has merely been mentioned without any
7489 // instantiation.
7490 return false;
7491
7492 case TSK_ImplicitInstantiation:
7493 if (PrevPointOfInstantiation.isInvalid()) {
7494 // The declaration itself has not actually been instantiated, so it is
7495 // still okay to specialize it.
7496 StripImplicitInstantiation(PrevDecl);
7497 return false;
7498 }
7499 // Fall through
7500
7501 case TSK_ExplicitInstantiationDeclaration:
7502 case TSK_ExplicitInstantiationDefinition:
7503 assert((PrevTSK == TSK_ImplicitInstantiation ||(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7505, __PRETTY_FUNCTION__))
7504 PrevPointOfInstantiation.isValid()) &&(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7505, __PRETTY_FUNCTION__))
7505 "Explicit instantiation without point of instantiation?")(((PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation
.isValid()) && "Explicit instantiation without point of instantiation?"
) ? static_cast<void> (0) : __assert_fail ("(PrevTSK == TSK_ImplicitInstantiation || PrevPointOfInstantiation.isValid()) && \"Explicit instantiation without point of instantiation?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7505, __PRETTY_FUNCTION__))
;
7506
7507 // C++ [temp.expl.spec]p6:
7508 // If a template, a member template or the member of a class template
7509 // is explicitly specialized then that specialization shall be declared
7510 // before the first use of that specialization that would cause an
7511 // implicit instantiation to take place, in every translation unit in
7512 // which such a use occurs; no diagnostic is required.
7513 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7514 // Is there any previous explicit specialization declaration?
7515 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
7516 return false;
7517 }
7518
7519 Diag(NewLoc, diag::err_specialization_after_instantiation)
7520 << PrevDecl;
7521 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
7522 << (PrevTSK != TSK_ImplicitInstantiation);
7523
7524 return true;
7525 }
7526
7527 case TSK_ExplicitInstantiationDeclaration:
7528 switch (PrevTSK) {
7529 case TSK_ExplicitInstantiationDeclaration:
7530 // This explicit instantiation declaration is redundant (that's okay).
7531 HasNoEffect = true;
7532 return false;
7533
7534 case TSK_Undeclared:
7535 case TSK_ImplicitInstantiation:
7536 // We're explicitly instantiating something that may have already been
7537 // implicitly instantiated; that's fine.
7538 return false;
7539
7540 case TSK_ExplicitSpecialization:
7541 // C++0x [temp.explicit]p4:
7542 // For a given set of template parameters, if an explicit instantiation
7543 // of a template appears after a declaration of an explicit
7544 // specialization for that template, the explicit instantiation has no
7545 // effect.
7546 HasNoEffect = true;
7547 return false;
7548
7549 case TSK_ExplicitInstantiationDefinition:
7550 // C++0x [temp.explicit]p10:
7551 // If an entity is the subject of both an explicit instantiation
7552 // declaration and an explicit instantiation definition in the same
7553 // translation unit, the definition shall follow the declaration.
7554 Diag(NewLoc,
7555 diag::err_explicit_instantiation_declaration_after_definition);
7556
7557 // Explicit instantiations following a specialization have no effect and
7558 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
7559 // until a valid name loc is found.
7560 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
7561 diag::note_explicit_instantiation_definition_here);
7562 HasNoEffect = true;
7563 return false;
7564 }
7565
7566 case TSK_ExplicitInstantiationDefinition:
7567 switch (PrevTSK) {
7568 case TSK_Undeclared:
7569 case TSK_ImplicitInstantiation:
7570 // We're explicitly instantiating something that may have already been
7571 // implicitly instantiated; that's fine.
7572 return false;
7573
7574 case TSK_ExplicitSpecialization:
7575 // C++ DR 259, C++0x [temp.explicit]p4:
7576 // For a given set of template parameters, if an explicit
7577 // instantiation of a template appears after a declaration of
7578 // an explicit specialization for that template, the explicit
7579 // instantiation has no effect.
7580 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
7581 << PrevDecl;
7582 Diag(PrevDecl->getLocation(),
7583 diag::note_previous_template_specialization);
7584 HasNoEffect = true;
7585 return false;
7586
7587 case TSK_ExplicitInstantiationDeclaration:
7588 // We're explicity instantiating a definition for something for which we
7589 // were previously asked to suppress instantiations. That's fine.
7590
7591 // C++0x [temp.explicit]p4:
7592 // For a given set of template parameters, if an explicit instantiation
7593 // of a template appears after a declaration of an explicit
7594 // specialization for that template, the explicit instantiation has no
7595 // effect.
7596 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
7597 // Is there any previous explicit specialization declaration?
7598 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
7599 HasNoEffect = true;
7600 break;
7601 }
7602 }
7603
7604 return false;
7605
7606 case TSK_ExplicitInstantiationDefinition:
7607 // C++0x [temp.spec]p5:
7608 // For a given template and a given set of template-arguments,
7609 // - an explicit instantiation definition shall appear at most once
7610 // in a program,
7611
7612 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
7613 Diag(NewLoc, (getLangOpts().MSVCCompat)
7614 ? diag::ext_explicit_instantiation_duplicate
7615 : diag::err_explicit_instantiation_duplicate)
7616 << PrevDecl;
7617 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
7618 diag::note_previous_explicit_instantiation);
7619 HasNoEffect = true;
7620 return false;
7621 }
7622 }
7623
7624 llvm_unreachable("Missing specialization/instantiation case?")::llvm::llvm_unreachable_internal("Missing specialization/instantiation case?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaTemplate.cpp"
, 7624)
;
7625}
7626
7627/// \brief Perform semantic analysis for the given dependent function
7628/// template specialization.
7629///
7630/// The only possible way to get a dependent function template specialization
7631/// is with a friend declaration, like so:
7632///
7633/// \code
7634/// template \<class T> void foo(T);
7635/// template \<class T> class A {
7636/// friend void foo<>(T);
7637/// };
7638/// \endcode
7639///
7640/// There really isn't any useful analysis we can do here, so we
7641/// just store the information.
7642bool
7643Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
7644 const TemplateArgumentListInfo &ExplicitTemplateArgs,
7645 LookupResult &Previous) {
7646 // Remove anything from Previous that isn't a function template in
7647 // the correct context.
7648 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
7649 LookupResult::Filter F = Previous.makeFilter();
7650 while (F.hasNext()) {
7651 NamedDecl *D = F.next()->getUnderlyingDecl();
7652 if (!isa<FunctionTemplateDecl>(D) ||
7653 !FDLookupContext->InEnclosingNamespaceSetOf(
7654 D->getDeclContext()->getRedeclContext()))
7655 F.erase();
7656 }
7657 F.done();
7658
7659 // Should this be diagnosed here?
7660 if (Previous.empty()) return true;
7661
7662 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
7663 ExplicitTemplateArgs);
7664 return false;
7665}
7666
7667/// \brief Perform semantic analysis for the given function template
7668/// specialization.
7669///
7670/// This routine performs all of the semantic analysis required for an
7671/// explicit function template specialization. On successful completion,
7672/// the function declaration \p FD will become a function template
7673/// specialization.
7674///
7675/// \param FD the function declaration, which will be updated to become a
7676/// function template specialization.
7677///
7678/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
7679/// if any. Note that this may be valid info even when 0 arguments are
7680/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
7681/// as it anyway contains info on the angle brackets locations.
7682///
7683/// \param Previous the set of declarations that may be specialized by
7684/// this function specialization.
7685bool Sema::CheckFunctionTemplateSpecialization(
7686 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
7687 LookupResult &Previous) {
7688 // The set of function template specializations that could match this
7689 // explicit function template specialization.
7690 UnresolvedSet<8> Candidates;
7691 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
7692 /*ForTakingAddress=*/false);
7693
7694 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
7695 ConvertedTemplateArgs;
7696
7697 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
7698 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7699 I != E; ++I) {
7700 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
7701 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
7702 // Only consider templates found within the same semantic lookup scope as
7703 // FD.
7704 if (!FDLookupContext->InEnclosingNamespaceSetOf(
7705 Ovl->getDeclContext()->getRedeclContext()))
7706 continue;
7707
7708 // When matching a constexpr member function template specialization
7709 // against the primary template, we don't yet know whether the
7710 // specialization has an implicit 'const' (because we don't know whether
7711 // it will be a static member function until we know which template it
7712 // specializes), so adjust it now assuming it specializes this template.
7713 QualType FT = FD->getType();
7714 if (FD->isConstexpr()) {
7715 CXXMethodDecl *OldMD =
7716 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
7717 if (OldMD && OldMD->isConst()) {
7718 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
7719 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7720 EPI.TypeQuals |= Qualifiers::Const;
7721 FT = Context.getFunctionType(FPT->getReturnType(),
7722 FPT->getParamTypes(), EPI);
7723 }
7724 }
7725
7726 TemplateArgumentListInfo Args;
7727 if (ExplicitTemplateArgs)
7728 Args = *ExplicitTemplateArgs;
7729
7730 // C++ [temp.expl.spec]p11:
7731 // A trailing template-argument can be left unspecified in the
7732 // template-id naming an explicit function template specialization
7733 // provided it can be deduced from the function argument type.
7734 // Perform template argument deduction to determine whether we may be
7735 // specializing this template.
7736 // FIXME: It is somewhat wasteful to build
7737 TemplateDeductionInfo Info(FailedCandidates.getLocation());
7738 FunctionDecl *Specialization = nullptr;
7739 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
7740 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
7741 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
7742 Info)) {
7743 // Template argument deduction failed; record why it failed, so
7744 // that we can provide nifty diagnostics.
7745 FailedCandidates.addCandidate().set(
7746 I.getPair(), FunTmpl->getTemplatedDecl(),
7747 MakeDeductionFailureInfo(Context, TDK, Info));
7748 (void)TDK;
7749 continue;
7750 }
7751
7752 // Target attributes are part of the cuda function signature, so
7753 // the deduced template's cuda target must match that of the
7754 // specialization. Given that C++ template deduction does not
7755 // take target attributes into account, we reject candidates
7756 // here that have a different target.
7757 if (LangOpts.CUDA &&
7758 IdentifyCUDATarget(Specialization,
7759 /* IgnoreImplicitHDAttributes = */ true) !=
7760 IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttributes = */ true)) {
7761 FailedCandidates.addCandidate().set(
7762 I.getPair(), FunTmpl->getTemplatedDecl(),
7763 MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
7764 continue;
7765 }
7766
7767 // Record this candidate.<