Bug Summary

File:clang/lib/Sema/SemaTemplateInstantiateDecl.cpp
Warning:line 5534, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaTemplateInstantiateDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp

1//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===/
7//
8// This file implements C++ template instantiation for declarations.
9//
10//===----------------------------------------------------------------------===/
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTMutationListener.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/DeclVisitor.h"
18#include "clang/AST/DependentDiagnostic.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/PrettyDeclStackTrace.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/ScopeInfo.h"
28#include "clang/Sema/SemaInternal.h"
29#include "clang/Sema/Template.h"
30#include "clang/Sema/TemplateInstCallback.h"
31#include "llvm/Support/TimeProfiler.h"
32
33using namespace clang;
34
35static bool isDeclWithinFunction(const Decl *D) {
36 const DeclContext *DC = D->getDeclContext();
37 if (DC->isFunctionOrMethod())
38 return true;
39
40 if (DC->isRecord())
41 return cast<CXXRecordDecl>(DC)->isLocalClass();
42
43 return false;
44}
45
46template<typename DeclT>
47static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl,
48 const MultiLevelTemplateArgumentList &TemplateArgs) {
49 if (!OldDecl->getQualifierLoc())
50 return false;
51
52 assert((NewDecl->getFriendObjectKind() ||(static_cast <bool> ((NewDecl->getFriendObjectKind()
|| !OldDecl->getLexicalDeclContext()->isDependentContext
()) && "non-friend with qualified name defined in dependent context"
) ? void (0) : __assert_fail ("(NewDecl->getFriendObjectKind() || !OldDecl->getLexicalDeclContext()->isDependentContext()) && \"non-friend with qualified name defined in dependent context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 54, __extension__ __PRETTY_FUNCTION__))
53 !OldDecl->getLexicalDeclContext()->isDependentContext()) &&(static_cast <bool> ((NewDecl->getFriendObjectKind()
|| !OldDecl->getLexicalDeclContext()->isDependentContext
()) && "non-friend with qualified name defined in dependent context"
) ? void (0) : __assert_fail ("(NewDecl->getFriendObjectKind() || !OldDecl->getLexicalDeclContext()->isDependentContext()) && \"non-friend with qualified name defined in dependent context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 54, __extension__ __PRETTY_FUNCTION__))
54 "non-friend with qualified name defined in dependent context")(static_cast <bool> ((NewDecl->getFriendObjectKind()
|| !OldDecl->getLexicalDeclContext()->isDependentContext
()) && "non-friend with qualified name defined in dependent context"
) ? void (0) : __assert_fail ("(NewDecl->getFriendObjectKind() || !OldDecl->getLexicalDeclContext()->isDependentContext()) && \"non-friend with qualified name defined in dependent context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 54, __extension__ __PRETTY_FUNCTION__))
;
55 Sema::ContextRAII SavedContext(
56 SemaRef,
57 const_cast<DeclContext *>(NewDecl->getFriendObjectKind()
58 ? NewDecl->getLexicalDeclContext()
59 : OldDecl->getLexicalDeclContext()));
60
61 NestedNameSpecifierLoc NewQualifierLoc
62 = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(),
63 TemplateArgs);
64
65 if (!NewQualifierLoc)
66 return true;
67
68 NewDecl->setQualifierInfo(NewQualifierLoc);
69 return false;
70}
71
72bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl,
73 DeclaratorDecl *NewDecl) {
74 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
75}
76
77bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl,
78 TagDecl *NewDecl) {
79 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
80}
81
82// Include attribute instantiation code.
83#include "clang/Sema/AttrTemplateInstantiate.inc"
84
85static void instantiateDependentAlignedAttr(
86 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
87 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) {
88 if (Aligned->isAlignmentExpr()) {
89 // The alignment expression is a constant expression.
90 EnterExpressionEvaluationContext Unevaluated(
91 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
92 ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs);
93 if (!Result.isInvalid())
94 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion);
95 } else {
96 TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(),
97 TemplateArgs, Aligned->getLocation(),
98 DeclarationName());
99 if (Result)
100 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion);
101 }
102}
103
104static void instantiateDependentAlignedAttr(
105 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
106 const AlignedAttr *Aligned, Decl *New) {
107 if (!Aligned->isPackExpansion()) {
108 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
109 return;
110 }
111
112 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
113 if (Aligned->isAlignmentExpr())
114 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(),
115 Unexpanded);
116 else
117 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(),
118 Unexpanded);
119 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?")(static_cast <bool> (!Unexpanded.empty() && "Pack expansion without parameter packs?"
) ? void (0) : __assert_fail ("!Unexpanded.empty() && \"Pack expansion without parameter packs?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 119, __extension__ __PRETTY_FUNCTION__))
;
120
121 // Determine whether we can expand this attribute pack yet.
122 bool Expand = true, RetainExpansion = false;
123 Optional<unsigned> NumExpansions;
124 // FIXME: Use the actual location of the ellipsis.
125 SourceLocation EllipsisLoc = Aligned->getLocation();
126 if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(),
127 Unexpanded, TemplateArgs, Expand,
128 RetainExpansion, NumExpansions))
129 return;
130
131 if (!Expand) {
132 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1);
133 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true);
134 } else {
135 for (unsigned I = 0; I != *NumExpansions; ++I) {
136 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
137 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
138 }
139 }
140}
141
142static void instantiateDependentAssumeAlignedAttr(
143 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
144 const AssumeAlignedAttr *Aligned, Decl *New) {
145 // The alignment expression is a constant expression.
146 EnterExpressionEvaluationContext Unevaluated(
147 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
148
149 Expr *E, *OE = nullptr;
150 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
151 if (Result.isInvalid())
152 return;
153 E = Result.getAs<Expr>();
154
155 if (Aligned->getOffset()) {
156 Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs);
157 if (Result.isInvalid())
158 return;
159 OE = Result.getAs<Expr>();
160 }
161
162 S.AddAssumeAlignedAttr(New, *Aligned, E, OE);
163}
164
165static void instantiateDependentAlignValueAttr(
166 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
167 const AlignValueAttr *Aligned, Decl *New) {
168 // The alignment expression is a constant expression.
169 EnterExpressionEvaluationContext Unevaluated(
170 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
171 ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
172 if (!Result.isInvalid())
173 S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>());
174}
175
176static void instantiateDependentAllocAlignAttr(
177 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
178 const AllocAlignAttr *Align, Decl *New) {
179 Expr *Param = IntegerLiteral::Create(
180 S.getASTContext(),
181 llvm::APInt(64, Align->getParamIndex().getSourceIndex()),
182 S.getASTContext().UnsignedLongLongTy, Align->getLocation());
183 S.AddAllocAlignAttr(New, *Align, Param);
184}
185
186static void instantiateDependentAnnotationAttr(
187 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
188 const AnnotateAttr *Attr, Decl *New) {
189 EnterExpressionEvaluationContext Unevaluated(
190 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
191 SmallVector<Expr *, 4> Args;
192 Args.reserve(Attr->args_size());
193 for (auto *E : Attr->args()) {
194 ExprResult Result = S.SubstExpr(E, TemplateArgs);
195 if (!Result.isUsable())
196 return;
197 Args.push_back(Result.get());
198 }
199 S.AddAnnotationAttr(New, *Attr, Attr->getAnnotation(), Args);
200}
201
202static Expr *instantiateDependentFunctionAttrCondition(
203 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
204 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) {
205 Expr *Cond = nullptr;
206 {
207 Sema::ContextRAII SwitchContext(S, New);
208 EnterExpressionEvaluationContext Unevaluated(
209 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
210 ExprResult Result = S.SubstExpr(OldCond, TemplateArgs);
211 if (Result.isInvalid())
212 return nullptr;
213 Cond = Result.getAs<Expr>();
214 }
215 if (!Cond->isTypeDependent()) {
216 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
217 if (Converted.isInvalid())
218 return nullptr;
219 Cond = Converted.get();
220 }
221
222 SmallVector<PartialDiagnosticAt, 8> Diags;
223 if (OldCond->isValueDependent() && !Cond->isValueDependent() &&
224 !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) {
225 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A;
226 for (const auto &P : Diags)
227 S.Diag(P.first, P.second);
228 return nullptr;
229 }
230 return Cond;
231}
232
233static void instantiateDependentEnableIfAttr(
234 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
235 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) {
236 Expr *Cond = instantiateDependentFunctionAttrCondition(
237 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New);
238
239 if (Cond)
240 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA,
241 Cond, EIA->getMessage()));
242}
243
244static void instantiateDependentDiagnoseIfAttr(
245 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
246 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) {
247 Expr *Cond = instantiateDependentFunctionAttrCondition(
248 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New);
249
250 if (Cond)
251 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr(
252 S.getASTContext(), *DIA, Cond, DIA->getMessage(),
253 DIA->getDiagnosticType(), DIA->getArgDependent(), New));
254}
255
256// Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
257// template A as the base and arguments from TemplateArgs.
258static void instantiateDependentCUDALaunchBoundsAttr(
259 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
260 const CUDALaunchBoundsAttr &Attr, Decl *New) {
261 // The alignment expression is a constant expression.
262 EnterExpressionEvaluationContext Unevaluated(
263 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
264
265 ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs);
266 if (Result.isInvalid())
267 return;
268 Expr *MaxThreads = Result.getAs<Expr>();
269
270 Expr *MinBlocks = nullptr;
271 if (Attr.getMinBlocks()) {
272 Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs);
273 if (Result.isInvalid())
274 return;
275 MinBlocks = Result.getAs<Expr>();
276 }
277
278 S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks);
279}
280
281static void
282instantiateDependentModeAttr(Sema &S,
283 const MultiLevelTemplateArgumentList &TemplateArgs,
284 const ModeAttr &Attr, Decl *New) {
285 S.AddModeAttr(New, Attr, Attr.getMode(),
286 /*InInstantiation=*/true);
287}
288
289/// Instantiation of 'declare simd' attribute and its arguments.
290static void instantiateOMPDeclareSimdDeclAttr(
291 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
292 const OMPDeclareSimdDeclAttr &Attr, Decl *New) {
293 // Allow 'this' in clauses with varlists.
294 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
295 New = FTD->getTemplatedDecl();
296 auto *FD = cast<FunctionDecl>(New);
297 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
298 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps;
299 SmallVector<unsigned, 4> LinModifiers;
300
301 auto SubstExpr = [&](Expr *E) -> ExprResult {
302 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
303 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
304 Sema::ContextRAII SavedContext(S, FD);
305 LocalInstantiationScope Local(S);
306 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
307 Local.InstantiatedLocal(
308 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
309 return S.SubstExpr(E, TemplateArgs);
310 }
311 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
312 FD->isCXXInstanceMember());
313 return S.SubstExpr(E, TemplateArgs);
314 };
315
316 // Substitute a single OpenMP clause, which is a potentially-evaluated
317 // full-expression.
318 auto Subst = [&](Expr *E) -> ExprResult {
319 EnterExpressionEvaluationContext Evaluated(
320 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
321 ExprResult Res = SubstExpr(E);
322 if (Res.isInvalid())
323 return Res;
324 return S.ActOnFinishFullExpr(Res.get(), false);
325 };
326
327 ExprResult Simdlen;
328 if (auto *E = Attr.getSimdlen())
329 Simdlen = Subst(E);
330
331 if (Attr.uniforms_size() > 0) {
332 for(auto *E : Attr.uniforms()) {
333 ExprResult Inst = Subst(E);
334 if (Inst.isInvalid())
335 continue;
336 Uniforms.push_back(Inst.get());
337 }
338 }
339
340 auto AI = Attr.alignments_begin();
341 for (auto *E : Attr.aligneds()) {
342 ExprResult Inst = Subst(E);
343 if (Inst.isInvalid())
344 continue;
345 Aligneds.push_back(Inst.get());
346 Inst = ExprEmpty();
347 if (*AI)
348 Inst = S.SubstExpr(*AI, TemplateArgs);
349 Alignments.push_back(Inst.get());
350 ++AI;
351 }
352
353 auto SI = Attr.steps_begin();
354 for (auto *E : Attr.linears()) {
355 ExprResult Inst = Subst(E);
356 if (Inst.isInvalid())
357 continue;
358 Linears.push_back(Inst.get());
359 Inst = ExprEmpty();
360 if (*SI)
361 Inst = S.SubstExpr(*SI, TemplateArgs);
362 Steps.push_back(Inst.get());
363 ++SI;
364 }
365 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end());
366 (void)S.ActOnOpenMPDeclareSimdDirective(
367 S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(),
368 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps,
369 Attr.getRange());
370}
371
372/// Instantiation of 'declare variant' attribute and its arguments.
373static void instantiateOMPDeclareVariantAttr(
374 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
375 const OMPDeclareVariantAttr &Attr, Decl *New) {
376 // Allow 'this' in clauses with varlists.
377 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
378 New = FTD->getTemplatedDecl();
379 auto *FD = cast<FunctionDecl>(New);
380 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
381
382 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) {
383 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
384 if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
385 Sema::ContextRAII SavedContext(S, FD);
386 LocalInstantiationScope Local(S);
387 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
388 Local.InstantiatedLocal(
389 PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
390 return S.SubstExpr(E, TemplateArgs);
391 }
392 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
393 FD->isCXXInstanceMember());
394 return S.SubstExpr(E, TemplateArgs);
395 };
396
397 // Substitute a single OpenMP clause, which is a potentially-evaluated
398 // full-expression.
399 auto &&Subst = [&SubstExpr, &S](Expr *E) {
400 EnterExpressionEvaluationContext Evaluated(
401 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
402 ExprResult Res = SubstExpr(E);
403 if (Res.isInvalid())
404 return Res;
405 return S.ActOnFinishFullExpr(Res.get(), false);
406 };
407
408 ExprResult VariantFuncRef;
409 if (Expr *E = Attr.getVariantFuncRef()) {
410 // Do not mark function as is used to prevent its emission if this is the
411 // only place where it is used.
412 EnterExpressionEvaluationContext Unevaluated(
413 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
414 VariantFuncRef = Subst(E);
415 }
416
417 // Copy the template version of the OMPTraitInfo and run substitute on all
418 // score and condition expressiosn.
419 OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo();
420 TI = *Attr.getTraitInfos();
421
422 // Try to substitute template parameters in score and condition expressions.
423 auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) {
424 if (E) {
425 EnterExpressionEvaluationContext Unevaluated(
426 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
427 ExprResult ER = Subst(E);
428 if (ER.isUsable())
429 E = ER.get();
430 else
431 return true;
432 }
433 return false;
434 };
435 if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr))
436 return;
437
438 Expr *E = VariantFuncRef.get();
439 // Check function/variant ref for `omp declare variant` but not for `omp
440 // begin declare variant` (which use implicit attributes).
441 Optional<std::pair<FunctionDecl *, Expr *>> DeclVarData =
442 S.checkOpenMPDeclareVariantFunction(S.ConvertDeclToDeclGroup(New),
443 VariantFuncRef.get(), TI,
444 Attr.getRange());
445
446 if (!DeclVarData)
447 return;
448
449 E = DeclVarData.getValue().second;
450 FD = DeclVarData.getValue().first;
451
452 if (auto *VariantDRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
453 if (auto *VariantFD = dyn_cast<FunctionDecl>(VariantDRE->getDecl())) {
454 if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) {
455 if (!VariantFTD->isThisDeclarationADefinition())
456 return;
457 Sema::TentativeAnalysisScope Trap(S);
458 const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy(
459 S.Context, TemplateArgs.getInnermost());
460
461 auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL,
462 New->getLocation());
463 if (!SubstFD)
464 return;
465 QualType NewType = S.Context.mergeFunctionTypes(
466 SubstFD->getType(), FD->getType(),
467 /* OfBlockPointer */ false,
468 /* Unqualified */ false, /* AllowCXX */ true);
469 if (NewType.isNull())
470 return;
471 S.InstantiateFunctionDefinition(
472 New->getLocation(), SubstFD, /* Recursive */ true,
473 /* DefinitionRequired */ false, /* AtEndOfTU */ false);
474 SubstFD->setInstantiationIsPending(!SubstFD->isDefined());
475 E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(),
476 SourceLocation(), SubstFD,
477 /* RefersToEnclosingVariableOrCapture */ false,
478 /* NameLoc */ SubstFD->getLocation(),
479 SubstFD->getType(), ExprValueKind::VK_PRValue);
480 }
481 }
482 }
483
484 S.ActOnOpenMPDeclareVariantDirective(FD, E, TI, Attr.getRange());
485}
486
487static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
488 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
489 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) {
490 // Both min and max expression are constant expressions.
491 EnterExpressionEvaluationContext Unevaluated(
492 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
493
494 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
495 if (Result.isInvalid())
496 return;
497 Expr *MinExpr = Result.getAs<Expr>();
498
499 Result = S.SubstExpr(Attr.getMax(), TemplateArgs);
500 if (Result.isInvalid())
501 return;
502 Expr *MaxExpr = Result.getAs<Expr>();
503
504 S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr);
505}
506
507static ExplicitSpecifier
508instantiateExplicitSpecifier(Sema &S,
509 const MultiLevelTemplateArgumentList &TemplateArgs,
510 ExplicitSpecifier ES, FunctionDecl *New) {
511 if (!ES.getExpr())
512 return ES;
513 Expr *OldCond = ES.getExpr();
514 Expr *Cond = nullptr;
515 {
516 EnterExpressionEvaluationContext Unevaluated(
517 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
518 ExprResult SubstResult = S.SubstExpr(OldCond, TemplateArgs);
519 if (SubstResult.isInvalid()) {
520 return ExplicitSpecifier::Invalid();
521 }
522 Cond = SubstResult.get();
523 }
524 ExplicitSpecifier Result(Cond, ES.getKind());
525 if (!Cond->isTypeDependent())
526 S.tryResolveExplicitSpecifier(Result);
527 return Result;
528}
529
530static void instantiateDependentAMDGPUWavesPerEUAttr(
531 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
532 const AMDGPUWavesPerEUAttr &Attr, Decl *New) {
533 // Both min and max expression are constant expressions.
534 EnterExpressionEvaluationContext Unevaluated(
535 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
536
537 ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
538 if (Result.isInvalid())
539 return;
540 Expr *MinExpr = Result.getAs<Expr>();
541
542 Expr *MaxExpr = nullptr;
543 if (auto Max = Attr.getMax()) {
544 Result = S.SubstExpr(Max, TemplateArgs);
545 if (Result.isInvalid())
546 return;
547 MaxExpr = Result.getAs<Expr>();
548 }
549
550 S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr);
551}
552
553// This doesn't take any template parameters, but we have a custom action that
554// needs to happen when the kernel itself is instantiated. We need to run the
555// ItaniumMangler to mark the names required to name this kernel.
556static void instantiateDependentSYCLKernelAttr(
557 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
558 const SYCLKernelAttr &Attr, Decl *New) {
559 // Functions cannot be partially specialized, so if we are being instantiated,
560 // we are obviously a complete specialization. Since this attribute is only
561 // valid on function template declarations, we know that this is a full
562 // instantiation of a kernel.
563 S.AddSYCLKernelLambda(cast<FunctionDecl>(New));
564
565 // Evaluate whether this would change any of the already evaluated
566 // __builtin_sycl_unique_stable_name values.
567 for (auto &Itr : S.Context.SYCLUniqueStableNameEvaluatedValues) {
568 const std::string &CurName = Itr.first->ComputeName(S.Context);
569 if (Itr.second != CurName) {
570 S.Diag(New->getLocation(),
571 diag::err_kernel_invalidates_sycl_unique_stable_name);
572 S.Diag(Itr.first->getLocation(),
573 diag::note_sycl_unique_stable_name_evaluated_here);
574 // Update this so future diagnostics work correctly.
575 Itr.second = CurName;
576 }
577 }
578
579 New->addAttr(Attr.clone(S.getASTContext()));
580}
581
582/// Determine whether the attribute A might be relevent to the declaration D.
583/// If not, we can skip instantiating it. The attribute may or may not have
584/// been instantiated yet.
585static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) {
586 // 'preferred_name' is only relevant to the matching specialization of the
587 // template.
588 if (const auto *PNA = dyn_cast<PreferredNameAttr>(A)) {
589 QualType T = PNA->getTypedefType();
590 const auto *RD = cast<CXXRecordDecl>(D);
591 if (!T->isDependentType() && !RD->isDependentContext() &&
592 !declaresSameEntity(T->getAsCXXRecordDecl(), RD))
593 return false;
594 for (const auto *ExistingPNA : D->specific_attrs<PreferredNameAttr>())
595 if (S.Context.hasSameType(ExistingPNA->getTypedefType(),
596 PNA->getTypedefType()))
597 return false;
598 return true;
599 }
600
601 return true;
602}
603
604void Sema::InstantiateAttrsForDecl(
605 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl,
606 Decl *New, LateInstantiatedAttrVec *LateAttrs,
607 LocalInstantiationScope *OuterMostScope) {
608 if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) {
609 // FIXME: This function is called multiple times for the same template
610 // specialization. We should only instantiate attributes that were added
611 // since the previous instantiation.
612 for (const auto *TmplAttr : Tmpl->attrs()) {
613 if (!isRelevantAttr(*this, New, TmplAttr))
614 continue;
615
616 // FIXME: If any of the special case versions from InstantiateAttrs become
617 // applicable to template declaration, we'll need to add them here.
618 CXXThisScopeRAII ThisScope(
619 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()),
620 Qualifiers(), ND->isCXXInstanceMember());
621
622 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl(
623 TmplAttr, Context, *this, TemplateArgs);
624 if (NewAttr && isRelevantAttr(*this, New, NewAttr))
625 New->addAttr(NewAttr);
626 }
627 }
628}
629
630static Sema::RetainOwnershipKind
631attrToRetainOwnershipKind(const Attr *A) {
632 switch (A->getKind()) {
633 case clang::attr::CFConsumed:
634 return Sema::RetainOwnershipKind::CF;
635 case clang::attr::OSConsumed:
636 return Sema::RetainOwnershipKind::OS;
637 case clang::attr::NSConsumed:
638 return Sema::RetainOwnershipKind::NS;
639 default:
640 llvm_unreachable("Wrong argument supplied")::llvm::llvm_unreachable_internal("Wrong argument supplied", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 640)
;
641 }
642}
643
644void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
645 const Decl *Tmpl, Decl *New,
646 LateInstantiatedAttrVec *LateAttrs,
647 LocalInstantiationScope *OuterMostScope) {
648 for (const auto *TmplAttr : Tmpl->attrs()) {
649 if (!isRelevantAttr(*this, New, TmplAttr))
650 continue;
651
652 // FIXME: This should be generalized to more than just the AlignedAttr.
653 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr);
654 if (Aligned && Aligned->isAlignmentDependent()) {
655 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New);
656 continue;
657 }
658
659 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) {
660 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New);
661 continue;
662 }
663
664 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) {
665 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New);
666 continue;
667 }
668
669 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) {
670 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New);
671 continue;
672 }
673
674 if (const auto *Annotate = dyn_cast<AnnotateAttr>(TmplAttr)) {
675 instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New);
676 continue;
677 }
678
679 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) {
680 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl,
681 cast<FunctionDecl>(New));
682 continue;
683 }
684
685 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) {
686 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl,
687 cast<FunctionDecl>(New));
688 continue;
689 }
690
691 if (const auto *CUDALaunchBounds =
692 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) {
693 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs,
694 *CUDALaunchBounds, New);
695 continue;
696 }
697
698 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) {
699 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New);
700 continue;
701 }
702
703 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) {
704 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New);
705 continue;
706 }
707
708 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) {
709 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New);
710 continue;
711 }
712
713 if (const auto *AMDGPUFlatWorkGroupSize =
714 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) {
715 instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
716 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New);
717 }
718
719 if (const auto *AMDGPUFlatWorkGroupSize =
720 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) {
721 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs,
722 *AMDGPUFlatWorkGroupSize, New);
723 }
724
725 // Existing DLL attribute on the instantiation takes precedence.
726 if (TmplAttr->getKind() == attr::DLLExport ||
727 TmplAttr->getKind() == attr::DLLImport) {
728 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) {
729 continue;
730 }
731 }
732
733 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) {
734 AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI());
735 continue;
736 }
737
738 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) ||
739 isa<CFConsumedAttr>(TmplAttr)) {
740 AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr),
741 /*template instantiation=*/true);
742 continue;
743 }
744
745 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) {
746 if (!New->hasAttr<PointerAttr>())
747 New->addAttr(A->clone(Context));
748 continue;
749 }
750
751 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) {
752 if (!New->hasAttr<OwnerAttr>())
753 New->addAttr(A->clone(Context));
754 continue;
755 }
756
757 if (auto *A = dyn_cast<SYCLKernelAttr>(TmplAttr)) {
758 instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New);
759 continue;
760 }
761
762 assert(!TmplAttr->isPackExpansion())(static_cast <bool> (!TmplAttr->isPackExpansion()) ?
void (0) : __assert_fail ("!TmplAttr->isPackExpansion()",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 762, __extension__ __PRETTY_FUNCTION__))
;
763 if (TmplAttr->isLateParsed() && LateAttrs) {
764 // Late parsed attributes must be instantiated and attached after the
765 // enclosing class has been instantiated. See Sema::InstantiateClass.
766 LocalInstantiationScope *Saved = nullptr;
767 if (CurrentInstantiationScope)
768 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope);
769 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New));
770 } else {
771 // Allow 'this' within late-parsed attributes.
772 auto *ND = cast<NamedDecl>(New);
773 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext());
774 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(),
775 ND->isCXXInstanceMember());
776
777 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context,
778 *this, TemplateArgs);
779 if (NewAttr && isRelevantAttr(*this, New, TmplAttr))
780 New->addAttr(NewAttr);
781 }
782 }
783}
784
785/// In the MS ABI, we need to instantiate default arguments of dllexported
786/// default constructors along with the constructor definition. This allows IR
787/// gen to emit a constructor closure which calls the default constructor with
788/// its default arguments.
789void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) {
790 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&(static_cast <bool> (Context.getTargetInfo().getCXXABI(
).isMicrosoft() && Ctor->isDefaultConstructor()) ?
void (0) : __assert_fail ("Context.getTargetInfo().getCXXABI().isMicrosoft() && Ctor->isDefaultConstructor()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 791, __extension__ __PRETTY_FUNCTION__))
791 Ctor->isDefaultConstructor())(static_cast <bool> (Context.getTargetInfo().getCXXABI(
).isMicrosoft() && Ctor->isDefaultConstructor()) ?
void (0) : __assert_fail ("Context.getTargetInfo().getCXXABI().isMicrosoft() && Ctor->isDefaultConstructor()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 791, __extension__ __PRETTY_FUNCTION__))
;
792 unsigned NumParams = Ctor->getNumParams();
793 if (NumParams == 0)
794 return;
795 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>();
796 if (!Attr)
797 return;
798 for (unsigned I = 0; I != NumParams; ++I) {
799 (void)CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor,
800 Ctor->getParamDecl(I));
801 DiscardCleanupsInEvaluationContext();
802 }
803}
804
805/// Get the previous declaration of a declaration for the purposes of template
806/// instantiation. If this finds a previous declaration, then the previous
807/// declaration of the instantiation of D should be an instantiation of the
808/// result of this function.
809template<typename DeclT>
810static DeclT *getPreviousDeclForInstantiation(DeclT *D) {
811 DeclT *Result = D->getPreviousDecl();
812
813 // If the declaration is within a class, and the previous declaration was
814 // merged from a different definition of that class, then we don't have a
815 // previous declaration for the purpose of template instantiation.
816 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) &&
817 D->getLexicalDeclContext() != Result->getLexicalDeclContext())
818 return nullptr;
819
820 return Result;
821}
822
823Decl *
824TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
825 llvm_unreachable("Translation units cannot be instantiated")::llvm::llvm_unreachable_internal("Translation units cannot be instantiated"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 825)
;
826}
827
828Decl *
829TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) {
830 llvm_unreachable("pragma comment cannot be instantiated")::llvm::llvm_unreachable_internal("pragma comment cannot be instantiated"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 830)
;
831}
832
833Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl(
834 PragmaDetectMismatchDecl *D) {
835 llvm_unreachable("pragma comment cannot be instantiated")::llvm::llvm_unreachable_internal("pragma comment cannot be instantiated"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 835)
;
836}
837
838Decl *
839TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) {
840 llvm_unreachable("extern \"C\" context cannot be instantiated")::llvm::llvm_unreachable_internal("extern \"C\" context cannot be instantiated"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 840)
;
841}
842
843Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) {
844 llvm_unreachable("GUID declaration cannot be instantiated")::llvm::llvm_unreachable_internal("GUID declaration cannot be instantiated"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 844)
;
845}
846
847Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl(
848 TemplateParamObjectDecl *D) {
849 llvm_unreachable("template parameter objects cannot be instantiated")::llvm::llvm_unreachable_internal("template parameter objects cannot be instantiated"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 849)
;
850}
851
852Decl *
853TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) {
854 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(),
855 D->getIdentifier());
856 Owner->addDecl(Inst);
857 return Inst;
858}
859
860Decl *
861TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) {
862 llvm_unreachable("Namespaces cannot be instantiated")::llvm::llvm_unreachable_internal("Namespaces cannot be instantiated"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 862)
;
863}
864
865Decl *
866TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
867 NamespaceAliasDecl *Inst
868 = NamespaceAliasDecl::Create(SemaRef.Context, Owner,
869 D->getNamespaceLoc(),
870 D->getAliasLoc(),
871 D->getIdentifier(),
872 D->getQualifierLoc(),
873 D->getTargetNameLoc(),
874 D->getNamespace());
875 Owner->addDecl(Inst);
876 return Inst;
877}
878
879Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D,
880 bool IsTypeAlias) {
881 bool Invalid = false;
882 TypeSourceInfo *DI = D->getTypeSourceInfo();
883 if (DI->getType()->isInstantiationDependentType() ||
884 DI->getType()->isVariablyModifiedType()) {
885 DI = SemaRef.SubstType(DI, TemplateArgs,
886 D->getLocation(), D->getDeclName());
887 if (!DI) {
888 Invalid = true;
889 DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy);
890 }
891 } else {
892 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
893 }
894
895 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong.
896 // libstdc++ relies upon this bug in its implementation of common_type. If we
897 // happen to be processing that implementation, fake up the g++ ?:
898 // semantics. See LWG issue 2141 for more information on the bug. The bugs
899 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22).
900 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>();
901 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
902 if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) &&
903 DT->isReferenceType() &&
904 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() &&
905 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") &&
906 D->getIdentifier() && D->getIdentifier()->isStr("type") &&
907 SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc()))
908 // Fold it to the (non-reference) type which g++ would have produced.
909 DI = SemaRef.Context.getTrivialTypeSourceInfo(
910 DI->getType().getNonReferenceType());
911
912 // Create the new typedef
913 TypedefNameDecl *Typedef;
914 if (IsTypeAlias)
915 Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
916 D->getLocation(), D->getIdentifier(), DI);
917 else
918 Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
919 D->getLocation(), D->getIdentifier(), DI);
920 if (Invalid)
921 Typedef->setInvalidDecl();
922
923 // If the old typedef was the name for linkage purposes of an anonymous
924 // tag decl, re-establish that relationship for the new typedef.
925 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) {
926 TagDecl *oldTag = oldTagType->getDecl();
927 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) {
928 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl();
929 assert(!newTag->hasNameForLinkage())(static_cast <bool> (!newTag->hasNameForLinkage()) ?
void (0) : __assert_fail ("!newTag->hasNameForLinkage()",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 929, __extension__ __PRETTY_FUNCTION__))
;
930 newTag->setTypedefNameForAnonDecl(Typedef);
931 }
932 }
933
934 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) {
935 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev,
936 TemplateArgs);
937 if (!InstPrev)
938 return nullptr;
939
940 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev);
941
942 // If the typedef types are not identical, reject them.
943 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef);
944
945 Typedef->setPreviousDecl(InstPrevTypedef);
946 }
947
948 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef);
949
950 if (D->getUnderlyingType()->getAs<DependentNameType>())
951 SemaRef.inferGslPointerAttribute(Typedef);
952
953 Typedef->setAccess(D->getAccess());
954
955 return Typedef;
956}
957
958Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) {
959 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false);
960 if (Typedef)
961 Owner->addDecl(Typedef);
962 return Typedef;
963}
964
965Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) {
966 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true);
967 if (Typedef)
968 Owner->addDecl(Typedef);
969 return Typedef;
970}
971
972Decl *
973TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
974 // Create a local instantiation scope for this type alias template, which
975 // will contain the instantiations of the template parameters.
976 LocalInstantiationScope Scope(SemaRef);
977
978 TemplateParameterList *TempParams = D->getTemplateParameters();
979 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
980 if (!InstParams)
981 return nullptr;
982
983 TypeAliasDecl *Pattern = D->getTemplatedDecl();
984
985 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr;
986 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) {
987 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
988 if (!Found.empty()) {
989 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front());
990 }
991 }
992
993 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>(
994 InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true));
995 if (!AliasInst)
996 return nullptr;
997
998 TypeAliasTemplateDecl *Inst
999 = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1000 D->getDeclName(), InstParams, AliasInst);
1001 AliasInst->setDescribedAliasTemplate(Inst);
1002 if (PrevAliasTemplate)
1003 Inst->setPreviousDecl(PrevAliasTemplate);
1004
1005 Inst->setAccess(D->getAccess());
1006
1007 if (!PrevAliasTemplate)
1008 Inst->setInstantiatedFromMemberTemplate(D);
1009
1010 Owner->addDecl(Inst);
1011
1012 return Inst;
1013}
1014
1015Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) {
1016 auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1017 D->getIdentifier());
1018 NewBD->setReferenced(D->isReferenced());
1019 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD);
1020 return NewBD;
1021}
1022
1023Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) {
1024 // Transform the bindings first.
1025 SmallVector<BindingDecl*, 16> NewBindings;
1026 for (auto *OldBD : D->bindings())
1027 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD)));
1028 ArrayRef<BindingDecl*> NewBindingArray = NewBindings;
1029
1030 auto *NewDD = cast_or_null<DecompositionDecl>(
1031 VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray));
1032
1033 if (!NewDD || NewDD->isInvalidDecl())
1034 for (auto *NewBD : NewBindings)
1035 NewBD->setInvalidDecl();
1036
1037 return NewDD;
1038}
1039
1040Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) {
1041 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false);
1042}
1043
1044Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D,
1045 bool InstantiatingVarTemplate,
1046 ArrayRef<BindingDecl*> *Bindings) {
1047
1048 // Do substitution on the type of the declaration
1049 TypeSourceInfo *DI = SemaRef.SubstType(
1050 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(),
1051 D->getDeclName(), /*AllowDeducedTST*/true);
1052 if (!DI)
1053 return nullptr;
1054
1055 if (DI->getType()->isFunctionType()) {
1056 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
1057 << D->isStaticDataMember() << DI->getType();
1058 return nullptr;
1059 }
1060
1061 DeclContext *DC = Owner;
1062 if (D->isLocalExternDecl())
1063 SemaRef.adjustContextForLocalExternDecl(DC);
1064
1065 // Build the instantiated declaration.
1066 VarDecl *Var;
1067 if (Bindings)
1068 Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
1069 D->getLocation(), DI->getType(), DI,
1070 D->getStorageClass(), *Bindings);
1071 else
1072 Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
1073 D->getLocation(), D->getIdentifier(), DI->getType(),
1074 DI, D->getStorageClass());
1075
1076 // In ARC, infer 'retaining' for variables of retainable type.
1077 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1078 SemaRef.inferObjCARCLifetime(Var))
1079 Var->setInvalidDecl();
1080
1081 if (SemaRef.getLangOpts().OpenCL)
1082 SemaRef.deduceOpenCLAddressSpace(Var);
1083
1084 // Substitute the nested name specifier, if any.
1085 if (SubstQualifier(D, Var))
1086 return nullptr;
1087
1088 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
1089 StartingScope, InstantiatingVarTemplate);
1090 if (D->isNRVOVariable()) {
1091 QualType RT;
1092 if (auto *F = dyn_cast<FunctionDecl>(DC))
1093 RT = F->getReturnType();
1094 else if (isa<BlockDecl>(DC))
1095 RT = cast<FunctionType>(SemaRef.getCurBlock()->FunctionType)
1096 ->getReturnType();
1097 else
1098 llvm_unreachable("Unknown context type")::llvm::llvm_unreachable_internal("Unknown context type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1098)
;
1099
1100 // This is the last chance we have of checking copy elision eligibility
1101 // for functions in dependent contexts. The sema actions for building
1102 // the return statement during template instantiation will have no effect
1103 // regarding copy elision, since NRVO propagation runs on the scope exit
1104 // actions, and these are not run on instantiation.
1105 // This might run through some VarDecls which were returned from non-taken
1106 // 'if constexpr' branches, and these will end up being constructed on the
1107 // return slot even if they will never be returned, as a sort of accidental
1108 // 'optimization'. Notably, functions with 'auto' return types won't have it
1109 // deduced by this point. Coupled with the limitation described
1110 // previously, this makes it very hard to support copy elision for these.
1111 Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(Var);
1112 bool NRVO = SemaRef.getCopyElisionCandidate(Info, RT) != nullptr;
1113 Var->setNRVOVariable(NRVO);
1114 }
1115
1116 Var->setImplicit(D->isImplicit());
1117
1118 if (Var->isStaticLocal())
1119 SemaRef.CheckStaticLocalForDllExport(Var);
1120
1121 return Var;
1122}
1123
1124Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) {
1125 AccessSpecDecl* AD
1126 = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner,
1127 D->getAccessSpecifierLoc(), D->getColonLoc());
1128 Owner->addHiddenDecl(AD);
1129 return AD;
1130}
1131
1132Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) {
1133 bool Invalid = false;
1134 TypeSourceInfo *DI = D->getTypeSourceInfo();
1135 if (DI->getType()->isInstantiationDependentType() ||
1136 DI->getType()->isVariablyModifiedType()) {
1137 DI = SemaRef.SubstType(DI, TemplateArgs,
1138 D->getLocation(), D->getDeclName());
1139 if (!DI) {
1140 DI = D->getTypeSourceInfo();
1141 Invalid = true;
1142 } else if (DI->getType()->isFunctionType()) {
1143 // C++ [temp.arg.type]p3:
1144 // If a declaration acquires a function type through a type
1145 // dependent on a template-parameter and this causes a
1146 // declaration that does not use the syntactic form of a
1147 // function declarator to have function type, the program is
1148 // ill-formed.
1149 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1150 << DI->getType();
1151 Invalid = true;
1152 }
1153 } else {
1154 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
1155 }
1156
1157 Expr *BitWidth = D->getBitWidth();
1158 if (Invalid)
1159 BitWidth = nullptr;
1160 else if (BitWidth) {
1161 // The bit-width expression is a constant expression.
1162 EnterExpressionEvaluationContext Unevaluated(
1163 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1164
1165 ExprResult InstantiatedBitWidth
1166 = SemaRef.SubstExpr(BitWidth, TemplateArgs);
1167 if (InstantiatedBitWidth.isInvalid()) {
1168 Invalid = true;
1169 BitWidth = nullptr;
1170 } else
1171 BitWidth = InstantiatedBitWidth.getAs<Expr>();
1172 }
1173
1174 FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(),
1175 DI->getType(), DI,
1176 cast<RecordDecl>(Owner),
1177 D->getLocation(),
1178 D->isMutable(),
1179 BitWidth,
1180 D->getInClassInitStyle(),
1181 D->getInnerLocStart(),
1182 D->getAccess(),
1183 nullptr);
1184 if (!Field) {
1185 cast<Decl>(Owner)->setInvalidDecl();
1186 return nullptr;
1187 }
1188
1189 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope);
1190
1191 if (Field->hasAttrs())
1192 SemaRef.CheckAlignasUnderalignment(Field);
1193
1194 if (Invalid)
1195 Field->setInvalidDecl();
1196
1197 if (!Field->getDeclName()) {
1198 // Keep track of where this decl came from.
1199 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D);
1200 }
1201 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) {
1202 if (Parent->isAnonymousStructOrUnion() &&
1203 Parent->getRedeclContext()->isFunctionOrMethod())
1204 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field);
1205 }
1206
1207 Field->setImplicit(D->isImplicit());
1208 Field->setAccess(D->getAccess());
1209 Owner->addDecl(Field);
1210
1211 return Field;
1212}
1213
1214Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) {
1215 bool Invalid = false;
1216 TypeSourceInfo *DI = D->getTypeSourceInfo();
1217
1218 if (DI->getType()->isVariablyModifiedType()) {
1219 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified)
1220 << D;
1221 Invalid = true;
1222 } else if (DI->getType()->isInstantiationDependentType()) {
1223 DI = SemaRef.SubstType(DI, TemplateArgs,
1224 D->getLocation(), D->getDeclName());
1225 if (!DI) {
1226 DI = D->getTypeSourceInfo();
1227 Invalid = true;
1228 } else if (DI->getType()->isFunctionType()) {
1229 // C++ [temp.arg.type]p3:
1230 // If a declaration acquires a function type through a type
1231 // dependent on a template-parameter and this causes a
1232 // declaration that does not use the syntactic form of a
1233 // function declarator to have function type, the program is
1234 // ill-formed.
1235 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1236 << DI->getType();
1237 Invalid = true;
1238 }
1239 } else {
1240 SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
1241 }
1242
1243 MSPropertyDecl *Property = MSPropertyDecl::Create(
1244 SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(),
1245 DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId());
1246
1247 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs,
1248 StartingScope);
1249
1250 if (Invalid)
1251 Property->setInvalidDecl();
1252
1253 Property->setAccess(D->getAccess());
1254 Owner->addDecl(Property);
1255
1256 return Property;
1257}
1258
1259Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
1260 NamedDecl **NamedChain =
1261 new (SemaRef.Context)NamedDecl*[D->getChainingSize()];
1262
1263 int i = 0;
1264 for (auto *PI : D->chain()) {
1265 NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI,
1266 TemplateArgs);
1267 if (!Next)
1268 return nullptr;
1269
1270 NamedChain[i++] = Next;
1271 }
1272
1273 QualType T = cast<FieldDecl>(NamedChain[i-1])->getType();
1274 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
1275 SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T,
1276 {NamedChain, D->getChainingSize()});
1277
1278 for (const auto *Attr : D->attrs())
1279 IndirectField->addAttr(Attr->clone(SemaRef.Context));
1280
1281 IndirectField->setImplicit(D->isImplicit());
1282 IndirectField->setAccess(D->getAccess());
1283 Owner->addDecl(IndirectField);
1284 return IndirectField;
1285}
1286
1287Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) {
1288 // Handle friend type expressions by simply substituting template
1289 // parameters into the pattern type and checking the result.
1290 if (TypeSourceInfo *Ty = D->getFriendType()) {
1291 TypeSourceInfo *InstTy;
1292 // If this is an unsupported friend, don't bother substituting template
1293 // arguments into it. The actual type referred to won't be used by any
1294 // parts of Clang, and may not be valid for instantiating. Just use the
1295 // same info for the instantiated friend.
1296 if (D->isUnsupportedFriend()) {
1297 InstTy = Ty;
1298 } else {
1299 InstTy = SemaRef.SubstType(Ty, TemplateArgs,
1300 D->getLocation(), DeclarationName());
1301 }
1302 if (!InstTy)
1303 return nullptr;
1304
1305 FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(),
1306 D->getFriendLoc(), InstTy);
1307 if (!FD)
1308 return nullptr;
1309
1310 FD->setAccess(AS_public);
1311 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1312 Owner->addDecl(FD);
1313 return FD;
1314 }
1315
1316 NamedDecl *ND = D->getFriendDecl();
1317 assert(ND && "friend decl must be a decl or a type!")(static_cast <bool> (ND && "friend decl must be a decl or a type!"
) ? void (0) : __assert_fail ("ND && \"friend decl must be a decl or a type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1317, __extension__ __PRETTY_FUNCTION__))
;
1318
1319 // All of the Visit implementations for the various potential friend
1320 // declarations have to be carefully written to work for friend
1321 // objects, with the most important detail being that the target
1322 // decl should almost certainly not be placed in Owner.
1323 Decl *NewND = Visit(ND);
1324 if (!NewND) return nullptr;
1325
1326 FriendDecl *FD =
1327 FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(),
1328 cast<NamedDecl>(NewND), D->getFriendLoc());
1329 FD->setAccess(AS_public);
1330 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1331 Owner->addDecl(FD);
1332 return FD;
1333}
1334
1335Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) {
1336 Expr *AssertExpr = D->getAssertExpr();
1337
1338 // The expression in a static assertion is a constant expression.
1339 EnterExpressionEvaluationContext Unevaluated(
1340 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1341
1342 ExprResult InstantiatedAssertExpr
1343 = SemaRef.SubstExpr(AssertExpr, TemplateArgs);
1344 if (InstantiatedAssertExpr.isInvalid())
1345 return nullptr;
1346
1347 return SemaRef.BuildStaticAssertDeclaration(D->getLocation(),
1348 InstantiatedAssertExpr.get(),
1349 D->getMessage(),
1350 D->getRParenLoc(),
1351 D->isFailed());
1352}
1353
1354Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) {
1355 EnumDecl *PrevDecl = nullptr;
1356 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1357 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
1358 PatternPrev,
1359 TemplateArgs);
1360 if (!Prev) return nullptr;
1361 PrevDecl = cast<EnumDecl>(Prev);
1362 }
1363
1364 EnumDecl *Enum =
1365 EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
1366 D->getLocation(), D->getIdentifier(), PrevDecl,
1367 D->isScoped(), D->isScopedUsingClassTag(), D->isFixed());
1368 if (D->isFixed()) {
1369 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) {
1370 // If we have type source information for the underlying type, it means it
1371 // has been explicitly set by the user. Perform substitution on it before
1372 // moving on.
1373 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1374 TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc,
1375 DeclarationName());
1376 if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI))
1377 Enum->setIntegerType(SemaRef.Context.IntTy);
1378 else
1379 Enum->setIntegerTypeSourceInfo(NewTI);
1380 } else {
1381 assert(!D->getIntegerType()->isDependentType()(static_cast <bool> (!D->getIntegerType()->isDependentType
() && "Dependent type without type source info") ? void
(0) : __assert_fail ("!D->getIntegerType()->isDependentType() && \"Dependent type without type source info\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1382, __extension__ __PRETTY_FUNCTION__))
1382 && "Dependent type without type source info")(static_cast <bool> (!D->getIntegerType()->isDependentType
() && "Dependent type without type source info") ? void
(0) : __assert_fail ("!D->getIntegerType()->isDependentType() && \"Dependent type without type source info\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1382, __extension__ __PRETTY_FUNCTION__))
;
1383 Enum->setIntegerType(D->getIntegerType());
1384 }
1385 }
1386
1387 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum);
1388
1389 Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation);
1390 Enum->setAccess(D->getAccess());
1391 // Forward the mangling number from the template to the instantiated decl.
1392 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D));
1393 // See if the old tag was defined along with a declarator.
1394 // If it did, mark the new tag as being associated with that declarator.
1395 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1396 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD);
1397 // See if the old tag was defined along with a typedef.
1398 // If it did, mark the new tag as being associated with that typedef.
1399 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1400 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND);
1401 if (SubstQualifier(D, Enum)) return nullptr;
1402 Owner->addDecl(Enum);
1403
1404 EnumDecl *Def = D->getDefinition();
1405 if (Def && Def != D) {
1406 // If this is an out-of-line definition of an enum member template, check
1407 // that the underlying types match in the instantiation of both
1408 // declarations.
1409 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) {
1410 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1411 QualType DefnUnderlying =
1412 SemaRef.SubstType(TI->getType(), TemplateArgs,
1413 UnderlyingLoc, DeclarationName());
1414 SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(),
1415 DefnUnderlying, /*IsFixed=*/true, Enum);
1416 }
1417 }
1418
1419 // C++11 [temp.inst]p1: The implicit instantiation of a class template
1420 // specialization causes the implicit instantiation of the declarations, but
1421 // not the definitions of scoped member enumerations.
1422 //
1423 // DR1484 clarifies that enumeration definitions inside of a template
1424 // declaration aren't considered entities that can be separately instantiated
1425 // from the rest of the entity they are declared inside of.
1426 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) {
1427 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum);
1428 InstantiateEnumDefinition(Enum, Def);
1429 }
1430
1431 return Enum;
1432}
1433
1434void TemplateDeclInstantiator::InstantiateEnumDefinition(
1435 EnumDecl *Enum, EnumDecl *Pattern) {
1436 Enum->startDefinition();
1437
1438 // Update the location to refer to the definition.
1439 Enum->setLocation(Pattern->getLocation());
1440
1441 SmallVector<Decl*, 4> Enumerators;
1442
1443 EnumConstantDecl *LastEnumConst = nullptr;
1444 for (auto *EC : Pattern->enumerators()) {
1445 // The specified value for the enumerator.
1446 ExprResult Value((Expr *)nullptr);
1447 if (Expr *UninstValue = EC->getInitExpr()) {
1448 // The enumerator's value expression is a constant expression.
1449 EnterExpressionEvaluationContext Unevaluated(
1450 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1451
1452 Value = SemaRef.SubstExpr(UninstValue, TemplateArgs);
1453 }
1454
1455 // Drop the initial value and continue.
1456 bool isInvalid = false;
1457 if (Value.isInvalid()) {
1458 Value = nullptr;
1459 isInvalid = true;
1460 }
1461
1462 EnumConstantDecl *EnumConst
1463 = SemaRef.CheckEnumConstant(Enum, LastEnumConst,
1464 EC->getLocation(), EC->getIdentifier(),
1465 Value.get());
1466
1467 if (isInvalid) {
1468 if (EnumConst)
1469 EnumConst->setInvalidDecl();
1470 Enum->setInvalidDecl();
1471 }
1472
1473 if (EnumConst) {
1474 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst);
1475
1476 EnumConst->setAccess(Enum->getAccess());
1477 Enum->addDecl(EnumConst);
1478 Enumerators.push_back(EnumConst);
1479 LastEnumConst = EnumConst;
1480
1481 if (Pattern->getDeclContext()->isFunctionOrMethod() &&
1482 !Enum->isScoped()) {
1483 // If the enumeration is within a function or method, record the enum
1484 // constant as a local.
1485 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst);
1486 }
1487 }
1488 }
1489
1490 SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum,
1491 Enumerators, nullptr, ParsedAttributesView());
1492}
1493
1494Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) {
1495 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls.")::llvm::llvm_unreachable_internal("EnumConstantDecls can only occur within EnumDecls."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1495)
;
1496}
1497
1498Decl *
1499TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) {
1500 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated.")::llvm::llvm_unreachable_internal("BuiltinTemplateDecls cannot be instantiated."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1500)
;
1501}
1502
1503Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
1504 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
1505
1506 // Create a local instantiation scope for this class template, which
1507 // will contain the instantiations of the template parameters.
1508 LocalInstantiationScope Scope(SemaRef);
1509 TemplateParameterList *TempParams = D->getTemplateParameters();
1510 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1511 if (!InstParams)
1512 return nullptr;
1513
1514 CXXRecordDecl *Pattern = D->getTemplatedDecl();
1515
1516 // Instantiate the qualifier. We have to do this first in case
1517 // we're a friend declaration, because if we are then we need to put
1518 // the new declaration in the appropriate context.
1519 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc();
1520 if (QualifierLoc) {
1521 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
1522 TemplateArgs);
1523 if (!QualifierLoc)
1524 return nullptr;
1525 }
1526
1527 CXXRecordDecl *PrevDecl = nullptr;
1528 ClassTemplateDecl *PrevClassTemplate = nullptr;
1529
1530 if (!isFriend && getPreviousDeclForInstantiation(Pattern)) {
1531 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1532 if (!Found.empty()) {
1533 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front());
1534 if (PrevClassTemplate)
1535 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1536 }
1537 }
1538
1539 // If this isn't a friend, then it's a member template, in which
1540 // case we just want to build the instantiation in the
1541 // specialization. If it is a friend, we want to build it in
1542 // the appropriate context.
1543 DeclContext *DC = Owner;
1544 if (isFriend) {
1545 if (QualifierLoc) {
1546 CXXScopeSpec SS;
1547 SS.Adopt(QualifierLoc);
1548 DC = SemaRef.computeDeclContext(SS);
1549 if (!DC) return nullptr;
1550 } else {
1551 DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(),
1552 Pattern->getDeclContext(),
1553 TemplateArgs);
1554 }
1555
1556 // Look for a previous declaration of the template in the owning
1557 // context.
1558 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(),
1559 Sema::LookupOrdinaryName,
1560 SemaRef.forRedeclarationInCurContext());
1561 SemaRef.LookupQualifiedName(R, DC);
1562
1563 if (R.isSingleResult()) {
1564 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>();
1565 if (PrevClassTemplate)
1566 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1567 }
1568
1569 if (!PrevClassTemplate && QualifierLoc) {
1570 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope)
1571 << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC
1572 << QualifierLoc.getSourceRange();
1573 return nullptr;
1574 }
1575
1576 if (PrevClassTemplate) {
1577 TemplateParameterList *PrevParams
1578 = PrevClassTemplate->getMostRecentDecl()->getTemplateParameters();
1579
1580 // Make sure the parameter lists match.
1581 if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, true,
1582 Sema::TPL_TemplateMatch))
1583 return nullptr;
1584
1585 // Do some additional validation, then merge default arguments
1586 // from the existing declarations.
1587 if (SemaRef.CheckTemplateParameterList(InstParams, PrevParams,
1588 Sema::TPC_ClassTemplate))
1589 return nullptr;
1590 }
1591 }
1592
1593 CXXRecordDecl *RecordInst = CXXRecordDecl::Create(
1594 SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(),
1595 Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl,
1596 /*DelayTypeCreation=*/true);
1597
1598 if (QualifierLoc)
1599 RecordInst->setQualifierInfo(QualifierLoc);
1600
1601 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs,
1602 StartingScope);
1603
1604 ClassTemplateDecl *Inst
1605 = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(),
1606 D->getIdentifier(), InstParams, RecordInst);
1607 assert(!(isFriend && Owner->isDependentContext()))(static_cast <bool> (!(isFriend && Owner->isDependentContext
())) ? void (0) : __assert_fail ("!(isFriend && Owner->isDependentContext())"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1607, __extension__ __PRETTY_FUNCTION__))
;
1608 Inst->setPreviousDecl(PrevClassTemplate);
1609
1610 RecordInst->setDescribedClassTemplate(Inst);
1611
1612 if (isFriend) {
1613 if (PrevClassTemplate)
1614 Inst->setAccess(PrevClassTemplate->getAccess());
1615 else
1616 Inst->setAccess(D->getAccess());
1617
1618 Inst->setObjectOfFriendDecl();
1619 // TODO: do we want to track the instantiation progeny of this
1620 // friend target decl?
1621 } else {
1622 Inst->setAccess(D->getAccess());
1623 if (!PrevClassTemplate)
1624 Inst->setInstantiatedFromMemberTemplate(D);
1625 }
1626
1627 // Trigger creation of the type for the instantiation.
1628 SemaRef.Context.getInjectedClassNameType(RecordInst,
1629 Inst->getInjectedClassNameSpecialization());
1630
1631 // Finish handling of friends.
1632 if (isFriend) {
1633 DC->makeDeclVisibleInContext(Inst);
1634 Inst->setLexicalDeclContext(Owner);
1635 RecordInst->setLexicalDeclContext(Owner);
1636 return Inst;
1637 }
1638
1639 if (D->isOutOfLine()) {
1640 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1641 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext());
1642 }
1643
1644 Owner->addDecl(Inst);
1645
1646 if (!PrevClassTemplate) {
1647 // Queue up any out-of-line partial specializations of this member
1648 // class template; the client will force their instantiation once
1649 // the enclosing class has been instantiated.
1650 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1651 D->getPartialSpecializations(PartialSpecs);
1652 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1653 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1654 OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I]));
1655 }
1656
1657 return Inst;
1658}
1659
1660Decl *
1661TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
1662 ClassTemplatePartialSpecializationDecl *D) {
1663 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
1664
1665 // Lookup the already-instantiated declaration in the instantiation
1666 // of the class template and return that.
1667 DeclContext::lookup_result Found
1668 = Owner->lookup(ClassTemplate->getDeclName());
1669 if (Found.empty())
1670 return nullptr;
1671
1672 ClassTemplateDecl *InstClassTemplate
1673 = dyn_cast<ClassTemplateDecl>(Found.front());
1674 if (!InstClassTemplate)
1675 return nullptr;
1676
1677 if (ClassTemplatePartialSpecializationDecl *Result
1678 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D))
1679 return Result;
1680
1681 return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D);
1682}
1683
1684Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) {
1685 assert(D->getTemplatedDecl()->isStaticDataMember() &&(static_cast <bool> (D->getTemplatedDecl()->isStaticDataMember
() && "Only static data member templates are allowed."
) ? void (0) : __assert_fail ("D->getTemplatedDecl()->isStaticDataMember() && \"Only static data member templates are allowed.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1686, __extension__ __PRETTY_FUNCTION__))
1686 "Only static data member templates are allowed.")(static_cast <bool> (D->getTemplatedDecl()->isStaticDataMember
() && "Only static data member templates are allowed."
) ? void (0) : __assert_fail ("D->getTemplatedDecl()->isStaticDataMember() && \"Only static data member templates are allowed.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1686, __extension__ __PRETTY_FUNCTION__))
;
1687
1688 // Create a local instantiation scope for this variable template, which
1689 // will contain the instantiations of the template parameters.
1690 LocalInstantiationScope Scope(SemaRef);
1691 TemplateParameterList *TempParams = D->getTemplateParameters();
1692 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1693 if (!InstParams)
1694 return nullptr;
1695
1696 VarDecl *Pattern = D->getTemplatedDecl();
1697 VarTemplateDecl *PrevVarTemplate = nullptr;
1698
1699 if (getPreviousDeclForInstantiation(Pattern)) {
1700 DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
1701 if (!Found.empty())
1702 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
1703 }
1704
1705 VarDecl *VarInst =
1706 cast_or_null<VarDecl>(VisitVarDecl(Pattern,
1707 /*InstantiatingVarTemplate=*/true));
1708 if (!VarInst) return nullptr;
1709
1710 DeclContext *DC = Owner;
1711
1712 VarTemplateDecl *Inst = VarTemplateDecl::Create(
1713 SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams,
1714 VarInst);
1715 VarInst->setDescribedVarTemplate(Inst);
1716 Inst->setPreviousDecl(PrevVarTemplate);
1717
1718 Inst->setAccess(D->getAccess());
1719 if (!PrevVarTemplate)
1720 Inst->setInstantiatedFromMemberTemplate(D);
1721
1722 if (D->isOutOfLine()) {
1723 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1724 VarInst->setLexicalDeclContext(D->getLexicalDeclContext());
1725 }
1726
1727 Owner->addDecl(Inst);
1728
1729 if (!PrevVarTemplate) {
1730 // Queue up any out-of-line partial specializations of this member
1731 // variable template; the client will force their instantiation once
1732 // the enclosing class has been instantiated.
1733 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1734 D->getPartialSpecializations(PartialSpecs);
1735 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1736 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1737 OutOfLineVarPartialSpecs.push_back(
1738 std::make_pair(Inst, PartialSpecs[I]));
1739 }
1740
1741 return Inst;
1742}
1743
1744Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl(
1745 VarTemplatePartialSpecializationDecl *D) {
1746 assert(D->isStaticDataMember() &&(static_cast <bool> (D->isStaticDataMember() &&
"Only static data member templates are allowed.") ? void (0)
: __assert_fail ("D->isStaticDataMember() && \"Only static data member templates are allowed.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1747, __extension__ __PRETTY_FUNCTION__))
1747 "Only static data member templates are allowed.")(static_cast <bool> (D->isStaticDataMember() &&
"Only static data member templates are allowed.") ? void (0)
: __assert_fail ("D->isStaticDataMember() && \"Only static data member templates are allowed.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1747, __extension__ __PRETTY_FUNCTION__))
;
1748
1749 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
1750
1751 // Lookup the already-instantiated declaration and return that.
1752 DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName());
1753 assert(!Found.empty() && "Instantiation found nothing?")(static_cast <bool> (!Found.empty() && "Instantiation found nothing?"
) ? void (0) : __assert_fail ("!Found.empty() && \"Instantiation found nothing?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1753, __extension__ __PRETTY_FUNCTION__))
;
1754
1755 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
1756 assert(InstVarTemplate && "Instantiation did not find a variable template?")(static_cast <bool> (InstVarTemplate && "Instantiation did not find a variable template?"
) ? void (0) : __assert_fail ("InstVarTemplate && \"Instantiation did not find a variable template?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1756, __extension__ __PRETTY_FUNCTION__))
;
1757
1758 if (VarTemplatePartialSpecializationDecl *Result =
1759 InstVarTemplate->findPartialSpecInstantiatedFromMember(D))
1760 return Result;
1761
1762 return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D);
1763}
1764
1765Decl *
1766TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
1767 // Create a local instantiation scope for this function template, which
1768 // will contain the instantiations of the template parameters and then get
1769 // merged with the local instantiation scope for the function template
1770 // itself.
1771 LocalInstantiationScope Scope(SemaRef);
1772
1773 TemplateParameterList *TempParams = D->getTemplateParameters();
1774 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
1775 if (!InstParams)
1776 return nullptr;
1777
1778 FunctionDecl *Instantiated = nullptr;
1779 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl()))
1780 Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod,
1781 InstParams));
1782 else
1783 Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl(
1784 D->getTemplatedDecl(),
1785 InstParams));
1786
1787 if (!Instantiated)
1788 return nullptr;
1789
1790 // Link the instantiated function template declaration to the function
1791 // template from which it was instantiated.
1792 FunctionTemplateDecl *InstTemplate
1793 = Instantiated->getDescribedFunctionTemplate();
1794 InstTemplate->setAccess(D->getAccess());
1795 assert(InstTemplate &&(static_cast <bool> (InstTemplate && "VisitFunctionDecl/CXXMethodDecl didn't create a template!"
) ? void (0) : __assert_fail ("InstTemplate && \"VisitFunctionDecl/CXXMethodDecl didn't create a template!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1796, __extension__ __PRETTY_FUNCTION__))
1796 "VisitFunctionDecl/CXXMethodDecl didn't create a template!")(static_cast <bool> (InstTemplate && "VisitFunctionDecl/CXXMethodDecl didn't create a template!"
) ? void (0) : __assert_fail ("InstTemplate && \"VisitFunctionDecl/CXXMethodDecl didn't create a template!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 1796, __extension__ __PRETTY_FUNCTION__))
;
1797
1798 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None);
1799
1800 // Link the instantiation back to the pattern *unless* this is a
1801 // non-definition friend declaration.
1802 if (!InstTemplate->getInstantiatedFromMemberTemplate() &&
1803 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition()))
1804 InstTemplate->setInstantiatedFromMemberTemplate(D);
1805
1806 // Make declarations visible in the appropriate context.
1807 if (!isFriend) {
1808 Owner->addDecl(InstTemplate);
1809 } else if (InstTemplate->getDeclContext()->isRecord() &&
1810 !getPreviousDeclForInstantiation(D)) {
1811 SemaRef.CheckFriendAccess(InstTemplate);
1812 }
1813
1814 return InstTemplate;
1815}
1816
1817Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) {
1818 CXXRecordDecl *PrevDecl = nullptr;
1819 if (D->isInjectedClassName())
1820 PrevDecl = cast<CXXRecordDecl>(Owner);
1821 else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1822 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
1823 PatternPrev,
1824 TemplateArgs);
1825 if (!Prev) return nullptr;
1826 PrevDecl = cast<CXXRecordDecl>(Prev);
1827 }
1828
1829 CXXRecordDecl *Record = nullptr;
1830 if (D->isLambda())
1831 Record = CXXRecordDecl::CreateLambda(
1832 SemaRef.Context, Owner, D->getLambdaTypeInfo(), D->getLocation(),
1833 D->isDependentLambda(), D->isGenericLambda(),
1834 D->getLambdaCaptureDefault());
1835 else
1836 Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner,
1837 D->getBeginLoc(), D->getLocation(),
1838 D->getIdentifier(), PrevDecl);
1839
1840 // Substitute the nested name specifier, if any.
1841 if (SubstQualifier(D, Record))
1842 return nullptr;
1843
1844 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs,
1845 StartingScope);
1846
1847 Record->setImplicit(D->isImplicit());
1848 // FIXME: Check against AS_none is an ugly hack to work around the issue that
1849 // the tag decls introduced by friend class declarations don't have an access
1850 // specifier. Remove once this area of the code gets sorted out.
1851 if (D->getAccess() != AS_none)
1852 Record->setAccess(D->getAccess());
1853 if (!D->isInjectedClassName())
1854 Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
1855
1856 // If the original function was part of a friend declaration,
1857 // inherit its namespace state.
1858 if (D->getFriendObjectKind())
1859 Record->setObjectOfFriendDecl();
1860
1861 // Make sure that anonymous structs and unions are recorded.
1862 if (D->isAnonymousStructOrUnion())
1863 Record->setAnonymousStructOrUnion(true);
1864
1865 if (D->isLocalClass())
1866 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record);
1867
1868 // Forward the mangling number from the template to the instantiated decl.
1869 SemaRef.Context.setManglingNumber(Record,
1870 SemaRef.Context.getManglingNumber(D));
1871
1872 // See if the old tag was defined along with a declarator.
1873 // If it did, mark the new tag as being associated with that declarator.
1874 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1875 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD);
1876
1877 // See if the old tag was defined along with a typedef.
1878 // If it did, mark the new tag as being associated with that typedef.
1879 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1880 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND);
1881
1882 Owner->addDecl(Record);
1883
1884 // DR1484 clarifies that the members of a local class are instantiated as part
1885 // of the instantiation of their enclosing entity.
1886 if (D->isCompleteDefinition() && D->isLocalClass()) {
1887 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef);
1888
1889 SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs,
1890 TSK_ImplicitInstantiation,
1891 /*Complain=*/true);
1892
1893 // For nested local classes, we will instantiate the members when we
1894 // reach the end of the outermost (non-nested) local class.
1895 if (!D->isCXXClassMember())
1896 SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs,
1897 TSK_ImplicitInstantiation);
1898
1899 // This class may have local implicit instantiations that need to be
1900 // performed within this scope.
1901 LocalInstantiations.perform();
1902 }
1903
1904 SemaRef.DiagnoseUnusedNestedTypedefs(Record);
1905
1906 return Record;
1907}
1908
1909/// Adjust the given function type for an instantiation of the
1910/// given declaration, to cope with modifications to the function's type that
1911/// aren't reflected in the type-source information.
1912///
1913/// \param D The declaration we're instantiating.
1914/// \param TInfo The already-instantiated type.
1915static QualType adjustFunctionTypeForInstantiation(ASTContext &Context,
1916 FunctionDecl *D,
1917 TypeSourceInfo *TInfo) {
1918 const FunctionProtoType *OrigFunc
1919 = D->getType()->castAs<FunctionProtoType>();
1920 const FunctionProtoType *NewFunc
1921 = TInfo->getType()->castAs<FunctionProtoType>();
1922 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo())
1923 return TInfo->getType();
1924
1925 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo();
1926 NewEPI.ExtInfo = OrigFunc->getExtInfo();
1927 return Context.getFunctionType(NewFunc->getReturnType(),
1928 NewFunc->getParamTypes(), NewEPI);
1929}
1930
1931/// Normal class members are of more specific types and therefore
1932/// don't make it here. This function serves three purposes:
1933/// 1) instantiating function templates
1934/// 2) substituting friend declarations
1935/// 3) substituting deduction guide declarations for nested class templates
1936Decl *TemplateDeclInstantiator::VisitFunctionDecl(
1937 FunctionDecl *D, TemplateParameterList *TemplateParams,
1938 RewriteKind FunctionRewriteKind) {
1939 // Check whether there is already a function template specialization for
1940 // this declaration.
1941 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
1942 if (FunctionTemplate && !TemplateParams) {
1943 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
1944
1945 void *InsertPos = nullptr;
1946 FunctionDecl *SpecFunc
1947 = FunctionTemplate->findSpecialization(Innermost, InsertPos);
1948
1949 // If we already have a function template specialization, return it.
1950 if (SpecFunc)
1951 return SpecFunc;
1952 }
1953
1954 bool isFriend;
1955 if (FunctionTemplate)
1956 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
1957 else
1958 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
1959
1960 bool MergeWithParentScope = (TemplateParams != nullptr) ||
1961 Owner->isFunctionOrMethod() ||
1962 !(isa<Decl>(Owner) &&
1963 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
1964 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
1965
1966 ExplicitSpecifier InstantiatedExplicitSpecifier;
1967 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
1968 InstantiatedExplicitSpecifier = instantiateExplicitSpecifier(
1969 SemaRef, TemplateArgs, DGuide->getExplicitSpecifier(), DGuide);
1970 if (InstantiatedExplicitSpecifier.isInvalid())
1971 return nullptr;
1972 }
1973
1974 SmallVector<ParmVarDecl *, 4> Params;
1975 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
1976 if (!TInfo)
1977 return nullptr;
1978 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
1979
1980 if (TemplateParams && TemplateParams->size()) {
1981 auto *LastParam =
1982 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
1983 if (LastParam && LastParam->isImplicit() &&
1984 LastParam->hasTypeConstraint()) {
1985 // In abbreviated templates, the type-constraints of invented template
1986 // type parameters are instantiated with the function type, invalidating
1987 // the TemplateParameterList which relied on the template type parameter
1988 // not having a type constraint. Recreate the TemplateParameterList with
1989 // the updated parameter list.
1990 TemplateParams = TemplateParameterList::Create(
1991 SemaRef.Context, TemplateParams->getTemplateLoc(),
1992 TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
1993 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
1994 }
1995 }
1996
1997 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
1998 if (QualifierLoc) {
1999 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2000 TemplateArgs);
2001 if (!QualifierLoc)
2002 return nullptr;
2003 }
2004
2005 // FIXME: Concepts: Do not substitute into constraint expressions
2006 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2007 if (TrailingRequiresClause) {
2008 EnterExpressionEvaluationContext ConstantEvaluated(
2009 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
2010 ExprResult SubstRC = SemaRef.SubstExpr(TrailingRequiresClause,
2011 TemplateArgs);
2012 if (SubstRC.isInvalid())
2013 return nullptr;
2014 TrailingRequiresClause = SubstRC.get();
2015 if (!SemaRef.CheckConstraintExpression(TrailingRequiresClause))
2016 return nullptr;
2017 }
2018
2019 // If we're instantiating a local function declaration, put the result
2020 // in the enclosing namespace; otherwise we need to find the instantiated
2021 // context.
2022 DeclContext *DC;
2023 if (D->isLocalExternDecl()) {
2024 DC = Owner;
2025 SemaRef.adjustContextForLocalExternDecl(DC);
2026 } else if (isFriend && QualifierLoc) {
2027 CXXScopeSpec SS;
2028 SS.Adopt(QualifierLoc);
2029 DC = SemaRef.computeDeclContext(SS);
2030 if (!DC) return nullptr;
2031 } else {
2032 DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(),
2033 TemplateArgs);
2034 }
2035
2036 DeclarationNameInfo NameInfo
2037 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
2038
2039 if (FunctionRewriteKind != RewriteKind::None)
2040 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2041
2042 FunctionDecl *Function;
2043 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
2044 Function = CXXDeductionGuideDecl::Create(
2045 SemaRef.Context, DC, D->getInnerLocStart(),
2046 InstantiatedExplicitSpecifier, NameInfo, T, TInfo,
2047 D->getSourceRange().getEnd());
2048 if (DGuide->isCopyDeductionCandidate())
2049 cast<CXXDeductionGuideDecl>(Function)->setIsCopyDeductionCandidate();
2050 Function->setAccess(D->getAccess());
2051 } else {
2052 Function = FunctionDecl::Create(
2053 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo,
2054 D->getCanonicalDecl()->getStorageClass(), D->UsesFPIntrin(),
2055 D->isInlineSpecified(), D->hasWrittenPrototype(), D->getConstexprKind(),
2056 TrailingRequiresClause);
2057 Function->setRangeEnd(D->getSourceRange().getEnd());
2058 }
2059
2060 if (D->isInlined())
2061 Function->setImplicitlyInline();
2062
2063 if (QualifierLoc)
2064 Function->setQualifierInfo(QualifierLoc);
2065
2066 if (D->isLocalExternDecl())
2067 Function->setLocalExternDecl();
2068
2069 DeclContext *LexicalDC = Owner;
2070 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) {
2071 assert(D->getDeclContext()->isFileContext())(static_cast <bool> (D->getDeclContext()->isFileContext
()) ? void (0) : __assert_fail ("D->getDeclContext()->isFileContext()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 2071, __extension__ __PRETTY_FUNCTION__))
;
2072 LexicalDC = D->getDeclContext();
2073 }
2074
2075 Function->setLexicalDeclContext(LexicalDC);
2076
2077 // Attach the parameters
2078 for (unsigned P = 0; P < Params.size(); ++P)
2079 if (Params[P])
2080 Params[P]->setOwningFunction(Function);
2081 Function->setParams(Params);
2082
2083 if (TrailingRequiresClause)
2084 Function->setTrailingRequiresClause(TrailingRequiresClause);
2085
2086 if (TemplateParams) {
2087 // Our resulting instantiation is actually a function template, since we
2088 // are substituting only the outer template parameters. For example, given
2089 //
2090 // template<typename T>
2091 // struct X {
2092 // template<typename U> friend void f(T, U);
2093 // };
2094 //
2095 // X<int> x;
2096 //
2097 // We are instantiating the friend function template "f" within X<int>,
2098 // which means substituting int for T, but leaving "f" as a friend function
2099 // template.
2100 // Build the function template itself.
2101 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC,
2102 Function->getLocation(),
2103 Function->getDeclName(),
2104 TemplateParams, Function);
2105 Function->setDescribedFunctionTemplate(FunctionTemplate);
2106
2107 FunctionTemplate->setLexicalDeclContext(LexicalDC);
2108
2109 if (isFriend && D->isThisDeclarationADefinition()) {
2110 FunctionTemplate->setInstantiatedFromMemberTemplate(
2111 D->getDescribedFunctionTemplate());
2112 }
2113 } else if (FunctionTemplate) {
2114 // Record this function template specialization.
2115 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2116 Function->setFunctionTemplateSpecialization(FunctionTemplate,
2117 TemplateArgumentList::CreateCopy(SemaRef.Context,
2118 Innermost),
2119 /*InsertPos=*/nullptr);
2120 } else if (isFriend && D->isThisDeclarationADefinition()) {
2121 // Do not connect the friend to the template unless it's actually a
2122 // definition. We don't want non-template functions to be marked as being
2123 // template instantiations.
2124 Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2125 }
2126
2127 if (isFriend) {
2128 Function->setObjectOfFriendDecl();
2129 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate())
2130 FT->setObjectOfFriendDecl();
2131 }
2132
2133 if (InitFunctionInstantiation(Function, D))
2134 Function->setInvalidDecl();
2135
2136 bool IsExplicitSpecialization = false;
2137
2138 LookupResult Previous(
2139 SemaRef, Function->getDeclName(), SourceLocation(),
2140 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
2141 : Sema::LookupOrdinaryName,
2142 D->isLocalExternDecl() ? Sema::ForExternalRedeclaration
2143 : SemaRef.forRedeclarationInCurContext());
2144
2145 if (DependentFunctionTemplateSpecializationInfo *Info
2146 = D->getDependentSpecializationInfo()) {
2147 assert(isFriend && "non-friend has dependent specialization info?")(static_cast <bool> (isFriend && "non-friend has dependent specialization info?"
) ? void (0) : __assert_fail ("isFriend && \"non-friend has dependent specialization info?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 2147, __extension__ __PRETTY_FUNCTION__))
;
2148
2149 // Instantiate the explicit template arguments.
2150 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2151 Info->getRAngleLoc());
2152 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
2153 ExplicitArgs, TemplateArgs))
2154 return nullptr;
2155
2156 // Map the candidate templates to their instantiations.
2157 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
2158 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
2159 Info->getTemplate(I),
2160 TemplateArgs);
2161 if (!Temp) return nullptr;
2162
2163 Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
2164 }
2165
2166 if (SemaRef.CheckFunctionTemplateSpecialization(Function,
2167 &ExplicitArgs,
2168 Previous))
2169 Function->setInvalidDecl();
2170
2171 IsExplicitSpecialization = true;
2172 } else if (const ASTTemplateArgumentListInfo *Info =
2173 D->getTemplateSpecializationArgsAsWritten()) {
2174 // The name of this function was written as a template-id.
2175 SemaRef.LookupQualifiedName(Previous, DC);
2176
2177 // Instantiate the explicit template arguments.
2178 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2179 Info->getRAngleLoc());
2180 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
2181 ExplicitArgs, TemplateArgs))
2182 return nullptr;
2183
2184 if (SemaRef.CheckFunctionTemplateSpecialization(Function,
2185 &ExplicitArgs,
2186 Previous))
2187 Function->setInvalidDecl();
2188
2189 IsExplicitSpecialization = true;
2190 } else if (TemplateParams || !FunctionTemplate) {
2191 // Look only into the namespace where the friend would be declared to
2192 // find a previous declaration. This is the innermost enclosing namespace,
2193 // as described in ActOnFriendFunctionDecl.
2194 SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext());
2195
2196 // In C++, the previous declaration we find might be a tag type
2197 // (class or enum). In this case, the new declaration will hide the
2198 // tag type. Note that this does does not apply if we're declaring a
2199 // typedef (C++ [dcl.typedef]p4).
2200 if (Previous.isSingleTagDecl())
2201 Previous.clear();
2202
2203 // Filter out previous declarations that don't match the scope. The only
2204 // effect this has is to remove declarations found in inline namespaces
2205 // for friend declarations with unqualified names.
2206 SemaRef.FilterLookupForScope(Previous, DC, /*Scope*/ nullptr,
2207 /*ConsiderLinkage*/ true,
2208 QualifierLoc.hasQualifier());
2209 }
2210
2211 SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous,
2212 IsExplicitSpecialization);
2213
2214 // Check the template parameter list against the previous declaration. The
2215 // goal here is to pick up default arguments added since the friend was
2216 // declared; we know the template parameter lists match, since otherwise
2217 // we would not have picked this template as the previous declaration.
2218 if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) {
2219 SemaRef.CheckTemplateParameterList(
2220 TemplateParams,
2221 FunctionTemplate->getPreviousDecl()->getTemplateParameters(),
2222 Function->isThisDeclarationADefinition()
2223 ? Sema::TPC_FriendFunctionTemplateDefinition
2224 : Sema::TPC_FriendFunctionTemplate);
2225 }
2226
2227 // If we're introducing a friend definition after the first use, trigger
2228 // instantiation.
2229 // FIXME: If this is a friend function template definition, we should check
2230 // to see if any specializations have been used.
2231 if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) {
2232 if (MemberSpecializationInfo *MSInfo =
2233 Function->getMemberSpecializationInfo()) {
2234 if (MSInfo->getPointOfInstantiation().isInvalid()) {
2235 SourceLocation Loc = D->getLocation(); // FIXME
2236 MSInfo->setPointOfInstantiation(Loc);
2237 SemaRef.PendingLocalImplicitInstantiations.push_back(
2238 std::make_pair(Function, Loc));
2239 }
2240 }
2241 }
2242
2243 if (D->isExplicitlyDefaulted()) {
2244 if (SubstDefaultedFunction(Function, D))
2245 return nullptr;
2246 }
2247 if (D->isDeleted())
2248 SemaRef.SetDeclDeleted(Function, D->getLocation());
2249
2250 NamedDecl *PrincipalDecl =
2251 (TemplateParams ? cast<NamedDecl>(FunctionTemplate) : Function);
2252
2253 // If this declaration lives in a different context from its lexical context,
2254 // add it to the corresponding lookup table.
2255 if (isFriend ||
2256 (Function->isLocalExternDecl() && !Function->getPreviousDecl()))
2257 DC->makeDeclVisibleInContext(PrincipalDecl);
2258
2259 if (Function->isOverloadedOperator() && !DC->isRecord() &&
2260 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
2261 PrincipalDecl->setNonMemberOperator();
2262
2263 return Function;
2264}
2265
2266Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(
2267 CXXMethodDecl *D, TemplateParameterList *TemplateParams,
2268 Optional<const ASTTemplateArgumentListInfo *> ClassScopeSpecializationArgs,
2269 RewriteKind FunctionRewriteKind) {
2270 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
2271 if (FunctionTemplate && !TemplateParams) {
2272 // We are creating a function template specialization from a function
2273 // template. Check whether there is already a function template
2274 // specialization for this particular set of template arguments.
2275 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2276
2277 void *InsertPos = nullptr;
2278 FunctionDecl *SpecFunc
2279 = FunctionTemplate->findSpecialization(Innermost, InsertPos);
2280
2281 // If we already have a function template specialization, return it.
2282 if (SpecFunc)
2283 return SpecFunc;
2284 }
2285
2286 bool isFriend;
2287 if (FunctionTemplate)
2288 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
2289 else
2290 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
2291
2292 bool MergeWithParentScope = (TemplateParams != nullptr) ||
2293 !(isa<Decl>(Owner) &&
2294 cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
2295 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
2296
2297 // Instantiate enclosing template arguments for friends.
2298 SmallVector<TemplateParameterList *, 4> TempParamLists;
2299 unsigned NumTempParamLists = 0;
2300 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) {
2301 TempParamLists.resize(NumTempParamLists);
2302 for (unsigned I = 0; I != NumTempParamLists; ++I) {
2303 TemplateParameterList *TempParams = D->getTemplateParameterList(I);
2304 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
2305 if (!InstParams)
2306 return nullptr;
2307 TempParamLists[I] = InstParams;
2308 }
2309 }
2310
2311 ExplicitSpecifier InstantiatedExplicitSpecifier =
2312 instantiateExplicitSpecifier(SemaRef, TemplateArgs,
2313 ExplicitSpecifier::getFromDecl(D), D);
2314 if (InstantiatedExplicitSpecifier.isInvalid())
2315 return nullptr;
2316
2317 // Implicit destructors/constructors created for local classes in
2318 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI.
2319 // Unfortunately there isn't enough context in those functions to
2320 // conditionally populate the TSI without breaking non-template related use
2321 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get
2322 // a proper transformation.
2323 if (cast<CXXRecordDecl>(D->getParent())->isLambda() &&
2324 !D->getTypeSourceInfo() &&
2325 isa<CXXConstructorDecl, CXXDestructorDecl>(D)) {
2326 TypeSourceInfo *TSI =
2327 SemaRef.Context.getTrivialTypeSourceInfo(D->getType());
2328 D->setTypeSourceInfo(TSI);
2329 }
2330
2331 SmallVector<ParmVarDecl *, 4> Params;
2332 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
2333 if (!TInfo)
2334 return nullptr;
2335 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
2336
2337 if (TemplateParams && TemplateParams->size()) {
2338 auto *LastParam =
2339 dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
2340 if (LastParam && LastParam->isImplicit() &&
2341 LastParam->hasTypeConstraint()) {
2342 // In abbreviated templates, the type-constraints of invented template
2343 // type parameters are instantiated with the function type, invalidating
2344 // the TemplateParameterList which relied on the template type parameter
2345 // not having a type constraint. Recreate the TemplateParameterList with
2346 // the updated parameter list.
2347 TemplateParams = TemplateParameterList::Create(
2348 SemaRef.Context, TemplateParams->getTemplateLoc(),
2349 TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
2350 TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
2351 }
2352 }
2353
2354 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
2355 if (QualifierLoc) {
2356 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2357 TemplateArgs);
2358 if (!QualifierLoc)
2359 return nullptr;
2360 }
2361
2362 // FIXME: Concepts: Do not substitute into constraint expressions
2363 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2364 if (TrailingRequiresClause) {
2365 EnterExpressionEvaluationContext ConstantEvaluated(
2366 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
2367 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
2368 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext,
2369 D->getMethodQualifiers(), ThisContext);
2370 ExprResult SubstRC = SemaRef.SubstExpr(TrailingRequiresClause,
2371 TemplateArgs);
2372 if (SubstRC.isInvalid())
2373 return nullptr;
2374 TrailingRequiresClause = SubstRC.get();
2375 if (!SemaRef.CheckConstraintExpression(TrailingRequiresClause))
2376 return nullptr;
2377 }
2378
2379 DeclContext *DC = Owner;
2380 if (isFriend) {
2381 if (QualifierLoc) {
2382 CXXScopeSpec SS;
2383 SS.Adopt(QualifierLoc);
2384 DC = SemaRef.computeDeclContext(SS);
2385
2386 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC))
2387 return nullptr;
2388 } else {
2389 DC = SemaRef.FindInstantiatedContext(D->getLocation(),
2390 D->getDeclContext(),
2391 TemplateArgs);
2392 }
2393 if (!DC) return nullptr;
2394 }
2395
2396 DeclarationNameInfo NameInfo
2397 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
2398
2399 if (FunctionRewriteKind != RewriteKind::None)
2400 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2401
2402 // Build the instantiated method declaration.
2403 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
2404 CXXMethodDecl *Method = nullptr;
2405
2406 SourceLocation StartLoc = D->getInnerLocStart();
2407 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
2408 Method = CXXConstructorDecl::Create(
2409 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2410 InstantiatedExplicitSpecifier, Constructor->UsesFPIntrin(),
2411 Constructor->isInlineSpecified(), false,
2412 Constructor->getConstexprKind(), InheritedConstructor(),
2413 TrailingRequiresClause);
2414 Method->setRangeEnd(Constructor->getEndLoc());
2415 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
2416 Method = CXXDestructorDecl::Create(
2417 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2418 Destructor->UsesFPIntrin(), Destructor->isInlineSpecified(), false,
2419 Destructor->getConstexprKind(), TrailingRequiresClause);
2420 Method->setRangeEnd(Destructor->getEndLoc());
2421 Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName(
2422 SemaRef.Context.getCanonicalType(
2423 SemaRef.Context.getTypeDeclType(Record))));
2424 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
2425 Method = CXXConversionDecl::Create(
2426 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
2427 Conversion->UsesFPIntrin(), Conversion->isInlineSpecified(),
2428 InstantiatedExplicitSpecifier, Conversion->getConstexprKind(),
2429 Conversion->getEndLoc(), TrailingRequiresClause);
2430 } else {
2431 StorageClass SC = D->isStatic() ? SC_Static : SC_None;
2432 Method = CXXMethodDecl::Create(
2433 SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, SC,
2434 D->UsesFPIntrin(), D->isInlineSpecified(), D->getConstexprKind(),
2435 D->getEndLoc(), TrailingRequiresClause);
2436 }
2437
2438 if (D->isInlined())
2439 Method->setImplicitlyInline();
2440
2441 if (QualifierLoc)
2442 Method->setQualifierInfo(QualifierLoc);
2443
2444 if (TemplateParams) {
2445 // Our resulting instantiation is actually a function template, since we
2446 // are substituting only the outer template parameters. For example, given
2447 //
2448 // template<typename T>
2449 // struct X {
2450 // template<typename U> void f(T, U);
2451 // };
2452 //
2453 // X<int> x;
2454 //
2455 // We are instantiating the member template "f" within X<int>, which means
2456 // substituting int for T, but leaving "f" as a member function template.
2457 // Build the function template itself.
2458 FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record,
2459 Method->getLocation(),
2460 Method->getDeclName(),
2461 TemplateParams, Method);
2462 if (isFriend) {
2463 FunctionTemplate->setLexicalDeclContext(Owner);
2464 FunctionTemplate->setObjectOfFriendDecl();
2465 } else if (D->isOutOfLine())
2466 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
2467 Method->setDescribedFunctionTemplate(FunctionTemplate);
2468 } else if (FunctionTemplate) {
2469 // Record this function template specialization.
2470 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2471 Method->setFunctionTemplateSpecialization(FunctionTemplate,
2472 TemplateArgumentList::CreateCopy(SemaRef.Context,
2473 Innermost),
2474 /*InsertPos=*/nullptr);
2475 } else if (!isFriend) {
2476 // Record that this is an instantiation of a member function.
2477 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2478 }
2479
2480 // If we are instantiating a member function defined
2481 // out-of-line, the instantiation will have the same lexical
2482 // context (which will be a namespace scope) as the template.
2483 if (isFriend) {
2484 if (NumTempParamLists)
2485 Method->setTemplateParameterListsInfo(
2486 SemaRef.Context,
2487 llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists));
2488
2489 Method->setLexicalDeclContext(Owner);
2490 Method->setObjectOfFriendDecl();
2491 } else if (D->isOutOfLine())
2492 Method->setLexicalDeclContext(D->getLexicalDeclContext());
2493
2494 // Attach the parameters
2495 for (unsigned P = 0; P < Params.size(); ++P)
2496 Params[P]->setOwningFunction(Method);
2497 Method->setParams(Params);
2498
2499 if (InitMethodInstantiation(Method, D))
2500 Method->setInvalidDecl();
2501
2502 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName,
2503 Sema::ForExternalRedeclaration);
2504
2505 bool IsExplicitSpecialization = false;
2506
2507 // If the name of this function was written as a template-id, instantiate
2508 // the explicit template arguments.
2509 if (DependentFunctionTemplateSpecializationInfo *Info
2510 = D->getDependentSpecializationInfo()) {
2511 assert(isFriend && "non-friend has dependent specialization info?")(static_cast <bool> (isFriend && "non-friend has dependent specialization info?"
) ? void (0) : __assert_fail ("isFriend && \"non-friend has dependent specialization info?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 2511, __extension__ __PRETTY_FUNCTION__))
;
2512
2513 // Instantiate the explicit template arguments.
2514 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2515 Info->getRAngleLoc());
2516 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
2517 ExplicitArgs, TemplateArgs))
2518 return nullptr;
2519
2520 // Map the candidate templates to their instantiations.
2521 for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
2522 Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
2523 Info->getTemplate(I),
2524 TemplateArgs);
2525 if (!Temp) return nullptr;
2526
2527 Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
2528 }
2529
2530 if (SemaRef.CheckFunctionTemplateSpecialization(Method,
2531 &ExplicitArgs,
2532 Previous))
2533 Method->setInvalidDecl();
2534
2535 IsExplicitSpecialization = true;
2536 } else if (const ASTTemplateArgumentListInfo *Info =
2537 ClassScopeSpecializationArgs.getValueOr(
2538 D->getTemplateSpecializationArgsAsWritten())) {
2539 SemaRef.LookupQualifiedName(Previous, DC);
2540
2541 TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
2542 Info->getRAngleLoc());
2543 if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
2544 ExplicitArgs, TemplateArgs))
2545 return nullptr;
2546
2547 if (SemaRef.CheckFunctionTemplateSpecialization(Method,
2548 &ExplicitArgs,
2549 Previous))
2550 Method->setInvalidDecl();
2551
2552 IsExplicitSpecialization = true;
2553 } else if (ClassScopeSpecializationArgs) {
2554 // Class-scope explicit specialization written without explicit template
2555 // arguments.
2556 SemaRef.LookupQualifiedName(Previous, DC);
2557 if (SemaRef.CheckFunctionTemplateSpecialization(Method, nullptr, Previous))
2558 Method->setInvalidDecl();
2559
2560 IsExplicitSpecialization = true;
2561 } else if (!FunctionTemplate || TemplateParams || isFriend) {
2562 SemaRef.LookupQualifiedName(Previous, Record);
2563
2564 // In C++, the previous declaration we find might be a tag type
2565 // (class or enum). In this case, the new declaration will hide the
2566 // tag type. Note that this does does not apply if we're declaring a
2567 // typedef (C++ [dcl.typedef]p4).
2568 if (Previous.isSingleTagDecl())
2569 Previous.clear();
2570 }
2571
2572 SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous,
2573 IsExplicitSpecialization);
2574
2575 if (D->isPure())
2576 SemaRef.CheckPureMethod(Method, SourceRange());
2577
2578 // Propagate access. For a non-friend declaration, the access is
2579 // whatever we're propagating from. For a friend, it should be the
2580 // previous declaration we just found.
2581 if (isFriend && Method->getPreviousDecl())
2582 Method->setAccess(Method->getPreviousDecl()->getAccess());
2583 else
2584 Method->setAccess(D->getAccess());
2585 if (FunctionTemplate)
2586 FunctionTemplate->setAccess(Method->getAccess());
2587
2588 SemaRef.CheckOverrideControl(Method);
2589
2590 // If a function is defined as defaulted or deleted, mark it as such now.
2591 if (D->isExplicitlyDefaulted()) {
2592 if (SubstDefaultedFunction(Method, D))
2593 return nullptr;
2594 }
2595 if (D->isDeletedAsWritten())
2596 SemaRef.SetDeclDeleted(Method, Method->getLocation());
2597
2598 // If this is an explicit specialization, mark the implicitly-instantiated
2599 // template specialization as being an explicit specialization too.
2600 // FIXME: Is this necessary?
2601 if (IsExplicitSpecialization && !isFriend)
2602 SemaRef.CompleteMemberSpecialization(Method, Previous);
2603
2604 // If there's a function template, let our caller handle it.
2605 if (FunctionTemplate) {
2606 // do nothing
2607
2608 // Don't hide a (potentially) valid declaration with an invalid one.
2609 } else if (Method->isInvalidDecl() && !Previous.empty()) {
2610 // do nothing
2611
2612 // Otherwise, check access to friends and make them visible.
2613 } else if (isFriend) {
2614 // We only need to re-check access for methods which we didn't
2615 // manage to match during parsing.
2616 if (!D->getPreviousDecl())
2617 SemaRef.CheckFriendAccess(Method);
2618
2619 Record->makeDeclVisibleInContext(Method);
2620
2621 // Otherwise, add the declaration. We don't need to do this for
2622 // class-scope specializations because we'll have matched them with
2623 // the appropriate template.
2624 } else {
2625 Owner->addDecl(Method);
2626 }
2627
2628 // PR17480: Honor the used attribute to instantiate member function
2629 // definitions
2630 if (Method->hasAttr<UsedAttr>()) {
2631 if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) {
2632 SourceLocation Loc;
2633 if (const MemberSpecializationInfo *MSInfo =
2634 A->getMemberSpecializationInfo())
2635 Loc = MSInfo->getPointOfInstantiation();
2636 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A))
2637 Loc = Spec->getPointOfInstantiation();
2638 SemaRef.MarkFunctionReferenced(Loc, Method);
2639 }
2640 }
2641
2642 return Method;
2643}
2644
2645Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
2646 return VisitCXXMethodDecl(D);
2647}
2648
2649Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
2650 return VisitCXXMethodDecl(D);
2651}
2652
2653Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) {
2654 return VisitCXXMethodDecl(D);
2655}
2656
2657Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) {
2658 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None,
2659 /*ExpectParameterPack=*/ false);
2660}
2661
2662Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
2663 TemplateTypeParmDecl *D) {
2664 assert(D->getTypeForDecl()->isTemplateTypeParmType())(static_cast <bool> (D->getTypeForDecl()->isTemplateTypeParmType
()) ? void (0) : __assert_fail ("D->getTypeForDecl()->isTemplateTypeParmType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 2664, __extension__ __PRETTY_FUNCTION__))
;
2665
2666 Optional<unsigned> NumExpanded;
2667
2668 if (const TypeConstraint *TC = D->getTypeConstraint()) {
2669 if (D->isPackExpansion() && !D->isExpandedParameterPack()) {
2670 assert(TC->getTemplateArgsAsWritten() &&(static_cast <bool> (TC->getTemplateArgsAsWritten() &&
"type parameter can only be an expansion when explicit arguments "
"are specified") ? void (0) : __assert_fail ("TC->getTemplateArgsAsWritten() && \"type parameter can only be an expansion when explicit arguments \" \"are specified\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 2672, __extension__ __PRETTY_FUNCTION__))
2671 "type parameter can only be an expansion when explicit arguments "(static_cast <bool> (TC->getTemplateArgsAsWritten() &&
"type parameter can only be an expansion when explicit arguments "
"are specified") ? void (0) : __assert_fail ("TC->getTemplateArgsAsWritten() && \"type parameter can only be an expansion when explicit arguments \" \"are specified\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 2672, __extension__ __PRETTY_FUNCTION__))
2672 "are specified")(static_cast <bool> (TC->getTemplateArgsAsWritten() &&
"type parameter can only be an expansion when explicit arguments "
"are specified") ? void (0) : __assert_fail ("TC->getTemplateArgsAsWritten() && \"type parameter can only be an expansion when explicit arguments \" \"are specified\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 2672, __extension__ __PRETTY_FUNCTION__))
;
2673 // The template type parameter pack's type is a pack expansion of types.
2674 // Determine whether we need to expand this parameter pack into separate
2675 // types.
2676 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2677 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2678 SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded);
2679
2680 // Determine whether the set of unexpanded parameter packs can and should
2681 // be expanded.
2682 bool Expand = true;
2683 bool RetainExpansion = false;
2684 if (SemaRef.CheckParameterPacksForExpansion(
2685 cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2686 ->getEllipsisLoc(),
2687 SourceRange(TC->getConceptNameLoc(),
2688 TC->hasExplicitTemplateArgs() ?
2689 TC->getTemplateArgsAsWritten()->getRAngleLoc() :
2690 TC->getConceptNameInfo().getEndLoc()),
2691 Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded))
2692 return nullptr;
2693 }
2694 }
2695
2696 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create(
2697 SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(),
2698 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(),
2699 D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(),
2700 D->hasTypeConstraint(), NumExpanded);
2701
2702 Inst->setAccess(AS_public);
2703 Inst->setImplicit(D->isImplicit());
2704 if (auto *TC = D->getTypeConstraint()) {
2705 if (!D->isImplicit()) {
2706 // Invented template parameter type constraints will be instantiated with
2707 // the corresponding auto-typed parameter as it might reference other
2708 // parameters.
2709
2710 // TODO: Concepts: do not instantiate the constraint (delayed constraint
2711 // substitution)
2712 const ASTTemplateArgumentListInfo *TemplArgInfo
2713 = TC->getTemplateArgsAsWritten();
2714 TemplateArgumentListInfo InstArgs;
2715
2716 if (TemplArgInfo) {
2717 InstArgs.setLAngleLoc(TemplArgInfo->LAngleLoc);
2718 InstArgs.setRAngleLoc(TemplArgInfo->RAngleLoc);
2719 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
2720 TemplArgInfo->NumTemplateArgs,
2721 InstArgs, TemplateArgs))
2722 return nullptr;
2723 }
2724 if (SemaRef.AttachTypeConstraint(
2725 TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(),
2726 TC->getNamedConcept(), &InstArgs, Inst,
2727 D->isParameterPack()
2728 ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2729 ->getEllipsisLoc()
2730 : SourceLocation()))
2731 return nullptr;
2732 }
2733 }
2734 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
2735 TypeSourceInfo *InstantiatedDefaultArg =
2736 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs,
2737 D->getDefaultArgumentLoc(), D->getDeclName());
2738 if (InstantiatedDefaultArg)
2739 Inst->setDefaultArgument(InstantiatedDefaultArg);
2740 }
2741
2742 // Introduce this template parameter's instantiation into the instantiation
2743 // scope.
2744 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst);
2745
2746 return Inst;
2747}
2748
2749Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
2750 NonTypeTemplateParmDecl *D) {
2751 // Substitute into the type of the non-type template parameter.
2752 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc();
2753 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten;
2754 SmallVector<QualType, 4> ExpandedParameterPackTypes;
2755 bool IsExpandedParameterPack = false;
2756 TypeSourceInfo *DI;
2757 QualType T;
2758 bool Invalid = false;
2759
2760 if (D->isExpandedParameterPack()) {
2761 // The non-type template parameter pack is an already-expanded pack
2762 // expansion of types. Substitute into each of the expanded types.
2763 ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes());
2764 ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes());
2765 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
2766 TypeSourceInfo *NewDI =
2767 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs,
2768 D->getLocation(), D->getDeclName());
2769 if (!NewDI)
2770 return nullptr;
2771
2772 QualType NewT =
2773 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2774 if (NewT.isNull())
2775 return nullptr;
2776
2777 ExpandedParameterPackTypesAsWritten.push_back(NewDI);
2778 ExpandedParameterPackTypes.push_back(NewT);
2779 }
2780
2781 IsExpandedParameterPack = true;
2782 DI = D->getTypeSourceInfo();
2783 T = DI->getType();
2784 } else if (D->isPackExpansion()) {
2785 // The non-type template parameter pack's type is a pack expansion of types.
2786 // Determine whether we need to expand this parameter pack into separate
2787 // types.
2788 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>();
2789 TypeLoc Pattern = Expansion.getPatternLoc();
2790 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2791 SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
2792
2793 // Determine whether the set of unexpanded parameter packs can and should
2794 // be expanded.
2795 bool Expand = true;
2796 bool RetainExpansion = false;
2797 Optional<unsigned> OrigNumExpansions
2798 = Expansion.getTypePtr()->getNumExpansions();
2799 Optional<unsigned> NumExpansions = OrigNumExpansions;
2800 if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(),
2801 Pattern.getSourceRange(),
2802 Unexpanded,
2803 TemplateArgs,
2804 Expand, RetainExpansion,
2805 NumExpansions))
2806 return nullptr;
2807
2808 if (Expand) {
2809 for (unsigned I = 0; I != *NumExpansions; ++I) {
2810 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
2811 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs,
2812 D->getLocation(),
2813 D->getDeclName());
2814 if (!NewDI)
2815 return nullptr;
2816
2817 QualType NewT =
2818 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2819 if (NewT.isNull())
2820 return nullptr;
2821
2822 ExpandedParameterPackTypesAsWritten.push_back(NewDI);
2823 ExpandedParameterPackTypes.push_back(NewT);
2824 }
2825
2826 // Note that we have an expanded parameter pack. The "type" of this
2827 // expanded parameter pack is the original expansion type, but callers
2828 // will end up using the expanded parameter pack types for type-checking.
2829 IsExpandedParameterPack = true;
2830 DI = D->getTypeSourceInfo();
2831 T = DI->getType();
2832 } else {
2833 // We cannot fully expand the pack expansion now, so substitute into the
2834 // pattern and create a new pack expansion type.
2835 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
2836 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs,
2837 D->getLocation(),
2838 D->getDeclName());
2839 if (!NewPattern)
2840 return nullptr;
2841
2842 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation());
2843 DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(),
2844 NumExpansions);
2845 if (!DI)
2846 return nullptr;
2847
2848 T = DI->getType();
2849 }
2850 } else {
2851 // Simple case: substitution into a parameter that is not a parameter pack.
2852 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
2853 D->getLocation(), D->getDeclName());
2854 if (!DI)
2855 return nullptr;
2856
2857 // Check that this type is acceptable for a non-type template parameter.
2858 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation());
2859 if (T.isNull()) {
2860 T = SemaRef.Context.IntTy;
2861 Invalid = true;
2862 }
2863 }
2864
2865 NonTypeTemplateParmDecl *Param;
2866 if (IsExpandedParameterPack)
2867 Param = NonTypeTemplateParmDecl::Create(
2868 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
2869 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
2870 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes,
2871 ExpandedParameterPackTypesAsWritten);
2872 else
2873 Param = NonTypeTemplateParmDecl::Create(
2874 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
2875 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
2876 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI);
2877
2878 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc())
2879 if (AutoLoc.isConstrained())
2880 if (SemaRef.AttachTypeConstraint(
2881 AutoLoc, Param,
2882 IsExpandedParameterPack
2883 ? DI->getTypeLoc().getAs<PackExpansionTypeLoc>()
2884 .getEllipsisLoc()
2885 : SourceLocation()))
2886 Invalid = true;
2887
2888 Param->setAccess(AS_public);
2889 Param->setImplicit(D->isImplicit());
2890 if (Invalid)
2891 Param->setInvalidDecl();
2892
2893 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
2894 EnterExpressionEvaluationContext ConstantEvaluated(
2895 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
2896 ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs);
2897 if (!Value.isInvalid())
2898 Param->setDefaultArgument(Value.get());
2899 }
2900
2901 // Introduce this template parameter's instantiation into the instantiation
2902 // scope.
2903 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
2904 return Param;
2905}
2906
2907static void collectUnexpandedParameterPacks(
2908 Sema &S,
2909 TemplateParameterList *Params,
2910 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
2911 for (const auto &P : *Params) {
2912 if (P->isTemplateParameterPack())
2913 continue;
2914 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P))
2915 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(),
2916 Unexpanded);
2917 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P))
2918 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(),
2919 Unexpanded);
2920 }
2921}
2922
2923Decl *
2924TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
2925 TemplateTemplateParmDecl *D) {
2926 // Instantiate the template parameter list of the template template parameter.
2927 TemplateParameterList *TempParams = D->getTemplateParameters();
2928 TemplateParameterList *InstParams;
2929 SmallVector<TemplateParameterList*, 8> ExpandedParams;
2930
2931 bool IsExpandedParameterPack = false;
2932
2933 if (D->isExpandedParameterPack()) {
2934 // The template template parameter pack is an already-expanded pack
2935 // expansion of template parameters. Substitute into each of the expanded
2936 // parameters.
2937 ExpandedParams.reserve(D->getNumExpansionTemplateParameters());
2938 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
2939 I != N; ++I) {
2940 LocalInstantiationScope Scope(SemaRef);
2941 TemplateParameterList *Expansion =
2942 SubstTemplateParams(D->getExpansionTemplateParameters(I));
2943 if (!Expansion)
2944 return nullptr;
2945 ExpandedParams.push_back(Expansion);
2946 }
2947
2948 IsExpandedParameterPack = true;
2949 InstParams = TempParams;
2950 } else if (D->isPackExpansion()) {
2951 // The template template parameter pack expands to a pack of template
2952 // template parameters. Determine whether we need to expand this parameter
2953 // pack into separate parameters.
2954 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2955 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(),
2956 Unexpanded);
2957
2958 // Determine whether the set of unexpanded parameter packs can and should
2959 // be expanded.
2960 bool Expand = true;
2961 bool RetainExpansion = false;
2962 Optional<unsigned> NumExpansions;
2963 if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(),
2964 TempParams->getSourceRange(),
2965 Unexpanded,
2966 TemplateArgs,
2967 Expand, RetainExpansion,
2968 NumExpansions))
2969 return nullptr;
2970
2971 if (Expand) {
2972 for (unsigned I = 0; I != *NumExpansions; ++I) {
2973 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
2974 LocalInstantiationScope Scope(SemaRef);
2975 TemplateParameterList *Expansion = SubstTemplateParams(TempParams);
2976 if (!Expansion)
2977 return nullptr;
2978 ExpandedParams.push_back(Expansion);
2979 }
2980
2981 // Note that we have an expanded parameter pack. The "type" of this
2982 // expanded parameter pack is the original expansion type, but callers
2983 // will end up using the expanded parameter pack types for type-checking.
2984 IsExpandedParameterPack = true;
2985 InstParams = TempParams;
2986 } else {
2987 // We cannot fully expand the pack expansion now, so just substitute
2988 // into the pattern.
2989 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
2990
2991 LocalInstantiationScope Scope(SemaRef);
2992 InstParams = SubstTemplateParams(TempParams);
2993 if (!InstParams)
2994 return nullptr;
2995 }
2996 } else {
2997 // Perform the actual substitution of template parameters within a new,
2998 // local instantiation scope.
2999 LocalInstantiationScope Scope(SemaRef);
3000 InstParams = SubstTemplateParams(TempParams);
3001 if (!InstParams)
3002 return nullptr;
3003 }
3004
3005 // Build the template template parameter.
3006 TemplateTemplateParmDecl *Param;
3007 if (IsExpandedParameterPack)
3008 Param = TemplateTemplateParmDecl::Create(
3009 SemaRef.Context, Owner, D->getLocation(),
3010 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3011 D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams);
3012 else
3013 Param = TemplateTemplateParmDecl::Create(
3014 SemaRef.Context, Owner, D->getLocation(),
3015 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3016 D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams);
3017 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
3018 NestedNameSpecifierLoc QualifierLoc =
3019 D->getDefaultArgument().getTemplateQualifierLoc();
3020 QualifierLoc =
3021 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs);
3022 TemplateName TName = SemaRef.SubstTemplateName(
3023 QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(),
3024 D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs);
3025 if (!TName.isNull())
3026 Param->setDefaultArgument(
3027 SemaRef.Context,
3028 TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName),
3029 D->getDefaultArgument().getTemplateQualifierLoc(),
3030 D->getDefaultArgument().getTemplateNameLoc()));
3031 }
3032 Param->setAccess(AS_public);
3033 Param->setImplicit(D->isImplicit());
3034
3035 // Introduce this template parameter's instantiation into the instantiation
3036 // scope.
3037 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
3038
3039 return Param;
3040}
3041
3042Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
3043 // Using directives are never dependent (and never contain any types or
3044 // expressions), so they require no explicit instantiation work.
3045
3046 UsingDirectiveDecl *Inst
3047 = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(),
3048 D->getNamespaceKeyLocation(),
3049 D->getQualifierLoc(),
3050 D->getIdentLocation(),
3051 D->getNominatedNamespace(),
3052 D->getCommonAncestor());
3053
3054 // Add the using directive to its declaration context
3055 // only if this is not a function or method.
3056 if (!Owner->isFunctionOrMethod())
3057 Owner->addDecl(Inst);
3058
3059 return Inst;
3060}
3061
3062Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D,
3063 BaseUsingDecl *Inst,
3064 LookupResult *Lookup) {
3065
3066 bool isFunctionScope = Owner->isFunctionOrMethod();
3067
3068 for (auto *Shadow : D->shadows()) {
3069 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so
3070 // reconstruct it in the case where it matters. Hm, can we extract it from
3071 // the DeclSpec when parsing and save it in the UsingDecl itself?
3072 NamedDecl *OldTarget = Shadow->getTargetDecl();
3073 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow))
3074 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl())
3075 OldTarget = BaseShadow;
3076
3077 NamedDecl *InstTarget = nullptr;
3078 if (auto *EmptyD =
3079 dyn_cast<UnresolvedUsingIfExistsDecl>(Shadow->getTargetDecl())) {
3080 InstTarget = UnresolvedUsingIfExistsDecl::Create(
3081 SemaRef.Context, Owner, EmptyD->getLocation(), EmptyD->getDeclName());
3082 } else {
3083 InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl(
3084 Shadow->getLocation(), OldTarget, TemplateArgs));
3085 }
3086 if (!InstTarget)
3087 return nullptr;
3088
3089 UsingShadowDecl *PrevDecl = nullptr;
3090 if (Lookup &&
3091 SemaRef.CheckUsingShadowDecl(Inst, InstTarget, *Lookup, PrevDecl))
3092 continue;
3093
3094 if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow))
3095 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl(
3096 Shadow->getLocation(), OldPrev, TemplateArgs));
3097
3098 UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl(
3099 /*Scope*/ nullptr, Inst, InstTarget, PrevDecl);
3100 SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow);
3101
3102 if (isFunctionScope)
3103 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow);
3104 }
3105
3106 return Inst;
3107}
3108
3109Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) {
3110
3111 // The nested name specifier may be dependent, for example
3112 // template <typename T> struct t {
3113 // struct s1 { T f1(); };
3114 // struct s2 : s1 { using s1::f1; };
3115 // };
3116 // template struct t<int>;
3117 // Here, in using s1::f1, s1 refers to t<T>::s1;
3118 // we need to substitute for t<int>::s1.
3119 NestedNameSpecifierLoc QualifierLoc
3120 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
3121 TemplateArgs);
3122 if (!QualifierLoc)
3123 return nullptr;
3124
3125 // For an inheriting constructor declaration, the name of the using
3126 // declaration is the name of a constructor in this class, not in the
3127 // base class.
3128 DeclarationNameInfo NameInfo = D->getNameInfo();
3129 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3130 if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext))
3131 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName(
3132 SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD))));
3133
3134 // We only need to do redeclaration lookups if we're in a class scope (in
3135 // fact, it's not really even possible in non-class scopes).
3136 bool CheckRedeclaration = Owner->isRecord();
3137 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName,
3138 Sema::ForVisibleRedeclaration);
3139
3140 UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner,
3141 D->getUsingLoc(),
3142 QualifierLoc,
3143 NameInfo,
3144 D->hasTypename());
3145
3146 CXXScopeSpec SS;
3147 SS.Adopt(QualifierLoc);
3148 if (CheckRedeclaration) {
3149 Prev.setHideTags(false);
3150 SemaRef.LookupQualifiedName(Prev, Owner);
3151
3152 // Check for invalid redeclarations.
3153 if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(),
3154 D->hasTypename(), SS,
3155 D->getLocation(), Prev))
3156 NewUD->setInvalidDecl();
3157 }
3158
3159 if (!NewUD->isInvalidDecl() &&
3160 SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(), SS,
3161 NameInfo, D->getLocation(), nullptr, D))
3162 NewUD->setInvalidDecl();
3163
3164 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D);
3165 NewUD->setAccess(D->getAccess());
3166 Owner->addDecl(NewUD);
3167
3168 // Don't process the shadow decls for an invalid decl.
3169 if (NewUD->isInvalidDecl())
3170 return NewUD;
3171
3172 // If the using scope was dependent, or we had dependent bases, we need to
3173 // recheck the inheritance
3174 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3175 SemaRef.CheckInheritingConstructorUsingDecl(NewUD);
3176
3177 return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr);
3178}
3179
3180Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) {
3181 // Cannot be a dependent type, but still could be an instantiation
3182 EnumDecl *EnumD = cast_or_null<EnumDecl>(SemaRef.FindInstantiatedDecl(
3183 D->getLocation(), D->getEnumDecl(), TemplateArgs));
3184
3185 if (SemaRef.RequireCompleteEnumDecl(EnumD, EnumD->getLocation()))
3186 return nullptr;
3187
3188 UsingEnumDecl *NewUD =
3189 UsingEnumDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(),
3190 D->getEnumLoc(), D->getLocation(), EnumD);
3191
3192 SemaRef.Context.setInstantiatedFromUsingEnumDecl(NewUD, D);
3193 NewUD->setAccess(D->getAccess());
3194 Owner->addDecl(NewUD);
3195
3196 // Don't process the shadow decls for an invalid decl.
3197 if (NewUD->isInvalidDecl())
3198 return NewUD;
3199
3200 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it
3201 // cannot be dependent, and will therefore have been checked during template
3202 // definition.
3203
3204 return VisitBaseUsingDecls(D, NewUD, nullptr);
3205}
3206
3207Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) {
3208 // Ignore these; we handle them in bulk when processing the UsingDecl.
3209 return nullptr;
3210}
3211
3212Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl(
3213 ConstructorUsingShadowDecl *D) {
3214 // Ignore these; we handle them in bulk when processing the UsingDecl.
3215 return nullptr;
3216}
3217
3218template <typename T>
3219Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl(
3220 T *D, bool InstantiatingPackElement) {
3221 // If this is a pack expansion, expand it now.
3222 if (D->isPackExpansion() && !InstantiatingPackElement) {
3223 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3224 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded);
3225 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded);
3226
3227 // Determine whether the set of unexpanded parameter packs can and should
3228 // be expanded.
3229 bool Expand = true;
3230 bool RetainExpansion = false;
3231 Optional<unsigned> NumExpansions;
3232 if (SemaRef.CheckParameterPacksForExpansion(
3233 D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs,
3234 Expand, RetainExpansion, NumExpansions))
3235 return nullptr;
3236
3237 // This declaration cannot appear within a function template signature,
3238 // so we can't have a partial argument list for a parameter pack.
3239 assert(!RetainExpansion &&(static_cast <bool> (!RetainExpansion && "should never need to retain an expansion for UsingPackDecl"
) ? void (0) : __assert_fail ("!RetainExpansion && \"should never need to retain an expansion for UsingPackDecl\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3240, __extension__ __PRETTY_FUNCTION__))
3240 "should never need to retain an expansion for UsingPackDecl")(static_cast <bool> (!RetainExpansion && "should never need to retain an expansion for UsingPackDecl"
) ? void (0) : __assert_fail ("!RetainExpansion && \"should never need to retain an expansion for UsingPackDecl\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3240, __extension__ __PRETTY_FUNCTION__))
;
3241
3242 if (!Expand) {
3243 // We cannot fully expand the pack expansion now, so substitute into the
3244 // pattern and create a new pack expansion.
3245 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3246 return instantiateUnresolvedUsingDecl(D, true);
3247 }
3248
3249 // Within a function, we don't have any normal way to check for conflicts
3250 // between shadow declarations from different using declarations in the
3251 // same pack expansion, but this is always ill-formed because all expansions
3252 // must produce (conflicting) enumerators.
3253 //
3254 // Sadly we can't just reject this in the template definition because it
3255 // could be valid if the pack is empty or has exactly one expansion.
3256 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) {
3257 SemaRef.Diag(D->getEllipsisLoc(),
3258 diag::err_using_decl_redeclaration_expansion);
3259 return nullptr;
3260 }
3261
3262 // Instantiate the slices of this pack and build a UsingPackDecl.
3263 SmallVector<NamedDecl*, 8> Expansions;
3264 for (unsigned I = 0; I != *NumExpansions; ++I) {
3265 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
3266 Decl *Slice = instantiateUnresolvedUsingDecl(D, true);
3267 if (!Slice)
3268 return nullptr;
3269 // Note that we can still get unresolved using declarations here, if we
3270 // had arguments for all packs but the pattern also contained other
3271 // template arguments (this only happens during partial substitution, eg
3272 // into the body of a generic lambda in a function template).
3273 Expansions.push_back(cast<NamedDecl>(Slice));
3274 }
3275
3276 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3277 if (isDeclWithinFunction(D))
3278 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
3279 return NewD;
3280 }
3281
3282 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D);
3283 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation();
3284
3285 NestedNameSpecifierLoc QualifierLoc
3286 = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
3287 TemplateArgs);
3288 if (!QualifierLoc)
3289 return nullptr;
3290
3291 CXXScopeSpec SS;
3292 SS.Adopt(QualifierLoc);
3293
3294 DeclarationNameInfo NameInfo
3295 = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
3296
3297 // Produce a pack expansion only if we're not instantiating a particular
3298 // slice of a pack expansion.
3299 bool InstantiatingSlice = D->getEllipsisLoc().isValid() &&
3300 SemaRef.ArgumentPackSubstitutionIndex != -1;
3301 SourceLocation EllipsisLoc =
3302 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc();
3303
3304 bool IsUsingIfExists = D->template hasAttr<UsingIfExistsAttr>();
3305 NamedDecl *UD = SemaRef.BuildUsingDeclaration(
3306 /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(),
3307 /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc,
3308 ParsedAttributesView(),
3309 /*IsInstantiation*/ true, IsUsingIfExists);
3310 if (UD) {
3311 SemaRef.InstantiateAttrs(TemplateArgs, D, UD);
3312 SemaRef.Context.setInstantiatedFromUsingDecl(UD, D);
3313 }
3314
3315 return UD;
3316}
3317
3318Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl(
3319 UnresolvedUsingTypenameDecl *D) {
3320 return instantiateUnresolvedUsingDecl(D);
3321}
3322
3323Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl(
3324 UnresolvedUsingValueDecl *D) {
3325 return instantiateUnresolvedUsingDecl(D);
3326}
3327
3328Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl(
3329 UnresolvedUsingIfExistsDecl *D) {
3330 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl")::llvm::llvm_unreachable_internal("referring to unresolved decl out of UsingShadowDecl"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3330)
;
3331}
3332
3333Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) {
3334 SmallVector<NamedDecl*, 8> Expansions;
3335 for (auto *UD : D->expansions()) {
3336 if (NamedDecl *NewUD =
3337 SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs))
3338 Expansions.push_back(NewUD);
3339 else
3340 return nullptr;
3341 }
3342
3343 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3344 if (isDeclWithinFunction(D))
3345 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
3346 return NewD;
3347}
3348
3349Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl(
3350 ClassScopeFunctionSpecializationDecl *Decl) {
3351 CXXMethodDecl *OldFD = Decl->getSpecialization();
3352 return cast_or_null<CXXMethodDecl>(
3353 VisitCXXMethodDecl(OldFD, nullptr, Decl->getTemplateArgsAsWritten()));
3354}
3355
3356Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl(
3357 OMPThreadPrivateDecl *D) {
3358 SmallVector<Expr *, 5> Vars;
3359 for (auto *I : D->varlists()) {
3360 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
3361 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr")(static_cast <bool> (isa<DeclRefExpr>(Var) &&
"threadprivate arg is not a DeclRefExpr") ? void (0) : __assert_fail
("isa<DeclRefExpr>(Var) && \"threadprivate arg is not a DeclRefExpr\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3361, __extension__ __PRETTY_FUNCTION__))
;
3362 Vars.push_back(Var);
3363 }
3364
3365 OMPThreadPrivateDecl *TD =
3366 SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars);
3367
3368 TD->setAccess(AS_public);
3369 Owner->addDecl(TD);
3370
3371 return TD;
3372}
3373
3374Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) {
3375 SmallVector<Expr *, 5> Vars;
3376 for (auto *I : D->varlists()) {
3377 Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
3378 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr")(static_cast <bool> (isa<DeclRefExpr>(Var) &&
"allocate arg is not a DeclRefExpr") ? void (0) : __assert_fail
("isa<DeclRefExpr>(Var) && \"allocate arg is not a DeclRefExpr\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3378, __extension__ __PRETTY_FUNCTION__))
;
3379 Vars.push_back(Var);
3380 }
3381 SmallVector<OMPClause *, 4> Clauses;
3382 // Copy map clauses from the original mapper.
3383 for (OMPClause *C : D->clauselists()) {
3384 auto *AC = cast<OMPAllocatorClause>(C);
3385 ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs);
3386 if (!NewE.isUsable())
3387 continue;
3388 OMPClause *IC = SemaRef.ActOnOpenMPAllocatorClause(
3389 NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc());
3390 Clauses.push_back(IC);
3391 }
3392
3393 Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective(
3394 D->getLocation(), Vars, Clauses, Owner);
3395 if (Res.get().isNull())
3396 return nullptr;
3397 return Res.get().getSingleDecl();
3398}
3399
3400Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) {
3401 llvm_unreachable(::llvm::llvm_unreachable_internal("Requires directive cannot be instantiated within a dependent context"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3402)
3402 "Requires directive cannot be instantiated within a dependent context")::llvm::llvm_unreachable_internal("Requires directive cannot be instantiated within a dependent context"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3402)
;
3403}
3404
3405Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl(
3406 OMPDeclareReductionDecl *D) {
3407 // Instantiate type and check if it is allowed.
3408 const bool RequiresInstantiation =
3409 D->getType()->isDependentType() ||
3410 D->getType()->isInstantiationDependentType() ||
3411 D->getType()->containsUnexpandedParameterPack();
3412 QualType SubstReductionType;
3413 if (RequiresInstantiation) {
3414 SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType(
3415 D->getLocation(),
3416 ParsedType::make(SemaRef.SubstType(
3417 D->getType(), TemplateArgs, D->getLocation(), DeclarationName())));
3418 } else {
3419 SubstReductionType = D->getType();
3420 }
3421 if (SubstReductionType.isNull())
3422 return nullptr;
3423 Expr *Combiner = D->getCombiner();
3424 Expr *Init = D->getInitializer();
3425 bool IsCorrect = true;
3426 // Create instantiated copy.
3427 std::pair<QualType, SourceLocation> ReductionTypes[] = {
3428 std::make_pair(SubstReductionType, D->getLocation())};
3429 auto *PrevDeclInScope = D->getPrevDeclInScope();
3430 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3431 PrevDeclInScope = cast<OMPDeclareReductionDecl>(
3432 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3433 ->get<Decl *>());
3434 }
3435 auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart(
3436 /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(),
3437 PrevDeclInScope);
3438 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl());
3439 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD);
3440 Expr *SubstCombiner = nullptr;
3441 Expr *SubstInitializer = nullptr;
3442 // Combiners instantiation sequence.
3443 if (Combiner) {
3444 SemaRef.ActOnOpenMPDeclareReductionCombinerStart(
3445 /*S=*/nullptr, NewDRD);
3446 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3447 cast<DeclRefExpr>(D->getCombinerIn())->getDecl(),
3448 cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl());
3449 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3450 cast<DeclRefExpr>(D->getCombinerOut())->getDecl(),
3451 cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl());
3452 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
3453 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3454 ThisContext);
3455 SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get();
3456 SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner);
3457 }
3458 // Initializers instantiation sequence.
3459 if (Init) {
3460 VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart(
3461 /*S=*/nullptr, NewDRD);
3462 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3463 cast<DeclRefExpr>(D->getInitOrig())->getDecl(),
3464 cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl());
3465 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3466 cast<DeclRefExpr>(D->getInitPriv())->getDecl(),
3467 cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl());
3468 if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) {
3469 SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get();
3470 } else {
3471 auto *OldPrivParm =
3472 cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl());
3473 IsCorrect = IsCorrect && OldPrivParm->hasInit();
3474 if (IsCorrect)
3475 SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm,
3476 TemplateArgs);
3477 }
3478 SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer,
3479 OmpPrivParm);
3480 }
3481 IsCorrect = IsCorrect && SubstCombiner &&
3482 (!Init ||
3483 (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit &&
3484 SubstInitializer) ||
3485 (D->getInitializerKind() != OMPDeclareReductionDecl::CallInit &&
3486 !SubstInitializer));
3487
3488 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(
3489 /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl());
3490
3491 return NewDRD;
3492}
3493
3494Decl *
3495TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) {
3496 // Instantiate type and check if it is allowed.
3497 const bool RequiresInstantiation =
3498 D->getType()->isDependentType() ||
3499 D->getType()->isInstantiationDependentType() ||
3500 D->getType()->containsUnexpandedParameterPack();
3501 QualType SubstMapperTy;
3502 DeclarationName VN = D->getVarName();
3503 if (RequiresInstantiation) {
3504 SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType(
3505 D->getLocation(),
3506 ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs,
3507 D->getLocation(), VN)));
3508 } else {
3509 SubstMapperTy = D->getType();
3510 }
3511 if (SubstMapperTy.isNull())
3512 return nullptr;
3513 // Create an instantiated copy of mapper.
3514 auto *PrevDeclInScope = D->getPrevDeclInScope();
3515 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3516 PrevDeclInScope = cast<OMPDeclareMapperDecl>(
3517 SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3518 ->get<Decl *>());
3519 }
3520 bool IsCorrect = true;
3521 SmallVector<OMPClause *, 6> Clauses;
3522 // Instantiate the mapper variable.
3523 DeclarationNameInfo DirName;
3524 SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName,
3525 /*S=*/nullptr,
3526 (*D->clauselist_begin())->getBeginLoc());
3527 ExprResult MapperVarRef = SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl(
3528 /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN);
3529 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3530 cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(),
3531 cast<DeclRefExpr>(MapperVarRef.get())->getDecl());
3532 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
3533 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3534 ThisContext);
3535 // Instantiate map clauses.
3536 for (OMPClause *C : D->clauselists()) {
3537 auto *OldC = cast<OMPMapClause>(C);
3538 SmallVector<Expr *, 4> NewVars;
3539 for (Expr *OE : OldC->varlists()) {
3540 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get();
3541 if (!NE) {
3542 IsCorrect = false;
3543 break;
3544 }
3545 NewVars.push_back(NE);
3546 }
3547 if (!IsCorrect)
3548 break;
3549 NestedNameSpecifierLoc NewQualifierLoc =
3550 SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(),
3551 TemplateArgs);
3552 CXXScopeSpec SS;
3553 SS.Adopt(NewQualifierLoc);
3554 DeclarationNameInfo NewNameInfo =
3555 SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs);
3556 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(),
3557 OldC->getEndLoc());
3558 OMPClause *NewC = SemaRef.ActOnOpenMPMapClause(
3559 OldC->getMapTypeModifiers(), OldC->getMapTypeModifiersLoc(), SS,
3560 NewNameInfo, OldC->getMapType(), OldC->isImplicitMapType(),
3561 OldC->getMapLoc(), OldC->getColonLoc(), NewVars, Locs);
3562 Clauses.push_back(NewC);
3563 }
3564 SemaRef.EndOpenMPDSABlock(nullptr);
3565 if (!IsCorrect)
3566 return nullptr;
3567 Sema::DeclGroupPtrTy DG = SemaRef.ActOnOpenMPDeclareMapperDirective(
3568 /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(),
3569 VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope);
3570 Decl *NewDMD = DG.get().getSingleDecl();
3571 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD);
3572 return NewDMD;
3573}
3574
3575Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl(
3576 OMPCapturedExprDecl * /*D*/) {
3577 llvm_unreachable("Should not be met in templates")::llvm::llvm_unreachable_internal("Should not be met in templates"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3577)
;
3578}
3579
3580Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) {
3581 return VisitFunctionDecl(D, nullptr);
3582}
3583
3584Decl *
3585TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) {
3586 Decl *Inst = VisitFunctionDecl(D, nullptr);
3587 if (Inst && !D->getDescribedFunctionTemplate())
3588 Owner->addDecl(Inst);
3589 return Inst;
3590}
3591
3592Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) {
3593 return VisitCXXMethodDecl(D, nullptr);
3594}
3595
3596Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) {
3597 llvm_unreachable("There are only CXXRecordDecls in C++")::llvm::llvm_unreachable_internal("There are only CXXRecordDecls in C++"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3597)
;
3598}
3599
3600Decl *
3601TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl(
3602 ClassTemplateSpecializationDecl *D) {
3603 // As a MS extension, we permit class-scope explicit specialization
3604 // of member class templates.
3605 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
3606 assert(ClassTemplate->getDeclContext()->isRecord() &&(static_cast <bool> (ClassTemplate->getDeclContext()
->isRecord() && D->getTemplateSpecializationKind
() == TSK_ExplicitSpecialization && "can only instantiate an explicit specialization "
"for a member class template") ? void (0) : __assert_fail ("ClassTemplate->getDeclContext()->isRecord() && D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && \"can only instantiate an explicit specialization \" \"for a member class template\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3609, __extension__ __PRETTY_FUNCTION__))
3607 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&(static_cast <bool> (ClassTemplate->getDeclContext()
->isRecord() && D->getTemplateSpecializationKind
() == TSK_ExplicitSpecialization && "can only instantiate an explicit specialization "
"for a member class template") ? void (0) : __assert_fail ("ClassTemplate->getDeclContext()->isRecord() && D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && \"can only instantiate an explicit specialization \" \"for a member class template\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3609, __extension__ __PRETTY_FUNCTION__))
3608 "can only instantiate an explicit specialization "(static_cast <bool> (ClassTemplate->getDeclContext()
->isRecord() && D->getTemplateSpecializationKind
() == TSK_ExplicitSpecialization && "can only instantiate an explicit specialization "
"for a member class template") ? void (0) : __assert_fail ("ClassTemplate->getDeclContext()->isRecord() && D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && \"can only instantiate an explicit specialization \" \"for a member class template\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3609, __extension__ __PRETTY_FUNCTION__))
3609 "for a member class template")(static_cast <bool> (ClassTemplate->getDeclContext()
->isRecord() && D->getTemplateSpecializationKind
() == TSK_ExplicitSpecialization && "can only instantiate an explicit specialization "
"for a member class template") ? void (0) : __assert_fail ("ClassTemplate->getDeclContext()->isRecord() && D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && \"can only instantiate an explicit specialization \" \"for a member class template\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3609, __extension__ __PRETTY_FUNCTION__))
;
3610
3611 // Lookup the already-instantiated declaration in the instantiation
3612 // of the class template.
3613 ClassTemplateDecl *InstClassTemplate =
3614 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl(
3615 D->getLocation(), ClassTemplate, TemplateArgs));
3616 if (!InstClassTemplate)
3617 return nullptr;
3618
3619 // Substitute into the template arguments of the class template explicit
3620 // specialization.
3621 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc().
3622 castAs<TemplateSpecializationTypeLoc>();
3623 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(),
3624 Loc.getRAngleLoc());
3625 SmallVector<TemplateArgumentLoc, 4> ArgLocs;
3626 for (unsigned I = 0; I != Loc.getNumArgs(); ++I)
3627 ArgLocs.push_back(Loc.getArgLoc(I));
3628 if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(),
3629 InstTemplateArgs, TemplateArgs))
3630 return nullptr;
3631
3632 // Check that the template argument list is well-formed for this
3633 // class template.
3634 SmallVector<TemplateArgument, 4> Converted;
3635 if (SemaRef.CheckTemplateArgumentList(InstClassTemplate,
3636 D->getLocation(),
3637 InstTemplateArgs,
3638 false,
3639 Converted,
3640 /*UpdateArgsWithConversion=*/true))
3641 return nullptr;
3642
3643 // Figure out where to insert this class template explicit specialization
3644 // in the member template's set of class template explicit specializations.
3645 void *InsertPos = nullptr;
3646 ClassTemplateSpecializationDecl *PrevDecl =
3647 InstClassTemplate->findSpecialization(Converted, InsertPos);
3648
3649 // Check whether we've already seen a conflicting instantiation of this
3650 // declaration (for instance, if there was a prior implicit instantiation).
3651 bool Ignored;
3652 if (PrevDecl &&
3653 SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(),
3654 D->getSpecializationKind(),
3655 PrevDecl,
3656 PrevDecl->getSpecializationKind(),
3657 PrevDecl->getPointOfInstantiation(),
3658 Ignored))
3659 return nullptr;
3660
3661 // If PrevDecl was a definition and D is also a definition, diagnose.
3662 // This happens in cases like:
3663 //
3664 // template<typename T, typename U>
3665 // struct Outer {
3666 // template<typename X> struct Inner;
3667 // template<> struct Inner<T> {};
3668 // template<> struct Inner<U> {};
3669 // };
3670 //
3671 // Outer<int, int> outer; // error: the explicit specializations of Inner
3672 // // have the same signature.
3673 if (PrevDecl && PrevDecl->getDefinition() &&
3674 D->isThisDeclarationADefinition()) {
3675 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl;
3676 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(),
3677 diag::note_previous_definition);
3678 return nullptr;
3679 }
3680
3681 // Create the class template partial specialization declaration.
3682 ClassTemplateSpecializationDecl *InstD =
3683 ClassTemplateSpecializationDecl::Create(
3684 SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(),
3685 D->getLocation(), InstClassTemplate, Converted, PrevDecl);
3686
3687 // Add this partial specialization to the set of class template partial
3688 // specializations.
3689 if (!PrevDecl)
3690 InstClassTemplate->AddSpecialization(InstD, InsertPos);
3691
3692 // Substitute the nested name specifier, if any.
3693 if (SubstQualifier(D, InstD))
3694 return nullptr;
3695
3696 // Build the canonical type that describes the converted template
3697 // arguments of the class template explicit specialization.
3698 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
3699 TemplateName(InstClassTemplate), Converted,
3700 SemaRef.Context.getRecordType(InstD));
3701
3702 // Build the fully-sugared type for this class template
3703 // specialization as the user wrote in the specialization
3704 // itself. This means that we'll pretty-print the type retrieved
3705 // from the specialization's declaration the way that the user
3706 // actually wrote the specialization, rather than formatting the
3707 // name based on the "canonical" representation used to store the
3708 // template arguments in the specialization.
3709 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
3710 TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs,
3711 CanonType);
3712
3713 InstD->setAccess(D->getAccess());
3714 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
3715 InstD->setSpecializationKind(D->getSpecializationKind());
3716 InstD->setTypeAsWritten(WrittenTy);
3717 InstD->setExternLoc(D->getExternLoc());
3718 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc());
3719
3720 Owner->addDecl(InstD);
3721
3722 // Instantiate the members of the class-scope explicit specialization eagerly.
3723 // We don't have support for lazy instantiation of an explicit specialization
3724 // yet, and MSVC eagerly instantiates in this case.
3725 // FIXME: This is wrong in standard C++.
3726 if (D->isThisDeclarationADefinition() &&
3727 SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs,
3728 TSK_ImplicitInstantiation,
3729 /*Complain=*/true))
3730 return nullptr;
3731
3732 return InstD;
3733}
3734
3735Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3736 VarTemplateSpecializationDecl *D) {
3737
3738 TemplateArgumentListInfo VarTemplateArgsInfo;
3739 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
3740 assert(VarTemplate &&(static_cast <bool> (VarTemplate && "A template specialization without specialized template?"
) ? void (0) : __assert_fail ("VarTemplate && \"A template specialization without specialized template?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3741, __extension__ __PRETTY_FUNCTION__))
3741 "A template specialization without specialized template?")(static_cast <bool> (VarTemplate && "A template specialization without specialized template?"
) ? void (0) : __assert_fail ("VarTemplate && \"A template specialization without specialized template?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3741, __extension__ __PRETTY_FUNCTION__))
;
3742
3743 VarTemplateDecl *InstVarTemplate =
3744 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl(
3745 D->getLocation(), VarTemplate, TemplateArgs));
3746 if (!InstVarTemplate)
3747 return nullptr;
3748
3749 // Substitute the current template arguments.
3750 const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo();
3751 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc());
3752 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc());
3753
3754 if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(),
3755 TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs))
3756 return nullptr;
3757
3758 // Check that the template argument list is well-formed for this template.
3759 SmallVector<TemplateArgument, 4> Converted;
3760 if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(),
3761 VarTemplateArgsInfo, false, Converted,
3762 /*UpdateArgsWithConversion=*/true))
3763 return nullptr;
3764
3765 // Check whether we've already seen a declaration of this specialization.
3766 void *InsertPos = nullptr;
3767 VarTemplateSpecializationDecl *PrevDecl =
3768 InstVarTemplate->findSpecialization(Converted, InsertPos);
3769
3770 // Check whether we've already seen a conflicting instantiation of this
3771 // declaration (for instance, if there was a prior implicit instantiation).
3772 bool Ignored;
3773 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl(
3774 D->getLocation(), D->getSpecializationKind(), PrevDecl,
3775 PrevDecl->getSpecializationKind(),
3776 PrevDecl->getPointOfInstantiation(), Ignored))
3777 return nullptr;
3778
3779 return VisitVarTemplateSpecializationDecl(
3780 InstVarTemplate, D, VarTemplateArgsInfo, Converted, PrevDecl);
3781}
3782
3783Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3784 VarTemplateDecl *VarTemplate, VarDecl *D,
3785 const TemplateArgumentListInfo &TemplateArgsInfo,
3786 ArrayRef<TemplateArgument> Converted,
3787 VarTemplateSpecializationDecl *PrevDecl) {
3788
3789 // Do substitution on the type of the declaration
3790 TypeSourceInfo *DI =
3791 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
3792 D->getTypeSpecStartLoc(), D->getDeclName());
3793 if (!DI)
3794 return nullptr;
3795
3796 if (DI->getType()->isFunctionType()) {
3797 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
3798 << D->isStaticDataMember() << DI->getType();
3799 return nullptr;
3800 }
3801
3802 // Build the instantiated declaration
3803 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create(
3804 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3805 VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted);
3806 Var->setTemplateArgsInfo(TemplateArgsInfo);
3807 if (!PrevDecl) {
3808 void *InsertPos = nullptr;
3809 VarTemplate->findSpecialization(Converted, InsertPos);
3810 VarTemplate->AddSpecialization(Var, InsertPos);
3811 }
3812
3813 if (SemaRef.getLangOpts().OpenCL)
3814 SemaRef.deduceOpenCLAddressSpace(Var);
3815
3816 // Substitute the nested name specifier, if any.
3817 if (SubstQualifier(D, Var))
3818 return nullptr;
3819
3820 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
3821 StartingScope, false, PrevDecl);
3822
3823 return Var;
3824}
3825
3826Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) {
3827 llvm_unreachable("@defs is not supported in Objective-C++")::llvm::llvm_unreachable_internal("@defs is not supported in Objective-C++"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3827)
;
3828}
3829
3830Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
3831 // FIXME: We need to be able to instantiate FriendTemplateDecls.
3832 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID(
3833 DiagnosticsEngine::Error,
3834 "cannot instantiate %0 yet");
3835 SemaRef.Diag(D->getLocation(), DiagID)
3836 << D->getDeclKindName();
3837
3838 return nullptr;
3839}
3840
3841Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) {
3842 llvm_unreachable("Concept definitions cannot reside inside a template")::llvm::llvm_unreachable_internal("Concept definitions cannot reside inside a template"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3842)
;
3843}
3844
3845Decl *
3846TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) {
3847 return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(),
3848 D->getBeginLoc());
3849}
3850
3851Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) {
3852 llvm_unreachable("Unexpected decl")::llvm::llvm_unreachable_internal("Unexpected decl", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3852)
;
3853}
3854
3855Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner,
3856 const MultiLevelTemplateArgumentList &TemplateArgs) {
3857 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
3858 if (D->isInvalidDecl())
3859 return nullptr;
3860
3861 Decl *SubstD;
3862 runWithSufficientStackSpace(D->getLocation(), [&] {
3863 SubstD = Instantiator.Visit(D);
3864 });
3865 return SubstD;
3866}
3867
3868void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK,
3869 FunctionDecl *Orig, QualType &T,
3870 TypeSourceInfo *&TInfo,
3871 DeclarationNameInfo &NameInfo) {
3872 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual)(static_cast <bool> (RK == RewriteKind::RewriteSpaceshipAsEqualEqual
) ? void (0) : __assert_fail ("RK == RewriteKind::RewriteSpaceshipAsEqualEqual"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3872, __extension__ __PRETTY_FUNCTION__))
;
3873
3874 // C++2a [class.compare.default]p3:
3875 // the return type is replaced with bool
3876 auto *FPT = T->castAs<FunctionProtoType>();
3877 T = SemaRef.Context.getFunctionType(
3878 SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo());
3879
3880 // Update the return type in the source info too. The most straightforward
3881 // way is to create new TypeSourceInfo for the new type. Use the location of
3882 // the '= default' as the location of the new type.
3883 //
3884 // FIXME: Set the correct return type when we initially transform the type,
3885 // rather than delaying it to now.
3886 TypeSourceInfo *NewTInfo =
3887 SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc());
3888 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>();
3889 assert(OldLoc && "type of function is not a function type?")(static_cast <bool> (OldLoc && "type of function is not a function type?"
) ? void (0) : __assert_fail ("OldLoc && \"type of function is not a function type?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3889, __extension__ __PRETTY_FUNCTION__))
;
3890 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>();
3891 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I)
3892 NewLoc.setParam(I, OldLoc.getParam(I));
3893 TInfo = NewTInfo;
3894
3895 // and the declarator-id is replaced with operator==
3896 NameInfo.setName(
3897 SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual));
3898}
3899
3900FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
3901 FunctionDecl *Spaceship) {
3902 if (Spaceship->isInvalidDecl())
3903 return nullptr;
3904
3905 // C++2a [class.compare.default]p3:
3906 // an == operator function is declared implicitly [...] with the same
3907 // access and function-definition and in the same class scope as the
3908 // three-way comparison operator function
3909 MultiLevelTemplateArgumentList NoTemplateArgs;
3910 NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite);
3911 NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth());
3912 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs);
3913 Decl *R;
3914 if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) {
3915 R = Instantiator.VisitCXXMethodDecl(
3916 MD, nullptr, None,
3917 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
3918 } else {
3919 assert(Spaceship->getFriendObjectKind() &&(static_cast <bool> (Spaceship->getFriendObjectKind(
) && "defaulted spaceship is neither a member nor a friend"
) ? void (0) : __assert_fail ("Spaceship->getFriendObjectKind() && \"defaulted spaceship is neither a member nor a friend\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3920, __extension__ __PRETTY_FUNCTION__))
3920 "defaulted spaceship is neither a member nor a friend")(static_cast <bool> (Spaceship->getFriendObjectKind(
) && "defaulted spaceship is neither a member nor a friend"
) ? void (0) : __assert_fail ("Spaceship->getFriendObjectKind() && \"defaulted spaceship is neither a member nor a friend\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 3920, __extension__ __PRETTY_FUNCTION__))
;
3921
3922 R = Instantiator.VisitFunctionDecl(
3923 Spaceship, nullptr,
3924 TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
3925 if (!R)
3926 return nullptr;
3927
3928 FriendDecl *FD =
3929 FriendDecl::Create(Context, RD, Spaceship->getLocation(),
3930 cast<NamedDecl>(R), Spaceship->getBeginLoc());
3931 FD->setAccess(AS_public);
3932 RD->addDecl(FD);
3933 }
3934 return cast_or_null<FunctionDecl>(R);
3935}
3936
3937/// Instantiates a nested template parameter list in the current
3938/// instantiation context.
3939///
3940/// \param L The parameter list to instantiate
3941///
3942/// \returns NULL if there was an error
3943TemplateParameterList *
3944TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) {
3945 // Get errors for all the parameters before bailing out.
3946 bool Invalid = false;
3947
3948 unsigned N = L->size();
3949 typedef SmallVector<NamedDecl *, 8> ParamVector;
3950 ParamVector Params;
3951 Params.reserve(N);
3952 for (auto &P : *L) {
3953 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P));
3954 Params.push_back(D);
3955 Invalid = Invalid || !D || D->isInvalidDecl();
3956 }
3957
3958 // Clean up if we had an error.
3959 if (Invalid)
3960 return nullptr;
3961
3962 // FIXME: Concepts: Substitution into requires clause should only happen when
3963 // checking satisfaction.
3964 Expr *InstRequiresClause = nullptr;
3965 if (Expr *E = L->getRequiresClause()) {
3966 EnterExpressionEvaluationContext ConstantEvaluated(
3967 SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
3968 ExprResult Res = SemaRef.SubstExpr(E, TemplateArgs);
3969 if (Res.isInvalid() || !Res.isUsable()) {
3970 return nullptr;
3971 }
3972 InstRequiresClause = Res.get();
3973 }
3974
3975 TemplateParameterList *InstL
3976 = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(),
3977 L->getLAngleLoc(), Params,
3978 L->getRAngleLoc(), InstRequiresClause);
3979 return InstL;
3980}
3981
3982TemplateParameterList *
3983Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
3984 const MultiLevelTemplateArgumentList &TemplateArgs) {
3985 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
3986 return Instantiator.SubstTemplateParams(Params);
3987}
3988
3989/// Instantiate the declaration of a class template partial
3990/// specialization.
3991///
3992/// \param ClassTemplate the (instantiated) class template that is partially
3993// specialized by the instantiation of \p PartialSpec.
3994///
3995/// \param PartialSpec the (uninstantiated) class template partial
3996/// specialization that we are instantiating.
3997///
3998/// \returns The instantiated partial specialization, if successful; otherwise,
3999/// NULL to indicate an error.
4000ClassTemplatePartialSpecializationDecl *
4001TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
4002 ClassTemplateDecl *ClassTemplate,
4003 ClassTemplatePartialSpecializationDecl *PartialSpec) {
4004 // Create a local instantiation scope for this class template partial
4005 // specialization, which will contain the instantiations of the template
4006 // parameters.
4007 LocalInstantiationScope Scope(SemaRef);
4008
4009 // Substitute into the template parameters of the class template partial
4010 // specialization.
4011 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4012 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
4013 if (!InstParams)
4014 return nullptr;
4015
4016 // Substitute into the template arguments of the class template partial
4017 // specialization.
4018 const ASTTemplateArgumentListInfo *TemplArgInfo
4019 = PartialSpec->getTemplateArgsAsWritten();
4020 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4021 TemplArgInfo->RAngleLoc);
4022 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
4023 TemplArgInfo->NumTemplateArgs,
4024 InstTemplateArgs, TemplateArgs))
4025 return nullptr;
4026
4027 // Check that the template argument list is well-formed for this
4028 // class template.
4029 SmallVector<TemplateArgument, 4> Converted;
4030 if (SemaRef.CheckTemplateArgumentList(ClassTemplate,
4031 PartialSpec->getLocation(),
4032 InstTemplateArgs,
4033 false,
4034 Converted))
4035 return nullptr;
4036
4037 // Check these arguments are valid for a template partial specialization.
4038 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4039 PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(),
4040 Converted))
4041 return nullptr;
4042
4043 // Figure out where to insert this class template partial specialization
4044 // in the member template's set of class template partial specializations.
4045 void *InsertPos = nullptr;
4046 ClassTemplateSpecializationDecl *PrevDecl
4047 = ClassTemplate->findPartialSpecialization(Converted, InstParams,
4048 InsertPos);
4049
4050 // Build the canonical type that describes the converted template
4051 // arguments of the class template partial specialization.
4052 QualType CanonType
4053 = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate),
4054 Converted);
4055
4056 // Build the fully-sugared type for this class template
4057 // specialization as the user wrote in the specialization
4058 // itself. This means that we'll pretty-print the type retrieved
4059 // from the specialization's declaration the way that the user
4060 // actually wrote the specialization, rather than formatting the
4061 // name based on the "canonical" representation used to store the
4062 // template arguments in the specialization.
4063 TypeSourceInfo *WrittenTy
4064 = SemaRef.Context.getTemplateSpecializationTypeInfo(
4065 TemplateName(ClassTemplate),
4066 PartialSpec->getLocation(),
4067 InstTemplateArgs,
4068 CanonType);
4069
4070 if (PrevDecl) {
4071 // We've already seen a partial specialization with the same template
4072 // parameters and template arguments. This can happen, for example, when
4073 // substituting the outer template arguments ends up causing two
4074 // class template partial specializations of a member class template
4075 // to have identical forms, e.g.,
4076 //
4077 // template<typename T, typename U>
4078 // struct Outer {
4079 // template<typename X, typename Y> struct Inner;
4080 // template<typename Y> struct Inner<T, Y>;
4081 // template<typename Y> struct Inner<U, Y>;
4082 // };
4083 //
4084 // Outer<int, int> outer; // error: the partial specializations of Inner
4085 // // have the same signature.
4086 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared)
4087 << WrittenTy->getType();
4088 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here)
4089 << SemaRef.Context.getTypeDeclType(PrevDecl);
4090 return nullptr;
4091 }
4092
4093
4094 // Create the class template partial specialization declaration.
4095 ClassTemplatePartialSpecializationDecl *InstPartialSpec =
4096 ClassTemplatePartialSpecializationDecl::Create(
4097 SemaRef.Context, PartialSpec->getTagKind(), Owner,
4098 PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams,
4099 ClassTemplate, Converted, InstTemplateArgs, CanonType, nullptr);
4100 // Substitute the nested name specifier, if any.
4101 if (SubstQualifier(PartialSpec, InstPartialSpec))
4102 return nullptr;
4103
4104 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4105 InstPartialSpec->setTypeAsWritten(WrittenTy);
4106
4107 // Check the completed partial specialization.
4108 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
4109
4110 // Add this partial specialization to the set of class template partial
4111 // specializations.
4112 ClassTemplate->AddPartialSpecialization(InstPartialSpec,
4113 /*InsertPos=*/nullptr);
4114 return InstPartialSpec;
4115}
4116
4117/// Instantiate the declaration of a variable template partial
4118/// specialization.
4119///
4120/// \param VarTemplate the (instantiated) variable template that is partially
4121/// specialized by the instantiation of \p PartialSpec.
4122///
4123/// \param PartialSpec the (uninstantiated) variable template partial
4124/// specialization that we are instantiating.
4125///
4126/// \returns The instantiated partial specialization, if successful; otherwise,
4127/// NULL to indicate an error.
4128VarTemplatePartialSpecializationDecl *
4129TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization(
4130 VarTemplateDecl *VarTemplate,
4131 VarTemplatePartialSpecializationDecl *PartialSpec) {
4132 // Create a local instantiation scope for this variable template partial
4133 // specialization, which will contain the instantiations of the template
4134 // parameters.
4135 LocalInstantiationScope Scope(SemaRef);
4136
4137 // Substitute into the template parameters of the variable template partial
4138 // specialization.
4139 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4140 TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
4141 if (!InstParams)
4142 return nullptr;
4143
4144 // Substitute into the template arguments of the variable template partial
4145 // specialization.
4146 const ASTTemplateArgumentListInfo *TemplArgInfo
4147 = PartialSpec->getTemplateArgsAsWritten();
4148 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4149 TemplArgInfo->RAngleLoc);
4150 if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
4151 TemplArgInfo->NumTemplateArgs,
4152 InstTemplateArgs, TemplateArgs))
4153 return nullptr;
4154
4155 // Check that the template argument list is well-formed for this
4156 // class template.
4157 SmallVector<TemplateArgument, 4> Converted;
4158 if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(),
4159 InstTemplateArgs, false, Converted))
4160 return nullptr;
4161
4162 // Check these arguments are valid for a template partial specialization.
4163 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4164 PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(),
4165 Converted))
4166 return nullptr;
4167
4168 // Figure out where to insert this variable template partial specialization
4169 // in the member template's set of variable template partial specializations.
4170 void *InsertPos = nullptr;
4171 VarTemplateSpecializationDecl *PrevDecl =
4172 VarTemplate->findPartialSpecialization(Converted, InstParams, InsertPos);
4173
4174 // Build the canonical type that describes the converted template
4175 // arguments of the variable template partial specialization.
4176 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
4177 TemplateName(VarTemplate), Converted);
4178
4179 // Build the fully-sugared type for this variable template
4180 // specialization as the user wrote in the specialization
4181 // itself. This means that we'll pretty-print the type retrieved
4182 // from the specialization's declaration the way that the user
4183 // actually wrote the specialization, rather than formatting the
4184 // name based on the "canonical" representation used to store the
4185 // template arguments in the specialization.
4186 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
4187 TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs,
4188 CanonType);
4189
4190 if (PrevDecl) {
4191 // We've already seen a partial specialization with the same template
4192 // parameters and template arguments. This can happen, for example, when
4193 // substituting the outer template arguments ends up causing two
4194 // variable template partial specializations of a member variable template
4195 // to have identical forms, e.g.,
4196 //
4197 // template<typename T, typename U>
4198 // struct Outer {
4199 // template<typename X, typename Y> pair<X,Y> p;
4200 // template<typename Y> pair<T, Y> p;
4201 // template<typename Y> pair<U, Y> p;
4202 // };
4203 //
4204 // Outer<int, int> outer; // error: the partial specializations of Inner
4205 // // have the same signature.
4206 SemaRef.Diag(PartialSpec->getLocation(),
4207 diag::err_var_partial_spec_redeclared)
4208 << WrittenTy->getType();
4209 SemaRef.Diag(PrevDecl->getLocation(),
4210 diag::note_var_prev_partial_spec_here);
4211 return nullptr;
4212 }
4213
4214 // Do substitution on the type of the declaration
4215 TypeSourceInfo *DI = SemaRef.SubstType(
4216 PartialSpec->getTypeSourceInfo(), TemplateArgs,
4217 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName());
4218 if (!DI)
4219 return nullptr;
4220
4221 if (DI->getType()->isFunctionType()) {
4222 SemaRef.Diag(PartialSpec->getLocation(),
4223 diag::err_variable_instantiates_to_function)
4224 << PartialSpec->isStaticDataMember() << DI->getType();
4225 return nullptr;
4226 }
4227
4228 // Create the variable template partial specialization declaration.
4229 VarTemplatePartialSpecializationDecl *InstPartialSpec =
4230 VarTemplatePartialSpecializationDecl::Create(
4231 SemaRef.Context, Owner, PartialSpec->getInnerLocStart(),
4232 PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(),
4233 DI, PartialSpec->getStorageClass(), Converted, InstTemplateArgs);
4234
4235 // Substitute the nested name specifier, if any.
4236 if (SubstQualifier(PartialSpec, InstPartialSpec))
4237 return nullptr;
4238
4239 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4240 InstPartialSpec->setTypeAsWritten(WrittenTy);
4241
4242 // Check the completed partial specialization.
4243 SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
4244
4245 // Add this partial specialization to the set of variable template partial
4246 // specializations. The instantiation of the initializer is not necessary.
4247 VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr);
4248
4249 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs,
4250 LateAttrs, Owner, StartingScope);
4251
4252 return InstPartialSpec;
4253}
4254
4255TypeSourceInfo*
4256TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
4257 SmallVectorImpl<ParmVarDecl *> &Params) {
4258 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo();
4259 assert(OldTInfo && "substituting function without type source info")(static_cast <bool> (OldTInfo && "substituting function without type source info"
) ? void (0) : __assert_fail ("OldTInfo && \"substituting function without type source info\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4259, __extension__ __PRETTY_FUNCTION__))
;
4260 assert(Params.empty() && "parameter vector is non-empty at start")(static_cast <bool> (Params.empty() && "parameter vector is non-empty at start"
) ? void (0) : __assert_fail ("Params.empty() && \"parameter vector is non-empty at start\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4260, __extension__ __PRETTY_FUNCTION__))
;
4261
4262 CXXRecordDecl *ThisContext = nullptr;
4263 Qualifiers ThisTypeQuals;
4264 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4265 ThisContext = cast<CXXRecordDecl>(Owner);
4266 ThisTypeQuals = Method->getMethodQualifiers();
4267 }
4268
4269 TypeSourceInfo *NewTInfo
4270 = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs,
4271 D->getTypeSpecStartLoc(),
4272 D->getDeclName(),
4273 ThisContext, ThisTypeQuals);
4274 if (!NewTInfo)
4275 return nullptr;
4276
4277 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens();
4278 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) {
4279 if (NewTInfo != OldTInfo) {
4280 // Get parameters from the new type info.
4281 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens();
4282 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>();
4283 unsigned NewIdx = 0;
4284 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams();
4285 OldIdx != NumOldParams; ++OldIdx) {
4286 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx);
4287 if (!OldParam)
4288 return nullptr;
4289
4290 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope;
4291
4292 Optional<unsigned> NumArgumentsInExpansion;
4293 if (OldParam->isParameterPack())
4294 NumArgumentsInExpansion =
4295 SemaRef.getNumArgumentsInExpansion(OldParam->getType(),
4296 TemplateArgs);
4297 if (!NumArgumentsInExpansion) {
4298 // Simple case: normal parameter, or a parameter pack that's
4299 // instantiated to a (still-dependent) parameter pack.
4300 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4301 Params.push_back(NewParam);
4302 Scope->InstantiatedLocal(OldParam, NewParam);
4303 } else {
4304 // Parameter pack expansion: make the instantiation an argument pack.
4305 Scope->MakeInstantiatedLocalArgPack(OldParam);
4306 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) {
4307 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4308 Params.push_back(NewParam);
4309 Scope->InstantiatedLocalPackArg(OldParam, NewParam);
4310 }
4311 }
4312 }
4313 } else {
4314 // The function type itself was not dependent and therefore no
4315 // substitution occurred. However, we still need to instantiate
4316 // the function parameters themselves.
4317 const FunctionProtoType *OldProto =
4318 cast<FunctionProtoType>(OldProtoLoc.getType());
4319 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end;
4320 ++i) {
4321 ParmVarDecl *OldParam = OldProtoLoc.getParam(i);
4322 if (!OldParam) {
4323 Params.push_back(SemaRef.BuildParmVarDeclForTypedef(
4324 D, D->getLocation(), OldProto->getParamType(i)));
4325 continue;
4326 }
4327
4328 ParmVarDecl *Parm =
4329 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam));
4330 if (!Parm)
4331 return nullptr;
4332 Params.push_back(Parm);
4333 }
4334 }
4335 } else {
4336 // If the type of this function, after ignoring parentheses, is not
4337 // *directly* a function type, then we're instantiating a function that
4338 // was declared via a typedef or with attributes, e.g.,
4339 //
4340 // typedef int functype(int, int);
4341 // functype func;
4342 // int __cdecl meth(int, int);
4343 //
4344 // In this case, we'll just go instantiate the ParmVarDecls that we
4345 // synthesized in the method declaration.
4346 SmallVector<QualType, 4> ParamTypes;
4347 Sema::ExtParameterInfoBuilder ExtParamInfos;
4348 if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr,
4349 TemplateArgs, ParamTypes, &Params,
4350 ExtParamInfos))
4351 return nullptr;
4352 }
4353
4354 return NewTInfo;
4355}
4356
4357/// Introduce the instantiated function parameters into the local
4358/// instantiation scope, and set the parameter names to those used
4359/// in the template.
4360static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function,
4361 const FunctionDecl *PatternDecl,
4362 LocalInstantiationScope &Scope,
4363 const MultiLevelTemplateArgumentList &TemplateArgs) {
4364 unsigned FParamIdx = 0;
4365 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) {
4366 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I);
4367 if (!PatternParam->isParameterPack()) {
4368 // Simple case: not a parameter pack.
4369 assert(FParamIdx < Function->getNumParams())(static_cast <bool> (FParamIdx < Function->getNumParams
()) ? void (0) : __assert_fail ("FParamIdx < Function->getNumParams()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4369, __extension__ __PRETTY_FUNCTION__))
;
4370 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
4371 FunctionParam->setDeclName(PatternParam->getDeclName());
4372 // If the parameter's type is not dependent, update it to match the type
4373 // in the pattern. They can differ in top-level cv-qualifiers, and we want
4374 // the pattern's type here. If the type is dependent, they can't differ,
4375 // per core issue 1668. Substitute into the type from the pattern, in case
4376 // it's instantiation-dependent.
4377 // FIXME: Updating the type to work around this is at best fragile.
4378 if (!PatternDecl->getType()->isDependentType()) {
4379 QualType T = S.SubstType(PatternParam->getType(), TemplateArgs,
4380 FunctionParam->getLocation(),
4381 FunctionParam->getDeclName());
4382 if (T.isNull())
4383 return true;
4384 FunctionParam->setType(T);
4385 }
4386
4387 Scope.InstantiatedLocal(PatternParam, FunctionParam);
4388 ++FParamIdx;
4389 continue;
4390 }
4391
4392 // Expand the parameter pack.
4393 Scope.MakeInstantiatedLocalArgPack(PatternParam);
4394 Optional<unsigned> NumArgumentsInExpansion
4395 = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs);
4396 if (NumArgumentsInExpansion) {
4397 QualType PatternType =
4398 PatternParam->getType()->castAs<PackExpansionType>()->getPattern();
4399 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) {
4400 ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
4401 FunctionParam->setDeclName(PatternParam->getDeclName());
4402 if (!PatternDecl->getType()->isDependentType()) {
4403 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg);
4404 QualType T = S.SubstType(PatternType, TemplateArgs,
4405 FunctionParam->getLocation(),
4406 FunctionParam->getDeclName());
4407 if (T.isNull())
4408 return true;
4409 FunctionParam->setType(T);
4410 }
4411
4412 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam);
4413 ++FParamIdx;
4414 }
4415 }
4416 }
4417
4418 return false;
4419}
4420
4421bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
4422 ParmVarDecl *Param) {
4423 assert(Param->hasUninstantiatedDefaultArg())(static_cast <bool> (Param->hasUninstantiatedDefaultArg
()) ? void (0) : __assert_fail ("Param->hasUninstantiatedDefaultArg()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4423, __extension__ __PRETTY_FUNCTION__))
;
4424 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4425
4426 EnterExpressionEvaluationContext EvalContext(
4427 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
4428
4429 // Instantiate the expression.
4430 //
4431 // FIXME: Pass in a correct Pattern argument, otherwise
4432 // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4433 //
4434 // template<typename T>
4435 // struct A {
4436 // static int FooImpl();
4437 //
4438 // template<typename Tp>
4439 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4440 // // template argument list [[T], [Tp]], should be [[Tp]].
4441 // friend A<Tp> Foo(int a);
4442 // };
4443 //
4444 // template<typename T>
4445 // A<T> Foo(int a = A<T>::FooImpl());
4446 MultiLevelTemplateArgumentList TemplateArgs
4447 = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4448
4449 InstantiatingTemplate Inst(*this, CallLoc, Param,
4450 TemplateArgs.getInnermost());
4451 if (Inst.isInvalid())
4452 return true;
4453 if (Inst.isAlreadyInstantiating()) {
4454 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
4455 Param->setInvalidDecl();
4456 return true;
4457 }
4458
4459 ExprResult Result;
4460 {
4461 // C++ [dcl.fct.default]p5:
4462 // The names in the [default argument] expression are bound, and
4463 // the semantic constraints are checked, at the point where the
4464 // default argument expression appears.
4465 ContextRAII SavedContext(*this, FD);
4466 LocalInstantiationScope Local(*this);
4467
4468 FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(
4469 /*ForDefinition*/ false);
4470 if (addInstantiatedParametersToScope(*this, FD, Pattern, Local,
4471 TemplateArgs))
4472 return true;
4473
4474 runWithSufficientStackSpace(CallLoc, [&] {
4475 Result = SubstInitializer(UninstExpr, TemplateArgs,
4476 /*DirectInit*/false);
4477 });
4478 }
4479 if (Result.isInvalid())
4480 return true;
4481
4482 // Check the expression as an initializer for the parameter.
4483 InitializedEntity Entity
4484 = InitializedEntity::InitializeParameter(Context, Param);
4485 InitializationKind Kind = InitializationKind::CreateCopy(
4486 Param->getLocation(),
4487 /*FIXME:EqualLoc*/ UninstExpr->getBeginLoc());
4488 Expr *ResultE = Result.getAs<Expr>();
4489
4490 InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4491 Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4492 if (Result.isInvalid())
4493 return true;
4494
4495 Result =
4496 ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(),
4497 /*DiscardedValue*/ false);
4498 if (Result.isInvalid())
4499 return true;
4500
4501 // Remember the instantiated default argument.
4502 Param->setDefaultArg(Result.getAs<Expr>());
4503 if (ASTMutationListener *L = getASTMutationListener())
4504 L->DefaultArgumentInstantiated(Param);
4505
4506 return false;
4507}
4508
4509void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
4510 FunctionDecl *Decl) {
4511 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>();
4512 if (Proto->getExceptionSpecType() != EST_Uninstantiated)
4513 return;
4514
4515 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl,
4516 InstantiatingTemplate::ExceptionSpecification());
4517 if (Inst.isInvalid()) {
4518 // We hit the instantiation depth limit. Clear the exception specification
4519 // so that our callers don't have to cope with EST_Uninstantiated.
4520 UpdateExceptionSpec(Decl, EST_None);
4521 return;
4522 }
4523 if (Inst.isAlreadyInstantiating()) {
4524 // This exception specification indirectly depends on itself. Reject.
4525 // FIXME: Corresponding rule in the standard?
4526 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl;
4527 UpdateExceptionSpec(Decl, EST_None);
4528 return;
4529 }
4530
4531 // Enter the scope of this instantiation. We don't use
4532 // PushDeclContext because we don't have a scope.
4533 Sema::ContextRAII savedContext(*this, Decl);
4534 LocalInstantiationScope Scope(*this);
4535
4536 MultiLevelTemplateArgumentList TemplateArgs =
4537 getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true);
4538
4539 // FIXME: We can't use getTemplateInstantiationPattern(false) in general
4540 // here, because for a non-defining friend declaration in a class template,
4541 // we don't store enough information to map back to the friend declaration in
4542 // the template.
4543 FunctionDecl *Template = Proto->getExceptionSpecTemplate();
4544 if (addInstantiatedParametersToScope(*this, Decl, Template, Scope,
4545 TemplateArgs)) {
4546 UpdateExceptionSpec(Decl, EST_None);
4547 return;
4548 }
4549
4550 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(),
4551 TemplateArgs);
4552}
4553
4554bool Sema::CheckInstantiatedFunctionTemplateConstraints(
4555 SourceLocation PointOfInstantiation, FunctionDecl *Decl,
4556 ArrayRef<TemplateArgument> TemplateArgs,
4557 ConstraintSatisfaction &Satisfaction) {
4558 // In most cases we're not going to have constraints, so check for that first.
4559 FunctionTemplateDecl *Template = Decl->getPrimaryTemplate();
4560 // Note - code synthesis context for the constraints check is created
4561 // inside CheckConstraintsSatisfaction.
4562 SmallVector<const Expr *, 3> TemplateAC;
4563 Template->getAssociatedConstraints(TemplateAC);
4564 if (TemplateAC.empty()) {
4565 Satisfaction.IsSatisfied = true;
4566 return false;
4567 }
4568
4569 // Enter the scope of this instantiation. We don't use
4570 // PushDeclContext because we don't have a scope.
4571 Sema::ContextRAII savedContext(*this, Decl);
4572 LocalInstantiationScope Scope(*this);
4573
4574 // If this is not an explicit specialization - we need to get the instantiated
4575 // version of the template arguments and add them to scope for the
4576 // substitution.
4577 if (Decl->isTemplateInstantiation()) {
4578 InstantiatingTemplate Inst(*this, Decl->getPointOfInstantiation(),
4579 InstantiatingTemplate::ConstraintsCheck{}, Decl->getPrimaryTemplate(),
4580 TemplateArgs, SourceRange());
4581 if (Inst.isInvalid())
4582 return true;
4583 MultiLevelTemplateArgumentList MLTAL(
4584 *Decl->getTemplateSpecializationArgs());
4585 if (addInstantiatedParametersToScope(
4586 *this, Decl, Decl->getPrimaryTemplate()->getTemplatedDecl(),
4587 Scope, MLTAL))
4588 return true;
4589 }
4590 Qualifiers ThisQuals;
4591 CXXRecordDecl *Record = nullptr;
4592 if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) {
4593 ThisQuals = Method->getMethodQualifiers();
4594 Record = Method->getParent();
4595 }
4596 CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
4597 return CheckConstraintSatisfaction(Template, TemplateAC, TemplateArgs,
4598 PointOfInstantiation, Satisfaction);
4599}
4600
4601/// Initializes the common fields of an instantiation function
4602/// declaration (New) from the corresponding fields of its template (Tmpl).
4603///
4604/// \returns true if there was an error
4605bool
4606TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New,
4607 FunctionDecl *Tmpl) {
4608 New->setImplicit(Tmpl->isImplicit());
4609
4610 // Forward the mangling number from the template to the instantiated decl.
4611 SemaRef.Context.setManglingNumber(New,
4612 SemaRef.Context.getManglingNumber(Tmpl));
4613
4614 // If we are performing substituting explicitly-specified template arguments
4615 // or deduced template arguments into a function template and we reach this
4616 // point, we are now past the point where SFINAE applies and have committed
4617 // to keeping the new function template specialization. We therefore
4618 // convert the active template instantiation for the function template
4619 // into a template instantiation for this specific function template
4620 // specialization, which is not a SFINAE context, so that we diagnose any
4621 // further errors in the declaration itself.
4622 //
4623 // FIXME: This is a hack.
4624 typedef Sema::CodeSynthesisContext ActiveInstType;
4625 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back();
4626 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution ||
4627 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) {
4628 if (FunctionTemplateDecl *FunTmpl
4629 = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) {
4630 assert(FunTmpl->getTemplatedDecl() == Tmpl &&(static_cast <bool> (FunTmpl->getTemplatedDecl() == Tmpl
&& "Deduction from the wrong function template?") ? void
(0) : __assert_fail ("FunTmpl->getTemplatedDecl() == Tmpl && \"Deduction from the wrong function template?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4631, __extension__ __PRETTY_FUNCTION__))
4631 "Deduction from the wrong function template?")(static_cast <bool> (FunTmpl->getTemplatedDecl() == Tmpl
&& "Deduction from the wrong function template?") ? void
(0) : __assert_fail ("FunTmpl->getTemplatedDecl() == Tmpl && \"Deduction from the wrong function template?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4631, __extension__ __PRETTY_FUNCTION__))
;
4632 (void) FunTmpl;
4633 SemaRef.InstantiatingSpecializations.erase(
4634 {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind});
4635 atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
4636 ActiveInst.Kind = ActiveInstType::TemplateInstantiation;
4637 ActiveInst.Entity = New;
4638 atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
4639 }
4640 }
4641
4642 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>();
4643 assert(Proto && "Function template without prototype?")(static_cast <bool> (Proto && "Function template without prototype?"
) ? void (0) : __assert_fail ("Proto && \"Function template without prototype?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4643, __extension__ __PRETTY_FUNCTION__))
;
4644
4645 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) {
4646 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4647
4648 // DR1330: In C++11, defer instantiation of a non-trivial
4649 // exception specification.
4650 // DR1484: Local classes and their members are instantiated along with the
4651 // containing function.
4652 if (SemaRef.getLangOpts().CPlusPlus11 &&
4653 EPI.ExceptionSpec.Type != EST_None &&
4654 EPI.ExceptionSpec.Type != EST_DynamicNone &&
4655 EPI.ExceptionSpec.Type != EST_BasicNoexcept &&
4656 !Tmpl->isInLocalScopeForInstantiation()) {
4657 FunctionDecl *ExceptionSpecTemplate = Tmpl;
4658 if (EPI.ExceptionSpec.Type == EST_Uninstantiated)
4659 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate;
4660 ExceptionSpecificationType NewEST = EST_Uninstantiated;
4661 if (EPI.ExceptionSpec.Type == EST_Unevaluated)
4662 NewEST = EST_Unevaluated;
4663
4664 // Mark the function has having an uninstantiated exception specification.
4665 const FunctionProtoType *NewProto
4666 = New->getType()->getAs<FunctionProtoType>();
4667 assert(NewProto && "Template instantiation without function prototype?")(static_cast <bool> (NewProto && "Template instantiation without function prototype?"
) ? void (0) : __assert_fail ("NewProto && \"Template instantiation without function prototype?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4667, __extension__ __PRETTY_FUNCTION__))
;
4668 EPI = NewProto->getExtProtoInfo();
4669 EPI.ExceptionSpec.Type = NewEST;
4670 EPI.ExceptionSpec.SourceDecl = New;
4671 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate;
4672 New->setType(SemaRef.Context.getFunctionType(
4673 NewProto->getReturnType(), NewProto->getParamTypes(), EPI));
4674 } else {
4675 Sema::ContextRAII SwitchContext(SemaRef, New);
4676 SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs);
4677 }
4678 }
4679
4680 // Get the definition. Leaves the variable unchanged if undefined.
4681 const FunctionDecl *Definition = Tmpl;
4682 Tmpl->isDefined(Definition);
4683
4684 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New,
4685 LateAttrs, StartingScope);
4686
4687 return false;
4688}
4689
4690/// Initializes common fields of an instantiated method
4691/// declaration (New) from the corresponding fields of its template
4692/// (Tmpl).
4693///
4694/// \returns true if there was an error
4695bool
4696TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New,
4697 CXXMethodDecl *Tmpl) {
4698 if (InitFunctionInstantiation(New, Tmpl))
4699 return true;
4700
4701 if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11)
4702 SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New));
4703
4704 New->setAccess(Tmpl->getAccess());
4705 if (Tmpl->isVirtualAsWritten())
4706 New->setVirtualAsWritten(true);
4707
4708 // FIXME: New needs a pointer to Tmpl
4709 return false;
4710}
4711
4712bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New,
4713 FunctionDecl *Tmpl) {
4714 // Transfer across any unqualified lookups.
4715 if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) {
4716 SmallVector<DeclAccessPair, 32> Lookups;
4717 Lookups.reserve(DFI->getUnqualifiedLookups().size());
4718 bool AnyChanged = false;
4719 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) {
4720 NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(),
4721 DA.getDecl(), TemplateArgs);
4722 if (!D)
4723 return true;
4724 AnyChanged |= (D != DA.getDecl());
4725 Lookups.push_back(DeclAccessPair::make(D, DA.getAccess()));
4726 }
4727
4728 // It's unlikely that substitution will change any declarations. Don't
4729 // store an unnecessary copy in that case.
4730 New->setDefaultedFunctionInfo(
4731 AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create(
4732 SemaRef.Context, Lookups)
4733 : DFI);
4734 }
4735
4736 SemaRef.SetDeclDefaulted(New, Tmpl->getLocation());
4737 return false;
4738}
4739
4740/// Instantiate (or find existing instantiation of) a function template with a
4741/// given set of template arguments.
4742///
4743/// Usually this should not be used, and template argument deduction should be
4744/// used in its place.
4745FunctionDecl *
4746Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
4747 const TemplateArgumentList *Args,
4748 SourceLocation Loc) {
4749 FunctionDecl *FD = FTD->getTemplatedDecl();
4750
4751 sema::TemplateDeductionInfo Info(Loc);
4752 InstantiatingTemplate Inst(
4753 *this, Loc, FTD, Args->asArray(),
4754 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
4755 if (Inst.isInvalid())
4756 return nullptr;
4757
4758 ContextRAII SavedContext(*this, FD);
4759 MultiLevelTemplateArgumentList MArgs(*Args);
4760
4761 return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs));
4762}
4763
4764/// Instantiate the definition of the given function from its
4765/// template.
4766///
4767/// \param PointOfInstantiation the point at which the instantiation was
4768/// required. Note that this is not precisely a "point of instantiation"
4769/// for the function, but it's close.
4770///
4771/// \param Function the already-instantiated declaration of a
4772/// function template specialization or member function of a class template
4773/// specialization.
4774///
4775/// \param Recursive if true, recursively instantiates any functions that
4776/// are required by this instantiation.
4777///
4778/// \param DefinitionRequired if true, then we are performing an explicit
4779/// instantiation where the body of the function is required. Complain if
4780/// there is no such body.
4781void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
4782 FunctionDecl *Function,
4783 bool Recursive,
4784 bool DefinitionRequired,
4785 bool AtEndOfTU) {
4786 if (Function->isInvalidDecl() || isa<CXXDeductionGuideDecl>(Function))
2
Assuming the condition is false
3
Assuming 'Function' is not a 'CXXDeductionGuideDecl'
4
Taking false branch
4787 return;
4788
4789 // Never instantiate an explicit specialization except if it is a class scope
4790 // explicit specialization.
4791 TemplateSpecializationKind TSK =
4792 Function->getTemplateSpecializationKindForInstantiation();
4793 if (TSK == TSK_ExplicitSpecialization)
5
Assuming 'TSK' is not equal to TSK_ExplicitSpecialization
6
Taking false branch
4794 return;
4795
4796 // Don't instantiate a definition if we already have one.
4797 const FunctionDecl *ExistingDefn = nullptr;
4798 if (Function->isDefined(ExistingDefn,
7
Assuming the condition is false
8
Taking false branch
4799 /*CheckForPendingFriendDefinition=*/true)) {
4800 if (ExistingDefn->isThisDeclarationADefinition())
4801 return;
4802
4803 // If we're asked to instantiate a function whose body comes from an
4804 // instantiated friend declaration, attach the instantiated body to the
4805 // corresponding declaration of the function.
4806 assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition())(static_cast <bool> (ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition
()) ? void (0) : __assert_fail ("ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4806, __extension__ __PRETTY_FUNCTION__))
;
4807 Function = const_cast<FunctionDecl*>(ExistingDefn);
4808 }
4809
4810 // Find the function body that we'll be substituting.
4811 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern();
4812 assert(PatternDecl && "instantiating a non-template")(static_cast <bool> (PatternDecl && "instantiating a non-template"
) ? void (0) : __assert_fail ("PatternDecl && \"instantiating a non-template\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4812, __extension__ __PRETTY_FUNCTION__))
;
9
Assuming 'PatternDecl' is non-null
10
'?' condition is true
4813
4814 const FunctionDecl *PatternDef = PatternDecl->getDefinition();
4815 Stmt *Pattern = nullptr;
4816 if (PatternDef
10.1
'PatternDef' is null
10.1
'PatternDef' is null
) {
11
Taking false branch
4817 Pattern = PatternDef->getBody(PatternDef);
4818 PatternDecl = PatternDef;
4819 if (PatternDef->willHaveBody())
4820 PatternDef = nullptr;
4821 }
4822
4823 // FIXME: We need to track the instantiation stack in order to know which
4824 // definitions should be visible within this instantiation.
4825 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function,
12
Assuming the condition is false
4826 Function->getInstantiatedFromMemberFunction(),
4827 PatternDecl, PatternDef, TSK,
4828 /*Complain*/DefinitionRequired)) {
4829 if (DefinitionRequired)
4830 Function->setInvalidDecl();
4831 else if (TSK == TSK_ExplicitInstantiationDefinition) {
4832 // Try again at the end of the translation unit (at which point a
4833 // definition will be required).
4834 assert(!Recursive)(static_cast <bool> (!Recursive) ? void (0) : __assert_fail
("!Recursive", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4834, __extension__ __PRETTY_FUNCTION__))
;
4835 Function->setInstantiationIsPending(true);
4836 PendingInstantiations.push_back(
4837 std::make_pair(Function, PointOfInstantiation));
4838 } else if (TSK == TSK_ImplicitInstantiation) {
4839 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
4840 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
4841 Diag(PointOfInstantiation, diag::warn_func_template_missing)
4842 << Function;
4843 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
4844 if (getLangOpts().CPlusPlus11)
4845 Diag(PointOfInstantiation, diag::note_inst_declaration_hint)
4846 << Function;
4847 }
4848 }
4849
4850 return;
4851 }
4852
4853 // Postpone late parsed template instantiations.
4854 if (PatternDecl->isLateTemplateParsed() &&
13
Assuming the condition is false
4855 !LateTemplateParser) {
4856 Function->setInstantiationIsPending(true);
4857 LateParsedInstantiations.push_back(
4858 std::make_pair(Function, PointOfInstantiation));
4859 return;
4860 }
4861
4862 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() {
4863 std::string Name;
4864 llvm::raw_string_ostream OS(Name);
4865 Function->getNameForDiagnostic(OS, getPrintingPolicy(),
4866 /*Qualified=*/true);
4867 return Name;
4868 });
4869
4870 // If we're performing recursive template instantiation, create our own
4871 // queue of pending implicit instantiations that we will instantiate later,
4872 // while we're still within our own instantiation context.
4873 // This has to happen before LateTemplateParser below is called, so that
4874 // it marks vtables used in late parsed templates as used.
4875 GlobalEagerInstantiationScope GlobalInstantiations(*this,
4876 /*Enabled=*/Recursive);
4877 LocalEagerInstantiationScope LocalInstantiations(*this);
4878
4879 // Call the LateTemplateParser callback if there is a need to late parse
4880 // a templated function definition.
4881 if (!Pattern
13.1
'Pattern' is null
13.1
'Pattern' is null
&& PatternDecl->isLateTemplateParsed() &&
4882 LateTemplateParser) {
4883 // FIXME: Optimize to allow individual templates to be deserialized.
4884 if (PatternDecl->isFromASTFile())
4885 ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap);
4886
4887 auto LPTIter = LateParsedTemplateMap.find(PatternDecl);
4888 assert(LPTIter != LateParsedTemplateMap.end() &&(static_cast <bool> (LPTIter != LateParsedTemplateMap.end
() && "missing LateParsedTemplate") ? void (0) : __assert_fail
("LPTIter != LateParsedTemplateMap.end() && \"missing LateParsedTemplate\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4889, __extension__ __PRETTY_FUNCTION__))
4889 "missing LateParsedTemplate")(static_cast <bool> (LPTIter != LateParsedTemplateMap.end
() && "missing LateParsedTemplate") ? void (0) : __assert_fail
("LPTIter != LateParsedTemplateMap.end() && \"missing LateParsedTemplate\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4889, __extension__ __PRETTY_FUNCTION__))
;
4890 LateTemplateParser(OpaqueParser, *LPTIter->second);
4891 Pattern = PatternDecl->getBody(PatternDecl);
4892 }
4893
4894 // Note, we should never try to instantiate a deleted function template.
4895 assert((Pattern || PatternDecl->isDefaulted() ||(static_cast <bool> ((Pattern || PatternDecl->isDefaulted
() || PatternDecl->hasSkippedBody()) && "unexpected kind of function template definition"
) ? void (0) : __assert_fail ("(Pattern || PatternDecl->isDefaulted() || PatternDecl->hasSkippedBody()) && \"unexpected kind of function template definition\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4897, __extension__ __PRETTY_FUNCTION__))
14
Assuming the condition is false
15
Assuming the condition is true
16
'?' condition is true
4896 PatternDecl->hasSkippedBody()) &&(static_cast <bool> ((Pattern || PatternDecl->isDefaulted
() || PatternDecl->hasSkippedBody()) && "unexpected kind of function template definition"
) ? void (0) : __assert_fail ("(Pattern || PatternDecl->isDefaulted() || PatternDecl->hasSkippedBody()) && \"unexpected kind of function template definition\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4897, __extension__ __PRETTY_FUNCTION__))
4897 "unexpected kind of function template definition")(static_cast <bool> ((Pattern || PatternDecl->isDefaulted
() || PatternDecl->hasSkippedBody()) && "unexpected kind of function template definition"
) ? void (0) : __assert_fail ("(Pattern || PatternDecl->isDefaulted() || PatternDecl->hasSkippedBody()) && \"unexpected kind of function template definition\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4897, __extension__ __PRETTY_FUNCTION__))
;
4898
4899 // C++1y [temp.explicit]p10:
4900 // Except for inline functions, declarations with types deduced from their
4901 // initializer or return value, and class template specializations, other
4902 // explicit instantiation declarations have the effect of suppressing the
4903 // implicit instantiation of the entity to which they refer.
4904 if (TSK == TSK_ExplicitInstantiationDeclaration &&
17
Assuming 'TSK' is not equal to TSK_ExplicitInstantiationDeclaration
18
Taking false branch
4905 !PatternDecl->isInlined() &&
4906 !PatternDecl->getReturnType()->getContainedAutoType())
4907 return;
4908
4909 if (PatternDecl->isInlined()) {
19
Assuming the condition is false
20
Taking false branch
4910 // Function, and all later redeclarations of it (from imported modules,
4911 // for instance), are now implicitly inline.
4912 for (auto *D = Function->getMostRecentDecl(); /**/;
4913 D = D->getPreviousDecl()) {
4914 D->setImplicitlyInline();
4915 if (D == Function)
4916 break;
4917 }
4918 }
4919
4920 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function);
4921 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
21
Assuming the condition is false
22
Assuming the condition is false
23
Taking false branch
4922 return;
4923 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(),
4924 "instantiating function definition");
4925
4926 // The instantiation is visible here, even if it was first declared in an
4927 // unimported module.
4928 Function->setVisibleDespiteOwningModule();
4929
4930 // Copy the inner loc start from the pattern.
4931 Function->setInnerLocStart(PatternDecl->getInnerLocStart());
4932
4933 EnterExpressionEvaluationContext EvalContext(
4934 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
4935
4936 // Introduce a new scope where local variable instantiations will be
4937 // recorded, unless we're actually a member function within a local
4938 // class, in which case we need to merge our results with the parent
4939 // scope (of the enclosing function). The exception is instantiating
4940 // a function template specialization, since the template to be
4941 // instantiated already has references to locals properly substituted.
4942 bool MergeWithParentScope = false;
4943 if (CXXRecordDecl *Rec
24.1
'Rec' is null
24.1
'Rec' is null
= dyn_cast<CXXRecordDecl>(Function->getDeclContext()))
24
Assuming the object is not a 'CXXRecordDecl'
25
Taking false branch
4944 MergeWithParentScope =
4945 Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization();
4946
4947 LocalInstantiationScope Scope(*this, MergeWithParentScope);
4948 auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() {
4949 // Special members might get their TypeSourceInfo set up w.r.t the
4950 // PatternDecl context, in which case parameters could still be pointing
4951 // back to the original class, make sure arguments are bound to the
4952 // instantiated record instead.
4953 assert(PatternDecl->isDefaulted() &&(static_cast <bool> (PatternDecl->isDefaulted() &&
"Special member needs to be defaulted") ? void (0) : __assert_fail
("PatternDecl->isDefaulted() && \"Special member needs to be defaulted\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4954, __extension__ __PRETTY_FUNCTION__))
4954 "Special member needs to be defaulted")(static_cast <bool> (PatternDecl->isDefaulted() &&
"Special member needs to be defaulted") ? void (0) : __assert_fail
("PatternDecl->isDefaulted() && \"Special member needs to be defaulted\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 4954, __extension__ __PRETTY_FUNCTION__))
;
4955 auto PatternSM = getDefaultedFunctionKind(PatternDecl).asSpecialMember();
4956 if (!(PatternSM == Sema::CXXCopyConstructor ||
4957 PatternSM == Sema::CXXCopyAssignment ||
4958 PatternSM == Sema::CXXMoveConstructor ||
4959 PatternSM == Sema::CXXMoveAssignment))
4960 return;
4961
4962 auto *NewRec = dyn_cast<CXXRecordDecl>(Function->getDeclContext());
4963 const auto *PatternRec =
4964 dyn_cast<CXXRecordDecl>(PatternDecl->getDeclContext());
4965 if (!NewRec || !PatternRec)
4966 return;
4967 if (!PatternRec->isLambda())
4968 return;
4969
4970 struct SpecialMemberTypeInfoRebuilder
4971 : TreeTransform<SpecialMemberTypeInfoRebuilder> {
4972 using Base = TreeTransform<SpecialMemberTypeInfoRebuilder>;
4973 const CXXRecordDecl *OldDecl;
4974 CXXRecordDecl *NewDecl;
4975
4976 SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O,
4977 CXXRecordDecl *N)
4978 : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {}
4979
4980 bool TransformExceptionSpec(SourceLocation Loc,
4981 FunctionProtoType::ExceptionSpecInfo &ESI,
4982 SmallVectorImpl<QualType> &Exceptions,
4983 bool &Changed) {
4984 return false;
4985 }
4986
4987 QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) {
4988 const RecordType *T = TL.getTypePtr();
4989 RecordDecl *Record = cast_or_null<RecordDecl>(
4990 getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()));
4991 if (Record != OldDecl)
4992 return Base::TransformRecordType(TLB, TL);
4993
4994 QualType Result = getDerived().RebuildRecordType(NewDecl);
4995 if (Result.isNull())
4996 return QualType();
4997
4998 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(Result);
4999 NewTL.setNameLoc(TL.getNameLoc());
5000 return Result;
5001 }
5002 } IR{*this, PatternRec, NewRec};
5003
5004 TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo());
5005 Function->setType(NewSI->getType());
5006 Function->setTypeSourceInfo(NewSI);
5007
5008 ParmVarDecl *Parm = Function->getParamDecl(0);
5009 TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo());
5010 Parm->setType(NewParmSI->getType());
5011 Parm->setTypeSourceInfo(NewParmSI);
5012 };
5013
5014 if (PatternDecl->isDefaulted()) {
26
Taking false branch
5015 RebuildTypeSourceInfoForDefaultSpecialMembers();
5016 SetDeclDefaulted(Function, PatternDecl->getLocation());
5017 } else {
5018 MultiLevelTemplateArgumentList TemplateArgs =
5019 getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl);
5020
5021 // Substitute into the qualifier; we can get a substitution failure here
5022 // through evil use of alias templates.
5023 // FIXME: Is CurContext correct for this? Should we go to the (instantiation
5024 // of the) lexical context of the pattern?
5025 SubstQualifier(*this, PatternDecl, Function, TemplateArgs);
5026
5027 ActOnStartOfFunctionDef(nullptr, Function);
5028
5029 // Enter the scope of this instantiation. We don't use
5030 // PushDeclContext because we don't have a scope.
5031 Sema::ContextRAII savedContext(*this, Function);
5032
5033 if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope,
27
Assuming the condition is false
28
Taking false branch
5034 TemplateArgs))
5035 return;
5036
5037 StmtResult Body;
5038 if (PatternDecl->hasSkippedBody()) {
29
Taking true branch
5039 ActOnSkippedFunctionBody(Function);
5040 Body = nullptr;
5041 } else {
5042 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) {
5043 // If this is a constructor, instantiate the member initializers.
5044 InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl),
5045 TemplateArgs);
5046
5047 // If this is an MS ABI dllexport default constructor, instantiate any
5048 // default arguments.
5049 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5050 Ctor->isDefaultConstructor()) {
5051 InstantiateDefaultCtorDefaultArgs(Ctor);
5052 }
5053 }
5054
5055 // Instantiate the function body.
5056 Body = SubstStmt(Pattern, TemplateArgs);
5057
5058 if (Body.isInvalid())
5059 Function->setInvalidDecl();
5060 }
5061 // FIXME: finishing the function body while in an expression evaluation
5062 // context seems wrong. Investigate more.
5063 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true);
5064
5065 PerformDependentDiagnostics(PatternDecl, TemplateArgs);
5066
5067 if (auto *Listener = getASTMutationListener())
30
Assuming 'Listener' is null
31
Taking false branch
5068 Listener->FunctionDefinitionInstantiated(Function);
5069
5070 savedContext.pop();
5071 }
5072
5073 DeclGroupRef DG(Function);
5074 Consumer.HandleTopLevelDecl(DG);
5075
5076 // This class may have local implicit instantiations that need to be
5077 // instantiation within this scope.
5078 LocalInstantiations.perform();
5079 Scope.Exit();
5080 GlobalInstantiations.perform();
32
Calling 'GlobalEagerInstantiationScope::perform'
5081}
5082
5083VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation(
5084 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
5085 const TemplateArgumentList &TemplateArgList,
5086 const TemplateArgumentListInfo &TemplateArgsInfo,
5087 SmallVectorImpl<TemplateArgument> &Converted,
5088 SourceLocation PointOfInstantiation,
5089 LateInstantiatedAttrVec *LateAttrs,
5090 LocalInstantiationScope *StartingScope) {
5091 if (FromVar->isInvalidDecl())
5092 return nullptr;
5093
5094 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar);
5095 if (Inst.isInvalid())
5096 return nullptr;
5097
5098 MultiLevelTemplateArgumentList TemplateArgLists;
5099 TemplateArgLists.addOuterTemplateArguments(&TemplateArgList);
5100
5101 // Instantiate the first declaration of the variable template: for a partial
5102 // specialization of a static data member template, the first declaration may
5103 // or may not be the declaration in the class; if it's in the class, we want
5104 // to instantiate a member in the class (a declaration), and if it's outside,
5105 // we want to instantiate a definition.
5106 //
5107 // If we're instantiating an explicitly-specialized member template or member
5108 // partial specialization, don't do this. The member specialization completely
5109 // replaces the original declaration in this case.
5110 bool IsMemberSpec = false;
5111 if (VarTemplatePartialSpecializationDecl *PartialSpec =
5112 dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar))
5113 IsMemberSpec = PartialSpec->isMemberSpecialization();
5114 else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate())
5115 IsMemberSpec = FromTemplate->isMemberSpecialization();
5116 if (!IsMemberSpec)
5117 FromVar = FromVar->getFirstDecl();
5118
5119 MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList);
5120 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(),
5121 MultiLevelList);
5122
5123 // TODO: Set LateAttrs and StartingScope ...
5124
5125 return cast_or_null<VarTemplateSpecializationDecl>(
5126 Instantiator.VisitVarTemplateSpecializationDecl(
5127 VarTemplate, FromVar, TemplateArgsInfo, Converted));
5128}
5129
5130/// Instantiates a variable template specialization by completing it
5131/// with appropriate type information and initializer.
5132VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl(
5133 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
5134 const MultiLevelTemplateArgumentList &TemplateArgs) {
5135 assert(PatternDecl->isThisDeclarationADefinition() &&(static_cast <bool> (PatternDecl->isThisDeclarationADefinition
() && "don't have a definition to instantiate from") ?
void (0) : __assert_fail ("PatternDecl->isThisDeclarationADefinition() && \"don't have a definition to instantiate from\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 5136, __extension__ __PRETTY_FUNCTION__))
5136 "don't have a definition to instantiate from")(static_cast <bool> (PatternDecl->isThisDeclarationADefinition
() && "don't have a definition to instantiate from") ?
void (0) : __assert_fail ("PatternDecl->isThisDeclarationADefinition() && \"don't have a definition to instantiate from\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 5136, __extension__ __PRETTY_FUNCTION__))
;
5137
5138 // Do substitution on the type of the declaration
5139 TypeSourceInfo *DI =
5140 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs,
5141 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName());
5142 if (!DI)
5143 return nullptr;
5144
5145 // Update the type of this variable template specialization.
5146 VarSpec->setType(DI->getType());
5147
5148 // Convert the declaration into a definition now.
5149 VarSpec->setCompleteDefinition();
5150
5151 // Instantiate the initializer.
5152 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs);
5153
5154 if (getLangOpts().OpenCL)
5155 deduceOpenCLAddressSpace(VarSpec);
5156
5157 return VarSpec;
5158}
5159
5160/// BuildVariableInstantiation - Used after a new variable has been created.
5161/// Sets basic variable data and decides whether to postpone the
5162/// variable instantiation.
5163void Sema::BuildVariableInstantiation(
5164 VarDecl *NewVar, VarDecl *OldVar,
5165 const MultiLevelTemplateArgumentList &TemplateArgs,
5166 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner,
5167 LocalInstantiationScope *StartingScope,
5168 bool InstantiatingVarTemplate,
5169 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) {
5170 // Instantiating a partial specialization to produce a partial
5171 // specialization.
5172 bool InstantiatingVarTemplatePartialSpec =
5173 isa<VarTemplatePartialSpecializationDecl>(OldVar) &&
5174 isa<VarTemplatePartialSpecializationDecl>(NewVar);
5175 // Instantiating from a variable template (or partial specialization) to
5176 // produce a variable template specialization.
5177 bool InstantiatingSpecFromTemplate =
5178 isa<VarTemplateSpecializationDecl>(NewVar) &&
5179 (OldVar->getDescribedVarTemplate() ||
5180 isa<VarTemplatePartialSpecializationDecl>(OldVar));
5181
5182 // If we are instantiating a local extern declaration, the
5183 // instantiation belongs lexically to the containing function.
5184 // If we are instantiating a static data member defined
5185 // out-of-line, the instantiation will have the same lexical
5186 // context (which will be a namespace scope) as the template.
5187 if (OldVar->isLocalExternDecl()) {
5188 NewVar->setLocalExternDecl();
5189 NewVar->setLexicalDeclContext(Owner);
5190 } else if (OldVar->isOutOfLine())
5191 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext());
5192 NewVar->setTSCSpec(OldVar->getTSCSpec());
5193 NewVar->setInitStyle(OldVar->getInitStyle());
5194 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl());
5195 NewVar->setObjCForDecl(OldVar->isObjCForDecl());
5196 NewVar->setConstexpr(OldVar->isConstexpr());
5197 NewVar->setInitCapture(OldVar->isInitCapture());
5198 NewVar->setPreviousDeclInSameBlockScope(
5199 OldVar->isPreviousDeclInSameBlockScope());
5200 NewVar->setAccess(OldVar->getAccess());
5201
5202 if (!OldVar->isStaticDataMember()) {
5203 if (OldVar->isUsed(false))
5204 NewVar->setIsUsed();
5205 NewVar->setReferenced(OldVar->isReferenced());
5206 }
5207
5208 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope);
5209
5210 LookupResult Previous(
5211 *this, NewVar->getDeclName(), NewVar->getLocation(),
5212 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
5213 : Sema::LookupOrdinaryName,
5214 NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration
5215 : forRedeclarationInCurContext());
5216
5217 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() &&
5218 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() ||
5219 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) {
5220 // We have a previous declaration. Use that one, so we merge with the
5221 // right type.
5222 if (NamedDecl *NewPrev = FindInstantiatedDecl(
5223 NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs))
5224 Previous.addDecl(NewPrev);
5225 } else if (!isa<VarTemplateSpecializationDecl>(NewVar) &&
5226 OldVar->hasLinkage()) {
5227 LookupQualifiedName(Previous, NewVar->getDeclContext(), false);
5228 } else if (PrevDeclForVarTemplateSpecialization) {
5229 Previous.addDecl(PrevDeclForVarTemplateSpecialization);
5230 }
5231 CheckVariableDeclaration(NewVar, Previous);
5232
5233 if (!InstantiatingVarTemplate) {
5234 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar);
5235 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl())
5236 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar);
5237 }
5238
5239 if (!OldVar->isOutOfLine()) {
5240 if (NewVar->getDeclContext()->isFunctionOrMethod())
5241 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar);
5242 }
5243
5244 // Link instantiations of static data members back to the template from
5245 // which they were instantiated.
5246 //
5247 // Don't do this when instantiating a template (we link the template itself
5248 // back in that case) nor when instantiating a static data member template
5249 // (that's not a member specialization).
5250 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate &&
5251 !InstantiatingSpecFromTemplate)
5252 NewVar->setInstantiationOfStaticDataMember(OldVar,
5253 TSK_ImplicitInstantiation);
5254
5255 // If the pattern is an (in-class) explicit specialization, then the result
5256 // is also an explicit specialization.
5257 if (VarTemplateSpecializationDecl *OldVTSD =
5258 dyn_cast<VarTemplateSpecializationDecl>(OldVar)) {
5259 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization &&
5260 !isa<VarTemplatePartialSpecializationDecl>(OldVTSD))
5261 cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind(
5262 TSK_ExplicitSpecialization);
5263 }
5264
5265 // Forward the mangling number from the template to the instantiated decl.
5266 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar));
5267 Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar));
5268
5269 // Figure out whether to eagerly instantiate the initializer.
5270 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) {
5271 // We're producing a template. Don't instantiate the initializer yet.
5272 } else if (NewVar->getType()->isUndeducedType()) {
5273 // We need the type to complete the declaration of the variable.
5274 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
5275 } else if (InstantiatingSpecFromTemplate ||
5276 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() &&
5277 !NewVar->isThisDeclarationADefinition())) {
5278 // Delay instantiation of the initializer for variable template
5279 // specializations or inline static data members until a definition of the
5280 // variable is needed.
5281 } else {
5282 InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
5283 }
5284
5285 // Diagnose unused local variables with dependent types, where the diagnostic
5286 // will have been deferred.
5287 if (!NewVar->isInvalidDecl() &&
5288 NewVar->getDeclContext()->isFunctionOrMethod() &&
5289 OldVar->getType()->isDependentType())
5290 DiagnoseUnusedDecl(NewVar);
5291}
5292
5293/// Instantiate the initializer of a variable.
5294void Sema::InstantiateVariableInitializer(
5295 VarDecl *Var, VarDecl *OldVar,
5296 const MultiLevelTemplateArgumentList &TemplateArgs) {
5297 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
5298 L->VariableDefinitionInstantiated(Var);
5299
5300 // We propagate the 'inline' flag with the initializer, because it
5301 // would otherwise imply that the variable is a definition for a
5302 // non-static data member.
5303 if (OldVar->isInlineSpecified())
5304 Var->setInlineSpecified();
5305 else if (OldVar->isInline())
5306 Var->setImplicitlyInline();
5307
5308 if (OldVar->getInit()) {
5309 EnterExpressionEvaluationContext Evaluated(
5310 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var);
5311
5312 // Instantiate the initializer.
5313 ExprResult Init;
5314
5315 {
5316 ContextRAII SwitchContext(*this, Var->getDeclContext());
5317 Init = SubstInitializer(OldVar->getInit(), TemplateArgs,
5318 OldVar->getInitStyle() == VarDecl::CallInit);
5319 }
5320
5321 if (!Init.isInvalid()) {
5322 Expr *InitExpr = Init.get();
5323
5324 if (Var->hasAttr<DLLImportAttr>() &&
5325 (!InitExpr ||
5326 !InitExpr->isConstantInitializer(getASTContext(), false))) {
5327 // Do not dynamically initialize dllimport variables.
5328 } else if (InitExpr) {
5329 bool DirectInit = OldVar->isDirectInit();
5330 AddInitializerToDecl(Var, InitExpr, DirectInit);
5331 } else
5332 ActOnUninitializedDecl(Var);
5333 } else {
5334 // FIXME: Not too happy about invalidating the declaration
5335 // because of a bogus initializer.
5336 Var->setInvalidDecl();
5337 }
5338 } else {
5339 // `inline` variables are a definition and declaration all in one; we won't
5340 // pick up an initializer from anywhere else.
5341 if (Var->isStaticDataMember() && !Var->isInline()) {
5342 if (!Var->isOutOfLine())
5343 return;
5344
5345 // If the declaration inside the class had an initializer, don't add
5346 // another one to the out-of-line definition.
5347 if (OldVar->getFirstDecl()->hasInit())
5348 return;
5349 }
5350
5351 // We'll add an initializer to a for-range declaration later.
5352 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl())
5353 return;
5354
5355 ActOnUninitializedDecl(Var);
5356 }
5357
5358 if (getLangOpts().CUDA)
5359 checkAllowedCUDAInitializer(Var);
5360}
5361
5362/// Instantiate the definition of the given variable from its
5363/// template.
5364///
5365/// \param PointOfInstantiation the point at which the instantiation was
5366/// required. Note that this is not precisely a "point of instantiation"
5367/// for the variable, but it's close.
5368///
5369/// \param Var the already-instantiated declaration of a templated variable.
5370///
5371/// \param Recursive if true, recursively instantiates any functions that
5372/// are required by this instantiation.
5373///
5374/// \param DefinitionRequired if true, then we are performing an explicit
5375/// instantiation where a definition of the variable is required. Complain
5376/// if there is no such definition.
5377void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
5378 VarDecl *Var, bool Recursive,
5379 bool DefinitionRequired, bool AtEndOfTU) {
5380 if (Var->isInvalidDecl())
52
Assuming the condition is false
53
Taking false branch
5381 return;
5382
5383 // Never instantiate an explicitly-specialized entity.
5384 TemplateSpecializationKind TSK =
5385 Var->getTemplateSpecializationKindForInstantiation();
5386 if (TSK == TSK_ExplicitSpecialization)
54
Assuming 'TSK' is not equal to TSK_ExplicitSpecialization
55
Taking false branch
5387 return;
5388
5389 // Find the pattern and the arguments to substitute into it.
5390 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern();
5391 assert(PatternDecl && "no pattern for templated variable")(static_cast <bool> (PatternDecl && "no pattern for templated variable"
) ? void (0) : __assert_fail ("PatternDecl && \"no pattern for templated variable\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 5391, __extension__ __PRETTY_FUNCTION__))
;
56
Assuming 'PatternDecl' is non-null
57
'?' condition is true
5392 MultiLevelTemplateArgumentList TemplateArgs =
5393 getTemplateInstantiationArgs(Var);
5394
5395 VarTemplateSpecializationDecl *VarSpec =
5396 dyn_cast<VarTemplateSpecializationDecl>(Var);
58
'Var' is a 'VarTemplateSpecializationDecl'
5397 if (VarSpec
58.1
'VarSpec' is non-null
58.1
'VarSpec' is non-null
) {
5398 // If this is a static data member template, there might be an
5399 // uninstantiated initializer on the declaration. If so, instantiate
5400 // it now.
5401 //
5402 // FIXME: This largely duplicates what we would do below. The difference
5403 // is that along this path we may instantiate an initializer from an
5404 // in-class declaration of the template and instantiate the definition
5405 // from a separate out-of-class definition.
5406 if (PatternDecl->isStaticDataMember() &&
59
Assuming the condition is false
5407 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() &&
5408 !Var->hasInit()) {
5409 // FIXME: Factor out the duplicated instantiation context setup/tear down
5410 // code here.
5411 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5412 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5413 return;
5414 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5415 "instantiating variable initializer");
5416
5417 // The instantiation is visible here, even if it was first declared in an
5418 // unimported module.
5419 Var->setVisibleDespiteOwningModule();
5420
5421 // If we're performing recursive template instantiation, create our own
5422 // queue of pending implicit instantiations that we will instantiate
5423 // later, while we're still within our own instantiation context.
5424 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5425 /*Enabled=*/Recursive);
5426 LocalInstantiationScope Local(*this);
5427 LocalEagerInstantiationScope LocalInstantiations(*this);
5428
5429 // Enter the scope of this instantiation. We don't use
5430 // PushDeclContext because we don't have a scope.
5431 ContextRAII PreviousContext(*this, Var->getDeclContext());
5432 InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs);
5433 PreviousContext.pop();
5434
5435 // This variable may have local implicit instantiations that need to be
5436 // instantiated within this scope.
5437 LocalInstantiations.perform();
5438 Local.Exit();
5439 GlobalInstantiations.perform();
5440 }
5441 } else {
5442 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() &&(static_cast <bool> (Var->isStaticDataMember() &&
PatternDecl->isStaticDataMember() && "not a static data member?"
) ? void (0) : __assert_fail ("Var->isStaticDataMember() && PatternDecl->isStaticDataMember() && \"not a static data member?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 5443, __extension__ __PRETTY_FUNCTION__))
5443 "not a static data member?")(static_cast <bool> (Var->isStaticDataMember() &&
PatternDecl->isStaticDataMember() && "not a static data member?"
) ? void (0) : __assert_fail ("Var->isStaticDataMember() && PatternDecl->isStaticDataMember() && \"not a static data member?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 5443, __extension__ __PRETTY_FUNCTION__))
;
5444 }
5445
5446 VarDecl *Def = PatternDecl->getDefinition(getASTContext());
60
'Def' initialized here
5447
5448 // If we don't have a definition of the variable template, we won't perform
5449 // any instantiation. Rather, we rely on the user to instantiate this
5450 // definition (or provide a specialization for it) in another translation
5451 // unit.
5452 if (!Def && !DefinitionRequired
62.1
'DefinitionRequired' is false
62.1
'DefinitionRequired' is false
) {
61
Assuming 'Def' is null
62
Assuming pointer value is null
63
Taking true branch
5453 if (TSK == TSK_ExplicitInstantiationDefinition) {
64
Assuming 'TSK' is not equal to TSK_ExplicitInstantiationDefinition
65
Taking false branch
5454 PendingInstantiations.push_back(
5455 std::make_pair(Var, PointOfInstantiation));
5456 } else if (TSK == TSK_ImplicitInstantiation) {
66
Assuming 'TSK' is not equal to TSK_ImplicitInstantiation
67
Taking false branch
5457 // Warn about missing definition at the end of translation unit.
5458 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
5459 !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
5460 Diag(PointOfInstantiation, diag::warn_var_template_missing)
5461 << Var;
5462 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
5463 if (getLangOpts().CPlusPlus11)
5464 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var;
5465 }
5466 return;
5467 }
5468 }
5469
5470 // FIXME: We need to track the instantiation stack in order to know which
5471 // definitions should be visible within this instantiation.
5472 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember().
5473 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var,
68
Assuming the condition is false
5474 /*InstantiatedFromMember*/false,
5475 PatternDecl, Def, TSK,
5476 /*Complain*/DefinitionRequired))
5477 return;
5478
5479 // C++11 [temp.explicit]p10:
5480 // Except for inline functions, const variables of literal types, variables
5481 // of reference types, [...] explicit instantiation declarations
5482 // have the effect of suppressing the implicit instantiation of the entity
5483 // to which they refer.
5484 //
5485 // FIXME: That's not exactly the same as "might be usable in constant
5486 // expressions", which only allows constexpr variables and const integral
5487 // types, not arbitrary const literal types.
5488 if (TSK == TSK_ExplicitInstantiationDeclaration &&
69
Assuming 'TSK' is not equal to TSK_ExplicitInstantiationDeclaration
5489 !Var->mightBeUsableInConstantExpressions(getASTContext()))
5490 return;
5491
5492 // Make sure to pass the instantiated variable to the consumer at the end.
5493 struct PassToConsumerRAII {
5494 ASTConsumer &Consumer;
5495 VarDecl *Var;
5496
5497 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var)
5498 : Consumer(Consumer), Var(Var) { }
5499
5500 ~PassToConsumerRAII() {
5501 Consumer.HandleCXXStaticMemberVarInstantiation(Var);
5502 }
5503 } PassToConsumerRAII(Consumer, Var);
5504
5505 // If we already have a definition, we're done.
5506 if (VarDecl *Def = Var->getDefinition()) {
70
Assuming 'Def' is null
71
Taking false branch
5507 // We may be explicitly instantiating something we've already implicitly
5508 // instantiated.
5509 Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(),
5510 PointOfInstantiation);
5511 return;
5512 }
5513
5514 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5515 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
72
Assuming the condition is false
73
Assuming the condition is false
74
Taking false branch
5516 return;
5517 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5518 "instantiating variable definition");
5519
5520 // If we're performing recursive template instantiation, create our own
5521 // queue of pending implicit instantiations that we will instantiate later,
5522 // while we're still within our own instantiation context.
5523 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5524 /*Enabled=*/Recursive);
5525
5526 // Enter the scope of this instantiation. We don't use
5527 // PushDeclContext because we don't have a scope.
5528 ContextRAII PreviousContext(*this, Var->getDeclContext());
5529 LocalInstantiationScope Local(*this);
5530
5531 LocalEagerInstantiationScope LocalInstantiations(*this);
5532
5533 VarDecl *OldVar = Var;
5534 if (Def->isStaticDataMember() && !Def->isOutOfLine()) {
75
Called C++ object pointer is null
5535 // We're instantiating an inline static data member whose definition was
5536 // provided inside the class.
5537 InstantiateVariableInitializer(Var, Def, TemplateArgs);
5538 } else if (!VarSpec) {
5539 Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(),
5540 TemplateArgs));
5541 } else if (Var->isStaticDataMember() &&
5542 Var->getLexicalDeclContext()->isRecord()) {
5543 // We need to instantiate the definition of a static data member template,
5544 // and all we have is the in-class declaration of it. Instantiate a separate
5545 // declaration of the definition.
5546 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(),
5547 TemplateArgs);
5548 Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl(
5549 VarSpec->getSpecializedTemplate(), Def, VarSpec->getTemplateArgsInfo(),
5550 VarSpec->getTemplateArgs().asArray(), VarSpec));
5551 if (Var) {
5552 llvm::PointerUnion<VarTemplateDecl *,
5553 VarTemplatePartialSpecializationDecl *> PatternPtr =
5554 VarSpec->getSpecializedTemplateOrPartial();
5555 if (VarTemplatePartialSpecializationDecl *Partial =
5556 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>())
5557 cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf(
5558 Partial, &VarSpec->getTemplateInstantiationArgs());
5559
5560 // Attach the initializer.
5561 InstantiateVariableInitializer(Var, Def, TemplateArgs);
5562 }
5563 } else
5564 // Complete the existing variable's definition with an appropriately
5565 // substituted type and initializer.
5566 Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs);
5567
5568 PreviousContext.pop();
5569
5570 if (Var) {
5571 PassToConsumerRAII.Var = Var;
5572 Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(),
5573 OldVar->getPointOfInstantiation());
5574 }
5575
5576 // This variable may have local implicit instantiations that need to be
5577 // instantiated within this scope.
5578 LocalInstantiations.perform();
5579 Local.Exit();
5580 GlobalInstantiations.perform();
5581}
5582
5583void
5584Sema::InstantiateMemInitializers(CXXConstructorDecl *New,
5585 const CXXConstructorDecl *Tmpl,
5586 const MultiLevelTemplateArgumentList &TemplateArgs) {
5587
5588 SmallVector<CXXCtorInitializer*, 4> NewInits;
5589 bool AnyErrors = Tmpl->isInvalidDecl();
5590
5591 // Instantiate all the initializers.
5592 for (const auto *Init : Tmpl->inits()) {
5593 // Only instantiate written initializers, let Sema re-construct implicit
5594 // ones.
5595 if (!Init->isWritten())
5596 continue;
5597
5598 SourceLocation EllipsisLoc;
5599
5600 if (Init->isPackExpansion()) {
5601 // This is a pack expansion. We should expand it now.
5602 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc();
5603 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5604 collectUnexpandedParameterPacks(BaseTL, Unexpanded);
5605 collectUnexpandedParameterPacks(Init->getInit(), Unexpanded);
5606 bool ShouldExpand = false;
5607 bool RetainExpansion = false;
5608 Optional<unsigned> NumExpansions;
5609 if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(),
5610 BaseTL.getSourceRange(),
5611 Unexpanded,
5612 TemplateArgs, ShouldExpand,
5613 RetainExpansion,
5614 NumExpansions)) {
5615 AnyErrors = true;
5616 New->setInvalidDecl();
5617 continue;
5618 }
5619 assert(ShouldExpand && "Partial instantiation of base initializer?")(static_cast <bool> (ShouldExpand && "Partial instantiation of base initializer?"
) ? void (0) : __assert_fail ("ShouldExpand && \"Partial instantiation of base initializer?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 5619, __extension__ __PRETTY_FUNCTION__))
;
5620
5621 // Loop over all of the arguments in the argument pack(s),
5622 for (unsigned I = 0; I != *NumExpansions; ++I) {
5623 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
5624
5625 // Instantiate the initializer.
5626 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
5627 /*CXXDirectInit=*/true);
5628 if (TempInit.isInvalid()) {
5629 AnyErrors = true;
5630 break;
5631 }
5632
5633 // Instantiate the base type.
5634 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(),
5635 TemplateArgs,
5636 Init->getSourceLocation(),
5637 New->getDeclName());
5638 if (!BaseTInfo) {
5639 AnyErrors = true;
5640 break;
5641 }
5642
5643 // Build the initializer.
5644 MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(),
5645 BaseTInfo, TempInit.get(),
5646 New->getParent(),
5647 SourceLocation());
5648 if (NewInit.isInvalid()) {
5649 AnyErrors = true;
5650 break;
5651 }
5652
5653 NewInits.push_back(NewInit.get());
5654 }
5655
5656 continue;
5657 }
5658
5659 // Instantiate the initializer.
5660 ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
5661 /*CXXDirectInit=*/true);
5662 if (TempInit.isInvalid()) {
5663 AnyErrors = true;
5664 continue;
5665 }
5666
5667 MemInitResult NewInit;
5668 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) {
5669 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(),
5670 TemplateArgs,
5671 Init->getSourceLocation(),
5672 New->getDeclName());
5673 if (!TInfo) {
5674 AnyErrors = true;
5675 New->setInvalidDecl();
5676 continue;
5677 }
5678
5679 if (Init->isBaseInitializer())
5680 NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(),
5681 New->getParent(), EllipsisLoc);
5682 else
5683 NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(),
5684 cast<CXXRecordDecl>(CurContext->getParent()));
5685 } else if (Init->isMemberInitializer()) {
5686 FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl(
5687 Init->getMemberLocation(),
5688 Init->getMember(),
5689 TemplateArgs));
5690 if (!Member) {
5691 AnyErrors = true;
5692 New->setInvalidDecl();
5693 continue;
5694 }
5695
5696 NewInit = BuildMemberInitializer(Member, TempInit.get(),
5697 Init->getSourceLocation());
5698 } else if (Init->isIndirectMemberInitializer()) {
5699 IndirectFieldDecl *IndirectMember =
5700 cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl(
5701 Init->getMemberLocation(),
5702 Init->getIndirectMember(), TemplateArgs));
5703
5704 if (!IndirectMember) {
5705 AnyErrors = true;
5706 New->setInvalidDecl();
5707 continue;
5708 }
5709
5710 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(),
5711 Init->getSourceLocation());
5712 }
5713
5714 if (NewInit.isInvalid()) {
5715 AnyErrors = true;
5716 New->setInvalidDecl();
5717 } else {
5718 NewInits.push_back(NewInit.get());
5719 }
5720 }
5721
5722 // Assign all the initializers to the new constructor.
5723 ActOnMemInitializers(New,
5724 /*FIXME: ColonLoc */
5725 SourceLocation(),
5726 NewInits,
5727 AnyErrors);
5728}
5729
5730// TODO: this could be templated if the various decl types used the
5731// same method name.
5732static bool isInstantiationOf(ClassTemplateDecl *Pattern,
5733 ClassTemplateDecl *Instance) {
5734 Pattern = Pattern->getCanonicalDecl();
5735
5736 do {
5737 Instance = Instance->getCanonicalDecl();
5738 if (Pattern == Instance) return true;
5739 Instance = Instance->getInstantiatedFromMemberTemplate();
5740 } while (Instance);
5741
5742 return false;
5743}
5744
5745static bool isInstantiationOf(FunctionTemplateDecl *Pattern,
5746 FunctionTemplateDecl *Instance) {
5747 Pattern = Pattern->getCanonicalDecl();
5748
5749 do {
5750 Instance = Instance->getCanonicalDecl();
5751 if (Pattern == Instance) return true;
5752 Instance = Instance->getInstantiatedFromMemberTemplate();
5753 } while (Instance);
5754
5755 return false;
5756}
5757
5758static bool
5759isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern,
5760 ClassTemplatePartialSpecializationDecl *Instance) {
5761 Pattern
5762 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl());
5763 do {
5764 Instance = cast<ClassTemplatePartialSpecializationDecl>(
5765 Instance->getCanonicalDecl());
5766 if (Pattern == Instance)
5767 return true;
5768 Instance = Instance->getInstantiatedFromMember();
5769 } while (Instance);
5770
5771 return false;
5772}
5773
5774static bool isInstantiationOf(CXXRecordDecl *Pattern,
5775 CXXRecordDecl *Instance) {
5776 Pattern = Pattern->getCanonicalDecl();
5777
5778 do {
5779 Instance = Instance->getCanonicalDecl();
5780 if (Pattern == Instance) return true;
5781 Instance = Instance->getInstantiatedFromMemberClass();
5782 } while (Instance);
5783
5784 return false;
5785}
5786
5787static bool isInstantiationOf(FunctionDecl *Pattern,
5788 FunctionDecl *Instance) {
5789 Pattern = Pattern->getCanonicalDecl();
5790
5791 do {
5792 Instance = Instance->getCanonicalDecl();
5793 if (Pattern == Instance) return true;
5794 Instance = Instance->getInstantiatedFromMemberFunction();
5795 } while (Instance);
5796
5797 return false;
5798}
5799
5800static bool isInstantiationOf(EnumDecl *Pattern,
5801 EnumDecl *Instance) {
5802 Pattern = Pattern->getCanonicalDecl();
5803
5804 do {
5805 Instance = Instance->getCanonicalDecl();
5806 if (Pattern == Instance) return true;
5807 Instance = Instance->getInstantiatedFromMemberEnum();
5808 } while (Instance);
5809
5810 return false;
5811}
5812
5813static bool isInstantiationOf(UsingShadowDecl *Pattern,
5814 UsingShadowDecl *Instance,
5815 ASTContext &C) {
5816 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance),
5817 Pattern);
5818}
5819
5820static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance,
5821 ASTContext &C) {
5822 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
5823}
5824
5825template<typename T>
5826static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other,
5827 ASTContext &Ctx) {
5828 // An unresolved using declaration can instantiate to an unresolved using
5829 // declaration, or to a using declaration or a using declaration pack.
5830 //
5831 // Multiple declarations can claim to be instantiated from an unresolved
5832 // using declaration if it's a pack expansion. We want the UsingPackDecl
5833 // in that case, not the individual UsingDecls within the pack.
5834 bool OtherIsPackExpansion;
5835 NamedDecl *OtherFrom;
5836 if (auto *OtherUUD = dyn_cast<T>(Other)) {
5837 OtherIsPackExpansion = OtherUUD->isPackExpansion();
5838 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD);
5839 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) {
5840 OtherIsPackExpansion = true;
5841 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl();
5842 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) {
5843 OtherIsPackExpansion = false;
5844 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD);
5845 } else {
5846 return false;
5847 }
5848 return Pattern->isPackExpansion() == OtherIsPackExpansion &&
5849 declaresSameEntity(OtherFrom, Pattern);
5850}
5851
5852static bool isInstantiationOfStaticDataMember(VarDecl *Pattern,
5853 VarDecl *Instance) {
5854 assert(Instance->isStaticDataMember())(static_cast <bool> (Instance->isStaticDataMember())
? void (0) : __assert_fail ("Instance->isStaticDataMember()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 5854, __extension__ __PRETTY_FUNCTION__))
;
5855
5856 Pattern = Pattern->getCanonicalDecl();
5857
5858 do {
5859 Instance = Instance->getCanonicalDecl();
5860 if (Pattern == Instance) return true;
5861 Instance = Instance->getInstantiatedFromStaticDataMember();
5862 } while (Instance);
5863
5864 return false;
5865}
5866
5867// Other is the prospective instantiation
5868// D is the prospective pattern
5869static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) {
5870 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D))
5871 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
5872
5873 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D))
5874 return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
5875
5876 if (D->getKind() != Other->getKind())
5877 return false;
5878
5879 if (auto *Record = dyn_cast<CXXRecordDecl>(Other))
5880 return isInstantiationOf(cast<CXXRecordDecl>(D), Record);
5881
5882 if (auto *Function = dyn_cast<FunctionDecl>(Other))
5883 return isInstantiationOf(cast<FunctionDecl>(D), Function);
5884
5885 if (auto *Enum = dyn_cast<EnumDecl>(Other))
5886 return isInstantiationOf(cast<EnumDecl>(D), Enum);
5887
5888 if (auto *Var = dyn_cast<VarDecl>(Other))
5889 if (Var->isStaticDataMember())
5890 return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var);
5891
5892 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other))
5893 return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp);
5894
5895 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other))
5896 return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp);
5897
5898 if (auto *PartialSpec =
5899 dyn_cast<ClassTemplatePartialSpecializationDecl>(Other))
5900 return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D),
5901 PartialSpec);
5902
5903 if (auto *Field = dyn_cast<FieldDecl>(Other)) {
5904 if (!Field->getDeclName()) {
5905 // This is an unnamed field.
5906 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field),
5907 cast<FieldDecl>(D));
5908 }
5909 }
5910
5911 if (auto *Using = dyn_cast<UsingDecl>(Other))
5912 return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx);
5913
5914 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other))
5915 return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx);
5916
5917 return D->getDeclName() &&
5918 D->getDeclName() == cast<NamedDecl>(Other)->getDeclName();
5919}
5920
5921template<typename ForwardIterator>
5922static NamedDecl *findInstantiationOf(ASTContext &Ctx,
5923 NamedDecl *D,
5924 ForwardIterator first,
5925 ForwardIterator last) {
5926 for (; first != last; ++first)
5927 if (isInstantiationOf(Ctx, D, *first))
5928 return cast<NamedDecl>(*first);
5929
5930 return nullptr;
5931}
5932
5933/// Finds the instantiation of the given declaration context
5934/// within the current instantiation.
5935///
5936/// \returns NULL if there was an error
5937DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC,
5938 const MultiLevelTemplateArgumentList &TemplateArgs) {
5939 if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) {
5940 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true);
5941 return cast_or_null<DeclContext>(ID);
5942 } else return DC;
5943}
5944
5945/// Determine whether the given context is dependent on template parameters at
5946/// level \p Level or below.
5947///
5948/// Sometimes we only substitute an inner set of template arguments and leave
5949/// the outer templates alone. In such cases, contexts dependent only on the
5950/// outer levels are not effectively dependent.
5951static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) {
5952 if (!DC->isDependentContext())
5953 return false;
5954 if (!Level)
5955 return true;
5956 return cast<Decl>(DC)->getTemplateDepth() > Level;
5957}
5958
5959/// Find the instantiation of the given declaration within the
5960/// current instantiation.
5961///
5962/// This routine is intended to be used when \p D is a declaration
5963/// referenced from within a template, that needs to mapped into the
5964/// corresponding declaration within an instantiation. For example,
5965/// given:
5966///
5967/// \code
5968/// template<typename T>
5969/// struct X {
5970/// enum Kind {
5971/// KnownValue = sizeof(T)
5972/// };
5973///
5974/// bool getKind() const { return KnownValue; }
5975/// };
5976///
5977/// template struct X<int>;
5978/// \endcode
5979///
5980/// In the instantiation of X<int>::getKind(), we need to map the \p
5981/// EnumConstantDecl for \p KnownValue (which refers to
5982/// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue).
5983/// \p FindInstantiatedDecl performs this mapping from within the instantiation
5984/// of X<int>.
5985NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
5986 const MultiLevelTemplateArgumentList &TemplateArgs,
5987 bool FindingInstantiatedContext) {
5988 DeclContext *ParentDC = D->getDeclContext();
5989 // Determine whether our parent context depends on any of the tempalte
5990 // arguments we're currently substituting.
5991 bool ParentDependsOnArgs = isDependentContextAtLevel(
5992 ParentDC, TemplateArgs.getNumRetainedOuterLevels());
5993 // FIXME: Parmeters of pointer to functions (y below) that are themselves
5994 // parameters (p below) can have their ParentDC set to the translation-unit
5995 // - thus we can not consistently check if the ParentDC of such a parameter
5996 // is Dependent or/and a FunctionOrMethod.
5997 // For e.g. this code, during Template argument deduction tries to
5998 // find an instantiated decl for (T y) when the ParentDC for y is
5999 // the translation unit.
6000 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {}
6001 // float baz(float(*)()) { return 0.0; }
6002 // Foo(baz);
6003 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time
6004 // it gets here, always has a FunctionOrMethod as its ParentDC??
6005 // For now:
6006 // - as long as we have a ParmVarDecl whose parent is non-dependent and
6007 // whose type is not instantiation dependent, do nothing to the decl
6008 // - otherwise find its instantiated decl.
6009 if (isa<ParmVarDecl>(D) && !ParentDependsOnArgs &&
6010 !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType())
6011 return D;
6012 if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) ||
6013 isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) ||
6014 (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() ||
6015 isa<OMPDeclareReductionDecl>(ParentDC) ||
6016 isa<OMPDeclareMapperDecl>(ParentDC))) ||
6017 (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) {
6018 // D is a local of some kind. Look into the map of local
6019 // declarations to their instantiations.
6020 if (CurrentInstantiationScope) {
6021 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) {
6022 if (Decl *FD = Found->dyn_cast<Decl *>())
6023 return cast<NamedDecl>(FD);
6024
6025 int PackIdx = ArgumentPackSubstitutionIndex;
6026 assert(PackIdx != -1 &&(static_cast <bool> (PackIdx != -1 && "found declaration pack but not pack expanding"
) ? void (0) : __assert_fail ("PackIdx != -1 && \"found declaration pack but not pack expanding\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6027, __extension__ __PRETTY_FUNCTION__))
6027 "found declaration pack but not pack expanding")(static_cast <bool> (PackIdx != -1 && "found declaration pack but not pack expanding"
) ? void (0) : __assert_fail ("PackIdx != -1 && \"found declaration pack but not pack expanding\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6027, __extension__ __PRETTY_FUNCTION__))
;
6028 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
6029 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]);
6030 }
6031 }
6032
6033 // If we're performing a partial substitution during template argument
6034 // deduction, we may not have values for template parameters yet. They
6035 // just map to themselves.
6036 if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
6037 isa<TemplateTemplateParmDecl>(D))
6038 return D;
6039
6040 if (D->isInvalidDecl())
6041 return nullptr;
6042
6043 // Normally this function only searches for already instantiated declaration
6044 // however we have to make an exclusion for local types used before
6045 // definition as in the code:
6046 //
6047 // template<typename T> void f1() {
6048 // void g1(struct x1);
6049 // struct x1 {};
6050 // }
6051 //
6052 // In this case instantiation of the type of 'g1' requires definition of
6053 // 'x1', which is defined later. Error recovery may produce an enum used
6054 // before definition. In these cases we need to instantiate relevant
6055 // declarations here.
6056 bool NeedInstantiate = false;
6057 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
6058 NeedInstantiate = RD->isLocalClass();
6059 else if (isa<TypedefNameDecl>(D) &&
6060 isa<CXXDeductionGuideDecl>(D->getDeclContext()))
6061 NeedInstantiate = true;
6062 else
6063 NeedInstantiate = isa<EnumDecl>(D);
6064 if (NeedInstantiate) {
6065 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6066 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6067 return cast<TypeDecl>(Inst);
6068 }
6069
6070 // If we didn't find the decl, then we must have a label decl that hasn't
6071 // been found yet. Lazily instantiate it and return it now.
6072 assert(isa<LabelDecl>(D))(static_cast <bool> (isa<LabelDecl>(D)) ? void (0
) : __assert_fail ("isa<LabelDecl>(D)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6072, __extension__ __PRETTY_FUNCTION__))
;
6073
6074 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6075 assert(Inst && "Failed to instantiate label??")(static_cast <bool> (Inst && "Failed to instantiate label??"
) ? void (0) : __assert_fail ("Inst && \"Failed to instantiate label??\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6075, __extension__ __PRETTY_FUNCTION__))
;
6076
6077 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6078 return cast<LabelDecl>(Inst);
6079 }
6080
6081 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
6082 if (!Record->isDependentContext())
6083 return D;
6084
6085 // Determine whether this record is the "templated" declaration describing
6086 // a class template or class template partial specialization.
6087 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate();
6088 if (ClassTemplate)
6089 ClassTemplate = ClassTemplate->getCanonicalDecl();
6090 else if (ClassTemplatePartialSpecializationDecl *PartialSpec
6091 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
6092 ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl();
6093
6094 // Walk the current context to find either the record or an instantiation of
6095 // it.
6096 DeclContext *DC = CurContext;
6097 while (!DC->isFileContext()) {
6098 // If we're performing substitution while we're inside the template
6099 // definition, we'll find our own context. We're done.
6100 if (DC->Equals(Record))
6101 return Record;
6102
6103 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) {
6104 // Check whether we're in the process of instantiating a class template
6105 // specialization of the template we're mapping.
6106 if (ClassTemplateSpecializationDecl *InstSpec
6107 = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){
6108 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate();
6109 if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate))
6110 return InstRecord;
6111 }
6112
6113 // Check whether we're in the process of instantiating a member class.
6114 if (isInstantiationOf(Record, InstRecord))
6115 return InstRecord;
6116 }
6117
6118 // Move to the outer template scope.
6119 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) {
6120 if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){
6121 DC = FD->getLexicalDeclContext();
6122 continue;
6123 }
6124 // An implicit deduction guide acts as if it's within the class template
6125 // specialization described by its name and first N template params.
6126 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD);
6127 if (Guide && Guide->isImplicit()) {
6128 TemplateDecl *TD = Guide->getDeducedTemplate();
6129 // Convert the arguments to an "as-written" list.
6130 TemplateArgumentListInfo Args(Loc, Loc);
6131 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front(
6132 TD->getTemplateParameters()->size())) {
6133 ArrayRef<TemplateArgument> Unpacked(Arg);
6134 if (Arg.getKind() == TemplateArgument::Pack)
6135 Unpacked = Arg.pack_elements();
6136 for (TemplateArgument UnpackedArg : Unpacked)
6137 Args.addArgument(
6138 getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc));
6139 }
6140 QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args);
6141 if (T.isNull())
6142 return nullptr;
6143 auto *SubstRecord = T->getAsCXXRecordDecl();
6144 assert(SubstRecord && "class template id not a class type?")(static_cast <bool> (SubstRecord && "class template id not a class type?"
) ? void (0) : __assert_fail ("SubstRecord && \"class template id not a class type?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6144, __extension__ __PRETTY_FUNCTION__))
;
6145 // Check that this template-id names the primary template and not a
6146 // partial or explicit specialization. (In the latter cases, it's
6147 // meaningless to attempt to find an instantiation of D within the
6148 // specialization.)
6149 // FIXME: The standard doesn't say what should happen here.
6150 if (FindingInstantiatedContext &&
6151 usesPartialOrExplicitSpecialization(
6152 Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) {
6153 Diag(Loc, diag::err_specialization_not_primary_template)
6154 << T << (SubstRecord->getTemplateSpecializationKind() ==
6155 TSK_ExplicitSpecialization);
6156 return nullptr;
6157 }
6158 DC = SubstRecord;
6159 continue;
6160 }
6161 }
6162
6163 DC = DC->getParent();
6164 }
6165
6166 // Fall through to deal with other dependent record types (e.g.,
6167 // anonymous unions in class templates).
6168 }
6169
6170 if (!ParentDependsOnArgs)
6171 return D;
6172
6173 ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs);
6174 if (!ParentDC)
6175 return nullptr;
6176
6177 if (ParentDC != D->getDeclContext()) {
6178 // We performed some kind of instantiation in the parent context,
6179 // so now we need to look into the instantiated parent context to
6180 // find the instantiation of the declaration D.
6181
6182 // If our context used to be dependent, we may need to instantiate
6183 // it before performing lookup into that context.
6184 bool IsBeingInstantiated = false;
6185 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) {
6186 if (!Spec->isDependentContext()) {
6187 QualType T = Context.getTypeDeclType(Spec);
6188 const RecordType *Tag = T->getAs<RecordType>();
6189 assert(Tag && "type of non-dependent record is not a RecordType")(static_cast <bool> (Tag && "type of non-dependent record is not a RecordType"
) ? void (0) : __assert_fail ("Tag && \"type of non-dependent record is not a RecordType\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6189, __extension__ __PRETTY_FUNCTION__))
;
6190 if (Tag->isBeingDefined())
6191 IsBeingInstantiated = true;
6192 if (!Tag->isBeingDefined() &&
6193 RequireCompleteType(Loc, T, diag::err_incomplete_type))
6194 return nullptr;
6195
6196 ParentDC = Tag->getDecl();
6197 }
6198 }
6199
6200 NamedDecl *Result = nullptr;
6201 // FIXME: If the name is a dependent name, this lookup won't necessarily
6202 // find it. Does that ever matter?
6203 if (auto Name = D->getDeclName()) {
6204 DeclarationNameInfo NameInfo(Name, D->getLocation());
6205 DeclarationNameInfo NewNameInfo =
6206 SubstDeclarationNameInfo(NameInfo, TemplateArgs);
6207 Name = NewNameInfo.getName();
6208 if (!Name)
6209 return nullptr;
6210 DeclContext::lookup_result Found = ParentDC->lookup(Name);
6211
6212 Result = findInstantiationOf(Context, D, Found.begin(), Found.end());
6213 } else {
6214 // Since we don't have a name for the entity we're looking for,
6215 // our only option is to walk through all of the declarations to
6216 // find that name. This will occur in a few cases:
6217 //
6218 // - anonymous struct/union within a template
6219 // - unnamed class/struct/union/enum within a template
6220 //
6221 // FIXME: Find a better way to find these instantiations!
6222 Result = findInstantiationOf(Context, D,
6223 ParentDC->decls_begin(),
6224 ParentDC->decls_end());
6225 }
6226
6227 if (!Result) {
6228 if (isa<UsingShadowDecl>(D)) {
6229 // UsingShadowDecls can instantiate to nothing because of using hiding.
6230 } else if (hasUncompilableErrorOccurred()) {
6231 // We've already complained about some ill-formed code, so most likely
6232 // this declaration failed to instantiate. There's no point in
6233 // complaining further, since this is normal in invalid code.
6234 // FIXME: Use more fine-grained 'invalid' tracking for this.
6235 } else if (IsBeingInstantiated) {
6236 // The class in which this member exists is currently being
6237 // instantiated, and we haven't gotten around to instantiating this
6238 // member yet. This can happen when the code uses forward declarations
6239 // of member classes, and introduces ordering dependencies via
6240 // template instantiation.
6241 Diag(Loc, diag::err_member_not_yet_instantiated)
6242 << D->getDeclName()
6243 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC));
6244 Diag(D->getLocation(), diag::note_non_instantiated_member_here);
6245 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
6246 // This enumeration constant was found when the template was defined,
6247 // but can't be found in the instantiation. This can happen if an
6248 // unscoped enumeration member is explicitly specialized.
6249 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext());
6250 EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum,
6251 TemplateArgs));
6252 assert(Spec->getTemplateSpecializationKind() ==(static_cast <bool> (Spec->getTemplateSpecializationKind
() == TSK_ExplicitSpecialization) ? void (0) : __assert_fail (
"Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6253, __extension__ __PRETTY_FUNCTION__))
6253 TSK_ExplicitSpecialization)(static_cast <bool> (Spec->getTemplateSpecializationKind
() == TSK_ExplicitSpecialization) ? void (0) : __assert_fail (
"Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6253, __extension__ __PRETTY_FUNCTION__))
;
6254 Diag(Loc, diag::err_enumerator_does_not_exist)
6255 << D->getDeclName()
6256 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext()));
6257 Diag(Spec->getLocation(), diag::note_enum_specialized_here)
6258 << Context.getTypeDeclType(Spec);
6259 } else {
6260 // We should have found something, but didn't.
6261 llvm_unreachable("Unable to find instantiation of declaration!")::llvm::llvm_unreachable_internal("Unable to find instantiation of declaration!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6261)
;
6262 }
6263 }
6264
6265 D = Result;
6266 }
6267
6268 return D;
6269}
6270
6271/// Performs template instantiation for all implicit template
6272/// instantiations we have seen until this point.
6273void Sema::PerformPendingInstantiations(bool LocalOnly) {
6274 std::deque<PendingImplicitInstantiation> delayedPCHInstantiations;
6275 while (!PendingLocalImplicitInstantiations.empty() ||
36
Assuming the condition is false
38
Loop condition is true. Entering loop body
6276 (!LocalOnly
36.1
'LocalOnly' is false
36.1
'LocalOnly' is false
&& !PendingInstantiations.empty())) {
37
Assuming the condition is true
6277 PendingImplicitInstantiation Inst;
6278
6279 if (PendingLocalImplicitInstantiations.empty()) {
39
Assuming the condition is false
40
Taking false branch
6280 Inst = PendingInstantiations.front();
6281 PendingInstantiations.pop_front();
6282 } else {
6283 Inst = PendingLocalImplicitInstantiations.front();
6284 PendingLocalImplicitInstantiations.pop_front();
6285 }
6286
6287 // Instantiate function definitions
6288 if (FunctionDecl *Function
41.1
'Function' is null
41.1
'Function' is null
= dyn_cast<FunctionDecl>(Inst.first)) {
41
Assuming field 'first' is not a 'FunctionDecl'
42
Taking false branch
6289 bool DefinitionRequired = Function->getTemplateSpecializationKind() ==
6290 TSK_ExplicitInstantiationDefinition;
6291 if (Function->isMultiVersion()) {
6292 getASTContext().forEachMultiversionedFunctionVersion(
6293 Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) {
6294 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true,
1
Calling 'Sema::InstantiateFunctionDefinition'
6295 DefinitionRequired, true);
6296 if (CurFD->isDefined())
6297 CurFD->setInstantiationIsPending(false);
6298 });
6299 } else {
6300 InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true,
6301 DefinitionRequired, true);
6302 if (Function->isDefined())
6303 Function->setInstantiationIsPending(false);
6304 }
6305 // Definition of a PCH-ed template declaration may be available only in the TU.
6306 if (!LocalOnly && LangOpts.PCHInstantiateTemplates &&
6307 TUKind == TU_Prefix && Function->instantiationIsPending())
6308 delayedPCHInstantiations.push_back(Inst);
6309 continue;
6310 }
6311
6312 // Instantiate variable definitions
6313 VarDecl *Var = cast<VarDecl>(Inst.first);
43
Field 'first' is a 'VarDecl'
6314
6315 assert((Var->isStaticDataMember() ||(static_cast <bool> ((Var->isStaticDataMember() || isa
<VarTemplateSpecializationDecl>(Var)) && "Not a static data member, nor a variable template"
" specialization?") ? void (0) : __assert_fail ("(Var->isStaticDataMember() || isa<VarTemplateSpecializationDecl>(Var)) && \"Not a static data member, nor a variable template\" \" specialization?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6318, __extension__ __PRETTY_FUNCTION__))
44
Assuming 'Var' is a 'VarTemplateSpecializationDecl'
45
'?' condition is true
6316 isa<VarTemplateSpecializationDecl>(Var)) &&(static_cast <bool> ((Var->isStaticDataMember() || isa
<VarTemplateSpecializationDecl>(Var)) && "Not a static data member, nor a variable template"
" specialization?") ? void (0) : __assert_fail ("(Var->isStaticDataMember() || isa<VarTemplateSpecializationDecl>(Var)) && \"Not a static data member, nor a variable template\" \" specialization?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6318, __extension__ __PRETTY_FUNCTION__))
6317 "Not a static data member, nor a variable template"(static_cast <bool> ((Var->isStaticDataMember() || isa
<VarTemplateSpecializationDecl>(Var)) && "Not a static data member, nor a variable template"
" specialization?") ? void (0) : __assert_fail ("(Var->isStaticDataMember() || isa<VarTemplateSpecializationDecl>(Var)) && \"Not a static data member, nor a variable template\" \" specialization?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6318, __extension__ __PRETTY_FUNCTION__))
6318 " specialization?")(static_cast <bool> ((Var->isStaticDataMember() || isa
<VarTemplateSpecializationDecl>(Var)) && "Not a static data member, nor a variable template"
" specialization?") ? void (0) : __assert_fail ("(Var->isStaticDataMember() || isa<VarTemplateSpecializationDecl>(Var)) && \"Not a static data member, nor a variable template\" \" specialization?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6318, __extension__ __PRETTY_FUNCTION__))
;
6319
6320 // Don't try to instantiate declarations if the most recent redeclaration
6321 // is invalid.
6322 if (Var->getMostRecentDecl()->isInvalidDecl())
46
Assuming the condition is false
47
Taking false branch
6323 continue;
6324
6325 // Check if the most recent declaration has changed the specialization kind
6326 // and removed the need for implicit instantiation.
6327 switch (Var->getMostRecentDecl()
48
Control jumps to 'case TSK_ImplicitInstantiation:' at line 6340
6328 ->getTemplateSpecializationKindForInstantiation()) {
6329 case TSK_Undeclared:
6330 llvm_unreachable("Cannot instantitiate an undeclared specialization.")::llvm::llvm_unreachable_internal("Cannot instantitiate an undeclared specialization."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp"
, 6330)
;
6331 case TSK_ExplicitInstantiationDeclaration:
6332 case TSK_ExplicitSpecialization:
6333 continue; // No longer need to instantiate this type.
6334 case TSK_ExplicitInstantiationDefinition:
6335 // We only need an instantiation if the pending instantiation *is* the
6336 // explicit instantiation.
6337 if (Var != Var->getMostRecentDecl())
6338 continue;
6339 break;
6340 case TSK_ImplicitInstantiation:
6341 break;
6342 }
6343
6344 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
49
Execution continues on line 6344
6345 "instantiating variable definition");
6346 bool DefinitionRequired = Var->getTemplateSpecializationKind() ==
50
Assuming the condition is false
6347 TSK_ExplicitInstantiationDefinition;
6348
6349 // Instantiate static data member definitions or variable template
6350 // specializations.
6351 InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true,
51
Calling 'Sema::InstantiateVariableDefinition'
6352 DefinitionRequired, true);
6353 }
6354
6355 if (!LocalOnly && LangOpts.PCHInstantiateTemplates)
6356 PendingInstantiations.swap(delayedPCHInstantiations);
6357}
6358
6359void Sema::PerformDependentDiagnostics(const DeclContext *Pattern,
6360 const MultiLevelTemplateArgumentList &TemplateArgs) {
6361 for (auto DD : Pattern->ddiags()) {
6362 switch (DD->getKind()) {
6363 case DependentDiagnostic::Access:
6364 HandleDependentAccessCheck(*DD, TemplateArgs);
6365 break;
6366 }
6367 }
6368}

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h

1//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Sema class, which performs semantic analysis and
10// builds ASTs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_SEMA_H
15#define LLVM_CLANG_SEMA_SEMA_H
16
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ASTFwd.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Availability.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprConcepts.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/LocInfoType.h"
31#include "clang/AST/MangleNumberingContext.h"
32#include "clang/AST/NSAPI.h"
33#include "clang/AST/PrettyPrinter.h"
34#include "clang/AST/StmtCXX.h"
35#include "clang/AST/StmtOpenMP.h"
36#include "clang/AST/TypeLoc.h"
37#include "clang/AST/TypeOrdering.h"
38#include "clang/Basic/BitmaskEnum.h"
39#include "clang/Basic/Builtins.h"
40#include "clang/Basic/DarwinSDKInfo.h"
41#include "clang/Basic/ExpressionTraits.h"
42#include "clang/Basic/Module.h"
43#include "clang/Basic/OpenCLOptions.h"
44#include "clang/Basic/OpenMPKinds.h"
45#include "clang/Basic/PragmaKinds.h"
46#include "clang/Basic/Specifiers.h"
47#include "clang/Basic/TemplateKinds.h"
48#include "clang/Basic/TypeTraits.h"
49#include "clang/Sema/AnalysisBasedWarnings.h"
50#include "clang/Sema/CleanupInfo.h"
51#include "clang/Sema/DeclSpec.h"
52#include "clang/Sema/ExternalSemaSource.h"
53#include "clang/Sema/IdentifierResolver.h"
54#include "clang/Sema/ObjCMethodList.h"
55#include "clang/Sema/Ownership.h"
56#include "clang/Sema/Scope.h"
57#include "clang/Sema/SemaConcept.h"
58#include "clang/Sema/TypoCorrection.h"
59#include "clang/Sema/Weak.h"
60#include "llvm/ADT/ArrayRef.h"
61#include "llvm/ADT/Optional.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/TinyPtrVector.h"
68#include "llvm/Frontend/OpenMP/OMPConstants.h"
69#include <deque>
70#include <memory>
71#include <string>
72#include <tuple>
73#include <vector>
74
75namespace llvm {
76 class APSInt;
77 template <typename ValueT> struct DenseMapInfo;
78 template <typename ValueT, typename ValueInfoT> class DenseSet;
79 class SmallBitVector;
80 struct InlineAsmIdentifierInfo;
81}
82
83namespace clang {
84 class ADLResult;
85 class ASTConsumer;
86 class ASTContext;
87 class ASTMutationListener;
88 class ASTReader;
89 class ASTWriter;
90 class ArrayType;
91 class ParsedAttr;
92 class BindingDecl;
93 class BlockDecl;
94 class CapturedDecl;
95 class CXXBasePath;
96 class CXXBasePaths;
97 class CXXBindTemporaryExpr;
98 typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
99 class CXXConstructorDecl;
100 class CXXConversionDecl;
101 class CXXDeleteExpr;
102 class CXXDestructorDecl;
103 class CXXFieldCollector;
104 class CXXMemberCallExpr;
105 class CXXMethodDecl;
106 class CXXScopeSpec;
107 class CXXTemporary;
108 class CXXTryStmt;
109 class CallExpr;
110 class ClassTemplateDecl;
111 class ClassTemplatePartialSpecializationDecl;
112 class ClassTemplateSpecializationDecl;
113 class VarTemplatePartialSpecializationDecl;
114 class CodeCompleteConsumer;
115 class CodeCompletionAllocator;
116 class CodeCompletionTUInfo;
117 class CodeCompletionResult;
118 class CoroutineBodyStmt;
119 class Decl;
120 class DeclAccessPair;
121 class DeclContext;
122 class DeclRefExpr;
123 class DeclaratorDecl;
124 class DeducedTemplateArgument;
125 class DependentDiagnostic;
126 class DesignatedInitExpr;
127 class Designation;
128 class EnableIfAttr;
129 class EnumConstantDecl;
130 class Expr;
131 class ExtVectorType;
132 class FormatAttr;
133 class FriendDecl;
134 class FunctionDecl;
135 class FunctionProtoType;
136 class FunctionTemplateDecl;
137 class ImplicitConversionSequence;
138 typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
139 class InitListExpr;
140 class InitializationKind;
141 class InitializationSequence;
142 class InitializedEntity;
143 class IntegerLiteral;
144 class LabelStmt;
145 class LambdaExpr;
146 class LangOptions;
147 class LocalInstantiationScope;
148 class LookupResult;
149 class MacroInfo;
150 typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
151 class ModuleLoader;
152 class MultiLevelTemplateArgumentList;
153 class NamedDecl;
154 class ObjCCategoryDecl;
155 class ObjCCategoryImplDecl;
156 class ObjCCompatibleAliasDecl;
157 class ObjCContainerDecl;
158 class ObjCImplDecl;
159 class ObjCImplementationDecl;
160 class ObjCInterfaceDecl;
161 class ObjCIvarDecl;
162 template <class T> class ObjCList;
163 class ObjCMessageExpr;
164 class ObjCMethodDecl;
165 class ObjCPropertyDecl;
166 class ObjCProtocolDecl;
167 class OMPThreadPrivateDecl;
168 class OMPRequiresDecl;
169 class OMPDeclareReductionDecl;
170 class OMPDeclareSimdDecl;
171 class OMPClause;
172 struct OMPVarListLocTy;
173 struct OverloadCandidate;
174 enum class OverloadCandidateParamOrder : char;
175 enum OverloadCandidateRewriteKind : unsigned;
176 class OverloadCandidateSet;
177 class OverloadExpr;
178 class ParenListExpr;
179 class ParmVarDecl;
180 class Preprocessor;
181 class PseudoDestructorTypeStorage;
182 class PseudoObjectExpr;
183 class QualType;
184 class StandardConversionSequence;
185 class Stmt;
186 class StringLiteral;
187 class SwitchStmt;
188 class TemplateArgument;
189 class TemplateArgumentList;
190 class TemplateArgumentLoc;
191 class TemplateDecl;
192 class TemplateInstantiationCallback;
193 class TemplateParameterList;
194 class TemplatePartialOrderingContext;
195 class TemplateTemplateParmDecl;
196 class Token;
197 class TypeAliasDecl;
198 class TypedefDecl;
199 class TypedefNameDecl;
200 class TypeLoc;
201 class TypoCorrectionConsumer;
202 class UnqualifiedId;
203 class UnresolvedLookupExpr;
204 class UnresolvedMemberExpr;
205 class UnresolvedSetImpl;
206 class UnresolvedSetIterator;
207 class UsingDecl;
208 class UsingShadowDecl;
209 class ValueDecl;
210 class VarDecl;
211 class VarTemplateSpecializationDecl;
212 class VisibilityAttr;
213 class VisibleDeclConsumer;
214 class IndirectFieldDecl;
215 struct DeductionFailureInfo;
216 class TemplateSpecCandidateSet;
217
218namespace sema {
219 class AccessedEntity;
220 class BlockScopeInfo;
221 class Capture;
222 class CapturedRegionScopeInfo;
223 class CapturingScopeInfo;
224 class CompoundScopeInfo;
225 class DelayedDiagnostic;
226 class DelayedDiagnosticPool;
227 class FunctionScopeInfo;
228 class LambdaScopeInfo;
229 class PossiblyUnreachableDiag;
230 class SemaPPCallbacks;
231 class TemplateDeductionInfo;
232}
233
234namespace threadSafety {
235 class BeforeSet;
236 void threadSafetyCleanup(BeforeSet* Cache);
237}
238
239// FIXME: No way to easily map from TemplateTypeParmTypes to
240// TemplateTypeParmDecls, so we have this horrible PointerUnion.
241typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>,
242 SourceLocation> UnexpandedParameterPack;
243
244/// Describes whether we've seen any nullability information for the given
245/// file.
246struct FileNullability {
247 /// The first pointer declarator (of any pointer kind) in the file that does
248 /// not have a corresponding nullability annotation.
249 SourceLocation PointerLoc;
250
251 /// The end location for the first pointer declarator in the file. Used for
252 /// placing fix-its.
253 SourceLocation PointerEndLoc;
254
255 /// Which kind of pointer declarator we saw.
256 uint8_t PointerKind;
257
258 /// Whether we saw any type nullability annotations in the given file.
259 bool SawTypeNullability = false;
260};
261
262/// A mapping from file IDs to a record of whether we've seen nullability
263/// information in that file.
264class FileNullabilityMap {
265 /// A mapping from file IDs to the nullability information for each file ID.
266 llvm::DenseMap<FileID, FileNullability> Map;
267
268 /// A single-element cache based on the file ID.
269 struct {
270 FileID File;
271 FileNullability Nullability;
272 } Cache;
273
274public:
275 FileNullability &operator[](FileID file) {
276 // Check the single-element cache.
277 if (file == Cache.File)
278 return Cache.Nullability;
279
280 // It's not in the single-element cache; flush the cache if we have one.
281 if (!Cache.File.isInvalid()) {
282 Map[Cache.File] = Cache.Nullability;
283 }
284
285 // Pull this entry into the cache.
286 Cache.File = file;
287 Cache.Nullability = Map[file];
288 return Cache.Nullability;
289 }
290};
291
292/// Tracks expected type during expression parsing, for use in code completion.
293/// The type is tied to a particular token, all functions that update or consume
294/// the type take a start location of the token they are looking at as a
295/// parameter. This avoids updating the type on hot paths in the parser.
296class PreferredTypeBuilder {
297public:
298 PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {}
299
300 void enterCondition(Sema &S, SourceLocation Tok);
301 void enterReturn(Sema &S, SourceLocation Tok);
302 void enterVariableInit(SourceLocation Tok, Decl *D);
303 /// Handles e.g. BaseType{ .D = Tok...
304 void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType,
305 const Designation &D);
306 /// Computing a type for the function argument may require running
307 /// overloading, so we postpone its computation until it is actually needed.
308 ///
309 /// Clients should be very careful when using this funciton, as it stores a
310 /// function_ref, clients should make sure all calls to get() with the same
311 /// location happen while function_ref is alive.
312 ///
313 /// The callback should also emit signature help as a side-effect, but only
314 /// if the completion point has been reached.
315 void enterFunctionArgument(SourceLocation Tok,
316 llvm::function_ref<QualType()> ComputeType);
317
318 void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
319 void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
320 SourceLocation OpLoc);
321 void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
322 void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
323 void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
324 /// Handles all type casts, including C-style cast, C++ casts, etc.
325 void enterTypeCast(SourceLocation Tok, QualType CastType);
326
327 /// Get the expected type associated with this location, if any.
328 ///
329 /// If the location is a function argument, determining the expected type
330 /// involves considering all function overloads and the arguments so far.
331 /// In this case, signature help for these function overloads will be reported
332 /// as a side-effect (only if the completion point has been reached).
333 QualType get(SourceLocation Tok) const {
334 if (!Enabled || Tok != ExpectedLoc)
335 return QualType();
336 if (!Type.isNull())
337 return Type;
338 if (ComputeType)
339 return ComputeType();
340 return QualType();
341 }
342
343private:
344 bool Enabled;
345 /// Start position of a token for which we store expected type.
346 SourceLocation ExpectedLoc;
347 /// Expected type for a token starting at ExpectedLoc.
348 QualType Type;
349 /// A function to compute expected type at ExpectedLoc. It is only considered
350 /// if Type is null.
351 llvm::function_ref<QualType()> ComputeType;
352};
353
354/// Sema - This implements semantic analysis and AST building for C.
355class Sema final {
356 Sema(const Sema &) = delete;
357 void operator=(const Sema &) = delete;
358
359 ///Source of additional semantic information.
360 ExternalSemaSource *ExternalSource;
361
362 ///Whether Sema has generated a multiplexer and has to delete it.
363 bool isMultiplexExternalSource;
364
365 static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
366
367 bool isVisibleSlow(const NamedDecl *D);
368
369 /// Determine whether two declarations should be linked together, given that
370 /// the old declaration might not be visible and the new declaration might
371 /// not have external linkage.
372 bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
373 const NamedDecl *New) {
374 if (isVisible(Old))
375 return true;
376 // See comment in below overload for why it's safe to compute the linkage
377 // of the new declaration here.
378 if (New->isExternallyDeclarable()) {
379 assert(Old->isExternallyDeclarable() &&(static_cast <bool> (Old->isExternallyDeclarable() &&
"should not have found a non-externally-declarable previous decl"
) ? void (0) : __assert_fail ("Old->isExternallyDeclarable() && \"should not have found a non-externally-declarable previous decl\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 380, __extension__ __PRETTY_FUNCTION__))
380 "should not have found a non-externally-declarable previous decl")(static_cast <bool> (Old->isExternallyDeclarable() &&
"should not have found a non-externally-declarable previous decl"
) ? void (0) : __assert_fail ("Old->isExternallyDeclarable() && \"should not have found a non-externally-declarable previous decl\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 380, __extension__ __PRETTY_FUNCTION__))
;
381 return true;
382 }
383 return false;
384 }
385 bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
386
387 void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
388 QualType ResultTy,
389 ArrayRef<QualType> Args);
390
391public:
392 /// The maximum alignment, same as in llvm::Value. We duplicate them here
393 /// because that allows us not to duplicate the constants in clang code,
394 /// which we must to since we can't directly use the llvm constants.
395 /// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp
396 ///
397 /// This is the greatest alignment value supported by load, store, and alloca
398 /// instructions, and global values.
399 static const unsigned MaxAlignmentExponent = 30;
400 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
401
402 typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
403 typedef OpaquePtr<TemplateName> TemplateTy;
404 typedef OpaquePtr<QualType> TypeTy;
405
406 OpenCLOptions OpenCLFeatures;
407 FPOptions CurFPFeatures;
408
409 const LangOptions &LangOpts;
410 Preprocessor &PP;
411 ASTContext &Context;
412 ASTConsumer &Consumer;
413 DiagnosticsEngine &Diags;
414 SourceManager &SourceMgr;
415
416 /// Flag indicating whether or not to collect detailed statistics.
417 bool CollectStats;
418
419 /// Code-completion consumer.
420 CodeCompleteConsumer *CodeCompleter;
421
422 /// CurContext - This is the current declaration context of parsing.
423 DeclContext *CurContext;
424
425 /// Generally null except when we temporarily switch decl contexts,
426 /// like in \see ActOnObjCTemporaryExitContainerContext.
427 DeclContext *OriginalLexicalContext;
428
429 /// VAListTagName - The declaration name corresponding to __va_list_tag.
430 /// This is used as part of a hack to omit that class from ADL results.
431 DeclarationName VAListTagName;
432
433 bool MSStructPragmaOn; // True when \#pragma ms_struct on
434
435 /// Controls member pointer representation format under the MS ABI.
436 LangOptions::PragmaMSPointersToMembersKind
437 MSPointerToMemberRepresentationMethod;
438
439 /// Stack of active SEH __finally scopes. Can be empty.
440 SmallVector<Scope*, 2> CurrentSEHFinally;
441
442 /// Source location for newly created implicit MSInheritanceAttrs
443 SourceLocation ImplicitMSInheritanceAttrLoc;
444
445 /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
446 /// `TransformTypos` in order to keep track of any TypoExprs that are created
447 /// recursively during typo correction and wipe them away if the correction
448 /// fails.
449 llvm::SmallVector<TypoExpr *, 2> TypoExprs;
450
451 /// pragma clang section kind
452 enum PragmaClangSectionKind {
453 PCSK_Invalid = 0,
454 PCSK_BSS = 1,
455 PCSK_Data = 2,
456 PCSK_Rodata = 3,
457 PCSK_Text = 4,
458 PCSK_Relro = 5
459 };
460
461 enum PragmaClangSectionAction {
462 PCSA_Set = 0,
463 PCSA_Clear = 1
464 };
465
466 struct PragmaClangSection {
467 std::string SectionName;
468 bool Valid = false;
469 SourceLocation PragmaLocation;
470 };
471
472 PragmaClangSection PragmaClangBSSSection;
473 PragmaClangSection PragmaClangDataSection;
474 PragmaClangSection PragmaClangRodataSection;
475 PragmaClangSection PragmaClangRelroSection;
476 PragmaClangSection PragmaClangTextSection;
477
478 enum PragmaMsStackAction {
479 PSK_Reset = 0x0, // #pragma ()
480 PSK_Set = 0x1, // #pragma (value)
481 PSK_Push = 0x2, // #pragma (push[, id])
482 PSK_Pop = 0x4, // #pragma (pop[, id])
483 PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
484 PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
485 PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
486 };
487
488 // #pragma pack and align.
489 class AlignPackInfo {
490 public:
491 // `Native` represents default align mode, which may vary based on the
492 // platform.
493 enum Mode : unsigned char { Native, Natural, Packed, Mac68k };
494
495 // #pragma pack info constructor
496 AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL)
497 : PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) {
498 assert(Num == PackNumber && "The pack number has been truncated.")(static_cast <bool> (Num == PackNumber && "The pack number has been truncated."
) ? void (0) : __assert_fail ("Num == PackNumber && \"The pack number has been truncated.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 498, __extension__ __PRETTY_FUNCTION__))
;
499 }
500
501 // #pragma align info constructor
502 AlignPackInfo(AlignPackInfo::Mode M, bool IsXL)
503 : PackAttr(false), AlignMode(M),
504 PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {}
505
506 explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {}
507
508 AlignPackInfo() : AlignPackInfo(Native, false) {}
509
510 // When a AlignPackInfo itself cannot be used, this returns an 32-bit
511 // integer encoding for it. This should only be passed to
512 // AlignPackInfo::getFromRawEncoding, it should not be inspected directly.
513 static uint32_t getRawEncoding(const AlignPackInfo &Info) {
514 std::uint32_t Encoding{};
515 if (Info.IsXLStack())
516 Encoding |= IsXLMask;
517
518 Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1;
519
520 if (Info.IsPackAttr())
521 Encoding |= PackAttrMask;
522
523 Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4;
524
525 return Encoding;
526 }
527
528 static AlignPackInfo getFromRawEncoding(unsigned Encoding) {
529 bool IsXL = static_cast<bool>(Encoding & IsXLMask);
530 AlignPackInfo::Mode M =
531 static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1);
532 int PackNumber = (Encoding & PackNumMask) >> 4;
533
534 if (Encoding & PackAttrMask)
535 return AlignPackInfo(M, PackNumber, IsXL);
536
537 return AlignPackInfo(M, IsXL);
538 }
539
540 bool IsPackAttr() const { return PackAttr; }
541
542 bool IsAlignAttr() const { return !PackAttr; }
543
544 Mode getAlignMode() const { return AlignMode; }
545
546 unsigned getPackNumber() const { return PackNumber; }
547
548 bool IsPackSet() const {
549 // #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack
550 // attriute on a decl.
551 return PackNumber != UninitPackVal && PackNumber != 0;
552 }
553
554 bool IsXLStack() const { return XLStack; }
555
556 bool operator==(const AlignPackInfo &Info) const {
557 return std::tie(AlignMode, PackNumber, PackAttr, XLStack) ==
558 std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr,
559 Info.XLStack);
560 }
561
562 bool operator!=(const AlignPackInfo &Info) const {
563 return !(*this == Info);
564 }
565
566 private:
567 /// \brief True if this is a pragma pack attribute,
568 /// not a pragma align attribute.
569 bool PackAttr;
570
571 /// \brief The alignment mode that is in effect.
572 Mode AlignMode;
573
574 /// \brief The pack number of the stack.
575 unsigned char PackNumber;
576
577 /// \brief True if it is a XL #pragma align/pack stack.
578 bool XLStack;
579
580 /// \brief Uninitialized pack value.
581 static constexpr unsigned char UninitPackVal = -1;
582
583 // Masks to encode and decode an AlignPackInfo.
584 static constexpr uint32_t IsXLMask{0x0000'0001};
585 static constexpr uint32_t AlignModeMask{0x0000'0006};
586 static constexpr uint32_t PackAttrMask{0x00000'0008};
587 static constexpr uint32_t PackNumMask{0x0000'01F0};
588 };
589
590 template<typename ValueType>
591 struct PragmaStack {
592 struct Slot {
593 llvm::StringRef StackSlotLabel;
594 ValueType Value;
595 SourceLocation PragmaLocation;
596 SourceLocation PragmaPushLocation;
597 Slot(llvm::StringRef StackSlotLabel, ValueType Value,
598 SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
599 : StackSlotLabel(StackSlotLabel), Value(Value),
600 PragmaLocation(PragmaLocation),
601 PragmaPushLocation(PragmaPushLocation) {}
602 };
603
604 void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action,
605 llvm::StringRef StackSlotLabel, ValueType Value) {
606 if (Action == PSK_Reset) {
607 CurrentValue = DefaultValue;
608 CurrentPragmaLocation = PragmaLocation;
609 return;
610 }
611 if (Action & PSK_Push)
612 Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation,
613 PragmaLocation);
614 else if (Action & PSK_Pop) {
615 if (!StackSlotLabel.empty()) {
616 // If we've got a label, try to find it and jump there.
617 auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) {
618 return x.StackSlotLabel == StackSlotLabel;
619 });
620 // If we found the label so pop from there.
621 if (I != Stack.rend()) {
622 CurrentValue = I->Value;
623 CurrentPragmaLocation = I->PragmaLocation;
624 Stack.erase(std::prev(I.base()), Stack.end());
625 }
626 } else if (!Stack.empty()) {
627 // We do not have a label, just pop the last entry.
628 CurrentValue = Stack.back().Value;
629 CurrentPragmaLocation = Stack.back().PragmaLocation;
630 Stack.pop_back();
631 }
632 }
633 if (Action & PSK_Set) {
634 CurrentValue = Value;
635 CurrentPragmaLocation = PragmaLocation;
636 }
637 }
638
639 // MSVC seems to add artificial slots to #pragma stacks on entering a C++
640 // method body to restore the stacks on exit, so it works like this:
641 //
642 // struct S {
643 // #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
644 // void Method {}
645 // #pragma <name>(pop, InternalPragmaSlot)
646 // };
647 //
648 // It works even with #pragma vtordisp, although MSVC doesn't support
649 // #pragma vtordisp(push [, id], n)
650 // syntax.
651 //
652 // Push / pop a named sentinel slot.
653 void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
654 assert((Action == PSK_Push || Action == PSK_Pop) &&(static_cast <bool> ((Action == PSK_Push || Action == PSK_Pop
) && "Can only push / pop #pragma stack sentinels!") ?
void (0) : __assert_fail ("(Action == PSK_Push || Action == PSK_Pop) && \"Can only push / pop #pragma stack sentinels!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 655, __extension__ __PRETTY_FUNCTION__))
655 "Can only push / pop #pragma stack sentinels!")(static_cast <bool> ((Action == PSK_Push || Action == PSK_Pop
) && "Can only push / pop #pragma stack sentinels!") ?
void (0) : __assert_fail ("(Action == PSK_Push || Action == PSK_Pop) && \"Can only push / pop #pragma stack sentinels!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 655, __extension__ __PRETTY_FUNCTION__))
;
656 Act(CurrentPragmaLocation, Action, Label, CurrentValue);
657 }
658
659 // Constructors.
660 explicit PragmaStack(const ValueType &Default)
661 : DefaultValue(Default), CurrentValue(Default) {}
662
663 bool hasValue() const { return CurrentValue != DefaultValue; }
664
665 SmallVector<Slot, 2> Stack;
666 ValueType DefaultValue; // Value used for PSK_Reset action.
667 ValueType CurrentValue;
668 SourceLocation CurrentPragmaLocation;
669 };
670 // FIXME: We should serialize / deserialize these if they occur in a PCH (but
671 // we shouldn't do so if they're in a module).
672
673 /// Whether to insert vtordisps prior to virtual bases in the Microsoft
674 /// C++ ABI. Possible values are 0, 1, and 2, which mean:
675 ///
676 /// 0: Suppress all vtordisps
677 /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
678 /// structors
679 /// 2: Always insert vtordisps to support RTTI on partially constructed
680 /// objects
681 PragmaStack<MSVtorDispMode> VtorDispStack;
682 PragmaStack<AlignPackInfo> AlignPackStack;
683 // The current #pragma align/pack values and locations at each #include.
684 struct AlignPackIncludeState {
685 AlignPackInfo CurrentValue;
686 SourceLocation CurrentPragmaLocation;
687 bool HasNonDefaultValue, ShouldWarnOnInclude;
688 };
689 SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack;
690 // Segment #pragmas.
691 PragmaStack<StringLiteral *> DataSegStack;
692 PragmaStack<StringLiteral *> BSSSegStack;
693 PragmaStack<StringLiteral *> ConstSegStack;
694 PragmaStack<StringLiteral *> CodeSegStack;
695
696 // This stack tracks the current state of Sema.CurFPFeatures.
697 PragmaStack<FPOptionsOverride> FpPragmaStack;
698 FPOptionsOverride CurFPFeatureOverrides() {
699 FPOptionsOverride result;
700 if (!FpPragmaStack.hasValue()) {
701 result = FPOptionsOverride();
702 } else {
703 result = FpPragmaStack.CurrentValue;
704 }
705 return result;
706 }
707
708 // RAII object to push / pop sentinel slots for all MS #pragma stacks.
709 // Actions should be performed only if we enter / exit a C++ method body.
710 class PragmaStackSentinelRAII {
711 public:
712 PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
713 ~PragmaStackSentinelRAII();
714
715 private:
716 Sema &S;
717 StringRef SlotLabel;
718 bool ShouldAct;
719 };
720
721 /// A mapping that describes the nullability we've seen in each header file.
722 FileNullabilityMap NullabilityMap;
723
724 /// Last section used with #pragma init_seg.
725 StringLiteral *CurInitSeg;
726 SourceLocation CurInitSegLoc;
727
728 /// VisContext - Manages the stack for \#pragma GCC visibility.
729 void *VisContext; // Really a "PragmaVisStack*"
730
731 /// This an attribute introduced by \#pragma clang attribute.
732 struct PragmaAttributeEntry {
733 SourceLocation Loc;
734 ParsedAttr *Attribute;
735 SmallVector<attr::SubjectMatchRule, 4> MatchRules;
736 bool IsUsed;
737 };
738
739 /// A push'd group of PragmaAttributeEntries.
740 struct PragmaAttributeGroup {
741 /// The location of the push attribute.
742 SourceLocation Loc;
743 /// The namespace of this push group.
744 const IdentifierInfo *Namespace;
745 SmallVector<PragmaAttributeEntry, 2> Entries;
746 };
747
748 SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
749
750 /// The declaration that is currently receiving an attribute from the
751 /// #pragma attribute stack.
752 const Decl *PragmaAttributeCurrentTargetDecl;
753
754 /// This represents the last location of a "#pragma clang optimize off"
755 /// directive if such a directive has not been closed by an "on" yet. If
756 /// optimizations are currently "on", this is set to an invalid location.
757 SourceLocation OptimizeOffPragmaLocation;
758
759 /// Flag indicating if Sema is building a recovery call expression.
760 ///
761 /// This flag is used to avoid building recovery call expressions
762 /// if Sema is already doing so, which would cause infinite recursions.
763 bool IsBuildingRecoveryCallExpr;
764
765 /// Used to control the generation of ExprWithCleanups.
766 CleanupInfo Cleanup;
767
768 /// ExprCleanupObjects - This is the stack of objects requiring
769 /// cleanup that are created by the current full expression.
770 SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects;
771
772 /// Store a set of either DeclRefExprs or MemberExprs that contain a reference
773 /// to a variable (constant) that may or may not be odr-used in this Expr, and
774 /// we won't know until all lvalue-to-rvalue and discarded value conversions
775 /// have been applied to all subexpressions of the enclosing full expression.
776 /// This is cleared at the end of each full expression.
777 using MaybeODRUseExprSet = llvm::SetVector<Expr *, SmallVector<Expr *, 4>,
778 llvm::SmallPtrSet<Expr *, 4>>;
779 MaybeODRUseExprSet MaybeODRUseExprs;
780
781 std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
782
783 /// Stack containing information about each of the nested
784 /// function, block, and method scopes that are currently active.
785 SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
786
787 /// The index of the first FunctionScope that corresponds to the current
788 /// context.
789 unsigned FunctionScopesStart = 0;
790
791 ArrayRef<sema::FunctionScopeInfo*> getFunctionScopes() const {
792 return llvm::makeArrayRef(FunctionScopes.begin() + FunctionScopesStart,
793 FunctionScopes.end());
794 }
795
796 /// Stack containing information needed when in C++2a an 'auto' is encountered
797 /// in a function declaration parameter type specifier in order to invent a
798 /// corresponding template parameter in the enclosing abbreviated function
799 /// template. This information is also present in LambdaScopeInfo, stored in
800 /// the FunctionScopes stack.
801 SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos;
802
803 /// The index of the first InventedParameterInfo that refers to the current
804 /// context.
805 unsigned InventedParameterInfosStart = 0;
806
807 ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const {
808 return llvm::makeArrayRef(InventedParameterInfos.begin() +
809 InventedParameterInfosStart,
810 InventedParameterInfos.end());
811 }
812
813 typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
814 &ExternalSemaSource::ReadExtVectorDecls, 2, 2>
815 ExtVectorDeclsType;
816
817 /// ExtVectorDecls - This is a list all the extended vector types. This allows
818 /// us to associate a raw vector type with one of the ext_vector type names.
819 /// This is only necessary for issuing pretty diagnostics.
820 ExtVectorDeclsType ExtVectorDecls;
821
822 /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
823 std::unique_ptr<CXXFieldCollector> FieldCollector;
824
825 typedef llvm::SmallSetVector<NamedDecl *, 16> NamedDeclSetType;
826
827 /// Set containing all declared private fields that are not used.
828 NamedDeclSetType UnusedPrivateFields;
829
830 /// Set containing all typedefs that are likely unused.
831 llvm::SmallSetVector<const TypedefNameDecl *, 4>
832 UnusedLocalTypedefNameCandidates;
833
834 /// Delete-expressions to be analyzed at the end of translation unit
835 ///
836 /// This list contains class members, and locations of delete-expressions
837 /// that could not be proven as to whether they mismatch with new-expression
838 /// used in initializer of the field.
839 typedef std::pair<SourceLocation, bool> DeleteExprLoc;
840 typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
841 llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
842
843 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
844
845 /// PureVirtualClassDiagSet - a set of class declarations which we have
846 /// emitted a list of pure virtual functions. Used to prevent emitting the
847 /// same list more than once.
848 std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
849
850 /// ParsingInitForAutoVars - a set of declarations with auto types for which
851 /// we are currently parsing the initializer.
852 llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
853
854 /// Look for a locally scoped extern "C" declaration by the given name.
855 NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
856
857 typedef LazyVector<VarDecl *, ExternalSemaSource,
858 &ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
859 TentativeDefinitionsType;
860
861 /// All the tentative definitions encountered in the TU.
862 TentativeDefinitionsType TentativeDefinitions;
863
864 /// All the external declarations encoutered and used in the TU.
865 SmallVector<VarDecl *, 4> ExternalDeclarations;
866
867 typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
868 &ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
869 UnusedFileScopedDeclsType;
870
871 /// The set of file scoped decls seen so far that have not been used
872 /// and must warn if not used. Only contains the first declaration.
873 UnusedFileScopedDeclsType UnusedFileScopedDecls;
874
875 typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
876 &ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
877 DelegatingCtorDeclsType;
878
879 /// All the delegating constructors seen so far in the file, used for
880 /// cycle detection at the end of the TU.
881 DelegatingCtorDeclsType DelegatingCtorDecls;
882
883 /// All the overriding functions seen during a class definition
884 /// that had their exception spec checks delayed, plus the overridden
885 /// function.
886 SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2>
887 DelayedOverridingExceptionSpecChecks;
888
889 /// All the function redeclarations seen during a class definition that had
890 /// their exception spec checks delayed, plus the prior declaration they
891 /// should be checked against. Except during error recovery, the new decl
892 /// should always be a friend declaration, as that's the only valid way to
893 /// redeclare a special member before its class is complete.
894 SmallVector<std::pair<FunctionDecl*, FunctionDecl*>, 2>
895 DelayedEquivalentExceptionSpecChecks;
896
897 typedef llvm::MapVector<const FunctionDecl *,
898 std::unique_ptr<LateParsedTemplate>>
899 LateParsedTemplateMapT;
900 LateParsedTemplateMapT LateParsedTemplateMap;
901
902 /// Callback to the parser to parse templated functions when needed.
903 typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
904 typedef void LateTemplateParserCleanupCB(void *P);
905 LateTemplateParserCB *LateTemplateParser;
906 LateTemplateParserCleanupCB *LateTemplateParserCleanup;
907 void *OpaqueParser;
908
909 void SetLateTemplateParser(LateTemplateParserCB *LTP,
910 LateTemplateParserCleanupCB *LTPCleanup,
911 void *P) {
912 LateTemplateParser = LTP;
913 LateTemplateParserCleanup = LTPCleanup;
914 OpaqueParser = P;
915 }
916
917 // Does the work necessary to deal with a SYCL kernel lambda. At the moment,
918 // this just marks the list of lambdas required to name the kernel.
919 void AddSYCLKernelLambda(const FunctionDecl *FD);
920
921 class DelayedDiagnostics;
922
923 class DelayedDiagnosticsState {
924 sema::DelayedDiagnosticPool *SavedPool;
925 friend class Sema::DelayedDiagnostics;
926 };
927 typedef DelayedDiagnosticsState ParsingDeclState;
928 typedef DelayedDiagnosticsState ProcessingContextState;
929
930 /// A class which encapsulates the logic for delaying diagnostics
931 /// during parsing and other processing.
932 class DelayedDiagnostics {
933 /// The current pool of diagnostics into which delayed
934 /// diagnostics should go.
935 sema::DelayedDiagnosticPool *CurPool;
936
937 public:
938 DelayedDiagnostics() : CurPool(nullptr) {}
939
940 /// Adds a delayed diagnostic.
941 void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
942
943 /// Determines whether diagnostics should be delayed.
944 bool shouldDelayDiagnostics() { return CurPool != nullptr; }
945
946 /// Returns the current delayed-diagnostics pool.
947 sema::DelayedDiagnosticPool *getCurrentPool() const {
948 return CurPool;
949 }
950
951 /// Enter a new scope. Access and deprecation diagnostics will be
952 /// collected in this pool.
953 DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
954 DelayedDiagnosticsState state;
955 state.SavedPool = CurPool;
956 CurPool = &pool;
957 return state;
958 }
959
960 /// Leave a delayed-diagnostic state that was previously pushed.
961 /// Do not emit any of the diagnostics. This is performed as part
962 /// of the bookkeeping of popping a pool "properly".
963 void popWithoutEmitting(DelayedDiagnosticsState state) {
964 CurPool = state.SavedPool;
965 }
966
967 /// Enter a new scope where access and deprecation diagnostics are
968 /// not delayed.
969 DelayedDiagnosticsState pushUndelayed() {
970 DelayedDiagnosticsState state;
971 state.SavedPool = CurPool;
972 CurPool = nullptr;
973 return state;
974 }
975
976 /// Undo a previous pushUndelayed().
977 void popUndelayed(DelayedDiagnosticsState state) {
978 assert(CurPool == nullptr)(static_cast <bool> (CurPool == nullptr) ? void (0) : __assert_fail
("CurPool == nullptr", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 978, __extension__ __PRETTY_FUNCTION__))
;
979 CurPool = state.SavedPool;
980 }
981 } DelayedDiagnostics;
982
983 /// A RAII object to temporarily push a declaration context.
984 class ContextRAII {
985 private:
986 Sema &S;
987 DeclContext *SavedContext;
988 ProcessingContextState SavedContextState;
989 QualType SavedCXXThisTypeOverride;
990 unsigned SavedFunctionScopesStart;
991 unsigned SavedInventedParameterInfosStart;
992
993 public:
994 ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
995 : S(S), SavedContext(S.CurContext),
996 SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
997 SavedCXXThisTypeOverride(S.CXXThisTypeOverride),
998 SavedFunctionScopesStart(S.FunctionScopesStart),
999 SavedInventedParameterInfosStart(S.InventedParameterInfosStart)
1000 {
1001 assert(ContextToPush && "pushing null context")(static_cast <bool> (ContextToPush && "pushing null context"
) ? void (0) : __assert_fail ("ContextToPush && \"pushing null context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 1001, __extension__ __PRETTY_FUNCTION__))
;
1002 S.CurContext = ContextToPush;
1003 if (NewThisContext)
1004 S.CXXThisTypeOverride = QualType();
1005 // Any saved FunctionScopes do not refer to this context.
1006 S.FunctionScopesStart = S.FunctionScopes.size();
1007 S.InventedParameterInfosStart = S.InventedParameterInfos.size();
1008 }
1009
1010 void pop() {
1011 if (!SavedContext) return;
1012 S.CurContext = SavedContext;
1013 S.DelayedDiagnostics.popUndelayed(SavedContextState);
1014 S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
1015 S.FunctionScopesStart = SavedFunctionScopesStart;
1016 S.InventedParameterInfosStart = SavedInventedParameterInfosStart;
1017 SavedContext = nullptr;
1018 }
1019
1020 ~ContextRAII() {
1021 pop();
1022 }
1023 };
1024
1025 /// Whether the AST is currently being rebuilt to correct immediate
1026 /// invocations. Immediate invocation candidates and references to consteval
1027 /// functions aren't tracked when this is set.
1028 bool RebuildingImmediateInvocation = false;
1029
1030 /// Used to change context to isConstantEvaluated without pushing a heavy
1031 /// ExpressionEvaluationContextRecord object.
1032 bool isConstantEvaluatedOverride;
1033
1034 bool isConstantEvaluated() {
1035 return ExprEvalContexts.back().isConstantEvaluated() ||
1036 isConstantEvaluatedOverride;
1037 }
1038
1039 /// RAII object to handle the state changes required to synthesize
1040 /// a function body.
1041 class SynthesizedFunctionScope {
1042 Sema &S;
1043 Sema::ContextRAII SavedContext;
1044 bool PushedCodeSynthesisContext = false;
1045
1046 public:
1047 SynthesizedFunctionScope(Sema &S, DeclContext *DC)
1048 : S(S), SavedContext(S, DC) {
1049 S.PushFunctionScope();
1050 S.PushExpressionEvaluationContext(
1051 Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1052 if (auto *FD = dyn_cast<FunctionDecl>(DC))
1053 FD->setWillHaveBody(true);
1054 else
1055 assert(isa<ObjCMethodDecl>(DC))(static_cast <bool> (isa<ObjCMethodDecl>(DC)) ? void
(0) : __assert_fail ("isa<ObjCMethodDecl>(DC)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 1055, __extension__ __PRETTY_FUNCTION__))
;
1056 }
1057
1058 void addContextNote(SourceLocation UseLoc) {
1059 assert(!PushedCodeSynthesisContext)(static_cast <bool> (!PushedCodeSynthesisContext) ? void
(0) : __assert_fail ("!PushedCodeSynthesisContext", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 1059, __extension__ __PRETTY_FUNCTION__))
;
1060
1061 Sema::CodeSynthesisContext Ctx;
1062 Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
1063 Ctx.PointOfInstantiation = UseLoc;
1064 Ctx.Entity = cast<Decl>(S.CurContext);
1065 S.pushCodeSynthesisContext(Ctx);
1066
1067 PushedCodeSynthesisContext = true;
1068 }
1069
1070 ~SynthesizedFunctionScope() {
1071 if (PushedCodeSynthesisContext)
1072 S.popCodeSynthesisContext();
1073 if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext))
1074 FD->setWillHaveBody(false);
1075 S.PopExpressionEvaluationContext();
1076 S.PopFunctionScopeInfo();
1077 }
1078 };
1079
1080 /// WeakUndeclaredIdentifiers - Identifiers contained in
1081 /// \#pragma weak before declared. rare. may alias another
1082 /// identifier, declared or undeclared
1083 llvm::MapVector<IdentifierInfo *, WeakInfo> WeakUndeclaredIdentifiers;
1084
1085 /// ExtnameUndeclaredIdentifiers - Identifiers contained in
1086 /// \#pragma redefine_extname before declared. Used in Solaris system headers
1087 /// to define functions that occur in multiple standards to call the version
1088 /// in the currently selected standard.
1089 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers;
1090
1091
1092 /// Load weak undeclared identifiers from the external source.
1093 void LoadExternalWeakUndeclaredIdentifiers();
1094
1095 /// WeakTopLevelDecl - Translation-unit scoped declarations generated by
1096 /// \#pragma weak during processing of other Decls.
1097 /// I couldn't figure out a clean way to generate these in-line, so
1098 /// we store them here and handle separately -- which is a hack.
1099 /// It would be best to refactor this.
1100 SmallVector<Decl*,2> WeakTopLevelDecl;
1101
1102 IdentifierResolver IdResolver;
1103
1104 /// Translation Unit Scope - useful to Objective-C actions that need
1105 /// to lookup file scope declarations in the "ordinary" C decl namespace.
1106 /// For example, user-defined classes, built-in "id" type, etc.
1107 Scope *TUScope;
1108
1109 /// The C++ "std" namespace, where the standard library resides.
1110 LazyDeclPtr StdNamespace;
1111
1112 /// The C++ "std::bad_alloc" class, which is defined by the C++
1113 /// standard library.
1114 LazyDeclPtr StdBadAlloc;
1115
1116 /// The C++ "std::align_val_t" enum class, which is defined by the C++
1117 /// standard library.
1118 LazyDeclPtr StdAlignValT;
1119
1120 /// The C++ "std::experimental" namespace, where the experimental parts
1121 /// of the standard library resides.
1122 NamespaceDecl *StdExperimentalNamespaceCache;
1123
1124 /// The C++ "std::initializer_list" template, which is defined in
1125 /// \<initializer_list>.
1126 ClassTemplateDecl *StdInitializerList;
1127
1128 /// The C++ "std::coroutine_traits" template, which is defined in
1129 /// \<coroutine_traits>
1130 ClassTemplateDecl *StdCoroutineTraitsCache;
1131
1132 /// The C++ "type_info" declaration, which is defined in \<typeinfo>.
1133 RecordDecl *CXXTypeInfoDecl;
1134
1135 /// The MSVC "_GUID" struct, which is defined in MSVC header files.
1136 RecordDecl *MSVCGuidDecl;
1137
1138 /// Caches identifiers/selectors for NSFoundation APIs.
1139 std::unique_ptr<NSAPI> NSAPIObj;
1140
1141 /// The declaration of the Objective-C NSNumber class.
1142 ObjCInterfaceDecl *NSNumberDecl;
1143
1144 /// The declaration of the Objective-C NSValue class.
1145 ObjCInterfaceDecl *NSValueDecl;
1146
1147 /// Pointer to NSNumber type (NSNumber *).
1148 QualType NSNumberPointer;
1149
1150 /// Pointer to NSValue type (NSValue *).
1151 QualType NSValuePointer;
1152
1153 /// The Objective-C NSNumber methods used to create NSNumber literals.
1154 ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods];
1155
1156 /// The declaration of the Objective-C NSString class.
1157 ObjCInterfaceDecl *NSStringDecl;
1158
1159 /// Pointer to NSString type (NSString *).
1160 QualType NSStringPointer;
1161
1162 /// The declaration of the stringWithUTF8String: method.
1163 ObjCMethodDecl *StringWithUTF8StringMethod;
1164
1165 /// The declaration of the valueWithBytes:objCType: method.
1166 ObjCMethodDecl *ValueWithBytesObjCTypeMethod;
1167
1168 /// The declaration of the Objective-C NSArray class.
1169 ObjCInterfaceDecl *NSArrayDecl;
1170
1171 /// The declaration of the arrayWithObjects:count: method.
1172 ObjCMethodDecl *ArrayWithObjectsMethod;
1173
1174 /// The declaration of the Objective-C NSDictionary class.
1175 ObjCInterfaceDecl *NSDictionaryDecl;
1176
1177 /// The declaration of the dictionaryWithObjects:forKeys:count: method.
1178 ObjCMethodDecl *DictionaryWithObjectsMethod;
1179
1180 /// id<NSCopying> type.
1181 QualType QIDNSCopying;
1182
1183 /// will hold 'respondsToSelector:'
1184 Selector RespondsToSelectorSel;
1185
1186 /// A flag to remember whether the implicit forms of operator new and delete
1187 /// have been declared.
1188 bool GlobalNewDeleteDeclared;
1189
1190 /// Describes how the expressions currently being parsed are
1191 /// evaluated at run-time, if at all.
1192 enum class ExpressionEvaluationContext {
1193 /// The current expression and its subexpressions occur within an
1194 /// unevaluated operand (C++11 [expr]p7), such as the subexpression of
1195 /// \c sizeof, where the type of the expression may be significant but
1196 /// no code will be generated to evaluate the value of the expression at
1197 /// run time.
1198 Unevaluated,
1199
1200 /// The current expression occurs within a braced-init-list within
1201 /// an unevaluated operand. This is mostly like a regular unevaluated
1202 /// context, except that we still instantiate constexpr functions that are
1203 /// referenced here so that we can perform narrowing checks correctly.
1204 UnevaluatedList,
1205
1206 /// The current expression occurs within a discarded statement.
1207 /// This behaves largely similarly to an unevaluated operand in preventing
1208 /// definitions from being required, but not in other ways.
1209 DiscardedStatement,
1210
1211 /// The current expression occurs within an unevaluated
1212 /// operand that unconditionally permits abstract references to
1213 /// fields, such as a SIZE operator in MS-style inline assembly.
1214 UnevaluatedAbstract,
1215
1216 /// The current context is "potentially evaluated" in C++11 terms,
1217 /// but the expression is evaluated at compile-time (like the values of
1218 /// cases in a switch statement).
1219 ConstantEvaluated,
1220
1221 /// The current expression is potentially evaluated at run time,
1222 /// which means that code may be generated to evaluate the value of the
1223 /// expression at run time.
1224 PotentiallyEvaluated,
1225
1226 /// The current expression is potentially evaluated, but any
1227 /// declarations referenced inside that expression are only used if
1228 /// in fact the current expression is used.
1229 ///
1230 /// This value is used when parsing default function arguments, for which
1231 /// we would like to provide diagnostics (e.g., passing non-POD arguments
1232 /// through varargs) but do not want to mark declarations as "referenced"
1233 /// until the default argument is used.
1234 PotentiallyEvaluatedIfUsed
1235 };
1236
1237 using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>;
1238
1239 /// Data structure used to record current or nested
1240 /// expression evaluation contexts.
1241 struct ExpressionEvaluationContextRecord {
1242 /// The expression evaluation context.
1243 ExpressionEvaluationContext Context;
1244
1245 /// Whether the enclosing context needed a cleanup.
1246 CleanupInfo ParentCleanup;
1247
1248 /// The number of active cleanup objects when we entered
1249 /// this expression evaluation context.
1250 unsigned NumCleanupObjects;
1251
1252 /// The number of typos encountered during this expression evaluation
1253 /// context (i.e. the number of TypoExprs created).
1254 unsigned NumTypos;
1255
1256 MaybeODRUseExprSet SavedMaybeODRUseExprs;
1257
1258 /// The lambdas that are present within this context, if it
1259 /// is indeed an unevaluated context.
1260 SmallVector<LambdaExpr *, 2> Lambdas;
1261
1262 /// The declaration that provides context for lambda expressions
1263 /// and block literals if the normal declaration context does not
1264 /// suffice, e.g., in a default function argument.
1265 Decl *ManglingContextDecl;
1266
1267 /// If we are processing a decltype type, a set of call expressions
1268 /// for which we have deferred checking the completeness of the return type.
1269 SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
1270
1271 /// If we are processing a decltype type, a set of temporary binding
1272 /// expressions for which we have deferred checking the destructor.
1273 SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
1274
1275 llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
1276
1277 /// Expressions appearing as the LHS of a volatile assignment in this
1278 /// context. We produce a warning for these when popping the context if
1279 /// they are not discarded-value expressions nor unevaluated operands.
1280 SmallVector<Expr*, 2> VolatileAssignmentLHSs;
1281
1282 /// Set of candidates for starting an immediate invocation.
1283 llvm::SmallVector<ImmediateInvocationCandidate, 4> ImmediateInvocationCandidates;
1284
1285 /// Set of DeclRefExprs referencing a consteval function when used in a
1286 /// context not already known to be immediately invoked.
1287 llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval;
1288
1289 /// \brief Describes whether we are in an expression constext which we have
1290 /// to handle differently.
1291 enum ExpressionKind {
1292 EK_Decltype, EK_TemplateArgument, EK_Other
1293 } ExprContext;
1294
1295 ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
1296 unsigned NumCleanupObjects,
1297 CleanupInfo ParentCleanup,
1298 Decl *ManglingContextDecl,
1299 ExpressionKind ExprContext)
1300 : Context(Context), ParentCleanup(ParentCleanup),
1301 NumCleanupObjects(NumCleanupObjects), NumTypos(0),
1302 ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext) {}
1303
1304 bool isUnevaluated() const {
1305 return Context == ExpressionEvaluationContext::Unevaluated ||
1306 Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
1307 Context == ExpressionEvaluationContext::UnevaluatedList;
1308 }
1309 bool isConstantEvaluated() const {
1310 return Context == ExpressionEvaluationContext::ConstantEvaluated;
1311 }
1312 };
1313
1314 /// A stack of expression evaluation contexts.
1315 SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
1316
1317 /// Emit a warning for all pending noderef expressions that we recorded.
1318 void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
1319
1320 /// Compute the mangling number context for a lambda expression or
1321 /// block literal. Also return the extra mangling decl if any.
1322 ///
1323 /// \param DC - The DeclContext containing the lambda expression or
1324 /// block literal.
1325 std::tuple<MangleNumberingContext *, Decl *>
1326 getCurrentMangleNumberContext(const DeclContext *DC);
1327
1328
1329 /// SpecialMemberOverloadResult - The overloading result for a special member
1330 /// function.
1331 ///
1332 /// This is basically a wrapper around PointerIntPair. The lowest bits of the
1333 /// integer are used to determine whether overload resolution succeeded.
1334 class SpecialMemberOverloadResult {
1335 public:
1336 enum Kind {
1337 NoMemberOrDeleted,
1338 Ambiguous,
1339 Success
1340 };
1341
1342 private:
1343 llvm::PointerIntPair<CXXMethodDecl*, 2> Pair;
1344
1345 public:
1346 SpecialMemberOverloadResult() : Pair() {}
1347 SpecialMemberOverloadResult(CXXMethodDecl *MD)
1348 : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
1349
1350 CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
1351 void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
1352
1353 Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
1354 void setKind(Kind K) { Pair.setInt(K); }
1355 };
1356
1357 class SpecialMemberOverloadResultEntry
1358 : public llvm::FastFoldingSetNode,
1359 public SpecialMemberOverloadResult {
1360 public:
1361 SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
1362 : FastFoldingSetNode(ID)
1363 {}
1364 };
1365
1366 /// A cache of special member function overload resolution results
1367 /// for C++ records.
1368 llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
1369
1370 /// A cache of the flags available in enumerations with the flag_bits
1371 /// attribute.
1372 mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache;
1373
1374 /// The kind of translation unit we are processing.
1375 ///
1376 /// When we're processing a complete translation unit, Sema will perform
1377 /// end-of-translation-unit semantic tasks (such as creating
1378 /// initializers for tentative definitions in C) once parsing has
1379 /// completed. Modules and precompiled headers perform different kinds of
1380 /// checks.
1381 const TranslationUnitKind TUKind;
1382
1383 llvm::BumpPtrAllocator BumpAlloc;
1384
1385 /// The number of SFINAE diagnostics that have been trapped.
1386 unsigned NumSFINAEErrors;
1387
1388 typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
1389 UnparsedDefaultArgInstantiationsMap;
1390
1391 /// A mapping from parameters with unparsed default arguments to the
1392 /// set of instantiations of each parameter.
1393 ///
1394 /// This mapping is a temporary data structure used when parsing
1395 /// nested class templates or nested classes of class templates,
1396 /// where we might end up instantiating an inner class before the
1397 /// default arguments of its methods have been parsed.
1398 UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
1399
1400 // Contains the locations of the beginning of unparsed default
1401 // argument locations.
1402 llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
1403
1404 /// UndefinedInternals - all the used, undefined objects which require a
1405 /// definition in this translation unit.
1406 llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
1407
1408 /// Determine if VD, which must be a variable or function, is an external
1409 /// symbol that nonetheless can't be referenced from outside this translation
1410 /// unit because its type has no linkage and it's not extern "C".
1411 bool isExternalWithNoLinkageType(ValueDecl *VD);
1412
1413 /// Obtain a sorted list of functions that are undefined but ODR-used.
1414 void getUndefinedButUsed(
1415 SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined);
1416
1417 /// Retrieves list of suspicious delete-expressions that will be checked at
1418 /// the end of translation unit.
1419 const llvm::MapVector<FieldDecl *, DeleteLocs> &
1420 getMismatchingDeleteExpressions() const;
1421
1422 typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods;
1423 typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool;
1424
1425 /// Method Pool - allows efficient lookup when typechecking messages to "id".
1426 /// We need to maintain a list, since selectors can have differing signatures
1427 /// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
1428 /// of selectors are "overloaded").
1429 /// At the head of the list it is recorded whether there were 0, 1, or >= 2
1430 /// methods inside categories with a particular selector.
1431 GlobalMethodPool MethodPool;
1432
1433 /// Method selectors used in a \@selector expression. Used for implementation
1434 /// of -Wselector.
1435 llvm::MapVector<Selector, SourceLocation> ReferencedSelectors;
1436
1437 /// List of SourceLocations where 'self' is implicitly retained inside a
1438 /// block.
1439 llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
1440 ImplicitlyRetainedSelfLocs;
1441
1442 /// Kinds of C++ special members.
1443 enum CXXSpecialMember {
1444 CXXDefaultConstructor,
1445 CXXCopyConstructor,
1446 CXXMoveConstructor,
1447 CXXCopyAssignment,
1448 CXXMoveAssignment,
1449 CXXDestructor,
1450 CXXInvalid
1451 };
1452
1453 typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMember>
1454 SpecialMemberDecl;
1455
1456 /// The C++ special members which we are currently in the process of
1457 /// declaring. If this process recursively triggers the declaration of the
1458 /// same special member, we should act as if it is not yet declared.
1459 llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
1460
1461 /// Kinds of defaulted comparison operator functions.
1462 enum class DefaultedComparisonKind : unsigned char {
1463 /// This is not a defaultable comparison operator.
1464 None,
1465 /// This is an operator== that should be implemented as a series of
1466 /// subobject comparisons.
1467 Equal,
1468 /// This is an operator<=> that should be implemented as a series of
1469 /// subobject comparisons.
1470 ThreeWay,
1471 /// This is an operator!= that should be implemented as a rewrite in terms
1472 /// of a == comparison.
1473 NotEqual,
1474 /// This is an <, <=, >, or >= that should be implemented as a rewrite in
1475 /// terms of a <=> comparison.
1476 Relational,
1477 };
1478
1479 /// The function definitions which were renamed as part of typo-correction
1480 /// to match their respective declarations. We want to keep track of them
1481 /// to ensure that we don't emit a "redefinition" error if we encounter a
1482 /// correctly named definition after the renamed definition.
1483 llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
1484
1485 /// Stack of types that correspond to the parameter entities that are
1486 /// currently being copy-initialized. Can be empty.
1487 llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
1488
1489 void ReadMethodPool(Selector Sel);
1490 void updateOutOfDateSelector(Selector Sel);
1491
1492 /// Private Helper predicate to check for 'self'.
1493 bool isSelfExpr(Expr *RExpr);
1494 bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method);
1495
1496 /// Cause the active diagnostic on the DiagosticsEngine to be
1497 /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
1498 /// should not be used elsewhere.
1499 void EmitCurrentDiagnostic(unsigned DiagID);
1500
1501 /// Records and restores the CurFPFeatures state on entry/exit of compound
1502 /// statements.
1503 class FPFeaturesStateRAII {
1504 public:
1505 FPFeaturesStateRAII(Sema &S);
1506 ~FPFeaturesStateRAII();
1507 FPOptionsOverride getOverrides() { return OldOverrides; }
1508
1509 private:
1510 Sema& S;
1511 FPOptions OldFPFeaturesState;
1512 FPOptionsOverride OldOverrides;
1513 int OldEvalMethod;
1514 };
1515
1516 void addImplicitTypedef(StringRef Name, QualType T);
1517
1518 bool WarnedStackExhausted = false;
1519
1520 /// Increment when we find a reference; decrement when we find an ignored
1521 /// assignment. Ultimately the value is 0 if every reference is an ignored
1522 /// assignment.
1523 llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments;
1524
1525 Optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo;
1526
1527public:
1528 Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
1529 TranslationUnitKind TUKind = TU_Complete,
1530 CodeCompleteConsumer *CompletionConsumer = nullptr);
1531 ~Sema();
1532
1533 /// Perform initialization that occurs after the parser has been
1534 /// initialized but before it parses anything.
1535 void Initialize();
1536
1537 /// This virtual key function only exists to limit the emission of debug info
1538 /// describing the Sema class. GCC and Clang only emit debug info for a class
1539 /// with a vtable when the vtable is emitted. Sema is final and not
1540 /// polymorphic, but the debug info size savings are so significant that it is
1541 /// worth adding a vtable just to take advantage of this optimization.
1542 virtual void anchor();
1543
1544 const LangOptions &getLangOpts() const { return LangOpts; }
1545 OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
1546 FPOptions &getCurFPFeatures() { return CurFPFeatures; }
1547
1548 DiagnosticsEngine &getDiagnostics() const { return Diags; }
1549 SourceManager &getSourceManager() const { return SourceMgr; }
1550 Preprocessor &getPreprocessor() const { return PP; }
1551 ASTContext &getASTContext() const { return Context; }
1552 ASTConsumer &getASTConsumer() const { return Consumer; }
1553 ASTMutationListener *getASTMutationListener() const;
1554 ExternalSemaSource* getExternalSource() const { return ExternalSource; }
1555 DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
1556 StringRef Platform);
1557
1558 ///Registers an external source. If an external source already exists,
1559 /// creates a multiplex external source and appends to it.
1560 ///
1561 ///\param[in] E - A non-null external sema source.
1562 ///
1563 void addExternalSource(ExternalSemaSource *E);
1564
1565 void PrintStats() const;
1566
1567 /// Warn that the stack is nearly exhausted.
1568 void warnStackExhausted(SourceLocation Loc);
1569
1570 /// Run some code with "sufficient" stack space. (Currently, at least 256K is
1571 /// guaranteed). Produces a warning if we're low on stack space and allocates
1572 /// more in that case. Use this in code that may recurse deeply (for example,
1573 /// in template instantiation) to avoid stack overflow.
1574 void runWithSufficientStackSpace(SourceLocation Loc,
1575 llvm::function_ref<void()> Fn);
1576
1577 /// Helper class that creates diagnostics with optional
1578 /// template instantiation stacks.
1579 ///
1580 /// This class provides a wrapper around the basic DiagnosticBuilder
1581 /// class that emits diagnostics. ImmediateDiagBuilder is
1582 /// responsible for emitting the diagnostic (as DiagnosticBuilder
1583 /// does) and, if the diagnostic comes from inside a template
1584 /// instantiation, printing the template instantiation stack as
1585 /// well.
1586 class ImmediateDiagBuilder : public DiagnosticBuilder {
1587 Sema &SemaRef;
1588 unsigned DiagID;
1589
1590 public:
1591 ImmediateDiagBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
1592 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1593 ImmediateDiagBuilder(DiagnosticBuilder &&DB, Sema &SemaRef, unsigned DiagID)
1594 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1595
1596 // This is a cunning lie. DiagnosticBuilder actually performs move
1597 // construction in its copy constructor (but due to varied uses, it's not
1598 // possible to conveniently express this as actual move construction). So
1599 // the default copy ctor here is fine, because the base class disables the
1600 // source anyway, so the user-defined ~ImmediateDiagBuilder is a safe no-op
1601 // in that case anwyay.
1602 ImmediateDiagBuilder(const ImmediateDiagBuilder &) = default;
1603
1604 ~ImmediateDiagBuilder() {
1605 // If we aren't active, there is nothing to do.
1606 if (!isActive()) return;
1607
1608 // Otherwise, we need to emit the diagnostic. First clear the diagnostic
1609 // builder itself so it won't emit the diagnostic in its own destructor.
1610 //
1611 // This seems wasteful, in that as written the DiagnosticBuilder dtor will
1612 // do its own needless checks to see if the diagnostic needs to be
1613 // emitted. However, because we take care to ensure that the builder
1614 // objects never escape, a sufficiently smart compiler will be able to
1615 // eliminate that code.
1616 Clear();
1617
1618 // Dispatch to Sema to emit the diagnostic.
1619 SemaRef.EmitCurrentDiagnostic(DiagID);
1620 }
1621
1622 /// Teach operator<< to produce an object of the correct type.
1623 template <typename T>
1624 friend const ImmediateDiagBuilder &
1625 operator<<(const ImmediateDiagBuilder &Diag, const T &Value) {
1626 const DiagnosticBuilder &BaseDiag = Diag;
1627 BaseDiag << Value;
1628 return Diag;
1629 }
1630
1631 // It is necessary to limit this to rvalue reference to avoid calling this
1632 // function with a bitfield lvalue argument since non-const reference to
1633 // bitfield is not allowed.
1634 template <typename T, typename = typename std::enable_if<
1635 !std::is_lvalue_reference<T>::value>::type>
1636 const ImmediateDiagBuilder &operator<<(T &&V) const {
1637 const DiagnosticBuilder &BaseDiag = *this;
1638 BaseDiag << std::move(V);
1639 return *this;
1640 }
1641 };
1642
1643 /// A generic diagnostic builder for errors which may or may not be deferred.
1644 ///
1645 /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch)
1646 /// which are not allowed to appear inside __device__ functions and are
1647 /// allowed to appear in __host__ __device__ functions only if the host+device
1648 /// function is never codegen'ed.
1649 ///
1650 /// To handle this, we use the notion of "deferred diagnostics", where we
1651 /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed.
1652 ///
1653 /// This class lets you emit either a regular diagnostic, a deferred
1654 /// diagnostic, or no diagnostic at all, according to an argument you pass to
1655 /// its constructor, thus simplifying the process of creating these "maybe
1656 /// deferred" diagnostics.
1657 class SemaDiagnosticBuilder {
1658 public:
1659 enum Kind {
1660 /// Emit no diagnostics.
1661 K_Nop,
1662 /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()).
1663 K_Immediate,
1664 /// Emit the diagnostic immediately, and, if it's a warning or error, also
1665 /// emit a call stack showing how this function can be reached by an a
1666 /// priori known-emitted function.
1667 K_ImmediateWithCallStack,
1668 /// Create a deferred diagnostic, which is emitted only if the function
1669 /// it's attached to is codegen'ed. Also emit a call stack as with
1670 /// K_ImmediateWithCallStack.
1671 K_Deferred
1672 };
1673
1674 SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID,
1675 FunctionDecl *Fn, Sema &S);
1676 SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D);
1677 SemaDiagnosticBuilder(const SemaDiagnosticBuilder &) = default;
1678 ~SemaDiagnosticBuilder();
1679
1680 bool isImmediate() const { return ImmediateDiag.hasValue(); }
1681
1682 /// Convertible to bool: True if we immediately emitted an error, false if
1683 /// we didn't emit an error or we created a deferred error.
1684 ///
1685 /// Example usage:
1686 ///
1687 /// if (SemaDiagnosticBuilder(...) << foo << bar)
1688 /// return ExprError();
1689 ///
1690 /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably
1691 /// want to use these instead of creating a SemaDiagnosticBuilder yourself.
1692 operator bool() const { return isImmediate(); }
1693
1694 template <typename T>
1695 friend const SemaDiagnosticBuilder &
1696 operator<<(const SemaDiagnosticBuilder &Diag, const T &Value) {
1697 if (Diag.ImmediateDiag.hasValue())
1698 *Diag.ImmediateDiag << Value;
1699 else if (Diag.PartialDiagId.hasValue())
1700 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second
1701 << Value;
1702 return Diag;
1703 }
1704
1705 // It is necessary to limit this to rvalue reference to avoid calling this
1706 // function with a bitfield lvalue argument since non-const reference to
1707 // bitfield is not allowed.
1708 template <typename T, typename = typename std::enable_if<
1709 !std::is_lvalue_reference<T>::value>::type>
1710 const SemaDiagnosticBuilder &operator<<(T &&V) const {
1711 if (ImmediateDiag.hasValue())
1712 *ImmediateDiag << std::move(V);
1713 else if (PartialDiagId.hasValue())
1714 S.DeviceDeferredDiags[Fn][*PartialDiagId].second << std::move(V);
1715 return *this;
1716 }
1717
1718 friend const SemaDiagnosticBuilder &
1719 operator<<(const SemaDiagnosticBuilder &Diag, const PartialDiagnostic &PD) {
1720 if (Diag.ImmediateDiag.hasValue())
1721 PD.Emit(*Diag.ImmediateDiag);
1722 else if (Diag.PartialDiagId.hasValue())
1723 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second = PD;
1724 return Diag;
1725 }
1726
1727 void AddFixItHint(const FixItHint &Hint) const {
1728 if (ImmediateDiag.hasValue())
1729 ImmediateDiag->AddFixItHint(Hint);
1730 else if (PartialDiagId.hasValue())
1731 S.DeviceDeferredDiags[Fn][*PartialDiagId].second.AddFixItHint(Hint);
1732 }
1733
1734 friend ExprResult ExprError(const SemaDiagnosticBuilder &) {
1735 return ExprError();
1736 }
1737 friend StmtResult StmtError(const SemaDiagnosticBuilder &) {
1738 return StmtError();
1739 }
1740 operator ExprResult() const { return ExprError(); }
1741 operator StmtResult() const { return StmtError(); }
1742 operator TypeResult() const { return TypeError(); }
1743 operator DeclResult() const { return DeclResult(true); }
1744 operator MemInitResult() const { return MemInitResult(true); }
1745
1746 private:
1747 Sema &S;
1748 SourceLocation Loc;
1749 unsigned DiagID;
1750 FunctionDecl *Fn;
1751 bool ShowCallStack;
1752
1753 // Invariant: At most one of these Optionals has a value.
1754 // FIXME: Switch these to a Variant once that exists.
1755 llvm::Optional<ImmediateDiagBuilder> ImmediateDiag;
1756 llvm::Optional<unsigned> PartialDiagId;
1757 };
1758
1759 /// Is the last error level diagnostic immediate. This is used to determined
1760 /// whether the next info diagnostic should be immediate.
1761 bool IsLastErrorImmediate = true;
1762
1763 /// Emit a diagnostic.
1764 SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID,
1765 bool DeferHint = false);
1766
1767 /// Emit a partial diagnostic.
1768 SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic &PD,
1769 bool DeferHint = false);
1770
1771 /// Build a partial diagnostic.
1772 PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
1773
1774 /// Whether deferrable diagnostics should be deferred.
1775 bool DeferDiags = false;
1776
1777 /// RAII class to control scope of DeferDiags.
1778 class DeferDiagsRAII {
1779 Sema &S;
1780 bool SavedDeferDiags = false;
1781
1782 public:
1783 DeferDiagsRAII(Sema &S, bool DeferDiags)
1784 : S(S), SavedDeferDiags(S.DeferDiags) {
1785 S.DeferDiags = DeferDiags;
1786 }
1787 ~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; }
1788 };
1789
1790 /// Whether uncompilable error has occurred. This includes error happens
1791 /// in deferred diagnostics.
1792 bool hasUncompilableErrorOccurred() const;
1793
1794 bool findMacroSpelling(SourceLocation &loc, StringRef name);
1795
1796 /// Get a string to suggest for zero-initialization of a type.
1797 std::string
1798 getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const;
1799 std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
1800
1801 /// Calls \c Lexer::getLocForEndOfToken()
1802 SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
1803
1804 /// Retrieve the module loader associated with the preprocessor.
1805 ModuleLoader &getModuleLoader() const;
1806
1807 /// Invent a new identifier for parameters of abbreviated templates.
1808 IdentifierInfo *
1809 InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName,
1810 unsigned Index);
1811
1812 void emitAndClearUnusedLocalTypedefWarnings();
1813
1814 private:
1815 /// Function or variable declarations to be checked for whether the deferred
1816 /// diagnostics should be emitted.
1817 llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags;
1818
1819 public:
1820 // Emit all deferred diagnostics.
1821 void emitDeferredDiags();
1822
1823 enum TUFragmentKind {
1824 /// The global module fragment, between 'module;' and a module-declaration.
1825 Global,
1826 /// A normal translation unit fragment. For a non-module unit, this is the
1827 /// entire translation unit. Otherwise, it runs from the module-declaration
1828 /// to the private-module-fragment (if any) or the end of the TU (if not).
1829 Normal,
1830 /// The private module fragment, between 'module :private;' and the end of
1831 /// the translation unit.
1832 Private
1833 };
1834
1835 void ActOnStartOfTranslationUnit();
1836 void ActOnEndOfTranslationUnit();
1837 void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
1838
1839 void CheckDelegatingCtorCycles();
1840
1841 Scope *getScopeForContext(DeclContext *Ctx);
1842
1843 void PushFunctionScope();
1844 void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
1845 sema::LambdaScopeInfo *PushLambdaScope();
1846
1847 /// This is used to inform Sema what the current TemplateParameterDepth
1848 /// is during Parsing. Currently it is used to pass on the depth
1849 /// when parsing generic lambda 'auto' parameters.
1850 void RecordParsingTemplateParameterDepth(unsigned Depth);
1851
1852 void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
1853 RecordDecl *RD, CapturedRegionKind K,
1854 unsigned OpenMPCaptureLevel = 0);
1855
1856 /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
1857 /// time after they've been popped.
1858 class PoppedFunctionScopeDeleter {
1859 Sema *Self;
1860
1861 public:
1862 explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
1863 void operator()(sema::FunctionScopeInfo *Scope) const;
1864 };
1865
1866 using PoppedFunctionScopePtr =
1867 std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
1868
1869 PoppedFunctionScopePtr
1870 PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
1871 const Decl *D = nullptr,
1872 QualType BlockType = QualType());
1873
1874 sema::FunctionScopeInfo *getCurFunction() const {
1875 return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
1876 }
1877
1878 sema::FunctionScopeInfo *getEnclosingFunction() const;
1879
1880 void setFunctionHasBranchIntoScope();
1881 void setFunctionHasBranchProtectedScope();
1882 void setFunctionHasIndirectGoto();
1883 void setFunctionHasMustTail();
1884
1885 void PushCompoundScope(bool IsStmtExpr);
1886 void PopCompoundScope();
1887
1888 sema::CompoundScopeInfo &getCurCompoundScope() const;
1889
1890 bool hasAnyUnrecoverableErrorsInThisFunction() const;
1891
1892 /// Retrieve the current block, if any.
1893 sema::BlockScopeInfo *getCurBlock();
1894
1895 /// Get the innermost lambda enclosing the current location, if any. This
1896 /// looks through intervening non-lambda scopes such as local functions and
1897 /// blocks.
1898 sema::LambdaScopeInfo *getEnclosingLambda() const;
1899
1900 /// Retrieve the current lambda scope info, if any.
1901 /// \param IgnoreNonLambdaCapturingScope true if should find the top-most
1902 /// lambda scope info ignoring all inner capturing scopes that are not
1903 /// lambda scopes.
1904 sema::LambdaScopeInfo *
1905 getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
1906
1907 /// Retrieve the current generic lambda info, if any.
1908 sema::LambdaScopeInfo *getCurGenericLambda();
1909
1910 /// Retrieve the current captured region, if any.
1911 sema::CapturedRegionScopeInfo *getCurCapturedRegion();
1912
1913 /// Retrieve the current function, if any, that should be analyzed for
1914 /// potential availability violations.
1915 sema::FunctionScopeInfo *getCurFunctionAvailabilityContext();
1916
1917 /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
1918 SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
1919
1920 /// Called before parsing a function declarator belonging to a function
1921 /// declaration.
1922 void ActOnStartFunctionDeclarationDeclarator(Declarator &D,
1923 unsigned TemplateParameterDepth);
1924
1925 /// Called after parsing a function declarator belonging to a function
1926 /// declaration.
1927 void ActOnFinishFunctionDeclarationDeclarator(Declarator &D);
1928
1929 void ActOnComment(SourceRange Comment);
1930
1931 //===--------------------------------------------------------------------===//
1932 // Type Analysis / Processing: SemaType.cpp.
1933 //
1934
1935 QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
1936 const DeclSpec *DS = nullptr);
1937 QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
1938 const DeclSpec *DS = nullptr);
1939 QualType BuildPointerType(QualType T,
1940 SourceLocation Loc, DeclarationName Entity);
1941 QualType BuildReferenceType(QualType T, bool LValueRef,
1942 SourceLocation Loc, DeclarationName Entity);
1943 QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1944 Expr *ArraySize, unsigned Quals,
1945 SourceRange Brackets, DeclarationName Entity);
1946 QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
1947 QualType BuildExtVectorType(QualType T, Expr *ArraySize,
1948 SourceLocation AttrLoc);
1949 QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns,
1950 SourceLocation AttrLoc);
1951
1952 QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
1953 SourceLocation AttrLoc);
1954
1955 /// Same as above, but constructs the AddressSpace index if not provided.
1956 QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
1957 SourceLocation AttrLoc);
1958
1959 bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
1960
1961 bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
1962
1963 /// Build a function type.
1964 ///
1965 /// This routine checks the function type according to C++ rules and
1966 /// under the assumption that the result type and parameter types have
1967 /// just been instantiated from a template. It therefore duplicates
1968 /// some of the behavior of GetTypeForDeclarator, but in a much
1969 /// simpler form that is only suitable for this narrow use case.
1970 ///
1971 /// \param T The return type of the function.
1972 ///
1973 /// \param ParamTypes The parameter types of the function. This array
1974 /// will be modified to account for adjustments to the types of the
1975 /// function parameters.
1976 ///
1977 /// \param Loc The location of the entity whose type involves this
1978 /// function type or, if there is no such entity, the location of the
1979 /// type that will have function type.
1980 ///
1981 /// \param Entity The name of the entity that involves the function
1982 /// type, if known.
1983 ///
1984 /// \param EPI Extra information about the function type. Usually this will
1985 /// be taken from an existing function with the same prototype.
1986 ///
1987 /// \returns A suitable function type, if there are no errors. The
1988 /// unqualified type will always be a FunctionProtoType.
1989 /// Otherwise, returns a NULL type.
1990 QualType BuildFunctionType(QualType T,
1991 MutableArrayRef<QualType> ParamTypes,
1992 SourceLocation Loc, DeclarationName Entity,
1993 const FunctionProtoType::ExtProtoInfo &EPI);
1994
1995 QualType BuildMemberPointerType(QualType T, QualType Class,
1996 SourceLocation Loc,
1997 DeclarationName Entity);
1998 QualType BuildBlockPointerType(QualType T,
1999 SourceLocation Loc, DeclarationName Entity);
2000 QualType BuildParenType(QualType T);
2001 QualType BuildAtomicType(QualType T, SourceLocation Loc);
2002 QualType BuildReadPipeType(QualType T,
2003 SourceLocation Loc);
2004 QualType BuildWritePipeType(QualType T,
2005 SourceLocation Loc);
2006 QualType BuildExtIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc);
2007
2008 TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
2009 TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
2010
2011 /// Package the given type and TSI into a ParsedType.
2012 ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
2013 DeclarationNameInfo GetNameForDeclarator(Declarator &D);
2014 DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
2015 static QualType GetTypeFromParser(ParsedType Ty,
2016 TypeSourceInfo **TInfo = nullptr);
2017 CanThrowResult canThrow(const Stmt *E);
2018 /// Determine whether the callee of a particular function call can throw.
2019 /// E, D and Loc are all optional.
2020 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
2021 SourceLocation Loc = SourceLocation());
2022 const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
2023 const FunctionProtoType *FPT);
2024 void UpdateExceptionSpec(FunctionDecl *FD,
2025 const FunctionProtoType::ExceptionSpecInfo &ESI);
2026 bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
2027 bool CheckDistantExceptionSpec(QualType T);
2028 bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
2029 bool CheckEquivalentExceptionSpec(
2030 const FunctionProtoType *Old, SourceLocation OldLoc,
2031 const FunctionProtoType *New, SourceLocation NewLoc);
2032 bool CheckEquivalentExceptionSpec(
2033 const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
2034 const FunctionProtoType *Old, SourceLocation OldLoc,
2035 const FunctionProtoType *New, SourceLocation NewLoc);
2036 bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
2037 bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
2038 const PartialDiagnostic &NestedDiagID,
2039 const PartialDiagnostic &NoteID,
2040 const PartialDiagnostic &NoThrowDiagID,
2041 const FunctionProtoType *Superset,
2042 SourceLocation SuperLoc,
2043 const FunctionProtoType *Subset,
2044 SourceLocation SubLoc);
2045 bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID,
2046 const PartialDiagnostic &NoteID,
2047 const FunctionProtoType *Target,
2048 SourceLocation TargetLoc,
2049 const FunctionProtoType *Source,
2050 SourceLocation SourceLoc);
2051
2052 TypeResult ActOnTypeName(Scope *S, Declarator &D);
2053
2054 /// The parser has parsed the context-sensitive type 'instancetype'
2055 /// in an Objective-C message declaration. Return the appropriate type.
2056 ParsedType ActOnObjCInstanceType(SourceLocation Loc);
2057
2058 /// Abstract class used to diagnose incomplete types.
2059 struct TypeDiagnoser {
2060 TypeDiagnoser() {}
2061
2062 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
2063 virtual ~TypeDiagnoser() {}
2064 };
2065
2066 static int getPrintable(int I) { return I; }
2067 static unsigned getPrintable(unsigned I) { return I; }
2068 static bool getPrintable(bool B) { return B; }
2069 static const char * getPrintable(const char *S) { return S; }
2070 static StringRef getPrintable(StringRef S) { return S; }
2071 static const std::string &getPrintable(const std::string &S) { return S; }
2072 static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
2073 return II;
2074 }
2075 static DeclarationName getPrintable(DeclarationName N) { return N; }
2076 static QualType getPrintable(QualType T) { return T; }
2077 static SourceRange getPrintable(SourceRange R) { return R; }
2078 static SourceRange getPrintable(SourceLocation L) { return L; }
2079 static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
2080 static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();}
2081
2082 template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
2083 protected:
2084 unsigned DiagID;
2085 std::tuple<const Ts &...> Args;
2086
2087 template <std::size_t... Is>
2088 void emit(const SemaDiagnosticBuilder &DB,
2089 std::index_sequence<Is...>) const {
2090 // Apply all tuple elements to the builder in order.
2091 bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
2092 (void)Dummy;
2093 }
2094
2095 public:
2096 BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
2097 : TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
2098 assert(DiagID != 0 && "no diagnostic for type diagnoser")(static_cast <bool> (DiagID != 0 && "no diagnostic for type diagnoser"
) ? void (0) : __assert_fail ("DiagID != 0 && \"no diagnostic for type diagnoser\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2098, __extension__ __PRETTY_FUNCTION__))
;
2099 }
2100
2101 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2102 const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
2103 emit(DB, std::index_sequence_for<Ts...>());
2104 DB << T;
2105 }
2106 };
2107
2108 /// Do a check to make sure \p Name looks like a legal argument for the
2109 /// swift_name attribute applied to decl \p D. Raise a diagnostic if the name
2110 /// is invalid for the given declaration.
2111 ///
2112 /// \p AL is used to provide caret diagnostics in case of a malformed name.
2113 ///
2114 /// \returns true if the name is a valid swift name for \p D, false otherwise.
2115 bool DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
2116 const ParsedAttr &AL, bool IsAsync);
2117
2118 /// A derivative of BoundTypeDiagnoser for which the diagnostic's type
2119 /// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless.
2120 /// For example, a diagnostic with no other parameters would generally have
2121 /// the form "...%select{incomplete|sizeless}0 type %1...".
2122 template <typename... Ts>
2123 class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> {
2124 public:
2125 SizelessTypeDiagnoser(unsigned DiagID, const Ts &... Args)
2126 : BoundTypeDiagnoser<Ts...>(DiagID, Args...) {}
2127
2128 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2129 const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID);
2130 this->emit(DB, std::index_sequence_for<Ts...>());
2131 DB << T->isSizelessType() << T;
2132 }
2133 };
2134
2135 enum class CompleteTypeKind {
2136 /// Apply the normal rules for complete types. In particular,
2137 /// treat all sizeless types as incomplete.
2138 Normal,
2139
2140 /// Relax the normal rules for complete types so that they include
2141 /// sizeless built-in types.
2142 AcceptSizeless,
2143
2144 // FIXME: Eventually we should flip the default to Normal and opt in
2145 // to AcceptSizeless rather than opt out of it.
2146 Default = AcceptSizeless
2147 };
2148
2149private:
2150 /// Methods for marking which expressions involve dereferencing a pointer
2151 /// marked with the 'noderef' attribute. Expressions are checked bottom up as
2152 /// they are parsed, meaning that a noderef pointer may not be accessed. For
2153 /// example, in `&*p` where `p` is a noderef pointer, we will first parse the
2154 /// `*p`, but need to check that `address of` is called on it. This requires
2155 /// keeping a container of all pending expressions and checking if the address
2156 /// of them are eventually taken.
2157 void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
2158 void CheckAddressOfNoDeref(const Expr *E);
2159 void CheckMemberAccessOfNoDeref(const MemberExpr *E);
2160
2161 bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
2162 CompleteTypeKind Kind, TypeDiagnoser *Diagnoser);
2163
2164 struct ModuleScope {
2165 SourceLocation BeginLoc;
2166 clang::Module *Module = nullptr;
2167 bool ModuleInterface = false;
2168 bool ImplicitGlobalModuleFragment = false;
2169 VisibleModuleSet OuterVisibleModules;
2170 };
2171 /// The modules we're currently parsing.
2172 llvm::SmallVector<ModuleScope, 16> ModuleScopes;
2173
2174 /// Namespace definitions that we will export when they finish.
2175 llvm::SmallPtrSet<const NamespaceDecl*, 8> DeferredExportedNamespaces;
2176
2177 /// Get the module whose scope we are currently within.
2178 Module *getCurrentModule() const {
2179 return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
2180 }
2181
2182 VisibleModuleSet VisibleModules;
2183
2184public:
2185 /// Get the module owning an entity.
2186 Module *getOwningModule(const Decl *Entity) {
2187 return Entity->getOwningModule();
2188 }
2189
2190 /// Make a merged definition of an existing hidden definition \p ND
2191 /// visible at the specified location.
2192 void makeMergedDefinitionVisible(NamedDecl *ND);
2193
2194 bool isModuleVisible(const Module *M, bool ModulePrivate = false);
2195
2196 // When loading a non-modular PCH files, this is used to restore module
2197 // visibility.
2198 void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) {
2199 VisibleModules.setVisible(Mod, ImportLoc);
2200 }
2201
2202 /// Determine whether a declaration is visible to name lookup.
2203 bool isVisible(const NamedDecl *D) {
2204 return D->isUnconditionallyVisible() || isVisibleSlow(D);
2205 }
2206
2207 /// Determine whether any declaration of an entity is visible.
2208 bool
2209 hasVisibleDeclaration(const NamedDecl *D,
2210 llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
2211 return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
2212 }
2213 bool hasVisibleDeclarationSlow(const NamedDecl *D,
2214 llvm::SmallVectorImpl<Module *> *Modules);
2215
2216 bool hasVisibleMergedDefinition(NamedDecl *Def);
2217 bool hasMergedDefinitionInCurrentModule(NamedDecl *Def);
2218
2219 /// Determine if \p D and \p Suggested have a structurally compatible
2220 /// layout as described in C11 6.2.7/1.
2221 bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
2222
2223 /// Determine if \p D has a visible definition. If not, suggest a declaration
2224 /// that should be made visible to expose the definition.
2225 bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
2226 bool OnlyNeedComplete = false);
2227 bool hasVisibleDefinition(const NamedDecl *D) {
2228 NamedDecl *Hidden;
2229 return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden);
2230 }
2231
2232 /// Determine if the template parameter \p D has a visible default argument.
2233 bool
2234 hasVisibleDefaultArgument(const NamedDecl *D,
2235 llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2236
2237 /// Determine if there is a visible declaration of \p D that is an explicit
2238 /// specialization declaration for a specialization of a template. (For a
2239 /// member specialization, use hasVisibleMemberSpecialization.)
2240 bool hasVisibleExplicitSpecialization(
2241 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2242
2243 /// Determine if there is a visible declaration of \p D that is a member
2244 /// specialization declaration (as opposed to an instantiated declaration).
2245 bool hasVisibleMemberSpecialization(
2246 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2247
2248 /// Determine if \p A and \p B are equivalent internal linkage declarations
2249 /// from different modules, and thus an ambiguity error can be downgraded to
2250 /// an extension warning.
2251 bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
2252 const NamedDecl *B);
2253 void diagnoseEquivalentInternalLinkageDeclarations(
2254 SourceLocation Loc, const NamedDecl *D,
2255 ArrayRef<const NamedDecl *> Equiv);
2256
2257 bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
2258
2259 bool isCompleteType(SourceLocation Loc, QualType T,
2260 CompleteTypeKind Kind = CompleteTypeKind::Default) {
2261 return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr);
2262 }
2263 bool RequireCompleteType(SourceLocation Loc, QualType T,
2264 CompleteTypeKind Kind, TypeDiagnoser &Diagnoser);
2265 bool RequireCompleteType(SourceLocation Loc, QualType T,
2266 CompleteTypeKind Kind, unsigned DiagID);
2267
2268 bool RequireCompleteType(SourceLocation Loc, QualType T,
2269 TypeDiagnoser &Diagnoser) {
2270 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser);
2271 }
2272 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) {
2273 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID);
2274 }
2275
2276 template <typename... Ts>
2277 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
2278 const Ts &...Args) {
2279 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2280 return RequireCompleteType(Loc, T, Diagnoser);
2281 }
2282
2283 template <typename... Ts>
2284 bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID,
2285 const Ts &... Args) {
2286 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2287 return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser);
2288 }
2289
2290 /// Get the type of expression E, triggering instantiation to complete the
2291 /// type if necessary -- that is, if the expression refers to a templated
2292 /// static data member of incomplete array type.
2293 ///
2294 /// May still return an incomplete type if instantiation was not possible or
2295 /// if the type is incomplete for a different reason. Use
2296 /// RequireCompleteExprType instead if a diagnostic is expected for an
2297 /// incomplete expression type.
2298 QualType getCompletedType(Expr *E);
2299
2300 void completeExprArrayBound(Expr *E);
2301 bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
2302 TypeDiagnoser &Diagnoser);
2303 bool RequireCompleteExprType(Expr *E, unsigned DiagID);
2304
2305 template <typename... Ts>
2306 bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
2307 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2308 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
2309 }
2310
2311 template <typename... Ts>
2312 bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID,
2313 const Ts &... Args) {
2314 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2315 return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser);
2316 }
2317
2318 bool RequireLiteralType(SourceLocation Loc, QualType T,
2319 TypeDiagnoser &Diagnoser);
2320 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
2321
2322 template <typename... Ts>
2323 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
2324 const Ts &...Args) {
2325 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2326 return RequireLiteralType(Loc, T, Diagnoser);
2327 }
2328
2329 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
2330 const CXXScopeSpec &SS, QualType T,
2331 TagDecl *OwnedTagDecl = nullptr);
2332
2333 QualType BuildTypeofExprType(Expr *E, SourceLocation Loc);
2334 /// If AsUnevaluated is false, E is treated as though it were an evaluated
2335 /// context, such as when building a type for decltype(auto).
2336 QualType BuildDecltypeType(Expr *E, SourceLocation Loc,
2337 bool AsUnevaluated = true);
2338 QualType BuildUnaryTransformType(QualType BaseType,
2339 UnaryTransformType::UTTKind UKind,
2340 SourceLocation Loc);
2341
2342 //===--------------------------------------------------------------------===//
2343 // Symbol table / Decl tracking callbacks: SemaDecl.cpp.
2344 //
2345
2346 struct SkipBodyInfo {
2347 SkipBodyInfo()
2348 : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr),
2349 New(nullptr) {}
2350 bool ShouldSkip;
2351 bool CheckSameAsPrevious;
2352 NamedDecl *Previous;
2353 NamedDecl *New;
2354 };
2355
2356 DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
2357
2358 void DiagnoseUseOfUnimplementedSelectors();
2359
2360 bool isSimpleTypeSpecifier(tok::TokenKind Kind) const;
2361
2362 ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
2363 Scope *S, CXXScopeSpec *SS = nullptr,
2364 bool isClassName = false, bool HasTrailingDot = false,
2365 ParsedType ObjectType = nullptr,
2366 bool IsCtorOrDtorName = false,
2367 bool WantNontrivialTypeSourceInfo = false,
2368 bool IsClassTemplateDeductionContext = true,
2369 IdentifierInfo **CorrectedII = nullptr);
2370 TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
2371 bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
2372 void DiagnoseUnknownTypeName(IdentifierInfo *&II,
2373 SourceLocation IILoc,
2374 Scope *S,
2375 CXXScopeSpec *SS,
2376 ParsedType &SuggestedType,
2377 bool IsTemplateName = false);
2378
2379 /// Attempt to behave like MSVC in situations where lookup of an unqualified
2380 /// type name has failed in a dependent context. In these situations, we
2381 /// automatically form a DependentTypeName that will retry lookup in a related
2382 /// scope during instantiation.
2383 ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
2384 SourceLocation NameLoc,
2385 bool IsTemplateTypeArg);
2386
2387 /// Describes the result of the name lookup and resolution performed
2388 /// by \c ClassifyName().
2389 enum NameClassificationKind {
2390 /// This name is not a type or template in this context, but might be
2391 /// something else.
2392 NC_Unknown,
2393 /// Classification failed; an error has been produced.
2394 NC_Error,
2395 /// The name has been typo-corrected to a keyword.
2396 NC_Keyword,
2397 /// The name was classified as a type.
2398 NC_Type,
2399 /// The name was classified as a specific non-type, non-template
2400 /// declaration. ActOnNameClassifiedAsNonType should be called to
2401 /// convert the declaration to an expression.
2402 NC_NonType,
2403 /// The name was classified as an ADL-only function name.
2404 /// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
2405 /// result to an expression.
2406 NC_UndeclaredNonType,
2407 /// The name denotes a member of a dependent type that could not be
2408 /// resolved. ActOnNameClassifiedAsDependentNonType should be called to
2409 /// convert the result to an expression.
2410 NC_DependentNonType,
2411 /// The name was classified as an overload set, and an expression
2412 /// representing that overload set has been formed.
2413 /// ActOnNameClassifiedAsOverloadSet should be called to form a suitable
2414 /// expression referencing the overload set.
2415 NC_OverloadSet,
2416 /// The name was classified as a template whose specializations are types.
2417 NC_TypeTemplate,
2418 /// The name was classified as a variable template name.
2419 NC_VarTemplate,
2420 /// The name was classified as a function template name.
2421 NC_FunctionTemplate,
2422 /// The name was classified as an ADL-only function template name.
2423 NC_UndeclaredTemplate,
2424 /// The name was classified as a concept name.
2425 NC_Concept,
2426 };
2427
2428 class NameClassification {
2429 NameClassificationKind Kind;
2430 union {
2431 ExprResult Expr;
2432 NamedDecl *NonTypeDecl;
2433 TemplateName Template;
2434 ParsedType Type;
2435 };
2436
2437 explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
2438
2439 public:
2440 NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
2441
2442 NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
2443
2444 static NameClassification Error() {
2445 return NameClassification(NC_Error);
2446 }
2447
2448 static NameClassification Unknown() {
2449 return NameClassification(NC_Unknown);
2450 }
2451
2452 static NameClassification OverloadSet(ExprResult E) {
2453 NameClassification Result(NC_OverloadSet);
2454 Result.Expr = E;
2455 return Result;
2456 }
2457
2458 static NameClassification NonType(NamedDecl *D) {
2459 NameClassification Result(NC_NonType);
2460 Result.NonTypeDecl = D;
2461 return Result;
2462 }
2463
2464 static NameClassification UndeclaredNonType() {
2465 return NameClassification(NC_UndeclaredNonType);
2466 }
2467
2468 static NameClassification DependentNonType() {
2469 return NameClassification(NC_DependentNonType);
2470 }
2471
2472 static NameClassification TypeTemplate(TemplateName Name) {
2473 NameClassification Result(NC_TypeTemplate);
2474 Result.Template = Name;
2475 return Result;
2476 }
2477
2478 static NameClassification VarTemplate(TemplateName Name) {
2479 NameClassification Result(NC_VarTemplate);
2480 Result.Template = Name;
2481 return Result;
2482 }
2483
2484 static NameClassification FunctionTemplate(TemplateName Name) {
2485 NameClassification Result(NC_FunctionTemplate);
2486 Result.Template = Name;
2487 return Result;
2488 }
2489
2490 static NameClassification Concept(TemplateName Name) {
2491 NameClassification Result(NC_Concept);
2492 Result.Template = Name;
2493 return Result;
2494 }
2495
2496 static NameClassification UndeclaredTemplate(TemplateName Name) {
2497 NameClassification Result(NC_UndeclaredTemplate);
2498 Result.Template = Name;
2499 return Result;
2500 }
2501
2502 NameClassificationKind getKind() const { return Kind; }
2503
2504 ExprResult getExpression() const {
2505 assert(Kind == NC_OverloadSet)(static_cast <bool> (Kind == NC_OverloadSet) ? void (0)
: __assert_fail ("Kind == NC_OverloadSet", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2505, __extension__ __PRETTY_FUNCTION__))
;
2506 return Expr;
2507 }
2508
2509 ParsedType getType() const {
2510 assert(Kind == NC_Type)(static_cast <bool> (Kind == NC_Type) ? void (0) : __assert_fail
("Kind == NC_Type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2510, __extension__ __PRETTY_FUNCTION__))
;
2511 return Type;
2512 }
2513
2514 NamedDecl *getNonTypeDecl() const {
2515 assert(Kind == NC_NonType)(static_cast <bool> (Kind == NC_NonType) ? void (0) : __assert_fail
("Kind == NC_NonType", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2515, __extension__ __PRETTY_FUNCTION__))
;
2516 return NonTypeDecl;
2517 }
2518
2519 TemplateName getTemplateName() const {
2520 assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||(static_cast <bool> (Kind == NC_TypeTemplate || Kind ==
NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept
|| Kind == NC_UndeclaredTemplate) ? void (0) : __assert_fail
("Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2522, __extension__ __PRETTY_FUNCTION__))
2521 Kind == NC_VarTemplate || Kind == NC_Concept ||(static_cast <bool> (Kind == NC_TypeTemplate || Kind ==
NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept
|| Kind == NC_UndeclaredTemplate) ? void (0) : __assert_fail
("Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2522, __extension__ __PRETTY_FUNCTION__))
2522 Kind == NC_UndeclaredTemplate)(static_cast <bool> (Kind == NC_TypeTemplate || Kind ==
NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept
|| Kind == NC_UndeclaredTemplate) ? void (0) : __assert_fail
("Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2522, __extension__ __PRETTY_FUNCTION__))
;
2523 return Template;
2524 }
2525
2526 TemplateNameKind getTemplateNameKind() const {
2527 switch (Kind) {
2528 case NC_TypeTemplate:
2529 return TNK_Type_template;
2530 case NC_FunctionTemplate:
2531 return TNK_Function_template;
2532 case NC_VarTemplate:
2533 return TNK_Var_template;
2534 case NC_Concept:
2535 return TNK_Concept_template;
2536 case NC_UndeclaredTemplate:
2537 return TNK_Undeclared_template;
2538 default:
2539 llvm_unreachable("unsupported name classification.")::llvm::llvm_unreachable_internal("unsupported name classification."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 2539)
;
2540 }
2541 }
2542 };
2543
2544 /// Perform name lookup on the given name, classifying it based on
2545 /// the results of name lookup and the following token.
2546 ///
2547 /// This routine is used by the parser to resolve identifiers and help direct
2548 /// parsing. When the identifier cannot be found, this routine will attempt
2549 /// to correct the typo and classify based on the resulting name.
2550 ///
2551 /// \param S The scope in which we're performing name lookup.
2552 ///
2553 /// \param SS The nested-name-specifier that precedes the name.
2554 ///
2555 /// \param Name The identifier. If typo correction finds an alternative name,
2556 /// this pointer parameter will be updated accordingly.
2557 ///
2558 /// \param NameLoc The location of the identifier.
2559 ///
2560 /// \param NextToken The token following the identifier. Used to help
2561 /// disambiguate the name.
2562 ///
2563 /// \param CCC The correction callback, if typo correction is desired.
2564 NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
2565 IdentifierInfo *&Name, SourceLocation NameLoc,
2566 const Token &NextToken,
2567 CorrectionCandidateCallback *CCC = nullptr);
2568
2569 /// Act on the result of classifying a name as an undeclared (ADL-only)
2570 /// non-type declaration.
2571 ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
2572 SourceLocation NameLoc);
2573 /// Act on the result of classifying a name as an undeclared member of a
2574 /// dependent base class.
2575 ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
2576 IdentifierInfo *Name,
2577 SourceLocation NameLoc,
2578 bool IsAddressOfOperand);
2579 /// Act on the result of classifying a name as a specific non-type
2580 /// declaration.
2581 ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
2582 NamedDecl *Found,
2583 SourceLocation NameLoc,
2584 const Token &NextToken);
2585 /// Act on the result of classifying a name as an overload set.
2586 ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet);
2587
2588 /// Describes the detailed kind of a template name. Used in diagnostics.
2589 enum class TemplateNameKindForDiagnostics {
2590 ClassTemplate,
2591 FunctionTemplate,
2592 VarTemplate,
2593 AliasTemplate,
2594 TemplateTemplateParam,
2595 Concept,
2596 DependentTemplate
2597 };
2598 TemplateNameKindForDiagnostics
2599 getTemplateNameKindForDiagnostics(TemplateName Name);
2600
2601 /// Determine whether it's plausible that E was intended to be a
2602 /// template-name.
2603 bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
2604 if (!getLangOpts().CPlusPlus || E.isInvalid())
2605 return false;
2606 Dependent = false;
2607 if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
2608 return !DRE->hasExplicitTemplateArgs();
2609 if (auto *ME = dyn_cast<MemberExpr>(E.get()))
2610 return !ME->hasExplicitTemplateArgs();
2611 Dependent = true;
2612 if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
2613 return !DSDRE->hasExplicitTemplateArgs();
2614 if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
2615 return !DSME->hasExplicitTemplateArgs();
2616 // Any additional cases recognized here should also be handled by
2617 // diagnoseExprIntendedAsTemplateName.
2618 return false;
2619 }
2620 void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
2621 SourceLocation Less,
2622 SourceLocation Greater);
2623
2624 void warnOnReservedIdentifier(const NamedDecl *D);
2625
2626 Decl *ActOnDeclarator(Scope *S, Declarator &D);
2627
2628 NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
2629 MultiTemplateParamsArg TemplateParameterLists);
2630 bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
2631 QualType &T, SourceLocation Loc,
2632 unsigned FailedFoldDiagID);
2633 void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
2634 bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
2635 bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
2636 DeclarationName Name, SourceLocation Loc,
2637 bool IsTemplateId);
2638 void
2639 diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2640 SourceLocation FallbackLoc,
2641 SourceLocation ConstQualLoc = SourceLocation(),
2642 SourceLocation VolatileQualLoc = SourceLocation(),
2643 SourceLocation RestrictQualLoc = SourceLocation(),
2644 SourceLocation AtomicQualLoc = SourceLocation(),
2645 SourceLocation UnalignedQualLoc = SourceLocation());
2646
2647 static bool adjustContextForLocalExternDecl(DeclContext *&DC);
2648 void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
2649 NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
2650 const LookupResult &R);
2651 NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
2652 NamedDecl *getShadowedDeclaration(const BindingDecl *D,
2653 const LookupResult &R);
2654 void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
2655 const LookupResult &R);
2656 void CheckShadow(Scope *S, VarDecl *D);
2657
2658 /// Warn if 'E', which is an expression that is about to be modified, refers
2659 /// to a shadowing declaration.
2660 void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
2661
2662 void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
2663
2664private:
2665 /// Map of current shadowing declarations to shadowed declarations. Warn if
2666 /// it looks like the user is trying to modify the shadowing declaration.
2667 llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
2668
2669public:
2670 void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
2671 void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
2672 void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
2673 TypedefNameDecl *NewTD);
2674 void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
2675 NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2676 TypeSourceInfo *TInfo,
2677 LookupResult &Previous);
2678 NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
2679 LookupResult &Previous, bool &Redeclaration);
2680 NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2681 TypeSourceInfo *TInfo,
2682 LookupResult &Previous,
2683 MultiTemplateParamsArg TemplateParamLists,
2684 bool &AddToScope,
2685 ArrayRef<BindingDecl *> Bindings = None);
2686 NamedDecl *
2687 ActOnDecompositionDeclarator(Scope *S, Declarator &D,
2688 MultiTemplateParamsArg TemplateParamLists);
2689 // Returns true if the variable declaration is a redeclaration
2690 bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
2691 void CheckVariableDeclarationType(VarDecl *NewVD);
2692 bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
2693 Expr *Init);
2694 void CheckCompleteVariableDeclaration(VarDecl *VD);
2695 void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
2696 void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
2697
2698 NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2699 TypeSourceInfo *TInfo,
2700 LookupResult &Previous,
2701 MultiTemplateParamsArg TemplateParamLists,
2702 bool &AddToScope);
2703 bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
2704
2705 enum class CheckConstexprKind {
2706 /// Diagnose issues that are non-constant or that are extensions.
2707 Diagnose,
2708 /// Identify whether this function satisfies the formal rules for constexpr
2709 /// functions in the current lanugage mode (with no extensions).
2710 CheckValid
2711 };
2712
2713 bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
2714 CheckConstexprKind Kind);
2715
2716 void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
2717 void FindHiddenVirtualMethods(CXXMethodDecl *MD,
2718 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2719 void NoteHiddenVirtualMethods(CXXMethodDecl *MD,
2720 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2721 // Returns true if the function declaration is a redeclaration
2722 bool CheckFunctionDeclaration(Scope *S,
2723 FunctionDecl *NewFD, LookupResult &Previous,
2724 bool IsMemberSpecialization);
2725 bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
2726 bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
2727 QualType NewT, QualType OldT);
2728 void CheckMain(FunctionDecl *FD, const DeclSpec &D);
2729 void CheckMSVCRTEntryPoint(FunctionDecl *FD);
2730 Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
2731 bool IsDefinition);
2732 void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
2733 Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
2734 ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
2735 SourceLocation Loc,
2736 QualType T);
2737 ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
2738 SourceLocation NameLoc, IdentifierInfo *Name,
2739 QualType T, TypeSourceInfo *TSInfo,
2740 StorageClass SC);
2741 void ActOnParamDefaultArgument(Decl *param,
2742 SourceLocation EqualLoc,
2743 Expr *defarg);
2744 void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc,
2745 SourceLocation ArgLoc);
2746 void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc);
2747 ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2748 SourceLocation EqualLoc);
2749 void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2750 SourceLocation EqualLoc);
2751
2752 // Contexts where using non-trivial C union types can be disallowed. This is
2753 // passed to err_non_trivial_c_union_in_invalid_context.
2754 enum NonTrivialCUnionContext {
2755 // Function parameter.
2756 NTCUC_FunctionParam,
2757 // Function return.
2758 NTCUC_FunctionReturn,
2759 // Default-initialized object.
2760 NTCUC_DefaultInitializedObject,
2761 // Variable with automatic storage duration.
2762 NTCUC_AutoVar,
2763 // Initializer expression that might copy from another object.
2764 NTCUC_CopyInit,
2765 // Assignment.
2766 NTCUC_Assignment,
2767 // Compound literal.
2768 NTCUC_CompoundLiteral,
2769 // Block capture.
2770 NTCUC_BlockCapture,
2771 // lvalue-to-rvalue conversion of volatile type.
2772 NTCUC_LValueToRValueVolatile,
2773 };
2774
2775 /// Emit diagnostics if the initializer or any of its explicit or
2776 /// implicitly-generated subexpressions require copying or
2777 /// default-initializing a type that is or contains a C union type that is
2778 /// non-trivial to copy or default-initialize.
2779 void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
2780
2781 // These flags are passed to checkNonTrivialCUnion.
2782 enum NonTrivialCUnionKind {
2783 NTCUK_Init = 0x1,
2784 NTCUK_Destruct = 0x2,
2785 NTCUK_Copy = 0x4,
2786 };
2787
2788 /// Emit diagnostics if a non-trivial C union type or a struct that contains
2789 /// a non-trivial C union is used in an invalid context.
2790 void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
2791 NonTrivialCUnionContext UseContext,
2792 unsigned NonTrivialKind);
2793
2794 void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
2795 void ActOnUninitializedDecl(Decl *dcl);
2796 void ActOnInitializerError(Decl *Dcl);
2797
2798 void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
2799 void ActOnCXXForRangeDecl(Decl *D);
2800 StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
2801 IdentifierInfo *Ident,
2802 ParsedAttributes &Attrs,
2803 SourceLocation AttrEnd);
2804 void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
2805 void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
2806 void CheckStaticLocalForDllExport(VarDecl *VD);
2807 void FinalizeDeclaration(Decl *D);
2808 DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2809 ArrayRef<Decl *> Group);
2810 DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
2811
2812 /// Should be called on all declarations that might have attached
2813 /// documentation comments.
2814 void ActOnDocumentableDecl(Decl *D);
2815 void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
2816
2817 void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2818 SourceLocation LocAfterDecls);
2819 void CheckForFunctionRedefinition(
2820 FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
2821 SkipBodyInfo *SkipBody = nullptr);
2822 Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
2823 MultiTemplateParamsArg TemplateParamLists,
2824 SkipBodyInfo *SkipBody = nullptr);
2825 Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
2826 SkipBodyInfo *SkipBody = nullptr);
2827 void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
2828 ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
2829 ExprResult ActOnRequiresClause(ExprResult ConstraintExpr);
2830 void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
2831 bool isObjCMethodDecl(Decl *D) {
2832 return D && isa<ObjCMethodDecl>(D);
2833 }
2834
2835 /// Determine whether we can delay parsing the body of a function or
2836 /// function template until it is used, assuming we don't care about emitting
2837 /// code for that function.
2838 ///
2839 /// This will be \c false if we may need the body of the function in the
2840 /// middle of parsing an expression (where it's impractical to switch to
2841 /// parsing a different function), for instance, if it's constexpr in C++11
2842 /// or has an 'auto' return type in C++14. These cases are essentially bugs.
2843 bool canDelayFunctionBody(const Declarator &D);
2844
2845 /// Determine whether we can skip parsing the body of a function
2846 /// definition, assuming we don't care about analyzing its body or emitting
2847 /// code for that function.
2848 ///
2849 /// This will be \c false only if we may need the body of the function in
2850 /// order to parse the rest of the program (for instance, if it is
2851 /// \c constexpr in C++11 or has an 'auto' return type in C++14).
2852 bool canSkipFunctionBody(Decl *D);
2853
2854 void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
2855 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
2856 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
2857 Decl *ActOnSkippedFunctionBody(Decl *Decl);
2858 void ActOnFinishInlineFunctionDef(FunctionDecl *D);
2859
2860 /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
2861 /// attribute for which parsing is delayed.
2862 void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
2863
2864 /// Diagnose any unused parameters in the given sequence of
2865 /// ParmVarDecl pointers.
2866 void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
2867
2868 /// Diagnose whether the size of parameters or return value of a
2869 /// function or obj-c method definition is pass-by-value and larger than a
2870 /// specified threshold.
2871 void
2872 DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
2873 QualType ReturnTy, NamedDecl *D);
2874
2875 void DiagnoseInvalidJumps(Stmt *Body);
2876 Decl *ActOnFileScopeAsmDecl(Expr *expr,
2877 SourceLocation AsmLoc,
2878 SourceLocation RParenLoc);
2879
2880 /// Handle a C++11 empty-declaration and attribute-declaration.
2881 Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
2882 SourceLocation SemiLoc);
2883
2884 enum class ModuleDeclKind {
2885 Interface, ///< 'export module X;'
2886 Implementation, ///< 'module X;'
2887 };
2888
2889 /// The parser has processed a module-declaration that begins the definition
2890 /// of a module interface or implementation.
2891 DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
2892 SourceLocation ModuleLoc, ModuleDeclKind MDK,
2893 ModuleIdPath Path, bool IsFirstDecl);
2894
2895 /// The parser has processed a global-module-fragment declaration that begins
2896 /// the definition of the global module fragment of the current module unit.
2897 /// \param ModuleLoc The location of the 'module' keyword.
2898 DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
2899
2900 /// The parser has processed a private-module-fragment declaration that begins
2901 /// the definition of the private module fragment of the current module unit.
2902 /// \param ModuleLoc The location of the 'module' keyword.
2903 /// \param PrivateLoc The location of the 'private' keyword.
2904 DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
2905 SourceLocation PrivateLoc);
2906
2907 /// The parser has processed a module import declaration.
2908 ///
2909 /// \param StartLoc The location of the first token in the declaration. This
2910 /// could be the location of an '@', 'export', or 'import'.
2911 /// \param ExportLoc The location of the 'export' keyword, if any.
2912 /// \param ImportLoc The location of the 'import' keyword.
2913 /// \param Path The module access path.
2914 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2915 SourceLocation ExportLoc,
2916 SourceLocation ImportLoc, ModuleIdPath Path);
2917 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2918 SourceLocation ExportLoc,
2919 SourceLocation ImportLoc, Module *M,
2920 ModuleIdPath Path = {});
2921
2922 /// The parser has processed a module import translated from a
2923 /// #include or similar preprocessing directive.
2924 void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2925 void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2926
2927 /// The parsed has entered a submodule.
2928 void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
2929 /// The parser has left a submodule.
2930 void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
2931
2932 /// Create an implicit import of the given module at the given
2933 /// source location, for error recovery, if possible.
2934 ///
2935 /// This routine is typically used when an entity found by name lookup
2936 /// is actually hidden within a module that we know about but the user
2937 /// has forgotten to import.
2938 void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
2939 Module *Mod);
2940
2941 /// Kinds of missing import. Note, the values of these enumerators correspond
2942 /// to %select values in diagnostics.
2943 enum class MissingImportKind {
2944 Declaration,
2945 Definition,
2946 DefaultArgument,
2947 ExplicitSpecialization,
2948 PartialSpecialization
2949 };
2950
2951 /// Diagnose that the specified declaration needs to be visible but
2952 /// isn't, and suggest a module import that would resolve the problem.
2953 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2954 MissingImportKind MIK, bool Recover = true);
2955 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2956 SourceLocation DeclLoc, ArrayRef<Module *> Modules,
2957 MissingImportKind MIK, bool Recover);
2958
2959 Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
2960 SourceLocation LBraceLoc);
2961 Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
2962 SourceLocation RBraceLoc);
2963
2964 /// We've found a use of a templated declaration that would trigger an
2965 /// implicit instantiation. Check that any relevant explicit specializations
2966 /// and partial specializations are visible, and diagnose if not.
2967 void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
2968
2969 /// Retrieve a suitable printing policy for diagnostics.
2970 PrintingPolicy getPrintingPolicy() const {
2971 return getPrintingPolicy(Context, PP);
2972 }
2973
2974 /// Retrieve a suitable printing policy for diagnostics.
2975 static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
2976 const Preprocessor &PP);
2977
2978 /// Scope actions.
2979 void ActOnPopScope(SourceLocation Loc, Scope *S);
2980 void ActOnTranslationUnitScope(Scope *S);
2981
2982 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2983 RecordDecl *&AnonRecord);
2984 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2985 MultiTemplateParamsArg TemplateParams,
2986 bool IsExplicitInstantiation,
2987 RecordDecl *&AnonRecord);
2988
2989 Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2990 AccessSpecifier AS,
2991 RecordDecl *Record,
2992 const PrintingPolicy &Policy);
2993
2994 Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2995 RecordDecl *Record);
2996
2997 /// Common ways to introduce type names without a tag for use in diagnostics.
2998 /// Keep in sync with err_tag_reference_non_tag.
2999 enum NonTagKind {
3000 NTK_NonStruct,
3001 NTK_NonClass,
3002 NTK_NonUnion,
3003 NTK_NonEnum,
3004 NTK_Typedef,
3005 NTK_TypeAlias,
3006 NTK_Template,
3007 NTK_TypeAliasTemplate,
3008 NTK_TemplateTemplateArgument,
3009 };
3010
3011 /// Given a non-tag type declaration, returns an enum useful for indicating
3012 /// what kind of non-tag type this is.
3013 NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
3014
3015 bool isAcceptableTagRedeclaration(const TagDecl *Previous,
3016 TagTypeKind NewTag, bool isDefinition,
3017 SourceLocation NewTagLoc,
3018 const IdentifierInfo *Name);
3019
3020 enum TagUseKind {
3021 TUK_Reference, // Reference to a tag: 'struct foo *X;'
3022 TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
3023 TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
3024 TUK_Friend // Friend declaration: 'friend struct foo;'
3025 };
3026
3027 Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3028 SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name,
3029 SourceLocation NameLoc, const ParsedAttributesView &Attr,
3030 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
3031 MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
3032 bool &IsDependent, SourceLocation ScopedEnumKWLoc,
3033 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
3034 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
3035 SkipBodyInfo *SkipBody = nullptr);
3036
3037 Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
3038 unsigned TagSpec, SourceLocation TagLoc,
3039 CXXScopeSpec &SS, IdentifierInfo *Name,
3040 SourceLocation NameLoc,
3041 const ParsedAttributesView &Attr,
3042 MultiTemplateParamsArg TempParamLists);
3043
3044 TypeResult ActOnDependentTag(Scope *S,
3045 unsigned TagSpec,
3046 TagUseKind TUK,
3047 const CXXScopeSpec &SS,
3048 IdentifierInfo *Name,
3049 SourceLocation TagLoc,
3050 SourceLocation NameLoc);
3051
3052 void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3053 IdentifierInfo *ClassName,
3054 SmallVectorImpl<Decl *> &Decls);
3055 Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
3056 Declarator &D, Expr *BitfieldWidth);
3057
3058 FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
3059 Declarator &D, Expr *BitfieldWidth,
3060 InClassInitStyle InitStyle,
3061 AccessSpecifier AS);
3062 MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
3063 SourceLocation DeclStart, Declarator &D,
3064 Expr *BitfieldWidth,
3065 InClassInitStyle InitStyle,
3066 AccessSpecifier AS,
3067 const ParsedAttr &MSPropertyAttr);
3068
3069 FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
3070 TypeSourceInfo *TInfo,
3071 RecordDecl *Record, SourceLocation Loc,
3072 bool Mutable, Expr *BitfieldWidth,
3073 InClassInitStyle InitStyle,
3074 SourceLocation TSSL,
3075 AccessSpecifier AS, NamedDecl *PrevDecl,
3076 Declarator *D = nullptr);
3077
3078 bool CheckNontrivialField(FieldDecl *FD);
3079 void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM);
3080
3081 enum TrivialABIHandling {
3082 /// The triviality of a method unaffected by "trivial_abi".
3083 TAH_IgnoreTrivialABI,
3084
3085 /// The triviality of a method affected by "trivial_abi".
3086 TAH_ConsiderTrivialABI
3087 };
3088
3089 bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
3090 TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
3091 bool Diagnose = false);
3092
3093 /// For a defaulted function, the kind of defaulted function that it is.
3094 class DefaultedFunctionKind {
3095 CXXSpecialMember SpecialMember : 8;
3096 DefaultedComparisonKind Comparison : 8;
3097
3098 public:
3099 DefaultedFunctionKind()
3100 : SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) {
3101 }
3102 DefaultedFunctionKind(CXXSpecialMember CSM)
3103 : SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {}
3104 DefaultedFunctionKind(DefaultedComparisonKind Comp)
3105 : SpecialMember(CXXInvalid), Comparison(Comp) {}
3106
3107 bool isSpecialMember() const { return SpecialMember != CXXInvalid; }
3108 bool isComparison() const {
3109 return Comparison != DefaultedComparisonKind::None;
3110 }
3111
3112 explicit operator bool() const {
3113 return isSpecialMember() || isComparison();
3114 }
3115
3116 CXXSpecialMember asSpecialMember() const { return SpecialMember; }
3117 DefaultedComparisonKind asComparison() const { return Comparison; }
3118
3119 /// Get the index of this function kind for use in diagnostics.
3120 unsigned getDiagnosticIndex() const {
3121 static_assert(CXXInvalid > CXXDestructor,
3122 "invalid should have highest index");
3123 static_assert((unsigned)DefaultedComparisonKind::None == 0,
3124 "none should be equal to zero");
3125 return SpecialMember + (unsigned)Comparison;
3126 }
3127 };
3128
3129 DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
3130
3131 CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) {
3132 return getDefaultedFunctionKind(MD).asSpecialMember();
3133 }
3134 DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
3135 return getDefaultedFunctionKind(FD).asComparison();
3136 }
3137
3138 void ActOnLastBitfield(SourceLocation DeclStart,
3139 SmallVectorImpl<Decl *> &AllIvarDecls);
3140 Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
3141 Declarator &D, Expr *BitfieldWidth,
3142 tok::ObjCKeywordKind visibility);
3143
3144 // This is used for both record definitions and ObjC interface declarations.
3145 void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
3146 ArrayRef<Decl *> Fields, SourceLocation LBrac,
3147 SourceLocation RBrac, const ParsedAttributesView &AttrList);
3148
3149 /// ActOnTagStartDefinition - Invoked when we have entered the
3150 /// scope of a tag's definition (e.g., for an enumeration, class,
3151 /// struct, or union).
3152 void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
3153
3154 /// Perform ODR-like check for C/ObjC when merging tag types from modules.
3155 /// Differently from C++, actually parse the body and reject / error out
3156 /// in case of a structural mismatch.
3157 bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
3158 SkipBodyInfo &SkipBody);
3159
3160 typedef void *SkippedDefinitionContext;
3161
3162 /// Invoked when we enter a tag definition that we're skipping.
3163 SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
3164
3165 Decl *ActOnObjCContainerStartDefinition(Decl *IDecl);
3166
3167 /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
3168 /// C++ record definition's base-specifiers clause and are starting its
3169 /// member declarations.
3170 void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
3171 SourceLocation FinalLoc,
3172 bool IsFinalSpelledSealed,
3173 bool IsAbstract,
3174 SourceLocation LBraceLoc);
3175
3176 /// ActOnTagFinishDefinition - Invoked once we have finished parsing
3177 /// the definition of a tag (enumeration, class, struct, or union).
3178 void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
3179 SourceRange BraceRange);
3180
3181 void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
3182
3183 void ActOnObjCContainerFinishDefinition();
3184
3185 /// Invoked when we must temporarily exit the objective-c container
3186 /// scope for parsing/looking-up C constructs.
3187 ///
3188 /// Must be followed by a call to \see ActOnObjCReenterContainerContext
3189 void ActOnObjCTemporaryExitContainerContext(DeclContext *DC);
3190 void ActOnObjCReenterContainerContext(DeclContext *DC);
3191
3192 /// ActOnTagDefinitionError - Invoked when there was an unrecoverable
3193 /// error parsing the definition of a tag.
3194 void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
3195
3196 EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
3197 EnumConstantDecl *LastEnumConst,
3198 SourceLocation IdLoc,
3199 IdentifierInfo *Id,
3200 Expr *val);
3201 bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
3202 bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
3203 QualType EnumUnderlyingTy, bool IsFixed,
3204 const EnumDecl *Prev);
3205
3206 /// Determine whether the body of an anonymous enumeration should be skipped.
3207 /// \param II The name of the first enumerator.
3208 SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
3209 SourceLocation IILoc);
3210
3211 Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
3212 SourceLocation IdLoc, IdentifierInfo *Id,
3213 const ParsedAttributesView &Attrs,
3214 SourceLocation EqualLoc, Expr *Val);
3215 void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
3216 Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
3217 const ParsedAttributesView &Attr);
3218
3219 /// Set the current declaration context until it gets popped.
3220 void PushDeclContext(Scope *S, DeclContext *DC);
3221 void PopDeclContext();
3222
3223 /// EnterDeclaratorContext - Used when we must lookup names in the context
3224 /// of a declarator's nested name specifier.
3225 void EnterDeclaratorContext(Scope *S, DeclContext *DC);
3226 void ExitDeclaratorContext(Scope *S);
3227
3228 /// Enter a template parameter scope, after it's been associated with a particular
3229 /// DeclContext. Causes lookup within the scope to chain through enclosing contexts
3230 /// in the correct order.
3231 void EnterTemplatedContext(Scope *S, DeclContext *DC);
3232
3233 /// Push the parameters of D, which must be a function, into scope.
3234 void ActOnReenterFunctionContext(Scope* S, Decl* D);
3235 void ActOnExitFunctionContext();
3236
3237 DeclContext *getFunctionLevelDeclContext();
3238
3239 /// getCurFunctionDecl - If inside of a function body, this returns a pointer
3240 /// to the function decl for the function being parsed. If we're currently
3241 /// in a 'block', this returns the containing context.
3242 FunctionDecl *getCurFunctionDecl();
3243
3244 /// getCurMethodDecl - If inside of a method body, this returns a pointer to
3245 /// the method decl for the method being parsed. If we're currently
3246 /// in a 'block', this returns the containing context.
3247 ObjCMethodDecl *getCurMethodDecl();
3248
3249 /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
3250 /// or C function we're in, otherwise return null. If we're currently
3251 /// in a 'block', this returns the containing context.
3252 NamedDecl *getCurFunctionOrMethodDecl();
3253
3254 /// Add this decl to the scope shadowed decl chains.
3255 void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
3256
3257 /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
3258 /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
3259 /// true if 'D' belongs to the given declaration context.
3260 ///
3261 /// \param AllowInlineNamespace If \c true, allow the declaration to be in the
3262 /// enclosing namespace set of the context, rather than contained
3263 /// directly within it.
3264 bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
3265 bool AllowInlineNamespace = false);
3266
3267 /// Finds the scope corresponding to the given decl context, if it
3268 /// happens to be an enclosing scope. Otherwise return NULL.
3269 static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
3270
3271 /// Subroutines of ActOnDeclarator().
3272 TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3273 TypeSourceInfo *TInfo);
3274 bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
3275
3276 /// Describes the kind of merge to perform for availability
3277 /// attributes (including "deprecated", "unavailable", and "availability").
3278 enum AvailabilityMergeKind {
3279 /// Don't merge availability attributes at all.
3280 AMK_None,
3281 /// Merge availability attributes for a redeclaration, which requires
3282 /// an exact match.
3283 AMK_Redeclaration,
3284 /// Merge availability attributes for an override, which requires
3285 /// an exact match or a weakening of constraints.
3286 AMK_Override,
3287 /// Merge availability attributes for an implementation of
3288 /// a protocol requirement.
3289 AMK_ProtocolImplementation,
3290 /// Merge availability attributes for an implementation of
3291 /// an optional protocol requirement.
3292 AMK_OptionalProtocolImplementation
3293 };
3294
3295 /// Describes the kind of priority given to an availability attribute.
3296 ///
3297 /// The sum of priorities deteremines the final priority of the attribute.
3298 /// The final priority determines how the attribute will be merged.
3299 /// An attribute with a lower priority will always remove higher priority
3300 /// attributes for the specified platform when it is being applied. An
3301 /// attribute with a higher priority will not be applied if the declaration
3302 /// already has an availability attribute with a lower priority for the
3303 /// specified platform. The final prirority values are not expected to match
3304 /// the values in this enumeration, but instead should be treated as a plain
3305 /// integer value. This enumeration just names the priority weights that are
3306 /// used to calculate that final vaue.
3307 enum AvailabilityPriority : int {
3308 /// The availability attribute was specified explicitly next to the
3309 /// declaration.
3310 AP_Explicit = 0,
3311
3312 /// The availability attribute was applied using '#pragma clang attribute'.
3313 AP_PragmaClangAttribute = 1,
3314
3315 /// The availability attribute for a specific platform was inferred from
3316 /// an availability attribute for another platform.
3317 AP_InferredFromOtherPlatform = 2
3318 };
3319
3320 /// Attribute merging methods. Return true if a new attribute was added.
3321 AvailabilityAttr *
3322 mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI,
3323 IdentifierInfo *Platform, bool Implicit,
3324 VersionTuple Introduced, VersionTuple Deprecated,
3325 VersionTuple Obsoleted, bool IsUnavailable,
3326 StringRef Message, bool IsStrict, StringRef Replacement,
3327 AvailabilityMergeKind AMK, int Priority);
3328 TypeVisibilityAttr *
3329 mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3330 TypeVisibilityAttr::VisibilityType Vis);
3331 VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3332 VisibilityAttr::VisibilityType Vis);
3333 UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
3334 StringRef UuidAsWritten, MSGuidDecl *GuidDecl);
3335 DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
3336 DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
3337 MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
3338 const AttributeCommonInfo &CI,
3339 bool BestCase,
3340 MSInheritanceModel Model);
3341 ErrorAttr *mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
3342 StringRef NewUserDiagnostic);
3343 FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3344 IdentifierInfo *Format, int FormatIdx,
3345 int FirstArg);
3346 SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3347 StringRef Name);
3348 CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3349 StringRef Name);
3350 AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
3351 const AttributeCommonInfo &CI,
3352 const IdentifierInfo *Ident);
3353 MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
3354 SwiftNameAttr *mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
3355 StringRef Name);
3356 OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
3357 const AttributeCommonInfo &CI);
3358 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
3359 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
3360 const InternalLinkageAttr &AL);
3361 WebAssemblyImportNameAttr *mergeImportNameAttr(
3362 Decl *D, const WebAssemblyImportNameAttr &AL);
3363 WebAssemblyImportModuleAttr *mergeImportModuleAttr(
3364 Decl *D, const WebAssemblyImportModuleAttr &AL);
3365 EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL);
3366 EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D,
3367 const EnforceTCBLeafAttr &AL);
3368 BTFTagAttr *mergeBTFTagAttr(Decl *D, const BTFTagAttr &AL);
3369
3370 void mergeDeclAttributes(NamedDecl *New, Decl *Old,
3371 AvailabilityMergeKind AMK = AMK_Redeclaration);
3372 void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
3373 LookupResult &OldDecls);
3374 bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
3375 bool MergeTypeWithOld);
3376 bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3377 Scope *S, bool MergeTypeWithOld);
3378 void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
3379 void MergeVarDecl(VarDecl *New, LookupResult &Previous);
3380 void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
3381 void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
3382 bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
3383 void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
3384 bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
3385
3386 // AssignmentAction - This is used by all the assignment diagnostic functions
3387 // to represent what is actually causing the operation
3388 enum AssignmentAction {
3389 AA_Assigning,
3390 AA_Passing,
3391 AA_Returning,
3392 AA_Converting,
3393 AA_Initializing,
3394 AA_Sending,
3395 AA_Casting,
3396 AA_Passing_CFAudited
3397 };
3398
3399 /// C++ Overloading.
3400 enum OverloadKind {
3401 /// This is a legitimate overload: the existing declarations are
3402 /// functions or function templates with different signatures.
3403 Ovl_Overload,
3404
3405 /// This is not an overload because the signature exactly matches
3406 /// an existing declaration.
3407 Ovl_Match,
3408
3409 /// This is not an overload because the lookup results contain a
3410 /// non-function.
3411 Ovl_NonFunction
3412 };
3413 OverloadKind CheckOverload(Scope *S,
3414 FunctionDecl *New,
3415 const LookupResult &OldDecls,
3416 NamedDecl *&OldDecl,
3417 bool IsForUsingDecl);
3418 bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl,
3419 bool ConsiderCudaAttrs = true,
3420 bool ConsiderRequiresClauses = true);
3421
3422 enum class AllowedExplicit {
3423 /// Allow no explicit functions to be used.
3424 None,
3425 /// Allow explicit conversion functions but not explicit constructors.
3426 Conversions,
3427 /// Allow both explicit conversion functions and explicit constructors.
3428 All
3429 };
3430
3431 ImplicitConversionSequence
3432 TryImplicitConversion(Expr *From, QualType ToType,
3433 bool SuppressUserConversions,
3434 AllowedExplicit AllowExplicit,
3435 bool InOverloadResolution,
3436 bool CStyle,
3437 bool AllowObjCWritebackConversion);
3438
3439 bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
3440 bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
3441 bool IsComplexPromotion(QualType FromType, QualType ToType);
3442 bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
3443 bool InOverloadResolution,
3444 QualType& ConvertedType, bool &IncompatibleObjC);
3445 bool isObjCPointerConversion(QualType FromType, QualType ToType,
3446 QualType& ConvertedType, bool &IncompatibleObjC);
3447 bool isObjCWritebackConversion(QualType FromType, QualType ToType,
3448 QualType &ConvertedType);
3449 bool IsBlockPointerConversion(QualType FromType, QualType ToType,
3450 QualType& ConvertedType);
3451 bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
3452 const FunctionProtoType *NewType,
3453 unsigned *ArgPos = nullptr);
3454 void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
3455 QualType FromType, QualType ToType);
3456
3457 void maybeExtendBlockObject(ExprResult &E);
3458 CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
3459 bool CheckPointerConversion(Expr *From, QualType ToType,
3460 CastKind &Kind,
3461 CXXCastPath& BasePath,
3462 bool IgnoreBaseAccess,
3463 bool Diagnose = true);
3464 bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
3465 bool InOverloadResolution,
3466 QualType &ConvertedType);
3467 bool CheckMemberPointerConversion(Expr *From, QualType ToType,
3468 CastKind &Kind,
3469 CXXCastPath &BasePath,
3470 bool IgnoreBaseAccess);
3471 bool IsQualificationConversion(QualType FromType, QualType ToType,
3472 bool CStyle, bool &ObjCLifetimeConversion);
3473 bool IsFunctionConversion(QualType FromType, QualType ToType,
3474 QualType &ResultTy);
3475 bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
3476 bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg);
3477
3478 bool CanPerformAggregateInitializationForOverloadResolution(
3479 const InitializedEntity &Entity, InitListExpr *From);
3480
3481 bool IsStringInit(Expr *Init, const ArrayType *AT);
3482
3483 bool CanPerformCopyInitialization(const InitializedEntity &Entity,
3484 ExprResult Init);
3485 ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
3486 SourceLocation EqualLoc,
3487 ExprResult Init,
3488 bool TopLevelOfInitList = false,
3489 bool AllowExplicit = false);
3490 ExprResult PerformObjectArgumentInitialization(Expr *From,
3491 NestedNameSpecifier *Qualifier,
3492 NamedDecl *FoundDecl,
3493 CXXMethodDecl *Method);
3494
3495 /// Check that the lifetime of the initializer (and its subobjects) is
3496 /// sufficient for initializing the entity, and perform lifetime extension
3497 /// (when permitted) if not.
3498 void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
3499
3500 ExprResult PerformContextuallyConvertToBool(Expr *From);
3501 ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
3502
3503 /// Contexts in which a converted constant expression is required.
3504 enum CCEKind {
3505 CCEK_CaseValue, ///< Expression in a case label.
3506 CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
3507 CCEK_TemplateArg, ///< Value of a non-type template parameter.
3508 CCEK_ArrayBound, ///< Array bound in array declarator or new-expression.
3509 CCEK_ExplicitBool, ///< Condition in an explicit(bool) specifier.
3510 CCEK_Noexcept ///< Condition in a noexcept(bool) specifier.
3511 };
3512 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3513 llvm::APSInt &Value, CCEKind CCE);
3514 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3515 APValue &Value, CCEKind CCE,
3516 NamedDecl *Dest = nullptr);
3517
3518 /// Abstract base class used to perform a contextual implicit
3519 /// conversion from an expression to any type passing a filter.
3520 class ContextualImplicitConverter {
3521 public:
3522 bool Suppress;
3523 bool SuppressConversion;
3524
3525 ContextualImplicitConverter(bool Suppress = false,
3526 bool SuppressConversion = false)
3527 : Suppress(Suppress), SuppressConversion(SuppressConversion) {}
3528
3529 /// Determine whether the specified type is a valid destination type
3530 /// for this conversion.
3531 virtual bool match(QualType T) = 0;
3532
3533 /// Emits a diagnostic complaining that the expression does not have
3534 /// integral or enumeration type.
3535 virtual SemaDiagnosticBuilder
3536 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0;
3537
3538 /// Emits a diagnostic when the expression has incomplete class type.
3539 virtual SemaDiagnosticBuilder
3540 diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
3541
3542 /// Emits a diagnostic when the only matching conversion function
3543 /// is explicit.
3544 virtual SemaDiagnosticBuilder diagnoseExplicitConv(
3545 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3546
3547 /// Emits a note for the explicit conversion function.
3548 virtual SemaDiagnosticBuilder
3549 noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3550
3551 /// Emits a diagnostic when there are multiple possible conversion
3552 /// functions.
3553 virtual SemaDiagnosticBuilder
3554 diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0;
3555
3556 /// Emits a note for one of the candidate conversions.
3557 virtual SemaDiagnosticBuilder
3558 noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3559
3560 /// Emits a diagnostic when we picked a conversion function
3561 /// (for cases when we are not allowed to pick a conversion function).
3562 virtual SemaDiagnosticBuilder diagnoseConversion(
3563 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3564
3565 virtual ~ContextualImplicitConverter() {}
3566 };
3567
3568 class ICEConvertDiagnoser : public ContextualImplicitConverter {
3569 bool AllowScopedEnumerations;
3570
3571 public:
3572 ICEConvertDiagnoser(bool AllowScopedEnumerations,
3573 bool Suppress, bool SuppressConversion)
3574 : ContextualImplicitConverter(Suppress, SuppressConversion),
3575 AllowScopedEnumerations(AllowScopedEnumerations) {}
3576
3577 /// Match an integral or (possibly scoped) enumeration type.
3578 bool match(QualType T) override;
3579
3580 SemaDiagnosticBuilder
3581 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override {
3582 return diagnoseNotInt(S, Loc, T);
3583 }
3584
3585 /// Emits a diagnostic complaining that the expression does not have
3586 /// integral or enumeration type.
3587 virtual SemaDiagnosticBuilder
3588 diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0;
3589 };
3590
3591 /// Perform a contextual implicit conversion.
3592 ExprResult PerformContextualImplicitConversion(
3593 SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter);
3594
3595
3596 enum ObjCSubscriptKind {
3597 OS_Array,
3598 OS_Dictionary,
3599 OS_Error
3600 };
3601 ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE);
3602
3603 // Note that LK_String is intentionally after the other literals, as
3604 // this is used for diagnostics logic.
3605 enum ObjCLiteralKind {
3606 LK_Array,
3607 LK_Dictionary,
3608 LK_Numeric,
3609 LK_Boxed,
3610 LK_String,
3611 LK_Block,
3612 LK_None
3613 };
3614 ObjCLiteralKind CheckLiteralKind(Expr *FromE);
3615
3616 ExprResult PerformObjectMemberConversion(Expr *From,
3617 NestedNameSpecifier *Qualifier,
3618 NamedDecl *FoundDecl,
3619 NamedDecl *Member);
3620
3621 // Members have to be NamespaceDecl* or TranslationUnitDecl*.
3622 // TODO: make this is a typesafe union.
3623 typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
3624 typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
3625
3626 using ADLCallKind = CallExpr::ADLCallKind;
3627
3628 void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl,
3629 ArrayRef<Expr *> Args,
3630 OverloadCandidateSet &CandidateSet,
3631 bool SuppressUserConversions = false,
3632 bool PartialOverloading = false,
3633 bool AllowExplicit = true,
3634 bool AllowExplicitConversion = false,
3635 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3636 ConversionSequenceList EarlyConversions = None,
3637 OverloadCandidateParamOrder PO = {});
3638 void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
3639 ArrayRef<Expr *> Args,
3640 OverloadCandidateSet &CandidateSet,
3641 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
3642 bool SuppressUserConversions = false,
3643 bool PartialOverloading = false,
3644 bool FirstArgumentIsBase = false);
3645 void AddMethodCandidate(DeclAccessPair FoundDecl,
3646 QualType ObjectType,
3647 Expr::Classification ObjectClassification,
3648 ArrayRef<Expr *> Args,
3649 OverloadCandidateSet& CandidateSet,
3650 bool SuppressUserConversion = false,
3651 OverloadCandidateParamOrder PO = {});
3652 void AddMethodCandidate(CXXMethodDecl *Method,
3653 DeclAccessPair FoundDecl,
3654 CXXRecordDecl *ActingContext, QualType ObjectType,
3655 Expr::Classification ObjectClassification,
3656 ArrayRef<Expr *> Args,
3657 OverloadCandidateSet& CandidateSet,
3658 bool SuppressUserConversions = false,
3659 bool PartialOverloading = false,
3660 ConversionSequenceList EarlyConversions = None,
3661 OverloadCandidateParamOrder PO = {});
3662 void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3663 DeclAccessPair FoundDecl,
3664 CXXRecordDecl *ActingContext,
3665 TemplateArgumentListInfo *ExplicitTemplateArgs,
3666 QualType ObjectType,
3667 Expr::Classification ObjectClassification,
3668 ArrayRef<Expr *> Args,
3669 OverloadCandidateSet& CandidateSet,
3670 bool SuppressUserConversions = false,
3671 bool PartialOverloading = false,
3672 OverloadCandidateParamOrder PO = {});
3673 void AddTemplateOverloadCandidate(
3674 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3675 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3676 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
3677 bool PartialOverloading = false, bool AllowExplicit = true,
3678 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3679 OverloadCandidateParamOrder PO = {});
3680 bool CheckNonDependentConversions(
3681 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
3682 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
3683 ConversionSequenceList &Conversions, bool SuppressUserConversions,
3684 CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
3685 Expr::Classification ObjectClassification = {},
3686 OverloadCandidateParamOrder PO = {});
3687 void AddConversionCandidate(
3688 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
3689 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3690 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3691 bool AllowExplicit, bool AllowResultConversion = true);
3692 void AddTemplateConversionCandidate(
3693 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3694 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3695 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3696 bool AllowExplicit, bool AllowResultConversion = true);
3697 void AddSurrogateCandidate(CXXConversionDecl *Conversion,
3698 DeclAccessPair FoundDecl,
3699 CXXRecordDecl *ActingContext,
3700 const FunctionProtoType *Proto,
3701 Expr *Object, ArrayRef<Expr *> Args,
3702 OverloadCandidateSet& CandidateSet);
3703 void AddNonMemberOperatorCandidates(
3704 const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
3705 OverloadCandidateSet &CandidateSet,
3706 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
3707 void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3708 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3709 OverloadCandidateSet &CandidateSet,
3710 OverloadCandidateParamOrder PO = {});
3711 void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
3712 OverloadCandidateSet& CandidateSet,
3713 bool IsAssignmentOperator = false,
3714 unsigned NumContextualBoolArguments = 0);
3715 void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3716 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3717 OverloadCandidateSet& CandidateSet);
3718 void AddArgumentDependentLookupCandidates(DeclarationName Name,
3719 SourceLocation Loc,
3720 ArrayRef<Expr *> Args,
3721 TemplateArgumentListInfo *ExplicitTemplateArgs,
3722 OverloadCandidateSet& CandidateSet,
3723 bool PartialOverloading = false);
3724
3725 // Emit as a 'note' the specific overload candidate
3726 void NoteOverloadCandidate(
3727 NamedDecl *Found, FunctionDecl *Fn,
3728 OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
3729 QualType DestType = QualType(), bool TakingAddress = false);
3730
3731 // Emit as a series of 'note's all template and non-templates identified by
3732 // the expression Expr
3733 void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
3734 bool TakingAddress = false);
3735
3736 /// Check the enable_if expressions on the given function. Returns the first
3737 /// failing attribute, or NULL if they were all successful.
3738 EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc,
3739 ArrayRef<Expr *> Args,
3740 bool MissingImplicitThis = false);
3741
3742 /// Find the failed Boolean condition within a given Boolean
3743 /// constant expression, and describe it with a string.
3744 std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
3745
3746 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3747 /// non-ArgDependent DiagnoseIfAttrs.
3748 ///
3749 /// Argument-dependent diagnose_if attributes should be checked each time a
3750 /// function is used as a direct callee of a function call.
3751 ///
3752 /// Returns true if any errors were emitted.
3753 bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
3754 const Expr *ThisArg,
3755 ArrayRef<const Expr *> Args,
3756 SourceLocation Loc);
3757
3758 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3759 /// ArgDependent DiagnoseIfAttrs.
3760 ///
3761 /// Argument-independent diagnose_if attributes should be checked on every use
3762 /// of a function.
3763 ///
3764 /// Returns true if any errors were emitted.
3765 bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
3766 SourceLocation Loc);
3767
3768 /// Returns whether the given function's address can be taken or not,
3769 /// optionally emitting a diagnostic if the address can't be taken.
3770 ///
3771 /// Returns false if taking the address of the function is illegal.
3772 bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
3773 bool Complain = false,
3774 SourceLocation Loc = SourceLocation());
3775
3776 // [PossiblyAFunctionType] --> [Return]
3777 // NonFunctionType --> NonFunctionType
3778 // R (A) --> R(A)
3779 // R (*)(A) --> R (A)
3780 // R (&)(A) --> R (A)
3781 // R (S::*)(A) --> R (A)
3782 QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
3783
3784 FunctionDecl *
3785 ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
3786 QualType TargetType,
3787 bool Complain,
3788 DeclAccessPair &Found,
3789 bool *pHadMultipleCandidates = nullptr);
3790
3791 FunctionDecl *
3792 resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
3793
3794 bool resolveAndFixAddressOfSingleOverloadCandidate(
3795 ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
3796
3797 FunctionDecl *
3798 ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
3799 bool Complain = false,
3800 DeclAccessPair *Found = nullptr);
3801
3802 bool ResolveAndFixSingleFunctionTemplateSpecialization(
3803 ExprResult &SrcExpr,
3804 bool DoFunctionPointerConverion = false,
3805 bool Complain = false,
3806 SourceRange OpRangeForComplaining = SourceRange(),
3807 QualType DestTypeForComplaining = QualType(),
3808 unsigned DiagIDForComplaining = 0);
3809
3810
3811 Expr *FixOverloadedFunctionReference(Expr *E,
3812 DeclAccessPair FoundDecl,
3813 FunctionDecl *Fn);
3814 ExprResult FixOverloadedFunctionReference(ExprResult,
3815 DeclAccessPair FoundDecl,
3816 FunctionDecl *Fn);
3817
3818 void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
3819 ArrayRef<Expr *> Args,
3820 OverloadCandidateSet &CandidateSet,
3821 bool PartialOverloading = false);
3822 void AddOverloadedCallCandidates(
3823 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
3824 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet);
3825
3826 // An enum used to represent the different possible results of building a
3827 // range-based for loop.
3828 enum ForRangeStatus {
3829 FRS_Success,
3830 FRS_NoViableFunction,
3831 FRS_DiagnosticIssued
3832 };
3833
3834 ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
3835 SourceLocation RangeLoc,
3836 const DeclarationNameInfo &NameInfo,
3837 LookupResult &MemberLookup,
3838 OverloadCandidateSet *CandidateSet,
3839 Expr *Range, ExprResult *CallExpr);
3840
3841 ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
3842 UnresolvedLookupExpr *ULE,
3843 SourceLocation LParenLoc,
3844 MultiExprArg Args,
3845 SourceLocation RParenLoc,
3846 Expr *ExecConfig,
3847 bool AllowTypoCorrection=true,
3848 bool CalleesAddressIsTaken=false);
3849
3850 bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
3851 MultiExprArg Args, SourceLocation RParenLoc,
3852 OverloadCandidateSet *CandidateSet,
3853 ExprResult *Result);
3854
3855 ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
3856 NestedNameSpecifierLoc NNSLoc,
3857 DeclarationNameInfo DNI,
3858 const UnresolvedSetImpl &Fns,
3859 bool PerformADL = true);
3860
3861 ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
3862 UnaryOperatorKind Opc,
3863 const UnresolvedSetImpl &Fns,
3864 Expr *input, bool RequiresADL = true);
3865
3866 void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
3867 OverloadedOperatorKind Op,
3868 const UnresolvedSetImpl &Fns,
3869 ArrayRef<Expr *> Args, bool RequiresADL = true);
3870 ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
3871 BinaryOperatorKind Opc,
3872 const UnresolvedSetImpl &Fns,
3873 Expr *LHS, Expr *RHS,
3874 bool RequiresADL = true,
3875 bool AllowRewrittenCandidates = true,
3876 FunctionDecl *DefaultedFn = nullptr);
3877 ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
3878 const UnresolvedSetImpl &Fns,
3879 Expr *LHS, Expr *RHS,
3880 FunctionDecl *DefaultedFn);
3881
3882 ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
3883 SourceLocation RLoc,
3884 Expr *Base,Expr *Idx);
3885
3886 ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
3887 SourceLocation LParenLoc,
3888 MultiExprArg Args,
3889 SourceLocation RParenLoc,
3890 bool AllowRecovery = false);
3891 ExprResult
3892 BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
3893 MultiExprArg Args,
3894 SourceLocation RParenLoc);
3895
3896 ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
3897 SourceLocation OpLoc,
3898 bool *NoArrowOperatorFound = nullptr);
3899
3900 /// CheckCallReturnType - Checks that a call expression's return type is
3901 /// complete. Returns true on failure. The location passed in is the location
3902 /// that best represents the call.
3903 bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
3904 CallExpr *CE, FunctionDecl *FD);
3905
3906 /// Helpers for dealing with blocks and functions.
3907 bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
3908 bool CheckParameterNames);
3909 void CheckCXXDefaultArguments(FunctionDecl *FD);
3910 void CheckExtraCXXDefaultArguments(Declarator &D);
3911 Scope *getNonFieldDeclScope(Scope *S);
3912
3913 /// \name Name lookup
3914 ///
3915 /// These routines provide name lookup that is used during semantic
3916 /// analysis to resolve the various kinds of names (identifiers,
3917 /// overloaded operator names, constructor names, etc.) into zero or
3918 /// more declarations within a particular scope. The major entry
3919 /// points are LookupName, which performs unqualified name lookup,
3920 /// and LookupQualifiedName, which performs qualified name lookup.
3921 ///
3922 /// All name lookup is performed based on some specific criteria,
3923 /// which specify what names will be visible to name lookup and how
3924 /// far name lookup should work. These criteria are important both
3925 /// for capturing language semantics (certain lookups will ignore
3926 /// certain names, for example) and for performance, since name
3927 /// lookup is often a bottleneck in the compilation of C++. Name
3928 /// lookup criteria is specified via the LookupCriteria enumeration.
3929 ///
3930 /// The results of name lookup can vary based on the kind of name
3931 /// lookup performed, the current language, and the translation
3932 /// unit. In C, for example, name lookup will either return nothing
3933 /// (no entity found) or a single declaration. In C++, name lookup
3934 /// can additionally refer to a set of overloaded functions or
3935 /// result in an ambiguity. All of the possible results of name
3936 /// lookup are captured by the LookupResult class, which provides
3937 /// the ability to distinguish among them.
3938 //@{
3939
3940 /// Describes the kind of name lookup to perform.
3941 enum LookupNameKind {
3942 /// Ordinary name lookup, which finds ordinary names (functions,
3943 /// variables, typedefs, etc.) in C and most kinds of names
3944 /// (functions, variables, members, types, etc.) in C++.
3945 LookupOrdinaryName = 0,
3946 /// Tag name lookup, which finds the names of enums, classes,
3947 /// structs, and unions.
3948 LookupTagName,
3949 /// Label name lookup.
3950 LookupLabel,
3951 /// Member name lookup, which finds the names of
3952 /// class/struct/union members.
3953 LookupMemberName,
3954 /// Look up of an operator name (e.g., operator+) for use with
3955 /// operator overloading. This lookup is similar to ordinary name
3956 /// lookup, but will ignore any declarations that are class members.
3957 LookupOperatorName,
3958 /// Look up a name following ~ in a destructor name. This is an ordinary
3959 /// lookup, but prefers tags to typedefs.
3960 LookupDestructorName,
3961 /// Look up of a name that precedes the '::' scope resolution
3962 /// operator in C++. This lookup completely ignores operator, object,
3963 /// function, and enumerator names (C++ [basic.lookup.qual]p1).
3964 LookupNestedNameSpecifierName,
3965 /// Look up a namespace name within a C++ using directive or
3966 /// namespace alias definition, ignoring non-namespace names (C++
3967 /// [basic.lookup.udir]p1).
3968 LookupNamespaceName,
3969 /// Look up all declarations in a scope with the given name,
3970 /// including resolved using declarations. This is appropriate
3971 /// for checking redeclarations for a using declaration.
3972 LookupUsingDeclName,
3973 /// Look up an ordinary name that is going to be redeclared as a
3974 /// name with linkage. This lookup ignores any declarations that
3975 /// are outside of the current scope unless they have linkage. See
3976 /// C99 6.2.2p4-5 and C++ [basic.link]p6.
3977 LookupRedeclarationWithLinkage,
3978 /// Look up a friend of a local class. This lookup does not look
3979 /// outside the innermost non-class scope. See C++11 [class.friend]p11.
3980 LookupLocalFriendName,
3981 /// Look up the name of an Objective-C protocol.
3982 LookupObjCProtocolName,
3983 /// Look up implicit 'self' parameter of an objective-c method.
3984 LookupObjCImplicitSelfParam,
3985 /// Look up the name of an OpenMP user-defined reduction operation.
3986 LookupOMPReductionName,
3987 /// Look up the name of an OpenMP user-defined mapper.
3988 LookupOMPMapperName,
3989 /// Look up any declaration with any name.
3990 LookupAnyName
3991 };
3992
3993 /// Specifies whether (or how) name lookup is being performed for a
3994 /// redeclaration (vs. a reference).
3995 enum RedeclarationKind {
3996 /// The lookup is a reference to this name that is not for the
3997 /// purpose of redeclaring the name.
3998 NotForRedeclaration = 0,
3999 /// The lookup results will be used for redeclaration of a name,
4000 /// if an entity by that name already exists and is visible.
4001 ForVisibleRedeclaration,
4002 /// The lookup results will be used for redeclaration of a name
4003 /// with external linkage; non-visible lookup results with external linkage
4004 /// may also be found.
4005 ForExternalRedeclaration
4006 };
4007
4008 RedeclarationKind forRedeclarationInCurContext() {
4009 // A declaration with an owning module for linkage can never link against
4010 // anything that is not visible. We don't need to check linkage here; if
4011 // the context has internal linkage, redeclaration lookup won't find things
4012 // from other TUs, and we can't safely compute linkage yet in general.
4013 if (cast<Decl>(CurContext)
4014 ->getOwningModuleForLinkage(/*IgnoreLinkage*/true))
4015 return ForVisibleRedeclaration;
4016 return ForExternalRedeclaration;
4017 }
4018
4019 /// The possible outcomes of name lookup for a literal operator.
4020 enum LiteralOperatorLookupResult {
4021 /// The lookup resulted in an error.
4022 LOLR_Error,
4023 /// The lookup found no match but no diagnostic was issued.
4024 LOLR_ErrorNoDiagnostic,
4025 /// The lookup found a single 'cooked' literal operator, which
4026 /// expects a normal literal to be built and passed to it.
4027 LOLR_Cooked,
4028 /// The lookup found a single 'raw' literal operator, which expects
4029 /// a string literal containing the spelling of the literal token.
4030 LOLR_Raw,
4031 /// The lookup found an overload set of literal operator templates,
4032 /// which expect the characters of the spelling of the literal token to be
4033 /// passed as a non-type template argument pack.
4034 LOLR_Template,
4035 /// The lookup found an overload set of literal operator templates,
4036 /// which expect the character type and characters of the spelling of the
4037 /// string literal token to be passed as template arguments.
4038 LOLR_StringTemplatePack,
4039 };
4040
4041 SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D,
4042 CXXSpecialMember SM,
4043 bool ConstArg,
4044 bool VolatileArg,
4045 bool RValueThis,
4046 bool ConstThis,
4047 bool VolatileThis);
4048
4049 typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
4050 typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
4051 TypoRecoveryCallback;
4052
4053private:
4054 bool CppLookupName(LookupResult &R, Scope *S);
4055
4056 struct TypoExprState {
4057 std::unique_ptr<TypoCorrectionConsumer> Consumer;
4058 TypoDiagnosticGenerator DiagHandler;
4059 TypoRecoveryCallback RecoveryHandler;
4060 TypoExprState();
4061 TypoExprState(TypoExprState &&other) noexcept;
4062 TypoExprState &operator=(TypoExprState &&other) noexcept;
4063 };
4064
4065 /// The set of unhandled TypoExprs and their associated state.
4066 llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
4067
4068 /// Creates a new TypoExpr AST node.
4069 TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4070 TypoDiagnosticGenerator TDG,
4071 TypoRecoveryCallback TRC, SourceLocation TypoLoc);
4072
4073 // The set of known/encountered (unique, canonicalized) NamespaceDecls.
4074 //
4075 // The boolean value will be true to indicate that the namespace was loaded
4076 // from an AST/PCH file, or false otherwise.
4077 llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces;
4078
4079 /// Whether we have already loaded known namespaces from an extenal
4080 /// source.
4081 bool LoadedExternalKnownNamespaces;
4082
4083 /// Helper for CorrectTypo and CorrectTypoDelayed used to create and
4084 /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
4085 /// should be skipped entirely.
4086 std::unique_ptr<TypoCorrectionConsumer>
4087 makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo,
4088 Sema::LookupNameKind LookupKind, Scope *S,
4089 CXXScopeSpec *SS,
4090 CorrectionCandidateCallback &CCC,
4091 DeclContext *MemberContext, bool EnteringContext,
4092 const ObjCObjectPointerType *OPT,
4093 bool ErrorRecovery);
4094
4095public:
4096 const TypoExprState &getTypoExprState(TypoExpr *TE) const;
4097
4098 /// Clears the state of the given TypoExpr.
4099 void clearDelayedTypo(TypoExpr *TE);
4100
4101 /// Look up a name, looking for a single declaration. Return
4102 /// null if the results were absent, ambiguous, or overloaded.
4103 ///
4104 /// It is preferable to use the elaborated form and explicitly handle
4105 /// ambiguity and overloaded.
4106 NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
4107 SourceLocation Loc,
4108 LookupNameKind NameKind,
4109 RedeclarationKind Redecl
4110 = NotForRedeclaration);
4111 bool LookupBuiltin(LookupResult &R);
4112 void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID);
4113 bool LookupName(LookupResult &R, Scope *S,
4114 bool AllowBuiltinCreation = false);
4115 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4116 bool InUnqualifiedLookup = false);
4117 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4118 CXXScopeSpec &SS);
4119 bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
4120 bool AllowBuiltinCreation = false,
4121 bool EnteringContext = false);
4122 ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
4123 RedeclarationKind Redecl
4124 = NotForRedeclaration);
4125 bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
4126
4127 void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
4128 UnresolvedSetImpl &Functions);
4129
4130 LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
4131 SourceLocation GnuLabelLoc = SourceLocation());
4132
4133 DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
4134 CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
4135 CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
4136 unsigned Quals);
4137 CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
4138 bool RValueThis, unsigned ThisQuals);
4139 CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
4140 unsigned Quals);
4141 CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
4142 bool RValueThis, unsigned ThisQuals);
4143 CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
4144
4145 bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id,
4146 bool IsUDSuffix);
4147 LiteralOperatorLookupResult
4148 LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys,
4149 bool AllowRaw, bool AllowTemplate,
4150 bool AllowStringTemplate, bool DiagnoseMissing,
4151 StringLiteral *StringLit = nullptr);
4152 bool isKnownName(StringRef name);
4153
4154 /// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
4155 enum class FunctionEmissionStatus {
4156 Emitted,
4157 CUDADiscarded, // Discarded due to CUDA/HIP hostness
4158 OMPDiscarded, // Discarded due to OpenMP hostness
4159 TemplateDiscarded, // Discarded due to uninstantiated templates
4160 Unknown,
4161 };
4162 FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl,
4163 bool Final = false);
4164
4165 // Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
4166 bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
4167
4168 void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
4169 ArrayRef<Expr *> Args, ADLResult &Functions);
4170
4171 void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4172 VisibleDeclConsumer &Consumer,
4173 bool IncludeGlobalScope = true,
4174 bool LoadExternal = true);
4175 void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4176 VisibleDeclConsumer &Consumer,
4177 bool IncludeGlobalScope = true,
4178 bool IncludeDependentBases = false,
4179 bool LoadExternal = true);
4180
4181 enum CorrectTypoKind {
4182 CTK_NonError, // CorrectTypo used in a non error recovery situation.
4183 CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
4184 };
4185
4186 TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
4187 Sema::LookupNameKind LookupKind,
4188 Scope *S, CXXScopeSpec *SS,
4189 CorrectionCandidateCallback &CCC,
4190 CorrectTypoKind Mode,
4191 DeclContext *MemberContext = nullptr,
4192 bool EnteringContext = false,
4193 const ObjCObjectPointerType *OPT = nullptr,
4194 bool RecordFailure = true);
4195
4196 TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo,
4197 Sema::LookupNameKind LookupKind, Scope *S,
4198 CXXScopeSpec *SS,
4199 CorrectionCandidateCallback &CCC,
4200 TypoDiagnosticGenerator TDG,
4201 TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4202 DeclContext *MemberContext = nullptr,
4203 bool EnteringContext = false,
4204 const ObjCObjectPointerType *OPT = nullptr);
4205
4206 /// Process any TypoExprs in the given Expr and its children,
4207 /// generating diagnostics as appropriate and returning a new Expr if there
4208 /// were typos that were all successfully corrected and ExprError if one or
4209 /// more typos could not be corrected.
4210 ///
4211 /// \param E The Expr to check for TypoExprs.
4212 ///
4213 /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
4214 /// initializer.
4215 ///
4216 /// \param RecoverUncorrectedTypos If true, when typo correction fails, it
4217 /// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs.
4218 ///
4219 /// \param Filter A function applied to a newly rebuilt Expr to determine if
4220 /// it is an acceptable/usable result from a single combination of typo
4221 /// corrections. As long as the filter returns ExprError, different
4222 /// combinations of corrections will be tried until all are exhausted.
4223 ExprResult CorrectDelayedTyposInExpr(
4224 Expr *E, VarDecl *InitDecl = nullptr,
4225 bool RecoverUncorrectedTypos = false,
4226 llvm::function_ref<ExprResult(Expr *)> Filter =
4227 [](Expr *E) -> ExprResult { return E; });
4228
4229 ExprResult CorrectDelayedTyposInExpr(
4230 ExprResult ER, VarDecl *InitDecl = nullptr,
4231 bool RecoverUncorrectedTypos = false,
4232 llvm::function_ref<ExprResult(Expr *)> Filter =
4233 [](Expr *E) -> ExprResult { return E; }) {
4234 return ER.isInvalid()
4235 ? ER
4236 : CorrectDelayedTyposInExpr(ER.get(), InitDecl,
4237 RecoverUncorrectedTypos, Filter);
4238 }
4239
4240 void diagnoseTypo(const TypoCorrection &Correction,
4241 const PartialDiagnostic &TypoDiag,
4242 bool ErrorRecovery = true);
4243
4244 void diagnoseTypo(const TypoCorrection &Correction,
4245 const PartialDiagnostic &TypoDiag,
4246 const PartialDiagnostic &PrevNote,
4247 bool ErrorRecovery = true);
4248
4249 void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
4250
4251 void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
4252 ArrayRef<Expr *> Args,
4253 AssociatedNamespaceSet &AssociatedNamespaces,
4254 AssociatedClassSet &AssociatedClasses);
4255
4256 void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
4257 bool ConsiderLinkage, bool AllowInlineNamespace);
4258
4259 bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
4260
4261 void DiagnoseAmbiguousLookup(LookupResult &Result);
4262 //@}
4263
4264 /// Attempts to produce a RecoveryExpr after some AST node cannot be created.
4265 ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
4266 ArrayRef<Expr *> SubExprs,
4267 QualType T = QualType());
4268
4269 ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
4270 SourceLocation IdLoc,
4271 bool TypoCorrection = false);
4272 FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID,
4273 SourceLocation Loc);
4274 NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
4275 Scope *S, bool ForRedeclaration,
4276 SourceLocation Loc);
4277 NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
4278 Scope *S);
4279 void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
4280 FunctionDecl *FD);
4281 void AddKnownFunctionAttributes(FunctionDecl *FD);
4282
4283 // More parsing and symbol table subroutines.
4284
4285 void ProcessPragmaWeak(Scope *S, Decl *D);
4286 // Decl attributes - this routine is the top level dispatcher.
4287 void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
4288 // Helper for delayed processing of attributes.
4289 void ProcessDeclAttributeDelayed(Decl *D,
4290 const ParsedAttributesView &AttrList);
4291 void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL,
4292 bool IncludeCXX11Attributes = true);
4293 bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4294 const ParsedAttributesView &AttrList);
4295
4296 void checkUnusedDeclAttributes(Declarator &D);
4297
4298 /// Handles semantic checking for features that are common to all attributes,
4299 /// such as checking whether a parameter was properly specified, or the
4300 /// correct number of arguments were passed, etc. Returns true if the
4301 /// attribute has been diagnosed.
4302 bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A);
4303 bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A);
4304
4305 /// Determine if type T is a valid subject for a nonnull and similar
4306 /// attributes. By default, we look through references (the behavior used by
4307 /// nonnull), but if the second parameter is true, then we treat a reference
4308 /// type as valid.
4309 bool isValidPointerAttrType(QualType T, bool RefOkay = false);
4310
4311 bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
4312 bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC,
4313 const FunctionDecl *FD = nullptr);
4314 bool CheckAttrTarget(const ParsedAttr &CurrAttr);
4315 bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
4316 bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
4317 StringRef &Str,
4318 SourceLocation *ArgLocation = nullptr);
4319 llvm::Error isValidSectionSpecifier(StringRef Str);
4320 bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
4321 bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
4322 bool checkMSInheritanceAttrOnDefinition(
4323 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4324 MSInheritanceModel SemanticSpelling);
4325
4326 void CheckAlignasUnderalignment(Decl *D);
4327
4328 /// Adjust the calling convention of a method to be the ABI default if it
4329 /// wasn't specified explicitly. This handles method types formed from
4330 /// function type typedefs and typename template arguments.
4331 void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
4332 SourceLocation Loc);
4333
4334 // Check if there is an explicit attribute, but only look through parens.
4335 // The intent is to look for an attribute on the current declarator, but not
4336 // one that came from a typedef.
4337 bool hasExplicitCallingConv(QualType T);
4338
4339 /// Get the outermost AttributedType node that sets a calling convention.
4340 /// Valid types should not have multiple attributes with different CCs.
4341 const AttributedType *getCallingConvAttributedType(QualType T) const;
4342
4343 /// Process the attributes before creating an attributed statement. Returns
4344 /// the semantic attributes that have been processed.
4345 void ProcessStmtAttributes(Stmt *Stmt,
4346 const ParsedAttributesWithRange &InAttrs,
4347 SmallVectorImpl<const Attr *> &OutAttrs);
4348
4349 void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
4350 ObjCMethodDecl *MethodDecl,
4351 bool IsProtocolMethodDecl);
4352
4353 void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
4354 ObjCMethodDecl *Overridden,
4355 bool IsProtocolMethodDecl);
4356
4357 /// WarnExactTypedMethods - This routine issues a warning if method
4358 /// implementation declaration matches exactly that of its declaration.
4359 void WarnExactTypedMethods(ObjCMethodDecl *Method,
4360 ObjCMethodDecl *MethodDecl,
4361 bool IsProtocolMethodDecl);
4362
4363 typedef llvm::SmallPtrSet<Selector, 8> SelectorSet;
4364
4365 /// CheckImplementationIvars - This routine checks if the instance variables
4366 /// listed in the implelementation match those listed in the interface.
4367 void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
4368 ObjCIvarDecl **Fields, unsigned nIvars,
4369 SourceLocation Loc);
4370
4371 /// ImplMethodsVsClassMethods - This is main routine to warn if any method
4372 /// remains unimplemented in the class or category \@implementation.
4373 void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
4374 ObjCContainerDecl* IDecl,
4375 bool IncompleteImpl = false);
4376
4377 /// DiagnoseUnimplementedProperties - This routine warns on those properties
4378 /// which must be implemented by this implementation.
4379 void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
4380 ObjCContainerDecl *CDecl,
4381 bool SynthesizeProperties);
4382
4383 /// Diagnose any null-resettable synthesized setters.
4384 void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl);
4385
4386 /// DefaultSynthesizeProperties - This routine default synthesizes all
4387 /// properties which must be synthesized in the class's \@implementation.
4388 void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl,
4389 ObjCInterfaceDecl *IDecl,
4390 SourceLocation AtEnd);
4391 void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd);
4392
4393 /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
4394 /// an ivar synthesized for 'Method' and 'Method' is a property accessor
4395 /// declared in class 'IFace'.
4396 bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
4397 ObjCMethodDecl *Method, ObjCIvarDecl *IV);
4398
4399 /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which
4400 /// backs the property is not used in the property's accessor.
4401 void DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4402 const ObjCImplementationDecl *ImplD);
4403
4404 /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and
4405 /// it property has a backing ivar, returns this ivar; otherwise, returns NULL.
4406 /// It also returns ivar's property on success.
4407 ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4408 const ObjCPropertyDecl *&PDecl) const;
4409
4410 /// Called by ActOnProperty to handle \@property declarations in
4411 /// class extensions.
4412 ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S,
4413 SourceLocation AtLoc,
4414 SourceLocation LParenLoc,
4415 FieldDeclarator &FD,
4416 Selector GetterSel,
4417 SourceLocation GetterNameLoc,
4418 Selector SetterSel,
4419 SourceLocation SetterNameLoc,
4420 const bool isReadWrite,
4421 unsigned &Attributes,
4422 const unsigned AttributesAsWritten,
4423 QualType T,
4424 TypeSourceInfo *TSI,
4425 tok::ObjCKeywordKind MethodImplKind);
4426
4427 /// Called by ActOnProperty and HandlePropertyInClassExtension to
4428 /// handle creating the ObjcPropertyDecl for a category or \@interface.
4429 ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
4430 ObjCContainerDecl *CDecl,
4431 SourceLocation AtLoc,
4432 SourceLocation LParenLoc,
4433 FieldDeclarator &FD,
4434 Selector GetterSel,
4435 SourceLocation GetterNameLoc,
4436 Selector SetterSel,
4437 SourceLocation SetterNameLoc,
4438 const bool isReadWrite,
4439 const unsigned Attributes,
4440 const unsigned AttributesAsWritten,
4441 QualType T,
4442 TypeSourceInfo *TSI,
4443 tok::ObjCKeywordKind MethodImplKind,
4444 DeclContext *lexicalDC = nullptr);
4445
4446 /// AtomicPropertySetterGetterRules - This routine enforces the rule (via
4447 /// warning) when atomic property has one but not the other user-declared
4448 /// setter or getter.
4449 void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
4450 ObjCInterfaceDecl* IDecl);
4451
4452 void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
4453
4454 void DiagnoseMissingDesignatedInitOverrides(
4455 const ObjCImplementationDecl *ImplD,
4456 const ObjCInterfaceDecl *IFD);
4457
4458 void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
4459
4460 enum MethodMatchStrategy {
4461 MMS_loose,
4462 MMS_strict
4463 };
4464
4465 /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
4466 /// true, or false, accordingly.
4467 bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
4468 const ObjCMethodDecl *PrevMethod,
4469 MethodMatchStrategy strategy = MMS_strict);
4470
4471 /// MatchAllMethodDeclarations - Check methods declaraed in interface or
4472 /// or protocol against those declared in their implementations.
4473 void MatchAllMethodDeclarations(const SelectorSet &InsMap,
4474 const SelectorSet &ClsMap,
4475 SelectorSet &InsMapSeen,
4476 SelectorSet &ClsMapSeen,
4477 ObjCImplDecl* IMPDecl,
4478 ObjCContainerDecl* IDecl,
4479 bool &IncompleteImpl,
4480 bool ImmediateClass,
4481 bool WarnCategoryMethodImpl=false);
4482
4483 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
4484 /// category matches with those implemented in its primary class and
4485 /// warns each time an exact match is found.
4486 void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
4487
4488 /// Add the given method to the list of globally-known methods.
4489 void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method);
4490
4491 /// Returns default addr space for method qualifiers.
4492 LangAS getDefaultCXXMethodAddrSpace() const;
4493
4494private:
4495 /// AddMethodToGlobalPool - Add an instance or factory method to the global
4496 /// pool. See descriptoin of AddInstanceMethodToGlobalPool.
4497 void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
4498
4499 /// LookupMethodInGlobalPool - Returns the instance or factory method and
4500 /// optionally warns if there are multiple signatures.
4501 ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
4502 bool receiverIdOrClass,
4503 bool instance);
4504
4505public:
4506 /// - Returns instance or factory methods in global method pool for
4507 /// given selector. It checks the desired kind first, if none is found, and
4508 /// parameter checkTheOther is set, it then checks the other kind. If no such
4509 /// method or only one method is found, function returns false; otherwise, it
4510 /// returns true.
4511 bool
4512 CollectMultipleMethodsInGlobalPool(Selector Sel,
4513 SmallVectorImpl<ObjCMethodDecl*>& Methods,
4514 bool InstanceFirst, bool CheckTheOther,
4515 const ObjCObjectType *TypeBound = nullptr);
4516
4517 bool
4518 AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
4519 SourceRange R, bool receiverIdOrClass,
4520 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4521
4522 void
4523 DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
4524 Selector Sel, SourceRange R,
4525 bool receiverIdOrClass);
4526
4527private:
4528 /// - Returns a selector which best matches given argument list or
4529 /// nullptr if none could be found
4530 ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
4531 bool IsInstance,
4532 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4533
4534
4535 /// Record the typo correction failure and return an empty correction.
4536 TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
4537 bool RecordFailure = true) {
4538 if (RecordFailure)
4539 TypoCorrectionFailures[Typo].insert(TypoLoc);
4540 return TypoCorrection();
4541 }
4542
4543public:
4544 /// AddInstanceMethodToGlobalPool - All instance methods in a translation
4545 /// unit are added to a global pool. This allows us to efficiently associate
4546 /// a selector with a method declaraation for purposes of typechecking
4547 /// messages sent to "id" (where the class of the object is unknown).
4548 void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4549 AddMethodToGlobalPool(Method, impl, /*instance*/true);
4550 }
4551
4552 /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
4553 void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4554 AddMethodToGlobalPool(Method, impl, /*instance*/false);
4555 }
4556
4557 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
4558 /// pool.
4559 void AddAnyMethodToGlobalPool(Decl *D);
4560
4561 /// LookupInstanceMethodInGlobalPool - Returns the method and warns if
4562 /// there are multiple signatures.
4563 ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
4564 bool receiverIdOrClass=false) {
4565 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4566 /*instance*/true);
4567 }
4568
4569 /// LookupFactoryMethodInGlobalPool - Returns the method and warns if
4570 /// there are multiple signatures.
4571 ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
4572 bool receiverIdOrClass=false) {
4573 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4574 /*instance*/false);
4575 }
4576
4577 const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel,
4578 QualType ObjectType=QualType());
4579 /// LookupImplementedMethodInGlobalPool - Returns the method which has an
4580 /// implementation.
4581 ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
4582
4583 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4584 /// initialization.
4585 void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4586 SmallVectorImpl<ObjCIvarDecl*> &Ivars);
4587
4588 //===--------------------------------------------------------------------===//
4589 // Statement Parsing Callbacks: SemaStmt.cpp.
4590public:
4591 class FullExprArg {
4592 public:
4593 FullExprArg() : E(nullptr) { }
4594 FullExprArg(Sema &actions) : E(nullptr) { }
4595
4596 ExprResult release() {
4597 return E;
4598 }
4599
4600 Expr *get() const { return E; }
4601
4602 Expr *operator->() {
4603 return E;
4604 }
4605
4606 private:
4607 // FIXME: No need to make the entire Sema class a friend when it's just
4608 // Sema::MakeFullExpr that needs access to the constructor below.
4609 friend class Sema;
4610
4611 explicit FullExprArg(Expr *expr) : E(expr) {}
4612
4613 Expr *E;
4614 };
4615
4616 FullExprArg MakeFullExpr(Expr *Arg) {
4617 return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
4618 }
4619 FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
4620 return FullExprArg(
4621 ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
4622 }
4623 FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
4624 ExprResult FE =
4625 ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
4626 /*DiscardedValue*/ true);
4627 return FullExprArg(FE.get());
4628 }
4629
4630 StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
4631 StmtResult ActOnExprStmtError();
4632
4633 StmtResult ActOnNullStmt(SourceLocation SemiLoc,
4634 bool HasLeadingEmptyMacro = false);
4635
4636 void ActOnStartOfCompoundStmt(bool IsStmtExpr);
4637 void ActOnAfterCompoundStatementLeadingPragmas();
4638 void ActOnFinishOfCompoundStmt();
4639 StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
4640 ArrayRef<Stmt *> Elts, bool isStmtExpr);
4641
4642 /// A RAII object to enter scope of a compound statement.
4643 class CompoundScopeRAII {
4644 public:
4645 CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
4646 S.ActOnStartOfCompoundStmt(IsStmtExpr);
4647 }
4648
4649 ~CompoundScopeRAII() {
4650 S.ActOnFinishOfCompoundStmt();
4651 }
4652
4653 private:
4654 Sema &S;
4655 };
4656
4657 /// An RAII helper that pops function a function scope on exit.
4658 struct FunctionScopeRAII {
4659 Sema &S;
4660 bool Active;
4661 FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
4662 ~FunctionScopeRAII() {
4663 if (Active)
4664 S.PopFunctionScopeInfo();
4665 }
4666 void disable() { Active = false; }
4667 };
4668
4669 StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
4670 SourceLocation StartLoc,
4671 SourceLocation EndLoc);
4672 void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
4673 StmtResult ActOnForEachLValueExpr(Expr *E);
4674 ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
4675 StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
4676 SourceLocation DotDotDotLoc, ExprResult RHS,
4677 SourceLocation ColonLoc);
4678 void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
4679
4680 StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
4681 SourceLocation ColonLoc,
4682 Stmt *SubStmt, Scope *CurScope);
4683 StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
4684 SourceLocation ColonLoc, Stmt *SubStmt);
4685
4686 StmtResult BuildAttributedStmt(SourceLocation AttrsLoc,
4687 ArrayRef<const Attr *> Attrs, Stmt *SubStmt);
4688 StmtResult ActOnAttributedStmt(const ParsedAttributesWithRange &AttrList,
4689 Stmt *SubStmt);
4690
4691 class ConditionResult;
4692 StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4693 SourceLocation LParenLoc, Stmt *InitStmt,
4694 ConditionResult Cond, SourceLocation RParenLoc,
4695 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4696 StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4697 SourceLocation LParenLoc, Stmt *InitStmt,
4698 ConditionResult Cond, SourceLocation RParenLoc,
4699 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4700 StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
4701 SourceLocation LParenLoc, Stmt *InitStmt,
4702 ConditionResult Cond,
4703 SourceLocation RParenLoc);
4704 StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
4705 Stmt *Switch, Stmt *Body);
4706 StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
4707 ConditionResult Cond, SourceLocation RParenLoc,
4708 Stmt *Body);
4709 StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
4710 SourceLocation WhileLoc, SourceLocation CondLParen,
4711 Expr *Cond, SourceLocation CondRParen);
4712
4713 StmtResult ActOnForStmt(SourceLocation ForLoc,
4714 SourceLocation LParenLoc,
4715 Stmt *First,
4716 ConditionResult Second,
4717 FullExprArg Third,
4718 SourceLocation RParenLoc,
4719 Stmt *Body);
4720 ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc,
4721 Expr *collection);
4722 StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
4723 Stmt *First, Expr *collection,
4724 SourceLocation RParenLoc);
4725 StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body);
4726
4727 enum BuildForRangeKind {
4728 /// Initial building of a for-range statement.
4729 BFRK_Build,
4730 /// Instantiation or recovery rebuild of a for-range statement. Don't
4731 /// attempt any typo-correction.
4732 BFRK_Rebuild,
4733 /// Determining whether a for-range statement could be built. Avoid any
4734 /// unnecessary or irreversible actions.
4735 BFRK_Check
4736 };
4737
4738 StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
4739 SourceLocation CoawaitLoc,
4740 Stmt *InitStmt,
4741 Stmt *LoopVar,
4742 SourceLocation ColonLoc, Expr *Collection,
4743 SourceLocation RParenLoc,
4744 BuildForRangeKind Kind);
4745 StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
4746 SourceLocation CoawaitLoc,
4747 Stmt *InitStmt,
4748 SourceLocation ColonLoc,
4749 Stmt *RangeDecl, Stmt *Begin, Stmt *End,
4750 Expr *Cond, Expr *Inc,
4751 Stmt *LoopVarDecl,
4752 SourceLocation RParenLoc,
4753 BuildForRangeKind Kind);
4754 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
4755
4756 StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
4757 SourceLocation LabelLoc,
4758 LabelDecl *TheDecl);
4759 StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
4760 SourceLocation StarLoc,
4761 Expr *DestExp);
4762 StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
4763 StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
4764
4765 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4766 CapturedRegionKind Kind, unsigned NumParams);
4767 typedef std::pair<StringRef, QualType> CapturedParamNameType;
4768 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4769 CapturedRegionKind Kind,
4770 ArrayRef<CapturedParamNameType> Params,
4771 unsigned OpenMPCaptureLevel = 0);
4772 StmtResult ActOnCapturedRegionEnd(Stmt *S);
4773 void ActOnCapturedRegionError();
4774 RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
4775 SourceLocation Loc,
4776 unsigned NumParams);
4777
4778 struct NamedReturnInfo {
4779 const VarDecl *Candidate;
4780
4781 enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable };
4782 Status S;
4783
4784 bool isMoveEligible() const { return S != None; };
4785 bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; }
4786 };
4787 enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn };
4788 NamedReturnInfo getNamedReturnInfo(
4789 Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal);
4790 NamedReturnInfo getNamedReturnInfo(const VarDecl *VD);
4791 const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info,
4792 QualType ReturnType);
4793
4794 ExprResult
4795 PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
4796 const NamedReturnInfo &NRInfo, Expr *Value,
4797 bool SupressSimplerImplicitMoves = false);
4798
4799 StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4800 Scope *CurScope);
4801 StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
4802 StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4803 NamedReturnInfo &NRInfo,
4804 bool SupressSimplerImplicitMoves);
4805
4806 StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
4807 bool IsVolatile, unsigned NumOutputs,
4808 unsigned NumInputs, IdentifierInfo **Names,
4809 MultiExprArg Constraints, MultiExprArg Exprs,
4810 Expr *AsmString, MultiExprArg Clobbers,
4811 unsigned NumLabels,
4812 SourceLocation RParenLoc);
4813
4814 void FillInlineAsmIdentifierInfo(Expr *Res,
4815 llvm::InlineAsmIdentifierInfo &Info);
4816 ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
4817 SourceLocation TemplateKWLoc,
4818 UnqualifiedId &Id,
4819 bool IsUnevaluatedContext);
4820 bool LookupInlineAsmField(StringRef Base, StringRef Member,
4821 unsigned &Offset, SourceLocation AsmLoc);
4822 ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
4823 SourceLocation AsmLoc);
4824 StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
4825 ArrayRef<Token> AsmToks,
4826 StringRef AsmString,
4827 unsigned NumOutputs, unsigned NumInputs,
4828 ArrayRef<StringRef> Constraints,
4829 ArrayRef<StringRef> Clobbers,
4830 ArrayRef<Expr*> Exprs,
4831 SourceLocation EndLoc);
4832 LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
4833 SourceLocation Location,
4834 bool AlwaysCreate);
4835
4836 VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
4837 SourceLocation StartLoc,
4838 SourceLocation IdLoc, IdentifierInfo *Id,
4839 bool Invalid = false);
4840
4841 Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
4842
4843 StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
4844 Decl *Parm, Stmt *Body);
4845
4846 StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
4847
4848 StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4849 MultiStmtArg Catch, Stmt *Finally);
4850
4851 StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
4852 StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4853 Scope *CurScope);
4854 ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
4855 Expr *operand);
4856 StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
4857 Expr *SynchExpr,
4858 Stmt *SynchBody);
4859
4860 StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
4861
4862 VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
4863 SourceLocation StartLoc,
4864 SourceLocation IdLoc,
4865 IdentifierInfo *Id);
4866
4867 Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
4868
4869 StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
4870 Decl *ExDecl, Stmt *HandlerBlock);
4871 StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4872 ArrayRef<Stmt *> Handlers);
4873
4874 StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
4875 SourceLocation TryLoc, Stmt *TryBlock,
4876 Stmt *Handler);
4877 StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
4878 Expr *FilterExpr,
4879 Stmt *Block);
4880 void ActOnStartSEHFinallyBlock();
4881 void ActOnAbortSEHFinallyBlock();
4882 StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
4883 StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
4884
4885 void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
4886
4887 bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
4888
4889 /// If it's a file scoped decl that must warn if not used, keep track
4890 /// of it.
4891 void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
4892
4893 /// DiagnoseUnusedExprResult - If the statement passed in is an expression
4894 /// whose result is unused, warn.
4895 void DiagnoseUnusedExprResult(const Stmt *S);
4896 void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
4897 void DiagnoseUnusedDecl(const NamedDecl *ND);
4898
4899 /// If VD is set but not otherwise used, diagnose, for a parameter or a
4900 /// variable.
4901 void DiagnoseUnusedButSetDecl(const VarDecl *VD);
4902
4903 /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
4904 /// statement as a \p Body, and it is located on the same line.
4905 ///
4906 /// This helps prevent bugs due to typos, such as:
4907 /// if (condition);
4908 /// do_stuff();
4909 void DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
4910 const Stmt *Body,
4911 unsigned DiagID);
4912
4913 /// Warn if a for/while loop statement \p S, which is followed by
4914 /// \p PossibleBody, has a suspicious null statement as a body.
4915 void DiagnoseEmptyLoopBody(const Stmt *S,
4916 const Stmt *PossibleBody);
4917
4918 /// Warn if a value is moved to itself.
4919 void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
4920 SourceLocation OpLoc);
4921
4922 /// Warn if we're implicitly casting from a _Nullable pointer type to a
4923 /// _Nonnull one.
4924 void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
4925 SourceLocation Loc);
4926
4927 /// Warn when implicitly casting 0 to nullptr.
4928 void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
4929
4930 ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
4931 return DelayedDiagnostics.push(pool);
4932 }
4933 void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
4934
4935 typedef ProcessingContextState ParsingClassState;
4936 ParsingClassState PushParsingClass() {
4937 ParsingClassDepth++;
4938 return DelayedDiagnostics.pushUndelayed();
4939 }
4940 void PopParsingClass(ParsingClassState state) {
4941 ParsingClassDepth--;
4942 DelayedDiagnostics.popUndelayed(state);
4943 }
4944
4945 void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
4946
4947 void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4948 const ObjCInterfaceDecl *UnknownObjCClass,
4949 bool ObjCPropertyAccess,
4950 bool AvoidPartialAvailabilityChecks = false,
4951 ObjCInterfaceDecl *ClassReceiver = nullptr);
4952
4953 bool makeUnavailableInSystemHeader(SourceLocation loc,
4954 UnavailableAttr::ImplicitReason reason);
4955
4956 /// Issue any -Wunguarded-availability warnings in \c FD
4957 void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
4958
4959 void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
4960
4961 //===--------------------------------------------------------------------===//
4962 // Expression Parsing Callbacks: SemaExpr.cpp.
4963
4964 bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
4965 bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4966 const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
4967 bool ObjCPropertyAccess = false,
4968 bool AvoidPartialAvailabilityChecks = false,
4969 ObjCInterfaceDecl *ClassReciever = nullptr);
4970 void NoteDeletedFunction(FunctionDecl *FD);
4971 void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
4972 bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
4973 ObjCMethodDecl *Getter,
4974 SourceLocation Loc);
4975 void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
4976 ArrayRef<Expr *> Args);
4977
4978 void PushExpressionEvaluationContext(
4979 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
4980 ExpressionEvaluationContextRecord::ExpressionKind Type =
4981 ExpressionEvaluationContextRecord::EK_Other);
4982 enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
4983 void PushExpressionEvaluationContext(
4984 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
4985 ExpressionEvaluationContextRecord::ExpressionKind Type =
4986 ExpressionEvaluationContextRecord::EK_Other);
4987 void PopExpressionEvaluationContext();
4988
4989 void DiscardCleanupsInEvaluationContext();
4990
4991 ExprResult TransformToPotentiallyEvaluated(Expr *E);
4992 ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
4993
4994 ExprResult CheckUnevaluatedOperand(Expr *E);
4995 void CheckUnusedVolatileAssignment(Expr *E);
4996
4997 ExprResult ActOnConstantExpression(ExprResult Res);
4998
4999 // Functions for marking a declaration referenced. These functions also
5000 // contain the relevant logic for marking if a reference to a function or
5001 // variable is an odr-use (in the C++11 sense). There are separate variants
5002 // for expressions referring to a decl; these exist because odr-use marking
5003 // needs to be delayed for some constant variables when we build one of the
5004 // named expressions.
5005 //
5006 // MightBeOdrUse indicates whether the use could possibly be an odr-use, and
5007 // should usually be true. This only needs to be set to false if the lack of
5008 // odr-use cannot be determined from the current context (for instance,
5009 // because the name denotes a virtual function and was written without an
5010 // explicit nested-name-specifier).
5011 void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
5012 void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
5013 bool MightBeOdrUse = true);
5014 void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
5015 void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
5016 void MarkMemberReferenced(MemberExpr *E);
5017 void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
5018 void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc,
5019 unsigned CapturingScopeIndex);
5020
5021 ExprResult CheckLValueToRValueConversionOperand(Expr *E);
5022 void CleanupVarDeclMarking();
5023
5024 enum TryCaptureKind {
5025 TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef
5026 };
5027
5028 /// Try to capture the given variable.
5029 ///
5030 /// \param Var The variable to capture.
5031 ///
5032 /// \param Loc The location at which the capture occurs.
5033 ///
5034 /// \param Kind The kind of capture, which may be implicit (for either a
5035 /// block or a lambda), or explicit by-value or by-reference (for a lambda).
5036 ///
5037 /// \param EllipsisLoc The location of the ellipsis, if one is provided in
5038 /// an explicit lambda capture.
5039 ///
5040 /// \param BuildAndDiagnose Whether we are actually supposed to add the
5041 /// captures or diagnose errors. If false, this routine merely check whether
5042 /// the capture can occur without performing the capture itself or complaining
5043 /// if the variable cannot be captured.
5044 ///
5045 /// \param CaptureType Will be set to the type of the field used to capture
5046 /// this variable in the innermost block or lambda. Only valid when the
5047 /// variable can be captured.
5048 ///
5049 /// \param DeclRefType Will be set to the type of a reference to the capture
5050 /// from within the current scope. Only valid when the variable can be
5051 /// captured.
5052 ///
5053 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
5054 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
5055 /// This is useful when enclosing lambdas must speculatively capture
5056 /// variables that may or may not be used in certain specializations of
5057 /// a nested generic lambda.
5058 ///
5059 /// \returns true if an error occurred (i.e., the variable cannot be
5060 /// captured) and false if the capture succeeded.
5061 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind,
5062 SourceLocation EllipsisLoc, bool BuildAndDiagnose,
5063 QualType &CaptureType,
5064 QualType &DeclRefType,
5065 const unsigned *const FunctionScopeIndexToStopAt);
5066
5067 /// Try to capture the given variable.
5068 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
5069 TryCaptureKind Kind = TryCapture_Implicit,
5070 SourceLocation EllipsisLoc = SourceLocation());
5071
5072 /// Checks if the variable must be captured.
5073 bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc);
5074
5075 /// Given a variable, determine the type that a reference to that
5076 /// variable will have in the given scope.
5077 QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc);
5078
5079 /// Mark all of the declarations referenced within a particular AST node as
5080 /// referenced. Used when template instantiation instantiates a non-dependent
5081 /// type -- entities referenced by the type are now referenced.
5082 void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
5083 void MarkDeclarationsReferencedInExpr(Expr *E,
5084 bool SkipLocalVariables = false);
5085
5086 /// Try to recover by turning the given expression into a
5087 /// call. Returns true if recovery was attempted or an error was
5088 /// emitted; this may also leave the ExprResult invalid.
5089 bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
5090 bool ForceComplain = false,
5091 bool (*IsPlausibleResult)(QualType) = nullptr);
5092
5093 /// Figure out if an expression could be turned into a call.
5094 bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
5095 UnresolvedSetImpl &NonTemplateOverloads);
5096
5097 /// Try to convert an expression \p E to type \p Ty. Returns the result of the
5098 /// conversion.
5099 ExprResult tryConvertExprToType(Expr *E, QualType Ty);
5100
5101 /// Conditionally issue a diagnostic based on the current
5102 /// evaluation context.
5103 ///
5104 /// \param Statement If Statement is non-null, delay reporting the
5105 /// diagnostic until the function body is parsed, and then do a basic
5106 /// reachability analysis to determine if the statement is reachable.
5107 /// If it is unreachable, the diagnostic will not be emitted.
5108 bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
5109 const PartialDiagnostic &PD);
5110 /// Similar, but diagnostic is only produced if all the specified statements
5111 /// are reachable.
5112 bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
5113 const PartialDiagnostic &PD);
5114
5115 // Primary Expressions.
5116 SourceRange getExprRange(Expr *E) const;
5117
5118 ExprResult ActOnIdExpression(
5119 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5120 UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand,
5121 CorrectionCandidateCallback *CCC = nullptr,
5122 bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr);
5123
5124 void DecomposeUnqualifiedId(const UnqualifiedId &Id,
5125 TemplateArgumentListInfo &Buffer,
5126 DeclarationNameInfo &NameInfo,
5127 const TemplateArgumentListInfo *&TemplateArgs);
5128
5129 bool DiagnoseDependentMemberLookup(LookupResult &R);
5130
5131 bool
5132 DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
5133 CorrectionCandidateCallback &CCC,
5134 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
5135 ArrayRef<Expr *> Args = None, TypoExpr **Out = nullptr);
5136
5137 DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
5138 IdentifierInfo *II);
5139 ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV);
5140
5141 ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
5142 IdentifierInfo *II,
5143 bool AllowBuiltinCreation=false);
5144
5145 ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
5146 SourceLocation TemplateKWLoc,
5147 const DeclarationNameInfo &NameInfo,
5148 bool isAddressOfOperand,
5149 const TemplateArgumentListInfo *TemplateArgs);
5150
5151 /// If \p D cannot be odr-used in the current expression evaluation context,
5152 /// return a reason explaining why. Otherwise, return NOUR_None.
5153 NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
5154
5155 DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5156 SourceLocation Loc,
5157 const CXXScopeSpec *SS = nullptr);
5158 DeclRefExpr *
5159 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5160 const DeclarationNameInfo &NameInfo,
5161 const CXXScopeSpec *SS = nullptr,
5162 NamedDecl *FoundD = nullptr,
5163 SourceLocation TemplateKWLoc = SourceLocation(),
5164 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5165 DeclRefExpr *
5166 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5167 const DeclarationNameInfo &NameInfo,
5168 NestedNameSpecifierLoc NNS,
5169 NamedDecl *FoundD = nullptr,
5170 SourceLocation TemplateKWLoc = SourceLocation(),
5171 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5172
5173 ExprResult
5174 BuildAnonymousStructUnionMemberReference(
5175 const CXXScopeSpec &SS,
5176 SourceLocation nameLoc,
5177 IndirectFieldDecl *indirectField,
5178 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
5179 Expr *baseObjectExpr = nullptr,
5180 SourceLocation opLoc = SourceLocation());
5181
5182 ExprResult BuildPossibleImplicitMemberExpr(
5183 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
5184 const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
5185 UnresolvedLookupExpr *AsULE = nullptr);
5186 ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
5187 SourceLocation TemplateKWLoc,
5188 LookupResult &R,
5189 const TemplateArgumentListInfo *TemplateArgs,
5190 bool IsDefiniteInstance,
5191 const Scope *S);
5192 bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
5193 const LookupResult &R,
5194 bool HasTrailingLParen);
5195
5196 ExprResult
5197 BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
5198 const DeclarationNameInfo &NameInfo,
5199 bool IsAddressOfOperand, const Scope *S,
5200 TypeSourceInfo **RecoveryTSI = nullptr);
5201
5202 ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
5203 SourceLocation TemplateKWLoc,
5204 const DeclarationNameInfo &NameInfo,
5205 const TemplateArgumentListInfo *TemplateArgs);
5206
5207 ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
5208 LookupResult &R,
5209 bool NeedsADL,
5210 bool AcceptInvalidDecl = false);
5211 ExprResult BuildDeclarationNameExpr(
5212 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
5213 NamedDecl *FoundD = nullptr,
5214 const TemplateArgumentListInfo *TemplateArgs = nullptr,
5215 bool AcceptInvalidDecl = false);
5216
5217 ExprResult BuildLiteralOperatorCall(LookupResult &R,
5218 DeclarationNameInfo &SuffixInfo,
5219 ArrayRef<Expr *> Args,
5220 SourceLocation LitEndLoc,
5221 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
5222
5223 ExprResult BuildPredefinedExpr(SourceLocation Loc,
5224 PredefinedExpr::IdentKind IK);
5225 ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
5226 ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
5227
5228 ExprResult BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5229 SourceLocation LParen,
5230 SourceLocation RParen,
5231 TypeSourceInfo *TSI);
5232 ExprResult ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5233 SourceLocation LParen,
5234 SourceLocation RParen,
5235 ParsedType ParsedTy);
5236
5237 bool CheckLoopHintExpr(Expr *E, SourceLocation Loc);
5238
5239 ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
5240 ExprResult ActOnCharacterConstant(const Token &Tok,
5241 Scope *UDLScope = nullptr);
5242 ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
5243 ExprResult ActOnParenListExpr(SourceLocation L,
5244 SourceLocation R,
5245 MultiExprArg Val);
5246
5247 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
5248 /// fragments (e.g. "foo" "bar" L"baz").
5249 ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
5250 Scope *UDLScope = nullptr);
5251
5252 ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
5253 SourceLocation DefaultLoc,
5254 SourceLocation RParenLoc,
5255 Expr *ControllingExpr,
5256 ArrayRef<ParsedType> ArgTypes,
5257 ArrayRef<Expr *> ArgExprs);
5258 ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
5259 SourceLocation DefaultLoc,
5260 SourceLocation RParenLoc,
5261 Expr *ControllingExpr,
5262 ArrayRef<TypeSourceInfo *> Types,
5263 ArrayRef<Expr *> Exprs);
5264
5265 // Binary/Unary Operators. 'Tok' is the token for the operator.
5266 ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
5267 Expr *InputExpr);
5268 ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc,
5269 UnaryOperatorKind Opc, Expr *Input);
5270 ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5271 tok::TokenKind Op, Expr *Input);
5272
5273 bool isQualifiedMemberAccess(Expr *E);
5274 QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
5275
5276 ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
5277 SourceLocation OpLoc,
5278 UnaryExprOrTypeTrait ExprKind,
5279 SourceRange R);
5280 ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
5281 UnaryExprOrTypeTrait ExprKind);
5282 ExprResult
5283 ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
5284 UnaryExprOrTypeTrait ExprKind,
5285 bool IsType, void *TyOrEx,
5286 SourceRange ArgRange);
5287
5288 ExprResult CheckPlaceholderExpr(Expr *E);
5289 bool CheckVecStepExpr(Expr *E);
5290
5291 bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
5292 bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
5293 SourceRange ExprRange,
5294 UnaryExprOrTypeTrait ExprKind);
5295 ExprResult ActOnSizeofParameterPackExpr(Scope *S,
5296 SourceLocation OpLoc,
5297 IdentifierInfo &Name,
5298 SourceLocation NameLoc,
5299 SourceLocation RParenLoc);
5300 ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
5301 tok::TokenKind Kind, Expr *Input);
5302
5303 ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
5304 Expr *Idx, SourceLocation RLoc);
5305 ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5306 Expr *Idx, SourceLocation RLoc);
5307
5308 ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5309 Expr *ColumnIdx,
5310 SourceLocation RBLoc);
5311
5312 ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5313 Expr *LowerBound,
5314 SourceLocation ColonLocFirst,
5315 SourceLocation ColonLocSecond,
5316 Expr *Length, Expr *Stride,
5317 SourceLocation RBLoc);
5318 ExprResult ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5319 SourceLocation RParenLoc,
5320 ArrayRef<Expr *> Dims,
5321 ArrayRef<SourceRange> Brackets);
5322
5323 /// Data structure for iterator expression.
5324 struct OMPIteratorData {
5325 IdentifierInfo *DeclIdent = nullptr;
5326 SourceLocation DeclIdentLoc;
5327 ParsedType Type;
5328 OMPIteratorExpr::IteratorRange Range;
5329 SourceLocation AssignLoc;
5330 SourceLocation ColonLoc;
5331 SourceLocation SecColonLoc;
5332 };
5333
5334 ExprResult ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5335 SourceLocation LLoc, SourceLocation RLoc,
5336 ArrayRef<OMPIteratorData> Data);
5337
5338 // This struct is for use by ActOnMemberAccess to allow
5339 // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
5340 // changing the access operator from a '.' to a '->' (to see if that is the
5341 // change needed to fix an error about an unknown member, e.g. when the class
5342 // defines a custom operator->).
5343 struct ActOnMemberAccessExtraArgs {
5344 Scope *S;
5345 UnqualifiedId &Id;
5346 Decl *ObjCImpDecl;
5347 };
5348
5349 ExprResult BuildMemberReferenceExpr(
5350 Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
5351 CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5352 NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
5353 const TemplateArgumentListInfo *TemplateArgs,
5354 const Scope *S,
5355 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5356
5357 ExprResult
5358 BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
5359 bool IsArrow, const CXXScopeSpec &SS,
5360 SourceLocation TemplateKWLoc,
5361 NamedDecl *FirstQualifierInScope, LookupResult &R,
5362 const TemplateArgumentListInfo *TemplateArgs,
5363 const Scope *S,
5364 bool SuppressQualifierCheck = false,
5365 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5366
5367 ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
5368 SourceLocation OpLoc,
5369 const CXXScopeSpec &SS, FieldDecl *Field,
5370 DeclAccessPair FoundDecl,
5371 const DeclarationNameInfo &MemberNameInfo);
5372
5373 ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
5374
5375 bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
5376 const CXXScopeSpec &SS,
5377 const LookupResult &R);
5378
5379 ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
5380 bool IsArrow, SourceLocation OpLoc,
5381 const CXXScopeSpec &SS,
5382 SourceLocation TemplateKWLoc,
5383 NamedDecl *FirstQualifierInScope,
5384 const DeclarationNameInfo &NameInfo,
5385 const TemplateArgumentListInfo *TemplateArgs);
5386
5387 ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
5388 SourceLocation OpLoc,
5389 tok::TokenKind OpKind,
5390 CXXScopeSpec &SS,
5391 SourceLocation TemplateKWLoc,
5392 UnqualifiedId &Member,
5393 Decl *ObjCImpDecl);
5394
5395 MemberExpr *
5396 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5397 const CXXScopeSpec *SS, SourceLocation TemplateKWLoc,
5398 ValueDecl *Member, DeclAccessPair FoundDecl,
5399 bool HadMultipleCandidates,
5400 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5401 ExprValueKind VK, ExprObjectKind OK,
5402 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5403 MemberExpr *
5404 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5405 NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
5406 ValueDecl *Member, DeclAccessPair FoundDecl,
5407 bool HadMultipleCandidates,
5408 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5409 ExprValueKind VK, ExprObjectKind OK,
5410 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5411
5412 void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
5413 bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5414 FunctionDecl *FDecl,
5415 const FunctionProtoType *Proto,
5416 ArrayRef<Expr *> Args,
5417 SourceLocation RParenLoc,
5418 bool ExecConfig = false);
5419 void CheckStaticArrayArgument(SourceLocation CallLoc,
5420 ParmVarDecl *Param,
5421 const Expr *ArgExpr);
5422
5423 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
5424 /// This provides the location of the left/right parens and a list of comma
5425 /// locations.
5426 ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5427 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5428 Expr *ExecConfig = nullptr);
5429 ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5430 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5431 Expr *ExecConfig = nullptr,
5432 bool IsExecConfig = false,
5433 bool AllowRecovery = false);
5434 Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
5435 MultiExprArg CallArgs);
5436 enum class AtomicArgumentOrder { API, AST };
5437 ExprResult
5438 BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5439 SourceLocation RParenLoc, MultiExprArg Args,
5440 AtomicExpr::AtomicOp Op,
5441 AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
5442 ExprResult
5443 BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
5444 ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
5445 Expr *Config = nullptr, bool IsExecConfig = false,
5446 ADLCallKind UsesADL = ADLCallKind::NotADL);
5447
5448 ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
5449 MultiExprArg ExecConfig,
5450 SourceLocation GGGLoc);
5451
5452 ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5453 Declarator &D, ParsedType &Ty,
5454 SourceLocation RParenLoc, Expr *CastExpr);
5455 ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
5456 TypeSourceInfo *Ty,
5457 SourceLocation RParenLoc,
5458 Expr *Op);
5459 CastKind PrepareScalarCast(ExprResult &src, QualType destType);
5460
5461 /// Build an altivec or OpenCL literal.
5462 ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
5463 SourceLocation RParenLoc, Expr *E,
5464 TypeSourceInfo *TInfo);
5465
5466 ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
5467
5468 ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
5469 ParsedType Ty,
5470 SourceLocation RParenLoc,
5471 Expr *InitExpr);
5472
5473 ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
5474 TypeSourceInfo *TInfo,
5475 SourceLocation RParenLoc,
5476 Expr *LiteralExpr);
5477
5478 ExprResult ActOnInitList(SourceLocation LBraceLoc,
5479 MultiExprArg InitArgList,
5480 SourceLocation RBraceLoc);
5481
5482 ExprResult BuildInitList(SourceLocation LBraceLoc,
5483 MultiExprArg InitArgList,
5484 SourceLocation RBraceLoc);
5485
5486 ExprResult ActOnDesignatedInitializer(Designation &Desig,
5487 SourceLocation EqualOrColonLoc,
5488 bool GNUSyntax,
5489 ExprResult Init);
5490
5491private:
5492 static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
5493
5494public:
5495 ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
5496 tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
5497 ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
5498 BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
5499 ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
5500 Expr *LHSExpr, Expr *RHSExpr);
5501 void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
5502 UnresolvedSetImpl &Functions);
5503
5504 void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
5505
5506 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5507 /// in the case of a the GNU conditional expr extension.
5508 ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
5509 SourceLocation ColonLoc,
5510 Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
5511
5512 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5513 ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
5514 LabelDecl *TheDecl);
5515
5516 void ActOnStartStmtExpr();
5517 ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
5518 SourceLocation RPLoc);
5519 ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
5520 SourceLocation RPLoc, unsigned TemplateDepth);
5521 // Handle the final expression in a statement expression.
5522 ExprResult ActOnStmtExprResult(ExprResult E);
5523 void ActOnStmtExprError();
5524
5525 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
5526 struct OffsetOfComponent {
5527 SourceLocation LocStart, LocEnd;
5528 bool isBrackets; // true if [expr], false if .ident
5529 union {
5530 IdentifierInfo *IdentInfo;
5531 Expr *E;
5532 } U;
5533 };
5534
5535 /// __builtin_offsetof(type, a.b[123][456].c)
5536 ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
5537 TypeSourceInfo *TInfo,
5538 ArrayRef<OffsetOfComponent> Components,
5539 SourceLocation RParenLoc);
5540 ExprResult ActOnBuiltinOffsetOf(Scope *S,
5541 SourceLocation BuiltinLoc,
5542 SourceLocation TypeLoc,
5543 ParsedType ParsedArgTy,
5544 ArrayRef<OffsetOfComponent> Components,
5545 SourceLocation RParenLoc);
5546
5547 // __builtin_choose_expr(constExpr, expr1, expr2)
5548 ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
5549 Expr *CondExpr, Expr *LHSExpr,
5550 Expr *RHSExpr, SourceLocation RPLoc);
5551
5552 // __builtin_va_arg(expr, type)
5553 ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
5554 SourceLocation RPLoc);
5555 ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
5556 TypeSourceInfo *TInfo, SourceLocation RPLoc);
5557
5558 // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(),
5559 // __builtin_COLUMN()
5560 ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
5561 SourceLocation BuiltinLoc,
5562 SourceLocation RPLoc);
5563
5564 // Build a potentially resolved SourceLocExpr.
5565 ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
5566 SourceLocation BuiltinLoc, SourceLocation RPLoc,
5567 DeclContext *ParentContext);
5568
5569 // __null
5570 ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
5571
5572 bool CheckCaseExpression(Expr *E);
5573
5574 /// Describes the result of an "if-exists" condition check.
5575 enum IfExistsResult {
5576 /// The symbol exists.
5577 IER_Exists,
5578
5579 /// The symbol does not exist.
5580 IER_DoesNotExist,
5581
5582 /// The name is a dependent name, so the results will differ
5583 /// from one instantiation to the next.
5584 IER_Dependent,
5585
5586 /// An error occurred.
5587 IER_Error
5588 };
5589
5590 IfExistsResult
5591 CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
5592 const DeclarationNameInfo &TargetNameInfo);
5593
5594 IfExistsResult
5595 CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5596 bool IsIfExists, CXXScopeSpec &SS,
5597 UnqualifiedId &Name);
5598
5599 StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
5600 bool IsIfExists,
5601 NestedNameSpecifierLoc QualifierLoc,
5602 DeclarationNameInfo NameInfo,
5603 Stmt *Nested);
5604 StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
5605 bool IsIfExists,
5606 CXXScopeSpec &SS, UnqualifiedId &Name,
5607 Stmt *Nested);
5608
5609 //===------------------------- "Block" Extension ------------------------===//
5610
5611 /// ActOnBlockStart - This callback is invoked when a block literal is
5612 /// started.
5613 void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
5614
5615 /// ActOnBlockArguments - This callback allows processing of block arguments.
5616 /// If there are no arguments, this is still invoked.
5617 void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
5618 Scope *CurScope);
5619
5620 /// ActOnBlockError - If there is an error parsing a block, this callback
5621 /// is invoked to pop the information about the block from the action impl.
5622 void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
5623
5624 /// ActOnBlockStmtExpr - This is called when the body of a block statement
5625 /// literal was successfully completed. ^(int x){...}
5626 ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
5627 Scope *CurScope);
5628
5629 //===---------------------------- Clang Extensions ----------------------===//
5630
5631 /// __builtin_convertvector(...)
5632 ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5633 SourceLocation BuiltinLoc,
5634 SourceLocation RParenLoc);
5635
5636 //===---------------------------- OpenCL Features -----------------------===//
5637
5638 /// __builtin_astype(...)
5639 ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5640 SourceLocation BuiltinLoc,
5641 SourceLocation RParenLoc);
5642 ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy,
5643 SourceLocation BuiltinLoc,
5644 SourceLocation RParenLoc);
5645
5646 //===---------------------------- C++ Features --------------------------===//
5647
5648 // Act on C++ namespaces
5649 Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
5650 SourceLocation NamespaceLoc,
5651 SourceLocation IdentLoc, IdentifierInfo *Ident,
5652 SourceLocation LBrace,
5653 const ParsedAttributesView &AttrList,
5654 UsingDirectiveDecl *&UsingDecl);
5655 void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
5656
5657 NamespaceDecl *getStdNamespace() const;
5658 NamespaceDecl *getOrCreateStdNamespace();
5659
5660 NamespaceDecl *lookupStdExperimentalNamespace();
5661
5662 CXXRecordDecl *getStdBadAlloc() const;
5663 EnumDecl *getStdAlignValT() const;
5664
5665private:
5666 // A cache representing if we've fully checked the various comparison category
5667 // types stored in ASTContext. The bit-index corresponds to the integer value
5668 // of a ComparisonCategoryType enumerator.
5669 llvm::SmallBitVector FullyCheckedComparisonCategories;
5670
5671 ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
5672 CXXScopeSpec &SS,
5673 ParsedType TemplateTypeTy,
5674 IdentifierInfo *MemberOrBase);
5675
5676public:
5677 enum class ComparisonCategoryUsage {
5678 /// The '<=>' operator was used in an expression and a builtin operator
5679 /// was selected.
5680 OperatorInExpression,
5681 /// A defaulted 'operator<=>' needed the comparison category. This
5682 /// typically only applies to 'std::strong_ordering', due to the implicit
5683 /// fallback return value.
5684 DefaultedOperator,
5685 };
5686
5687 /// Lookup the specified comparison category types in the standard
5688 /// library, an check the VarDecls possibly returned by the operator<=>
5689 /// builtins for that type.
5690 ///
5691 /// \return The type of the comparison category type corresponding to the
5692 /// specified Kind, or a null type if an error occurs
5693 QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
5694 SourceLocation Loc,
5695 ComparisonCategoryUsage Usage);
5696
5697 /// Tests whether Ty is an instance of std::initializer_list and, if
5698 /// it is and Element is not NULL, assigns the element type to Element.
5699 bool isStdInitializerList(QualType Ty, QualType *Element);
5700
5701 /// Looks for the std::initializer_list template and instantiates it
5702 /// with Element, or emits an error if it's not found.
5703 ///
5704 /// \returns The instantiated template, or null on error.
5705 QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
5706
5707 /// Determine whether Ctor is an initializer-list constructor, as
5708 /// defined in [dcl.init.list]p2.
5709 bool isInitListConstructor(const FunctionDecl *Ctor);
5710
5711 Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
5712 SourceLocation NamespcLoc, CXXScopeSpec &SS,
5713 SourceLocation IdentLoc,
5714 IdentifierInfo *NamespcName,
5715 const ParsedAttributesView &AttrList);
5716
5717 void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
5718
5719 Decl *ActOnNamespaceAliasDef(Scope *CurScope,
5720 SourceLocation NamespaceLoc,
5721 SourceLocation AliasLoc,
5722 IdentifierInfo *Alias,
5723 CXXScopeSpec &SS,
5724 SourceLocation IdentLoc,
5725 IdentifierInfo *Ident);
5726
5727 void FilterUsingLookup(Scope *S, LookupResult &lookup);
5728 void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
5729 bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target,
5730 const LookupResult &PreviousDecls,
5731 UsingShadowDecl *&PrevShadow);
5732 UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
5733 NamedDecl *Target,
5734 UsingShadowDecl *PrevDecl);
5735
5736 bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5737 bool HasTypenameKeyword,
5738 const CXXScopeSpec &SS,
5739 SourceLocation NameLoc,
5740 const LookupResult &Previous);
5741 bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
5742 const CXXScopeSpec &SS,
5743 const DeclarationNameInfo &NameInfo,
5744 SourceLocation NameLoc,
5745 const LookupResult *R = nullptr,
5746 const UsingDecl *UD = nullptr);
5747
5748 NamedDecl *BuildUsingDeclaration(
5749 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
5750 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
5751 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
5752 const ParsedAttributesView &AttrList, bool IsInstantiation,
5753 bool IsUsingIfExists);
5754 NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
5755 SourceLocation UsingLoc,
5756 SourceLocation EnumLoc,
5757 SourceLocation NameLoc, EnumDecl *ED);
5758 NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
5759 ArrayRef<NamedDecl *> Expansions);
5760
5761 bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
5762
5763 /// Given a derived-class using shadow declaration for a constructor and the
5764 /// correspnding base class constructor, find or create the implicit
5765 /// synthesized derived class constructor to use for this initialization.
5766 CXXConstructorDecl *
5767 findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
5768 ConstructorUsingShadowDecl *DerivedShadow);
5769
5770 Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
5771 SourceLocation UsingLoc,
5772 SourceLocation TypenameLoc, CXXScopeSpec &SS,
5773 UnqualifiedId &Name, SourceLocation EllipsisLoc,
5774 const ParsedAttributesView &AttrList);
5775 Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS,
5776 SourceLocation UsingLoc,
5777 SourceLocation EnumLoc, const DeclSpec &);
5778 Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
5779 MultiTemplateParamsArg TemplateParams,
5780 SourceLocation UsingLoc, UnqualifiedId &Name,
5781 const ParsedAttributesView &AttrList,
5782 TypeResult Type, Decl *DeclFromDeclSpec);
5783
5784 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
5785 /// including handling of its default argument expressions.
5786 ///
5787 /// \param ConstructKind - a CXXConstructExpr::ConstructionKind
5788 ExprResult
5789 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5790 NamedDecl *FoundDecl,
5791 CXXConstructorDecl *Constructor, MultiExprArg Exprs,
5792 bool HadMultipleCandidates, bool IsListInitialization,
5793 bool IsStdInitListInitialization,
5794 bool RequiresZeroInit, unsigned ConstructKind,
5795 SourceRange ParenRange);
5796
5797 /// Build a CXXConstructExpr whose constructor has already been resolved if
5798 /// it denotes an inherited constructor.
5799 ExprResult
5800 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5801 CXXConstructorDecl *Constructor, bool Elidable,
5802 MultiExprArg Exprs,
5803 bool HadMultipleCandidates, bool IsListInitialization,
5804 bool IsStdInitListInitialization,
5805 bool RequiresZeroInit, unsigned ConstructKind,
5806 SourceRange ParenRange);
5807
5808 // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
5809 // the constructor can be elidable?
5810 ExprResult
5811 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5812 NamedDecl *FoundDecl,
5813 CXXConstructorDecl *Constructor, bool Elidable,
5814 MultiExprArg Exprs, bool HadMultipleCandidates,
5815 bool IsListInitialization,
5816 bool IsStdInitListInitialization, bool RequiresZeroInit,
5817 unsigned ConstructKind, SourceRange ParenRange);
5818
5819 ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
5820
5821
5822 /// Instantiate or parse a C++ default argument expression as necessary.
5823 /// Return true on error.
5824 bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5825 ParmVarDecl *Param);
5826
5827 /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
5828 /// the default expr if needed.
5829 ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5830 FunctionDecl *FD,
5831 ParmVarDecl *Param);
5832
5833 /// FinalizeVarWithDestructor - Prepare for calling destructor on the
5834 /// constructed variable.
5835 void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
5836
5837 /// Helper class that collects exception specifications for
5838 /// implicitly-declared special member functions.
5839 class ImplicitExceptionSpecification {
5840 // Pointer to allow copying
5841 Sema *Self;
5842 // We order exception specifications thus:
5843 // noexcept is the most restrictive, but is only used in C++11.
5844 // throw() comes next.
5845 // Then a throw(collected exceptions)
5846 // Finally no specification, which is expressed as noexcept(false).
5847 // throw(...) is used instead if any called function uses it.
5848 ExceptionSpecificationType ComputedEST;
5849 llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
5850 SmallVector<QualType, 4> Exceptions;
5851
5852 void ClearExceptions() {
5853 ExceptionsSeen.clear();
5854 Exceptions.clear();
5855 }
5856
5857 public:
5858 explicit ImplicitExceptionSpecification(Sema &Self)
5859 : Self(&Self), ComputedEST(EST_BasicNoexcept) {
5860 if (!Self.getLangOpts().CPlusPlus11)
5861 ComputedEST = EST_DynamicNone;
5862 }
5863
5864 /// Get the computed exception specification type.
5865 ExceptionSpecificationType getExceptionSpecType() const {
5866 assert(!isComputedNoexcept(ComputedEST) &&(static_cast <bool> (!isComputedNoexcept(ComputedEST) &&
"noexcept(expr) should not be a possible result") ? void (0)
: __assert_fail ("!isComputedNoexcept(ComputedEST) && \"noexcept(expr) should not be a possible result\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 5867, __extension__ __PRETTY_FUNCTION__))
5867 "noexcept(expr) should not be a possible result")(static_cast <bool> (!isComputedNoexcept(ComputedEST) &&
"noexcept(expr) should not be a possible result") ? void (0)
: __assert_fail ("!isComputedNoexcept(ComputedEST) && \"noexcept(expr) should not be a possible result\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 5867, __extension__ __PRETTY_FUNCTION__))
;
5868 return ComputedEST;
5869 }
5870
5871 /// The number of exceptions in the exception specification.
5872 unsigned size() const { return Exceptions.size(); }
5873
5874 /// The set of exceptions in the exception specification.
5875 const QualType *data() const { return Exceptions.data(); }
5876
5877 /// Integrate another called method into the collected data.
5878 void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
5879
5880 /// Integrate an invoked expression into the collected data.
5881 void CalledExpr(Expr *E) { CalledStmt(E); }
5882
5883 /// Integrate an invoked statement into the collected data.
5884 void CalledStmt(Stmt *S);
5885
5886 /// Overwrite an EPI's exception specification with this
5887 /// computed exception specification.
5888 FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
5889 FunctionProtoType::ExceptionSpecInfo ESI;
5890 ESI.Type = getExceptionSpecType();
5891 if (ESI.Type == EST_Dynamic) {
5892 ESI.Exceptions = Exceptions;
5893 } else if (ESI.Type == EST_None) {
5894 /// C++11 [except.spec]p14:
5895 /// The exception-specification is noexcept(false) if the set of
5896 /// potential exceptions of the special member function contains "any"
5897 ESI.Type = EST_NoexceptFalse;
5898 ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(),
5899 tok::kw_false).get();
5900 }
5901 return ESI;
5902 }
5903 };
5904
5905 /// Evaluate the implicit exception specification for a defaulted
5906 /// special member function.
5907 void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
5908
5909 /// Check the given noexcept-specifier, convert its expression, and compute
5910 /// the appropriate ExceptionSpecificationType.
5911 ExprResult ActOnNoexceptSpec(Expr *NoexceptExpr,
5912 ExceptionSpecificationType &EST);
5913
5914 /// Check the given exception-specification and update the
5915 /// exception specification information with the results.
5916 void checkExceptionSpecification(bool IsTopLevel,
5917 ExceptionSpecificationType EST,
5918 ArrayRef<ParsedType> DynamicExceptions,
5919 ArrayRef<SourceRange> DynamicExceptionRanges,
5920 Expr *NoexceptExpr,
5921 SmallVectorImpl<QualType> &Exceptions,
5922 FunctionProtoType::ExceptionSpecInfo &ESI);
5923
5924 /// Determine if we're in a case where we need to (incorrectly) eagerly
5925 /// parse an exception specification to work around a libstdc++ bug.
5926 bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
5927
5928 /// Add an exception-specification to the given member function
5929 /// (or member function template). The exception-specification was parsed
5930 /// after the method itself was declared.
5931 void actOnDelayedExceptionSpecification(Decl *Method,
5932 ExceptionSpecificationType EST,
5933 SourceRange SpecificationRange,
5934 ArrayRef<ParsedType> DynamicExceptions,
5935 ArrayRef<SourceRange> DynamicExceptionRanges,
5936 Expr *NoexceptExpr);
5937
5938 class InheritedConstructorInfo;
5939
5940 /// Determine if a special member function should have a deleted
5941 /// definition when it is defaulted.
5942 bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5943 InheritedConstructorInfo *ICI = nullptr,
5944 bool Diagnose = false);
5945
5946 /// Produce notes explaining why a defaulted function was defined as deleted.
5947 void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
5948
5949 /// Declare the implicit default constructor for the given class.
5950 ///
5951 /// \param ClassDecl The class declaration into which the implicit
5952 /// default constructor will be added.
5953 ///
5954 /// \returns The implicitly-declared default constructor.
5955 CXXConstructorDecl *DeclareImplicitDefaultConstructor(
5956 CXXRecordDecl *ClassDecl);
5957
5958 /// DefineImplicitDefaultConstructor - Checks for feasibility of
5959 /// defining this constructor as the default constructor.
5960 void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5961 CXXConstructorDecl *Constructor);
5962
5963 /// Declare the implicit destructor for the given class.
5964 ///
5965 /// \param ClassDecl The class declaration into which the implicit
5966 /// destructor will be added.
5967 ///
5968 /// \returns The implicitly-declared destructor.
5969 CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
5970
5971 /// DefineImplicitDestructor - Checks for feasibility of
5972 /// defining this destructor as the default destructor.
5973 void DefineImplicitDestructor(SourceLocation CurrentLocation,
5974 CXXDestructorDecl *Destructor);
5975
5976 /// Build an exception spec for destructors that don't have one.
5977 ///
5978 /// C++11 says that user-defined destructors with no exception spec get one
5979 /// that looks as if the destructor was implicitly declared.
5980 void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
5981
5982 /// Define the specified inheriting constructor.
5983 void DefineInheritingConstructor(SourceLocation UseLoc,
5984 CXXConstructorDecl *Constructor);
5985
5986 /// Declare the implicit copy constructor for the given class.
5987 ///
5988 /// \param ClassDecl The class declaration into which the implicit
5989 /// copy constructor will be added.
5990 ///
5991 /// \returns The implicitly-declared copy constructor.
5992 CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
5993
5994 /// DefineImplicitCopyConstructor - Checks for feasibility of
5995 /// defining this constructor as the copy constructor.
5996 void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5997 CXXConstructorDecl *Constructor);
5998
5999 /// Declare the implicit move constructor for the given class.
6000 ///
6001 /// \param ClassDecl The Class declaration into which the implicit
6002 /// move constructor will be added.
6003 ///
6004 /// \returns The implicitly-declared move constructor, or NULL if it wasn't
6005 /// declared.
6006 CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
6007
6008 /// DefineImplicitMoveConstructor - Checks for feasibility of
6009 /// defining this constructor as the move constructor.
6010 void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
6011 CXXConstructorDecl *Constructor);
6012
6013 /// Declare the implicit copy assignment operator for the given class.
6014 ///
6015 /// \param ClassDecl The class declaration into which the implicit
6016 /// copy assignment operator will be added.
6017 ///
6018 /// \returns The implicitly-declared copy assignment operator.
6019 CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
6020
6021 /// Defines an implicitly-declared copy assignment operator.
6022 void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6023 CXXMethodDecl *MethodDecl);
6024
6025 /// Declare the implicit move assignment operator for the given class.
6026 ///
6027 /// \param ClassDecl The Class declaration into which the implicit
6028 /// move assignment operator will be added.
6029 ///
6030 /// \returns The implicitly-declared move assignment operator, or NULL if it
6031 /// wasn't declared.
6032 CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
6033
6034 /// Defines an implicitly-declared move assignment operator.
6035 void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
6036 CXXMethodDecl *MethodDecl);
6037
6038 /// Force the declaration of any implicitly-declared members of this
6039 /// class.
6040 void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
6041
6042 /// Check a completed declaration of an implicit special member.
6043 void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
6044
6045 /// Determine whether the given function is an implicitly-deleted
6046 /// special member function.
6047 bool isImplicitlyDeleted(FunctionDecl *FD);
6048
6049 /// Check whether 'this' shows up in the type of a static member
6050 /// function after the (naturally empty) cv-qualifier-seq would be.
6051 ///
6052 /// \returns true if an error occurred.
6053 bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
6054
6055 /// Whether this' shows up in the exception specification of a static
6056 /// member function.
6057 bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
6058
6059 /// Check whether 'this' shows up in the attributes of the given
6060 /// static member function.
6061 ///
6062 /// \returns true if an error occurred.
6063 bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
6064
6065 /// MaybeBindToTemporary - If the passed in expression has a record type with
6066 /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
6067 /// it simply returns the passed in expression.
6068 ExprResult MaybeBindToTemporary(Expr *E);
6069
6070 /// Wrap the expression in a ConstantExpr if it is a potential immediate
6071 /// invocation.
6072 ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl);
6073
6074 bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
6075 QualType DeclInitType, MultiExprArg ArgsPtr,
6076 SourceLocation Loc,
6077 SmallVectorImpl<Expr *> &ConvertedArgs,
6078 bool AllowExplicit = false,
6079 bool IsListInitialization = false);
6080
6081 ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
6082 SourceLocation NameLoc,
6083 IdentifierInfo &Name);
6084
6085 ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc,
6086 Scope *S, CXXScopeSpec &SS,
6087 bool EnteringContext);
6088 ParsedType getDestructorName(SourceLocation TildeLoc,
6089 IdentifierInfo &II, SourceLocation NameLoc,
6090 Scope *S, CXXScopeSpec &SS,
6091 ParsedType ObjectType,
6092 bool EnteringContext);
6093
6094 ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
6095 ParsedType ObjectType);
6096
6097 // Checks that reinterpret casts don't have undefined behavior.
6098 void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
6099 bool IsDereference, SourceRange Range);
6100
6101 // Checks that the vector type should be initialized from a scalar
6102 // by splatting the value rather than populating a single element.
6103 // This is the case for AltiVecVector types as well as with
6104 // AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified.
6105 bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy);
6106
6107 // Checks if the -faltivec-src-compat=gcc option is specified.
6108 // If so, AltiVecVector, AltiVecBool and AltiVecPixel types are
6109 // treated the same way as they are when trying to initialize
6110 // these vectors on gcc (an error is emitted).
6111 bool CheckAltivecInitFromScalar(SourceRange R, QualType VecTy,
6112 QualType SrcTy);
6113
6114 /// ActOnCXXNamedCast - Parse
6115 /// {dynamic,static,reinterpret,const,addrspace}_cast's.
6116 ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
6117 tok::TokenKind Kind,
6118 SourceLocation LAngleBracketLoc,
6119 Declarator &D,
6120 SourceLocation RAngleBracketLoc,
6121 SourceLocation LParenLoc,
6122 Expr *E,
6123 SourceLocation RParenLoc);
6124
6125 ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
6126 tok::TokenKind Kind,
6127 TypeSourceInfo *Ty,
6128 Expr *E,
6129 SourceRange AngleBrackets,
6130 SourceRange Parens);
6131
6132 ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
6133 ExprResult Operand,
6134 SourceLocation RParenLoc);
6135
6136 ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
6137 Expr *Operand, SourceLocation RParenLoc);
6138
6139 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6140 SourceLocation TypeidLoc,
6141 TypeSourceInfo *Operand,
6142 SourceLocation RParenLoc);
6143 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6144 SourceLocation TypeidLoc,
6145 Expr *Operand,
6146 SourceLocation RParenLoc);
6147
6148 /// ActOnCXXTypeid - Parse typeid( something ).
6149 ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
6150 SourceLocation LParenLoc, bool isType,
6151 void *TyOrExpr,
6152 SourceLocation RParenLoc);
6153
6154 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6155 SourceLocation TypeidLoc,
6156 TypeSourceInfo *Operand,
6157 SourceLocation RParenLoc);
6158 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6159 SourceLocation TypeidLoc,
6160 Expr *Operand,
6161 SourceLocation RParenLoc);
6162
6163 /// ActOnCXXUuidof - Parse __uuidof( something ).
6164 ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
6165 SourceLocation LParenLoc, bool isType,
6166 void *TyOrExpr,
6167 SourceLocation RParenLoc);
6168
6169 /// Handle a C++1z fold-expression: ( expr op ... op expr ).
6170 ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
6171 tok::TokenKind Operator,
6172 SourceLocation EllipsisLoc, Expr *RHS,
6173 SourceLocation RParenLoc);
6174 ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
6175 SourceLocation LParenLoc, Expr *LHS,
6176 BinaryOperatorKind Operator,
6177 SourceLocation EllipsisLoc, Expr *RHS,
6178 SourceLocation RParenLoc,
6179 Optional<unsigned> NumExpansions);
6180 ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
6181 BinaryOperatorKind Operator);
6182
6183 //// ActOnCXXThis - Parse 'this' pointer.
6184 ExprResult ActOnCXXThis(SourceLocation loc);
6185
6186 /// Build a CXXThisExpr and mark it referenced in the current context.
6187 Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
6188 void MarkThisReferenced(CXXThisExpr *This);
6189
6190 /// Try to retrieve the type of the 'this' pointer.
6191 ///
6192 /// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
6193 QualType getCurrentThisType();
6194
6195 /// When non-NULL, the C++ 'this' expression is allowed despite the
6196 /// current context not being a non-static member function. In such cases,
6197 /// this provides the type used for 'this'.
6198 QualType CXXThisTypeOverride;
6199
6200 /// RAII object used to temporarily allow the C++ 'this' expression
6201 /// to be used, with the given qualifiers on the current class type.
6202 class CXXThisScopeRAII {
6203 Sema &S;
6204 QualType OldCXXThisTypeOverride;
6205 bool Enabled;
6206
6207 public:
6208 /// Introduce a new scope where 'this' may be allowed (when enabled),
6209 /// using the given declaration (which is either a class template or a
6210 /// class) along with the given qualifiers.
6211 /// along with the qualifiers placed on '*this'.
6212 CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
6213 bool Enabled = true);
6214
6215 ~CXXThisScopeRAII();
6216 };
6217
6218 /// Make sure the value of 'this' is actually available in the current
6219 /// context, if it is a potentially evaluated context.
6220 ///
6221 /// \param Loc The location at which the capture of 'this' occurs.
6222 ///
6223 /// \param Explicit Whether 'this' is explicitly captured in a lambda
6224 /// capture list.
6225 ///
6226 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
6227 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
6228 /// This is useful when enclosing lambdas must speculatively capture
6229 /// 'this' that may or may not be used in certain specializations of
6230 /// a nested generic lambda (depending on whether the name resolves to
6231 /// a non-static member function or a static function).
6232 /// \return returns 'true' if failed, 'false' if success.
6233 bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false,
6234 bool BuildAndDiagnose = true,
6235 const unsigned *const FunctionScopeIndexToStopAt = nullptr,
6236 bool ByCopy = false);
6237
6238 /// Determine whether the given type is the type of *this that is used
6239 /// outside of the body of a member function for a type that is currently
6240 /// being defined.
6241 bool isThisOutsideMemberFunctionBody(QualType BaseType);
6242
6243 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
6244 ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6245
6246
6247 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
6248 ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6249
6250 ExprResult
6251 ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,
6252 SourceLocation AtLoc, SourceLocation RParen);
6253
6254 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
6255 ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
6256
6257 //// ActOnCXXThrow - Parse throw expressions.
6258 ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
6259 ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
6260 bool IsThrownVarInScope);
6261 bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
6262
6263 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
6264 /// Can be interpreted either as function-style casting ("int(x)")
6265 /// or class type construction ("ClassType(x,y,z)")
6266 /// or creation of a value-initialized type ("int()").
6267 ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
6268 SourceLocation LParenOrBraceLoc,
6269 MultiExprArg Exprs,
6270 SourceLocation RParenOrBraceLoc,
6271 bool ListInitialization);
6272
6273 ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
6274 SourceLocation LParenLoc,
6275 MultiExprArg Exprs,
6276 SourceLocation RParenLoc,
6277 bool ListInitialization);
6278
6279 /// ActOnCXXNew - Parsed a C++ 'new' expression.
6280 ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
6281 SourceLocation PlacementLParen,
6282 MultiExprArg PlacementArgs,
6283 SourceLocation PlacementRParen,
6284 SourceRange TypeIdParens, Declarator &D,
6285 Expr *Initializer);
6286 ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal,
6287 SourceLocation PlacementLParen,
6288 MultiExprArg PlacementArgs,
6289 SourceLocation PlacementRParen,
6290 SourceRange TypeIdParens,
6291 QualType AllocType,
6292 TypeSourceInfo *AllocTypeInfo,
6293 Optional<Expr *> ArraySize,
6294 SourceRange DirectInitRange,
6295 Expr *Initializer);
6296
6297 /// Determine whether \p FD is an aligned allocation or deallocation
6298 /// function that is unavailable.
6299 bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
6300
6301 /// Produce diagnostics if \p FD is an aligned allocation or deallocation
6302 /// function that is unavailable.
6303 void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
6304 SourceLocation Loc);
6305
6306 bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
6307 SourceRange R);
6308
6309 /// The scope in which to find allocation functions.
6310 enum AllocationFunctionScope {
6311 /// Only look for allocation functions in the global scope.
6312 AFS_Global,
6313 /// Only look for allocation functions in the scope of the
6314 /// allocated class.
6315 AFS_Class,
6316 /// Look for allocation functions in both the global scope
6317 /// and in the scope of the allocated class.
6318 AFS_Both
6319 };
6320
6321 /// Finds the overloads of operator new and delete that are appropriate
6322 /// for the allocation.
6323 bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
6324 AllocationFunctionScope NewScope,
6325 AllocationFunctionScope DeleteScope,
6326 QualType AllocType, bool IsArray,
6327 bool &PassAlignment, MultiExprArg PlaceArgs,
6328 FunctionDecl *&OperatorNew,
6329 FunctionDecl *&OperatorDelete,
6330 bool Diagnose = true);
6331 void DeclareGlobalNewDelete();
6332 void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
6333 ArrayRef<QualType> Params);
6334
6335 bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
6336 DeclarationName Name, FunctionDecl* &Operator,
6337 bool Diagnose = true);
6338 FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
6339 bool CanProvideSize,
6340 bool Overaligned,
6341 DeclarationName Name);
6342 FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
6343 CXXRecordDecl *RD);
6344
6345 /// ActOnCXXDelete - Parsed a C++ 'delete' expression
6346 ExprResult ActOnCXXDelete(SourceLocation StartLoc,
6347 bool UseGlobal, bool ArrayForm,
6348 Expr *Operand);
6349 void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
6350 bool IsDelete, bool CallCanBeVirtual,
6351 bool WarnOnNonAbstractTypes,
6352 SourceLocation DtorLoc);
6353
6354 ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
6355 Expr *Operand, SourceLocation RParen);
6356 ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6357 SourceLocation RParen);
6358
6359 /// Parsed one of the type trait support pseudo-functions.
6360 ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6361 ArrayRef<ParsedType> Args,
6362 SourceLocation RParenLoc);
6363 ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6364 ArrayRef<TypeSourceInfo *> Args,
6365 SourceLocation RParenLoc);
6366
6367 /// ActOnArrayTypeTrait - Parsed one of the binary type trait support
6368 /// pseudo-functions.
6369 ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
6370 SourceLocation KWLoc,
6371 ParsedType LhsTy,
6372 Expr *DimExpr,
6373 SourceLocation RParen);
6374
6375 ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
6376 SourceLocation KWLoc,
6377 TypeSourceInfo *TSInfo,
6378 Expr *DimExpr,
6379 SourceLocation RParen);
6380
6381 /// ActOnExpressionTrait - Parsed one of the unary type trait support
6382 /// pseudo-functions.
6383 ExprResult ActOnExpressionTrait(ExpressionTrait OET,
6384 SourceLocation KWLoc,
6385 Expr *Queried,
6386 SourceLocation RParen);
6387
6388 ExprResult BuildExpressionTrait(ExpressionTrait OET,
6389 SourceLocation KWLoc,
6390 Expr *Queried,
6391 SourceLocation RParen);
6392
6393 ExprResult ActOnStartCXXMemberReference(Scope *S,
6394 Expr *Base,
6395 SourceLocation OpLoc,
6396 tok::TokenKind OpKind,
6397 ParsedType &ObjectType,
6398 bool &MayBePseudoDestructor);
6399
6400 ExprResult BuildPseudoDestructorExpr(Expr *Base,
6401 SourceLocation OpLoc,
6402 tok::TokenKind OpKind,
6403 const CXXScopeSpec &SS,
6404 TypeSourceInfo *ScopeType,
6405 SourceLocation CCLoc,
6406 SourceLocation TildeLoc,
6407 PseudoDestructorTypeStorage DestroyedType);
6408
6409 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6410 SourceLocation OpLoc,
6411 tok::TokenKind OpKind,
6412 CXXScopeSpec &SS,
6413 UnqualifiedId &FirstTypeName,
6414 SourceLocation CCLoc,
6415 SourceLocation TildeLoc,
6416 UnqualifiedId &SecondTypeName);
6417
6418 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6419 SourceLocation OpLoc,
6420 tok::TokenKind OpKind,
6421 SourceLocation TildeLoc,
6422 const DeclSpec& DS);
6423
6424 /// MaybeCreateExprWithCleanups - If the current full-expression
6425 /// requires any cleanups, surround it with a ExprWithCleanups node.
6426 /// Otherwise, just returns the passed-in expression.
6427 Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
6428 Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
6429 ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
6430
6431 MaterializeTemporaryExpr *
6432 CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6433 bool BoundToLvalueReference);
6434
6435 ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
6436 return ActOnFinishFullExpr(
6437 Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
6438 }
6439 ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
6440 bool DiscardedValue, bool IsConstexpr = false);
6441 StmtResult ActOnFinishFullStmt(Stmt *Stmt);
6442
6443 // Marks SS invalid if it represents an incomplete type.
6444 bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
6445 // Complete an enum decl, maybe without a scope spec.
6446 bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L,
6447 CXXScopeSpec *SS = nullptr);
6448
6449 DeclContext *computeDeclContext(QualType T);
6450 DeclContext *computeDeclContext(const CXXScopeSpec &SS,
6451 bool EnteringContext = false);
6452 bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
6453 CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
6454
6455 /// The parser has parsed a global nested-name-specifier '::'.
6456 ///
6457 /// \param CCLoc The location of the '::'.
6458 ///
6459 /// \param SS The nested-name-specifier, which will be updated in-place
6460 /// to reflect the parsed nested-name-specifier.
6461 ///
6462 /// \returns true if an error occurred, false otherwise.
6463 bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
6464
6465 /// The parser has parsed a '__super' nested-name-specifier.
6466 ///
6467 /// \param SuperLoc The location of the '__super' keyword.
6468 ///
6469 /// \param ColonColonLoc The location of the '::'.
6470 ///
6471 /// \param SS The nested-name-specifier, which will be updated in-place
6472 /// to reflect the parsed nested-name-specifier.
6473 ///
6474 /// \returns true if an error occurred, false otherwise.
6475 bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
6476 SourceLocation ColonColonLoc, CXXScopeSpec &SS);
6477
6478 bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
6479 bool *CanCorrect = nullptr);
6480 NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
6481
6482 /// Keeps information about an identifier in a nested-name-spec.
6483 ///
6484 struct NestedNameSpecInfo {
6485 /// The type of the object, if we're parsing nested-name-specifier in
6486 /// a member access expression.
6487 ParsedType ObjectType;
6488
6489 /// The identifier preceding the '::'.
6490 IdentifierInfo *Identifier;
6491
6492 /// The location of the identifier.
6493 SourceLocation IdentifierLoc;
6494
6495 /// The location of the '::'.
6496 SourceLocation CCLoc;
6497
6498 /// Creates info object for the most typical case.
6499 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6500 SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType())
6501 : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
6502 CCLoc(ColonColonLoc) {
6503 }
6504
6505 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6506 SourceLocation ColonColonLoc, QualType ObjectType)
6507 : ObjectType(ParsedType::make(ObjectType)), Identifier(II),
6508 IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {
6509 }
6510 };
6511
6512 bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
6513 NestedNameSpecInfo &IdInfo);
6514
6515 bool BuildCXXNestedNameSpecifier(Scope *S,
6516 NestedNameSpecInfo &IdInfo,
6517 bool EnteringContext,
6518 CXXScopeSpec &SS,
6519 NamedDecl *ScopeLookupResult,
6520 bool ErrorRecoveryLookup,
6521 bool *IsCorrectedToColon = nullptr,
6522 bool OnlyNamespace = false);
6523
6524 /// The parser has parsed a nested-name-specifier 'identifier::'.
6525 ///
6526 /// \param S The scope in which this nested-name-specifier occurs.
6527 ///
6528 /// \param IdInfo Parser information about an identifier in the
6529 /// nested-name-spec.
6530 ///
6531 /// \param EnteringContext Whether we're entering the context nominated by
6532 /// this nested-name-specifier.
6533 ///
6534 /// \param SS The nested-name-specifier, which is both an input
6535 /// parameter (the nested-name-specifier before this type) and an
6536 /// output parameter (containing the full nested-name-specifier,
6537 /// including this new type).
6538 ///
6539 /// \param ErrorRecoveryLookup If true, then this method is called to improve
6540 /// error recovery. In this case do not emit error message.
6541 ///
6542 /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
6543 /// are allowed. The bool value pointed by this parameter is set to 'true'
6544 /// if the identifier is treated as if it was followed by ':', not '::'.
6545 ///
6546 /// \param OnlyNamespace If true, only considers namespaces in lookup.
6547 ///
6548 /// \returns true if an error occurred, false otherwise.
6549 bool ActOnCXXNestedNameSpecifier(Scope *S,
6550 NestedNameSpecInfo &IdInfo,
6551 bool EnteringContext,
6552 CXXScopeSpec &SS,
6553 bool ErrorRecoveryLookup = false,
6554 bool *IsCorrectedToColon = nullptr,
6555 bool OnlyNamespace = false);
6556
6557 ExprResult ActOnDecltypeExpression(Expr *E);
6558
6559 bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
6560 const DeclSpec &DS,
6561 SourceLocation ColonColonLoc);
6562
6563 bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
6564 NestedNameSpecInfo &IdInfo,
6565 bool EnteringContext);
6566
6567 /// The parser has parsed a nested-name-specifier
6568 /// 'template[opt] template-name < template-args >::'.
6569 ///
6570 /// \param S The scope in which this nested-name-specifier occurs.
6571 ///
6572 /// \param SS The nested-name-specifier, which is both an input
6573 /// parameter (the nested-name-specifier before this type) and an
6574 /// output parameter (containing the full nested-name-specifier,
6575 /// including this new type).
6576 ///
6577 /// \param TemplateKWLoc the location of the 'template' keyword, if any.
6578 /// \param TemplateName the template name.
6579 /// \param TemplateNameLoc The location of the template name.
6580 /// \param LAngleLoc The location of the opening angle bracket ('<').
6581 /// \param TemplateArgs The template arguments.
6582 /// \param RAngleLoc The location of the closing angle bracket ('>').
6583 /// \param CCLoc The location of the '::'.
6584 ///
6585 /// \param EnteringContext Whether we're entering the context of the
6586 /// nested-name-specifier.
6587 ///
6588 ///
6589 /// \returns true if an error occurred, false otherwise.
6590 bool ActOnCXXNestedNameSpecifier(Scope *S,
6591 CXXScopeSpec &SS,
6592 SourceLocation TemplateKWLoc,
6593 TemplateTy TemplateName,
6594 SourceLocation TemplateNameLoc,
6595 SourceLocation LAngleLoc,
6596 ASTTemplateArgsPtr TemplateArgs,
6597 SourceLocation RAngleLoc,
6598 SourceLocation CCLoc,
6599 bool EnteringContext);
6600
6601 /// Given a C++ nested-name-specifier, produce an annotation value
6602 /// that the parser can use later to reconstruct the given
6603 /// nested-name-specifier.
6604 ///
6605 /// \param SS A nested-name-specifier.
6606 ///
6607 /// \returns A pointer containing all of the information in the
6608 /// nested-name-specifier \p SS.
6609 void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
6610
6611 /// Given an annotation pointer for a nested-name-specifier, restore
6612 /// the nested-name-specifier structure.
6613 ///
6614 /// \param Annotation The annotation pointer, produced by
6615 /// \c SaveNestedNameSpecifierAnnotation().
6616 ///
6617 /// \param AnnotationRange The source range corresponding to the annotation.
6618 ///
6619 /// \param SS The nested-name-specifier that will be updated with the contents
6620 /// of the annotation pointer.
6621 void RestoreNestedNameSpecifierAnnotation(void *Annotation,
6622 SourceRange AnnotationRange,
6623 CXXScopeSpec &SS);
6624
6625 bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6626
6627 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
6628 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
6629 /// After this method is called, according to [C++ 3.4.3p3], names should be
6630 /// looked up in the declarator-id's scope, until the declarator is parsed and
6631 /// ActOnCXXExitDeclaratorScope is called.
6632 /// The 'SS' should be a non-empty valid CXXScopeSpec.
6633 bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
6634
6635 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
6636 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
6637 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
6638 /// Used to indicate that names should revert to being looked up in the
6639 /// defining scope.
6640 void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6641
6642 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
6643 /// initializer for the declaration 'Dcl'.
6644 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6645 /// static data member of class X, names should be looked up in the scope of
6646 /// class X.
6647 void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
6648
6649 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6650 /// initializer for the declaration 'Dcl'.
6651 void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
6652
6653 /// Create a new lambda closure type.
6654 CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
6655 TypeSourceInfo *Info,
6656 bool KnownDependent,
6657 LambdaCaptureDefault CaptureDefault);
6658
6659 /// Start the definition of a lambda expression.
6660 CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class,
6661 SourceRange IntroducerRange,
6662 TypeSourceInfo *MethodType,
6663 SourceLocation EndLoc,
6664 ArrayRef<ParmVarDecl *> Params,
6665 ConstexprSpecKind ConstexprKind,
6666 Expr *TrailingRequiresClause);
6667
6668 /// Number lambda for linkage purposes if necessary.
6669 void handleLambdaNumbering(
6670 CXXRecordDecl *Class, CXXMethodDecl *Method,
6671 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling = None);
6672
6673 /// Endow the lambda scope info with the relevant properties.
6674 void buildLambdaScope(sema::LambdaScopeInfo *LSI,
6675 CXXMethodDecl *CallOperator,
6676 SourceRange IntroducerRange,
6677 LambdaCaptureDefault CaptureDefault,
6678 SourceLocation CaptureDefaultLoc,
6679 bool ExplicitParams,
6680 bool ExplicitResultType,
6681 bool Mutable);
6682
6683 /// Perform initialization analysis of the init-capture and perform
6684 /// any implicit conversions such as an lvalue-to-rvalue conversion if
6685 /// not being used to initialize a reference.
6686 ParsedType actOnLambdaInitCaptureInitialization(
6687 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6688 IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
6689 return ParsedType::make(buildLambdaInitCaptureInitialization(
6690 Loc, ByRef, EllipsisLoc, None, Id,
6691 InitKind != LambdaCaptureInitKind::CopyInit, Init));
6692 }
6693 QualType buildLambdaInitCaptureInitialization(
6694 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6695 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool DirectInit,
6696 Expr *&Init);
6697
6698 /// Create a dummy variable within the declcontext of the lambda's
6699 /// call operator, for name lookup purposes for a lambda init capture.
6700 ///
6701 /// CodeGen handles emission of lambda captures, ignoring these dummy
6702 /// variables appropriately.
6703 VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc,
6704 QualType InitCaptureType,
6705 SourceLocation EllipsisLoc,
6706 IdentifierInfo *Id,
6707 unsigned InitStyle, Expr *Init);
6708
6709 /// Add an init-capture to a lambda scope.
6710 void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var);
6711
6712 /// Note that we have finished the explicit captures for the
6713 /// given lambda.
6714 void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
6715
6716 /// \brief This is called after parsing the explicit template parameter list
6717 /// on a lambda (if it exists) in C++2a.
6718 void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
6719 ArrayRef<NamedDecl *> TParams,
6720 SourceLocation RAngleLoc,
6721 ExprResult RequiresClause);
6722
6723 /// Introduce the lambda parameters into scope.
6724 void addLambdaParameters(
6725 ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
6726 CXXMethodDecl *CallOperator, Scope *CurScope);
6727
6728 /// Deduce a block or lambda's return type based on the return
6729 /// statements present in the body.
6730 void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
6731
6732 /// ActOnStartOfLambdaDefinition - This is called just before we start
6733 /// parsing the body of a lambda; it analyzes the explicit captures and
6734 /// arguments, and sets up various data-structures for the body of the
6735 /// lambda.
6736 void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
6737 Declarator &ParamInfo, Scope *CurScope);
6738
6739 /// ActOnLambdaError - If there is an error parsing a lambda, this callback
6740 /// is invoked to pop the information about the lambda.
6741 void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
6742 bool IsInstantiation = false);
6743
6744 /// ActOnLambdaExpr - This is called when the body of a lambda expression
6745 /// was successfully completed.
6746 ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
6747 Scope *CurScope);
6748
6749 /// Does copying/destroying the captured variable have side effects?
6750 bool CaptureHasSideEffects(const sema::Capture &From);
6751
6752 /// Diagnose if an explicit lambda capture is unused. Returns true if a
6753 /// diagnostic is emitted.
6754 bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
6755 const sema::Capture &From);
6756
6757 /// Build a FieldDecl suitable to hold the given capture.
6758 FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
6759
6760 /// Initialize the given capture with a suitable expression.
6761 ExprResult BuildCaptureInit(const sema::Capture &Capture,
6762 SourceLocation ImplicitCaptureLoc,
6763 bool IsOpenMPMapping = false);
6764
6765 /// Complete a lambda-expression having processed and attached the
6766 /// lambda body.
6767 ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
6768 sema::LambdaScopeInfo *LSI);
6769
6770 /// Get the return type to use for a lambda's conversion function(s) to
6771 /// function pointer type, given the type of the call operator.
6772 QualType
6773 getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType,
6774 CallingConv CC);
6775
6776 /// Define the "body" of the conversion from a lambda object to a
6777 /// function pointer.
6778 ///
6779 /// This routine doesn't actually define a sensible body; rather, it fills
6780 /// in the initialization expression needed to copy the lambda object into
6781 /// the block, and IR generation actually generates the real body of the
6782 /// block pointer conversion.
6783 void DefineImplicitLambdaToFunctionPointerConversion(
6784 SourceLocation CurrentLoc, CXXConversionDecl *Conv);
6785
6786 /// Define the "body" of the conversion from a lambda object to a
6787 /// block pointer.
6788 ///
6789 /// This routine doesn't actually define a sensible body; rather, it fills
6790 /// in the initialization expression needed to copy the lambda object into
6791 /// the block, and IR generation actually generates the real body of the
6792 /// block pointer conversion.
6793 void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
6794 CXXConversionDecl *Conv);
6795
6796 ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
6797 SourceLocation ConvLocation,
6798 CXXConversionDecl *Conv,
6799 Expr *Src);
6800
6801 /// Check whether the given expression is a valid constraint expression.
6802 /// A diagnostic is emitted if it is not, false is returned, and
6803 /// PossibleNonPrimary will be set to true if the failure might be due to a
6804 /// non-primary expression being used as an atomic constraint.
6805 bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(),
6806 bool *PossibleNonPrimary = nullptr,
6807 bool IsTrailingRequiresClause = false);
6808
6809private:
6810 /// Caches pairs of template-like decls whose associated constraints were
6811 /// checked for subsumption and whether or not the first's constraints did in
6812 /// fact subsume the second's.
6813 llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache;
6814 /// Caches the normalized associated constraints of declarations (concepts or
6815 /// constrained declarations). If an error occurred while normalizing the
6816 /// associated constraints of the template or concept, nullptr will be cached
6817 /// here.
6818 llvm::DenseMap<NamedDecl *, NormalizedConstraint *>
6819 NormalizationCache;
6820
6821 llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &>
6822 SatisfactionCache;
6823
6824public:
6825 const NormalizedConstraint *
6826 getNormalizedAssociatedConstraints(
6827 NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints);
6828
6829 /// \brief Check whether the given declaration's associated constraints are
6830 /// at least as constrained than another declaration's according to the
6831 /// partial ordering of constraints.
6832 ///
6833 /// \param Result If no error occurred, receives the result of true if D1 is
6834 /// at least constrained than D2, and false otherwise.
6835 ///
6836 /// \returns true if an error occurred, false otherwise.
6837 bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
6838 NamedDecl *D2, ArrayRef<const Expr *> AC2,
6839 bool &Result);
6840
6841 /// If D1 was not at least as constrained as D2, but would've been if a pair
6842 /// of atomic constraints involved had been declared in a concept and not
6843 /// repeated in two separate places in code.
6844 /// \returns true if such a diagnostic was emitted, false otherwise.
6845 bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
6846 ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2);
6847
6848 /// \brief Check whether the given list of constraint expressions are
6849 /// satisfied (as if in a 'conjunction') given template arguments.
6850 /// \param Template the template-like entity that triggered the constraints
6851 /// check (either a concept or a constrained entity).
6852 /// \param ConstraintExprs a list of constraint expressions, treated as if
6853 /// they were 'AND'ed together.
6854 /// \param TemplateArgs the list of template arguments to substitute into the
6855 /// constraint expression.
6856 /// \param TemplateIDRange The source range of the template id that
6857 /// caused the constraints check.
6858 /// \param Satisfaction if true is returned, will contain details of the
6859 /// satisfaction, with enough information to diagnose an unsatisfied
6860 /// expression.
6861 /// \returns true if an error occurred and satisfaction could not be checked,
6862 /// false otherwise.
6863 bool CheckConstraintSatisfaction(
6864 const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
6865 ArrayRef<TemplateArgument> TemplateArgs,
6866 SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction);
6867
6868 /// \brief Check whether the given non-dependent constraint expression is
6869 /// satisfied. Returns false and updates Satisfaction with the satisfaction
6870 /// verdict if successful, emits a diagnostic and returns true if an error
6871 /// occured and satisfaction could not be determined.
6872 ///
6873 /// \returns true if an error occurred, false otherwise.
6874 bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
6875 ConstraintSatisfaction &Satisfaction);
6876
6877 /// Check whether the given function decl's trailing requires clause is
6878 /// satisfied, if any. Returns false and updates Satisfaction with the
6879 /// satisfaction verdict if successful, emits a diagnostic and returns true if
6880 /// an error occured and satisfaction could not be determined.
6881 ///
6882 /// \returns true if an error occurred, false otherwise.
6883 bool CheckFunctionConstraints(const FunctionDecl *FD,
6884 ConstraintSatisfaction &Satisfaction,
6885 SourceLocation UsageLoc = SourceLocation());
6886
6887
6888 /// \brief Ensure that the given template arguments satisfy the constraints
6889 /// associated with the given template, emitting a diagnostic if they do not.
6890 ///
6891 /// \param Template The template to which the template arguments are being
6892 /// provided.
6893 ///
6894 /// \param TemplateArgs The converted, canonicalized template arguments.
6895 ///
6896 /// \param TemplateIDRange The source range of the template id that
6897 /// caused the constraints check.
6898 ///
6899 /// \returns true if the constrains are not satisfied or could not be checked
6900 /// for satisfaction, false if the constraints are satisfied.
6901 bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template,
6902 ArrayRef<TemplateArgument> TemplateArgs,
6903 SourceRange TemplateIDRange);
6904
6905 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6906 /// unsatisfied.
6907 /// \param First whether this is the first time an unsatisfied constraint is
6908 /// diagnosed for this error.
6909 void
6910 DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction,
6911 bool First = true);
6912
6913 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6914 /// unsatisfied.
6915 void
6916 DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction,
6917 bool First = true);
6918
6919 // ParseObjCStringLiteral - Parse Objective-C string literals.
6920 ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
6921 ArrayRef<Expr *> Strings);
6922
6923 ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S);
6924
6925 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
6926 /// numeric literal expression. Type of the expression will be "NSNumber *"
6927 /// or "id" if NSNumber is unavailable.
6928 ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number);
6929 ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc,
6930 bool Value);
6931 ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements);
6932
6933 /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the
6934 /// '@' prefixed parenthesized expression. The type of the expression will
6935 /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type
6936 /// of ValueType, which is allowed to be a built-in numeric type, "char *",
6937 /// "const char *" or C structure with attribute 'objc_boxable'.
6938 ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr);
6939
6940 ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
6941 Expr *IndexExpr,
6942 ObjCMethodDecl *getterMethod,
6943 ObjCMethodDecl *setterMethod);
6944
6945 ExprResult BuildObjCDictionaryLiteral(SourceRange SR,
6946 MutableArrayRef<ObjCDictionaryElement> Elements);
6947
6948 ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
6949 TypeSourceInfo *EncodedTypeInfo,
6950 SourceLocation RParenLoc);
6951 ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
6952 CXXConversionDecl *Method,
6953 bool HadMultipleCandidates);
6954
6955 ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
6956 SourceLocation EncodeLoc,
6957 SourceLocation LParenLoc,
6958 ParsedType Ty,
6959 SourceLocation RParenLoc);
6960
6961 /// ParseObjCSelectorExpression - Build selector expression for \@selector
6962 ExprResult ParseObjCSelectorExpression(Selector Sel,
6963 SourceLocation AtLoc,
6964 SourceLocation SelLoc,
6965 SourceLocation LParenLoc,
6966 SourceLocation RParenLoc,
6967 bool WarnMultipleSelectors);
6968
6969 /// ParseObjCProtocolExpression - Build protocol expression for \@protocol
6970 ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
6971 SourceLocation AtLoc,
6972 SourceLocation ProtoLoc,
6973 SourceLocation LParenLoc,
6974 SourceLocation ProtoIdLoc,
6975 SourceLocation RParenLoc);
6976
6977 //===--------------------------------------------------------------------===//
6978 // C++ Declarations
6979 //
6980 Decl *ActOnStartLinkageSpecification(Scope *S,
6981 SourceLocation ExternLoc,
6982 Expr *LangStr,
6983 SourceLocation LBraceLoc);
6984 Decl *ActOnFinishLinkageSpecification(Scope *S,
6985 Decl *LinkageSpec,
6986 SourceLocation RBraceLoc);
6987
6988
6989 //===--------------------------------------------------------------------===//
6990 // C++ Classes
6991 //
6992 CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
6993 bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
6994 const CXXScopeSpec *SS = nullptr);
6995 bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
6996
6997 bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
6998 SourceLocation ColonLoc,
6999 const ParsedAttributesView &Attrs);
7000
7001 NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
7002 Declarator &D,
7003 MultiTemplateParamsArg TemplateParameterLists,
7004 Expr *BitfieldWidth, const VirtSpecifiers &VS,
7005 InClassInitStyle InitStyle);
7006
7007 void ActOnStartCXXInClassMemberInitializer();
7008 void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
7009 SourceLocation EqualLoc,
7010 Expr *Init);
7011
7012 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7013 Scope *S,
7014 CXXScopeSpec &SS,
7015 IdentifierInfo *MemberOrBase,
7016 ParsedType TemplateTypeTy,
7017 const DeclSpec &DS,
7018 SourceLocation IdLoc,
7019 SourceLocation LParenLoc,
7020 ArrayRef<Expr *> Args,
7021 SourceLocation RParenLoc,
7022 SourceLocation EllipsisLoc);
7023
7024 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7025 Scope *S,
7026 CXXScopeSpec &SS,
7027 IdentifierInfo *MemberOrBase,
7028 ParsedType TemplateTypeTy,
7029 const DeclSpec &DS,
7030 SourceLocation IdLoc,
7031 Expr *InitList,
7032 SourceLocation EllipsisLoc);
7033
7034 MemInitResult BuildMemInitializer(Decl *ConstructorD,
7035 Scope *S,
7036 CXXScopeSpec &SS,
7037 IdentifierInfo *MemberOrBase,
7038 ParsedType TemplateTypeTy,
7039 const DeclSpec &DS,
7040 SourceLocation IdLoc,
7041 Expr *Init,
7042 SourceLocation EllipsisLoc);
7043
7044 MemInitResult BuildMemberInitializer(ValueDecl *Member,
7045 Expr *Init,
7046 SourceLocation IdLoc);
7047
7048 MemInitResult BuildBaseInitializer(QualType BaseType,
7049 TypeSourceInfo *BaseTInfo,
7050 Expr *Init,
7051 CXXRecordDecl *ClassDecl,
7052 SourceLocation EllipsisLoc);
7053
7054 MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
7055 Expr *Init,
7056 CXXRecordDecl *ClassDecl);
7057
7058 bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
7059 CXXCtorInitializer *Initializer);
7060
7061 bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
7062 ArrayRef<CXXCtorInitializer *> Initializers = None);
7063
7064 void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
7065
7066
7067 /// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
7068 /// mark all the non-trivial destructors of its members and bases as
7069 /// referenced.
7070 void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
7071 CXXRecordDecl *Record);
7072
7073 /// Mark destructors of virtual bases of this class referenced. In the Itanium
7074 /// C++ ABI, this is done when emitting a destructor for any non-abstract
7075 /// class. In the Microsoft C++ ABI, this is done any time a class's
7076 /// destructor is referenced.
7077 void MarkVirtualBaseDestructorsReferenced(
7078 SourceLocation Location, CXXRecordDecl *ClassDecl,
7079 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases = nullptr);
7080
7081 /// Do semantic checks to allow the complete destructor variant to be emitted
7082 /// when the destructor is defined in another translation unit. In the Itanium
7083 /// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they
7084 /// can be emitted in separate TUs. To emit the complete variant, run a subset
7085 /// of the checks performed when emitting a regular destructor.
7086 void CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
7087 CXXDestructorDecl *Dtor);
7088
7089 /// The list of classes whose vtables have been used within
7090 /// this translation unit, and the source locations at which the
7091 /// first use occurred.
7092 typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
7093
7094 /// The list of vtables that are required but have not yet been
7095 /// materialized.
7096 SmallVector<VTableUse, 16> VTableUses;
7097
7098 /// The set of classes whose vtables have been used within
7099 /// this translation unit, and a bit that will be true if the vtable is
7100 /// required to be emitted (otherwise, it should be emitted only if needed
7101 /// by code generation).
7102 llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
7103
7104 /// Load any externally-stored vtable uses.
7105 void LoadExternalVTableUses();
7106
7107 /// Note that the vtable for the given class was used at the
7108 /// given location.
7109 void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7110 bool DefinitionRequired = false);
7111
7112 /// Mark the exception specifications of all virtual member functions
7113 /// in the given class as needed.
7114 void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
7115 const CXXRecordDecl *RD);
7116
7117 /// MarkVirtualMembersReferenced - Will mark all members of the given
7118 /// CXXRecordDecl referenced.
7119 void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
7120 bool ConstexprOnly = false);
7121
7122 /// Define all of the vtables that have been used in this
7123 /// translation unit and reference any virtual members used by those
7124 /// vtables.
7125 ///
7126 /// \returns true if any work was done, false otherwise.
7127 bool DefineUsedVTables();
7128
7129 void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
7130
7131 void ActOnMemInitializers(Decl *ConstructorDecl,
7132 SourceLocation ColonLoc,
7133 ArrayRef<CXXCtorInitializer*> MemInits,
7134 bool AnyErrors);
7135
7136 /// Check class-level dllimport/dllexport attribute. The caller must
7137 /// ensure that referenceDLLExportedClassMethods is called some point later
7138 /// when all outer classes of Class are complete.
7139 void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
7140 void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
7141
7142 void referenceDLLExportedClassMethods();
7143
7144 void propagateDLLAttrToBaseClassTemplate(
7145 CXXRecordDecl *Class, Attr *ClassAttr,
7146 ClassTemplateSpecializationDecl *BaseTemplateSpec,
7147 SourceLocation BaseLoc);
7148
7149 /// Add gsl::Pointer attribute to std::container::iterator
7150 /// \param ND The declaration that introduces the name
7151 /// std::container::iterator. \param UnderlyingRecord The record named by ND.
7152 void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
7153
7154 /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
7155 void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
7156
7157 /// Add [[gsl::Pointer]] attributes for std:: types.
7158 void inferGslPointerAttribute(TypedefNameDecl *TD);
7159
7160 void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
7161
7162 /// Check that the C++ class annoated with "trivial_abi" satisfies all the
7163 /// conditions that are needed for the attribute to have an effect.
7164 void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
7165
7166 void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
7167 Decl *TagDecl, SourceLocation LBrac,
7168 SourceLocation RBrac,
7169 const ParsedAttributesView &AttrList);
7170 void ActOnFinishCXXMemberDecls();
7171 void ActOnFinishCXXNonNestedClass();
7172
7173 void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
7174 unsigned ActOnReenterTemplateScope(Decl *Template,
7175 llvm::function_ref<Scope *()> EnterScope);
7176 void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
7177 void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7178 void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
7179 void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
7180 void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7181 void ActOnFinishDelayedMemberInitializers(Decl *Record);
7182 void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
7183 CachedTokens &Toks);
7184 void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
7185 bool IsInsideALocalClassWithinATemplateFunction();
7186
7187 Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7188 Expr *AssertExpr,
7189 Expr *AssertMessageExpr,
7190 SourceLocation RParenLoc);
7191 Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7192 Expr *AssertExpr,
7193 StringLiteral *AssertMessageExpr,
7194 SourceLocation RParenLoc,
7195 bool Failed);
7196
7197 FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart,
7198 SourceLocation FriendLoc,
7199 TypeSourceInfo *TSInfo);
7200 Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7201 MultiTemplateParamsArg TemplateParams);
7202 NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
7203 MultiTemplateParamsArg TemplateParams);
7204
7205 QualType CheckConstructorDeclarator(Declarator &D, QualType R,
7206 StorageClass& SC);
7207 void CheckConstructor(CXXConstructorDecl *Constructor);
7208 QualType CheckDestructorDeclarator(Declarator &D, QualType R,
7209 StorageClass& SC);
7210 bool CheckDestructor(CXXDestructorDecl *Destructor);
7211 void CheckConversionDeclarator(Declarator &D, QualType &R,
7212 StorageClass& SC);
7213 Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
7214 void CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
7215 StorageClass &SC);
7216 void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
7217
7218 void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
7219
7220 bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7221 CXXSpecialMember CSM);
7222 void CheckDelayedMemberExceptionSpecs();
7223
7224 bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
7225 DefaultedComparisonKind DCK);
7226 void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
7227 FunctionDecl *Spaceship);
7228 void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
7229 DefaultedComparisonKind DCK);
7230
7231 //===--------------------------------------------------------------------===//
7232 // C++ Derived Classes
7233 //
7234
7235 /// ActOnBaseSpecifier - Parsed a base specifier
7236 CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
7237 SourceRange SpecifierRange,
7238 bool Virtual, AccessSpecifier Access,
7239 TypeSourceInfo *TInfo,
7240 SourceLocation EllipsisLoc);
7241
7242 BaseResult ActOnBaseSpecifier(Decl *classdecl,
7243 SourceRange SpecifierRange,
7244 ParsedAttributes &Attrs,
7245 bool Virtual, AccessSpecifier Access,
7246 ParsedType basetype,
7247 SourceLocation BaseLoc,
7248 SourceLocation EllipsisLoc);
7249
7250 bool AttachBaseSpecifiers(CXXRecordDecl *Class,
7251 MutableArrayRef<CXXBaseSpecifier *> Bases);
7252 void ActOnBaseSpecifiers(Decl *ClassDecl,
7253 MutableArrayRef<CXXBaseSpecifier *> Bases);
7254
7255 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
7256 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
7257 CXXBasePaths &Paths);
7258
7259 // FIXME: I don't like this name.
7260 void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
7261
7262 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7263 SourceLocation Loc, SourceRange Range,
7264 CXXCastPath *BasePath = nullptr,
7265 bool IgnoreAccess = false);
7266 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7267 unsigned InaccessibleBaseID,
7268 unsigned AmbiguousBaseConvID,
7269 SourceLocation Loc, SourceRange Range,
7270 DeclarationName Name,
7271 CXXCastPath *BasePath,
7272 bool IgnoreAccess = false);
7273
7274 std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
7275
7276 bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
7277 const CXXMethodDecl *Old);
7278
7279 /// CheckOverridingFunctionReturnType - Checks whether the return types are
7280 /// covariant, according to C++ [class.virtual]p5.
7281 bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7282 const CXXMethodDecl *Old);
7283
7284 /// CheckOverridingFunctionExceptionSpec - Checks whether the exception
7285 /// spec is a subset of base spec.
7286 bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
7287 const CXXMethodDecl *Old);
7288
7289 bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
7290
7291 /// CheckOverrideControl - Check C++11 override control semantics.
7292 void CheckOverrideControl(NamedDecl *D);
7293
7294 /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
7295 /// not used in the declaration of an overriding method.
7296 void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent);
7297
7298 /// CheckForFunctionMarkedFinal - Checks whether a virtual member function
7299 /// overrides a virtual member function marked 'final', according to
7300 /// C++11 [class.virtual]p4.
7301 bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
7302 const CXXMethodDecl *Old);
7303
7304
7305 //===--------------------------------------------------------------------===//
7306 // C++ Access Control
7307 //
7308
7309 enum AccessResult {
7310 AR_accessible,
7311 AR_inaccessible,
7312 AR_dependent,
7313 AR_delayed
7314 };
7315
7316 bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
7317 NamedDecl *PrevMemberDecl,
7318 AccessSpecifier LexicalAS);
7319
7320 AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
7321 DeclAccessPair FoundDecl);
7322 AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
7323 DeclAccessPair FoundDecl);
7324 AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
7325 SourceRange PlacementRange,
7326 CXXRecordDecl *NamingClass,
7327 DeclAccessPair FoundDecl,
7328 bool Diagnose = true);
7329 AccessResult CheckConstructorAccess(SourceLocation Loc,
7330 CXXConstructorDecl *D,
7331 DeclAccessPair FoundDecl,
7332 const InitializedEntity &Entity,
7333 bool IsCopyBindingRefToTemp = false);
7334 AccessResult CheckConstructorAccess(SourceLocation Loc,
7335 CXXConstructorDecl *D,
7336 DeclAccessPair FoundDecl,
7337 const InitializedEntity &Entity,
7338 const PartialDiagnostic &PDiag);
7339 AccessResult CheckDestructorAccess(SourceLocation Loc,
7340 CXXDestructorDecl *Dtor,
7341 const PartialDiagnostic &PDiag,
7342 QualType objectType = QualType());
7343 AccessResult CheckFriendAccess(NamedDecl *D);
7344 AccessResult CheckMemberAccess(SourceLocation UseLoc,
7345 CXXRecordDecl *NamingClass,
7346 DeclAccessPair Found);
7347 AccessResult
7348 CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
7349 CXXRecordDecl *DecomposedClass,
7350 DeclAccessPair Field);
7351 AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
7352 Expr *ObjectExpr,
7353 Expr *ArgExpr,
7354 DeclAccessPair FoundDecl);
7355 AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
7356 DeclAccessPair FoundDecl);
7357 AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
7358 QualType Base, QualType Derived,
7359 const CXXBasePath &Path,
7360 unsigned DiagID,
7361 bool ForceCheck = false,
7362 bool ForceUnprivileged = false);
7363 void CheckLookupAccess(const LookupResult &R);
7364 bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
7365 QualType BaseType);
7366 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7367 DeclAccessPair Found, QualType ObjectType,
7368 SourceLocation Loc,
7369 const PartialDiagnostic &Diag);
7370 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7371 DeclAccessPair Found,
7372 QualType ObjectType) {
7373 return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
7374 SourceLocation(), PDiag());
7375 }
7376
7377 void HandleDependentAccessCheck(const DependentDiagnostic &DD,
7378 const MultiLevelTemplateArgumentList &TemplateArgs);
7379 void PerformDependentDiagnostics(const DeclContext *Pattern,
7380 const MultiLevelTemplateArgumentList &TemplateArgs);
7381
7382 void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
7383
7384 /// When true, access checking violations are treated as SFINAE
7385 /// failures rather than hard errors.
7386 bool AccessCheckingSFINAE;
7387
7388 enum AbstractDiagSelID {
7389 AbstractNone = -1,
7390 AbstractReturnType,
7391 AbstractParamType,
7392 AbstractVariableType,
7393 AbstractFieldType,
7394 AbstractIvarType,
7395 AbstractSynthesizedIvarType,
7396 AbstractArrayType
7397 };
7398
7399 bool isAbstractType(SourceLocation Loc, QualType T);
7400 bool RequireNonAbstractType(SourceLocation Loc, QualType T,
7401 TypeDiagnoser &Diagnoser);
7402 template <typename... Ts>
7403 bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
7404 const Ts &...Args) {
7405 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
7406 return RequireNonAbstractType(Loc, T, Diagnoser);
7407 }
7408
7409 void DiagnoseAbstractType(const CXXRecordDecl *RD);
7410
7411 //===--------------------------------------------------------------------===//
7412 // C++ Overloaded Operators [C++ 13.5]
7413 //
7414
7415 bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
7416
7417 bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
7418
7419 //===--------------------------------------------------------------------===//
7420 // C++ Templates [C++ 14]
7421 //
7422 void FilterAcceptableTemplateNames(LookupResult &R,
7423 bool AllowFunctionTemplates = true,
7424 bool AllowDependent = true);
7425 bool hasAnyAcceptableTemplateNames(LookupResult &R,
7426 bool AllowFunctionTemplates = true,
7427 bool AllowDependent = true,
7428 bool AllowNonTemplateFunctions = false);
7429 /// Try to interpret the lookup result D as a template-name.
7430 ///
7431 /// \param D A declaration found by name lookup.
7432 /// \param AllowFunctionTemplates Whether function templates should be
7433 /// considered valid results.
7434 /// \param AllowDependent Whether unresolved using declarations (that might
7435 /// name templates) should be considered valid results.
7436 static NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
7437 bool AllowFunctionTemplates = true,
7438 bool AllowDependent = true);
7439
7440 enum TemplateNameIsRequiredTag { TemplateNameIsRequired };
7441 /// Whether and why a template name is required in this lookup.
7442 class RequiredTemplateKind {
7443 public:
7444 /// Template name is required if TemplateKWLoc is valid.
7445 RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation())
7446 : TemplateKW(TemplateKWLoc) {}
7447 /// Template name is unconditionally required.
7448 RequiredTemplateKind(TemplateNameIsRequiredTag) : TemplateKW() {}
7449
7450 SourceLocation getTemplateKeywordLoc() const {
7451 return TemplateKW.getValueOr(SourceLocation());
7452 }
7453 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
7454 bool isRequired() const { return TemplateKW != SourceLocation(); }
7455 explicit operator bool() const { return isRequired(); }
7456
7457 private:
7458 llvm::Optional<SourceLocation> TemplateKW;
7459 };
7460
7461 enum class AssumedTemplateKind {
7462 /// This is not assumed to be a template name.
7463 None,
7464 /// This is assumed to be a template name because lookup found nothing.
7465 FoundNothing,
7466 /// This is assumed to be a template name because lookup found one or more
7467 /// functions (but no function templates).
7468 FoundFunctions,
7469 };
7470 bool LookupTemplateName(
7471 LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType,
7472 bool EnteringContext, bool &MemberOfUnknownSpecialization,
7473 RequiredTemplateKind RequiredTemplate = SourceLocation(),
7474 AssumedTemplateKind *ATK = nullptr, bool AllowTypoCorrection = true);
7475
7476 TemplateNameKind isTemplateName(Scope *S,
7477 CXXScopeSpec &SS,
7478 bool hasTemplateKeyword,
7479 const UnqualifiedId &Name,
7480 ParsedType ObjectType,
7481 bool EnteringContext,
7482 TemplateTy &Template,
7483 bool &MemberOfUnknownSpecialization,
7484 bool Disambiguation = false);
7485
7486 /// Try to resolve an undeclared template name as a type template.
7487 ///
7488 /// Sets II to the identifier corresponding to the template name, and updates
7489 /// Name to a corresponding (typo-corrected) type template name and TNK to
7490 /// the corresponding kind, if possible.
7491 void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
7492 TemplateNameKind &TNK,
7493 SourceLocation NameLoc,
7494 IdentifierInfo *&II);
7495
7496 bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
7497 SourceLocation NameLoc,
7498 bool Diagnose = true);
7499
7500 /// Determine whether a particular identifier might be the name in a C++1z
7501 /// deduction-guide declaration.
7502 bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
7503 SourceLocation NameLoc,
7504 ParsedTemplateTy *Template = nullptr);
7505
7506 bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
7507 SourceLocation IILoc,
7508 Scope *S,
7509 const CXXScopeSpec *SS,
7510 TemplateTy &SuggestedTemplate,
7511 TemplateNameKind &SuggestedKind);
7512
7513 bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
7514 NamedDecl *Instantiation,
7515 bool InstantiatedFromMember,
7516 const NamedDecl *Pattern,
7517 const NamedDecl *PatternDef,
7518 TemplateSpecializationKind TSK,
7519 bool Complain = true);
7520
7521 void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
7522 TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
7523
7524 NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
7525 SourceLocation EllipsisLoc,
7526 SourceLocation KeyLoc,
7527 IdentifierInfo *ParamName,
7528 SourceLocation ParamNameLoc,
7529 unsigned Depth, unsigned Position,
7530 SourceLocation EqualLoc,
7531 ParsedType DefaultArg, bool HasTypeConstraint);
7532
7533 bool ActOnTypeConstraint(const CXXScopeSpec &SS,
7534 TemplateIdAnnotation *TypeConstraint,
7535 TemplateTypeParmDecl *ConstrainedParameter,
7536 SourceLocation EllipsisLoc);
7537 bool BuildTypeConstraint(const CXXScopeSpec &SS,
7538 TemplateIdAnnotation *TypeConstraint,
7539 TemplateTypeParmDecl *ConstrainedParameter,
7540 SourceLocation EllipsisLoc,
7541 bool AllowUnexpandedPack);
7542
7543 bool AttachTypeConstraint(NestedNameSpecifierLoc NS,
7544 DeclarationNameInfo NameInfo,
7545 ConceptDecl *NamedConcept,
7546 const TemplateArgumentListInfo *TemplateArgs,
7547 TemplateTypeParmDecl *ConstrainedParameter,
7548 SourceLocation EllipsisLoc);
7549
7550 bool AttachTypeConstraint(AutoTypeLoc TL,
7551 NonTypeTemplateParmDecl *ConstrainedParameter,
7552 SourceLocation EllipsisLoc);
7553
7554 bool RequireStructuralType(QualType T, SourceLocation Loc);
7555
7556 QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
7557 SourceLocation Loc);
7558 QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
7559
7560 NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
7561 unsigned Depth,
7562 unsigned Position,
7563 SourceLocation EqualLoc,
7564 Expr *DefaultArg);
7565 NamedDecl *ActOnTemplateTemplateParameter(Scope *S,
7566 SourceLocation TmpLoc,
7567 TemplateParameterList *Params,
7568 SourceLocation EllipsisLoc,
7569 IdentifierInfo *ParamName,
7570 SourceLocation ParamNameLoc,
7571 unsigned Depth,
7572 unsigned Position,
7573 SourceLocation EqualLoc,
7574 ParsedTemplateArgument DefaultArg);
7575
7576 TemplateParameterList *
7577 ActOnTemplateParameterList(unsigned Depth,
7578 SourceLocation ExportLoc,
7579 SourceLocation TemplateLoc,
7580 SourceLocation LAngleLoc,
7581 ArrayRef<NamedDecl *> Params,
7582 SourceLocation RAngleLoc,
7583 Expr *RequiresClause);
7584
7585 /// The context in which we are checking a template parameter list.
7586 enum TemplateParamListContext {
7587 TPC_ClassTemplate,
7588 TPC_VarTemplate,
7589 TPC_FunctionTemplate,
7590 TPC_ClassTemplateMember,
7591 TPC_FriendClassTemplate,
7592 TPC_FriendFunctionTemplate,
7593 TPC_FriendFunctionTemplateDefinition,
7594 TPC_TypeAliasTemplate
7595 };
7596
7597 bool CheckTemplateParameterList(TemplateParameterList *NewParams,
7598 TemplateParameterList *OldParams,
7599 TemplateParamListContext TPC,
7600 SkipBodyInfo *SkipBody = nullptr);
7601 TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
7602 SourceLocation DeclStartLoc, SourceLocation DeclLoc,
7603 const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
7604 ArrayRef<TemplateParameterList *> ParamLists,
7605 bool IsFriend, bool &IsMemberSpecialization, bool &Invalid,
7606 bool SuppressDiagnostic = false);
7607
7608 DeclResult CheckClassTemplate(
7609 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7610 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
7611 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
7612 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
7613 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
7614 TemplateParameterList **OuterTemplateParamLists,
7615 SkipBodyInfo *SkipBody = nullptr);
7616
7617 TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
7618 QualType NTTPType,
7619 SourceLocation Loc);
7620
7621 /// Get a template argument mapping the given template parameter to itself,
7622 /// e.g. for X in \c template<int X>, this would return an expression template
7623 /// argument referencing X.
7624 TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param,
7625 SourceLocation Location);
7626
7627 void translateTemplateArguments(const ASTTemplateArgsPtr &In,
7628 TemplateArgumentListInfo &Out);
7629
7630 ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
7631
7632 void NoteAllFoundTemplates(TemplateName Name);
7633
7634 QualType CheckTemplateIdType(TemplateName Template,
7635 SourceLocation TemplateLoc,
7636 TemplateArgumentListInfo &TemplateArgs);
7637
7638 TypeResult
7639 ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7640 TemplateTy Template, IdentifierInfo *TemplateII,
7641 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
7642 ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
7643 bool IsCtorOrDtorName = false, bool IsClassName = false);
7644
7645 /// Parsed an elaborated-type-specifier that refers to a template-id,
7646 /// such as \c class T::template apply<U>.
7647 TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
7648 TypeSpecifierType TagSpec,
7649 SourceLocation TagLoc,
7650 CXXScopeSpec &SS,
7651 SourceLocation TemplateKWLoc,
7652 TemplateTy TemplateD,
7653 SourceLocation TemplateLoc,
7654 SourceLocation LAngleLoc,
7655 ASTTemplateArgsPtr TemplateArgsIn,
7656 SourceLocation RAngleLoc);
7657
7658 DeclResult ActOnVarTemplateSpecialization(
7659 Scope *S, Declarator &D, TypeSourceInfo *DI,
7660 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
7661 StorageClass SC, bool IsPartialSpecialization);
7662
7663 /// Get the specialization of the given variable template corresponding to
7664 /// the specified argument list, or a null-but-valid result if the arguments
7665 /// are dependent.
7666 DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
7667 SourceLocation TemplateLoc,
7668 SourceLocation TemplateNameLoc,
7669 const TemplateArgumentListInfo &TemplateArgs);
7670
7671 /// Form a reference to the specialization of the given variable template
7672 /// corresponding to the specified argument list, or a null-but-valid result
7673 /// if the arguments are dependent.
7674 ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
7675 const DeclarationNameInfo &NameInfo,
7676 VarTemplateDecl *Template,
7677 SourceLocation TemplateLoc,
7678 const TemplateArgumentListInfo *TemplateArgs);
7679
7680 ExprResult
7681 CheckConceptTemplateId(const CXXScopeSpec &SS,
7682 SourceLocation TemplateKWLoc,
7683 const DeclarationNameInfo &ConceptNameInfo,
7684 NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
7685 const TemplateArgumentListInfo *TemplateArgs);
7686
7687 void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
7688
7689 ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
7690 SourceLocation TemplateKWLoc,
7691 LookupResult &R,
7692 bool RequiresADL,
7693 const TemplateArgumentListInfo *TemplateArgs);
7694
7695 ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
7696 SourceLocation TemplateKWLoc,
7697 const DeclarationNameInfo &NameInfo,
7698 const TemplateArgumentListInfo *TemplateArgs);
7699
7700 TemplateNameKind ActOnTemplateName(
7701 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7702 const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext,
7703 TemplateTy &Template, bool AllowInjectedClassName = false);
7704
7705 DeclResult ActOnClassTemplateSpecialization(
7706 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7707 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
7708 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
7709 MultiTemplateParamsArg TemplateParameterLists,
7710 SkipBodyInfo *SkipBody = nullptr);
7711
7712 bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
7713 TemplateDecl *PrimaryTemplate,
7714 unsigned NumExplicitArgs,
7715 ArrayRef<TemplateArgument> Args);
7716 void CheckTemplatePartialSpecialization(
7717 ClassTemplatePartialSpecializationDecl *Partial);
7718 void CheckTemplatePartialSpecialization(
7719 VarTemplatePartialSpecializationDecl *Partial);
7720
7721 Decl *ActOnTemplateDeclarator(Scope *S,
7722 MultiTemplateParamsArg TemplateParameterLists,
7723 Declarator &D);
7724
7725 bool
7726 CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7727 TemplateSpecializationKind NewTSK,
7728 NamedDecl *PrevDecl,
7729 TemplateSpecializationKind PrevTSK,
7730 SourceLocation PrevPtOfInstantiation,
7731 bool &SuppressNew);
7732
7733 bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
7734 const TemplateArgumentListInfo &ExplicitTemplateArgs,
7735 LookupResult &Previous);
7736
7737 bool CheckFunctionTemplateSpecialization(
7738 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
7739 LookupResult &Previous, bool QualifiedFriend = false);
7740 bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7741 void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7742
7743 DeclResult ActOnExplicitInstantiation(
7744 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
7745 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
7746 TemplateTy Template, SourceLocation TemplateNameLoc,
7747 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
7748 SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
7749
7750 DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
7751 SourceLocation TemplateLoc,
7752 unsigned TagSpec, SourceLocation KWLoc,
7753 CXXScopeSpec &SS, IdentifierInfo *Name,
7754 SourceLocation NameLoc,
7755 const ParsedAttributesView &Attr);
7756
7757 DeclResult ActOnExplicitInstantiation(Scope *S,
7758 SourceLocation ExternLoc,
7759 SourceLocation TemplateLoc,
7760 Declarator &D);
7761
7762 TemplateArgumentLoc
7763 SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
7764 SourceLocation TemplateLoc,
7765 SourceLocation RAngleLoc,
7766 Decl *Param,
7767 SmallVectorImpl<TemplateArgument>
7768 &Converted,
7769 bool &HasDefaultArg);
7770
7771 /// Specifies the context in which a particular template
7772 /// argument is being checked.
7773 enum CheckTemplateArgumentKind {
7774 /// The template argument was specified in the code or was
7775 /// instantiated with some deduced template arguments.
7776 CTAK_Specified,
7777
7778 /// The template argument was deduced via template argument
7779 /// deduction.
7780 CTAK_Deduced,
7781
7782 /// The template argument was deduced from an array bound
7783 /// via template argument deduction.
7784 CTAK_DeducedFromArrayBound
7785 };
7786
7787 bool CheckTemplateArgument(NamedDecl *Param,
7788 TemplateArgumentLoc &Arg,
7789 NamedDecl *Template,
7790 SourceLocation TemplateLoc,
7791 SourceLocation RAngleLoc,
7792 unsigned ArgumentPackIndex,
7793 SmallVectorImpl<TemplateArgument> &Converted,
7794 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7795
7796 /// Check that the given template arguments can be be provided to
7797 /// the given template, converting the arguments along the way.
7798 ///
7799 /// \param Template The template to which the template arguments are being
7800 /// provided.
7801 ///
7802 /// \param TemplateLoc The location of the template name in the source.
7803 ///
7804 /// \param TemplateArgs The list of template arguments. If the template is
7805 /// a template template parameter, this function may extend the set of
7806 /// template arguments to also include substituted, defaulted template
7807 /// arguments.
7808 ///
7809 /// \param PartialTemplateArgs True if the list of template arguments is
7810 /// intentionally partial, e.g., because we're checking just the initial
7811 /// set of template arguments.
7812 ///
7813 /// \param Converted Will receive the converted, canonicalized template
7814 /// arguments.
7815 ///
7816 /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
7817 /// contain the converted forms of the template arguments as written.
7818 /// Otherwise, \p TemplateArgs will not be modified.
7819 ///
7820 /// \param ConstraintsNotSatisfied If provided, and an error occured, will
7821 /// receive true if the cause for the error is the associated constraints of
7822 /// the template not being satisfied by the template arguments.
7823 ///
7824 /// \returns true if an error occurred, false otherwise.
7825 bool CheckTemplateArgumentList(TemplateDecl *Template,
7826 SourceLocation TemplateLoc,
7827 TemplateArgumentListInfo &TemplateArgs,
7828 bool PartialTemplateArgs,
7829 SmallVectorImpl<TemplateArgument> &Converted,
7830 bool UpdateArgsWithConversions = true,
7831 bool *ConstraintsNotSatisfied = nullptr);
7832
7833 bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
7834 TemplateArgumentLoc &Arg,
7835 SmallVectorImpl<TemplateArgument> &Converted);
7836
7837 bool CheckTemplateArgument(TypeSourceInfo *Arg);
7838 ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7839 QualType InstantiatedParamType, Expr *Arg,
7840 TemplateArgument &Converted,
7841 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7842 bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7843 TemplateParameterList *Params,
7844 TemplateArgumentLoc &Arg);
7845
7846 ExprResult
7847 BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7848 QualType ParamType,
7849 SourceLocation Loc);
7850 ExprResult
7851 BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7852 SourceLocation Loc);
7853
7854 /// Enumeration describing how template parameter lists are compared
7855 /// for equality.
7856 enum TemplateParameterListEqualKind {
7857 /// We are matching the template parameter lists of two templates
7858 /// that might be redeclarations.
7859 ///
7860 /// \code
7861 /// template<typename T> struct X;
7862 /// template<typename T> struct X;
7863 /// \endcode
7864 TPL_TemplateMatch,
7865
7866 /// We are matching the template parameter lists of two template
7867 /// template parameters as part of matching the template parameter lists
7868 /// of two templates that might be redeclarations.
7869 ///
7870 /// \code
7871 /// template<template<int I> class TT> struct X;
7872 /// template<template<int Value> class Other> struct X;
7873 /// \endcode
7874 TPL_TemplateTemplateParmMatch,
7875
7876 /// We are matching the template parameter lists of a template
7877 /// template argument against the template parameter lists of a template
7878 /// template parameter.
7879 ///
7880 /// \code
7881 /// template<template<int Value> class Metafun> struct X;
7882 /// template<int Value> struct integer_c;
7883 /// X<integer_c> xic;
7884 /// \endcode
7885 TPL_TemplateTemplateArgumentMatch
7886 };
7887
7888 bool TemplateParameterListsAreEqual(TemplateParameterList *New,
7889 TemplateParameterList *Old,
7890 bool Complain,
7891 TemplateParameterListEqualKind Kind,
7892 SourceLocation TemplateArgLoc
7893 = SourceLocation());
7894
7895 bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
7896
7897 /// Called when the parser has parsed a C++ typename
7898 /// specifier, e.g., "typename T::type".
7899 ///
7900 /// \param S The scope in which this typename type occurs.
7901 /// \param TypenameLoc the location of the 'typename' keyword
7902 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7903 /// \param II the identifier we're retrieving (e.g., 'type' in the example).
7904 /// \param IdLoc the location of the identifier.
7905 TypeResult
7906 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7907 const CXXScopeSpec &SS, const IdentifierInfo &II,
7908 SourceLocation IdLoc);
7909
7910 /// Called when the parser has parsed a C++ typename
7911 /// specifier that ends in a template-id, e.g.,
7912 /// "typename MetaFun::template apply<T1, T2>".
7913 ///
7914 /// \param S The scope in which this typename type occurs.
7915 /// \param TypenameLoc the location of the 'typename' keyword
7916 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7917 /// \param TemplateLoc the location of the 'template' keyword, if any.
7918 /// \param TemplateName The template name.
7919 /// \param TemplateII The identifier used to name the template.
7920 /// \param TemplateIILoc The location of the template name.
7921 /// \param LAngleLoc The location of the opening angle bracket ('<').
7922 /// \param TemplateArgs The template arguments.
7923 /// \param RAngleLoc The location of the closing angle bracket ('>').
7924 TypeResult
7925 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7926 const CXXScopeSpec &SS,
7927 SourceLocation TemplateLoc,
7928 TemplateTy TemplateName,
7929 IdentifierInfo *TemplateII,
7930 SourceLocation TemplateIILoc,
7931 SourceLocation LAngleLoc,
7932 ASTTemplateArgsPtr TemplateArgs,
7933 SourceLocation RAngleLoc);
7934
7935 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7936 SourceLocation KeywordLoc,
7937 NestedNameSpecifierLoc QualifierLoc,
7938 const IdentifierInfo &II,
7939 SourceLocation IILoc,
7940 TypeSourceInfo **TSI,
7941 bool DeducedTSTContext);
7942
7943 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7944 SourceLocation KeywordLoc,
7945 NestedNameSpecifierLoc QualifierLoc,
7946 const IdentifierInfo &II,
7947 SourceLocation IILoc,
7948 bool DeducedTSTContext = true);
7949
7950
7951 TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7952 SourceLocation Loc,
7953 DeclarationName Name);
7954 bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
7955
7956 ExprResult RebuildExprInCurrentInstantiation(Expr *E);
7957 bool RebuildTemplateParamsInCurrentInstantiation(
7958 TemplateParameterList *Params);
7959
7960 std::string
7961 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7962 const TemplateArgumentList &Args);
7963
7964 std::string
7965 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7966 const TemplateArgument *Args,
7967 unsigned NumArgs);
7968
7969 //===--------------------------------------------------------------------===//
7970 // C++ Concepts
7971 //===--------------------------------------------------------------------===//
7972 Decl *ActOnConceptDefinition(
7973 Scope *S, MultiTemplateParamsArg TemplateParameterLists,
7974 IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr);
7975
7976 RequiresExprBodyDecl *
7977 ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
7978 ArrayRef<ParmVarDecl *> LocalParameters,
7979 Scope *BodyScope);
7980 void ActOnFinishRequiresExpr();
7981 concepts::Requirement *ActOnSimpleRequirement(Expr *E);
7982 concepts::Requirement *ActOnTypeRequirement(
7983 SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
7984 IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId);
7985 concepts::Requirement *ActOnCompoundRequirement(Expr *E,
7986 SourceLocation NoexceptLoc);
7987 concepts::Requirement *
7988 ActOnCompoundRequirement(
7989 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
7990 TemplateIdAnnotation *TypeConstraint, unsigned Depth);
7991 concepts::Requirement *ActOnNestedRequirement(Expr *Constraint);
7992 concepts::ExprRequirement *
7993 BuildExprRequirement(
7994 Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc,
7995 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
7996 concepts::ExprRequirement *
7997 BuildExprRequirement(
7998 concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag,
7999 bool IsSatisfied, SourceLocation NoexceptLoc,
8000 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
8001 concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type);
8002 concepts::TypeRequirement *
8003 BuildTypeRequirement(
8004 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8005 concepts::NestedRequirement *BuildNestedRequirement(Expr *E);
8006 concepts::NestedRequirement *
8007 BuildNestedRequirement(
8008 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8009 ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8010 RequiresExprBodyDecl *Body,
8011 ArrayRef<ParmVarDecl *> LocalParameters,
8012 ArrayRef<concepts::Requirement *> Requirements,
8013 SourceLocation ClosingBraceLoc);
8014
8015 //===--------------------------------------------------------------------===//
8016 // C++ Variadic Templates (C++0x [temp.variadic])
8017 //===--------------------------------------------------------------------===//
8018
8019 /// Determine whether an unexpanded parameter pack might be permitted in this
8020 /// location. Useful for error recovery.
8021 bool isUnexpandedParameterPackPermitted();
8022
8023 /// The context in which an unexpanded parameter pack is
8024 /// being diagnosed.
8025 ///
8026 /// Note that the values of this enumeration line up with the first
8027 /// argument to the \c err_unexpanded_parameter_pack diagnostic.
8028 enum UnexpandedParameterPackContext {
8029 /// An arbitrary expression.
8030 UPPC_Expression = 0,
8031
8032 /// The base type of a class type.
8033 UPPC_BaseType,
8034
8035 /// The type of an arbitrary declaration.
8036 UPPC_DeclarationType,
8037
8038 /// The type of a data member.
8039 UPPC_DataMemberType,
8040
8041 /// The size of a bit-field.
8042 UPPC_BitFieldWidth,
8043
8044 /// The expression in a static assertion.
8045 UPPC_StaticAssertExpression,
8046
8047 /// The fixed underlying type of an enumeration.
8048 UPPC_FixedUnderlyingType,
8049
8050 /// The enumerator value.
8051 UPPC_EnumeratorValue,
8052
8053 /// A using declaration.
8054 UPPC_UsingDeclaration,
8055
8056 /// A friend declaration.
8057 UPPC_FriendDeclaration,
8058
8059 /// A declaration qualifier.
8060 UPPC_DeclarationQualifier,
8061
8062 /// An initializer.
8063 UPPC_Initializer,
8064
8065 /// A default argument.
8066 UPPC_DefaultArgument,
8067
8068 /// The type of a non-type template parameter.
8069 UPPC_NonTypeTemplateParameterType,
8070
8071 /// The type of an exception.
8072 UPPC_ExceptionType,
8073
8074 /// Partial specialization.
8075 UPPC_PartialSpecialization,
8076
8077 /// Microsoft __if_exists.
8078 UPPC_IfExists,
8079
8080 /// Microsoft __if_not_exists.
8081 UPPC_IfNotExists,
8082
8083 /// Lambda expression.
8084 UPPC_Lambda,
8085
8086 /// Block expression.
8087 UPPC_Block,
8088
8089 /// A type constraint.
8090 UPPC_TypeConstraint,
8091
8092 // A requirement in a requires-expression.
8093 UPPC_Requirement,
8094
8095 // A requires-clause.
8096 UPPC_RequiresClause,
8097 };
8098
8099 /// Diagnose unexpanded parameter packs.
8100 ///
8101 /// \param Loc The location at which we should emit the diagnostic.
8102 ///
8103 /// \param UPPC The context in which we are diagnosing unexpanded
8104 /// parameter packs.
8105 ///
8106 /// \param Unexpanded the set of unexpanded parameter packs.
8107 ///
8108 /// \returns true if an error occurred, false otherwise.
8109 bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
8110 UnexpandedParameterPackContext UPPC,
8111 ArrayRef<UnexpandedParameterPack> Unexpanded);
8112
8113 /// If the given type contains an unexpanded parameter pack,
8114 /// diagnose the error.
8115 ///
8116 /// \param Loc The source location where a diagnostc should be emitted.
8117 ///
8118 /// \param T The type that is being checked for unexpanded parameter
8119 /// packs.
8120 ///
8121 /// \returns true if an error occurred, false otherwise.
8122 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
8123 UnexpandedParameterPackContext UPPC);
8124
8125 /// If the given expression contains an unexpanded parameter
8126 /// pack, diagnose the error.
8127 ///
8128 /// \param E The expression that is being checked for unexpanded
8129 /// parameter packs.
8130 ///
8131 /// \returns true if an error occurred, false otherwise.
8132 bool DiagnoseUnexpandedParameterPack(Expr *E,
8133 UnexpandedParameterPackContext UPPC = UPPC_Expression);
8134
8135 /// If the given requirees-expression contains an unexpanded reference to one
8136 /// of its own parameter packs, diagnose the error.
8137 ///
8138 /// \param RE The requiress-expression that is being checked for unexpanded
8139 /// parameter packs.
8140 ///
8141 /// \returns true if an error occurred, false otherwise.
8142 bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE);
8143
8144 /// If the given nested-name-specifier contains an unexpanded
8145 /// parameter pack, diagnose the error.
8146 ///
8147 /// \param SS The nested-name-specifier that is being checked for
8148 /// unexpanded parameter packs.
8149 ///
8150 /// \returns true if an error occurred, false otherwise.
8151 bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
8152 UnexpandedParameterPackContext UPPC);
8153
8154 /// If the given name contains an unexpanded parameter pack,
8155 /// diagnose the error.
8156 ///
8157 /// \param NameInfo The name (with source location information) that
8158 /// is being checked for unexpanded parameter packs.
8159 ///
8160 /// \returns true if an error occurred, false otherwise.
8161 bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
8162 UnexpandedParameterPackContext UPPC);
8163
8164 /// If the given template name contains an unexpanded parameter pack,
8165 /// diagnose the error.
8166 ///
8167 /// \param Loc The location of the template name.
8168 ///
8169 /// \param Template The template name that is being checked for unexpanded
8170 /// parameter packs.
8171 ///
8172 /// \returns true if an error occurred, false otherwise.
8173 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
8174 TemplateName Template,
8175 UnexpandedParameterPackContext UPPC);
8176
8177 /// If the given template argument contains an unexpanded parameter
8178 /// pack, diagnose the error.
8179 ///
8180 /// \param Arg The template argument that is being checked for unexpanded
8181 /// parameter packs.
8182 ///
8183 /// \returns true if an error occurred, false otherwise.
8184 bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
8185 UnexpandedParameterPackContext UPPC);
8186
8187 /// Collect the set of unexpanded parameter packs within the given
8188 /// template argument.
8189 ///
8190 /// \param Arg The template argument that will be traversed to find
8191 /// unexpanded parameter packs.
8192 void collectUnexpandedParameterPacks(TemplateArgument Arg,
8193 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8194
8195 /// Collect the set of unexpanded parameter packs within the given
8196 /// template argument.
8197 ///
8198 /// \param Arg The template argument that will be traversed to find
8199 /// unexpanded parameter packs.
8200 void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
8201 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8202
8203 /// Collect the set of unexpanded parameter packs within the given
8204 /// type.
8205 ///
8206 /// \param T The type that will be traversed to find
8207 /// unexpanded parameter packs.
8208 void collectUnexpandedParameterPacks(QualType T,
8209 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8210
8211 /// Collect the set of unexpanded parameter packs within the given
8212 /// type.
8213 ///
8214 /// \param TL The type that will be traversed to find
8215 /// unexpanded parameter packs.
8216 void collectUnexpandedParameterPacks(TypeLoc TL,
8217 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8218
8219 /// Collect the set of unexpanded parameter packs within the given
8220 /// nested-name-specifier.
8221 ///
8222 /// \param NNS The nested-name-specifier that will be traversed to find
8223 /// unexpanded parameter packs.
8224 void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS,
8225 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8226
8227 /// Collect the set of unexpanded parameter packs within the given
8228 /// name.
8229 ///
8230 /// \param NameInfo The name that will be traversed to find
8231 /// unexpanded parameter packs.
8232 void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
8233 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8234
8235 /// Invoked when parsing a template argument followed by an
8236 /// ellipsis, which creates a pack expansion.
8237 ///
8238 /// \param Arg The template argument preceding the ellipsis, which
8239 /// may already be invalid.
8240 ///
8241 /// \param EllipsisLoc The location of the ellipsis.
8242 ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
8243 SourceLocation EllipsisLoc);
8244
8245 /// Invoked when parsing a type followed by an ellipsis, which
8246 /// creates a pack expansion.
8247 ///
8248 /// \param Type The type preceding the ellipsis, which will become
8249 /// the pattern of the pack expansion.
8250 ///
8251 /// \param EllipsisLoc The location of the ellipsis.
8252 TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
8253
8254 /// Construct a pack expansion type from the pattern of the pack
8255 /// expansion.
8256 TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
8257 SourceLocation EllipsisLoc,
8258 Optional<unsigned> NumExpansions);
8259
8260 /// Construct a pack expansion type from the pattern of the pack
8261 /// expansion.
8262 QualType CheckPackExpansion(QualType Pattern,
8263 SourceRange PatternRange,
8264 SourceLocation EllipsisLoc,
8265 Optional<unsigned> NumExpansions);
8266
8267 /// Invoked when parsing an expression followed by an ellipsis, which
8268 /// creates a pack expansion.
8269 ///
8270 /// \param Pattern The expression preceding the ellipsis, which will become
8271 /// the pattern of the pack expansion.
8272 ///
8273 /// \param EllipsisLoc The location of the ellipsis.
8274 ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
8275
8276 /// Invoked when parsing an expression followed by an ellipsis, which
8277 /// creates a pack expansion.
8278 ///
8279 /// \param Pattern The expression preceding the ellipsis, which will become
8280 /// the pattern of the pack expansion.
8281 ///
8282 /// \param EllipsisLoc The location of the ellipsis.
8283 ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
8284 Optional<unsigned> NumExpansions);
8285
8286 /// Determine whether we could expand a pack expansion with the
8287 /// given set of parameter packs into separate arguments by repeatedly
8288 /// transforming the pattern.
8289 ///
8290 /// \param EllipsisLoc The location of the ellipsis that identifies the
8291 /// pack expansion.
8292 ///
8293 /// \param PatternRange The source range that covers the entire pattern of
8294 /// the pack expansion.
8295 ///
8296 /// \param Unexpanded The set of unexpanded parameter packs within the
8297 /// pattern.
8298 ///
8299 /// \param ShouldExpand Will be set to \c true if the transformer should
8300 /// expand the corresponding pack expansions into separate arguments. When
8301 /// set, \c NumExpansions must also be set.
8302 ///
8303 /// \param RetainExpansion Whether the caller should add an unexpanded
8304 /// pack expansion after all of the expanded arguments. This is used
8305 /// when extending explicitly-specified template argument packs per
8306 /// C++0x [temp.arg.explicit]p9.
8307 ///
8308 /// \param NumExpansions The number of separate arguments that will be in
8309 /// the expanded form of the corresponding pack expansion. This is both an
8310 /// input and an output parameter, which can be set by the caller if the
8311 /// number of expansions is known a priori (e.g., due to a prior substitution)
8312 /// and will be set by the callee when the number of expansions is known.
8313 /// The callee must set this value when \c ShouldExpand is \c true; it may
8314 /// set this value in other cases.
8315 ///
8316 /// \returns true if an error occurred (e.g., because the parameter packs
8317 /// are to be instantiated with arguments of different lengths), false
8318 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
8319 /// must be set.
8320 bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc,
8321 SourceRange PatternRange,
8322 ArrayRef<UnexpandedParameterPack> Unexpanded,
8323 const MultiLevelTemplateArgumentList &TemplateArgs,
8324 bool &ShouldExpand,
8325 bool &RetainExpansion,
8326 Optional<unsigned> &NumExpansions);
8327
8328 /// Determine the number of arguments in the given pack expansion
8329 /// type.
8330 ///
8331 /// This routine assumes that the number of arguments in the expansion is
8332 /// consistent across all of the unexpanded parameter packs in its pattern.
8333 ///
8334 /// Returns an empty Optional if the type can't be expanded.
8335 Optional<unsigned> getNumArgumentsInExpansion(QualType T,
8336 const MultiLevelTemplateArgumentList &TemplateArgs);
8337
8338 /// Determine whether the given declarator contains any unexpanded
8339 /// parameter packs.
8340 ///
8341 /// This routine is used by the parser to disambiguate function declarators
8342 /// with an ellipsis prior to the ')', e.g.,
8343 ///
8344 /// \code
8345 /// void f(T...);
8346 /// \endcode
8347 ///
8348 /// To determine whether we have an (unnamed) function parameter pack or
8349 /// a variadic function.
8350 ///
8351 /// \returns true if the declarator contains any unexpanded parameter packs,
8352 /// false otherwise.
8353 bool containsUnexpandedParameterPacks(Declarator &D);
8354
8355 /// Returns the pattern of the pack expansion for a template argument.
8356 ///
8357 /// \param OrigLoc The template argument to expand.
8358 ///
8359 /// \param Ellipsis Will be set to the location of the ellipsis.
8360 ///
8361 /// \param NumExpansions Will be set to the number of expansions that will
8362 /// be generated from this pack expansion, if known a priori.
8363 TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
8364 TemplateArgumentLoc OrigLoc,
8365 SourceLocation &Ellipsis,
8366 Optional<unsigned> &NumExpansions) const;
8367
8368 /// Given a template argument that contains an unexpanded parameter pack, but
8369 /// which has already been substituted, attempt to determine the number of
8370 /// elements that will be produced once this argument is fully-expanded.
8371 ///
8372 /// This is intended for use when transforming 'sizeof...(Arg)' in order to
8373 /// avoid actually expanding the pack where possible.
8374 Optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
8375
8376 //===--------------------------------------------------------------------===//
8377 // C++ Template Argument Deduction (C++ [temp.deduct])
8378 //===--------------------------------------------------------------------===//
8379
8380 /// Adjust the type \p ArgFunctionType to match the calling convention,
8381 /// noreturn, and optionally the exception specification of \p FunctionType.
8382 /// Deduction often wants to ignore these properties when matching function
8383 /// types.
8384 QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
8385 bool AdjustExceptionSpec = false);
8386
8387 /// Describes the result of template argument deduction.
8388 ///
8389 /// The TemplateDeductionResult enumeration describes the result of
8390 /// template argument deduction, as returned from
8391 /// DeduceTemplateArguments(). The separate TemplateDeductionInfo
8392 /// structure provides additional information about the results of
8393 /// template argument deduction, e.g., the deduced template argument
8394 /// list (if successful) or the specific template parameters or
8395 /// deduced arguments that were involved in the failure.
8396 enum TemplateDeductionResult {
8397 /// Template argument deduction was successful.
8398 TDK_Success = 0,
8399 /// The declaration was invalid; do nothing.
8400 TDK_Invalid,
8401 /// Template argument deduction exceeded the maximum template
8402 /// instantiation depth (which has already been diagnosed).
8403 TDK_InstantiationDepth,
8404 /// Template argument deduction did not deduce a value
8405 /// for every template parameter.
8406 TDK_Incomplete,
8407 /// Template argument deduction did not deduce a value for every
8408 /// expansion of an expanded template parameter pack.
8409 TDK_IncompletePack,
8410 /// Template argument deduction produced inconsistent
8411 /// deduced values for the given template parameter.
8412 TDK_Inconsistent,
8413 /// Template argument deduction failed due to inconsistent
8414 /// cv-qualifiers on a template parameter type that would
8415 /// otherwise be deduced, e.g., we tried to deduce T in "const T"
8416 /// but were given a non-const "X".
8417 TDK_Underqualified,
8418 /// Substitution of the deduced template argument values
8419 /// resulted in an error.
8420 TDK_SubstitutionFailure,
8421 /// After substituting deduced template arguments, a dependent
8422 /// parameter type did not match the corresponding argument.
8423 TDK_DeducedMismatch,
8424 /// After substituting deduced template arguments, an element of
8425 /// a dependent parameter type did not match the corresponding element
8426 /// of the corresponding argument (when deducing from an initializer list).
8427 TDK_DeducedMismatchNested,
8428 /// A non-depnedent component of the parameter did not match the
8429 /// corresponding component of the argument.
8430 TDK_NonDeducedMismatch,
8431 /// When performing template argument deduction for a function
8432 /// template, there were too many call arguments.
8433 TDK_TooManyArguments,
8434 /// When performing template argument deduction for a function
8435 /// template, there were too few call arguments.
8436 TDK_TooFewArguments,
8437 /// The explicitly-specified template arguments were not valid
8438 /// template arguments for the given template.
8439 TDK_InvalidExplicitArguments,
8440 /// Checking non-dependent argument conversions failed.
8441 TDK_NonDependentConversionFailure,
8442 /// The deduced arguments did not satisfy the constraints associated
8443 /// with the template.
8444 TDK_ConstraintsNotSatisfied,
8445 /// Deduction failed; that's all we know.
8446 TDK_MiscellaneousDeductionFailure,
8447 /// CUDA Target attributes do not match.
8448 TDK_CUDATargetMismatch
8449 };
8450
8451 TemplateDeductionResult
8452 DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
8453 const TemplateArgumentList &TemplateArgs,
8454 sema::TemplateDeductionInfo &Info);
8455
8456 TemplateDeductionResult
8457 DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
8458 const TemplateArgumentList &TemplateArgs,
8459 sema::TemplateDeductionInfo &Info);
8460
8461 TemplateDeductionResult SubstituteExplicitTemplateArguments(
8462 FunctionTemplateDecl *FunctionTemplate,
8463 TemplateArgumentListInfo &ExplicitTemplateArgs,
8464 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8465 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
8466 sema::TemplateDeductionInfo &Info);
8467
8468 /// brief A function argument from which we performed template argument
8469 // deduction for a call.
8470 struct OriginalCallArg {
8471 OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
8472 unsigned ArgIdx, QualType OriginalArgType)
8473 : OriginalParamType(OriginalParamType),
8474 DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
8475 OriginalArgType(OriginalArgType) {}
8476
8477 QualType OriginalParamType;
8478 bool DecomposedParam;
8479 unsigned ArgIdx;
8480 QualType OriginalArgType;
8481 };
8482
8483 TemplateDeductionResult FinishTemplateArgumentDeduction(
8484 FunctionTemplateDecl *FunctionTemplate,
8485 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8486 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
8487 sema::TemplateDeductionInfo &Info,
8488 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
8489 bool PartialOverloading = false,
8490 llvm::function_ref<bool()> CheckNonDependent = []{ return false; });
8491
8492 TemplateDeductionResult DeduceTemplateArguments(
8493 FunctionTemplateDecl *FunctionTemplate,
8494 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
8495 FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
8496 bool PartialOverloading,
8497 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
8498
8499 TemplateDeductionResult
8500 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8501 TemplateArgumentListInfo *ExplicitTemplateArgs,
8502 QualType ArgFunctionType,
8503 FunctionDecl *&Specialization,
8504 sema::TemplateDeductionInfo &Info,
8505 bool IsAddressOfFunction = false);
8506
8507 TemplateDeductionResult
8508 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8509 QualType ToType,
8510 CXXConversionDecl *&Specialization,
8511 sema::TemplateDeductionInfo &Info);
8512
8513 TemplateDeductionResult
8514 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8515 TemplateArgumentListInfo *ExplicitTemplateArgs,
8516 FunctionDecl *&Specialization,
8517 sema::TemplateDeductionInfo &Info,
8518 bool IsAddressOfFunction = false);
8519
8520 /// Substitute Replacement for \p auto in \p TypeWithAuto
8521 QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
8522 /// Substitute Replacement for auto in TypeWithAuto
8523 TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8524 QualType Replacement);
8525 /// Completely replace the \c auto in \p TypeWithAuto by
8526 /// \p Replacement. This does not retain any \c auto type sugar.
8527 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
8528 TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8529 QualType Replacement);
8530
8531 /// Result type of DeduceAutoType.
8532 enum DeduceAutoResult {
8533 DAR_Succeeded,
8534 DAR_Failed,
8535 DAR_FailedAlreadyDiagnosed
8536 };
8537
8538 DeduceAutoResult
8539 DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result,
8540 Optional<unsigned> DependentDeductionDepth = None,
8541 bool IgnoreConstraints = false);
8542 DeduceAutoResult
8543 DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result,
8544 Optional<unsigned> DependentDeductionDepth = None,
8545 bool IgnoreConstraints = false);
8546 void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
8547 bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
8548 bool Diagnose = true);
8549
8550 /// Declare implicit deduction guides for a class template if we've
8551 /// not already done so.
8552 void DeclareImplicitDeductionGuides(TemplateDecl *Template,
8553 SourceLocation Loc);
8554
8555 QualType DeduceTemplateSpecializationFromInitializer(
8556 TypeSourceInfo *TInfo, const InitializedEntity &Entity,
8557 const InitializationKind &Kind, MultiExprArg Init);
8558
8559 QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
8560 QualType Type, TypeSourceInfo *TSI,
8561 SourceRange Range, bool DirectInit,
8562 Expr *Init);
8563
8564 TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
8565
8566 bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
8567 SourceLocation ReturnLoc,
8568 Expr *&RetExpr, AutoType *AT);
8569
8570 FunctionTemplateDecl *getMoreSpecializedTemplate(
8571 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
8572 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
8573 unsigned NumCallArguments2, bool Reversed = false);
8574 UnresolvedSetIterator
8575 getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
8576 TemplateSpecCandidateSet &FailedCandidates,
8577 SourceLocation Loc,
8578 const PartialDiagnostic &NoneDiag,
8579 const PartialDiagnostic &AmbigDiag,
8580 const PartialDiagnostic &CandidateDiag,
8581 bool Complain = true, QualType TargetType = QualType());
8582
8583 ClassTemplatePartialSpecializationDecl *
8584 getMoreSpecializedPartialSpecialization(
8585 ClassTemplatePartialSpecializationDecl *PS1,
8586 ClassTemplatePartialSpecializationDecl *PS2,
8587 SourceLocation Loc);
8588
8589 bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
8590 sema::TemplateDeductionInfo &Info);
8591
8592 VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
8593 VarTemplatePartialSpecializationDecl *PS1,
8594 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
8595
8596 bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
8597 sema::TemplateDeductionInfo &Info);
8598
8599 bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
8600 TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc);
8601
8602 void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
8603 unsigned Depth, llvm::SmallBitVector &Used);
8604
8605 void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
8606 bool OnlyDeduced,
8607 unsigned Depth,
8608 llvm::SmallBitVector &Used);
8609 void MarkDeducedTemplateParameters(
8610 const FunctionTemplateDecl *FunctionTemplate,
8611 llvm::SmallBitVector &Deduced) {
8612 return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
8613 }
8614 static void MarkDeducedTemplateParameters(ASTContext &Ctx,
8615 const FunctionTemplateDecl *FunctionTemplate,
8616 llvm::SmallBitVector &Deduced);
8617
8618 //===--------------------------------------------------------------------===//
8619 // C++ Template Instantiation
8620 //
8621
8622 MultiLevelTemplateArgumentList
8623 getTemplateInstantiationArgs(NamedDecl *D,
8624 const TemplateArgumentList *Innermost = nullptr,
8625 bool RelativeToPrimary = false,
8626 const FunctionDecl *Pattern = nullptr);
8627
8628 /// A context in which code is being synthesized (where a source location
8629 /// alone is not sufficient to identify the context). This covers template
8630 /// instantiation and various forms of implicitly-generated functions.
8631 struct CodeSynthesisContext {
8632 /// The kind of template instantiation we are performing
8633 enum SynthesisKind {
8634 /// We are instantiating a template declaration. The entity is
8635 /// the declaration we're instantiating (e.g., a CXXRecordDecl).
8636 TemplateInstantiation,
8637
8638 /// We are instantiating a default argument for a template
8639 /// parameter. The Entity is the template parameter whose argument is
8640 /// being instantiated, the Template is the template, and the
8641 /// TemplateArgs/NumTemplateArguments provide the template arguments as
8642 /// specified.
8643 DefaultTemplateArgumentInstantiation,
8644
8645 /// We are instantiating a default argument for a function.
8646 /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
8647 /// provides the template arguments as specified.
8648 DefaultFunctionArgumentInstantiation,
8649
8650 /// We are substituting explicit template arguments provided for
8651 /// a function template. The entity is a FunctionTemplateDecl.
8652 ExplicitTemplateArgumentSubstitution,
8653
8654 /// We are substituting template argument determined as part of
8655 /// template argument deduction for either a class template
8656 /// partial specialization or a function template. The
8657 /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
8658 /// a TemplateDecl.
8659 DeducedTemplateArgumentSubstitution,
8660
8661 /// We are substituting prior template arguments into a new
8662 /// template parameter. The template parameter itself is either a
8663 /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
8664 PriorTemplateArgumentSubstitution,
8665
8666 /// We are checking the validity of a default template argument that
8667 /// has been used when naming a template-id.
8668 DefaultTemplateArgumentChecking,
8669
8670 /// We are computing the exception specification for a defaulted special
8671 /// member function.
8672 ExceptionSpecEvaluation,
8673
8674 /// We are instantiating the exception specification for a function
8675 /// template which was deferred until it was needed.
8676 ExceptionSpecInstantiation,
8677
8678 /// We are instantiating a requirement of a requires expression.
8679 RequirementInstantiation,
8680
8681 /// We are checking the satisfaction of a nested requirement of a requires
8682 /// expression.
8683 NestedRequirementConstraintsCheck,
8684
8685 /// We are declaring an implicit special member function.
8686 DeclaringSpecialMember,
8687
8688 /// We are declaring an implicit 'operator==' for a defaulted
8689 /// 'operator<=>'.
8690 DeclaringImplicitEqualityComparison,
8691
8692 /// We are defining a synthesized function (such as a defaulted special
8693 /// member).
8694 DefiningSynthesizedFunction,
8695
8696 // We are checking the constraints associated with a constrained entity or
8697 // the constraint expression of a concept. This includes the checks that
8698 // atomic constraints have the type 'bool' and that they can be constant
8699 // evaluated.
8700 ConstraintsCheck,
8701
8702 // We are substituting template arguments into a constraint expression.
8703 ConstraintSubstitution,
8704
8705 // We are normalizing a constraint expression.
8706 ConstraintNormalization,
8707
8708 // We are substituting into the parameter mapping of an atomic constraint
8709 // during normalization.
8710 ParameterMappingSubstitution,
8711
8712 /// We are rewriting a comparison operator in terms of an operator<=>.
8713 RewritingOperatorAsSpaceship,
8714
8715 /// We are initializing a structured binding.
8716 InitializingStructuredBinding,
8717
8718 /// We are marking a class as __dllexport.
8719 MarkingClassDllexported,
8720
8721 /// Added for Template instantiation observation.
8722 /// Memoization means we are _not_ instantiating a template because
8723 /// it is already instantiated (but we entered a context where we
8724 /// would have had to if it was not already instantiated).
8725 Memoization
8726 } Kind;
8727
8728 /// Was the enclosing context a non-instantiation SFINAE context?
8729 bool SavedInNonInstantiationSFINAEContext;
8730
8731 /// The point of instantiation or synthesis within the source code.
8732 SourceLocation PointOfInstantiation;
8733
8734 /// The entity that is being synthesized.
8735 Decl *Entity;
8736
8737 /// The template (or partial specialization) in which we are
8738 /// performing the instantiation, for substitutions of prior template
8739 /// arguments.
8740 NamedDecl *Template;
8741
8742 /// The list of template arguments we are substituting, if they
8743 /// are not part of the entity.
8744 const TemplateArgument *TemplateArgs;
8745
8746 // FIXME: Wrap this union around more members, or perhaps store the
8747 // kind-specific members in the RAII object owning the context.
8748 union {
8749 /// The number of template arguments in TemplateArgs.
8750 unsigned NumTemplateArgs;
8751
8752 /// The special member being declared or defined.
8753 CXXSpecialMember SpecialMember;
8754 };
8755
8756 ArrayRef<TemplateArgument> template_arguments() const {
8757 assert(Kind != DeclaringSpecialMember)(static_cast <bool> (Kind != DeclaringSpecialMember) ? void
(0) : __assert_fail ("Kind != DeclaringSpecialMember", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 8757, __extension__ __PRETTY_FUNCTION__))
;
8758 return {TemplateArgs, NumTemplateArgs};
8759 }
8760
8761 /// The template deduction info object associated with the
8762 /// substitution or checking of explicit or deduced template arguments.
8763 sema::TemplateDeductionInfo *DeductionInfo;
8764
8765 /// The source range that covers the construct that cause
8766 /// the instantiation, e.g., the template-id that causes a class
8767 /// template instantiation.
8768 SourceRange InstantiationRange;
8769
8770 CodeSynthesisContext()
8771 : Kind(TemplateInstantiation),
8772 SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
8773 Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
8774 DeductionInfo(nullptr) {}
8775
8776 /// Determines whether this template is an actual instantiation
8777 /// that should be counted toward the maximum instantiation depth.
8778 bool isInstantiationRecord() const;
8779 };
8780
8781 /// List of active code synthesis contexts.
8782 ///
8783 /// This vector is treated as a stack. As synthesis of one entity requires
8784 /// synthesis of another, additional contexts are pushed onto the stack.
8785 SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
8786
8787 /// Specializations whose definitions are currently being instantiated.
8788 llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
8789
8790 /// Non-dependent types used in templates that have already been instantiated
8791 /// by some template instantiation.
8792 llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
8793
8794 /// Extra modules inspected when performing a lookup during a template
8795 /// instantiation. Computed lazily.
8796 SmallVector<Module*, 16> CodeSynthesisContextLookupModules;
8797
8798 /// Cache of additional modules that should be used for name lookup
8799 /// within the current template instantiation. Computed lazily; use
8800 /// getLookupModules() to get a complete set.
8801 llvm::DenseSet<Module*> LookupModulesCache;
8802
8803 /// Get the set of additional modules that should be checked during
8804 /// name lookup. A module and its imports become visible when instanting a
8805 /// template defined within it.
8806 llvm::DenseSet<Module*> &getLookupModules();
8807
8808 /// Map from the most recent declaration of a namespace to the most
8809 /// recent visible declaration of that namespace.
8810 llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache;
8811
8812 /// Whether we are in a SFINAE context that is not associated with
8813 /// template instantiation.
8814 ///
8815 /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
8816 /// of a template instantiation or template argument deduction.
8817 bool InNonInstantiationSFINAEContext;
8818
8819 /// The number of \p CodeSynthesisContexts that are not template
8820 /// instantiations and, therefore, should not be counted as part of the
8821 /// instantiation depth.
8822 ///
8823 /// When the instantiation depth reaches the user-configurable limit
8824 /// \p LangOptions::InstantiationDepth we will abort instantiation.
8825 // FIXME: Should we have a similar limit for other forms of synthesis?
8826 unsigned NonInstantiationEntries;
8827
8828 /// The depth of the context stack at the point when the most recent
8829 /// error or warning was produced.
8830 ///
8831 /// This value is used to suppress printing of redundant context stacks
8832 /// when there are multiple errors or warnings in the same instantiation.
8833 // FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
8834 unsigned LastEmittedCodeSynthesisContextDepth = 0;
8835
8836 /// The template instantiation callbacks to trace or track
8837 /// instantiations (objects can be chained).
8838 ///
8839 /// This callbacks is used to print, trace or track template
8840 /// instantiations as they are being constructed.
8841 std::vector<std::unique_ptr<TemplateInstantiationCallback>>
8842 TemplateInstCallbacks;
8843
8844 /// The current index into pack expansion arguments that will be
8845 /// used for substitution of parameter packs.
8846 ///
8847 /// The pack expansion index will be -1 to indicate that parameter packs
8848 /// should be instantiated as themselves. Otherwise, the index specifies
8849 /// which argument within the parameter pack will be used for substitution.
8850 int ArgumentPackSubstitutionIndex;
8851
8852 /// RAII object used to change the argument pack substitution index
8853 /// within a \c Sema object.
8854 ///
8855 /// See \c ArgumentPackSubstitutionIndex for more information.
8856 class ArgumentPackSubstitutionIndexRAII {
8857 Sema &Self;
8858 int OldSubstitutionIndex;
8859
8860 public:
8861 ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
8862 : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
8863 Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
8864 }
8865
8866 ~ArgumentPackSubstitutionIndexRAII() {
8867 Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
8868 }
8869 };
8870
8871 friend class ArgumentPackSubstitutionRAII;
8872
8873 /// For each declaration that involved template argument deduction, the
8874 /// set of diagnostics that were suppressed during that template argument
8875 /// deduction.
8876 ///
8877 /// FIXME: Serialize this structure to the AST file.
8878 typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
8879 SuppressedDiagnosticsMap;
8880 SuppressedDiagnosticsMap SuppressedDiagnostics;
8881
8882 /// A stack object to be created when performing template
8883 /// instantiation.
8884 ///
8885 /// Construction of an object of type \c InstantiatingTemplate
8886 /// pushes the current instantiation onto the stack of active
8887 /// instantiations. If the size of this stack exceeds the maximum
8888 /// number of recursive template instantiations, construction
8889 /// produces an error and evaluates true.
8890 ///
8891 /// Destruction of this object will pop the named instantiation off
8892 /// the stack.
8893 struct InstantiatingTemplate {
8894 /// Note that we are instantiating a class template,
8895 /// function template, variable template, alias template,
8896 /// or a member thereof.
8897 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8898 Decl *Entity,
8899 SourceRange InstantiationRange = SourceRange());
8900
8901 struct ExceptionSpecification {};
8902 /// Note that we are instantiating an exception specification
8903 /// of a function template.
8904 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8905 FunctionDecl *Entity, ExceptionSpecification,
8906 SourceRange InstantiationRange = SourceRange());
8907
8908 /// Note that we are instantiating a default argument in a
8909 /// template-id.
8910 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8911 TemplateParameter Param, TemplateDecl *Template,
8912 ArrayRef<TemplateArgument> TemplateArgs,
8913 SourceRange InstantiationRange = SourceRange());
8914
8915 /// Note that we are substituting either explicitly-specified or
8916 /// deduced template arguments during function template argument deduction.
8917 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8918 FunctionTemplateDecl *FunctionTemplate,
8919 ArrayRef<TemplateArgument> TemplateArgs,
8920 CodeSynthesisContext::SynthesisKind Kind,
8921 sema::TemplateDeductionInfo &DeductionInfo,
8922 SourceRange InstantiationRange = SourceRange());
8923
8924 /// Note that we are instantiating as part of template
8925 /// argument deduction for a class template declaration.
8926 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8927 TemplateDecl *Template,
8928 ArrayRef<TemplateArgument> TemplateArgs,
8929 sema::TemplateDeductionInfo &DeductionInfo,
8930 SourceRange InstantiationRange = SourceRange());
8931
8932 /// Note that we are instantiating as part of template
8933 /// argument deduction for a class template partial
8934 /// specialization.
8935 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8936 ClassTemplatePartialSpecializationDecl *PartialSpec,
8937 ArrayRef<TemplateArgument> TemplateArgs,
8938 sema::TemplateDeductionInfo &DeductionInfo,
8939 SourceRange InstantiationRange = SourceRange());
8940
8941 /// Note that we are instantiating as part of template
8942 /// argument deduction for a variable template partial
8943 /// specialization.
8944 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8945 VarTemplatePartialSpecializationDecl *PartialSpec,
8946 ArrayRef<TemplateArgument> TemplateArgs,
8947 sema::TemplateDeductionInfo &DeductionInfo,
8948 SourceRange InstantiationRange = SourceRange());
8949
8950 /// Note that we are instantiating a default argument for a function
8951 /// parameter.
8952 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8953 ParmVarDecl *Param,
8954 ArrayRef<TemplateArgument> TemplateArgs,
8955 SourceRange InstantiationRange = SourceRange());
8956
8957 /// Note that we are substituting prior template arguments into a
8958 /// non-type parameter.
8959 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8960 NamedDecl *Template,
8961 NonTypeTemplateParmDecl *Param,
8962 ArrayRef<TemplateArgument> TemplateArgs,
8963 SourceRange InstantiationRange);
8964
8965 /// Note that we are substituting prior template arguments into a
8966 /// template template parameter.
8967 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8968 NamedDecl *Template,
8969 TemplateTemplateParmDecl *Param,
8970 ArrayRef<TemplateArgument> TemplateArgs,
8971 SourceRange InstantiationRange);
8972
8973 /// Note that we are checking the default template argument
8974 /// against the template parameter for a given template-id.
8975 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8976 TemplateDecl *Template,
8977 NamedDecl *Param,
8978 ArrayRef<TemplateArgument> TemplateArgs,
8979 SourceRange InstantiationRange);
8980
8981 struct ConstraintsCheck {};
8982 /// \brief Note that we are checking the constraints associated with some
8983 /// constrained entity (a concept declaration or a template with associated
8984 /// constraints).
8985 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8986 ConstraintsCheck, NamedDecl *Template,
8987 ArrayRef<TemplateArgument> TemplateArgs,
8988 SourceRange InstantiationRange);
8989
8990 struct ConstraintSubstitution {};
8991 /// \brief Note that we are checking a constraint expression associated
8992 /// with a template declaration or as part of the satisfaction check of a
8993 /// concept.
8994 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8995 ConstraintSubstitution, NamedDecl *Template,
8996 sema::TemplateDeductionInfo &DeductionInfo,
8997 SourceRange InstantiationRange);
8998
8999 struct ConstraintNormalization {};
9000 /// \brief Note that we are normalizing a constraint expression.
9001 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9002 ConstraintNormalization, NamedDecl *Template,
9003 SourceRange InstantiationRange);
9004
9005 struct ParameterMappingSubstitution {};
9006 /// \brief Note that we are subtituting into the parameter mapping of an
9007 /// atomic constraint during constraint normalization.
9008 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9009 ParameterMappingSubstitution, NamedDecl *Template,
9010 SourceRange InstantiationRange);
9011
9012 /// \brief Note that we are substituting template arguments into a part of
9013 /// a requirement of a requires expression.
9014 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9015 concepts::Requirement *Req,
9016 sema::TemplateDeductionInfo &DeductionInfo,
9017 SourceRange InstantiationRange = SourceRange());
9018
9019 /// \brief Note that we are checking the satisfaction of the constraint
9020 /// expression inside of a nested requirement.
9021 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9022 concepts::NestedRequirement *Req, ConstraintsCheck,
9023 SourceRange InstantiationRange = SourceRange());
9024
9025 /// Note that we have finished instantiating this template.
9026 void Clear();
9027
9028 ~InstantiatingTemplate() { Clear(); }
9029
9030 /// Determines whether we have exceeded the maximum
9031 /// recursive template instantiations.
9032 bool isInvalid() const { return Invalid; }
9033
9034 /// Determine whether we are already instantiating this
9035 /// specialization in some surrounding active instantiation.
9036 bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
9037
9038 private:
9039 Sema &SemaRef;
9040 bool Invalid;
9041 bool AlreadyInstantiating;
9042 bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
9043 SourceRange InstantiationRange);
9044
9045 InstantiatingTemplate(
9046 Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
9047 SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
9048 Decl *Entity, NamedDecl *Template = nullptr,
9049 ArrayRef<TemplateArgument> TemplateArgs = None,
9050 sema::TemplateDeductionInfo *DeductionInfo = nullptr);
9051
9052 InstantiatingTemplate(const InstantiatingTemplate&) = delete;
9053
9054 InstantiatingTemplate&
9055 operator=(const InstantiatingTemplate&) = delete;
9056 };
9057
9058 void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
9059 void popCodeSynthesisContext();
9060
9061 /// Determine whether we are currently performing template instantiation.
9062 bool inTemplateInstantiation() const {
9063 return CodeSynthesisContexts.size() > NonInstantiationEntries;
9064 }
9065
9066 void PrintContextStack() {
9067 if (!CodeSynthesisContexts.empty() &&
9068 CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
9069 PrintInstantiationStack();
9070 LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
9071 }
9072 if (PragmaAttributeCurrentTargetDecl)
9073 PrintPragmaAttributeInstantiationPoint();
9074 }
9075 void PrintInstantiationStack();
9076
9077 void PrintPragmaAttributeInstantiationPoint();
9078
9079 /// Determines whether we are currently in a context where
9080 /// template argument substitution failures are not considered
9081 /// errors.
9082 ///
9083 /// \returns An empty \c Optional if we're not in a SFINAE context.
9084 /// Otherwise, contains a pointer that, if non-NULL, contains the nearest
9085 /// template-deduction context object, which can be used to capture
9086 /// diagnostics that will be suppressed.
9087 Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
9088
9089 /// Determines whether we are currently in a context that
9090 /// is not evaluated as per C++ [expr] p5.
9091 bool isUnevaluatedContext() const {
9092 assert(!ExprEvalContexts.empty() &&(static_cast <bool> (!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context") ? void (0) : __assert_fail
("!ExprEvalContexts.empty() && \"Must be in an expression evaluation context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9093, __extension__ __PRETTY_FUNCTION__))
9093 "Must be in an expression evaluation context")(static_cast <bool> (!ExprEvalContexts.empty() &&
"Must be in an expression evaluation context") ? void (0) : __assert_fail
("!ExprEvalContexts.empty() && \"Must be in an expression evaluation context\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9093, __extension__ __PRETTY_FUNCTION__))
;
9094 return ExprEvalContexts.back().isUnevaluated();
9095 }
9096
9097 /// RAII class used to determine whether SFINAE has
9098 /// trapped any errors that occur during template argument
9099 /// deduction.
9100 class SFINAETrap {
9101 Sema &SemaRef;
9102 unsigned PrevSFINAEErrors;
9103 bool PrevInNonInstantiationSFINAEContext;
9104 bool PrevAccessCheckingSFINAE;
9105 bool PrevLastDiagnosticIgnored;
9106
9107 public:
9108 explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
9109 : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
9110 PrevInNonInstantiationSFINAEContext(
9111 SemaRef.InNonInstantiationSFINAEContext),
9112 PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
9113 PrevLastDiagnosticIgnored(
9114 SemaRef.getDiagnostics().isLastDiagnosticIgnored())
9115 {
9116 if (!SemaRef.isSFINAEContext())
9117 SemaRef.InNonInstantiationSFINAEContext = true;
9118 SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
9119 }
9120
9121 ~SFINAETrap() {
9122 SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
9123 SemaRef.InNonInstantiationSFINAEContext
9124 = PrevInNonInstantiationSFINAEContext;
9125 SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
9126 SemaRef.getDiagnostics().setLastDiagnosticIgnored(
9127 PrevLastDiagnosticIgnored);
9128 }
9129
9130 /// Determine whether any SFINAE errors have been trapped.
9131 bool hasErrorOccurred() const {
9132 return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
9133 }
9134 };
9135
9136 /// RAII class used to indicate that we are performing provisional
9137 /// semantic analysis to determine the validity of a construct, so
9138 /// typo-correction and diagnostics in the immediate context (not within
9139 /// implicitly-instantiated templates) should be suppressed.
9140 class TentativeAnalysisScope {
9141 Sema &SemaRef;
9142 // FIXME: Using a SFINAETrap for this is a hack.
9143 SFINAETrap Trap;
9144 bool PrevDisableTypoCorrection;
9145 public:
9146 explicit TentativeAnalysisScope(Sema &SemaRef)
9147 : SemaRef(SemaRef), Trap(SemaRef, true),
9148 PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
9149 SemaRef.DisableTypoCorrection = true;
9150 }
9151 ~TentativeAnalysisScope() {
9152 SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
9153 }
9154 };
9155
9156 /// The current instantiation scope used to store local
9157 /// variables.
9158 LocalInstantiationScope *CurrentInstantiationScope;
9159
9160 /// Tracks whether we are in a context where typo correction is
9161 /// disabled.
9162 bool DisableTypoCorrection;
9163
9164 /// The number of typos corrected by CorrectTypo.
9165 unsigned TyposCorrected;
9166
9167 typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
9168 typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
9169
9170 /// A cache containing identifiers for which typo correction failed and
9171 /// their locations, so that repeated attempts to correct an identifier in a
9172 /// given location are ignored if typo correction already failed for it.
9173 IdentifierSourceLocations TypoCorrectionFailures;
9174
9175 /// Worker object for performing CFG-based warnings.
9176 sema::AnalysisBasedWarnings AnalysisWarnings;
9177 threadSafety::BeforeSet *ThreadSafetyDeclCache;
9178
9179 /// An entity for which implicit template instantiation is required.
9180 ///
9181 /// The source location associated with the declaration is the first place in
9182 /// the source code where the declaration was "used". It is not necessarily
9183 /// the point of instantiation (which will be either before or after the
9184 /// namespace-scope declaration that triggered this implicit instantiation),
9185 /// However, it is the location that diagnostics should generally refer to,
9186 /// because users will need to know what code triggered the instantiation.
9187 typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
9188
9189 /// The queue of implicit template instantiations that are required
9190 /// but have not yet been performed.
9191 std::deque<PendingImplicitInstantiation> PendingInstantiations;
9192
9193 /// Queue of implicit template instantiations that cannot be performed
9194 /// eagerly.
9195 SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
9196
9197 class GlobalEagerInstantiationScope {
9198 public:
9199 GlobalEagerInstantiationScope(Sema &S, bool Enabled)
9200 : S(S), Enabled(Enabled) {
9201 if (!Enabled) return;
9202
9203 SavedPendingInstantiations.swap(S.PendingInstantiations);
9204 SavedVTableUses.swap(S.VTableUses);
9205 }
9206
9207 void perform() {
9208 if (Enabled) {
33
Assuming field 'Enabled' is true
34
Taking true branch
9209 S.DefineUsedVTables();
9210 S.PerformPendingInstantiations();
35
Calling 'Sema::PerformPendingInstantiations'
9211 }
9212 }
9213
9214 ~GlobalEagerInstantiationScope() {
9215 if (!Enabled) return;
9216
9217 // Restore the set of pending vtables.
9218 assert(S.VTableUses.empty() &&(static_cast <bool> (S.VTableUses.empty() && "VTableUses should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.VTableUses.empty() && \"VTableUses should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9219, __extension__ __PRETTY_FUNCTION__))
9219 "VTableUses should be empty before it is discarded.")(static_cast <bool> (S.VTableUses.empty() && "VTableUses should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.VTableUses.empty() && \"VTableUses should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9219, __extension__ __PRETTY_FUNCTION__))
;
9220 S.VTableUses.swap(SavedVTableUses);
9221
9222 // Restore the set of pending implicit instantiations.
9223 if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) {
9224 assert(S.PendingInstantiations.empty() &&(static_cast <bool> (S.PendingInstantiations.empty() &&
"PendingInstantiations should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.PendingInstantiations.empty() && \"PendingInstantiations should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9225, __extension__ __PRETTY_FUNCTION__))
9225 "PendingInstantiations should be empty before it is discarded.")(static_cast <bool> (S.PendingInstantiations.empty() &&
"PendingInstantiations should be empty before it is discarded."
) ? void (0) : __assert_fail ("S.PendingInstantiations.empty() && \"PendingInstantiations should be empty before it is discarded.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9225, __extension__ __PRETTY_FUNCTION__))
;
9226 S.PendingInstantiations.swap(SavedPendingInstantiations);
9227 } else {
9228 // Template instantiations in the PCH may be delayed until the TU.
9229 S.PendingInstantiations.swap(SavedPendingInstantiations);
9230 S.PendingInstantiations.insert(S.PendingInstantiations.end(),
9231 SavedPendingInstantiations.begin(),
9232 SavedPendingInstantiations.end());
9233 }
9234 }
9235
9236 private:
9237 Sema &S;
9238 SmallVector<VTableUse, 16> SavedVTableUses;
9239 std::deque<PendingImplicitInstantiation> SavedPendingInstantiations;
9240 bool Enabled;
9241 };
9242
9243 /// The queue of implicit template instantiations that are required
9244 /// and must be performed within the current local scope.
9245 ///
9246 /// This queue is only used for member functions of local classes in
9247 /// templates, which must be instantiated in the same scope as their
9248 /// enclosing function, so that they can reference function-local
9249 /// types, static variables, enumerators, etc.
9250 std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
9251
9252 class LocalEagerInstantiationScope {
9253 public:
9254 LocalEagerInstantiationScope(Sema &S) : S(S) {
9255 SavedPendingLocalImplicitInstantiations.swap(
9256 S.PendingLocalImplicitInstantiations);
9257 }
9258
9259 void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); }
9260
9261 ~LocalEagerInstantiationScope() {
9262 assert(S.PendingLocalImplicitInstantiations.empty() &&(static_cast <bool> (S.PendingLocalImplicitInstantiations
.empty() && "there shouldn't be any pending local implicit instantiations"
) ? void (0) : __assert_fail ("S.PendingLocalImplicitInstantiations.empty() && \"there shouldn't be any pending local implicit instantiations\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9263, __extension__ __PRETTY_FUNCTION__))
9263 "there shouldn't be any pending local implicit instantiations")(static_cast <bool> (S.PendingLocalImplicitInstantiations
.empty() && "there shouldn't be any pending local implicit instantiations"
) ? void (0) : __assert_fail ("S.PendingLocalImplicitInstantiations.empty() && \"there shouldn't be any pending local implicit instantiations\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9263, __extension__ __PRETTY_FUNCTION__))
;
9264 SavedPendingLocalImplicitInstantiations.swap(
9265 S.PendingLocalImplicitInstantiations);
9266 }
9267
9268 private:
9269 Sema &S;
9270 std::deque<PendingImplicitInstantiation>
9271 SavedPendingLocalImplicitInstantiations;
9272 };
9273
9274 /// A helper class for building up ExtParameterInfos.
9275 class ExtParameterInfoBuilder {
9276 SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
9277 bool HasInteresting = false;
9278
9279 public:
9280 /// Set the ExtParameterInfo for the parameter at the given index,
9281 ///
9282 void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
9283 assert(Infos.size() <= index)(static_cast <bool> (Infos.size() <= index) ? void (
0) : __assert_fail ("Infos.size() <= index", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 9283, __extension__ __PRETTY_FUNCTION__))
;
9284 Infos.resize(index);
9285 Infos.push_back(info);
9286
9287 if (!HasInteresting)
9288 HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
9289 }
9290
9291 /// Return a pointer (suitable for setting in an ExtProtoInfo) to the
9292 /// ExtParameterInfo array we've built up.
9293 const FunctionProtoType::ExtParameterInfo *
9294 getPointerOrNull(unsigned numParams) {
9295 if (!HasInteresting) return nullptr;
9296 Infos.resize(numParams);
9297 return Infos.data();
9298 }
9299 };
9300
9301 void PerformPendingInstantiations(bool LocalOnly = false);
9302
9303 TypeSourceInfo *SubstType(TypeSourceInfo *T,
9304 const MultiLevelTemplateArgumentList &TemplateArgs,
9305 SourceLocation Loc, DeclarationName Entity,
9306 bool AllowDeducedTST = false);
9307
9308 QualType SubstType(QualType T,
9309 const MultiLevelTemplateArgumentList &TemplateArgs,
9310 SourceLocation Loc, DeclarationName Entity);
9311
9312 TypeSourceInfo *SubstType(TypeLoc TL,
9313 const MultiLevelTemplateArgumentList &TemplateArgs,
9314 SourceLocation Loc, DeclarationName Entity);
9315
9316 TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T,
9317 const MultiLevelTemplateArgumentList &TemplateArgs,
9318 SourceLocation Loc,
9319 DeclarationName Entity,
9320 CXXRecordDecl *ThisContext,
9321 Qualifiers ThisTypeQuals);
9322 void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
9323 const MultiLevelTemplateArgumentList &Args);
9324 bool SubstExceptionSpec(SourceLocation Loc,
9325 FunctionProtoType::ExceptionSpecInfo &ESI,
9326 SmallVectorImpl<QualType> &ExceptionStorage,
9327 const MultiLevelTemplateArgumentList &Args);
9328 ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D,
9329 const MultiLevelTemplateArgumentList &TemplateArgs,
9330 int indexAdjustment,
9331 Optional<unsigned> NumExpansions,
9332 bool ExpectParameterPack);
9333 bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
9334 const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
9335 const MultiLevelTemplateArgumentList &TemplateArgs,
9336 SmallVectorImpl<QualType> &ParamTypes,
9337 SmallVectorImpl<ParmVarDecl *> *OutParams,
9338 ExtParameterInfoBuilder &ParamInfos);
9339 ExprResult SubstExpr(Expr *E,
9340 const MultiLevelTemplateArgumentList &TemplateArgs);
9341
9342 /// Substitute the given template arguments into a list of
9343 /// expressions, expanding pack expansions if required.
9344 ///
9345 /// \param Exprs The list of expressions to substitute into.
9346 ///
9347 /// \param IsCall Whether this is some form of call, in which case
9348 /// default arguments will be dropped.
9349 ///
9350 /// \param TemplateArgs The set of template arguments to substitute.
9351 ///
9352 /// \param Outputs Will receive all of the substituted arguments.
9353 ///
9354 /// \returns true if an error occurred, false otherwise.
9355 bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
9356 const MultiLevelTemplateArgumentList &TemplateArgs,
9357 SmallVectorImpl<Expr *> &Outputs);
9358
9359 StmtResult SubstStmt(Stmt *S,
9360 const MultiLevelTemplateArgumentList &TemplateArgs);
9361
9362 TemplateParameterList *
9363 SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
9364 const MultiLevelTemplateArgumentList &TemplateArgs);
9365
9366 bool
9367 SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
9368 const MultiLevelTemplateArgumentList &TemplateArgs,
9369 TemplateArgumentListInfo &Outputs);
9370
9371
9372 Decl *SubstDecl(Decl *D, DeclContext *Owner,
9373 const MultiLevelTemplateArgumentList &TemplateArgs);
9374
9375 /// Substitute the name and return type of a defaulted 'operator<=>' to form
9376 /// an implicit 'operator=='.
9377 FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
9378 FunctionDecl *Spaceship);
9379
9380 ExprResult SubstInitializer(Expr *E,
9381 const MultiLevelTemplateArgumentList &TemplateArgs,
9382 bool CXXDirectInit);
9383
9384 bool
9385 SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
9386 CXXRecordDecl *Pattern,
9387 const MultiLevelTemplateArgumentList &TemplateArgs);
9388
9389 bool
9390 InstantiateClass(SourceLocation PointOfInstantiation,
9391 CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
9392 const MultiLevelTemplateArgumentList &TemplateArgs,
9393 TemplateSpecializationKind TSK,
9394 bool Complain = true);
9395
9396 bool InstantiateEnum(SourceLocation PointOfInstantiation,
9397 EnumDecl *Instantiation, EnumDecl *Pattern,
9398 const MultiLevelTemplateArgumentList &TemplateArgs,
9399 TemplateSpecializationKind TSK);
9400
9401 bool InstantiateInClassInitializer(
9402 SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
9403 FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
9404
9405 struct LateInstantiatedAttribute {
9406 const Attr *TmplAttr;
9407 LocalInstantiationScope *Scope;
9408 Decl *NewDecl;
9409
9410 LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
9411 Decl *D)
9412 : TmplAttr(A), Scope(S), NewDecl(D)
9413 { }
9414 };
9415 typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
9416
9417 void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
9418 const Decl *Pattern, Decl *Inst,
9419 LateInstantiatedAttrVec *LateAttrs = nullptr,
9420 LocalInstantiationScope *OuterMostScope = nullptr);
9421
9422 void
9423 InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
9424 const Decl *Pattern, Decl *Inst,
9425 LateInstantiatedAttrVec *LateAttrs = nullptr,
9426 LocalInstantiationScope *OuterMostScope = nullptr);
9427
9428 void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor);
9429
9430 bool usesPartialOrExplicitSpecialization(
9431 SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
9432
9433 bool
9434 InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
9435 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9436 TemplateSpecializationKind TSK,
9437 bool Complain = true);
9438
9439 void InstantiateClassMembers(SourceLocation PointOfInstantiation,
9440 CXXRecordDecl *Instantiation,
9441 const MultiLevelTemplateArgumentList &TemplateArgs,
9442 TemplateSpecializationKind TSK);
9443
9444 void InstantiateClassTemplateSpecializationMembers(
9445 SourceLocation PointOfInstantiation,
9446 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9447 TemplateSpecializationKind TSK);
9448
9449 NestedNameSpecifierLoc
9450 SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
9451 const MultiLevelTemplateArgumentList &TemplateArgs);
9452
9453 DeclarationNameInfo
9454 SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
9455 const MultiLevelTemplateArgumentList &TemplateArgs);
9456 TemplateName
9457 SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
9458 SourceLocation Loc,
9459 const MultiLevelTemplateArgumentList &TemplateArgs);
9460 bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
9461 TemplateArgumentListInfo &Result,
9462 const MultiLevelTemplateArgumentList &TemplateArgs);
9463
9464 bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
9465 ParmVarDecl *Param);
9466 void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
9467 FunctionDecl *Function);
9468 bool CheckInstantiatedFunctionTemplateConstraints(
9469 SourceLocation PointOfInstantiation, FunctionDecl *Decl,
9470 ArrayRef<TemplateArgument> TemplateArgs,
9471 ConstraintSatisfaction &Satisfaction);
9472 FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
9473 const TemplateArgumentList *Args,
9474 SourceLocation Loc);
9475 void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
9476 FunctionDecl *Function,
9477 bool Recursive = false,
9478 bool DefinitionRequired = false,
9479 bool AtEndOfTU = false);
9480 VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
9481 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
9482 const TemplateArgumentList &TemplateArgList,
9483 const TemplateArgumentListInfo &TemplateArgsInfo,
9484 SmallVectorImpl<TemplateArgument> &Converted,
9485 SourceLocation PointOfInstantiation,
9486 LateInstantiatedAttrVec *LateAttrs = nullptr,
9487 LocalInstantiationScope *StartingScope = nullptr);
9488 VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
9489 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
9490 const MultiLevelTemplateArgumentList &TemplateArgs);
9491 void
9492 BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
9493 const MultiLevelTemplateArgumentList &TemplateArgs,
9494 LateInstantiatedAttrVec *LateAttrs,
9495 DeclContext *Owner,
9496 LocalInstantiationScope *StartingScope,
9497 bool InstantiatingVarTemplate = false,
9498 VarTemplateSpecializationDecl *PrevVTSD = nullptr);
9499
9500 void InstantiateVariableInitializer(
9501 VarDecl *Var, VarDecl *OldVar,
9502 const MultiLevelTemplateArgumentList &TemplateArgs);
9503 void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
9504 VarDecl *Var, bool Recursive = false,
9505 bool DefinitionRequired = false,
9506 bool AtEndOfTU = false);
9507
9508 void InstantiateMemInitializers(CXXConstructorDecl *New,
9509 const CXXConstructorDecl *Tmpl,
9510 const MultiLevelTemplateArgumentList &TemplateArgs);
9511
9512 NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
9513 const MultiLevelTemplateArgumentList &TemplateArgs,
9514 bool FindingInstantiatedContext = false);
9515 DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
9516 const MultiLevelTemplateArgumentList &TemplateArgs);
9517
9518 // Objective-C declarations.
9519 enum ObjCContainerKind {
9520 OCK_None = -1,
9521 OCK_Interface = 0,
9522 OCK_Protocol,
9523 OCK_Category,
9524 OCK_ClassExtension,
9525 OCK_Implementation,
9526 OCK_CategoryImplementation
9527 };
9528 ObjCContainerKind getObjCContainerKind() const;
9529
9530 DeclResult actOnObjCTypeParam(Scope *S,
9531 ObjCTypeParamVariance variance,
9532 SourceLocation varianceLoc,
9533 unsigned index,
9534 IdentifierInfo *paramName,
9535 SourceLocation paramLoc,
9536 SourceLocation colonLoc,
9537 ParsedType typeBound);
9538
9539 ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
9540 ArrayRef<Decl *> typeParams,
9541 SourceLocation rAngleLoc);
9542 void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList);
9543
9544 Decl *ActOnStartClassInterface(
9545 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9546 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9547 IdentifierInfo *SuperName, SourceLocation SuperLoc,
9548 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
9549 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9550 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9551 const ParsedAttributesView &AttrList);
9552
9553 void ActOnSuperClassOfClassInterface(Scope *S,
9554 SourceLocation AtInterfaceLoc,
9555 ObjCInterfaceDecl *IDecl,
9556 IdentifierInfo *ClassName,
9557 SourceLocation ClassLoc,
9558 IdentifierInfo *SuperName,
9559 SourceLocation SuperLoc,
9560 ArrayRef<ParsedType> SuperTypeArgs,
9561 SourceRange SuperTypeArgsRange);
9562
9563 void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
9564 SmallVectorImpl<SourceLocation> &ProtocolLocs,
9565 IdentifierInfo *SuperName,
9566 SourceLocation SuperLoc);
9567
9568 Decl *ActOnCompatibilityAlias(
9569 SourceLocation AtCompatibilityAliasLoc,
9570 IdentifierInfo *AliasName, SourceLocation AliasLocation,
9571 IdentifierInfo *ClassName, SourceLocation ClassLocation);
9572
9573 bool CheckForwardProtocolDeclarationForCircularDependency(
9574 IdentifierInfo *PName,
9575 SourceLocation &PLoc, SourceLocation PrevLoc,
9576 const ObjCList<ObjCProtocolDecl> &PList);
9577
9578 Decl *ActOnStartProtocolInterface(
9579 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
9580 SourceLocation ProtocolLoc, Decl *const *ProtoRefNames,
9581 unsigned NumProtoRefs, const SourceLocation *ProtoLocs,
9582 SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList);
9583
9584 Decl *ActOnStartCategoryInterface(
9585 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9586 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9587 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
9588 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9589 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9590 const ParsedAttributesView &AttrList);
9591
9592 Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc,
9593 IdentifierInfo *ClassName,
9594 SourceLocation ClassLoc,
9595 IdentifierInfo *SuperClassname,
9596 SourceLocation SuperClassLoc,
9597 const ParsedAttributesView &AttrList);
9598
9599 Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,
9600 IdentifierInfo *ClassName,
9601 SourceLocation ClassLoc,
9602 IdentifierInfo *CatName,
9603 SourceLocation CatLoc,
9604 const ParsedAttributesView &AttrList);
9605
9606 DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
9607 ArrayRef<Decl *> Decls);
9608
9609 DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
9610 IdentifierInfo **IdentList,
9611 SourceLocation *IdentLocs,
9612 ArrayRef<ObjCTypeParamList *> TypeParamLists,
9613 unsigned NumElts);
9614
9615 DeclGroupPtrTy
9616 ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
9617 ArrayRef<IdentifierLocPair> IdentList,
9618 const ParsedAttributesView &attrList);
9619
9620 void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
9621 ArrayRef<IdentifierLocPair> ProtocolId,
9622 SmallVectorImpl<Decl *> &Protocols);
9623
9624 void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
9625 SourceLocation ProtocolLoc,
9626 IdentifierInfo *TypeArgId,
9627 SourceLocation TypeArgLoc,
9628 bool SelectProtocolFirst = false);
9629
9630 /// Given a list of identifiers (and their locations), resolve the
9631 /// names to either Objective-C protocol qualifiers or type
9632 /// arguments, as appropriate.
9633 void actOnObjCTypeArgsOrProtocolQualifiers(
9634 Scope *S,
9635 ParsedType baseType,
9636 SourceLocation lAngleLoc,
9637 ArrayRef<IdentifierInfo *> identifiers,
9638 ArrayRef<SourceLocation> identifierLocs,
9639 SourceLocation rAngleLoc,
9640 SourceLocation &typeArgsLAngleLoc,
9641 SmallVectorImpl<ParsedType> &typeArgs,
9642 SourceLocation &typeArgsRAngleLoc,
9643 SourceLocation &protocolLAngleLoc,
9644 SmallVectorImpl<Decl *> &protocols,
9645 SourceLocation &protocolRAngleLoc,
9646 bool warnOnIncompleteProtocols);
9647
9648 /// Build a an Objective-C protocol-qualified 'id' type where no
9649 /// base type was specified.
9650 TypeResult actOnObjCProtocolQualifierType(
9651 SourceLocation lAngleLoc,
9652 ArrayRef<Decl *> protocols,
9653 ArrayRef<SourceLocation> protocolLocs,
9654 SourceLocation rAngleLoc);
9655
9656 /// Build a specialized and/or protocol-qualified Objective-C type.
9657 TypeResult actOnObjCTypeArgsAndProtocolQualifiers(
9658 Scope *S,
9659 SourceLocation Loc,
9660 ParsedType BaseType,
9661 SourceLocation TypeArgsLAngleLoc,
9662 ArrayRef<ParsedType> TypeArgs,
9663 SourceLocation TypeArgsRAngleLoc,
9664 SourceLocation ProtocolLAngleLoc,
9665 ArrayRef<Decl *> Protocols,
9666 ArrayRef<SourceLocation> ProtocolLocs,
9667 SourceLocation ProtocolRAngleLoc);
9668
9669 /// Build an Objective-C type parameter type.
9670 QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
9671 SourceLocation ProtocolLAngleLoc,
9672 ArrayRef<ObjCProtocolDecl *> Protocols,
9673 ArrayRef<SourceLocation> ProtocolLocs,
9674 SourceLocation ProtocolRAngleLoc,
9675 bool FailOnError = false);
9676
9677 /// Build an Objective-C object pointer type.
9678 QualType BuildObjCObjectType(QualType BaseType,
9679 SourceLocation Loc,
9680 SourceLocation TypeArgsLAngleLoc,
9681 ArrayRef<TypeSourceInfo *> TypeArgs,
9682 SourceLocation TypeArgsRAngleLoc,
9683 SourceLocation ProtocolLAngleLoc,
9684 ArrayRef<ObjCProtocolDecl *> Protocols,
9685 ArrayRef<SourceLocation> ProtocolLocs,
9686 SourceLocation ProtocolRAngleLoc,
9687 bool FailOnError = false);
9688
9689 /// Ensure attributes are consistent with type.
9690 /// \param [in, out] Attributes The attributes to check; they will
9691 /// be modified to be consistent with \p PropertyTy.
9692 void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
9693 SourceLocation Loc,
9694 unsigned &Attributes,
9695 bool propertyInPrimaryClass);
9696
9697 /// Process the specified property declaration and create decls for the
9698 /// setters and getters as needed.
9699 /// \param property The property declaration being processed
9700 void ProcessPropertyDecl(ObjCPropertyDecl *property);
9701
9702
9703 void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
9704 ObjCPropertyDecl *SuperProperty,
9705 const IdentifierInfo *Name,
9706 bool OverridingProtocolProperty);
9707
9708 void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
9709 ObjCInterfaceDecl *ID);
9710
9711 Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
9712 ArrayRef<Decl *> allMethods = None,
9713 ArrayRef<DeclGroupPtrTy> allTUVars = None);
9714
9715 Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
9716 SourceLocation LParenLoc,
9717 FieldDeclarator &FD, ObjCDeclSpec &ODS,
9718 Selector GetterSel, Selector SetterSel,
9719 tok::ObjCKeywordKind MethodImplKind,
9720 DeclContext *lexicalDC = nullptr);
9721
9722 Decl *ActOnPropertyImplDecl(Scope *S,
9723 SourceLocation AtLoc,
9724 SourceLocation PropertyLoc,
9725 bool ImplKind,
9726 IdentifierInfo *PropertyId,
9727 IdentifierInfo *PropertyIvar,
9728 SourceLocation PropertyIvarLoc,
9729 ObjCPropertyQueryKind QueryKind);
9730
9731 enum ObjCSpecialMethodKind {
9732 OSMK_None,
9733 OSMK_Alloc,
9734 OSMK_New,
9735 OSMK_Copy,
9736 OSMK_RetainingInit,
9737 OSMK_NonRetainingInit
9738 };
9739
9740 struct ObjCArgInfo {
9741 IdentifierInfo *Name;
9742 SourceLocation NameLoc;
9743 // The Type is null if no type was specified, and the DeclSpec is invalid
9744 // in this case.
9745 ParsedType Type;
9746 ObjCDeclSpec DeclSpec;
9747
9748 /// ArgAttrs - Attribute list for this argument.
9749 ParsedAttributesView ArgAttrs;
9750 };
9751
9752 Decl *ActOnMethodDeclaration(
9753 Scope *S,
9754 SourceLocation BeginLoc, // location of the + or -.
9755 SourceLocation EndLoc, // location of the ; or {.
9756 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
9757 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
9758 // optional arguments. The number of types/arguments is obtained
9759 // from the Sel.getNumArgs().
9760 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
9761 unsigned CNumArgs, // c-style args
9762 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind,
9763 bool isVariadic, bool MethodDefinition);
9764
9765 ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
9766 const ObjCObjectPointerType *OPT,
9767 bool IsInstance);
9768 ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
9769 bool IsInstance);
9770
9771 bool CheckARCMethodDecl(ObjCMethodDecl *method);
9772 bool inferObjCARCLifetime(ValueDecl *decl);
9773
9774 void deduceOpenCLAddressSpace(ValueDecl *decl);
9775
9776 ExprResult
9777 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
9778 Expr *BaseExpr,
9779 SourceLocation OpLoc,
9780 DeclarationName MemberName,
9781 SourceLocation MemberLoc,
9782 SourceLocation SuperLoc, QualType SuperType,
9783 bool Super);
9784
9785 ExprResult
9786 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
9787 IdentifierInfo &propertyName,
9788 SourceLocation receiverNameLoc,
9789 SourceLocation propertyNameLoc);
9790
9791 ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc);
9792
9793 /// Describes the kind of message expression indicated by a message
9794 /// send that starts with an identifier.
9795 enum ObjCMessageKind {
9796 /// The message is sent to 'super'.
9797 ObjCSuperMessage,
9798 /// The message is an instance message.
9799 ObjCInstanceMessage,
9800 /// The message is a class message, and the identifier is a type
9801 /// name.
9802 ObjCClassMessage
9803 };
9804
9805 ObjCMessageKind getObjCMessageKind(Scope *S,
9806 IdentifierInfo *Name,
9807 SourceLocation NameLoc,
9808 bool IsSuper,
9809 bool HasTrailingDot,
9810 ParsedType &ReceiverType);
9811
9812 ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
9813 Selector Sel,
9814 SourceLocation LBracLoc,
9815 ArrayRef<SourceLocation> SelectorLocs,
9816 SourceLocation RBracLoc,
9817 MultiExprArg Args);
9818
9819 ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
9820 QualType ReceiverType,
9821 SourceLocation SuperLoc,
9822 Selector Sel,
9823 ObjCMethodDecl *Method,
9824 SourceLocation LBracLoc,
9825 ArrayRef<SourceLocation> SelectorLocs,
9826 SourceLocation RBracLoc,
9827 MultiExprArg Args,
9828 bool isImplicit = false);
9829
9830 ExprResult BuildClassMessageImplicit(QualType ReceiverType,
9831 bool isSuperReceiver,
9832 SourceLocation Loc,
9833 Selector Sel,
9834 ObjCMethodDecl *Method,
9835 MultiExprArg Args);
9836
9837 ExprResult ActOnClassMessage(Scope *S,
9838 ParsedType Receiver,
9839 Selector Sel,
9840 SourceLocation LBracLoc,
9841 ArrayRef<SourceLocation> SelectorLocs,
9842 SourceLocation RBracLoc,
9843 MultiExprArg Args);
9844
9845 ExprResult BuildInstanceMessage(Expr *Receiver,
9846 QualType ReceiverType,
9847 SourceLocation SuperLoc,
9848 Selector Sel,
9849 ObjCMethodDecl *Method,
9850 SourceLocation LBracLoc,
9851 ArrayRef<SourceLocation> SelectorLocs,
9852 SourceLocation RBracLoc,
9853 MultiExprArg Args,
9854 bool isImplicit = false);
9855
9856 ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
9857 QualType ReceiverType,
9858 SourceLocation Loc,
9859 Selector Sel,
9860 ObjCMethodDecl *Method,
9861 MultiExprArg Args);
9862
9863 ExprResult ActOnInstanceMessage(Scope *S,
9864 Expr *Receiver,
9865 Selector Sel,
9866 SourceLocation LBracLoc,
9867 ArrayRef<SourceLocation> SelectorLocs,
9868 SourceLocation RBracLoc,
9869 MultiExprArg Args);
9870
9871 ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
9872 ObjCBridgeCastKind Kind,
9873 SourceLocation BridgeKeywordLoc,
9874 TypeSourceInfo *TSInfo,
9875 Expr *SubExpr);
9876
9877 ExprResult ActOnObjCBridgedCast(Scope *S,
9878 SourceLocation LParenLoc,
9879 ObjCBridgeCastKind Kind,
9880 SourceLocation BridgeKeywordLoc,
9881 ParsedType Type,
9882 SourceLocation RParenLoc,
9883 Expr *SubExpr);
9884
9885 void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr);
9886
9887 void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr);
9888
9889 bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
9890 CastKind &Kind);
9891
9892 bool checkObjCBridgeRelatedComponents(SourceLocation Loc,
9893 QualType DestType, QualType SrcType,
9894 ObjCInterfaceDecl *&RelatedClass,
9895 ObjCMethodDecl *&ClassMethod,
9896 ObjCMethodDecl *&InstanceMethod,
9897 TypedefNameDecl *&TDNDecl,
9898 bool CfToNs, bool Diagnose = true);
9899
9900 bool CheckObjCBridgeRelatedConversions(SourceLocation Loc,
9901 QualType DestType, QualType SrcType,
9902 Expr *&SrcExpr, bool Diagnose = true);
9903
9904 bool CheckConversionToObjCLiteral(QualType DstType, Expr *&SrcExpr,
9905 bool Diagnose = true);
9906
9907 bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
9908
9909 /// Check whether the given new method is a valid override of the
9910 /// given overridden method, and set any properties that should be inherited.
9911 void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
9912 const ObjCMethodDecl *Overridden);
9913
9914 /// Describes the compatibility of a result type with its method.
9915 enum ResultTypeCompatibilityKind {
9916 RTC_Compatible,
9917 RTC_Incompatible,
9918 RTC_Unknown
9919 };
9920
9921 void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
9922 ObjCMethodDecl *overridden);
9923
9924 void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
9925 ObjCInterfaceDecl *CurrentClass,
9926 ResultTypeCompatibilityKind RTC);
9927
9928 enum PragmaOptionsAlignKind {
9929 POAK_Native, // #pragma options align=native
9930 POAK_Natural, // #pragma options align=natural
9931 POAK_Packed, // #pragma options align=packed
9932 POAK_Power, // #pragma options align=power
9933 POAK_Mac68k, // #pragma options align=mac68k
9934 POAK_Reset // #pragma options align=reset
9935 };
9936
9937 /// ActOnPragmaClangSection - Called on well formed \#pragma clang section
9938 void ActOnPragmaClangSection(SourceLocation PragmaLoc,
9939 PragmaClangSectionAction Action,
9940 PragmaClangSectionKind SecKind, StringRef SecName);
9941
9942 /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
9943 void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
9944 SourceLocation PragmaLoc);
9945
9946 /// ActOnPragmaPack - Called on well formed \#pragma pack(...).
9947 void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
9948 StringRef SlotLabel, Expr *Alignment);
9949
9950 enum class PragmaAlignPackDiagnoseKind {
9951 NonDefaultStateAtInclude,
9952 ChangedStateAtExit
9953 };
9954
9955 void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind,
9956 SourceLocation IncludeLoc);
9957 void DiagnoseUnterminatedPragmaAlignPack();
9958
9959 /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
9960 void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
9961
9962 /// ActOnPragmaMSComment - Called on well formed
9963 /// \#pragma comment(kind, "arg").
9964 void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
9965 StringRef Arg);
9966
9967 /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
9968 /// pointers_to_members(representation method[, general purpose
9969 /// representation]).
9970 void ActOnPragmaMSPointersToMembers(
9971 LangOptions::PragmaMSPointersToMembersKind Kind,
9972 SourceLocation PragmaLoc);
9973
9974 /// Called on well formed \#pragma vtordisp().
9975 void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
9976 SourceLocation PragmaLoc,
9977 MSVtorDispMode Value);
9978
9979 enum PragmaSectionKind {
9980 PSK_DataSeg,
9981 PSK_BSSSeg,
9982 PSK_ConstSeg,
9983 PSK_CodeSeg,
9984 };
9985
9986 bool UnifySection(StringRef SectionName, int SectionFlags,
9987 NamedDecl *TheDecl);
9988 bool UnifySection(StringRef SectionName,
9989 int SectionFlags,
9990 SourceLocation PragmaSectionLocation);
9991
9992 /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
9993 void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
9994 PragmaMsStackAction Action,
9995 llvm::StringRef StackSlotLabel,
9996 StringLiteral *SegmentName,
9997 llvm::StringRef PragmaName);
9998
9999 /// Called on well formed \#pragma section().
10000 void ActOnPragmaMSSection(SourceLocation PragmaLocation,
10001 int SectionFlags, StringLiteral *SegmentName);
10002
10003 /// Called on well-formed \#pragma init_seg().
10004 void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
10005 StringLiteral *SegmentName);
10006
10007 /// Called on #pragma clang __debug dump II
10008 void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
10009
10010 /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
10011 void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
10012 StringRef Value);
10013
10014 /// Are precise floating point semantics currently enabled?
10015 bool isPreciseFPEnabled() {
10016 return !CurFPFeatures.getAllowFPReassociate() &&
10017 !CurFPFeatures.getNoSignedZero() &&
10018 !CurFPFeatures.getAllowReciprocal() &&
10019 !CurFPFeatures.getAllowApproxFunc();
10020 }
10021
10022 /// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control
10023 void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action,
10024 PragmaFloatControlKind Value);
10025
10026 /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
10027 void ActOnPragmaUnused(const Token &Identifier,
10028 Scope *curScope,
10029 SourceLocation PragmaLoc);
10030
10031 /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
10032 void ActOnPragmaVisibility(const IdentifierInfo* VisType,
10033 SourceLocation PragmaLoc);
10034
10035 NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
10036 SourceLocation Loc);
10037 void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
10038
10039 /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
10040 void ActOnPragmaWeakID(IdentifierInfo* WeakName,
10041 SourceLocation PragmaLoc,
10042 SourceLocation WeakNameLoc);
10043
10044 /// ActOnPragmaRedefineExtname - Called on well formed
10045 /// \#pragma redefine_extname oldname newname.
10046 void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName,
10047 IdentifierInfo* AliasName,
10048 SourceLocation PragmaLoc,
10049 SourceLocation WeakNameLoc,
10050 SourceLocation AliasNameLoc);
10051
10052 /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
10053 void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
10054 IdentifierInfo* AliasName,
10055 SourceLocation PragmaLoc,
10056 SourceLocation WeakNameLoc,
10057 SourceLocation AliasNameLoc);
10058
10059 /// ActOnPragmaFPContract - Called on well formed
10060 /// \#pragma {STDC,OPENCL} FP_CONTRACT and
10061 /// \#pragma clang fp contract
10062 void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC);
10063
10064 /// Called on well formed
10065 /// \#pragma clang fp reassociate
10066 void ActOnPragmaFPReassociate(SourceLocation Loc, bool IsEnabled);
10067
10068 /// ActOnPragmaFenvAccess - Called on well formed
10069 /// \#pragma STDC FENV_ACCESS
10070 void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled);
10071
10072 /// Called on well formed '\#pragma clang fp' that has option 'exceptions'.
10073 void ActOnPragmaFPExceptions(SourceLocation Loc,
10074 LangOptions::FPExceptionModeKind);
10075
10076 /// Called to set constant rounding mode for floating point operations.
10077 void setRoundingMode(SourceLocation Loc, llvm::RoundingMode);
10078
10079 /// Called to set exception behavior for floating point operations.
10080 void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind);
10081
10082 /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
10083 /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
10084 void AddAlignmentAttributesForRecord(RecordDecl *RD);
10085
10086 /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
10087 void AddMsStructLayoutForRecord(RecordDecl *RD);
10088
10089 /// PushNamespaceVisibilityAttr - Note that we've entered a
10090 /// namespace with a visibility attribute.
10091 void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
10092 SourceLocation Loc);
10093
10094 /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
10095 /// add an appropriate visibility attribute.
10096 void AddPushedVisibilityAttribute(Decl *RD);
10097
10098 /// PopPragmaVisibility - Pop the top element of the visibility stack; used
10099 /// for '\#pragma GCC visibility' and visibility attributes on namespaces.
10100 void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
10101
10102 /// FreeVisContext - Deallocate and null out VisContext.
10103 void FreeVisContext();
10104
10105 /// AddCFAuditedAttribute - Check whether we're currently within
10106 /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding
10107 /// the appropriate attribute.
10108 void AddCFAuditedAttribute(Decl *D);
10109
10110 void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
10111 SourceLocation PragmaLoc,
10112 attr::ParsedSubjectMatchRuleSet Rules);
10113 void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
10114 const IdentifierInfo *Namespace);
10115
10116 /// Called on well-formed '\#pragma clang attribute pop'.
10117 void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
10118 const IdentifierInfo *Namespace);
10119
10120 /// Adds the attributes that have been specified using the
10121 /// '\#pragma clang attribute push' directives to the given declaration.
10122 void AddPragmaAttributes(Scope *S, Decl *D);
10123
10124 void DiagnoseUnterminatedPragmaAttribute();
10125
10126 /// Called on well formed \#pragma clang optimize.
10127 void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
10128
10129 /// Get the location for the currently active "\#pragma clang optimize
10130 /// off". If this location is invalid, then the state of the pragma is "on".
10131 SourceLocation getOptimizeOffPragmaLocation() const {
10132 return OptimizeOffPragmaLocation;
10133 }
10134
10135 /// Only called on function definitions; if there is a pragma in scope
10136 /// with the effect of a range-based optnone, consider marking the function
10137 /// with attribute optnone.
10138 void AddRangeBasedOptnone(FunctionDecl *FD);
10139
10140 /// Adds the 'optnone' attribute to the function declaration if there
10141 /// are no conflicts; Loc represents the location causing the 'optnone'
10142 /// attribute to be added (usually because of a pragma).
10143 void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
10144
10145 /// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
10146 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10147 bool IsPackExpansion);
10148 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
10149 bool IsPackExpansion);
10150
10151 /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
10152 /// declaration.
10153 void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10154 Expr *OE);
10155
10156 /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
10157 /// declaration.
10158 void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
10159 Expr *ParamExpr);
10160
10161 /// AddAlignValueAttr - Adds an align_value attribute to a particular
10162 /// declaration.
10163 void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
10164
10165 /// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D.
10166 void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
10167 StringRef Annot, MutableArrayRef<Expr *> Args);
10168
10169 /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
10170 /// declaration.
10171 void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
10172 Expr *MaxThreads, Expr *MinBlocks);
10173
10174 /// AddModeAttr - Adds a mode attribute to a particular declaration.
10175 void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
10176 bool InInstantiation = false);
10177
10178 void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
10179 ParameterABI ABI);
10180
10181 enum class RetainOwnershipKind {NS, CF, OS};
10182 void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
10183 RetainOwnershipKind K, bool IsTemplateInstantiation);
10184
10185 /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size
10186 /// attribute to a particular declaration.
10187 void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI,
10188 Expr *Min, Expr *Max);
10189
10190 /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a
10191 /// particular declaration.
10192 void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
10193 Expr *Min, Expr *Max);
10194
10195 bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type);
10196
10197 //===--------------------------------------------------------------------===//
10198 // C++ Coroutines TS
10199 //
10200 bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
10201 StringRef Keyword);
10202 ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10203 ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10204 StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
10205
10206 ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10207 bool IsImplicit = false);
10208 ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10209 UnresolvedLookupExpr* Lookup);
10210 ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
10211 StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
10212 bool IsImplicit = false);
10213 StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
10214 bool buildCoroutineParameterMoves(SourceLocation Loc);
10215 VarDecl *buildCoroutinePromise(SourceLocation Loc);
10216 void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
10217 ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
10218 SourceLocation FuncLoc);
10219 /// Check that the expression co_await promise.final_suspend() shall not be
10220 /// potentially-throwing.
10221 bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend);
10222
10223 //===--------------------------------------------------------------------===//
10224 // OpenMP directives and clauses.
10225 //
10226private:
10227 void *VarDataSharingAttributesStack;
10228
10229 struct DeclareTargetContextInfo {
10230 struct MapInfo {
10231 OMPDeclareTargetDeclAttr::MapTypeTy MT;
10232 SourceLocation Loc;
10233 };
10234 /// Explicitly listed variables and functions in a 'to' or 'link' clause.
10235 llvm::DenseMap<NamedDecl *, MapInfo> ExplicitlyMapped;
10236
10237 /// The 'device_type' as parsed from the clause.
10238 OMPDeclareTargetDeclAttr::DevTypeTy DT = OMPDeclareTargetDeclAttr::DT_Any;
10239
10240 /// The directive kind, `begin declare target` or `declare target`.
10241 OpenMPDirectiveKind Kind;
10242
10243 /// The directive location.
10244 SourceLocation Loc;
10245
10246 DeclareTargetContextInfo(OpenMPDirectiveKind Kind, SourceLocation Loc)
10247 : Kind(Kind), Loc(Loc) {}
10248 };
10249
10250 /// Number of nested '#pragma omp declare target' directives.
10251 SmallVector<DeclareTargetContextInfo, 4> DeclareTargetNesting;
10252
10253 /// Initialization of data-sharing attributes stack.
10254 void InitDataSharingAttributesStack();
10255 void DestroyDataSharingAttributesStack();
10256 ExprResult
10257 VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind,
10258 bool StrictlyPositive = true,
10259 bool SuppressExprDiags = false);
10260 /// Returns OpenMP nesting level for current directive.
10261 unsigned getOpenMPNestingLevel() const;
10262
10263 /// Adjusts the function scopes index for the target-based regions.
10264 void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
10265 unsigned Level) const;
10266
10267 /// Returns the number of scopes associated with the construct on the given
10268 /// OpenMP level.
10269 int getNumberOfConstructScopes(unsigned Level) const;
10270
10271 /// Push new OpenMP function region for non-capturing function.
10272 void pushOpenMPFunctionRegion();
10273
10274 /// Pop OpenMP function region for non-capturing function.
10275 void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI);
10276
10277 /// Analyzes and checks a loop nest for use by a loop transformation.
10278 ///
10279 /// \param Kind The loop transformation directive kind.
10280 /// \param NumLoops How many nested loops the directive is expecting.
10281 /// \param AStmt Associated statement of the transformation directive.
10282 /// \param LoopHelpers [out] The loop analysis result.
10283 /// \param Body [out] The body code nested in \p NumLoops loop.
10284 /// \param OriginalInits [out] Collection of statements and declarations that
10285 /// must have been executed/declared before entering the
10286 /// loop.
10287 ///
10288 /// \return Whether there was any error.
10289 bool checkTransformableLoopNest(
10290 OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops,
10291 SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers,
10292 Stmt *&Body,
10293 SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>>
10294 &OriginalInits);
10295
10296 /// Helper to keep information about the current `omp begin/end declare
10297 /// variant` nesting.
10298 struct OMPDeclareVariantScope {
10299 /// The associated OpenMP context selector.
10300 OMPTraitInfo *TI;
10301
10302 /// The associated OpenMP context selector mangling.
10303 std::string NameSuffix;
10304
10305 OMPDeclareVariantScope(OMPTraitInfo &TI);
10306 };
10307
10308 /// Return the OMPTraitInfo for the surrounding scope, if any.
10309 OMPTraitInfo *getOMPTraitInfoForSurroundingScope() {
10310 return OMPDeclareVariantScopes.empty() ? nullptr
10311 : OMPDeclareVariantScopes.back().TI;
10312 }
10313
10314 /// The current `omp begin/end declare variant` scopes.
10315 SmallVector<OMPDeclareVariantScope, 4> OMPDeclareVariantScopes;
10316
10317 /// The current `omp begin/end assumes` scopes.
10318 SmallVector<AssumptionAttr *, 4> OMPAssumeScoped;
10319
10320 /// All `omp assumes` we encountered so far.
10321 SmallVector<AssumptionAttr *, 4> OMPAssumeGlobal;
10322
10323public:
10324 /// The declarator \p D defines a function in the scope \p S which is nested
10325 /// in an `omp begin/end declare variant` scope. In this method we create a
10326 /// declaration for \p D and rename \p D according to the OpenMP context
10327 /// selector of the surrounding scope. Return all base functions in \p Bases.
10328 void ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
10329 Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists,
10330 SmallVectorImpl<FunctionDecl *> &Bases);
10331
10332 /// Register \p D as specialization of all base functions in \p Bases in the
10333 /// current `omp begin/end declare variant` scope.
10334 void ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
10335 Decl *D, SmallVectorImpl<FunctionDecl *> &Bases);
10336
10337 /// Act on \p D, a function definition inside of an `omp [begin/end] assumes`.
10338 void ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D);
10339
10340 /// Can we exit an OpenMP declare variant scope at the moment.
10341 bool isInOpenMPDeclareVariantScope() const {
10342 return !OMPDeclareVariantScopes.empty();
10343 }
10344
10345 /// Given the potential call expression \p Call, determine if there is a
10346 /// specialization via the OpenMP declare variant mechanism available. If
10347 /// there is, return the specialized call expression, otherwise return the
10348 /// original \p Call.
10349 ExprResult ActOnOpenMPCall(ExprResult Call, Scope *Scope,
10350 SourceLocation LParenLoc, MultiExprArg ArgExprs,
10351 SourceLocation RParenLoc, Expr *ExecConfig);
10352
10353 /// Handle a `omp begin declare variant`.
10354 void ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, OMPTraitInfo &TI);
10355
10356 /// Handle a `omp end declare variant`.
10357 void ActOnOpenMPEndDeclareVariant();
10358
10359 /// Checks if the variant/multiversion functions are compatible.
10360 bool areMultiversionVariantFunctionsCompatible(
10361 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10362 const PartialDiagnostic &NoProtoDiagID,
10363 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10364 const PartialDiagnosticAt &NoSupportDiagIDAt,
10365 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10366 bool ConstexprSupported, bool CLinkageMayDiffer);
10367
10368 /// Function tries to capture lambda's captured variables in the OpenMP region
10369 /// before the original lambda is captured.
10370 void tryCaptureOpenMPLambdas(ValueDecl *V);
10371
10372 /// Return true if the provided declaration \a VD should be captured by
10373 /// reference.
10374 /// \param Level Relative level of nested OpenMP construct for that the check
10375 /// is performed.
10376 /// \param OpenMPCaptureLevel Capture level within an OpenMP construct.
10377 bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
10378 unsigned OpenMPCaptureLevel) const;
10379
10380 /// Check if the specified variable is used in one of the private
10381 /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP
10382 /// constructs.
10383 VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false,
10384 unsigned StopAt = 0);
10385 ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
10386 ExprObjectKind OK, SourceLocation Loc);
10387
10388 /// If the current region is a loop-based region, mark the start of the loop
10389 /// construct.
10390 void startOpenMPLoop();
10391
10392 /// If the current region is a range loop-based region, mark the start of the
10393 /// loop construct.
10394 void startOpenMPCXXRangeFor();
10395
10396 /// Check if the specified variable is used in 'private' clause.
10397 /// \param Level Relative level of nested OpenMP construct for that the check
10398 /// is performed.
10399 OpenMPClauseKind isOpenMPPrivateDecl(ValueDecl *D, unsigned Level,
10400 unsigned CapLevel) const;
10401
10402 /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.)
10403 /// for \p FD based on DSA for the provided corresponding captured declaration
10404 /// \p D.
10405 void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level);
10406
10407 /// Check if the specified variable is captured by 'target' directive.
10408 /// \param Level Relative level of nested OpenMP construct for that the check
10409 /// is performed.
10410 bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level,
10411 unsigned CaptureLevel) const;
10412
10413 /// Check if the specified global variable must be captured by outer capture
10414 /// regions.
10415 /// \param Level Relative level of nested OpenMP construct for that
10416 /// the check is performed.
10417 bool isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level,
10418 unsigned CaptureLevel) const;
10419
10420 ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
10421 Expr *Op);
10422 /// Called on start of new data sharing attribute block.
10423 void StartOpenMPDSABlock(OpenMPDirectiveKind K,
10424 const DeclarationNameInfo &DirName, Scope *CurScope,
10425 SourceLocation Loc);
10426 /// Start analysis of clauses.
10427 void StartOpenMPClause(OpenMPClauseKind K);
10428 /// End analysis of clauses.
10429 void EndOpenMPClause();
10430 /// Called on end of data sharing attribute block.
10431 void EndOpenMPDSABlock(Stmt *CurDirective);
10432
10433 /// Check if the current region is an OpenMP loop region and if it is,
10434 /// mark loop control variable, used in \p Init for loop initialization, as
10435 /// private by default.
10436 /// \param Init First part of the for loop.
10437 void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init);
10438
10439 // OpenMP directives and clauses.
10440 /// Called on correct id-expression from the '#pragma omp
10441 /// threadprivate'.
10442 ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec,
10443 const DeclarationNameInfo &Id,
10444 OpenMPDirectiveKind Kind);
10445 /// Called on well-formed '#pragma omp threadprivate'.
10446 DeclGroupPtrTy ActOnOpenMPThreadprivateDirective(
10447 SourceLocation Loc,
10448 ArrayRef<Expr *> VarList);
10449 /// Builds a new OpenMPThreadPrivateDecl and checks its correctness.
10450 OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc,
10451 ArrayRef<Expr *> VarList);
10452 /// Called on well-formed '#pragma omp allocate'.
10453 DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc,
10454 ArrayRef<Expr *> VarList,
10455 ArrayRef<OMPClause *> Clauses,
10456 DeclContext *Owner = nullptr);
10457
10458 /// Called on well-formed '#pragma omp [begin] assume[s]'.
10459 void ActOnOpenMPAssumesDirective(SourceLocation Loc,
10460 OpenMPDirectiveKind DKind,
10461 ArrayRef<StringRef> Assumptions,
10462 bool SkippedClauses);
10463
10464 /// Check if there is an active global `omp begin assumes` directive.
10465 bool isInOpenMPAssumeScope() const { return !OMPAssumeScoped.empty(); }
10466
10467 /// Check if there is an active global `omp assumes` directive.
10468 bool hasGlobalOpenMPAssumes() const { return !OMPAssumeGlobal.empty(); }
10469
10470 /// Called on well-formed '#pragma omp end assumes'.
10471 void ActOnOpenMPEndAssumesDirective();
10472
10473 /// Called on well-formed '#pragma omp requires'.
10474 DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc,
10475 ArrayRef<OMPClause *> ClauseList);
10476 /// Check restrictions on Requires directive
10477 OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc,
10478 ArrayRef<OMPClause *> Clauses);
10479 /// Check if the specified type is allowed to be used in 'omp declare
10480 /// reduction' construct.
10481 QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
10482 TypeResult ParsedType);
10483 /// Called on start of '#pragma omp declare reduction'.
10484 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart(
10485 Scope *S, DeclContext *DC, DeclarationName Name,
10486 ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
10487 AccessSpecifier AS, Decl *PrevDeclInScope = nullptr);
10488 /// Initialize declare reduction construct initializer.
10489 void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D);
10490 /// Finish current declare reduction construct initializer.
10491 void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner);
10492 /// Initialize declare reduction construct initializer.
10493 /// \return omp_priv variable.
10494 VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D);
10495 /// Finish current declare reduction construct initializer.
10496 void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
10497 VarDecl *OmpPrivParm);
10498 /// Called at the end of '#pragma omp declare reduction'.
10499 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd(
10500 Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid);
10501
10502 /// Check variable declaration in 'omp declare mapper' construct.
10503 TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D);
10504 /// Check if the specified type is allowed to be used in 'omp declare
10505 /// mapper' construct.
10506 QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
10507 TypeResult ParsedType);
10508 /// Called on start of '#pragma omp declare mapper'.
10509 DeclGroupPtrTy ActOnOpenMPDeclareMapperDirective(
10510 Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
10511 SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
10512 Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses,
10513 Decl *PrevDeclInScope = nullptr);
10514 /// Build the mapper variable of '#pragma omp declare mapper'.
10515 ExprResult ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S,
10516 QualType MapperType,
10517 SourceLocation StartLoc,
10518 DeclarationName VN);
10519 bool isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const;
10520 const ValueDecl *getOpenMPDeclareMapperVarName() const;
10521
10522 /// Called on the start of target region i.e. '#pragma omp declare target'.
10523 bool ActOnStartOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10524
10525 /// Called at the end of target region i.e. '#pragma omp end declare target'.
10526 const DeclareTargetContextInfo ActOnOpenMPEndDeclareTargetDirective();
10527
10528 /// Called once a target context is completed, that can be when a
10529 /// '#pragma omp end declare target' was encountered or when a
10530 /// '#pragma omp declare target' without declaration-definition-seq was
10531 /// encountered.
10532 void ActOnFinishedOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10533
10534 /// Searches for the provided declaration name for OpenMP declare target
10535 /// directive.
10536 NamedDecl *lookupOpenMPDeclareTargetName(Scope *CurScope,
10537 CXXScopeSpec &ScopeSpec,
10538 const DeclarationNameInfo &Id);
10539
10540 /// Called on correct id-expression from the '#pragma omp declare target'.
10541 void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
10542 OMPDeclareTargetDeclAttr::MapTypeTy MT,
10543 OMPDeclareTargetDeclAttr::DevTypeTy DT);
10544
10545 /// Check declaration inside target region.
10546 void
10547 checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
10548 SourceLocation IdLoc = SourceLocation());
10549 /// Finishes analysis of the deferred functions calls that may be declared as
10550 /// host/nohost during device/host compilation.
10551 void finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller,
10552 const FunctionDecl *Callee,
10553 SourceLocation Loc);
10554 /// Return true inside OpenMP declare target region.
10555 bool isInOpenMPDeclareTargetContext() const {
10556 return !DeclareTargetNesting.empty();
10557 }
10558 /// Return true inside OpenMP target region.
10559 bool isInOpenMPTargetExecutionDirective() const;
10560
10561 /// Return the number of captured regions created for an OpenMP directive.
10562 static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind);
10563
10564 /// Initialization of captured region for OpenMP region.
10565 void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope);
10566
10567 /// Called for syntactical loops (ForStmt or CXXForRangeStmt) associated to
10568 /// an OpenMP loop directive.
10569 StmtResult ActOnOpenMPCanonicalLoop(Stmt *AStmt);
10570
10571 /// End of OpenMP region.
10572 ///
10573 /// \param S Statement associated with the current OpenMP region.
10574 /// \param Clauses List of clauses for the current OpenMP region.
10575 ///
10576 /// \returns Statement for finished OpenMP region.
10577 StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses);
10578 StmtResult ActOnOpenMPExecutableDirective(
10579 OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
10580 OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
10581 Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc);
10582 /// Called on well-formed '\#pragma omp parallel' after parsing
10583 /// of the associated statement.
10584 StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
10585 Stmt *AStmt,
10586 SourceLocation StartLoc,
10587 SourceLocation EndLoc);
10588 using VarsWithInheritedDSAType =
10589 llvm::SmallDenseMap<const ValueDecl *, const Expr *, 4>;
10590 /// Called on well-formed '\#pragma omp simd' after parsing
10591 /// of the associated statement.
10592 StmtResult
10593 ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10594 SourceLocation StartLoc, SourceLocation EndLoc,
10595 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10596 /// Called on well-formed '#pragma omp tile' after parsing of its clauses and
10597 /// the associated statement.
10598 StmtResult ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses,
10599 Stmt *AStmt, SourceLocation StartLoc,
10600 SourceLocation EndLoc);
10601 /// Called on well-formed '#pragma omp unroll' after parsing of its clauses
10602 /// and the associated statement.
10603 StmtResult ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses,
10604 Stmt *AStmt, SourceLocation StartLoc,
10605 SourceLocation EndLoc);
10606 /// Called on well-formed '\#pragma omp for' after parsing
10607 /// of the associated statement.
10608 StmtResult
10609 ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10610 SourceLocation StartLoc, SourceLocation EndLoc,
10611 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10612 /// Called on well-formed '\#pragma omp for simd' after parsing
10613 /// of the associated statement.
10614 StmtResult
10615 ActOnOpenMPForSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10616 SourceLocation StartLoc, SourceLocation EndLoc,
10617 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10618 /// Called on well-formed '\#pragma omp sections' after parsing
10619 /// of the associated statement.
10620 StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
10621 Stmt *AStmt, SourceLocation StartLoc,
10622 SourceLocation EndLoc);
10623 /// Called on well-formed '\#pragma omp section' after parsing of the
10624 /// associated statement.
10625 StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc,
10626 SourceLocation EndLoc);
10627 /// Called on well-formed '\#pragma omp single' after parsing of the
10628 /// associated statement.
10629 StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
10630 Stmt *AStmt, SourceLocation StartLoc,
10631 SourceLocation EndLoc);
10632 /// Called on well-formed '\#pragma omp master' after parsing of the
10633 /// associated statement.
10634 StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc,
10635 SourceLocation EndLoc);
10636 /// Called on well-formed '\#pragma omp critical' after parsing of the
10637 /// associated statement.
10638 StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
10639 ArrayRef<OMPClause *> Clauses,
10640 Stmt *AStmt, SourceLocation StartLoc,
10641 SourceLocation EndLoc);
10642 /// Called on well-formed '\#pragma omp parallel for' after parsing
10643 /// of the associated statement.
10644 StmtResult ActOnOpenMPParallelForDirective(
10645 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10646 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10647 /// Called on well-formed '\#pragma omp parallel for simd' after
10648 /// parsing of the associated statement.
10649 StmtResult ActOnOpenMPParallelForSimdDirective(
10650 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10651 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10652 /// Called on well-formed '\#pragma omp parallel master' after
10653 /// parsing of the associated statement.
10654 StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
10655 Stmt *AStmt,
10656 SourceLocation StartLoc,
10657 SourceLocation EndLoc);
10658 /// Called on well-formed '\#pragma omp parallel sections' after
10659 /// parsing of the associated statement.
10660 StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
10661 Stmt *AStmt,
10662 SourceLocation StartLoc,
10663 SourceLocation EndLoc);
10664 /// Called on well-formed '\#pragma omp task' after parsing of the
10665 /// associated statement.
10666 StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
10667 Stmt *AStmt, SourceLocation StartLoc,
10668 SourceLocation EndLoc);
10669 /// Called on well-formed '\#pragma omp taskyield'.
10670 StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
10671 SourceLocation EndLoc);
10672 /// Called on well-formed '\#pragma omp barrier'.
10673 StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
10674 SourceLocation EndLoc);
10675 /// Called on well-formed '\#pragma omp taskwait'.
10676 StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc,
10677 SourceLocation EndLoc);
10678 /// Called on well-formed '\#pragma omp taskgroup'.
10679 StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
10680 Stmt *AStmt, SourceLocation StartLoc,
10681 SourceLocation EndLoc);
10682 /// Called on well-formed '\#pragma omp flush'.
10683 StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
10684 SourceLocation StartLoc,
10685 SourceLocation EndLoc);
10686 /// Called on well-formed '\#pragma omp depobj'.
10687 StmtResult ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses,
10688 SourceLocation StartLoc,
10689 SourceLocation EndLoc);
10690 /// Called on well-formed '\#pragma omp scan'.
10691 StmtResult ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses,
10692 SourceLocation StartLoc,
10693 SourceLocation EndLoc);
10694 /// Called on well-formed '\#pragma omp ordered' after parsing of the
10695 /// associated statement.
10696 StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
10697 Stmt *AStmt, SourceLocation StartLoc,
10698 SourceLocation EndLoc);
10699 /// Called on well-formed '\#pragma omp atomic' after parsing of the
10700 /// associated statement.
10701 StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
10702 Stmt *AStmt, SourceLocation StartLoc,
10703 SourceLocation EndLoc);
10704 /// Called on well-formed '\#pragma omp target' after parsing of the
10705 /// associated statement.
10706 StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
10707 Stmt *AStmt, SourceLocation StartLoc,
10708 SourceLocation EndLoc);
10709 /// Called on well-formed '\#pragma omp target data' after parsing of
10710 /// the associated statement.
10711 StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
10712 Stmt *AStmt, SourceLocation StartLoc,
10713 SourceLocation EndLoc);
10714 /// Called on well-formed '\#pragma omp target enter data' after
10715 /// parsing of the associated statement.
10716 StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
10717 SourceLocation StartLoc,
10718 SourceLocation EndLoc,
10719 Stmt *AStmt);
10720 /// Called on well-formed '\#pragma omp target exit data' after
10721 /// parsing of the associated statement.
10722 StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
10723 SourceLocation StartLoc,
10724 SourceLocation EndLoc,
10725 Stmt *AStmt);
10726 /// Called on well-formed '\#pragma omp target parallel' after
10727 /// parsing of the associated statement.
10728 StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
10729 Stmt *AStmt,
10730 SourceLocation StartLoc,
10731 SourceLocation EndLoc);
10732 /// Called on well-formed '\#pragma omp target parallel for' after
10733 /// parsing of the associated statement.
10734 StmtResult ActOnOpenMPTargetParallelForDirective(
10735 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10736 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10737 /// Called on well-formed '\#pragma omp teams' after parsing of the
10738 /// associated statement.
10739 StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
10740 Stmt *AStmt, SourceLocation StartLoc,
10741 SourceLocation EndLoc);
10742 /// Called on well-formed '\#pragma omp cancellation point'.
10743 StmtResult
10744 ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
10745 SourceLocation EndLoc,
10746 OpenMPDirectiveKind CancelRegion);
10747 /// Called on well-formed '\#pragma omp cancel'.
10748 StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
10749 SourceLocation StartLoc,
10750 SourceLocation EndLoc,
10751 OpenMPDirectiveKind CancelRegion);
10752 /// Called on well-formed '\#pragma omp taskloop' after parsing of the
10753 /// associated statement.
10754 StmtResult
10755 ActOnOpenMPTaskLoopDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10756 SourceLocation StartLoc, SourceLocation EndLoc,
10757 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10758 /// Called on well-formed '\#pragma omp taskloop simd' after parsing of
10759 /// the associated statement.
10760 StmtResult ActOnOpenMPTaskLoopSimdDirective(
10761 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10762 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10763 /// Called on well-formed '\#pragma omp master taskloop' after parsing of the
10764 /// associated statement.
10765 StmtResult ActOnOpenMPMasterTaskLoopDirective(
10766 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10767 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10768 /// Called on well-formed '\#pragma omp master taskloop simd' after parsing of
10769 /// the associated statement.
10770 StmtResult ActOnOpenMPMasterTaskLoopSimdDirective(
10771 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10772 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10773 /// Called on well-formed '\#pragma omp parallel master taskloop' after
10774 /// parsing of the associated statement.
10775 StmtResult ActOnOpenMPParallelMasterTaskLoopDirective(
10776 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10777 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10778 /// Called on well-formed '\#pragma omp parallel master taskloop simd' after
10779 /// parsing of the associated statement.
10780 StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective(
10781 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10782 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10783 /// Called on well-formed '\#pragma omp distribute' after parsing
10784 /// of the associated statement.
10785 StmtResult
10786 ActOnOpenMPDistributeDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10787 SourceLocation StartLoc, SourceLocation EndLoc,
10788 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10789 /// Called on well-formed '\#pragma omp target update'.
10790 StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
10791 SourceLocation StartLoc,
10792 SourceLocation EndLoc,
10793 Stmt *AStmt);
10794 /// Called on well-formed '\#pragma omp distribute parallel for' after
10795 /// parsing of the associated statement.
10796 StmtResult ActOnOpenMPDistributeParallelForDirective(
10797 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10798 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10799 /// Called on well-formed '\#pragma omp distribute parallel for simd'
10800 /// after parsing of the associated statement.
10801 StmtResult ActOnOpenMPDistributeParallelForSimdDirective(
10802 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10803 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10804 /// Called on well-formed '\#pragma omp distribute simd' after
10805 /// parsing of the associated statement.
10806 StmtResult ActOnOpenMPDistributeSimdDirective(
10807 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10808 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10809 /// Called on well-formed '\#pragma omp target parallel for simd' after
10810 /// parsing of the associated statement.
10811 StmtResult ActOnOpenMPTargetParallelForSimdDirective(
10812 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10813 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10814 /// Called on well-formed '\#pragma omp target simd' after parsing of
10815 /// the associated statement.
10816 StmtResult
10817 ActOnOpenMPTargetSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10818 SourceLocation StartLoc, SourceLocation EndLoc,
10819 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10820 /// Called on well-formed '\#pragma omp teams distribute' after parsing of
10821 /// the associated statement.
10822 StmtResult ActOnOpenMPTeamsDistributeDirective(
10823 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10824 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10825 /// Called on well-formed '\#pragma omp teams distribute simd' after parsing
10826 /// of the associated statement.
10827 StmtResult ActOnOpenMPTeamsDistributeSimdDirective(
10828 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10829 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10830 /// Called on well-formed '\#pragma omp teams distribute parallel for simd'
10831 /// after parsing of the associated statement.
10832 StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective(
10833 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10834 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10835 /// Called on well-formed '\#pragma omp teams distribute parallel for'
10836 /// after parsing of the associated statement.
10837 StmtResult ActOnOpenMPTeamsDistributeParallelForDirective(
10838 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10839 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10840 /// Called on well-formed '\#pragma omp target teams' after parsing of the
10841 /// associated statement.
10842 StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
10843 Stmt *AStmt,
10844 SourceLocation StartLoc,
10845 SourceLocation EndLoc);
10846 /// Called on well-formed '\#pragma omp target teams distribute' after parsing
10847 /// of the associated statement.
10848 StmtResult ActOnOpenMPTargetTeamsDistributeDirective(
10849 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10850 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10851 /// Called on well-formed '\#pragma omp target teams distribute parallel for'
10852 /// after parsing of the associated statement.
10853 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective(
10854 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10855 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10856 /// Called on well-formed '\#pragma omp target teams distribute parallel for
10857 /// simd' after parsing of the associated statement.
10858 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
10859 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10860 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10861 /// Called on well-formed '\#pragma omp target teams distribute simd' after
10862 /// parsing of the associated statement.
10863 StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective(
10864 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10865 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10866 /// Called on well-formed '\#pragma omp interop'.
10867 StmtResult ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses,
10868 SourceLocation StartLoc,
10869 SourceLocation EndLoc);
10870 /// Called on well-formed '\#pragma omp dispatch' after parsing of the
10871 // /associated statement.
10872 StmtResult ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses,
10873 Stmt *AStmt, SourceLocation StartLoc,
10874 SourceLocation EndLoc);
10875 /// Called on well-formed '\#pragma omp masked' after parsing of the
10876 // /associated statement.
10877 StmtResult ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses,
10878 Stmt *AStmt, SourceLocation StartLoc,
10879 SourceLocation EndLoc);
10880
10881 /// Checks correctness of linear modifiers.
10882 bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
10883 SourceLocation LinLoc);
10884 /// Checks that the specified declaration matches requirements for the linear
10885 /// decls.
10886 bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
10887 OpenMPLinearClauseKind LinKind, QualType Type,
10888 bool IsDeclareSimd = false);
10889
10890 /// Called on well-formed '\#pragma omp declare simd' after parsing of
10891 /// the associated method/function.
10892 DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
10893 DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
10894 Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
10895 ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
10896 ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
10897
10898 /// Checks '\#pragma omp declare variant' variant function and original
10899 /// functions after parsing of the associated method/function.
10900 /// \param DG Function declaration to which declare variant directive is
10901 /// applied to.
10902 /// \param VariantRef Expression that references the variant function, which
10903 /// must be used instead of the original one, specified in \p DG.
10904 /// \param TI The trait info object representing the match clause.
10905 /// \returns None, if the function/variant function are not compatible with
10906 /// the pragma, pair of original function/variant ref expression otherwise.
10907 Optional<std::pair<FunctionDecl *, Expr *>>
10908 checkOpenMPDeclareVariantFunction(DeclGroupPtrTy DG, Expr *VariantRef,
10909 OMPTraitInfo &TI, SourceRange SR);
10910
10911 /// Called on well-formed '\#pragma omp declare variant' after parsing of
10912 /// the associated method/function.
10913 /// \param FD Function declaration to which declare variant directive is
10914 /// applied to.
10915 /// \param VariantRef Expression that references the variant function, which
10916 /// must be used instead of the original one, specified in \p DG.
10917 /// \param TI The context traits associated with the function variant.
10918 void ActOnOpenMPDeclareVariantDirective(FunctionDecl *FD, Expr *VariantRef,
10919 OMPTraitInfo &TI, SourceRange SR);
10920
10921 OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
10922 Expr *Expr,
10923 SourceLocation StartLoc,
10924 SourceLocation LParenLoc,
10925 SourceLocation EndLoc);
10926 /// Called on well-formed 'allocator' clause.
10927 OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator,
10928 SourceLocation StartLoc,
10929 SourceLocation LParenLoc,
10930 SourceLocation EndLoc);
10931 /// Called on well-formed 'if' clause.
10932 OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
10933 Expr *Condition, SourceLocation StartLoc,
10934 SourceLocation LParenLoc,
10935 SourceLocation NameModifierLoc,
10936 SourceLocation ColonLoc,
10937 SourceLocation EndLoc);
10938 /// Called on well-formed 'final' clause.
10939 OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc,
10940 SourceLocation LParenLoc,
10941 SourceLocation EndLoc);
10942 /// Called on well-formed 'num_threads' clause.
10943 OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads,
10944 SourceLocation StartLoc,
10945 SourceLocation LParenLoc,
10946 SourceLocation EndLoc);
10947 /// Called on well-formed 'safelen' clause.
10948 OMPClause *ActOnOpenMPSafelenClause(Expr *Length,
10949 SourceLocation StartLoc,
10950 SourceLocation LParenLoc,
10951 SourceLocation EndLoc);
10952 /// Called on well-formed 'simdlen' clause.
10953 OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc,
10954 SourceLocation LParenLoc,
10955 SourceLocation EndLoc);
10956 /// Called on well-form 'sizes' clause.
10957 OMPClause *ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs,
10958 SourceLocation StartLoc,
10959 SourceLocation LParenLoc,
10960 SourceLocation EndLoc);
10961 /// Called on well-form 'full' clauses.
10962 OMPClause *ActOnOpenMPFullClause(SourceLocation StartLoc,
10963 SourceLocation EndLoc);
10964 /// Called on well-form 'partial' clauses.
10965 OMPClause *ActOnOpenMPPartialClause(Expr *FactorExpr, SourceLocation StartLoc,
10966 SourceLocation LParenLoc,
10967 SourceLocation EndLoc);
10968 /// Called on well-formed 'collapse' clause.
10969 OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops,
10970 SourceLocation StartLoc,
10971 SourceLocation LParenLoc,
10972 SourceLocation EndLoc);
10973 /// Called on well-formed 'ordered' clause.
10974 OMPClause *
10975 ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc,
10976 SourceLocation LParenLoc = SourceLocation(),
10977 Expr *NumForLoops = nullptr);
10978 /// Called on well-formed 'grainsize' clause.
10979 OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc,
10980 SourceLocation LParenLoc,
10981 SourceLocation EndLoc);
10982 /// Called on well-formed 'num_tasks' clause.
10983 OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
10984 SourceLocation LParenLoc,
10985 SourceLocation EndLoc);
10986 /// Called on well-formed 'hint' clause.
10987 OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
10988 SourceLocation LParenLoc,
10989 SourceLocation EndLoc);
10990 /// Called on well-formed 'detach' clause.
10991 OMPClause *ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc,
10992 SourceLocation LParenLoc,
10993 SourceLocation EndLoc);
10994
10995 OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind,
10996 unsigned Argument,
10997 SourceLocation ArgumentLoc,
10998 SourceLocation StartLoc,
10999 SourceLocation LParenLoc,
11000 SourceLocation EndLoc);
11001 /// Called on well-formed 'default' clause.
11002 OMPClause *ActOnOpenMPDefaultClause(llvm::omp::DefaultKind Kind,
11003 SourceLocation KindLoc,
11004 SourceLocation StartLoc,
11005 SourceLocation LParenLoc,
11006 SourceLocation EndLoc);
11007 /// Called on well-formed 'proc_bind' clause.
11008 OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind,
11009 SourceLocation KindLoc,
11010 SourceLocation StartLoc,
11011 SourceLocation LParenLoc,
11012 SourceLocation EndLoc);
11013 /// Called on well-formed 'order' clause.
11014 OMPClause *ActOnOpenMPOrderClause(OpenMPOrderClauseKind Kind,
11015 SourceLocation KindLoc,
11016 SourceLocation StartLoc,
11017 SourceLocation LParenLoc,
11018 SourceLocation EndLoc);
11019 /// Called on well-formed 'update' clause.
11020 OMPClause *ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind,
11021 SourceLocation KindLoc,
11022 SourceLocation StartLoc,
11023 SourceLocation LParenLoc,
11024 SourceLocation EndLoc);
11025
11026 OMPClause *ActOnOpenMPSingleExprWithArgClause(
11027 OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr,
11028 SourceLocation StartLoc, SourceLocation LParenLoc,
11029 ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc,
11030 SourceLocation EndLoc);
11031 /// Called on well-formed 'schedule' clause.
11032 OMPClause *ActOnOpenMPScheduleClause(
11033 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
11034 OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
11035 SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
11036 SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc);
11037
11038 OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc,
11039 SourceLocation EndLoc);
11040 /// Called on well-formed 'nowait' clause.
11041 OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc,
11042 SourceLocation EndLoc);
11043 /// Called on well-formed 'untied' clause.
11044 OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc,
11045 SourceLocation EndLoc);
11046 /// Called on well-formed 'mergeable' clause.
11047 OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc,
11048 SourceLocation EndLoc);
11049 /// Called on well-formed 'read' clause.
11050 OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc,
11051 SourceLocation EndLoc);
11052 /// Called on well-formed 'write' clause.
11053 OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc,
11054 SourceLocation EndLoc);
11055 /// Called on well-formed 'update' clause.
11056 OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc,
11057 SourceLocation EndLoc);
11058 /// Called on well-formed 'capture' clause.
11059 OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc,
11060 SourceLocation EndLoc);
11061 /// Called on well-formed 'seq_cst' clause.
11062 OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
11063 SourceLocation EndLoc);
11064 /// Called on well-formed 'acq_rel' clause.
11065 OMPClause *ActOnOpenMPAcqRelClause(SourceLocation StartLoc,
11066 SourceLocation EndLoc);
11067 /// Called on well-formed 'acquire' clause.
11068 OMPClause *ActOnOpenMPAcquireClause(SourceLocation StartLoc,
11069 SourceLocation EndLoc);
11070 /// Called on well-formed 'release' clause.
11071 OMPClause *ActOnOpenMPReleaseClause(SourceLocation StartLoc,
11072 SourceLocation EndLoc);
11073 /// Called on well-formed 'relaxed' clause.
11074 OMPClause *ActOnOpenMPRelaxedClause(SourceLocation StartLoc,
11075 SourceLocation EndLoc);
11076
11077 /// Called on well-formed 'init' clause.
11078 OMPClause *ActOnOpenMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs,
11079 bool IsTarget, bool IsTargetSync,
11080 SourceLocation StartLoc,
11081 SourceLocation LParenLoc,
11082 SourceLocation VarLoc,
11083 SourceLocation EndLoc);
11084
11085 /// Called on well-formed 'use' clause.
11086 OMPClause *ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
11087 SourceLocation LParenLoc,
11088 SourceLocation VarLoc, SourceLocation EndLoc);
11089
11090 /// Called on well-formed 'destroy' clause.
11091 OMPClause *ActOnOpenMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
11092 SourceLocation LParenLoc,
11093 SourceLocation VarLoc,
11094 SourceLocation EndLoc);
11095 /// Called on well-formed 'novariants' clause.
11096 OMPClause *ActOnOpenMPNovariantsClause(Expr *Condition,
11097 SourceLocation StartLoc,
11098 SourceLocation LParenLoc,
11099 SourceLocation EndLoc);
11100 /// Called on well-formed 'nocontext' clause.
11101 OMPClause *ActOnOpenMPNocontextClause(Expr *Condition,
11102 SourceLocation StartLoc,
11103 SourceLocation LParenLoc,
11104 SourceLocation EndLoc);
11105 /// Called on well-formed 'filter' clause.
11106 OMPClause *ActOnOpenMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
11107 SourceLocation LParenLoc,
11108 SourceLocation EndLoc);
11109 /// Called on well-formed 'threads' clause.
11110 OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc,
11111 SourceLocation EndLoc);
11112 /// Called on well-formed 'simd' clause.
11113 OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc,
11114 SourceLocation EndLoc);
11115 /// Called on well-formed 'nogroup' clause.
11116 OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc,
11117 SourceLocation EndLoc);
11118 /// Called on well-formed 'unified_address' clause.
11119 OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
11120 SourceLocation EndLoc);
11121
11122 /// Called on well-formed 'unified_address' clause.
11123 OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
11124 SourceLocation EndLoc);
11125
11126 /// Called on well-formed 'reverse_offload' clause.
11127 OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
11128 SourceLocation EndLoc);
11129
11130 /// Called on well-formed 'dynamic_allocators' clause.
11131 OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
11132 SourceLocation EndLoc);
11133
11134 /// Called on well-formed 'atomic_default_mem_order' clause.
11135 OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause(
11136 OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc,
11137 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11138
11139 OMPClause *ActOnOpenMPVarListClause(
11140 OpenMPClauseKind Kind, ArrayRef<Expr *> Vars, Expr *DepModOrTailExpr,
11141 const OMPVarListLocTy &Locs, SourceLocation ColonLoc,
11142 CXXScopeSpec &ReductionOrMapperIdScopeSpec,
11143 DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier,
11144 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11145 ArrayRef<SourceLocation> MapTypeModifiersLoc, bool IsMapTypeImplicit,
11146 SourceLocation ExtraModifierLoc,
11147 ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11148 ArrayRef<SourceLocation> MotionModifiersLoc);
11149 /// Called on well-formed 'inclusive' clause.
11150 OMPClause *ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList,
11151 SourceLocation StartLoc,
11152 SourceLocation LParenLoc,
11153 SourceLocation EndLoc);
11154 /// Called on well-formed 'exclusive' clause.
11155 OMPClause *ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList,
11156 SourceLocation StartLoc,
11157 SourceLocation LParenLoc,
11158 SourceLocation EndLoc);
11159 /// Called on well-formed 'allocate' clause.
11160 OMPClause *
11161 ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef<Expr *> VarList,
11162 SourceLocation StartLoc, SourceLocation ColonLoc,
11163 SourceLocation LParenLoc, SourceLocation EndLoc);
11164 /// Called on well-formed 'private' clause.
11165 OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
11166 SourceLocation StartLoc,
11167 SourceLocation LParenLoc,
11168 SourceLocation EndLoc);
11169 /// Called on well-formed 'firstprivate' clause.
11170 OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
11171 SourceLocation StartLoc,
11172 SourceLocation LParenLoc,
11173 SourceLocation EndLoc);
11174 /// Called on well-formed 'lastprivate' clause.
11175 OMPClause *ActOnOpenMPLastprivateClause(
11176 ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
11177 SourceLocation LPKindLoc, SourceLocation ColonLoc,
11178 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11179 /// Called on well-formed 'shared' clause.
11180 OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
11181 SourceLocation StartLoc,
11182 SourceLocation LParenLoc,
11183 SourceLocation EndLoc);
11184 /// Called on well-formed 'reduction' clause.
11185 OMPClause *ActOnOpenMPReductionClause(
11186 ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
11187 SourceLocation StartLoc, SourceLocation LParenLoc,
11188 SourceLocation ModifierLoc, SourceLocation ColonLoc,
11189 SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
11190 const DeclarationNameInfo &ReductionId,
11191 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11192 /// Called on well-formed 'task_reduction' clause.
11193 OMPClause *ActOnOpenMPTaskReductionClause(
11194 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11195 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11196 CXXScopeSpec &ReductionIdScopeSpec,
11197 const DeclarationNameInfo &ReductionId,
11198 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11199 /// Called on well-formed 'in_reduction' clause.
11200 OMPClause *ActOnOpenMPInReductionClause(
11201 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11202 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11203 CXXScopeSpec &ReductionIdScopeSpec,
11204 const DeclarationNameInfo &ReductionId,
11205 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11206 /// Called on well-formed 'linear' clause.
11207 OMPClause *
11208 ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
11209 SourceLocation StartLoc, SourceLocation LParenLoc,
11210 OpenMPLinearClauseKind LinKind, SourceLocation LinLoc,
11211 SourceLocation ColonLoc, SourceLocation EndLoc);
11212 /// Called on well-formed 'aligned' clause.
11213 OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList,
11214 Expr *Alignment,
11215 SourceLocation StartLoc,
11216 SourceLocation LParenLoc,
11217 SourceLocation ColonLoc,
11218 SourceLocation EndLoc);
11219 /// Called on well-formed 'copyin' clause.
11220 OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
11221 SourceLocation StartLoc,
11222 SourceLocation LParenLoc,
11223 SourceLocation EndLoc);
11224 /// Called on well-formed 'copyprivate' clause.
11225 OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
11226 SourceLocation StartLoc,
11227 SourceLocation LParenLoc,
11228 SourceLocation EndLoc);
11229 /// Called on well-formed 'flush' pseudo clause.
11230 OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
11231 SourceLocation StartLoc,
11232 SourceLocation LParenLoc,
11233 SourceLocation EndLoc);
11234 /// Called on well-formed 'depobj' pseudo clause.
11235 OMPClause *ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
11236 SourceLocation LParenLoc,
11237 SourceLocation EndLoc);
11238 /// Called on well-formed 'depend' clause.
11239 OMPClause *
11240 ActOnOpenMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind,
11241 SourceLocation DepLoc, SourceLocation ColonLoc,
11242 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11243 SourceLocation LParenLoc, SourceLocation EndLoc);
11244 /// Called on well-formed 'device' clause.
11245 OMPClause *ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
11246 Expr *Device, SourceLocation StartLoc,
11247 SourceLocation LParenLoc,
11248 SourceLocation ModifierLoc,
11249 SourceLocation EndLoc);
11250 /// Called on well-formed 'map' clause.
11251 OMPClause *ActOnOpenMPMapClause(
11252 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11253 ArrayRef<SourceLocation> MapTypeModifiersLoc,
11254 CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId,
11255 OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
11256 SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
11257 const OMPVarListLocTy &Locs, bool NoDiagnose = false,
11258 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11259 /// Called on well-formed 'num_teams' clause.
11260 OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
11261 SourceLocation LParenLoc,
11262 SourceLocation EndLoc);
11263 /// Called on well-formed 'thread_limit' clause.
11264 OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
11265 SourceLocation StartLoc,
11266 SourceLocation LParenLoc,
11267 SourceLocation EndLoc);
11268 /// Called on well-formed 'priority' clause.
11269 OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
11270 SourceLocation LParenLoc,
11271 SourceLocation EndLoc);
11272 /// Called on well-formed 'dist_schedule' clause.
11273 OMPClause *ActOnOpenMPDistScheduleClause(
11274 OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize,
11275 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc,
11276 SourceLocation CommaLoc, SourceLocation EndLoc);
11277 /// Called on well-formed 'defaultmap' clause.
11278 OMPClause *ActOnOpenMPDefaultmapClause(
11279 OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
11280 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
11281 SourceLocation KindLoc, SourceLocation EndLoc);
11282 /// Called on well-formed 'to' clause.
11283 OMPClause *
11284 ActOnOpenMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11285 ArrayRef<SourceLocation> MotionModifiersLoc,
11286 CXXScopeSpec &MapperIdScopeSpec,
11287 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11288 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11289 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11290 /// Called on well-formed 'from' clause.
11291 OMPClause *
11292 ActOnOpenMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11293 ArrayRef<SourceLocation> MotionModifiersLoc,
11294 CXXScopeSpec &MapperIdScopeSpec,
11295 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11296 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11297 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11298 /// Called on well-formed 'use_device_ptr' clause.
11299 OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
11300 const OMPVarListLocTy &Locs);
11301 /// Called on well-formed 'use_device_addr' clause.
11302 OMPClause *ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
11303 const OMPVarListLocTy &Locs);
11304 /// Called on well-formed 'is_device_ptr' clause.
11305 OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
11306 const OMPVarListLocTy &Locs);
11307 /// Called on well-formed 'nontemporal' clause.
11308 OMPClause *ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
11309 SourceLocation StartLoc,
11310 SourceLocation LParenLoc,
11311 SourceLocation EndLoc);
11312
11313 /// Data for list of allocators.
11314 struct UsesAllocatorsData {
11315 /// Allocator.
11316 Expr *Allocator = nullptr;
11317 /// Allocator traits.
11318 Expr *AllocatorTraits = nullptr;
11319 /// Locations of '(' and ')' symbols.
11320 SourceLocation LParenLoc, RParenLoc;
11321 };
11322 /// Called on well-formed 'uses_allocators' clause.
11323 OMPClause *ActOnOpenMPUsesAllocatorClause(SourceLocation StartLoc,
11324 SourceLocation LParenLoc,
11325 SourceLocation EndLoc,
11326 ArrayRef<UsesAllocatorsData> Data);
11327 /// Called on well-formed 'affinity' clause.
11328 OMPClause *ActOnOpenMPAffinityClause(SourceLocation StartLoc,
11329 SourceLocation LParenLoc,
11330 SourceLocation ColonLoc,
11331 SourceLocation EndLoc, Expr *Modifier,
11332 ArrayRef<Expr *> Locators);
11333
11334 /// The kind of conversion being performed.
11335 enum CheckedConversionKind {
11336 /// An implicit conversion.
11337 CCK_ImplicitConversion,
11338 /// A C-style cast.
11339 CCK_CStyleCast,
11340 /// A functional-style cast.
11341 CCK_FunctionalCast,
11342 /// A cast other than a C-style cast.
11343 CCK_OtherCast,
11344 /// A conversion for an operand of a builtin overloaded operator.
11345 CCK_ForBuiltinOverloadedOp
11346 };
11347
11348 static bool isCast(CheckedConversionKind CCK) {
11349 return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast ||
11350 CCK == CCK_OtherCast;
11351 }
11352
11353 /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
11354 /// cast. If there is already an implicit cast, merge into the existing one.
11355 /// If isLvalue, the result of the cast is an lvalue.
11356 ExprResult
11357 ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
11358 ExprValueKind VK = VK_PRValue,
11359 const CXXCastPath *BasePath = nullptr,
11360 CheckedConversionKind CCK = CCK_ImplicitConversion);
11361
11362 /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
11363 /// to the conversion from scalar type ScalarTy to the Boolean type.
11364 static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
11365
11366 /// IgnoredValueConversions - Given that an expression's result is
11367 /// syntactically ignored, perform any conversions that are
11368 /// required.
11369 ExprResult IgnoredValueConversions(Expr *E);
11370
11371 // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
11372 // functions and arrays to their respective pointers (C99 6.3.2.1).
11373 ExprResult UsualUnaryConversions(Expr *E);
11374
11375 /// CallExprUnaryConversions - a special case of an unary conversion
11376 /// performed on a function designator of a call expression.
11377 ExprResult CallExprUnaryConversions(Expr *E);
11378
11379 // DefaultFunctionArrayConversion - converts functions and arrays
11380 // to their respective pointers (C99 6.3.2.1).
11381 ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
11382
11383 // DefaultFunctionArrayLvalueConversion - converts functions and
11384 // arrays to their respective pointers and performs the
11385 // lvalue-to-rvalue conversion.
11386 ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
11387 bool Diagnose = true);
11388
11389 // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
11390 // the operand. This function is a no-op if the operand has a function type
11391 // or an array type.
11392 ExprResult DefaultLvalueConversion(Expr *E);
11393
11394 // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
11395 // do not have a prototype. Integer promotions are performed on each
11396 // argument, and arguments that have type float are promoted to double.
11397 ExprResult DefaultArgumentPromotion(Expr *E);
11398
11399 /// If \p E is a prvalue denoting an unmaterialized temporary, materialize
11400 /// it as an xvalue. In C++98, the result will still be a prvalue, because
11401 /// we don't have xvalues there.
11402 ExprResult TemporaryMaterializationConversion(Expr *E);
11403
11404 // Used for emitting the right warning by DefaultVariadicArgumentPromotion
11405 enum VariadicCallType {
11406 VariadicFunction,
11407 VariadicBlock,
11408 VariadicMethod,
11409 VariadicConstructor,
11410 VariadicDoesNotApply
11411 };
11412
11413 VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
11414 const FunctionProtoType *Proto,
11415 Expr *Fn);
11416
11417 // Used for determining in which context a type is allowed to be passed to a
11418 // vararg function.
11419 enum VarArgKind {
11420 VAK_Valid,
11421 VAK_ValidInCXX11,
11422 VAK_Undefined,
11423 VAK_MSVCUndefined,
11424 VAK_Invalid
11425 };
11426
11427 // Determines which VarArgKind fits an expression.
11428 VarArgKind isValidVarArgType(const QualType &Ty);
11429
11430 /// Check to see if the given expression is a valid argument to a variadic
11431 /// function, issuing a diagnostic if not.
11432 void checkVariadicArgument(const Expr *E, VariadicCallType CT);
11433
11434 /// Check whether the given statement can have musttail applied to it,
11435 /// issuing a diagnostic and returning false if not. In the success case,
11436 /// the statement is rewritten to remove implicit nodes from the return
11437 /// value.
11438 bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA);
11439
11440private:
11441 /// Check whether the given statement can have musttail applied to it,
11442 /// issuing a diagnostic and returning false if not.
11443 bool checkMustTailAttr(const Stmt *St, const Attr &MTA);
11444
11445public:
11446 /// Check to see if a given expression could have '.c_str()' called on it.
11447 bool hasCStrMethod(const Expr *E);
11448
11449 /// GatherArgumentsForCall - Collector argument expressions for various
11450 /// form of call prototypes.
11451 bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
11452 const FunctionProtoType *Proto,
11453 unsigned FirstParam, ArrayRef<Expr *> Args,
11454 SmallVectorImpl<Expr *> &AllArgs,
11455 VariadicCallType CallType = VariadicDoesNotApply,
11456 bool AllowExplicit = false,
11457 bool IsListInitialization = false);
11458
11459 // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
11460 // will create a runtime trap if the resulting type is not a POD type.
11461 ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
11462 FunctionDecl *FDecl);
11463
11464 /// Context in which we're performing a usual arithmetic conversion.
11465 enum ArithConvKind {
11466 /// An arithmetic operation.
11467 ACK_Arithmetic,
11468 /// A bitwise operation.
11469 ACK_BitwiseOp,
11470 /// A comparison.
11471 ACK_Comparison,
11472 /// A conditional (?:) operator.
11473 ACK_Conditional,
11474 /// A compound assignment expression.
11475 ACK_CompAssign,
11476 };
11477
11478 // UsualArithmeticConversions - performs the UsualUnaryConversions on it's
11479 // operands and then handles various conversions that are common to binary
11480 // operators (C99 6.3.1.8). If both operands aren't arithmetic, this
11481 // routine returns the first non-arithmetic type found. The client is
11482 // responsible for emitting appropriate error diagnostics.
11483 QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
11484 SourceLocation Loc, ArithConvKind ACK);
11485
11486 /// AssignConvertType - All of the 'assignment' semantic checks return this
11487 /// enum to indicate whether the assignment was allowed. These checks are
11488 /// done for simple assignments, as well as initialization, return from
11489 /// function, argument passing, etc. The query is phrased in terms of a
11490 /// source and destination type.
11491 enum AssignConvertType {
11492 /// Compatible - the types are compatible according to the standard.
11493 Compatible,
11494
11495 /// PointerToInt - The assignment converts a pointer to an int, which we
11496 /// accept as an extension.
11497 PointerToInt,
11498
11499 /// IntToPointer - The assignment converts an int to a pointer, which we
11500 /// accept as an extension.
11501 IntToPointer,
11502
11503 /// FunctionVoidPointer - The assignment is between a function pointer and
11504 /// void*, which the standard doesn't allow, but we accept as an extension.
11505 FunctionVoidPointer,
11506
11507 /// IncompatiblePointer - The assignment is between two pointers types that
11508 /// are not compatible, but we accept them as an extension.
11509 IncompatiblePointer,
11510
11511 /// IncompatibleFunctionPointer - The assignment is between two function
11512 /// pointers types that are not compatible, but we accept them as an
11513 /// extension.
11514 IncompatibleFunctionPointer,
11515
11516 /// IncompatiblePointerSign - The assignment is between two pointers types
11517 /// which point to integers which have a different sign, but are otherwise
11518 /// identical. This is a subset of the above, but broken out because it's by
11519 /// far the most common case of incompatible pointers.
11520 IncompatiblePointerSign,
11521
11522 /// CompatiblePointerDiscardsQualifiers - The assignment discards
11523 /// c/v/r qualifiers, which we accept as an extension.
11524 CompatiblePointerDiscardsQualifiers,
11525
11526 /// IncompatiblePointerDiscardsQualifiers - The assignment
11527 /// discards qualifiers that we don't permit to be discarded,
11528 /// like address spaces.
11529 IncompatiblePointerDiscardsQualifiers,
11530
11531 /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
11532 /// changes address spaces in nested pointer types which is not allowed.
11533 /// For instance, converting __private int ** to __generic int ** is
11534 /// illegal even though __private could be converted to __generic.
11535 IncompatibleNestedPointerAddressSpaceMismatch,
11536
11537 /// IncompatibleNestedPointerQualifiers - The assignment is between two
11538 /// nested pointer types, and the qualifiers other than the first two
11539 /// levels differ e.g. char ** -> const char **, but we accept them as an
11540 /// extension.
11541 IncompatibleNestedPointerQualifiers,
11542
11543 /// IncompatibleVectors - The assignment is between two vector types that
11544 /// have the same size, which we accept as an extension.
11545 IncompatibleVectors,
11546
11547 /// IntToBlockPointer - The assignment converts an int to a block
11548 /// pointer. We disallow this.
11549 IntToBlockPointer,
11550
11551 /// IncompatibleBlockPointer - The assignment is between two block
11552 /// pointers types that are not compatible.
11553 IncompatibleBlockPointer,
11554
11555 /// IncompatibleObjCQualifiedId - The assignment is between a qualified
11556 /// id type and something else (that is incompatible with it). For example,
11557 /// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
11558 IncompatibleObjCQualifiedId,
11559
11560 /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
11561 /// object with __weak qualifier.
11562 IncompatibleObjCWeakRef,
11563
11564 /// Incompatible - We reject this conversion outright, it is invalid to
11565 /// represent it in the AST.
11566 Incompatible
11567 };
11568
11569 /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
11570 /// assignment conversion type specified by ConvTy. This returns true if the
11571 /// conversion was invalid or false if the conversion was accepted.
11572 bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
11573 SourceLocation Loc,
11574 QualType DstType, QualType SrcType,
11575 Expr *SrcExpr, AssignmentAction Action,
11576 bool *Complained = nullptr);
11577
11578 /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
11579 /// enum. If AllowMask is true, then we also allow the complement of a valid
11580 /// value, to be used as a mask.
11581 bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
11582 bool AllowMask) const;
11583
11584 /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
11585 /// integer not in the range of enum values.
11586 void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
11587 Expr *SrcExpr);
11588
11589 /// CheckAssignmentConstraints - Perform type checking for assignment,
11590 /// argument passing, variable initialization, and function return values.
11591 /// C99 6.5.16.
11592 AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
11593 QualType LHSType,
11594 QualType RHSType);
11595
11596 /// Check assignment constraints and optionally prepare for a conversion of
11597 /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
11598 /// is true.
11599 AssignConvertType CheckAssignmentConstraints(QualType LHSType,
11600 ExprResult &RHS,
11601 CastKind &Kind,
11602 bool ConvertRHS = true);
11603
11604 /// Check assignment constraints for an assignment of RHS to LHSType.
11605 ///
11606 /// \param LHSType The destination type for the assignment.
11607 /// \param RHS The source expression for the assignment.
11608 /// \param Diagnose If \c true, diagnostics may be produced when checking
11609 /// for assignability. If a diagnostic is produced, \p RHS will be
11610 /// set to ExprError(). Note that this function may still return
11611 /// without producing a diagnostic, even for an invalid assignment.
11612 /// \param DiagnoseCFAudited If \c true, the target is a function parameter
11613 /// in an audited Core Foundation API and does not need to be checked
11614 /// for ARC retain issues.
11615 /// \param ConvertRHS If \c true, \p RHS will be updated to model the
11616 /// conversions necessary to perform the assignment. If \c false,
11617 /// \p Diagnose must also be \c false.
11618 AssignConvertType CheckSingleAssignmentConstraints(
11619 QualType LHSType, ExprResult &RHS, bool Diagnose = true,
11620 bool DiagnoseCFAudited = false, bool ConvertRHS = true);
11621
11622 // If the lhs type is a transparent union, check whether we
11623 // can initialize the transparent union with the given expression.
11624 AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
11625 ExprResult &RHS);
11626
11627 bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
11628
11629 bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
11630
11631 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11632 AssignmentAction Action,
11633 bool AllowExplicit = false);
11634 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11635 const ImplicitConversionSequence& ICS,
11636 AssignmentAction Action,
11637 CheckedConversionKind CCK
11638 = CCK_ImplicitConversion);
11639 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11640 const StandardConversionSequence& SCS,
11641 AssignmentAction Action,
11642 CheckedConversionKind CCK);
11643
11644 ExprResult PerformQualificationConversion(
11645 Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue,
11646 CheckedConversionKind CCK = CCK_ImplicitConversion);
11647
11648 /// the following "Check" methods will return a valid/converted QualType
11649 /// or a null QualType (indicating an error diagnostic was issued).
11650
11651 /// type checking binary operators (subroutines of CreateBuiltinBinOp).
11652 QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
11653 ExprResult &RHS);
11654 QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
11655 ExprResult &RHS);
11656 QualType CheckPointerToMemberOperands( // C++ 5.5
11657 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
11658 SourceLocation OpLoc, bool isIndirect);
11659 QualType CheckMultiplyDivideOperands( // C99 6.5.5
11660 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
11661 bool IsDivide);
11662 QualType CheckRemainderOperands( // C99 6.5.5
11663 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11664 bool IsCompAssign = false);
11665 QualType CheckAdditionOperands( // C99 6.5.6
11666 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11667 BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr);
11668 QualType CheckSubtractionOperands( // C99 6.5.6
11669 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11670 QualType* CompLHSTy = nullptr);
11671 QualType CheckShiftOperands( // C99 6.5.7
11672 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11673 BinaryOperatorKind Opc, bool IsCompAssign = false);
11674 void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
11675 QualType CheckCompareOperands( // C99 6.5.8/9
11676 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11677 BinaryOperatorKind Opc);
11678 QualType CheckBitwiseOperands( // C99 6.5.[10...12]
11679 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11680 BinaryOperatorKind Opc);
11681 QualType CheckLogicalOperands( // C99 6.5.[13,14]
11682 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11683 BinaryOperatorKind Opc);
11684 // CheckAssignmentOperands is used for both simple and compound assignment.
11685 // For simple assignment, pass both expressions and a null converted type.
11686 // For compound assignment, pass both expressions and the converted type.
11687 QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
11688 Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType);
11689
11690 ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
11691 UnaryOperatorKind Opcode, Expr *Op);
11692 ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
11693 BinaryOperatorKind Opcode,
11694 Expr *LHS, Expr *RHS);
11695 ExprResult checkPseudoObjectRValue(Expr *E);
11696 Expr *recreateSyntacticForm(PseudoObjectExpr *E);
11697
11698 QualType CheckConditionalOperands( // C99 6.5.15
11699 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
11700 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
11701 QualType CXXCheckConditionalOperands( // C++ 5.16
11702 ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
11703 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
11704 QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
11705 ExprResult &RHS,
11706 SourceLocation QuestionLoc);
11707 QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
11708 bool ConvertArgs = true);
11709 QualType FindCompositePointerType(SourceLocation Loc,
11710 ExprResult &E1, ExprResult &E2,
11711 bool ConvertArgs = true) {
11712 Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
11713 QualType Composite =
11714 FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
11715 E1 = E1Tmp;
11716 E2 = E2Tmp;
11717 return Composite;
11718 }
11719
11720 QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
11721 SourceLocation QuestionLoc);
11722
11723 bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
11724 SourceLocation QuestionLoc);
11725
11726 void DiagnoseAlwaysNonNullPointer(Expr *E,
11727 Expr::NullPointerConstantKind NullType,
11728 bool IsEqual, SourceRange Range);
11729
11730 /// type checking for vector binary operators.
11731 QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11732 SourceLocation Loc, bool IsCompAssign,
11733 bool AllowBothBool, bool AllowBoolConversion);
11734 QualType GetSignedVectorType(QualType V);
11735 QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
11736 SourceLocation Loc,
11737 BinaryOperatorKind Opc);
11738 QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11739 SourceLocation Loc);
11740
11741 /// Type checking for matrix binary operators.
11742 QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
11743 SourceLocation Loc,
11744 bool IsCompAssign);
11745 QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
11746 SourceLocation Loc, bool IsCompAssign);
11747
11748 bool isValidSveBitcast(QualType srcType, QualType destType);
11749
11750 bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy);
11751
11752 bool areVectorTypesSameSize(QualType srcType, QualType destType);
11753 bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
11754 bool isLaxVectorConversion(QualType srcType, QualType destType);
11755
11756 /// type checking declaration initializers (C99 6.7.8)
11757 bool CheckForConstantInitializer(Expr *e, QualType t);
11758
11759 // type checking C++ declaration initializers (C++ [dcl.init]).
11760
11761 /// ReferenceCompareResult - Expresses the result of comparing two
11762 /// types (cv1 T1 and cv2 T2) to determine their compatibility for the
11763 /// purposes of initialization by reference (C++ [dcl.init.ref]p4).
11764 enum ReferenceCompareResult {
11765 /// Ref_Incompatible - The two types are incompatible, so direct
11766 /// reference binding is not possible.
11767 Ref_Incompatible = 0,
11768 /// Ref_Related - The two types are reference-related, which means
11769 /// that their unqualified forms (T1 and T2) are either the same
11770 /// or T1 is a base class of T2.
11771 Ref_Related,
11772 /// Ref_Compatible - The two types are reference-compatible.
11773 Ref_Compatible
11774 };
11775
11776 // Fake up a scoped enumeration that still contextually converts to bool.
11777 struct ReferenceConversionsScope {
11778 /// The conversions that would be performed on an lvalue of type T2 when
11779 /// binding a reference of type T1 to it, as determined when evaluating
11780 /// whether T1 is reference-compatible with T2.
11781 enum ReferenceConversions {
11782 Qualification = 0x1,
11783 NestedQualification = 0x2,
11784 Function = 0x4,
11785 DerivedToBase = 0x8,
11786 ObjC = 0x10,
11787 ObjCLifetime = 0x20,
11788
11789 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)LLVM_BITMASK_LARGEST_ENUMERATOR = ObjCLifetime
11790 };
11791 };
11792 using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
11793
11794 ReferenceCompareResult
11795 CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
11796 ReferenceConversions *Conv = nullptr);
11797
11798 ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11799 Expr *CastExpr, CastKind &CastKind,
11800 ExprValueKind &VK, CXXCastPath &Path);
11801
11802 /// Force an expression with unknown-type to an expression of the
11803 /// given type.
11804 ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
11805
11806 /// Type-check an expression that's being passed to an
11807 /// __unknown_anytype parameter.
11808 ExprResult checkUnknownAnyArg(SourceLocation callLoc,
11809 Expr *result, QualType &paramType);
11810
11811 // CheckMatrixCast - Check type constraints for matrix casts.
11812 // We allow casting between matrixes of the same dimensions i.e. when they
11813 // have the same number of rows and column. Returns true if the cast is
11814 // invalid.
11815 bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
11816 CastKind &Kind);
11817
11818 // CheckVectorCast - check type constraints for vectors.
11819 // Since vectors are an extension, there are no C standard reference for this.
11820 // We allow casting between vectors and integer datatypes of the same size.
11821 // returns true if the cast is invalid
11822 bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
11823 CastKind &Kind);
11824
11825 /// Prepare `SplattedExpr` for a vector splat operation, adding
11826 /// implicit casts if necessary.
11827 ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
11828
11829 // CheckExtVectorCast - check type constraints for extended vectors.
11830 // Since vectors are an extension, there are no C standard reference for this.
11831 // We allow casting between vectors and integer datatypes of the same size,
11832 // or vectors and the element type of that vector.
11833 // returns the cast expr
11834 ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
11835 CastKind &Kind);
11836
11837 ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
11838 SourceLocation LParenLoc,
11839 Expr *CastExpr,
11840 SourceLocation RParenLoc);
11841
11842 enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error };
11843
11844 /// Checks for invalid conversions and casts between
11845 /// retainable pointers and other pointer kinds for ARC and Weak.
11846 ARCConversionResult CheckObjCConversion(SourceRange castRange,
11847 QualType castType, Expr *&op,
11848 CheckedConversionKind CCK,
11849 bool Diagnose = true,
11850 bool DiagnoseCFAudited = false,
11851 BinaryOperatorKind Opc = BO_PtrMemD
11852 );
11853
11854 Expr *stripARCUnbridgedCast(Expr *e);
11855 void diagnoseARCUnbridgedCast(Expr *e);
11856
11857 bool CheckObjCARCUnavailableWeakConversion(QualType castType,
11858 QualType ExprType);
11859
11860 /// checkRetainCycles - Check whether an Objective-C message send
11861 /// might create an obvious retain cycle.
11862 void checkRetainCycles(ObjCMessageExpr *msg);
11863 void checkRetainCycles(Expr *receiver, Expr *argument);
11864 void checkRetainCycles(VarDecl *Var, Expr *Init);
11865
11866 /// checkUnsafeAssigns - Check whether +1 expr is being assigned
11867 /// to weak/__unsafe_unretained type.
11868 bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
11869
11870 /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
11871 /// to weak/__unsafe_unretained expression.
11872 void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
11873
11874 /// CheckMessageArgumentTypes - Check types in an Obj-C message send.
11875 /// \param Method - May be null.
11876 /// \param [out] ReturnType - The return type of the send.
11877 /// \return true iff there were any incompatible types.
11878 bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType,
11879 MultiExprArg Args, Selector Sel,
11880 ArrayRef<SourceLocation> SelectorLocs,
11881 ObjCMethodDecl *Method, bool isClassMessage,
11882 bool isSuperMessage, SourceLocation lbrac,
11883 SourceLocation rbrac, SourceRange RecRange,
11884 QualType &ReturnType, ExprValueKind &VK);
11885
11886 /// Determine the result of a message send expression based on
11887 /// the type of the receiver, the method expected to receive the message,
11888 /// and the form of the message send.
11889 QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType,
11890 ObjCMethodDecl *Method, bool isClassMessage,
11891 bool isSuperMessage);
11892
11893 /// If the given expression involves a message send to a method
11894 /// with a related result type, emit a note describing what happened.
11895 void EmitRelatedResultTypeNote(const Expr *E);
11896
11897 /// Given that we had incompatible pointer types in a return
11898 /// statement, check whether we're in a method with a related result
11899 /// type, and if so, emit a note describing what happened.
11900 void EmitRelatedResultTypeNoteForReturn(QualType destType);
11901
11902 class ConditionResult {
11903 Decl *ConditionVar;
11904 FullExprArg Condition;
11905 bool Invalid;
11906 bool HasKnownValue;
11907 bool KnownValue;
11908
11909 friend class Sema;
11910 ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
11911 bool IsConstexpr)
11912 : ConditionVar(ConditionVar), Condition(Condition), Invalid(false),
11913 HasKnownValue(IsConstexpr && Condition.get() &&
11914 !Condition.get()->isValueDependent()),
11915 KnownValue(HasKnownValue &&
11916 !!Condition.get()->EvaluateKnownConstInt(S.Context)) {}
11917 explicit ConditionResult(bool Invalid)
11918 : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
11919 HasKnownValue(false), KnownValue(false) {}
11920
11921 public:
11922 ConditionResult() : ConditionResult(false) {}
11923 bool isInvalid() const { return Invalid; }
11924 std::pair<VarDecl *, Expr *> get() const {
11925 return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
11926 Condition.get());
11927 }
11928 llvm::Optional<bool> getKnownValue() const {
11929 if (!HasKnownValue)
11930 return None;
11931 return KnownValue;
11932 }
11933 };
11934 static ConditionResult ConditionError() { return ConditionResult(true); }
11935
11936 enum class ConditionKind {
11937 Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
11938 ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
11939 Switch ///< An integral condition for a 'switch' statement.
11940 };
11941
11942 ConditionResult ActOnCondition(Scope *S, SourceLocation Loc,
11943 Expr *SubExpr, ConditionKind CK);
11944
11945 ConditionResult ActOnConditionVariable(Decl *ConditionVar,
11946 SourceLocation StmtLoc,
11947 ConditionKind CK);
11948
11949 DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
11950
11951 ExprResult CheckConditionVariable(VarDecl *ConditionVar,
11952 SourceLocation StmtLoc,
11953 ConditionKind CK);
11954 ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
11955
11956 /// CheckBooleanCondition - Diagnose problems involving the use of
11957 /// the given expression as a boolean condition (e.g. in an if
11958 /// statement). Also performs the standard function and array
11959 /// decays, possibly changing the input variable.
11960 ///
11961 /// \param Loc - A location associated with the condition, e.g. the
11962 /// 'if' keyword.
11963 /// \return true iff there were any errors
11964 ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
11965 bool IsConstexpr = false);
11966
11967 /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
11968 /// found in an explicit(bool) specifier.
11969 ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
11970
11971 /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
11972 /// Returns true if the explicit specifier is now resolved.
11973 bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
11974
11975 /// DiagnoseAssignmentAsCondition - Given that an expression is
11976 /// being used as a boolean condition, warn if it's an assignment.
11977 void DiagnoseAssignmentAsCondition(Expr *E);
11978
11979 /// Redundant parentheses over an equality comparison can indicate
11980 /// that the user intended an assignment used as condition.
11981 void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
11982
11983 /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
11984 ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
11985
11986 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
11987 /// the specified width and sign. If an overflow occurs, detect it and emit
11988 /// the specified diagnostic.
11989 void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
11990 unsigned NewWidth, bool NewSign,
11991 SourceLocation Loc, unsigned DiagID);
11992
11993 /// Checks that the Objective-C declaration is declared in the global scope.
11994 /// Emits an error and marks the declaration as invalid if it's not declared
11995 /// in the global scope.
11996 bool CheckObjCDeclScope(Decl *D);
11997
11998 /// Abstract base class used for diagnosing integer constant
11999 /// expression violations.
12000 class VerifyICEDiagnoser {
12001 public:
12002 bool Suppress;
12003
12004 VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { }
12005
12006 virtual SemaDiagnosticBuilder
12007 diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T);
12008 virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
12009 SourceLocation Loc) = 0;
12010 virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc);
12011 virtual ~VerifyICEDiagnoser() {}
12012 };
12013
12014 enum AllowFoldKind {
12015 NoFold,
12016 AllowFold,
12017 };
12018
12019 /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
12020 /// and reports the appropriate diagnostics. Returns false on success.
12021 /// Can optionally return the value of the expression.
12022 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12023 VerifyICEDiagnoser &Diagnoser,
12024 AllowFoldKind CanFold = NoFold);
12025 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12026 unsigned DiagID,
12027 AllowFoldKind CanFold = NoFold);
12028 ExprResult VerifyIntegerConstantExpression(Expr *E,
12029 llvm::APSInt *Result = nullptr,
12030 AllowFoldKind CanFold = NoFold);
12031 ExprResult VerifyIntegerConstantExpression(Expr *E,
12032 AllowFoldKind CanFold = NoFold) {
12033 return VerifyIntegerConstantExpression(E, nullptr, CanFold);
12034 }
12035
12036 /// VerifyBitField - verifies that a bit field expression is an ICE and has
12037 /// the correct width, and that the field type is valid.
12038 /// Returns false on success.
12039 /// Can optionally return whether the bit-field is of width 0
12040 ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
12041 QualType FieldTy, bool IsMsStruct,
12042 Expr *BitWidth, bool *ZeroWidth = nullptr);
12043
12044private:
12045 unsigned ForceCUDAHostDeviceDepth = 0;
12046
12047public:
12048 /// Increments our count of the number of times we've seen a pragma forcing
12049 /// functions to be __host__ __device__. So long as this count is greater
12050 /// than zero, all functions encountered will be __host__ __device__.
12051 void PushForceCUDAHostDevice();
12052
12053 /// Decrements our count of the number of times we've seen a pragma forcing
12054 /// functions to be __host__ __device__. Returns false if the count is 0
12055 /// before incrementing, so you can emit an error.
12056 bool PopForceCUDAHostDevice();
12057
12058 /// Diagnostics that are emitted only if we discover that the given function
12059 /// must be codegen'ed. Because handling these correctly adds overhead to
12060 /// compilation, this is currently only enabled for CUDA compilations.
12061 llvm::DenseMap<CanonicalDeclPtr<FunctionDecl>,
12062 std::vector<PartialDiagnosticAt>>
12063 DeviceDeferredDiags;
12064
12065 /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the
12066 /// key in a hashtable, both the FD and location are hashed.
12067 struct FunctionDeclAndLoc {
12068 CanonicalDeclPtr<FunctionDecl> FD;
12069 SourceLocation Loc;
12070 };
12071
12072 /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a
12073 /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the
12074 /// same deferred diag twice.
12075 llvm::DenseSet<FunctionDeclAndLoc> LocsWithCUDACallDiags;
12076
12077 /// An inverse call graph, mapping known-emitted functions to one of their
12078 /// known-emitted callers (plus the location of the call).
12079 ///
12080 /// Functions that we can tell a priori must be emitted aren't added to this
12081 /// map.
12082 llvm::DenseMap</* Callee = */ CanonicalDeclPtr<FunctionDecl>,
12083 /* Caller = */ FunctionDeclAndLoc>
12084 DeviceKnownEmittedFns;
12085
12086 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12087 /// context is "used as device code".
12088 ///
12089 /// - If CurContext is a __host__ function, does not emit any diagnostics
12090 /// unless \p EmitOnBothSides is true.
12091 /// - If CurContext is a __device__ or __global__ function, emits the
12092 /// diagnostics immediately.
12093 /// - If CurContext is a __host__ __device__ function and we are compiling for
12094 /// the device, creates a diagnostic which is emitted if and when we realize
12095 /// that the function will be codegen'ed.
12096 ///
12097 /// Example usage:
12098 ///
12099 /// // Variable-length arrays are not allowed in CUDA device code.
12100 /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget())
12101 /// return ExprError();
12102 /// // Otherwise, continue parsing as normal.
12103 SemaDiagnosticBuilder CUDADiagIfDeviceCode(SourceLocation Loc,
12104 unsigned DiagID);
12105
12106 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12107 /// context is "used as host code".
12108 ///
12109 /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched.
12110 SemaDiagnosticBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID);
12111
12112 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12113 /// context is "used as device code".
12114 ///
12115 /// - If CurContext is a `declare target` function or it is known that the
12116 /// function is emitted for the device, emits the diagnostics immediately.
12117 /// - If CurContext is a non-`declare target` function and we are compiling
12118 /// for the device, creates a diagnostic which is emitted if and when we
12119 /// realize that the function will be codegen'ed.
12120 ///
12121 /// Example usage:
12122 ///
12123 /// // Variable-length arrays are not allowed in NVPTX device code.
12124 /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported))
12125 /// return ExprError();
12126 /// // Otherwise, continue parsing as normal.
12127 SemaDiagnosticBuilder
12128 diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD);
12129
12130 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12131 /// context is "used as host code".
12132 ///
12133 /// - If CurContext is a `declare target` function or it is known that the
12134 /// function is emitted for the host, emits the diagnostics immediately.
12135 /// - If CurContext is a non-host function, just ignore it.
12136 ///
12137 /// Example usage:
12138 ///
12139 /// // Variable-length arrays are not allowed in NVPTX device code.
12140 /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported))
12141 /// return ExprError();
12142 /// // Otherwise, continue parsing as normal.
12143 SemaDiagnosticBuilder diagIfOpenMPHostCode(SourceLocation Loc,
12144 unsigned DiagID, FunctionDecl *FD);
12145
12146 SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID,
12147 FunctionDecl *FD = nullptr);
12148 SemaDiagnosticBuilder targetDiag(SourceLocation Loc,
12149 const PartialDiagnostic &PD,
12150 FunctionDecl *FD = nullptr) {
12151 return targetDiag(Loc, PD.getDiagID(), FD) << PD;
12152 }
12153
12154 /// Check if the expression is allowed to be used in expressions for the
12155 /// offloading devices.
12156 void checkDeviceDecl(ValueDecl *D, SourceLocation Loc);
12157
12158 enum CUDAFunctionTarget {
12159 CFT_Device,
12160 CFT_Global,
12161 CFT_Host,
12162 CFT_HostDevice,
12163 CFT_InvalidTarget
12164 };
12165
12166 /// Determines whether the given function is a CUDA device/host/kernel/etc.
12167 /// function.
12168 ///
12169 /// Use this rather than examining the function's attributes yourself -- you
12170 /// will get it wrong. Returns CFT_Host if D is null.
12171 CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D,
12172 bool IgnoreImplicitHDAttr = false);
12173 CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs);
12174
12175 enum CUDAVariableTarget {
12176 CVT_Device, /// Emitted on device side with a shadow variable on host side
12177 CVT_Host, /// Emitted on host side only
12178 CVT_Both, /// Emitted on both sides with different addresses
12179 CVT_Unified, /// Emitted as a unified address, e.g. managed variables
12180 };
12181 /// Determines whether the given variable is emitted on host or device side.
12182 CUDAVariableTarget IdentifyCUDATarget(const VarDecl *D);
12183
12184 /// Gets the CUDA target for the current context.
12185 CUDAFunctionTarget CurrentCUDATarget() {
12186 return IdentifyCUDATarget(dyn_cast<FunctionDecl>(CurContext));
12187 }
12188
12189 static bool isCUDAImplicitHostDeviceFunction(const FunctionDecl *D);
12190
12191 // CUDA function call preference. Must be ordered numerically from
12192 // worst to best.
12193 enum CUDAFunctionPreference {
12194 CFP_Never, // Invalid caller/callee combination.
12195 CFP_WrongSide, // Calls from host-device to host or device
12196 // function that do not match current compilation
12197 // mode.
12198 CFP_HostDevice, // Any calls to host/device functions.
12199 CFP_SameSide, // Calls from host-device to host or device
12200 // function matching current compilation mode.
12201 CFP_Native, // host-to-host or device-to-device calls.
12202 };
12203
12204 /// Identifies relative preference of a given Caller/Callee
12205 /// combination, based on their host/device attributes.
12206 /// \param Caller function which needs address of \p Callee.
12207 /// nullptr in case of global context.
12208 /// \param Callee target function
12209 ///
12210 /// \returns preference value for particular Caller/Callee combination.
12211 CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller,
12212 const FunctionDecl *Callee);
12213
12214 /// Determines whether Caller may invoke Callee, based on their CUDA
12215 /// host/device attributes. Returns false if the call is not allowed.
12216 ///
12217 /// Note: Will return true for CFP_WrongSide calls. These may appear in
12218 /// semantically correct CUDA programs, but only if they're never codegen'ed.
12219 bool IsAllowedCUDACall(const FunctionDecl *Caller,
12220 const FunctionDecl *Callee) {
12221 return IdentifyCUDAPreference(Caller, Callee) != CFP_Never;
12222 }
12223
12224 /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD,
12225 /// depending on FD and the current compilation settings.
12226 void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD,
12227 const LookupResult &Previous);
12228
12229 /// May add implicit CUDAConstantAttr attribute to VD, depending on VD
12230 /// and current compilation settings.
12231 void MaybeAddCUDAConstantAttr(VarDecl *VD);
12232
12233public:
12234 /// Check whether we're allowed to call Callee from the current context.
12235 ///
12236 /// - If the call is never allowed in a semantically-correct program
12237 /// (CFP_Never), emits an error and returns false.
12238 ///
12239 /// - If the call is allowed in semantically-correct programs, but only if
12240 /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to
12241 /// be emitted if and when the caller is codegen'ed, and returns true.
12242 ///
12243 /// Will only create deferred diagnostics for a given SourceLocation once,
12244 /// so you can safely call this multiple times without generating duplicate
12245 /// deferred errors.
12246 ///
12247 /// - Otherwise, returns true without emitting any diagnostics.
12248 bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee);
12249
12250 void CUDACheckLambdaCapture(CXXMethodDecl *D, const sema::Capture &Capture);
12251
12252 /// Set __device__ or __host__ __device__ attributes on the given lambda
12253 /// operator() method.
12254 ///
12255 /// CUDA lambdas by default is host device function unless it has explicit
12256 /// host or device attribute.
12257 void CUDASetLambdaAttrs(CXXMethodDecl *Method);
12258
12259 /// Finds a function in \p Matches with highest calling priority
12260 /// from \p Caller context and erases all functions with lower
12261 /// calling priority.
12262 void EraseUnwantedCUDAMatches(
12263 const FunctionDecl *Caller,
12264 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches);
12265
12266 /// Given a implicit special member, infer its CUDA target from the
12267 /// calls it needs to make to underlying base/field special members.
12268 /// \param ClassDecl the class for which the member is being created.
12269 /// \param CSM the kind of special member.
12270 /// \param MemberDecl the special member itself.
12271 /// \param ConstRHS true if this is a copy operation with a const object on
12272 /// its RHS.
12273 /// \param Diagnose true if this call should emit diagnostics.
12274 /// \return true if there was an error inferring.
12275 /// The result of this call is implicit CUDA target attribute(s) attached to
12276 /// the member declaration.
12277 bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
12278 CXXSpecialMember CSM,
12279 CXXMethodDecl *MemberDecl,
12280 bool ConstRHS,
12281 bool Diagnose);
12282
12283 /// \return true if \p CD can be considered empty according to CUDA
12284 /// (E.2.3.1 in CUDA 7.5 Programming guide).
12285 bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
12286 bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
12287
12288 // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In
12289 // case of error emits appropriate diagnostic and invalidates \p Var.
12290 //
12291 // \details CUDA allows only empty constructors as initializers for global
12292 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
12293 // __shared__ variables whether they are local or not (they all are implicitly
12294 // static in CUDA). One exception is that CUDA allows constant initializers
12295 // for __constant__ and __device__ variables.
12296 void checkAllowedCUDAInitializer(VarDecl *VD);
12297
12298 /// Check whether NewFD is a valid overload for CUDA. Emits
12299 /// diagnostics and invalidates NewFD if not.
12300 void checkCUDATargetOverload(FunctionDecl *NewFD,
12301 const LookupResult &Previous);
12302 /// Copies target attributes from the template TD to the function FD.
12303 void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD);
12304
12305 /// Returns the name of the launch configuration function. This is the name
12306 /// of the function that will be called to configure kernel call, with the
12307 /// parameters specified via <<<>>>.
12308 std::string getCudaConfigureFuncName() const;
12309
12310 /// \name Code completion
12311 //@{
12312 /// Describes the context in which code completion occurs.
12313 enum ParserCompletionContext {
12314 /// Code completion occurs at top-level or namespace context.
12315 PCC_Namespace,
12316 /// Code completion occurs within a class, struct, or union.
12317 PCC_Class,
12318 /// Code completion occurs within an Objective-C interface, protocol,
12319 /// or category.
12320 PCC_ObjCInterface,
12321 /// Code completion occurs within an Objective-C implementation or
12322 /// category implementation
12323 PCC_ObjCImplementation,
12324 /// Code completion occurs within the list of instance variables
12325 /// in an Objective-C interface, protocol, category, or implementation.
12326 PCC_ObjCInstanceVariableList,
12327 /// Code completion occurs following one or more template
12328 /// headers.
12329 PCC_Template,
12330 /// Code completion occurs following one or more template
12331 /// headers within a class.
12332 PCC_MemberTemplate,
12333 /// Code completion occurs within an expression.
12334 PCC_Expression,
12335 /// Code completion occurs within a statement, which may
12336 /// also be an expression or a declaration.
12337 PCC_Statement,
12338 /// Code completion occurs at the beginning of the
12339 /// initialization statement (or expression) in a for loop.
12340 PCC_ForInit,
12341 /// Code completion occurs within the condition of an if,
12342 /// while, switch, or for statement.
12343 PCC_Condition,
12344 /// Code completion occurs within the body of a function on a
12345 /// recovery path, where we do not have a specific handle on our position
12346 /// in the grammar.
12347 PCC_RecoveryInFunction,
12348 /// Code completion occurs where only a type is permitted.
12349 PCC_Type,
12350 /// Code completion occurs in a parenthesized expression, which
12351 /// might also be a type cast.
12352 PCC_ParenthesizedExpression,
12353 /// Code completion occurs within a sequence of declaration
12354 /// specifiers within a function, method, or block.
12355 PCC_LocalDeclarationSpecifiers
12356 };
12357
12358 void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path);
12359 void CodeCompleteOrdinaryName(Scope *S,
12360 ParserCompletionContext CompletionContext);
12361 void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
12362 bool AllowNonIdentifiers,
12363 bool AllowNestedNameSpecifiers);
12364
12365 struct CodeCompleteExpressionData;
12366 void CodeCompleteExpression(Scope *S,
12367 const CodeCompleteExpressionData &Data);
12368 void CodeCompleteExpression(Scope *S, QualType PreferredType,
12369 bool IsParenthesized = false);
12370 void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase,
12371 SourceLocation OpLoc, bool IsArrow,
12372 bool IsBaseExprStatement,
12373 QualType PreferredType);
12374 void CodeCompletePostfixExpression(Scope *S, ExprResult LHS,
12375 QualType PreferredType);
12376 void CodeCompleteTag(Scope *S, unsigned TagSpec);
12377 void CodeCompleteTypeQualifiers(DeclSpec &DS);
12378 void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D,
12379 const VirtSpecifiers *VS = nullptr);
12380 void CodeCompleteBracketDeclarator(Scope *S);
12381 void CodeCompleteCase(Scope *S);
12382 enum class AttributeCompletion {
12383 Attribute,
12384 Scope,
12385 None,
12386 };
12387 void CodeCompleteAttribute(
12388 AttributeCommonInfo::Syntax Syntax,
12389 AttributeCompletion Completion = AttributeCompletion::Attribute,
12390 const IdentifierInfo *Scope = nullptr);
12391 /// Determines the preferred type of the current function argument, by
12392 /// examining the signatures of all possible overloads.
12393 /// Returns null if unknown or ambiguous, or if code completion is off.
12394 ///
12395 /// If the code completion point has been reached, also reports the function
12396 /// signatures that were considered.
12397 ///
12398 /// FIXME: rename to GuessCallArgumentType to reduce confusion.
12399 QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef<Expr *> Args,
12400 SourceLocation OpenParLoc);
12401 QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type,
12402 SourceLocation Loc,
12403 ArrayRef<Expr *> Args,
12404 SourceLocation OpenParLoc);
12405 QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl,
12406 CXXScopeSpec SS,
12407 ParsedType TemplateTypeTy,
12408 ArrayRef<Expr *> ArgExprs,
12409 IdentifierInfo *II,
12410 SourceLocation OpenParLoc);
12411 void CodeCompleteInitializer(Scope *S, Decl *D);
12412 /// Trigger code completion for a record of \p BaseType. \p InitExprs are
12413 /// expressions in the initializer list seen so far and \p D is the current
12414 /// Designation being parsed.
12415 void CodeCompleteDesignator(const QualType BaseType,
12416 llvm::ArrayRef<Expr *> InitExprs,
12417 const Designation &D);
12418 void CodeCompleteAfterIf(Scope *S, bool IsBracedThen);
12419
12420 void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext,
12421 bool IsUsingDeclaration, QualType BaseType,
12422 QualType PreferredType);
12423 void CodeCompleteUsing(Scope *S);
12424 void CodeCompleteUsingDirective(Scope *S);
12425 void CodeCompleteNamespaceDecl(Scope *S);
12426 void CodeCompleteNamespaceAliasDecl(Scope *S);
12427 void CodeCompleteOperatorName(Scope *S);
12428 void CodeCompleteConstructorInitializer(
12429 Decl *Constructor,
12430 ArrayRef<CXXCtorInitializer *> Initializers);
12431
12432 void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
12433 bool AfterAmpersand);
12434 void CodeCompleteAfterFunctionEquals(Declarator &D);
12435
12436 void CodeCompleteObjCAtDirective(Scope *S);
12437 void CodeCompleteObjCAtVisibility(Scope *S);
12438 void CodeCompleteObjCAtStatement(Scope *S);
12439 void CodeCompleteObjCAtExpression(Scope *S);
12440 void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
12441 void CodeCompleteObjCPropertyGetter(Scope *S);
12442 void CodeCompleteObjCPropertySetter(Scope *S);
12443 void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
12444 bool IsParameter);
12445 void CodeCompleteObjCMessageReceiver(Scope *S);
12446 void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
12447 ArrayRef<IdentifierInfo *> SelIdents,
12448 bool AtArgumentExpression);
12449 void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
12450 ArrayRef<IdentifierInfo *> SelIdents,
12451 bool AtArgumentExpression,
12452 bool IsSuper = false);
12453 void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
12454 ArrayRef<IdentifierInfo *> SelIdents,
12455 bool AtArgumentExpression,
12456 ObjCInterfaceDecl *Super = nullptr);
12457 void CodeCompleteObjCForCollection(Scope *S,
12458 DeclGroupPtrTy IterationVar);
12459 void CodeCompleteObjCSelector(Scope *S,
12460 ArrayRef<IdentifierInfo *> SelIdents);
12461 void CodeCompleteObjCProtocolReferences(
12462 ArrayRef<IdentifierLocPair> Protocols);
12463 void CodeCompleteObjCProtocolDecl(Scope *S);
12464 void CodeCompleteObjCInterfaceDecl(Scope *S);
12465 void CodeCompleteObjCSuperclass(Scope *S,
12466 IdentifierInfo *ClassName,
12467 SourceLocation ClassNameLoc);
12468 void CodeCompleteObjCImplementationDecl(Scope *S);
12469 void CodeCompleteObjCInterfaceCategory(Scope *S,
12470 IdentifierInfo *ClassName,
12471 SourceLocation ClassNameLoc);
12472 void CodeCompleteObjCImplementationCategory(Scope *S,
12473 IdentifierInfo *ClassName,
12474 SourceLocation ClassNameLoc);
12475 void CodeCompleteObjCPropertyDefinition(Scope *S);
12476 void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
12477 IdentifierInfo *PropertyName);
12478 void CodeCompleteObjCMethodDecl(Scope *S, Optional<bool> IsInstanceMethod,
12479 ParsedType ReturnType);
12480 void CodeCompleteObjCMethodDeclSelector(Scope *S,
12481 bool IsInstanceMethod,
12482 bool AtParameterName,
12483 ParsedType ReturnType,
12484 ArrayRef<IdentifierInfo *> SelIdents);
12485 void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName,
12486 SourceLocation ClassNameLoc,
12487 bool IsBaseExprStatement);
12488 void CodeCompletePreprocessorDirective(bool InConditional);
12489 void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
12490 void CodeCompletePreprocessorMacroName(bool IsDefinition);
12491 void CodeCompletePreprocessorExpression();
12492 void CodeCompletePreprocessorMacroArgument(Scope *S,
12493 IdentifierInfo *Macro,
12494 MacroInfo *MacroInfo,
12495 unsigned Argument);
12496 void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
12497 void CodeCompleteNaturalLanguage();
12498 void CodeCompleteAvailabilityPlatformName();
12499 void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
12500 CodeCompletionTUInfo &CCTUInfo,
12501 SmallVectorImpl<CodeCompletionResult> &Results);
12502 //@}
12503
12504 //===--------------------------------------------------------------------===//
12505 // Extra semantic analysis beyond the C type system
12506
12507public:
12508 SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
12509 unsigned ByteNo) const;
12510
12511private:
12512 void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
12513 const ArraySubscriptExpr *ASE=nullptr,
12514 bool AllowOnePastEnd=true, bool IndexNegated=false);
12515 void CheckArrayAccess(const Expr *E);
12516 // Used to grab the relevant information from a FormatAttr and a
12517 // FunctionDeclaration.
12518 struct FormatStringInfo {
12519 unsigned FormatIdx;
12520 unsigned FirstDataArg;
12521 bool HasVAListArg;
12522 };
12523
12524 static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
12525 FormatStringInfo *FSI);
12526 bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
12527 const FunctionProtoType *Proto);
12528 bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
12529 ArrayRef<const Expr *> Args);
12530 bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
12531 const FunctionProtoType *Proto);
12532 bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
12533 void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
12534 ArrayRef<const Expr *> Args,
12535 const FunctionProtoType *Proto, SourceLocation Loc);
12536
12537 void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
12538 StringRef ParamName, QualType ArgTy, QualType ParamTy);
12539
12540 void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
12541 const Expr *ThisArg, ArrayRef<const Expr *> Args,
12542 bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
12543 VariadicCallType CallType);
12544
12545 bool CheckObjCString(Expr *Arg);
12546 ExprResult CheckOSLogFormatStringArg(Expr *Arg);
12547
12548 ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl,
12549 unsigned BuiltinID, CallExpr *TheCall);
12550
12551 bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12552 CallExpr *TheCall);
12553
12554 void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
12555
12556 bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
12557 unsigned MaxWidth);
12558 bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12559 CallExpr *TheCall);
12560 bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12561 bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12562 bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12563 CallExpr *TheCall);
12564 bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg,
12565 bool WantCDE);
12566 bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12567 CallExpr *TheCall);
12568
12569 bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12570 CallExpr *TheCall);
12571 bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12572 bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12573 bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12574 bool CheckMipsBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12575 CallExpr *TheCall);
12576 bool CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
12577 CallExpr *TheCall);
12578 bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12579 bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12580 bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall);
12581 bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall);
12582 bool CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall);
12583 bool CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
12584 ArrayRef<int> ArgNums);
12585 bool CheckX86BuiltinTileDuplicate(CallExpr *TheCall, ArrayRef<int> ArgNums);
12586 bool CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
12587 ArrayRef<int> ArgNums);
12588 bool CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12589 CallExpr *TheCall);
12590 bool CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12591 CallExpr *TheCall);
12592 bool CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12593 bool CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum);
12594 bool CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12595 CallExpr *TheCall);
12596
12597 bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
12598 bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call);
12599 bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
12600 bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
12601 bool SemaBuiltinComplex(CallExpr *TheCall);
12602 bool SemaBuiltinVSX(CallExpr *TheCall);
12603 bool SemaBuiltinOSLogFormat(CallExpr *TheCall);
12604 bool SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum);
12605
12606public:
12607 // Used by C++ template instantiation.
12608 ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
12609 ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
12610 SourceLocation BuiltinLoc,
12611 SourceLocation RParenLoc);
12612
12613private:
12614 bool SemaBuiltinPrefetch(CallExpr *TheCall);
12615 bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall);
12616 bool SemaBuiltinArithmeticFence(CallExpr *TheCall);
12617 bool SemaBuiltinAssume(CallExpr *TheCall);
12618 bool SemaBuiltinAssumeAligned(CallExpr *TheCall);
12619 bool SemaBuiltinLongjmp(CallExpr *TheCall);
12620 bool SemaBuiltinSetjmp(CallExpr *TheCall);
12621 ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
12622 ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult);
12623 ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
12624 AtomicExpr::AtomicOp Op);
12625 ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
12626 bool IsDelete);
12627 bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
12628 llvm::APSInt &Result);
12629 bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
12630 int High, bool RangeIsError = true);
12631 bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
12632 unsigned Multiple);
12633 bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
12634 bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
12635 unsigned ArgBits);
12636 bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
12637 unsigned ArgBits);
12638 bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
12639 int ArgNum, unsigned ExpectedFieldNum,
12640 bool AllowName);
12641 bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall);
12642 bool SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeDesc);
12643
12644 bool CheckPPCMMAType(QualType Type, SourceLocation TypeLoc);
12645
12646 // Matrix builtin handling.
12647 ExprResult SemaBuiltinMatrixTranspose(CallExpr *TheCall,
12648 ExprResult CallResult);
12649 ExprResult SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
12650 ExprResult CallResult);
12651 ExprResult SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
12652 ExprResult CallResult);
12653
12654public:
12655 enum FormatStringType {
12656 FST_Scanf,
12657 FST_Printf,
12658 FST_NSString,
12659 FST_Strftime,
12660 FST_Strfmon,
12661 FST_Kprintf,
12662 FST_FreeBSDKPrintf,
12663 FST_OSTrace,
12664 FST_OSLog,
12665 FST_Unknown
12666 };
12667 static FormatStringType GetFormatStringType(const FormatAttr *Format);
12668
12669 bool FormatStringHasSArg(const StringLiteral *FExpr);
12670
12671 static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx);
12672
12673private:
12674 bool CheckFormatArguments(const FormatAttr *Format,
12675 ArrayRef<const Expr *> Args,
12676 bool IsCXXMember,
12677 VariadicCallType CallType,
12678 SourceLocation Loc, SourceRange Range,
12679 llvm::SmallBitVector &CheckedVarArgs);
12680 bool CheckFormatArguments(ArrayRef<const Expr *> Args,
12681 bool HasVAListArg, unsigned format_idx,
12682 unsigned firstDataArg, FormatStringType Type,
12683 VariadicCallType CallType,
12684 SourceLocation Loc, SourceRange range,
12685 llvm::SmallBitVector &CheckedVarArgs);
12686
12687 void CheckAbsoluteValueFunction(const CallExpr *Call,
12688 const FunctionDecl *FDecl);
12689
12690 void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
12691
12692 void CheckMemaccessArguments(const CallExpr *Call,
12693 unsigned BId,
12694 IdentifierInfo *FnName);
12695
12696 void CheckStrlcpycatArguments(const CallExpr *Call,
12697 IdentifierInfo *FnName);
12698
12699 void CheckStrncatArguments(const CallExpr *Call,
12700 IdentifierInfo *FnName);
12701
12702 void CheckFreeArguments(const CallExpr *E);
12703
12704 void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
12705 SourceLocation ReturnLoc,
12706 bool isObjCMethod = false,
12707 const AttrVec *Attrs = nullptr,
12708 const FunctionDecl *FD = nullptr);
12709
12710public:
12711 void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS);
12712
12713private:
12714 void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
12715 void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
12716 void CheckForIntOverflow(Expr *E);
12717 void CheckUnsequencedOperations(const Expr *E);
12718
12719 /// Perform semantic checks on a completed expression. This will either
12720 /// be a full-expression or a default argument expression.
12721 void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
12722 bool IsConstexpr = false);
12723
12724 void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
12725 Expr *Init);
12726
12727 /// Check if there is a field shadowing.
12728 void CheckShadowInheritedFields(const SourceLocation &Loc,
12729 DeclarationName FieldName,
12730 const CXXRecordDecl *RD,
12731 bool DeclIsField = true);
12732
12733 /// Check if the given expression contains 'break' or 'continue'
12734 /// statement that produces control flow different from GCC.
12735 void CheckBreakContinueBinding(Expr *E);
12736
12737 /// Check whether receiver is mutable ObjC container which
12738 /// attempts to add itself into the container
12739 void CheckObjCCircularContainer(ObjCMessageExpr *Message);
12740
12741 void CheckTCBEnforcement(const CallExpr *TheCall, const FunctionDecl *Callee);
12742
12743 void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
12744 void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
12745 bool DeleteWasArrayForm);
12746public:
12747 /// Register a magic integral constant to be used as a type tag.
12748 void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
12749 uint64_t MagicValue, QualType Type,
12750 bool LayoutCompatible, bool MustBeNull);
12751
12752 struct TypeTagData {
12753 TypeTagData() {}
12754
12755 TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) :
12756 Type(Type), LayoutCompatible(LayoutCompatible),
12757 MustBeNull(MustBeNull)
12758 {}
12759
12760 QualType Type;
12761
12762 /// If true, \c Type should be compared with other expression's types for
12763 /// layout-compatibility.
12764 unsigned LayoutCompatible : 1;
12765 unsigned MustBeNull : 1;
12766 };
12767
12768 /// A pair of ArgumentKind identifier and magic value. This uniquely
12769 /// identifies the magic value.
12770 typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
12771
12772private:
12773 /// A map from magic value to type information.
12774 std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
12775 TypeTagForDatatypeMagicValues;
12776
12777 /// Peform checks on a call of a function with argument_with_type_tag
12778 /// or pointer_with_type_tag attributes.
12779 void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
12780 const ArrayRef<const Expr *> ExprArgs,
12781 SourceLocation CallSiteLoc);
12782
12783 /// Check if we are taking the address of a packed field
12784 /// as this may be a problem if the pointer value is dereferenced.
12785 void CheckAddressOfPackedMember(Expr *rhs);
12786
12787 /// The parser's current scope.
12788 ///
12789 /// The parser maintains this state here.
12790 Scope *CurScope;
12791
12792 mutable IdentifierInfo *Ident_super;
12793 mutable IdentifierInfo *Ident___float128;
12794
12795 /// Nullability type specifiers.
12796 IdentifierInfo *Ident__Nonnull = nullptr;
12797 IdentifierInfo *Ident__Nullable = nullptr;
12798 IdentifierInfo *Ident__Nullable_result = nullptr;
12799 IdentifierInfo *Ident__Null_unspecified = nullptr;
12800
12801 IdentifierInfo *Ident_NSError = nullptr;
12802
12803 /// The handler for the FileChanged preprocessor events.
12804 ///
12805 /// Used for diagnostics that implement custom semantic analysis for #include
12806 /// directives, like -Wpragma-pack.
12807 sema::SemaPPCallbacks *SemaPPCallbackHandler;
12808
12809protected:
12810 friend class Parser;
12811 friend class InitializationSequence;
12812 friend class ASTReader;
12813 friend class ASTDeclReader;
12814 friend class ASTWriter;
12815
12816public:
12817 /// Retrieve the keyword associated
12818 IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
12819
12820 /// The struct behind the CFErrorRef pointer.
12821 RecordDecl *CFError = nullptr;
12822 bool isCFError(RecordDecl *D);
12823
12824 /// Retrieve the identifier "NSError".
12825 IdentifierInfo *getNSErrorIdent();
12826
12827 /// Retrieve the parser's current scope.
12828 ///
12829 /// This routine must only be used when it is certain that semantic analysis
12830 /// and the parser are in precisely the same context, which is not the case
12831 /// when, e.g., we are performing any kind of template instantiation.
12832 /// Therefore, the only safe places to use this scope are in the parser
12833 /// itself and in routines directly invoked from the parser and *never* from
12834 /// template substitution or instantiation.
12835 Scope *getCurScope() const { return CurScope; }
12836
12837 void incrementMSManglingNumber() const {
12838 return CurScope->incrementMSManglingNumber();
12839 }
12840
12841 IdentifierInfo *getSuperIdentifier() const;
12842 IdentifierInfo *getFloat128Identifier() const;
12843
12844 Decl *getObjCDeclContext() const;
12845
12846 DeclContext *getCurLexicalContext() const {
12847 return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
12848 }
12849
12850 const DeclContext *getCurObjCLexicalContext() const {
12851 const DeclContext *DC = getCurLexicalContext();
12852 // A category implicitly has the attribute of the interface.
12853 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC))
12854 DC = CatD->getClassInterface();
12855 return DC;
12856 }
12857
12858 /// Determine the number of levels of enclosing template parameters. This is
12859 /// only usable while parsing. Note that this does not include dependent
12860 /// contexts in which no template parameters have yet been declared, such as
12861 /// in a terse function template or generic lambda before the first 'auto' is
12862 /// encountered.
12863 unsigned getTemplateDepth(Scope *S) const;
12864
12865 /// To be used for checking whether the arguments being passed to
12866 /// function exceeds the number of parameters expected for it.
12867 static bool TooManyArguments(size_t NumParams, size_t NumArgs,
12868 bool PartialOverloading = false) {
12869 // We check whether we're just after a comma in code-completion.
12870 if (NumArgs > 0 && PartialOverloading)
12871 return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
12872 return NumArgs > NumParams;
12873 }
12874
12875 // Emitting members of dllexported classes is delayed until the class
12876 // (including field initializers) is fully parsed.
12877 SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses;
12878 SmallVector<CXXMethodDecl*, 4> DelayedDllExportMemberFunctions;
12879
12880private:
12881 int ParsingClassDepth = 0;
12882
12883 class SavePendingParsedClassStateRAII {
12884 public:
12885 SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
12886
12887 ~SavePendingParsedClassStateRAII() {
12888 assert(S.DelayedOverridingExceptionSpecChecks.empty() &&(static_cast <bool> (S.DelayedOverridingExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedOverridingExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12889, __extension__ __PRETTY_FUNCTION__))
12889 "there shouldn't be any pending delayed exception spec checks")(static_cast <bool> (S.DelayedOverridingExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedOverridingExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12889, __extension__ __PRETTY_FUNCTION__))
;
12890 assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&(static_cast <bool> (S.DelayedEquivalentExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedEquivalentExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12891, __extension__ __PRETTY_FUNCTION__))
12891 "there shouldn't be any pending delayed exception spec checks")(static_cast <bool> (S.DelayedEquivalentExceptionSpecChecks
.empty() && "there shouldn't be any pending delayed exception spec checks"
) ? void (0) : __assert_fail ("S.DelayedEquivalentExceptionSpecChecks.empty() && \"there shouldn't be any pending delayed exception spec checks\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/Sema/Sema.h"
, 12891, __extension__ __PRETTY_FUNCTION__))
;
12892 swapSavedState();
12893 }
12894
12895 private:
12896 Sema &S;
12897 decltype(DelayedOverridingExceptionSpecChecks)
12898 SavedOverridingExceptionSpecChecks;
12899 decltype(DelayedEquivalentExceptionSpecChecks)
12900 SavedEquivalentExceptionSpecChecks;
12901
12902 void swapSavedState() {
12903 SavedOverridingExceptionSpecChecks.swap(
12904 S.DelayedOverridingExceptionSpecChecks);
12905 SavedEquivalentExceptionSpecChecks.swap(
12906 S.DelayedEquivalentExceptionSpecChecks);
12907 }
12908 };
12909
12910 /// Helper class that collects misaligned member designations and
12911 /// their location info for delayed diagnostics.
12912 struct MisalignedMember {
12913 Expr *E;
12914 RecordDecl *RD;
12915 ValueDecl *MD;
12916 CharUnits Alignment;
12917
12918 MisalignedMember() : E(), RD(), MD(), Alignment() {}
12919 MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
12920 CharUnits Alignment)
12921 : E(E), RD(RD), MD(MD), Alignment(Alignment) {}
12922 explicit MisalignedMember(Expr *E)
12923 : MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
12924
12925 bool operator==(const MisalignedMember &m) { return this->E == m.E; }
12926 };
12927 /// Small set of gathered accesses to potentially misaligned members
12928 /// due to the packed attribute.
12929 SmallVector<MisalignedMember, 4> MisalignedMembers;
12930
12931 /// Adds an expression to the set of gathered misaligned members.
12932 void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
12933 CharUnits Alignment);
12934
12935public:
12936 /// Diagnoses the current set of gathered accesses. This typically
12937 /// happens at full expression level. The set is cleared after emitting the
12938 /// diagnostics.
12939 void DiagnoseMisalignedMembers();
12940
12941 /// This function checks if the expression is in the sef of potentially
12942 /// misaligned members and it is converted to some pointer type T with lower
12943 /// or equal alignment requirements. If so it removes it. This is used when
12944 /// we do not want to diagnose such misaligned access (e.g. in conversions to
12945 /// void*).
12946 void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
12947
12948 /// This function calls Action when it determines that E designates a
12949 /// misaligned member due to the packed attribute. This is used to emit
12950 /// local diagnostics like in reference binding.
12951 void RefersToMemberWithReducedAlignment(
12952 Expr *E,
12953 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
12954 Action);
12955
12956 /// Describes the reason a calling convention specification was ignored, used
12957 /// for diagnostics.
12958 enum class CallingConventionIgnoredReason {
12959 ForThisTarget = 0,
12960 VariadicFunction,
12961 ConstructorDestructor,
12962 BuiltinFunction
12963 };
12964 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12965 /// context is "used as device code".
12966 ///
12967 /// - If CurLexicalContext is a kernel function or it is known that the
12968 /// function will be emitted for the device, emits the diagnostics
12969 /// immediately.
12970 /// - If CurLexicalContext is a function and we are compiling
12971 /// for the device, but we don't know that this function will be codegen'ed
12972 /// for devive yet, creates a diagnostic which is emitted if and when we
12973 /// realize that the function will be codegen'ed.
12974 ///
12975 /// Example usage:
12976 ///
12977 /// Diagnose __float128 type usage only from SYCL device code if the current
12978 /// target doesn't support it
12979 /// if (!S.Context.getTargetInfo().hasFloat128Type() &&
12980 /// S.getLangOpts().SYCLIsDevice)
12981 /// SYCLDiagIfDeviceCode(Loc, diag::err_type_unsupported) << "__float128";
12982 SemaDiagnosticBuilder SYCLDiagIfDeviceCode(SourceLocation Loc,
12983 unsigned DiagID);
12984
12985 /// Check whether we're allowed to call Callee from the current context.
12986 ///
12987 /// - If the call is never allowed in a semantically-correct program
12988 /// emits an error and returns false.
12989 ///
12990 /// - If the call is allowed in semantically-correct programs, but only if
12991 /// it's never codegen'ed, creates a deferred diagnostic to be emitted if
12992 /// and when the caller is codegen'ed, and returns true.
12993 ///
12994 /// - Otherwise, returns true without emitting any diagnostics.
12995 ///
12996 /// Adds Callee to DeviceCallGraph if we don't know if its caller will be
12997 /// codegen'ed yet.
12998 bool checkSYCLDeviceFunction(SourceLocation Loc, FunctionDecl *Callee);
12999};
13000
13001/// RAII object that enters a new expression evaluation context.
13002class EnterExpressionEvaluationContext {
13003 Sema &Actions;
13004 bool Entered = true;
13005
13006public:
13007 EnterExpressionEvaluationContext(
13008 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13009 Decl *LambdaContextDecl = nullptr,
13010 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13011 Sema::ExpressionEvaluationContextRecord::EK_Other,
13012 bool ShouldEnter = true)
13013 : Actions(Actions), Entered(ShouldEnter) {
13014 if (Entered)
13015 Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl,
13016 ExprContext);
13017 }
13018 EnterExpressionEvaluationContext(
13019 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13020 Sema::ReuseLambdaContextDecl_t,
13021 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13022 Sema::ExpressionEvaluationContextRecord::EK_Other)
13023 : Actions(Actions) {
13024 Actions.PushExpressionEvaluationContext(
13025 NewContext, Sema::ReuseLambdaContextDecl, ExprContext);
13026 }
13027
13028 enum InitListTag { InitList };
13029 EnterExpressionEvaluationContext(Sema &Actions, InitListTag,
13030 bool ShouldEnter = true)
13031 : Actions(Actions), Entered(false) {
13032 // In C++11 onwards, narrowing checks are performed on the contents of
13033 // braced-init-lists, even when they occur within unevaluated operands.
13034 // Therefore we still need to instantiate constexpr functions used in such
13035 // a context.
13036 if (ShouldEnter && Actions.isUnevaluatedContext() &&
13037 Actions.getLangOpts().CPlusPlus11) {
13038 Actions.PushExpressionEvaluationContext(
13039 Sema::ExpressionEvaluationContext::UnevaluatedList);
13040 Entered = true;
13041 }
13042 }
13043
13044 ~EnterExpressionEvaluationContext() {
13045 if (Entered)
13046 Actions.PopExpressionEvaluationContext();
13047 }
13048};
13049
13050DeductionFailureInfo
13051MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK,
13052 sema::TemplateDeductionInfo &Info);
13053
13054/// Contains a late templated function.
13055/// Will be parsed at the end of the translation unit, used by Sema & Parser.
13056struct LateParsedTemplate {
13057 CachedTokens Toks;
13058 /// The template function declaration to be late parsed.
13059 Decl *D;
13060};
13061
13062template <>
13063void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation,
13064 PragmaMsStackAction Action,
13065 llvm::StringRef StackSlotLabel,
13066 AlignPackInfo Value);
13067
13068} // end namespace clang
13069
13070namespace llvm {
13071// Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its
13072// SourceLocation.
13073template <> struct DenseMapInfo<clang::Sema::FunctionDeclAndLoc> {
13074 using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc;
13075 using FDBaseInfo = DenseMapInfo<clang::CanonicalDeclPtr<clang::FunctionDecl>>;
13076
13077 static FunctionDeclAndLoc getEmptyKey() {
13078 return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()};
13079 }
13080
13081 static FunctionDeclAndLoc getTombstoneKey() {
13082 return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()};
13083 }
13084
13085 static unsigned getHashValue(const FunctionDeclAndLoc &FDL) {
13086 return hash_combine(FDBaseInfo::getHashValue(FDL.FD),
13087 FDL.Loc.getHashValue());
13088 }
13089
13090 static bool isEqual(const FunctionDeclAndLoc &LHS,
13091 const FunctionDeclAndLoc &RHS) {
13092 return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc;
13093 }
13094};
13095} // namespace llvm
13096
13097#endif