Bug Summary

File:tools/clang/lib/Sema/SemaType.cpp
Warning:line 4929, column 9
Value stored to 'ExpectNoDerefChunk' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaType.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp -faddrsig
1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements type-related semantic analysis.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/ASTStructuralEquivalence.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/AST/TypeLocVisitor.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/DelayedDiagnostic.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/SemaInternal.h"
33#include "clang/Sema/Template.h"
34#include "clang/Sema/TemplateInstCallback.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringSwitch.h"
38#include "llvm/Support/ErrorHandling.h"
39
40using namespace clang;
41
42enum TypeDiagSelector {
43 TDS_Function,
44 TDS_Pointer,
45 TDS_ObjCObjOrBlock
46};
47
48/// isOmittedBlockReturnType - Return true if this declarator is missing a
49/// return type because this is a omitted return type on a block literal.
50static bool isOmittedBlockReturnType(const Declarator &D) {
51 if (D.getContext() != DeclaratorContext::BlockLiteralContext ||
52 D.getDeclSpec().hasTypeSpecifier())
53 return false;
54
55 if (D.getNumTypeObjects() == 0)
56 return true; // ^{ ... }
57
58 if (D.getNumTypeObjects() == 1 &&
59 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
60 return true; // ^(int X, float Y) { ... }
61
62 return false;
63}
64
65/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
66/// doesn't apply to the given type.
67static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
68 QualType type) {
69 TypeDiagSelector WhichType;
70 bool useExpansionLoc = true;
71 switch (attr.getKind()) {
72 case ParsedAttr::AT_ObjCGC:
73 WhichType = TDS_Pointer;
74 break;
75 case ParsedAttr::AT_ObjCOwnership:
76 WhichType = TDS_ObjCObjOrBlock;
77 break;
78 default:
79 // Assume everything else was a function attribute.
80 WhichType = TDS_Function;
81 useExpansionLoc = false;
82 break;
83 }
84
85 SourceLocation loc = attr.getLoc();
86 StringRef name = attr.getName()->getName();
87
88 // The GC attributes are usually written with macros; special-case them.
89 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
90 : nullptr;
91 if (useExpansionLoc && loc.isMacroID() && II) {
92 if (II->isStr("strong")) {
93 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
94 } else if (II->isStr("weak")) {
95 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
96 }
97 }
98
99 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
100 << type;
101}
102
103// objc_gc applies to Objective-C pointers or, otherwise, to the
104// smallest available pointer type (i.e. 'void*' in 'void**').
105#define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \
106 case ParsedAttr::AT_ObjCGC: \
107 case ParsedAttr::AT_ObjCOwnership
108
109// Calling convention attributes.
110#define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
\
111 case ParsedAttr::AT_CDecl: \
112 case ParsedAttr::AT_FastCall: \
113 case ParsedAttr::AT_StdCall: \
114 case ParsedAttr::AT_ThisCall: \
115 case ParsedAttr::AT_RegCall: \
116 case ParsedAttr::AT_Pascal: \
117 case ParsedAttr::AT_SwiftCall: \
118 case ParsedAttr::AT_VectorCall: \
119 case ParsedAttr::AT_AArch64VectorPcs: \
120 case ParsedAttr::AT_MSABI: \
121 case ParsedAttr::AT_SysVABI: \
122 case ParsedAttr::AT_Pcs: \
123 case ParsedAttr::AT_IntelOclBicc: \
124 case ParsedAttr::AT_PreserveMost: \
125 case ParsedAttr::AT_PreserveAll
126
127// Function type attributes.
128#define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters
: case ParsedAttr::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl
: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case
ParsedAttr::AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr
::AT_Pascal: case ParsedAttr::AT_SwiftCall: case ParsedAttr::
AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr
::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs
: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost
: case ParsedAttr::AT_PreserveAll
\
129 case ParsedAttr::AT_NSReturnsRetained: \
130 case ParsedAttr::AT_NoReturn: \
131 case ParsedAttr::AT_Regparm: \
132 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
133 case ParsedAttr::AT_AnyX86NoCfCheck: \
134 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
135
136// Microsoft-specific type qualifiers.
137#define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
\
138 case ParsedAttr::AT_Ptr32: \
139 case ParsedAttr::AT_Ptr64: \
140 case ParsedAttr::AT_SPtr: \
141 case ParsedAttr::AT_UPtr
142
143// Nullability qualifiers.
144#define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullUnspecified
\
145 case ParsedAttr::AT_TypeNonNull: \
146 case ParsedAttr::AT_TypeNullable: \
147 case ParsedAttr::AT_TypeNullUnspecified
148
149namespace {
150 /// An object which stores processing state for the entire
151 /// GetTypeForDeclarator process.
152 class TypeProcessingState {
153 Sema &sema;
154
155 /// The declarator being processed.
156 Declarator &declarator;
157
158 /// The index of the declarator chunk we're currently processing.
159 /// May be the total number of valid chunks, indicating the
160 /// DeclSpec.
161 unsigned chunkIndex;
162
163 /// Whether there are non-trivial modifications to the decl spec.
164 bool trivial;
165
166 /// Whether we saved the attributes in the decl spec.
167 bool hasSavedAttrs;
168
169 /// The original set of attributes on the DeclSpec.
170 SmallVector<ParsedAttr *, 2> savedAttrs;
171
172 /// A list of attributes to diagnose the uselessness of when the
173 /// processing is complete.
174 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
175
176 /// Attributes corresponding to AttributedTypeLocs that we have not yet
177 /// populated.
178 // FIXME: The two-phase mechanism by which we construct Types and fill
179 // their TypeLocs makes it hard to correctly assign these. We keep the
180 // attributes in creation order as an attempt to make them line up
181 // properly.
182 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
183 SmallVector<TypeAttrPair, 8> AttrsForTypes;
184 bool AttrsForTypesSorted = true;
185
186 /// Flag to indicate we parsed a noderef attribute. This is used for
187 /// validating that noderef was used on a pointer or array.
188 bool parsedNoDeref;
189
190 public:
191 TypeProcessingState(Sema &sema, Declarator &declarator)
192 : sema(sema), declarator(declarator),
193 chunkIndex(declarator.getNumTypeObjects()), trivial(true),
194 hasSavedAttrs(false), parsedNoDeref(false) {}
195
196 Sema &getSema() const {
197 return sema;
198 }
199
200 Declarator &getDeclarator() const {
201 return declarator;
202 }
203
204 bool isProcessingDeclSpec() const {
205 return chunkIndex == declarator.getNumTypeObjects();
206 }
207
208 unsigned getCurrentChunkIndex() const {
209 return chunkIndex;
210 }
211
212 void setCurrentChunkIndex(unsigned idx) {
213 assert(idx <= declarator.getNumTypeObjects())((idx <= declarator.getNumTypeObjects()) ? static_cast<
void> (0) : __assert_fail ("idx <= declarator.getNumTypeObjects()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 213, __PRETTY_FUNCTION__))
;
214 chunkIndex = idx;
215 }
216
217 ParsedAttributesView &getCurrentAttributes() const {
218 if (isProcessingDeclSpec())
219 return getMutableDeclSpec().getAttributes();
220 return declarator.getTypeObject(chunkIndex).getAttrs();
221 }
222
223 /// Save the current set of attributes on the DeclSpec.
224 void saveDeclSpecAttrs() {
225 // Don't try to save them multiple times.
226 if (hasSavedAttrs) return;
227
228 DeclSpec &spec = getMutableDeclSpec();
229 for (ParsedAttr &AL : spec.getAttributes())
230 savedAttrs.push_back(&AL);
231 trivial &= savedAttrs.empty();
232 hasSavedAttrs = true;
233 }
234
235 /// Record that we had nowhere to put the given type attribute.
236 /// We will diagnose such attributes later.
237 void addIgnoredTypeAttr(ParsedAttr &attr) {
238 ignoredTypeAttrs.push_back(&attr);
239 }
240
241 /// Diagnose all the ignored type attributes, given that the
242 /// declarator worked out to the given type.
243 void diagnoseIgnoredTypeAttrs(QualType type) const {
244 for (auto *Attr : ignoredTypeAttrs)
245 diagnoseBadTypeAttribute(getSema(), *Attr, type);
246 }
247
248 /// Get an attributed type for the given attribute, and remember the Attr
249 /// object so that we can attach it to the AttributedTypeLoc.
250 QualType getAttributedType(Attr *A, QualType ModifiedType,
251 QualType EquivType) {
252 QualType T =
253 sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
254 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
255 AttrsForTypesSorted = false;
256 return T;
257 }
258
259 /// Extract and remove the Attr* for a given attributed type.
260 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
261 if (!AttrsForTypesSorted) {
262 std::stable_sort(AttrsForTypes.begin(), AttrsForTypes.end(),
263 [](const TypeAttrPair &A, const TypeAttrPair &B) {
264 return A.first < B.first;
265 });
266 AttrsForTypesSorted = true;
267 }
268
269 // FIXME: This is quadratic if we have lots of reuses of the same
270 // attributed type.
271 for (auto It = std::partition_point(
272 AttrsForTypes.begin(), AttrsForTypes.end(),
273 [=](const TypeAttrPair &A) { return A.first < AT; });
274 It != AttrsForTypes.end() && It->first == AT; ++It) {
275 if (It->second) {
276 const Attr *Result = It->second;
277 It->second = nullptr;
278 return Result;
279 }
280 }
281
282 llvm_unreachable("no Attr* for AttributedType*")::llvm::llvm_unreachable_internal("no Attr* for AttributedType*"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 282)
;
283 }
284
285 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
286
287 bool didParseNoDeref() const { return parsedNoDeref; }
288
289 ~TypeProcessingState() {
290 if (trivial) return;
291
292 restoreDeclSpecAttrs();
293 }
294
295 private:
296 DeclSpec &getMutableDeclSpec() const {
297 return const_cast<DeclSpec&>(declarator.getDeclSpec());
298 }
299
300 void restoreDeclSpecAttrs() {
301 assert(hasSavedAttrs)((hasSavedAttrs) ? static_cast<void> (0) : __assert_fail
("hasSavedAttrs", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 301, __PRETTY_FUNCTION__))
;
302
303 getMutableDeclSpec().getAttributes().clearListOnly();
304 for (ParsedAttr *AL : savedAttrs)
305 getMutableDeclSpec().getAttributes().addAtEnd(AL);
306 }
307 };
308} // end anonymous namespace
309
310static void moveAttrFromListToList(ParsedAttr &attr,
311 ParsedAttributesView &fromList,
312 ParsedAttributesView &toList) {
313 fromList.remove(&attr);
314 toList.addAtEnd(&attr);
315}
316
317/// The location of a type attribute.
318enum TypeAttrLocation {
319 /// The attribute is in the decl-specifier-seq.
320 TAL_DeclSpec,
321 /// The attribute is part of a DeclaratorChunk.
322 TAL_DeclChunk,
323 /// The attribute is immediately after the declaration's name.
324 TAL_DeclName
325};
326
327static void processTypeAttrs(TypeProcessingState &state, QualType &type,
328 TypeAttrLocation TAL, ParsedAttributesView &attrs);
329
330static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
331 QualType &type);
332
333static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
334 ParsedAttr &attr, QualType &type);
335
336static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
337 QualType &type);
338
339static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
340 ParsedAttr &attr, QualType &type);
341
342static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
343 ParsedAttr &attr, QualType &type) {
344 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
345 return handleObjCGCTypeAttr(state, attr, type);
346 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)((attr.getKind() == ParsedAttr::AT_ObjCOwnership) ? static_cast
<void> (0) : __assert_fail ("attr.getKind() == ParsedAttr::AT_ObjCOwnership"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 346, __PRETTY_FUNCTION__))
;
347 return handleObjCOwnershipTypeAttr(state, attr, type);
348}
349
350/// Given the index of a declarator chunk, check whether that chunk
351/// directly specifies the return type of a function and, if so, find
352/// an appropriate place for it.
353///
354/// \param i - a notional index which the search will start
355/// immediately inside
356///
357/// \param onlyBlockPointers Whether we should only look into block
358/// pointer types (vs. all pointer types).
359static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
360 unsigned i,
361 bool onlyBlockPointers) {
362 assert(i <= declarator.getNumTypeObjects())((i <= declarator.getNumTypeObjects()) ? static_cast<void
> (0) : __assert_fail ("i <= declarator.getNumTypeObjects()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 362, __PRETTY_FUNCTION__))
;
363
364 DeclaratorChunk *result = nullptr;
365
366 // First, look inwards past parens for a function declarator.
367 for (; i != 0; --i) {
368 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
369 switch (fnChunk.Kind) {
370 case DeclaratorChunk::Paren:
371 continue;
372
373 // If we find anything except a function, bail out.
374 case DeclaratorChunk::Pointer:
375 case DeclaratorChunk::BlockPointer:
376 case DeclaratorChunk::Array:
377 case DeclaratorChunk::Reference:
378 case DeclaratorChunk::MemberPointer:
379 case DeclaratorChunk::Pipe:
380 return result;
381
382 // If we do find a function declarator, scan inwards from that,
383 // looking for a (block-)pointer declarator.
384 case DeclaratorChunk::Function:
385 for (--i; i != 0; --i) {
386 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
387 switch (ptrChunk.Kind) {
388 case DeclaratorChunk::Paren:
389 case DeclaratorChunk::Array:
390 case DeclaratorChunk::Function:
391 case DeclaratorChunk::Reference:
392 case DeclaratorChunk::Pipe:
393 continue;
394
395 case DeclaratorChunk::MemberPointer:
396 case DeclaratorChunk::Pointer:
397 if (onlyBlockPointers)
398 continue;
399
400 LLVM_FALLTHROUGH[[clang::fallthrough]];
401
402 case DeclaratorChunk::BlockPointer:
403 result = &ptrChunk;
404 goto continue_outer;
405 }
406 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 406)
;
407 }
408
409 // If we run out of declarators doing that, we're done.
410 return result;
411 }
412 llvm_unreachable("bad declarator chunk kind")::llvm::llvm_unreachable_internal("bad declarator chunk kind"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 412)
;
413
414 // Okay, reconsider from our new point.
415 continue_outer: ;
416 }
417
418 // Ran out of chunks, bail out.
419 return result;
420}
421
422/// Given that an objc_gc attribute was written somewhere on a
423/// declaration *other* than on the declarator itself (for which, use
424/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
425/// didn't apply in whatever position it was written in, try to move
426/// it to a more appropriate position.
427static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
428 ParsedAttr &attr, QualType type) {
429 Declarator &declarator = state.getDeclarator();
430
431 // Move it to the outermost normal or block pointer declarator.
432 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
433 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
434 switch (chunk.Kind) {
435 case DeclaratorChunk::Pointer:
436 case DeclaratorChunk::BlockPointer: {
437 // But don't move an ARC ownership attribute to the return type
438 // of a block.
439 DeclaratorChunk *destChunk = nullptr;
440 if (state.isProcessingDeclSpec() &&
441 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
442 destChunk = maybeMovePastReturnType(declarator, i - 1,
443 /*onlyBlockPointers=*/true);
444 if (!destChunk) destChunk = &chunk;
445
446 moveAttrFromListToList(attr, state.getCurrentAttributes(),
447 destChunk->getAttrs());
448 return;
449 }
450
451 case DeclaratorChunk::Paren:
452 case DeclaratorChunk::Array:
453 continue;
454
455 // We may be starting at the return type of a block.
456 case DeclaratorChunk::Function:
457 if (state.isProcessingDeclSpec() &&
458 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
459 if (DeclaratorChunk *dest = maybeMovePastReturnType(
460 declarator, i,
461 /*onlyBlockPointers=*/true)) {
462 moveAttrFromListToList(attr, state.getCurrentAttributes(),
463 dest->getAttrs());
464 return;
465 }
466 }
467 goto error;
468
469 // Don't walk through these.
470 case DeclaratorChunk::Reference:
471 case DeclaratorChunk::MemberPointer:
472 case DeclaratorChunk::Pipe:
473 goto error;
474 }
475 }
476 error:
477
478 diagnoseBadTypeAttribute(state.getSema(), attr, type);
479}
480
481/// Distribute an objc_gc type attribute that was written on the
482/// declarator.
483static void distributeObjCPointerTypeAttrFromDeclarator(
484 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
485 Declarator &declarator = state.getDeclarator();
486
487 // objc_gc goes on the innermost pointer to something that's not a
488 // pointer.
489 unsigned innermost = -1U;
490 bool considerDeclSpec = true;
491 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
492 DeclaratorChunk &chunk = declarator.getTypeObject(i);
493 switch (chunk.Kind) {
494 case DeclaratorChunk::Pointer:
495 case DeclaratorChunk::BlockPointer:
496 innermost = i;
497 continue;
498
499 case DeclaratorChunk::Reference:
500 case DeclaratorChunk::MemberPointer:
501 case DeclaratorChunk::Paren:
502 case DeclaratorChunk::Array:
503 case DeclaratorChunk::Pipe:
504 continue;
505
506 case DeclaratorChunk::Function:
507 considerDeclSpec = false;
508 goto done;
509 }
510 }
511 done:
512
513 // That might actually be the decl spec if we weren't blocked by
514 // anything in the declarator.
515 if (considerDeclSpec) {
516 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
517 // Splice the attribute into the decl spec. Prevents the
518 // attribute from being applied multiple times and gives
519 // the source-location-filler something to work with.
520 state.saveDeclSpecAttrs();
521 moveAttrFromListToList(attr, declarator.getAttributes(),
522 declarator.getMutableDeclSpec().getAttributes());
523 return;
524 }
525 }
526
527 // Otherwise, if we found an appropriate chunk, splice the attribute
528 // into it.
529 if (innermost != -1U) {
530 moveAttrFromListToList(attr, declarator.getAttributes(),
531 declarator.getTypeObject(innermost).getAttrs());
532 return;
533 }
534
535 // Otherwise, diagnose when we're done building the type.
536 declarator.getAttributes().remove(&attr);
537 state.addIgnoredTypeAttr(attr);
538}
539
540/// A function type attribute was written somewhere in a declaration
541/// *other* than on the declarator itself or in the decl spec. Given
542/// that it didn't apply in whatever position it was written in, try
543/// to move it to a more appropriate position.
544static void distributeFunctionTypeAttr(TypeProcessingState &state,
545 ParsedAttr &attr, QualType type) {
546 Declarator &declarator = state.getDeclarator();
547
548 // Try to push the attribute from the return type of a function to
549 // the function itself.
550 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
551 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
552 switch (chunk.Kind) {
553 case DeclaratorChunk::Function:
554 moveAttrFromListToList(attr, state.getCurrentAttributes(),
555 chunk.getAttrs());
556 return;
557
558 case DeclaratorChunk::Paren:
559 case DeclaratorChunk::Pointer:
560 case DeclaratorChunk::BlockPointer:
561 case DeclaratorChunk::Array:
562 case DeclaratorChunk::Reference:
563 case DeclaratorChunk::MemberPointer:
564 case DeclaratorChunk::Pipe:
565 continue;
566 }
567 }
568
569 diagnoseBadTypeAttribute(state.getSema(), attr, type);
570}
571
572/// Try to distribute a function type attribute to the innermost
573/// function chunk or type. Returns true if the attribute was
574/// distributed, false if no location was found.
575static bool distributeFunctionTypeAttrToInnermost(
576 TypeProcessingState &state, ParsedAttr &attr,
577 ParsedAttributesView &attrList, QualType &declSpecType) {
578 Declarator &declarator = state.getDeclarator();
579
580 // Put it on the innermost function chunk, if there is one.
581 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
582 DeclaratorChunk &chunk = declarator.getTypeObject(i);
583 if (chunk.Kind != DeclaratorChunk::Function) continue;
584
585 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
586 return true;
587 }
588
589 return handleFunctionTypeAttr(state, attr, declSpecType);
590}
591
592/// A function type attribute was written in the decl spec. Try to
593/// apply it somewhere.
594static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
595 ParsedAttr &attr,
596 QualType &declSpecType) {
597 state.saveDeclSpecAttrs();
598
599 // C++11 attributes before the decl specifiers actually appertain to
600 // the declarators. Move them straight there. We don't support the
601 // 'put them wherever you like' semantics we allow for GNU attributes.
602 if (attr.isCXX11Attribute()) {
603 moveAttrFromListToList(attr, state.getCurrentAttributes(),
604 state.getDeclarator().getAttributes());
605 return;
606 }
607
608 // Try to distribute to the innermost.
609 if (distributeFunctionTypeAttrToInnermost(
610 state, attr, state.getCurrentAttributes(), declSpecType))
611 return;
612
613 // If that failed, diagnose the bad attribute when the declarator is
614 // fully built.
615 state.addIgnoredTypeAttr(attr);
616}
617
618/// A function type attribute was written on the declarator. Try to
619/// apply it somewhere.
620static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
621 ParsedAttr &attr,
622 QualType &declSpecType) {
623 Declarator &declarator = state.getDeclarator();
624
625 // Try to distribute to the innermost.
626 if (distributeFunctionTypeAttrToInnermost(
627 state, attr, declarator.getAttributes(), declSpecType))
628 return;
629
630 // If that failed, diagnose the bad attribute when the declarator is
631 // fully built.
632 declarator.getAttributes().remove(&attr);
633 state.addIgnoredTypeAttr(attr);
634}
635
636/// Given that there are attributes written on the declarator
637/// itself, try to distribute any type attributes to the appropriate
638/// declarator chunk.
639///
640/// These are attributes like the following:
641/// int f ATTR;
642/// int (f ATTR)();
643/// but not necessarily this:
644/// int f() ATTR;
645static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
646 QualType &declSpecType) {
647 // Collect all the type attributes from the declarator itself.
648 assert(!state.getDeclarator().getAttributes().empty() &&((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!"
) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 649, __PRETTY_FUNCTION__))
649 "declarator has no attrs!")((!state.getDeclarator().getAttributes().empty() && "declarator has no attrs!"
) ? static_cast<void> (0) : __assert_fail ("!state.getDeclarator().getAttributes().empty() && \"declarator has no attrs!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 649, __PRETTY_FUNCTION__))
;
650 // The called functions in this loop actually remove things from the current
651 // list, so iterating over the existing list isn't possible. Instead, make a
652 // non-owning copy and iterate over that.
653 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
654 for (ParsedAttr &attr : AttrsCopy) {
655 // Do not distribute C++11 attributes. They have strict rules for what
656 // they appertain to.
657 if (attr.isCXX11Attribute())
658 continue;
659
660 switch (attr.getKind()) {
661 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
662 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
663 break;
664
665 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters
: case ParsedAttr::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl
: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case
ParsedAttr::AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr
::AT_Pascal: case ParsedAttr::AT_SwiftCall: case ParsedAttr::
AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr
::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs
: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost
: case ParsedAttr::AT_PreserveAll
:
666 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
667 break;
668
669 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
670 // Microsoft type attributes cannot go after the declarator-id.
671 continue;
672
673 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullUnspecified
:
674 // Nullability specifiers cannot go after the declarator-id.
675
676 // Objective-C __kindof does not get distributed.
677 case ParsedAttr::AT_ObjCKindOf:
678 continue;
679
680 default:
681 break;
682 }
683 }
684}
685
686/// Add a synthetic '()' to a block-literal declarator if it is
687/// required, given the return type.
688static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
689 QualType declSpecType) {
690 Declarator &declarator = state.getDeclarator();
691
692 // First, check whether the declarator would produce a function,
693 // i.e. whether the innermost semantic chunk is a function.
694 if (declarator.isFunctionDeclarator()) {
695 // If so, make that declarator a prototyped declarator.
696 declarator.getFunctionTypeInfo().hasPrototype = true;
697 return;
698 }
699
700 // If there are any type objects, the type as written won't name a
701 // function, regardless of the decl spec type. This is because a
702 // block signature declarator is always an abstract-declarator, and
703 // abstract-declarators can't just be parentheses chunks. Therefore
704 // we need to build a function chunk unless there are no type
705 // objects and the decl spec type is a function.
706 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
707 return;
708
709 // Note that there *are* cases with invalid declarators where
710 // declarators consist solely of parentheses. In general, these
711 // occur only in failed efforts to make function declarators, so
712 // faking up the function chunk is still the right thing to do.
713
714 // Otherwise, we need to fake up a function declarator.
715 SourceLocation loc = declarator.getBeginLoc();
716
717 // ...and *prepend* it to the declarator.
718 SourceLocation NoLoc;
719 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
720 /*HasProto=*/true,
721 /*IsAmbiguous=*/false,
722 /*LParenLoc=*/NoLoc,
723 /*ArgInfo=*/nullptr,
724 /*NumArgs=*/0,
725 /*EllipsisLoc=*/NoLoc,
726 /*RParenLoc=*/NoLoc,
727 /*TypeQuals=*/0,
728 /*RefQualifierIsLvalueRef=*/true,
729 /*RefQualifierLoc=*/NoLoc,
730 /*ConstQualifierLoc=*/NoLoc,
731 /*VolatileQualifierLoc=*/NoLoc,
732 /*RestrictQualifierLoc=*/NoLoc,
733 /*MutableLoc=*/NoLoc, EST_None,
734 /*ESpecRange=*/SourceRange(),
735 /*Exceptions=*/nullptr,
736 /*ExceptionRanges=*/nullptr,
737 /*NumExceptions=*/0,
738 /*NoexceptExpr=*/nullptr,
739 /*ExceptionSpecTokens=*/nullptr,
740 /*DeclsInPrototype=*/None,
741 loc, loc, declarator));
742
743 // For consistency, make sure the state still has us as processing
744 // the decl spec.
745 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)((state.getCurrentChunkIndex() == declarator.getNumTypeObjects
() - 1) ? static_cast<void> (0) : __assert_fail ("state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 745, __PRETTY_FUNCTION__))
;
746 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
747}
748
749static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
750 unsigned &TypeQuals,
751 QualType TypeSoFar,
752 unsigned RemoveTQs,
753 unsigned DiagID) {
754 // If this occurs outside a template instantiation, warn the user about
755 // it; they probably didn't mean to specify a redundant qualifier.
756 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
757 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
758 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
759 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
760 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
761 if (!(RemoveTQs & Qual.first))
762 continue;
763
764 if (!S.inTemplateInstantiation()) {
765 if (TypeQuals & Qual.first)
766 S.Diag(Qual.second, DiagID)
767 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
768 << FixItHint::CreateRemoval(Qual.second);
769 }
770
771 TypeQuals &= ~Qual.first;
772 }
773}
774
775/// Return true if this is omitted block return type. Also check type
776/// attributes and type qualifiers when returning true.
777static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
778 QualType Result) {
779 if (!isOmittedBlockReturnType(declarator))
780 return false;
781
782 // Warn if we see type attributes for omitted return type on a block literal.
783 SmallVector<ParsedAttr *, 2> ToBeRemoved;
784 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
785 if (AL.isInvalid() || !AL.isTypeAttr())
786 continue;
787 S.Diag(AL.getLoc(),
788 diag::warn_block_literal_attributes_on_omitted_return_type)
789 << AL.getName();
790 ToBeRemoved.push_back(&AL);
791 }
792 // Remove bad attributes from the list.
793 for (ParsedAttr *AL : ToBeRemoved)
794 declarator.getMutableDeclSpec().getAttributes().remove(AL);
795
796 // Warn if we see type qualifiers for omitted return type on a block literal.
797 const DeclSpec &DS = declarator.getDeclSpec();
798 unsigned TypeQuals = DS.getTypeQualifiers();
799 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
800 diag::warn_block_literal_qualifiers_on_omitted_return_type);
801 declarator.getMutableDeclSpec().ClearTypeQualifiers();
802
803 return true;
804}
805
806/// Apply Objective-C type arguments to the given type.
807static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
808 ArrayRef<TypeSourceInfo *> typeArgs,
809 SourceRange typeArgsRange,
810 bool failOnError = false) {
811 // We can only apply type arguments to an Objective-C class type.
812 const auto *objcObjectType = type->getAs<ObjCObjectType>();
813 if (!objcObjectType || !objcObjectType->getInterface()) {
814 S.Diag(loc, diag::err_objc_type_args_non_class)
815 << type
816 << typeArgsRange;
817
818 if (failOnError)
819 return QualType();
820 return type;
821 }
822
823 // The class type must be parameterized.
824 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
825 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
826 if (!typeParams) {
827 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
828 << objcClass->getDeclName()
829 << FixItHint::CreateRemoval(typeArgsRange);
830
831 if (failOnError)
832 return QualType();
833
834 return type;
835 }
836
837 // The type must not already be specialized.
838 if (objcObjectType->isSpecialized()) {
839 S.Diag(loc, diag::err_objc_type_args_specialized_class)
840 << type
841 << FixItHint::CreateRemoval(typeArgsRange);
842
843 if (failOnError)
844 return QualType();
845
846 return type;
847 }
848
849 // Check the type arguments.
850 SmallVector<QualType, 4> finalTypeArgs;
851 unsigned numTypeParams = typeParams->size();
852 bool anyPackExpansions = false;
853 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
854 TypeSourceInfo *typeArgInfo = typeArgs[i];
855 QualType typeArg = typeArgInfo->getType();
856
857 // Type arguments cannot have explicit qualifiers or nullability.
858 // We ignore indirect sources of these, e.g. behind typedefs or
859 // template arguments.
860 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
861 bool diagnosed = false;
862 SourceRange rangeToRemove;
863 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
864 rangeToRemove = attr.getLocalSourceRange();
865 if (attr.getTypePtr()->getImmediateNullability()) {
866 typeArg = attr.getTypePtr()->getModifiedType();
867 S.Diag(attr.getBeginLoc(),
868 diag::err_objc_type_arg_explicit_nullability)
869 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
870 diagnosed = true;
871 }
872 }
873
874 if (!diagnosed) {
875 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
876 << typeArg << typeArg.getQualifiers().getAsString()
877 << FixItHint::CreateRemoval(rangeToRemove);
878 }
879 }
880
881 // Remove qualifiers even if they're non-local.
882 typeArg = typeArg.getUnqualifiedType();
883
884 finalTypeArgs.push_back(typeArg);
885
886 if (typeArg->getAs<PackExpansionType>())
887 anyPackExpansions = true;
888
889 // Find the corresponding type parameter, if there is one.
890 ObjCTypeParamDecl *typeParam = nullptr;
891 if (!anyPackExpansions) {
892 if (i < numTypeParams) {
893 typeParam = typeParams->begin()[i];
894 } else {
895 // Too many arguments.
896 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
897 << false
898 << objcClass->getDeclName()
899 << (unsigned)typeArgs.size()
900 << numTypeParams;
901 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
902 << objcClass;
903
904 if (failOnError)
905 return QualType();
906
907 return type;
908 }
909 }
910
911 // Objective-C object pointer types must be substitutable for the bounds.
912 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
913 // If we don't have a type parameter to match against, assume
914 // everything is fine. There was a prior pack expansion that
915 // means we won't be able to match anything.
916 if (!typeParam) {
917 assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast
<void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 917, __PRETTY_FUNCTION__))
;
918 continue;
919 }
920
921 // Retrieve the bound.
922 QualType bound = typeParam->getUnderlyingType();
923 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
924
925 // Determine whether the type argument is substitutable for the bound.
926 if (typeArgObjC->isObjCIdType()) {
927 // When the type argument is 'id', the only acceptable type
928 // parameter bound is 'id'.
929 if (boundObjC->isObjCIdType())
930 continue;
931 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
932 // Otherwise, we follow the assignability rules.
933 continue;
934 }
935
936 // Diagnose the mismatch.
937 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
938 diag::err_objc_type_arg_does_not_match_bound)
939 << typeArg << bound << typeParam->getDeclName();
940 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
941 << typeParam->getDeclName();
942
943 if (failOnError)
944 return QualType();
945
946 return type;
947 }
948
949 // Block pointer types are permitted for unqualified 'id' bounds.
950 if (typeArg->isBlockPointerType()) {
951 // If we don't have a type parameter to match against, assume
952 // everything is fine. There was a prior pack expansion that
953 // means we won't be able to match anything.
954 if (!typeParam) {
955 assert(anyPackExpansions && "Too many arguments?")((anyPackExpansions && "Too many arguments?") ? static_cast
<void> (0) : __assert_fail ("anyPackExpansions && \"Too many arguments?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 955, __PRETTY_FUNCTION__))
;
956 continue;
957 }
958
959 // Retrieve the bound.
960 QualType bound = typeParam->getUnderlyingType();
961 if (bound->isBlockCompatibleObjCPointerType(S.Context))
962 continue;
963
964 // Diagnose the mismatch.
965 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
966 diag::err_objc_type_arg_does_not_match_bound)
967 << typeArg << bound << typeParam->getDeclName();
968 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
969 << typeParam->getDeclName();
970
971 if (failOnError)
972 return QualType();
973
974 return type;
975 }
976
977 // Dependent types will be checked at instantiation time.
978 if (typeArg->isDependentType()) {
979 continue;
980 }
981
982 // Diagnose non-id-compatible type arguments.
983 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
984 diag::err_objc_type_arg_not_id_compatible)
985 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
986
987 if (failOnError)
988 return QualType();
989
990 return type;
991 }
992
993 // Make sure we didn't have the wrong number of arguments.
994 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
995 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
996 << (typeArgs.size() < typeParams->size())
997 << objcClass->getDeclName()
998 << (unsigned)finalTypeArgs.size()
999 << (unsigned)numTypeParams;
1000 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1001 << objcClass;
1002
1003 if (failOnError)
1004 return QualType();
1005
1006 return type;
1007 }
1008
1009 // Success. Form the specialized type.
1010 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1011}
1012
1013QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1014 SourceLocation ProtocolLAngleLoc,
1015 ArrayRef<ObjCProtocolDecl *> Protocols,
1016 ArrayRef<SourceLocation> ProtocolLocs,
1017 SourceLocation ProtocolRAngleLoc,
1018 bool FailOnError) {
1019 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1020 if (!Protocols.empty()) {
1021 bool HasError;
1022 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1023 HasError);
1024 if (HasError) {
1025 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1026 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1027 if (FailOnError) Result = QualType();
1028 }
1029 if (FailOnError && Result.isNull())
1030 return QualType();
1031 }
1032
1033 return Result;
1034}
1035
1036QualType Sema::BuildObjCObjectType(QualType BaseType,
1037 SourceLocation Loc,
1038 SourceLocation TypeArgsLAngleLoc,
1039 ArrayRef<TypeSourceInfo *> TypeArgs,
1040 SourceLocation TypeArgsRAngleLoc,
1041 SourceLocation ProtocolLAngleLoc,
1042 ArrayRef<ObjCProtocolDecl *> Protocols,
1043 ArrayRef<SourceLocation> ProtocolLocs,
1044 SourceLocation ProtocolRAngleLoc,
1045 bool FailOnError) {
1046 QualType Result = BaseType;
1047 if (!TypeArgs.empty()) {
1048 Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1049 SourceRange(TypeArgsLAngleLoc,
1050 TypeArgsRAngleLoc),
1051 FailOnError);
1052 if (FailOnError && Result.isNull())
1053 return QualType();
1054 }
1055
1056 if (!Protocols.empty()) {
1057 bool HasError;
1058 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1059 HasError);
1060 if (HasError) {
1061 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1062 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1063 if (FailOnError) Result = QualType();
1064 }
1065 if (FailOnError && Result.isNull())
1066 return QualType();
1067 }
1068
1069 return Result;
1070}
1071
1072TypeResult Sema::actOnObjCProtocolQualifierType(
1073 SourceLocation lAngleLoc,
1074 ArrayRef<Decl *> protocols,
1075 ArrayRef<SourceLocation> protocolLocs,
1076 SourceLocation rAngleLoc) {
1077 // Form id<protocol-list>.
1078 QualType Result = Context.getObjCObjectType(
1079 Context.ObjCBuiltinIdTy, { },
1080 llvm::makeArrayRef(
1081 (ObjCProtocolDecl * const *)protocols.data(),
1082 protocols.size()),
1083 false);
1084 Result = Context.getObjCObjectPointerType(Result);
1085
1086 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1087 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1088
1089 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1090 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1091
1092 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1093 .castAs<ObjCObjectTypeLoc>();
1094 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1095 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1096
1097 // No type arguments.
1098 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1099 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1100
1101 // Fill in protocol qualifiers.
1102 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1103 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1104 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1105 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1106
1107 // We're done. Return the completed type to the parser.
1108 return CreateParsedType(Result, ResultTInfo);
1109}
1110
1111TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1112 Scope *S,
1113 SourceLocation Loc,
1114 ParsedType BaseType,
1115 SourceLocation TypeArgsLAngleLoc,
1116 ArrayRef<ParsedType> TypeArgs,
1117 SourceLocation TypeArgsRAngleLoc,
1118 SourceLocation ProtocolLAngleLoc,
1119 ArrayRef<Decl *> Protocols,
1120 ArrayRef<SourceLocation> ProtocolLocs,
1121 SourceLocation ProtocolRAngleLoc) {
1122 TypeSourceInfo *BaseTypeInfo = nullptr;
1123 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1124 if (T.isNull())
1125 return true;
1126
1127 // Handle missing type-source info.
1128 if (!BaseTypeInfo)
1129 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1130
1131 // Extract type arguments.
1132 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1133 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1134 TypeSourceInfo *TypeArgInfo = nullptr;
1135 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1136 if (TypeArg.isNull()) {
1137 ActualTypeArgInfos.clear();
1138 break;
1139 }
1140
1141 assert(TypeArgInfo && "No type source info?")((TypeArgInfo && "No type source info?") ? static_cast
<void> (0) : __assert_fail ("TypeArgInfo && \"No type source info?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1141, __PRETTY_FUNCTION__))
;
1142 ActualTypeArgInfos.push_back(TypeArgInfo);
1143 }
1144
1145 // Build the object type.
1146 QualType Result = BuildObjCObjectType(
1147 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1148 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1149 ProtocolLAngleLoc,
1150 llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1151 Protocols.size()),
1152 ProtocolLocs, ProtocolRAngleLoc,
1153 /*FailOnError=*/false);
1154
1155 if (Result == T)
1156 return BaseType;
1157
1158 // Create source information for this type.
1159 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1160 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1161
1162 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1163 // object pointer type. Fill in source information for it.
1164 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1165 // The '*' is implicit.
1166 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1167 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1168 }
1169
1170 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1171 // Protocol qualifier information.
1172 if (OTPTL.getNumProtocols() > 0) {
1173 assert(OTPTL.getNumProtocols() == Protocols.size())((OTPTL.getNumProtocols() == Protocols.size()) ? static_cast<
void> (0) : __assert_fail ("OTPTL.getNumProtocols() == Protocols.size()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1173, __PRETTY_FUNCTION__))
;
1174 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1175 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1176 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1177 OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1178 }
1179
1180 // We're done. Return the completed type to the parser.
1181 return CreateParsedType(Result, ResultTInfo);
1182 }
1183
1184 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1185
1186 // Type argument information.
1187 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1188 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())((ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())
? static_cast<void> (0) : __assert_fail ("ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1188, __PRETTY_FUNCTION__))
;
1189 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1190 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1191 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1192 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1193 } else {
1194 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1195 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1196 }
1197
1198 // Protocol qualifier information.
1199 if (ObjCObjectTL.getNumProtocols() > 0) {
1200 assert(ObjCObjectTL.getNumProtocols() == Protocols.size())((ObjCObjectTL.getNumProtocols() == Protocols.size()) ? static_cast
<void> (0) : __assert_fail ("ObjCObjectTL.getNumProtocols() == Protocols.size()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1200, __PRETTY_FUNCTION__))
;
1201 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1202 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1203 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1204 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1205 } else {
1206 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1207 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1208 }
1209
1210 // Base type.
1211 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1212 if (ObjCObjectTL.getType() == T)
1213 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1214 else
1215 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1216
1217 // We're done. Return the completed type to the parser.
1218 return CreateParsedType(Result, ResultTInfo);
1219}
1220
1221static OpenCLAccessAttr::Spelling
1222getImageAccess(const ParsedAttributesView &Attrs) {
1223 for (const ParsedAttr &AL : Attrs)
1224 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1225 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1226 return OpenCLAccessAttr::Keyword_read_only;
1227}
1228
1229/// Convert the specified declspec to the appropriate type
1230/// object.
1231/// \param state Specifies the declarator containing the declaration specifier
1232/// to be converted, along with other associated processing state.
1233/// \returns The type described by the declaration specifiers. This function
1234/// never returns null.
1235static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1236 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1237 // checking.
1238
1239 Sema &S = state.getSema();
1240 Declarator &declarator = state.getDeclarator();
1241 DeclSpec &DS = declarator.getMutableDeclSpec();
1242 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1243 if (DeclLoc.isInvalid())
1244 DeclLoc = DS.getBeginLoc();
1245
1246 ASTContext &Context = S.Context;
1247
1248 QualType Result;
1249 switch (DS.getTypeSpecType()) {
1250 case DeclSpec::TST_void:
1251 Result = Context.VoidTy;
1252 break;
1253 case DeclSpec::TST_char:
1254 if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1255 Result = Context.CharTy;
1256 else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
1257 Result = Context.SignedCharTy;
1258 else {
1259 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&((DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1260, __PRETTY_FUNCTION__))
1260 "Unknown TSS value")((DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1260, __PRETTY_FUNCTION__))
;
1261 Result = Context.UnsignedCharTy;
1262 }
1263 break;
1264 case DeclSpec::TST_wchar:
1265 if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1266 Result = Context.WCharTy;
1267 else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
1268 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1269 << DS.getSpecifierName(DS.getTypeSpecType(),
1270 Context.getPrintingPolicy());
1271 Result = Context.getSignedWCharType();
1272 } else {
1273 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&((DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1274, __PRETTY_FUNCTION__))
1274 "Unknown TSS value")((DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && "Unknown TSS value"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecSign() == DeclSpec::TSS_unsigned && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1274, __PRETTY_FUNCTION__))
;
1275 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1276 << DS.getSpecifierName(DS.getTypeSpecType(),
1277 Context.getPrintingPolicy());
1278 Result = Context.getUnsignedWCharType();
1279 }
1280 break;
1281 case DeclSpec::TST_char8:
1282 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1283, __PRETTY_FUNCTION__))
1283 "Unknown TSS value")((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1283, __PRETTY_FUNCTION__))
;
1284 Result = Context.Char8Ty;
1285 break;
1286 case DeclSpec::TST_char16:
1287 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1288, __PRETTY_FUNCTION__))
1288 "Unknown TSS value")((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1288, __PRETTY_FUNCTION__))
;
1289 Result = Context.Char16Ty;
1290 break;
1291 case DeclSpec::TST_char32:
1292 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1293, __PRETTY_FUNCTION__))
1293 "Unknown TSS value")((DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
"Unknown TSS value") ? static_cast<void> (0) : __assert_fail
("DS.getTypeSpecSign() == DeclSpec::TSS_unspecified && \"Unknown TSS value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1293, __PRETTY_FUNCTION__))
;
1294 Result = Context.Char32Ty;
1295 break;
1296 case DeclSpec::TST_unspecified:
1297 // If this is a missing declspec in a block literal return context, then it
1298 // is inferred from the return statements inside the block.
1299 // The declspec is always missing in a lambda expr context; it is either
1300 // specified with a trailing return type or inferred.
1301 if (S.getLangOpts().CPlusPlus14 &&
1302 declarator.getContext() == DeclaratorContext::LambdaExprContext) {
1303 // In C++1y, a lambda's implicit return type is 'auto'.
1304 Result = Context.getAutoDeductType();
1305 break;
1306 } else if (declarator.getContext() ==
1307 DeclaratorContext::LambdaExprContext ||
1308 checkOmittedBlockReturnType(S, declarator,
1309 Context.DependentTy)) {
1310 Result = Context.DependentTy;
1311 break;
1312 }
1313
1314 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1315 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1316 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1317 // Note that the one exception to this is function definitions, which are
1318 // allowed to be completely missing a declspec. This is handled in the
1319 // parser already though by it pretending to have seen an 'int' in this
1320 // case.
1321 if (S.getLangOpts().ImplicitInt) {
1322 // In C89 mode, we only warn if there is a completely missing declspec
1323 // when one is not allowed.
1324 if (DS.isEmpty()) {
1325 S.Diag(DeclLoc, diag::ext_missing_declspec)
1326 << DS.getSourceRange()
1327 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1328 }
1329 } else if (!DS.hasTypeSpecifier()) {
1330 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1331 // "At least one type specifier shall be given in the declaration
1332 // specifiers in each declaration, and in the specifier-qualifier list in
1333 // each struct declaration and type name."
1334 if (S.getLangOpts().CPlusPlus) {
1335 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1336 << DS.getSourceRange();
1337
1338 // When this occurs in C++ code, often something is very broken with the
1339 // value being declared, poison it as invalid so we don't get chains of
1340 // errors.
1341 declarator.setInvalidType(true);
1342 } else if (S.getLangOpts().OpenCLVersion >= 200 && DS.isTypeSpecPipe()){
1343 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1344 << DS.getSourceRange();
1345 declarator.setInvalidType(true);
1346 } else {
1347 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1348 << DS.getSourceRange();
1349 }
1350 }
1351
1352 LLVM_FALLTHROUGH[[clang::fallthrough]];
1353 case DeclSpec::TST_int: {
1354 if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
1355 switch (DS.getTypeSpecWidth()) {
1356 case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
1357 case DeclSpec::TSW_short: Result = Context.ShortTy; break;
1358 case DeclSpec::TSW_long: Result = Context.LongTy; break;
1359 case DeclSpec::TSW_longlong:
1360 Result = Context.LongLongTy;
1361
1362 // 'long long' is a C99 or C++11 feature.
1363 if (!S.getLangOpts().C99) {
1364 if (S.getLangOpts().CPlusPlus)
1365 S.Diag(DS.getTypeSpecWidthLoc(),
1366 S.getLangOpts().CPlusPlus11 ?
1367 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1368 else
1369 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1370 }
1371 break;
1372 }
1373 } else {
1374 switch (DS.getTypeSpecWidth()) {
1375 case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
1376 case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
1377 case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
1378 case DeclSpec::TSW_longlong:
1379 Result = Context.UnsignedLongLongTy;
1380
1381 // 'long long' is a C99 or C++11 feature.
1382 if (!S.getLangOpts().C99) {
1383 if (S.getLangOpts().CPlusPlus)
1384 S.Diag(DS.getTypeSpecWidthLoc(),
1385 S.getLangOpts().CPlusPlus11 ?
1386 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1387 else
1388 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1389 }
1390 break;
1391 }
1392 }
1393 break;
1394 }
1395 case DeclSpec::TST_accum: {
1396 switch (DS.getTypeSpecWidth()) {
1397 case DeclSpec::TSW_short:
1398 Result = Context.ShortAccumTy;
1399 break;
1400 case DeclSpec::TSW_unspecified:
1401 Result = Context.AccumTy;
1402 break;
1403 case DeclSpec::TSW_long:
1404 Result = Context.LongAccumTy;
1405 break;
1406 case DeclSpec::TSW_longlong:
1407 llvm_unreachable("Unable to specify long long as _Accum width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Accum width"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1407)
;
1408 }
1409
1410 if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1411 Result = Context.getCorrespondingUnsignedType(Result);
1412
1413 if (DS.isTypeSpecSat())
1414 Result = Context.getCorrespondingSaturatedType(Result);
1415
1416 break;
1417 }
1418 case DeclSpec::TST_fract: {
1419 switch (DS.getTypeSpecWidth()) {
1420 case DeclSpec::TSW_short:
1421 Result = Context.ShortFractTy;
1422 break;
1423 case DeclSpec::TSW_unspecified:
1424 Result = Context.FractTy;
1425 break;
1426 case DeclSpec::TSW_long:
1427 Result = Context.LongFractTy;
1428 break;
1429 case DeclSpec::TSW_longlong:
1430 llvm_unreachable("Unable to specify long long as _Fract width")::llvm::llvm_unreachable_internal("Unable to specify long long as _Fract width"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1430)
;
1431 }
1432
1433 if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1434 Result = Context.getCorrespondingUnsignedType(Result);
1435
1436 if (DS.isTypeSpecSat())
1437 Result = Context.getCorrespondingSaturatedType(Result);
1438
1439 break;
1440 }
1441 case DeclSpec::TST_int128:
1442 if (!S.Context.getTargetInfo().hasInt128Type())
1443 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1444 << "__int128";
1445 if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1446 Result = Context.UnsignedInt128Ty;
1447 else
1448 Result = Context.Int128Ty;
1449 break;
1450 case DeclSpec::TST_float16: Result = Context.Float16Ty; break;
1451 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1452 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1453 case DeclSpec::TST_double:
1454 if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
1455 Result = Context.LongDoubleTy;
1456 else
1457 Result = Context.DoubleTy;
1458 break;
1459 case DeclSpec::TST_float128:
1460 if (!S.Context.getTargetInfo().hasFloat128Type())
1461 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1462 << "__float128";
1463 Result = Context.Float128Ty;
1464 break;
1465 case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
1466 break;
1467 case DeclSpec::TST_decimal32: // _Decimal32
1468 case DeclSpec::TST_decimal64: // _Decimal64
1469 case DeclSpec::TST_decimal128: // _Decimal128
1470 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1471 Result = Context.IntTy;
1472 declarator.setInvalidType(true);
1473 break;
1474 case DeclSpec::TST_class:
1475 case DeclSpec::TST_enum:
1476 case DeclSpec::TST_union:
1477 case DeclSpec::TST_struct:
1478 case DeclSpec::TST_interface: {
1479 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1480 if (!D) {
1481 // This can happen in C++ with ambiguous lookups.
1482 Result = Context.IntTy;
1483 declarator.setInvalidType(true);
1484 break;
1485 }
1486
1487 // If the type is deprecated or unavailable, diagnose it.
1488 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1489
1490 assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex
() == 0 && DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1491, __PRETTY_FUNCTION__))
1491 DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!")((DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex
() == 0 && DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && \"No qualifiers on tag names!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1491, __PRETTY_FUNCTION__))
;
1492
1493 // TypeQuals handled by caller.
1494 Result = Context.getTypeDeclType(D);
1495
1496 // In both C and C++, make an ElaboratedType.
1497 ElaboratedTypeKeyword Keyword
1498 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1499 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1500 DS.isTypeSpecOwned() ? D : nullptr);
1501 break;
1502 }
1503 case DeclSpec::TST_typename: {
1504 assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&((DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex
() == 0 && DS.getTypeSpecSign() == 0 && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1506, __PRETTY_FUNCTION__))
1505 DS.getTypeSpecSign() == 0 &&((DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex
() == 0 && DS.getTypeSpecSign() == 0 && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1506, __PRETTY_FUNCTION__))
1506 "Can't handle qualifiers on typedef names yet!")((DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex
() == 0 && DS.getTypeSpecSign() == 0 && "Can't handle qualifiers on typedef names yet!"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 && DS.getTypeSpecSign() == 0 && \"Can't handle qualifiers on typedef names yet!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1506, __PRETTY_FUNCTION__))
;
1507 Result = S.GetTypeFromParser(DS.getRepAsType());
1508 if (Result.isNull()) {
1509 declarator.setInvalidType(true);
1510 }
1511
1512 // TypeQuals handled by caller.
1513 break;
1514 }
1515 case DeclSpec::TST_typeofType:
1516 // FIXME: Preserve type source info.
1517 Result = S.GetTypeFromParser(DS.getRepAsType());
1518 assert(!Result.isNull() && "Didn't get a type for typeof?")((!Result.isNull() && "Didn't get a type for typeof?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for typeof?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1518, __PRETTY_FUNCTION__))
;
1519 if (!Result->isDependentType())
1520 if (const TagType *TT = Result->getAs<TagType>())
1521 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1522 // TypeQuals handled by caller.
1523 Result = Context.getTypeOfType(Result);
1524 break;
1525 case DeclSpec::TST_typeofExpr: {
1526 Expr *E = DS.getRepAsExpr();
1527 assert(E && "Didn't get an expression for typeof?")((E && "Didn't get an expression for typeof?") ? static_cast
<void> (0) : __assert_fail ("E && \"Didn't get an expression for typeof?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1527, __PRETTY_FUNCTION__))
;
1528 // TypeQuals handled by caller.
1529 Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1530 if (Result.isNull()) {
1531 Result = Context.IntTy;
1532 declarator.setInvalidType(true);
1533 }
1534 break;
1535 }
1536 case DeclSpec::TST_decltype: {
1537 Expr *E = DS.getRepAsExpr();
1538 assert(E && "Didn't get an expression for decltype?")((E && "Didn't get an expression for decltype?") ? static_cast
<void> (0) : __assert_fail ("E && \"Didn't get an expression for decltype?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1538, __PRETTY_FUNCTION__))
;
1539 // TypeQuals handled by caller.
1540 Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1541 if (Result.isNull()) {
1542 Result = Context.IntTy;
1543 declarator.setInvalidType(true);
1544 }
1545 break;
1546 }
1547 case DeclSpec::TST_underlyingType:
1548 Result = S.GetTypeFromParser(DS.getRepAsType());
1549 assert(!Result.isNull() && "Didn't get a type for __underlying_type?")((!Result.isNull() && "Didn't get a type for __underlying_type?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for __underlying_type?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1549, __PRETTY_FUNCTION__))
;
1550 Result = S.BuildUnaryTransformType(Result,
1551 UnaryTransformType::EnumUnderlyingType,
1552 DS.getTypeSpecTypeLoc());
1553 if (Result.isNull()) {
1554 Result = Context.IntTy;
1555 declarator.setInvalidType(true);
1556 }
1557 break;
1558
1559 case DeclSpec::TST_auto:
1560 Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
1561 break;
1562
1563 case DeclSpec::TST_auto_type:
1564 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1565 break;
1566
1567 case DeclSpec::TST_decltype_auto:
1568 Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
1569 /*IsDependent*/ false);
1570 break;
1571
1572 case DeclSpec::TST_unknown_anytype:
1573 Result = Context.UnknownAnyTy;
1574 break;
1575
1576 case DeclSpec::TST_atomic:
1577 Result = S.GetTypeFromParser(DS.getRepAsType());
1578 assert(!Result.isNull() && "Didn't get a type for _Atomic?")((!Result.isNull() && "Didn't get a type for _Atomic?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"Didn't get a type for _Atomic?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1578, __PRETTY_FUNCTION__))
;
1579 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1580 if (Result.isNull()) {
1581 Result = Context.IntTy;
1582 declarator.setInvalidType(true);
1583 }
1584 break;
1585
1586#define GENERIC_IMAGE_TYPE(ImgType, Id) \
1587 case DeclSpec::TST_##ImgType##_t: \
1588 switch (getImageAccess(DS.getAttributes())) { \
1589 case OpenCLAccessAttr::Keyword_write_only: \
1590 Result = Context.Id##WOTy; \
1591 break; \
1592 case OpenCLAccessAttr::Keyword_read_write: \
1593 Result = Context.Id##RWTy; \
1594 break; \
1595 case OpenCLAccessAttr::Keyword_read_only: \
1596 Result = Context.Id##ROTy; \
1597 break; \
1598 } \
1599 break;
1600#include "clang/Basic/OpenCLImageTypes.def"
1601
1602 case DeclSpec::TST_error:
1603 Result = Context.IntTy;
1604 declarator.setInvalidType(true);
1605 break;
1606 }
1607
1608 if (S.getLangOpts().OpenCL &&
1609 S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
1610 declarator.setInvalidType(true);
1611
1612 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1613 DS.getTypeSpecType() == DeclSpec::TST_fract;
1614
1615 // Only fixed point types can be saturated
1616 if (DS.isTypeSpecSat() && !IsFixedPointType)
1617 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1618 << DS.getSpecifierName(DS.getTypeSpecType(),
1619 Context.getPrintingPolicy());
1620
1621 // Handle complex types.
1622 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1623 if (S.getLangOpts().Freestanding)
1624 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1625 Result = Context.getComplexType(Result);
1626 } else if (DS.isTypeAltiVecVector()) {
1627 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1628 assert(typeSize > 0 && "type size for vector must be greater than 0 bits")((typeSize > 0 && "type size for vector must be greater than 0 bits"
) ? static_cast<void> (0) : __assert_fail ("typeSize > 0 && \"type size for vector must be greater than 0 bits\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1628, __PRETTY_FUNCTION__))
;
1629 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1630 if (DS.isTypeAltiVecPixel())
1631 VecKind = VectorType::AltiVecPixel;
1632 else if (DS.isTypeAltiVecBool())
1633 VecKind = VectorType::AltiVecBool;
1634 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1635 }
1636
1637 // FIXME: Imaginary.
1638 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1639 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1640
1641 // Before we process any type attributes, synthesize a block literal
1642 // function declarator if necessary.
1643 if (declarator.getContext() == DeclaratorContext::BlockLiteralContext)
1644 maybeSynthesizeBlockSignature(state, Result);
1645
1646 // Apply any type attributes from the decl spec. This may cause the
1647 // list of type attributes to be temporarily saved while the type
1648 // attributes are pushed around.
1649 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1650 if (!DS.isTypeSpecPipe())
1651 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1652
1653 // Apply const/volatile/restrict qualifiers to T.
1654 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1655 // Warn about CV qualifiers on function types.
1656 // C99 6.7.3p8:
1657 // If the specification of a function type includes any type qualifiers,
1658 // the behavior is undefined.
1659 // C++11 [dcl.fct]p7:
1660 // The effect of a cv-qualifier-seq in a function declarator is not the
1661 // same as adding cv-qualification on top of the function type. In the
1662 // latter case, the cv-qualifiers are ignored.
1663 if (TypeQuals && Result->isFunctionType()) {
1664 diagnoseAndRemoveTypeQualifiers(
1665 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1666 S.getLangOpts().CPlusPlus
1667 ? diag::warn_typecheck_function_qualifiers_ignored
1668 : diag::warn_typecheck_function_qualifiers_unspecified);
1669 // No diagnostic for 'restrict' or '_Atomic' applied to a
1670 // function type; we'll diagnose those later, in BuildQualifiedType.
1671 }
1672
1673 // C++11 [dcl.ref]p1:
1674 // Cv-qualified references are ill-formed except when the
1675 // cv-qualifiers are introduced through the use of a typedef-name
1676 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1677 //
1678 // There don't appear to be any other contexts in which a cv-qualified
1679 // reference type could be formed, so the 'ill-formed' clause here appears
1680 // to never happen.
1681 if (TypeQuals && Result->isReferenceType()) {
1682 diagnoseAndRemoveTypeQualifiers(
1683 S, DS, TypeQuals, Result,
1684 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1685 diag::warn_typecheck_reference_qualifiers);
1686 }
1687
1688 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1689 // than once in the same specifier-list or qualifier-list, either directly
1690 // or via one or more typedefs."
1691 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1692 && TypeQuals & Result.getCVRQualifiers()) {
1693 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1694 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1695 << "const";
1696 }
1697
1698 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1699 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1700 << "volatile";
1701 }
1702
1703 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1704 // produce a warning in this case.
1705 }
1706
1707 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1708
1709 // If adding qualifiers fails, just use the unqualified type.
1710 if (Qualified.isNull())
1711 declarator.setInvalidType(true);
1712 else
1713 Result = Qualified;
1714 }
1715
1716 assert(!Result.isNull() && "This function should not return a null type")((!Result.isNull() && "This function should not return a null type"
) ? static_cast<void> (0) : __assert_fail ("!Result.isNull() && \"This function should not return a null type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1716, __PRETTY_FUNCTION__))
;
1717 return Result;
1718}
1719
1720static std::string getPrintableNameForEntity(DeclarationName Entity) {
1721 if (Entity)
1722 return Entity.getAsString();
1723
1724 return "type name";
1725}
1726
1727QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1728 Qualifiers Qs, const DeclSpec *DS) {
1729 if (T.isNull())
1730 return QualType();
1731
1732 // Ignore any attempt to form a cv-qualified reference.
1733 if (T->isReferenceType()) {
1734 Qs.removeConst();
1735 Qs.removeVolatile();
1736 }
1737
1738 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1739 // object or incomplete types shall not be restrict-qualified."
1740 if (Qs.hasRestrict()) {
1741 unsigned DiagID = 0;
1742 QualType ProblemTy;
1743
1744 if (T->isAnyPointerType() || T->isReferenceType() ||
1745 T->isMemberPointerType()) {
1746 QualType EltTy;
1747 if (T->isObjCObjectPointerType())
1748 EltTy = T;
1749 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1750 EltTy = PTy->getPointeeType();
1751 else
1752 EltTy = T->getPointeeType();
1753
1754 // If we have a pointer or reference, the pointee must have an object
1755 // incomplete type.
1756 if (!EltTy->isIncompleteOrObjectType()) {
1757 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1758 ProblemTy = EltTy;
1759 }
1760 } else if (!T->isDependentType()) {
1761 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1762 ProblemTy = T;
1763 }
1764
1765 if (DiagID) {
1766 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1767 Qs.removeRestrict();
1768 }
1769 }
1770
1771 return Context.getQualifiedType(T, Qs);
1772}
1773
1774QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1775 unsigned CVRAU, const DeclSpec *DS) {
1776 if (T.isNull())
1777 return QualType();
1778
1779 // Ignore any attempt to form a cv-qualified reference.
1780 if (T->isReferenceType())
1781 CVRAU &=
1782 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1783
1784 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1785 // TQ_unaligned;
1786 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1787
1788 // C11 6.7.3/5:
1789 // If the same qualifier appears more than once in the same
1790 // specifier-qualifier-list, either directly or via one or more typedefs,
1791 // the behavior is the same as if it appeared only once.
1792 //
1793 // It's not specified what happens when the _Atomic qualifier is applied to
1794 // a type specified with the _Atomic specifier, but we assume that this
1795 // should be treated as if the _Atomic qualifier appeared multiple times.
1796 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1797 // C11 6.7.3/5:
1798 // If other qualifiers appear along with the _Atomic qualifier in a
1799 // specifier-qualifier-list, the resulting type is the so-qualified
1800 // atomic type.
1801 //
1802 // Don't need to worry about array types here, since _Atomic can't be
1803 // applied to such types.
1804 SplitQualType Split = T.getSplitUnqualifiedType();
1805 T = BuildAtomicType(QualType(Split.Ty, 0),
1806 DS ? DS->getAtomicSpecLoc() : Loc);
1807 if (T.isNull())
1808 return T;
1809 Split.Quals.addCVRQualifiers(CVR);
1810 return BuildQualifiedType(T, Loc, Split.Quals);
1811 }
1812
1813 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1814 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1815 return BuildQualifiedType(T, Loc, Q, DS);
1816}
1817
1818/// Build a paren type including \p T.
1819QualType Sema::BuildParenType(QualType T) {
1820 return Context.getParenType(T);
1821}
1822
1823/// Given that we're building a pointer or reference to the given
1824static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1825 SourceLocation loc,
1826 bool isReference) {
1827 // Bail out if retention is unrequired or already specified.
1828 if (!type->isObjCLifetimeType() ||
1829 type.getObjCLifetime() != Qualifiers::OCL_None)
1830 return type;
1831
1832 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1833
1834 // If the object type is const-qualified, we can safely use
1835 // __unsafe_unretained. This is safe (because there are no read
1836 // barriers), and it'll be safe to coerce anything but __weak* to
1837 // the resulting type.
1838 if (type.isConstQualified()) {
1839 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1840
1841 // Otherwise, check whether the static type does not require
1842 // retaining. This currently only triggers for Class (possibly
1843 // protocol-qualifed, and arrays thereof).
1844 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1845 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1846
1847 // If we are in an unevaluated context, like sizeof, skip adding a
1848 // qualification.
1849 } else if (S.isUnevaluatedContext()) {
1850 return type;
1851
1852 // If that failed, give an error and recover using __strong. __strong
1853 // is the option most likely to prevent spurious second-order diagnostics,
1854 // like when binding a reference to a field.
1855 } else {
1856 // These types can show up in private ivars in system headers, so
1857 // we need this to not be an error in those cases. Instead we
1858 // want to delay.
1859 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1860 S.DelayedDiagnostics.add(
1861 sema::DelayedDiagnostic::makeForbiddenType(loc,
1862 diag::err_arc_indirect_no_ownership, type, isReference));
1863 } else {
1864 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1865 }
1866 implicitLifetime = Qualifiers::OCL_Strong;
1867 }
1868 assert(implicitLifetime && "didn't infer any lifetime!")((implicitLifetime && "didn't infer any lifetime!") ?
static_cast<void> (0) : __assert_fail ("implicitLifetime && \"didn't infer any lifetime!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1868, __PRETTY_FUNCTION__))
;
1869
1870 Qualifiers qs;
1871 qs.addObjCLifetime(implicitLifetime);
1872 return S.Context.getQualifiedType(type, qs);
1873}
1874
1875static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1876 std::string Quals = FnTy->getTypeQuals().getAsString();
1877
1878 switch (FnTy->getRefQualifier()) {
1879 case RQ_None:
1880 break;
1881
1882 case RQ_LValue:
1883 if (!Quals.empty())
1884 Quals += ' ';
1885 Quals += '&';
1886 break;
1887
1888 case RQ_RValue:
1889 if (!Quals.empty())
1890 Quals += ' ';
1891 Quals += "&&";
1892 break;
1893 }
1894
1895 return Quals;
1896}
1897
1898namespace {
1899/// Kinds of declarator that cannot contain a qualified function type.
1900///
1901/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1902/// a function type with a cv-qualifier or a ref-qualifier can only appear
1903/// at the topmost level of a type.
1904///
1905/// Parens and member pointers are permitted. We don't diagnose array and
1906/// function declarators, because they don't allow function types at all.
1907///
1908/// The values of this enum are used in diagnostics.
1909enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1910} // end anonymous namespace
1911
1912/// Check whether the type T is a qualified function type, and if it is,
1913/// diagnose that it cannot be contained within the given kind of declarator.
1914static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1915 QualifiedFunctionKind QFK) {
1916 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1917 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1918 if (!FPT || (FPT->getTypeQuals().empty() && FPT->getRefQualifier() == RQ_None))
1919 return false;
1920
1921 S.Diag(Loc, diag::err_compound_qualified_function_type)
1922 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1923 << getFunctionQualifiersAsString(FPT);
1924 return true;
1925}
1926
1927/// Build a pointer type.
1928///
1929/// \param T The type to which we'll be building a pointer.
1930///
1931/// \param Loc The location of the entity whose type involves this
1932/// pointer type or, if there is no such entity, the location of the
1933/// type that will have pointer type.
1934///
1935/// \param Entity The name of the entity that involves the pointer
1936/// type, if known.
1937///
1938/// \returns A suitable pointer type, if there are no
1939/// errors. Otherwise, returns a NULL type.
1940QualType Sema::BuildPointerType(QualType T,
1941 SourceLocation Loc, DeclarationName Entity) {
1942 if (T->isReferenceType()) {
1943 // C++ 8.3.2p4: There shall be no ... pointers to references ...
1944 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1945 << getPrintableNameForEntity(Entity) << T;
1946 return QualType();
1947 }
1948
1949 if (T->isFunctionType() && getLangOpts().OpenCL) {
1950 Diag(Loc, diag::err_opencl_function_pointer);
1951 return QualType();
1952 }
1953
1954 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1955 return QualType();
1956
1957 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")((!T->isObjCObjectType() && "Should build ObjCObjectPointerType"
) ? static_cast<void> (0) : __assert_fail ("!T->isObjCObjectType() && \"Should build ObjCObjectPointerType\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1957, __PRETTY_FUNCTION__))
;
1958
1959 // In ARC, it is forbidden to build pointers to unqualified pointers.
1960 if (getLangOpts().ObjCAutoRefCount)
1961 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1962
1963 // Build the pointer type.
1964 return Context.getPointerType(T);
1965}
1966
1967/// Build a reference type.
1968///
1969/// \param T The type to which we'll be building a reference.
1970///
1971/// \param Loc The location of the entity whose type involves this
1972/// reference type or, if there is no such entity, the location of the
1973/// type that will have reference type.
1974///
1975/// \param Entity The name of the entity that involves the reference
1976/// type, if known.
1977///
1978/// \returns A suitable reference type, if there are no
1979/// errors. Otherwise, returns a NULL type.
1980QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1981 SourceLocation Loc,
1982 DeclarationName Entity) {
1983 assert(Context.getCanonicalType(T) != Context.OverloadTy &&((Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type") ? static_cast<void
> (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1984, __PRETTY_FUNCTION__))
1984 "Unresolved overloaded function type")((Context.getCanonicalType(T) != Context.OverloadTy &&
"Unresolved overloaded function type") ? static_cast<void
> (0) : __assert_fail ("Context.getCanonicalType(T) != Context.OverloadTy && \"Unresolved overloaded function type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 1984, __PRETTY_FUNCTION__))
;
1985
1986 // C++0x [dcl.ref]p6:
1987 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1988 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1989 // type T, an attempt to create the type "lvalue reference to cv TR" creates
1990 // the type "lvalue reference to T", while an attempt to create the type
1991 // "rvalue reference to cv TR" creates the type TR.
1992 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1993
1994 // C++ [dcl.ref]p4: There shall be no references to references.
1995 //
1996 // According to C++ DR 106, references to references are only
1997 // diagnosed when they are written directly (e.g., "int & &"),
1998 // but not when they happen via a typedef:
1999 //
2000 // typedef int& intref;
2001 // typedef intref& intref2;
2002 //
2003 // Parser::ParseDeclaratorInternal diagnoses the case where
2004 // references are written directly; here, we handle the
2005 // collapsing of references-to-references as described in C++0x.
2006 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2007
2008 // C++ [dcl.ref]p1:
2009 // A declarator that specifies the type "reference to cv void"
2010 // is ill-formed.
2011 if (T->isVoidType()) {
2012 Diag(Loc, diag::err_reference_to_void);
2013 return QualType();
2014 }
2015
2016 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2017 return QualType();
2018
2019 // In ARC, it is forbidden to build references to unqualified pointers.
2020 if (getLangOpts().ObjCAutoRefCount)
2021 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2022
2023 // Handle restrict on references.
2024 if (LValueRef)
2025 return Context.getLValueReferenceType(T, SpelledAsLValue);
2026 return Context.getRValueReferenceType(T);
2027}
2028
2029/// Build a Read-only Pipe type.
2030///
2031/// \param T The type to which we'll be building a Pipe.
2032///
2033/// \param Loc We do not use it for now.
2034///
2035/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2036/// NULL type.
2037QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2038 return Context.getReadPipeType(T);
2039}
2040
2041/// Build a Write-only Pipe type.
2042///
2043/// \param T The type to which we'll be building a Pipe.
2044///
2045/// \param Loc We do not use it for now.
2046///
2047/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2048/// NULL type.
2049QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2050 return Context.getWritePipeType(T);
2051}
2052
2053/// Check whether the specified array size makes the array type a VLA. If so,
2054/// return true, if not, return the size of the array in SizeVal.
2055static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
2056 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2057 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2058 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2059 public:
2060 VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
2061
2062 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
2063 }
2064
2065 void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
2066 S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
2067 }
2068 } Diagnoser;
2069
2070 return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
2071 S.LangOpts.GNUMode ||
2072 S.LangOpts.OpenCL).isInvalid();
2073}
2074
2075/// Build an array type.
2076///
2077/// \param T The type of each element in the array.
2078///
2079/// \param ASM C99 array size modifier (e.g., '*', 'static').
2080///
2081/// \param ArraySize Expression describing the size of the array.
2082///
2083/// \param Brackets The range from the opening '[' to the closing ']'.
2084///
2085/// \param Entity The name of the entity that involves the array
2086/// type, if known.
2087///
2088/// \returns A suitable array type, if there are no errors. Otherwise,
2089/// returns a NULL type.
2090QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2091 Expr *ArraySize, unsigned Quals,
2092 SourceRange Brackets, DeclarationName Entity) {
2093
2094 SourceLocation Loc = Brackets.getBegin();
2095 if (getLangOpts().CPlusPlus) {
2096 // C++ [dcl.array]p1:
2097 // T is called the array element type; this type shall not be a reference
2098 // type, the (possibly cv-qualified) type void, a function type or an
2099 // abstract class type.
2100 //
2101 // C++ [dcl.array]p3:
2102 // When several "array of" specifications are adjacent, [...] only the
2103 // first of the constant expressions that specify the bounds of the arrays
2104 // may be omitted.
2105 //
2106 // Note: function types are handled in the common path with C.
2107 if (T->isReferenceType()) {
2108 Diag(Loc, diag::err_illegal_decl_array_of_references)
2109 << getPrintableNameForEntity(Entity) << T;
2110 return QualType();
2111 }
2112
2113 if (T->isVoidType() || T->isIncompleteArrayType()) {
2114 Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
2115 return QualType();
2116 }
2117
2118 if (RequireNonAbstractType(Brackets.getBegin(), T,
2119 diag::err_array_of_abstract_type))
2120 return QualType();
2121
2122 // Mentioning a member pointer type for an array type causes us to lock in
2123 // an inheritance model, even if it's inside an unused typedef.
2124 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2125 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2126 if (!MPTy->getClass()->isDependentType())
2127 (void)isCompleteType(Loc, T);
2128
2129 } else {
2130 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2131 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2132 if (RequireCompleteType(Loc, T,
2133 diag::err_illegal_decl_array_incomplete_type))
2134 return QualType();
2135 }
2136
2137 if (T->isFunctionType()) {
2138 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2139 << getPrintableNameForEntity(Entity) << T;
2140 return QualType();
2141 }
2142
2143 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2144 // If the element type is a struct or union that contains a variadic
2145 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2146 if (EltTy->getDecl()->hasFlexibleArrayMember())
2147 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2148 } else if (T->isObjCObjectType()) {
2149 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2150 return QualType();
2151 }
2152
2153 // Do placeholder conversions on the array size expression.
2154 if (ArraySize && ArraySize->hasPlaceholderType()) {
2155 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2156 if (Result.isInvalid()) return QualType();
2157 ArraySize = Result.get();
2158 }
2159
2160 // Do lvalue-to-rvalue conversions on the array size expression.
2161 if (ArraySize && !ArraySize->isRValue()) {
2162 ExprResult Result = DefaultLvalueConversion(ArraySize);
2163 if (Result.isInvalid())
2164 return QualType();
2165
2166 ArraySize = Result.get();
2167 }
2168
2169 // C99 6.7.5.2p1: The size expression shall have integer type.
2170 // C++11 allows contextual conversions to such types.
2171 if (!getLangOpts().CPlusPlus11 &&
2172 ArraySize && !ArraySize->isTypeDependent() &&
2173 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2174 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2175 << ArraySize->getType() << ArraySize->getSourceRange();
2176 return QualType();
2177 }
2178
2179 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2180 if (!ArraySize) {
2181 if (ASM == ArrayType::Star)
2182 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2183 else
2184 T = Context.getIncompleteArrayType(T, ASM, Quals);
2185 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2186 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2187 } else if ((!T->isDependentType() && !T->isIncompleteType() &&
2188 !T->isConstantSizeType()) ||
2189 isArraySizeVLA(*this, ArraySize, ConstVal)) {
2190 // Even in C++11, don't allow contextual conversions in the array bound
2191 // of a VLA.
2192 if (getLangOpts().CPlusPlus11 &&
2193 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2194 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2195 << ArraySize->getType() << ArraySize->getSourceRange();
2196 return QualType();
2197 }
2198
2199 // C99: an array with an element type that has a non-constant-size is a VLA.
2200 // C99: an array with a non-ICE size is a VLA. We accept any expression
2201 // that we can fold to a non-zero positive value as an extension.
2202 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2203 } else {
2204 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2205 // have a value greater than zero.
2206 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2207 if (Entity)
2208 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2209 << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
2210 else
2211 Diag(ArraySize->getBeginLoc(), diag::err_typecheck_negative_array_size)
2212 << ArraySize->getSourceRange();
2213 return QualType();
2214 }
2215 if (ConstVal == 0) {
2216 // GCC accepts zero sized static arrays. We allow them when
2217 // we're not in a SFINAE context.
2218 Diag(ArraySize->getBeginLoc(), isSFINAEContext()
2219 ? diag::err_typecheck_zero_array_size
2220 : diag::ext_typecheck_zero_array_size)
2221 << ArraySize->getSourceRange();
2222
2223 if (ASM == ArrayType::Static) {
2224 Diag(ArraySize->getBeginLoc(),
2225 diag::warn_typecheck_zero_static_array_size)
2226 << ArraySize->getSourceRange();
2227 ASM = ArrayType::Normal;
2228 }
2229 } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
2230 !T->isIncompleteType() && !T->isUndeducedType()) {
2231 // Is the array too large?
2232 unsigned ActiveSizeBits
2233 = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
2234 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2235 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2236 << ConstVal.toString(10) << ArraySize->getSourceRange();
2237 return QualType();
2238 }
2239 }
2240
2241 T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
2242 }
2243
2244 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2245 if (getLangOpts().OpenCL && T->isVariableArrayType()) {
2246 Diag(Loc, diag::err_opencl_vla);
2247 return QualType();
2248 }
2249
2250 if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2251 if (getLangOpts().CUDA) {
2252 // CUDA device code doesn't support VLAs.
2253 CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget();
2254 } else if (!getLangOpts().OpenMP ||
2255 shouldDiagnoseTargetSupportFromOpenMP()) {
2256 // Some targets don't support VLAs.
2257 Diag(Loc, diag::err_vla_unsupported);
2258 return QualType();
2259 }
2260 }
2261
2262 // If this is not C99, extwarn about VLA's and C99 array size modifiers.
2263 if (!getLangOpts().C99) {
2264 if (T->isVariableArrayType()) {
2265 // Prohibit the use of VLAs during template argument deduction.
2266 if (isSFINAEContext()) {
2267 Diag(Loc, diag::err_vla_in_sfinae);
2268 return QualType();
2269 }
2270 // Just extwarn about VLAs.
2271 else
2272 Diag(Loc, diag::ext_vla);
2273 } else if (ASM != ArrayType::Normal || Quals != 0)
2274 Diag(Loc,
2275 getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
2276 : diag::ext_c99_array_usage) << ASM;
2277 }
2278
2279 if (T->isVariableArrayType()) {
2280 // Warn about VLAs for -Wvla.
2281 Diag(Loc, diag::warn_vla_used);
2282 }
2283
2284 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2285 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2286 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2287 if (getLangOpts().OpenCL) {
2288 const QualType ArrType = Context.getBaseElementType(T);
2289 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2290 ArrType->isSamplerT() || ArrType->isImageType()) {
2291 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2292 return QualType();
2293 }
2294 }
2295
2296 return T;
2297}
2298
2299QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2300 SourceLocation AttrLoc) {
2301 // The base type must be integer (not Boolean or enumeration) or float, and
2302 // can't already be a vector.
2303 if (!CurType->isDependentType() &&
2304 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2305 (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) {
2306 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2307 return QualType();
2308 }
2309
2310 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2311 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2312 VectorType::GenericVector);
2313
2314 llvm::APSInt VecSize(32);
2315 if (!SizeExpr->isIntegerConstantExpr(VecSize, Context)) {
2316 Diag(AttrLoc, diag::err_attribute_argument_type)
2317 << "vector_size" << AANT_ArgumentIntegerConstant
2318 << SizeExpr->getSourceRange();
2319 return QualType();
2320 }
2321
2322 if (CurType->isDependentType())
2323 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2324 VectorType::GenericVector);
2325
2326 unsigned VectorSize = static_cast<unsigned>(VecSize.getZExtValue() * 8);
2327 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2328
2329 if (VectorSize == 0) {
2330 Diag(AttrLoc, diag::err_attribute_zero_size) << SizeExpr->getSourceRange();
2331 return QualType();
2332 }
2333
2334 // vecSize is specified in bytes - convert to bits.
2335 if (VectorSize % TypeSize) {
2336 Diag(AttrLoc, diag::err_attribute_invalid_size)
2337 << SizeExpr->getSourceRange();
2338 return QualType();
2339 }
2340
2341 if (VectorType::isVectorSizeTooLarge(VectorSize / TypeSize)) {
2342 Diag(AttrLoc, diag::err_attribute_size_too_large)
2343 << SizeExpr->getSourceRange();
2344 return QualType();
2345 }
2346
2347 return Context.getVectorType(CurType, VectorSize / TypeSize,
2348 VectorType::GenericVector);
2349}
2350
2351/// Build an ext-vector type.
2352///
2353/// Run the required checks for the extended vector type.
2354QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2355 SourceLocation AttrLoc) {
2356 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2357 // in conjunction with complex types (pointers, arrays, functions, etc.).
2358 //
2359 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2360 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2361 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2362 // of bool aren't allowed.
2363 if ((!T->isDependentType() && !T->isIntegerType() &&
2364 !T->isRealFloatingType()) ||
2365 T->isBooleanType()) {
2366 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2367 return QualType();
2368 }
2369
2370 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2371 llvm::APSInt vecSize(32);
2372 if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
2373 Diag(AttrLoc, diag::err_attribute_argument_type)
2374 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2375 << ArraySize->getSourceRange();
2376 return QualType();
2377 }
2378
2379 // Unlike gcc's vector_size attribute, the size is specified as the
2380 // number of elements, not the number of bytes.
2381 unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2382
2383 if (vectorSize == 0) {
2384 Diag(AttrLoc, diag::err_attribute_zero_size)
2385 << ArraySize->getSourceRange();
2386 return QualType();
2387 }
2388
2389 if (VectorType::isVectorSizeTooLarge(vectorSize)) {
2390 Diag(AttrLoc, diag::err_attribute_size_too_large)
2391 << ArraySize->getSourceRange();
2392 return QualType();
2393 }
2394
2395 return Context.getExtVectorType(T, vectorSize);
2396 }
2397
2398 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2399}
2400
2401bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2402 if (T->isArrayType() || T->isFunctionType()) {
2403 Diag(Loc, diag::err_func_returning_array_function)
2404 << T->isFunctionType() << T;
2405 return true;
2406 }
2407
2408 // Functions cannot return half FP.
2409 if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2410 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2411 FixItHint::CreateInsertion(Loc, "*");
2412 return true;
2413 }
2414
2415 // Methods cannot return interface types. All ObjC objects are
2416 // passed by reference.
2417 if (T->isObjCObjectType()) {
2418 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2419 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2420 return true;
2421 }
2422
2423 return false;
2424}
2425
2426/// Check the extended parameter information. Most of the necessary
2427/// checking should occur when applying the parameter attribute; the
2428/// only other checks required are positional restrictions.
2429static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2430 const FunctionProtoType::ExtProtoInfo &EPI,
2431 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2432 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")((EPI.ExtParameterInfos && "shouldn't get here without param infos"
) ? static_cast<void> (0) : __assert_fail ("EPI.ExtParameterInfos && \"shouldn't get here without param infos\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 2432, __PRETTY_FUNCTION__))
;
2433
2434 bool hasCheckedSwiftCall = false;
2435 auto checkForSwiftCC = [&](unsigned paramIndex) {
2436 // Only do this once.
2437 if (hasCheckedSwiftCall) return;
2438 hasCheckedSwiftCall = true;
2439 if (EPI.ExtInfo.getCC() == CC_Swift) return;
2440 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2441 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
2442 };
2443
2444 for (size_t paramIndex = 0, numParams = paramTypes.size();
2445 paramIndex != numParams; ++paramIndex) {
2446 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2447 // Nothing interesting to check for orindary-ABI parameters.
2448 case ParameterABI::Ordinary:
2449 continue;
2450
2451 // swift_indirect_result parameters must be a prefix of the function
2452 // arguments.
2453 case ParameterABI::SwiftIndirectResult:
2454 checkForSwiftCC(paramIndex);
2455 if (paramIndex != 0 &&
2456 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2457 != ParameterABI::SwiftIndirectResult) {
2458 S.Diag(getParamLoc(paramIndex),
2459 diag::err_swift_indirect_result_not_first);
2460 }
2461 continue;
2462
2463 case ParameterABI::SwiftContext:
2464 checkForSwiftCC(paramIndex);
2465 continue;
2466
2467 // swift_error parameters must be preceded by a swift_context parameter.
2468 case ParameterABI::SwiftErrorResult:
2469 checkForSwiftCC(paramIndex);
2470 if (paramIndex == 0 ||
2471 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2472 ParameterABI::SwiftContext) {
2473 S.Diag(getParamLoc(paramIndex),
2474 diag::err_swift_error_result_not_after_swift_context);
2475 }
2476 continue;
2477 }
2478 llvm_unreachable("bad ABI kind")::llvm::llvm_unreachable_internal("bad ABI kind", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 2478)
;
2479 }
2480}
2481
2482QualType Sema::BuildFunctionType(QualType T,
2483 MutableArrayRef<QualType> ParamTypes,
2484 SourceLocation Loc, DeclarationName Entity,
2485 const FunctionProtoType::ExtProtoInfo &EPI) {
2486 bool Invalid = false;
2487
2488 Invalid |= CheckFunctionReturnType(T, Loc);
2489
2490 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2491 // FIXME: Loc is too inprecise here, should use proper locations for args.
2492 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2493 if (ParamType->isVoidType()) {
2494 Diag(Loc, diag::err_param_with_void_type);
2495 Invalid = true;
2496 } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2497 // Disallow half FP arguments.
2498 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2499 FixItHint::CreateInsertion(Loc, "*");
2500 Invalid = true;
2501 }
2502
2503 ParamTypes[Idx] = ParamType;
2504 }
2505
2506 if (EPI.ExtParameterInfos) {
2507 checkExtParameterInfos(*this, ParamTypes, EPI,
2508 [=](unsigned i) { return Loc; });
2509 }
2510
2511 if (EPI.ExtInfo.getProducesResult()) {
2512 // This is just a warning, so we can't fail to build if we see it.
2513 checkNSReturnsRetainedReturnType(Loc, T);
2514 }
2515
2516 if (Invalid)
2517 return QualType();
2518
2519 return Context.getFunctionType(T, ParamTypes, EPI);
2520}
2521
2522/// Build a member pointer type \c T Class::*.
2523///
2524/// \param T the type to which the member pointer refers.
2525/// \param Class the class type into which the member pointer points.
2526/// \param Loc the location where this type begins
2527/// \param Entity the name of the entity that will have this member pointer type
2528///
2529/// \returns a member pointer type, if successful, or a NULL type if there was
2530/// an error.
2531QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2532 SourceLocation Loc,
2533 DeclarationName Entity) {
2534 // Verify that we're not building a pointer to pointer to function with
2535 // exception specification.
2536 if (CheckDistantExceptionSpec(T)) {
2537 Diag(Loc, diag::err_distant_exception_spec);
2538 return QualType();
2539 }
2540
2541 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2542 // with reference type, or "cv void."
2543 if (T->isReferenceType()) {
2544 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2545 << getPrintableNameForEntity(Entity) << T;
2546 return QualType();
2547 }
2548
2549 if (T->isVoidType()) {
2550 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2551 << getPrintableNameForEntity(Entity);
2552 return QualType();
2553 }
2554
2555 if (!Class->isDependentType() && !Class->isRecordType()) {
2556 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2557 return QualType();
2558 }
2559
2560 // Adjust the default free function calling convention to the default method
2561 // calling convention.
2562 bool IsCtorOrDtor =
2563 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2564 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2565 if (T->isFunctionType())
2566 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2567
2568 return Context.getMemberPointerType(T, Class.getTypePtr());
2569}
2570
2571/// Build a block pointer type.
2572///
2573/// \param T The type to which we'll be building a block pointer.
2574///
2575/// \param Loc The source location, used for diagnostics.
2576///
2577/// \param Entity The name of the entity that involves the block pointer
2578/// type, if known.
2579///
2580/// \returns A suitable block pointer type, if there are no
2581/// errors. Otherwise, returns a NULL type.
2582QualType Sema::BuildBlockPointerType(QualType T,
2583 SourceLocation Loc,
2584 DeclarationName Entity) {
2585 if (!T->isFunctionType()) {
2586 Diag(Loc, diag::err_nonfunction_block_type);
2587 return QualType();
2588 }
2589
2590 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2591 return QualType();
2592
2593 return Context.getBlockPointerType(T);
2594}
2595
2596QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2597 QualType QT = Ty.get();
2598 if (QT.isNull()) {
2599 if (TInfo) *TInfo = nullptr;
2600 return QualType();
2601 }
2602
2603 TypeSourceInfo *DI = nullptr;
2604 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2605 QT = LIT->getType();
2606 DI = LIT->getTypeSourceInfo();
2607 }
2608
2609 if (TInfo) *TInfo = DI;
2610 return QT;
2611}
2612
2613static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2614 Qualifiers::ObjCLifetime ownership,
2615 unsigned chunkIndex);
2616
2617/// Given that this is the declaration of a parameter under ARC,
2618/// attempt to infer attributes and such for pointer-to-whatever
2619/// types.
2620static void inferARCWriteback(TypeProcessingState &state,
2621 QualType &declSpecType) {
2622 Sema &S = state.getSema();
2623 Declarator &declarator = state.getDeclarator();
2624
2625 // TODO: should we care about decl qualifiers?
2626
2627 // Check whether the declarator has the expected form. We walk
2628 // from the inside out in order to make the block logic work.
2629 unsigned outermostPointerIndex = 0;
2630 bool isBlockPointer = false;
2631 unsigned numPointers = 0;
2632 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2633 unsigned chunkIndex = i;
2634 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2635 switch (chunk.Kind) {
2636 case DeclaratorChunk::Paren:
2637 // Ignore parens.
2638 break;
2639
2640 case DeclaratorChunk::Reference:
2641 case DeclaratorChunk::Pointer:
2642 // Count the number of pointers. Treat references
2643 // interchangeably as pointers; if they're mis-ordered, normal
2644 // type building will discover that.
2645 outermostPointerIndex = chunkIndex;
2646 numPointers++;
2647 break;
2648
2649 case DeclaratorChunk::BlockPointer:
2650 // If we have a pointer to block pointer, that's an acceptable
2651 // indirect reference; anything else is not an application of
2652 // the rules.
2653 if (numPointers != 1) return;
2654 numPointers++;
2655 outermostPointerIndex = chunkIndex;
2656 isBlockPointer = true;
2657
2658 // We don't care about pointer structure in return values here.
2659 goto done;
2660
2661 case DeclaratorChunk::Array: // suppress if written (id[])?
2662 case DeclaratorChunk::Function:
2663 case DeclaratorChunk::MemberPointer:
2664 case DeclaratorChunk::Pipe:
2665 return;
2666 }
2667 }
2668 done:
2669
2670 // If we have *one* pointer, then we want to throw the qualifier on
2671 // the declaration-specifiers, which means that it needs to be a
2672 // retainable object type.
2673 if (numPointers == 1) {
2674 // If it's not a retainable object type, the rule doesn't apply.
2675 if (!declSpecType->isObjCRetainableType()) return;
2676
2677 // If it already has lifetime, don't do anything.
2678 if (declSpecType.getObjCLifetime()) return;
2679
2680 // Otherwise, modify the type in-place.
2681 Qualifiers qs;
2682
2683 if (declSpecType->isObjCARCImplicitlyUnretainedType())
2684 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2685 else
2686 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2687 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2688
2689 // If we have *two* pointers, then we want to throw the qualifier on
2690 // the outermost pointer.
2691 } else if (numPointers == 2) {
2692 // If we don't have a block pointer, we need to check whether the
2693 // declaration-specifiers gave us something that will turn into a
2694 // retainable object pointer after we slap the first pointer on it.
2695 if (!isBlockPointer && !declSpecType->isObjCObjectType())
2696 return;
2697
2698 // Look for an explicit lifetime attribute there.
2699 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2700 if (chunk.Kind != DeclaratorChunk::Pointer &&
2701 chunk.Kind != DeclaratorChunk::BlockPointer)
2702 return;
2703 for (const ParsedAttr &AL : chunk.getAttrs())
2704 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2705 return;
2706
2707 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2708 outermostPointerIndex);
2709
2710 // Any other number of pointers/references does not trigger the rule.
2711 } else return;
2712
2713 // TODO: mark whether we did this inference?
2714}
2715
2716void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2717 SourceLocation FallbackLoc,
2718 SourceLocation ConstQualLoc,
2719 SourceLocation VolatileQualLoc,
2720 SourceLocation RestrictQualLoc,
2721 SourceLocation AtomicQualLoc,
2722 SourceLocation UnalignedQualLoc) {
2723 if (!Quals)
2724 return;
2725
2726 struct Qual {
2727 const char *Name;
2728 unsigned Mask;
2729 SourceLocation Loc;
2730 } const QualKinds[5] = {
2731 { "const", DeclSpec::TQ_const, ConstQualLoc },
2732 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2733 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2734 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2735 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2736 };
2737
2738 SmallString<32> QualStr;
2739 unsigned NumQuals = 0;
2740 SourceLocation Loc;
2741 FixItHint FixIts[5];
2742
2743 // Build a string naming the redundant qualifiers.
2744 for (auto &E : QualKinds) {
2745 if (Quals & E.Mask) {
2746 if (!QualStr.empty()) QualStr += ' ';
2747 QualStr += E.Name;
2748
2749 // If we have a location for the qualifier, offer a fixit.
2750 SourceLocation QualLoc = E.Loc;
2751 if (QualLoc.isValid()) {
2752 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2753 if (Loc.isInvalid() ||
2754 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2755 Loc = QualLoc;
2756 }
2757
2758 ++NumQuals;
2759 }
2760 }
2761
2762 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2763 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2764}
2765
2766// Diagnose pointless type qualifiers on the return type of a function.
2767static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2768 Declarator &D,
2769 unsigned FunctionChunkIndex) {
2770 if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2771 // FIXME: TypeSourceInfo doesn't preserve location information for
2772 // qualifiers.
2773 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2774 RetTy.getLocalCVRQualifiers(),
2775 D.getIdentifierLoc());
2776 return;
2777 }
2778
2779 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2780 End = D.getNumTypeObjects();
2781 OuterChunkIndex != End; ++OuterChunkIndex) {
2782 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2783 switch (OuterChunk.Kind) {
2784 case DeclaratorChunk::Paren:
2785 continue;
2786
2787 case DeclaratorChunk::Pointer: {
2788 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2789 S.diagnoseIgnoredQualifiers(
2790 diag::warn_qual_return_type,
2791 PTI.TypeQuals,
2792 SourceLocation(),
2793 SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2794 SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2795 SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2796 SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc),
2797 SourceLocation::getFromRawEncoding(PTI.UnalignedQualLoc));
2798 return;
2799 }
2800
2801 case DeclaratorChunk::Function:
2802 case DeclaratorChunk::BlockPointer:
2803 case DeclaratorChunk::Reference:
2804 case DeclaratorChunk::Array:
2805 case DeclaratorChunk::MemberPointer:
2806 case DeclaratorChunk::Pipe:
2807 // FIXME: We can't currently provide an accurate source location and a
2808 // fix-it hint for these.
2809 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2810 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2811 RetTy.getCVRQualifiers() | AtomicQual,
2812 D.getIdentifierLoc());
2813 return;
2814 }
2815
2816 llvm_unreachable("unknown declarator chunk kind")::llvm::llvm_unreachable_internal("unknown declarator chunk kind"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 2816)
;
2817 }
2818
2819 // If the qualifiers come from a conversion function type, don't diagnose
2820 // them -- they're not necessarily redundant, since such a conversion
2821 // operator can be explicitly called as "x.operator const int()".
2822 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2823 return;
2824
2825 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2826 // which are present there.
2827 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2828 D.getDeclSpec().getTypeQualifiers(),
2829 D.getIdentifierLoc(),
2830 D.getDeclSpec().getConstSpecLoc(),
2831 D.getDeclSpec().getVolatileSpecLoc(),
2832 D.getDeclSpec().getRestrictSpecLoc(),
2833 D.getDeclSpec().getAtomicSpecLoc(),
2834 D.getDeclSpec().getUnalignedSpecLoc());
2835}
2836
2837static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2838 TypeSourceInfo *&ReturnTypeInfo) {
2839 Sema &SemaRef = state.getSema();
2840 Declarator &D = state.getDeclarator();
2841 QualType T;
2842 ReturnTypeInfo = nullptr;
2843
2844 // The TagDecl owned by the DeclSpec.
2845 TagDecl *OwnedTagDecl = nullptr;
2846
2847 switch (D.getName().getKind()) {
2848 case UnqualifiedIdKind::IK_ImplicitSelfParam:
2849 case UnqualifiedIdKind::IK_OperatorFunctionId:
2850 case UnqualifiedIdKind::IK_Identifier:
2851 case UnqualifiedIdKind::IK_LiteralOperatorId:
2852 case UnqualifiedIdKind::IK_TemplateId:
2853 T = ConvertDeclSpecToType(state);
2854
2855 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2856 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2857 // Owned declaration is embedded in declarator.
2858 OwnedTagDecl->setEmbeddedInDeclarator(true);
2859 }
2860 break;
2861
2862 case UnqualifiedIdKind::IK_ConstructorName:
2863 case UnqualifiedIdKind::IK_ConstructorTemplateId:
2864 case UnqualifiedIdKind::IK_DestructorName:
2865 // Constructors and destructors don't have return types. Use
2866 // "void" instead.
2867 T = SemaRef.Context.VoidTy;
2868 processTypeAttrs(state, T, TAL_DeclSpec,
2869 D.getMutableDeclSpec().getAttributes());
2870 break;
2871
2872 case UnqualifiedIdKind::IK_DeductionGuideName:
2873 // Deduction guides have a trailing return type and no type in their
2874 // decl-specifier sequence. Use a placeholder return type for now.
2875 T = SemaRef.Context.DependentTy;
2876 break;
2877
2878 case UnqualifiedIdKind::IK_ConversionFunctionId:
2879 // The result type of a conversion function is the type that it
2880 // converts to.
2881 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2882 &ReturnTypeInfo);
2883 break;
2884 }
2885
2886 if (!D.getAttributes().empty())
2887 distributeTypeAttrsFromDeclarator(state, T);
2888
2889 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2890 if (DeducedType *Deduced = T->getContainedDeducedType()) {
2891 AutoType *Auto = dyn_cast<AutoType>(Deduced);
2892 int Error = -1;
2893
2894 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
2895 // class template argument deduction)?
2896 bool IsCXXAutoType =
2897 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
2898 bool IsDeducedReturnType = false;
2899
2900 switch (D.getContext()) {
2901 case DeclaratorContext::LambdaExprContext:
2902 // Declared return type of a lambda-declarator is implicit and is always
2903 // 'auto'.
2904 break;
2905 case DeclaratorContext::ObjCParameterContext:
2906 case DeclaratorContext::ObjCResultContext:
2907 case DeclaratorContext::PrototypeContext:
2908 Error = 0;
2909 break;
2910 case DeclaratorContext::LambdaExprParameterContext:
2911 // In C++14, generic lambdas allow 'auto' in their parameters.
2912 if (!SemaRef.getLangOpts().CPlusPlus14 ||
2913 !Auto || Auto->getKeyword() != AutoTypeKeyword::Auto)
2914 Error = 16;
2915 else {
2916 // If auto is mentioned in a lambda parameter context, convert it to a
2917 // template parameter type.
2918 sema::LambdaScopeInfo *LSI = SemaRef.getCurLambda();
2919 assert(LSI && "No LambdaScopeInfo on the stack!")((LSI && "No LambdaScopeInfo on the stack!") ? static_cast
<void> (0) : __assert_fail ("LSI && \"No LambdaScopeInfo on the stack!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 2919, __PRETTY_FUNCTION__))
;
2920 const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
2921 const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
2922 const bool IsParameterPack = D.hasEllipsis();
2923
2924 // Create the TemplateTypeParmDecl here to retrieve the corresponding
2925 // template parameter type. Template parameters are temporarily added
2926 // to the TU until the associated TemplateDecl is created.
2927 TemplateTypeParmDecl *CorrespondingTemplateParam =
2928 TemplateTypeParmDecl::Create(
2929 SemaRef.Context, SemaRef.Context.getTranslationUnitDecl(),
2930 /*KeyLoc*/ SourceLocation(), /*NameLoc*/ D.getBeginLoc(),
2931 TemplateParameterDepth, AutoParameterPosition,
2932 /*Identifier*/ nullptr, false, IsParameterPack);
2933 LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
2934 // Replace the 'auto' in the function parameter with this invented
2935 // template type parameter.
2936 // FIXME: Retain some type sugar to indicate that this was written
2937 // as 'auto'.
2938 T = SemaRef.ReplaceAutoType(
2939 T, QualType(CorrespondingTemplateParam->getTypeForDecl(), 0));
2940 }
2941 break;
2942 case DeclaratorContext::MemberContext: {
2943 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
2944 D.isFunctionDeclarator())
2945 break;
2946 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
2947 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2948 case TTK_Enum: llvm_unreachable("unhandled tag kind")::llvm::llvm_unreachable_internal("unhandled tag kind", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 2948)
;
2949 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
2950 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
2951 case TTK_Class: Error = 5; /* Class member */ break;
2952 case TTK_Interface: Error = 6; /* Interface member */ break;
2953 }
2954 if (D.getDeclSpec().isFriendSpecified())
2955 Error = 20; // Friend type
2956 break;
2957 }
2958 case DeclaratorContext::CXXCatchContext:
2959 case DeclaratorContext::ObjCCatchContext:
2960 Error = 7; // Exception declaration
2961 break;
2962 case DeclaratorContext::TemplateParamContext:
2963 if (isa<DeducedTemplateSpecializationType>(Deduced))
2964 Error = 19; // Template parameter
2965 else if (!SemaRef.getLangOpts().CPlusPlus17)
2966 Error = 8; // Template parameter (until C++17)
2967 break;
2968 case DeclaratorContext::BlockLiteralContext:
2969 Error = 9; // Block literal
2970 break;
2971 case DeclaratorContext::TemplateArgContext:
2972 // Within a template argument list, a deduced template specialization
2973 // type will be reinterpreted as a template template argument.
2974 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
2975 !D.getNumTypeObjects() &&
2976 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
2977 break;
2978 LLVM_FALLTHROUGH[[clang::fallthrough]];
2979 case DeclaratorContext::TemplateTypeArgContext:
2980 Error = 10; // Template type argument
2981 break;
2982 case DeclaratorContext::AliasDeclContext:
2983 case DeclaratorContext::AliasTemplateContext:
2984 Error = 12; // Type alias
2985 break;
2986 case DeclaratorContext::TrailingReturnContext:
2987 case DeclaratorContext::TrailingReturnVarContext:
2988 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
2989 Error = 13; // Function return type
2990 IsDeducedReturnType = true;
2991 break;
2992 case DeclaratorContext::ConversionIdContext:
2993 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
2994 Error = 14; // conversion-type-id
2995 IsDeducedReturnType = true;
2996 break;
2997 case DeclaratorContext::FunctionalCastContext:
2998 if (isa<DeducedTemplateSpecializationType>(Deduced))
2999 break;
3000 LLVM_FALLTHROUGH[[clang::fallthrough]];
3001 case DeclaratorContext::TypeNameContext:
3002 Error = 15; // Generic
3003 break;
3004 case DeclaratorContext::FileContext:
3005 case DeclaratorContext::BlockContext:
3006 case DeclaratorContext::ForContext:
3007 case DeclaratorContext::InitStmtContext:
3008 case DeclaratorContext::ConditionContext:
3009 // FIXME: P0091R3 (erroneously) does not permit class template argument
3010 // deduction in conditions, for-init-statements, and other declarations
3011 // that are not simple-declarations.
3012 break;
3013 case DeclaratorContext::CXXNewContext:
3014 // FIXME: P0091R3 does not permit class template argument deduction here,
3015 // but we follow GCC and allow it anyway.
3016 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3017 Error = 17; // 'new' type
3018 break;
3019 case DeclaratorContext::KNRTypeListContext:
3020 Error = 18; // K&R function parameter
3021 break;
3022 }
3023
3024 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3025 Error = 11;
3026
3027 // In Objective-C it is an error to use 'auto' on a function declarator
3028 // (and everywhere for '__auto_type').
3029 if (D.isFunctionDeclarator() &&
3030 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3031 Error = 13;
3032
3033 bool HaveTrailing = false;
3034
3035 // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
3036 // contains a trailing return type. That is only legal at the outermost
3037 // level. Check all declarator chunks (outermost first) anyway, to give
3038 // better diagnostics.
3039 // We don't support '__auto_type' with trailing return types.
3040 // FIXME: Should we only do this for 'auto' and not 'decltype(auto)'?
3041 if (SemaRef.getLangOpts().CPlusPlus11 && IsCXXAutoType &&
3042 D.hasTrailingReturnType()) {
3043 HaveTrailing = true;
3044 Error = -1;
3045 }
3046
3047 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3048 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3049 AutoRange = D.getName().getSourceRange();
3050
3051 if (Error != -1) {
3052 unsigned Kind;
3053 if (Auto) {
3054 switch (Auto->getKeyword()) {
3055 case AutoTypeKeyword::Auto: Kind = 0; break;
3056 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3057 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3058 }
3059 } else {
3060 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&((isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type") ? static_cast<void> (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3061, __PRETTY_FUNCTION__))
3061 "unknown auto type")((isa<DeducedTemplateSpecializationType>(Deduced) &&
"unknown auto type") ? static_cast<void> (0) : __assert_fail
("isa<DeducedTemplateSpecializationType>(Deduced) && \"unknown auto type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3061, __PRETTY_FUNCTION__))
;
3062 Kind = 3;
3063 }
3064
3065 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3066 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3067
3068 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3069 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3070 << QualType(Deduced, 0) << AutoRange;
3071 if (auto *TD = TN.getAsTemplateDecl())
3072 SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3073
3074 T = SemaRef.Context.IntTy;
3075 D.setInvalidType(true);
3076 } else if (!HaveTrailing &&
3077 D.getContext() != DeclaratorContext::LambdaExprContext) {
3078 // If there was a trailing return type, we already got
3079 // warn_cxx98_compat_trailing_return_type in the parser.
3080 SemaRef.Diag(AutoRange.getBegin(),
3081 D.getContext() ==
3082 DeclaratorContext::LambdaExprParameterContext
3083 ? diag::warn_cxx11_compat_generic_lambda
3084 : IsDeducedReturnType
3085 ? diag::warn_cxx11_compat_deduced_return_type
3086 : diag::warn_cxx98_compat_auto_type_specifier)
3087 << AutoRange;
3088 }
3089 }
3090
3091 if (SemaRef.getLangOpts().CPlusPlus &&
3092 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3093 // Check the contexts where C++ forbids the declaration of a new class
3094 // or enumeration in a type-specifier-seq.
3095 unsigned DiagID = 0;
3096 switch (D.getContext()) {
3097 case DeclaratorContext::TrailingReturnContext:
3098 case DeclaratorContext::TrailingReturnVarContext:
3099 // Class and enumeration definitions are syntactically not allowed in
3100 // trailing return types.
3101 llvm_unreachable("parser should not have allowed this")::llvm::llvm_unreachable_internal("parser should not have allowed this"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3101)
;
3102 break;
3103 case DeclaratorContext::FileContext:
3104 case DeclaratorContext::MemberContext:
3105 case DeclaratorContext::BlockContext:
3106 case DeclaratorContext::ForContext:
3107 case DeclaratorContext::InitStmtContext:
3108 case DeclaratorContext::BlockLiteralContext:
3109 case DeclaratorContext::LambdaExprContext:
3110 // C++11 [dcl.type]p3:
3111 // A type-specifier-seq shall not define a class or enumeration unless
3112 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3113 // the declaration of a template-declaration.
3114 case DeclaratorContext::AliasDeclContext:
3115 break;
3116 case DeclaratorContext::AliasTemplateContext:
3117 DiagID = diag::err_type_defined_in_alias_template;
3118 break;
3119 case DeclaratorContext::TypeNameContext:
3120 case DeclaratorContext::FunctionalCastContext:
3121 case DeclaratorContext::ConversionIdContext:
3122 case DeclaratorContext::TemplateParamContext:
3123 case DeclaratorContext::CXXNewContext:
3124 case DeclaratorContext::CXXCatchContext:
3125 case DeclaratorContext::ObjCCatchContext:
3126 case DeclaratorContext::TemplateArgContext:
3127 case DeclaratorContext::TemplateTypeArgContext:
3128 DiagID = diag::err_type_defined_in_type_specifier;
3129 break;
3130 case DeclaratorContext::PrototypeContext:
3131 case DeclaratorContext::LambdaExprParameterContext:
3132 case DeclaratorContext::ObjCParameterContext:
3133 case DeclaratorContext::ObjCResultContext:
3134 case DeclaratorContext::KNRTypeListContext:
3135 // C++ [dcl.fct]p6:
3136 // Types shall not be defined in return or parameter types.
3137 DiagID = diag::err_type_defined_in_param_type;
3138 break;
3139 case DeclaratorContext::ConditionContext:
3140 // C++ 6.4p2:
3141 // The type-specifier-seq shall not contain typedef and shall not declare
3142 // a new class or enumeration.
3143 DiagID = diag::err_type_defined_in_condition;
3144 break;
3145 }
3146
3147 if (DiagID != 0) {
3148 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3149 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3150 D.setInvalidType(true);
3151 }
3152 }
3153
3154 assert(!T.isNull() && "This function should not return a null type")((!T.isNull() && "This function should not return a null type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"This function should not return a null type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3154, __PRETTY_FUNCTION__))
;
3155 return T;
3156}
3157
3158/// Produce an appropriate diagnostic for an ambiguity between a function
3159/// declarator and a C++ direct-initializer.
3160static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3161 DeclaratorChunk &DeclType, QualType RT) {
3162 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3163 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")((FTI.isAmbiguous && "no direct-initializer / function ambiguity"
) ? static_cast<void> (0) : __assert_fail ("FTI.isAmbiguous && \"no direct-initializer / function ambiguity\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3163, __PRETTY_FUNCTION__))
;
3164
3165 // If the return type is void there is no ambiguity.
3166 if (RT->isVoidType())
3167 return;
3168
3169 // An initializer for a non-class type can have at most one argument.
3170 if (!RT->isRecordType() && FTI.NumParams > 1)
3171 return;
3172
3173 // An initializer for a reference must have exactly one argument.
3174 if (RT->isReferenceType() && FTI.NumParams != 1)
3175 return;
3176
3177 // Only warn if this declarator is declaring a function at block scope, and
3178 // doesn't have a storage class (such as 'extern') specified.
3179 if (!D.isFunctionDeclarator() ||
3180 D.getFunctionDefinitionKind() != FDK_Declaration ||
3181 !S.CurContext->isFunctionOrMethod() ||
3182 D.getDeclSpec().getStorageClassSpec()
3183 != DeclSpec::SCS_unspecified)
3184 return;
3185
3186 // Inside a condition, a direct initializer is not permitted. We allow one to
3187 // be parsed in order to give better diagnostics in condition parsing.
3188 if (D.getContext() == DeclaratorContext::ConditionContext)
3189 return;
3190
3191 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3192
3193 S.Diag(DeclType.Loc,
3194 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3195 : diag::warn_empty_parens_are_function_decl)
3196 << ParenRange;
3197
3198 // If the declaration looks like:
3199 // T var1,
3200 // f();
3201 // and name lookup finds a function named 'f', then the ',' was
3202 // probably intended to be a ';'.
3203 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3204 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3205 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3206 if (Comma.getFileID() != Name.getFileID() ||
3207 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3208 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3209 Sema::LookupOrdinaryName);
3210 if (S.LookupName(Result, S.getCurScope()))
3211 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3212 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3213 << D.getIdentifier();
3214 Result.suppressDiagnostics();
3215 }
3216 }
3217
3218 if (FTI.NumParams > 0) {
3219 // For a declaration with parameters, eg. "T var(T());", suggest adding
3220 // parens around the first parameter to turn the declaration into a
3221 // variable declaration.
3222 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3223 SourceLocation B = Range.getBegin();
3224 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3225 // FIXME: Maybe we should suggest adding braces instead of parens
3226 // in C++11 for classes that don't have an initializer_list constructor.
3227 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3228 << FixItHint::CreateInsertion(B, "(")
3229 << FixItHint::CreateInsertion(E, ")");
3230 } else {
3231 // For a declaration without parameters, eg. "T var();", suggest replacing
3232 // the parens with an initializer to turn the declaration into a variable
3233 // declaration.
3234 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3235
3236 // Empty parens mean value-initialization, and no parens mean
3237 // default initialization. These are equivalent if the default
3238 // constructor is user-provided or if zero-initialization is a
3239 // no-op.
3240 if (RD && RD->hasDefinition() &&
3241 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3242 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3243 << FixItHint::CreateRemoval(ParenRange);
3244 else {
3245 std::string Init =
3246 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3247 if (Init.empty() && S.LangOpts.CPlusPlus11)
3248 Init = "{}";
3249 if (!Init.empty())
3250 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3251 << FixItHint::CreateReplacement(ParenRange, Init);
3252 }
3253 }
3254}
3255
3256/// Produce an appropriate diagnostic for a declarator with top-level
3257/// parentheses.
3258static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3259 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3260 assert(Paren.Kind == DeclaratorChunk::Paren &&((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses"
) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3261, __PRETTY_FUNCTION__))
3261 "do not have redundant top-level parentheses")((Paren.Kind == DeclaratorChunk::Paren && "do not have redundant top-level parentheses"
) ? static_cast<void> (0) : __assert_fail ("Paren.Kind == DeclaratorChunk::Paren && \"do not have redundant top-level parentheses\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3261, __PRETTY_FUNCTION__))
;
3262
3263 // This is a syntactic check; we're not interested in cases that arise
3264 // during template instantiation.
3265 if (S.inTemplateInstantiation())
3266 return;
3267
3268 // Check whether this could be intended to be a construction of a temporary
3269 // object in C++ via a function-style cast.
3270 bool CouldBeTemporaryObject =
3271 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3272 !D.isInvalidType() && D.getIdentifier() &&
3273 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3274 (T->isRecordType() || T->isDependentType()) &&
3275 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3276
3277 bool StartsWithDeclaratorId = true;
3278 for (auto &C : D.type_objects()) {
3279 switch (C.Kind) {
3280 case DeclaratorChunk::Paren:
3281 if (&C == &Paren)
3282 continue;
3283 LLVM_FALLTHROUGH[[clang::fallthrough]];
3284 case DeclaratorChunk::Pointer:
3285 StartsWithDeclaratorId = false;
3286 continue;
3287
3288 case DeclaratorChunk::Array:
3289 if (!C.Arr.NumElts)
3290 CouldBeTemporaryObject = false;
3291 continue;
3292
3293 case DeclaratorChunk::Reference:
3294 // FIXME: Suppress the warning here if there is no initializer; we're
3295 // going to give an error anyway.
3296 // We assume that something like 'T (&x) = y;' is highly likely to not
3297 // be intended to be a temporary object.
3298 CouldBeTemporaryObject = false;
3299 StartsWithDeclaratorId = false;
3300 continue;
3301
3302 case DeclaratorChunk::Function:
3303 // In a new-type-id, function chunks require parentheses.
3304 if (D.getContext() == DeclaratorContext::CXXNewContext)
3305 return;
3306 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3307 // redundant-parens warning, but we don't know whether the function
3308 // chunk was syntactically valid as an expression here.
3309 CouldBeTemporaryObject = false;
3310 continue;
3311
3312 case DeclaratorChunk::BlockPointer:
3313 case DeclaratorChunk::MemberPointer:
3314 case DeclaratorChunk::Pipe:
3315 // These cannot appear in expressions.
3316 CouldBeTemporaryObject = false;
3317 StartsWithDeclaratorId = false;
3318 continue;
3319 }
3320 }
3321
3322 // FIXME: If there is an initializer, assume that this is not intended to be
3323 // a construction of a temporary object.
3324
3325 // Check whether the name has already been declared; if not, this is not a
3326 // function-style cast.
3327 if (CouldBeTemporaryObject) {
3328 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3329 Sema::LookupOrdinaryName);
3330 if (!S.LookupName(Result, S.getCurScope()))
3331 CouldBeTemporaryObject = false;
3332 Result.suppressDiagnostics();
3333 }
3334
3335 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3336
3337 if (!CouldBeTemporaryObject) {
3338 // If we have A (::B), the parentheses affect the meaning of the program.
3339 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3340 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3341 // formally unambiguous.
3342 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3343 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3344 NNS = NNS->getPrefix()) {
3345 if (NNS->getKind() == NestedNameSpecifier::Global)
3346 return;
3347 }
3348 }
3349
3350 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3351 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3352 << FixItHint::CreateRemoval(Paren.EndLoc);
3353 return;
3354 }
3355
3356 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3357 << ParenRange << D.getIdentifier();
3358 auto *RD = T->getAsCXXRecordDecl();
3359 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3360 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3361 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3362 << D.getIdentifier();
3363 // FIXME: A cast to void is probably a better suggestion in cases where it's
3364 // valid (when there is no initializer and we're not in a condition).
3365 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3366 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3367 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3368 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3369 << FixItHint::CreateRemoval(Paren.Loc)
3370 << FixItHint::CreateRemoval(Paren.EndLoc);
3371}
3372
3373/// Helper for figuring out the default CC for a function declarator type. If
3374/// this is the outermost chunk, then we can determine the CC from the
3375/// declarator context. If not, then this could be either a member function
3376/// type or normal function type.
3377static CallingConv getCCForDeclaratorChunk(
3378 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3379 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3380 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)((D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function
) ? static_cast<void> (0) : __assert_fail ("D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3380, __PRETTY_FUNCTION__))
;
3381
3382 // Check for an explicit CC attribute.
3383 for (const ParsedAttr &AL : AttrList) {
3384 switch (AL.getKind()) {
3385 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
: {
3386 // Ignore attributes that don't validate or can't apply to the
3387 // function type. We'll diagnose the failure to apply them in
3388 // handleFunctionTypeAttr.
3389 CallingConv CC;
3390 if (!S.CheckCallingConvAttr(AL, CC) &&
3391 (!FTI.isVariadic || supportsVariadicCall(CC))) {
3392 return CC;
3393 }
3394 break;
3395 }
3396
3397 default:
3398 break;
3399 }
3400 }
3401
3402 bool IsCXXInstanceMethod = false;
3403
3404 if (S.getLangOpts().CPlusPlus) {
3405 // Look inwards through parentheses to see if this chunk will form a
3406 // member pointer type or if we're the declarator. Any type attributes
3407 // between here and there will override the CC we choose here.
3408 unsigned I = ChunkIndex;
3409 bool FoundNonParen = false;
3410 while (I && !FoundNonParen) {
3411 --I;
3412 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3413 FoundNonParen = true;
3414 }
3415
3416 if (FoundNonParen) {
3417 // If we're not the declarator, we're a regular function type unless we're
3418 // in a member pointer.
3419 IsCXXInstanceMethod =
3420 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3421 } else if (D.getContext() == DeclaratorContext::LambdaExprContext) {
3422 // This can only be a call operator for a lambda, which is an instance
3423 // method.
3424 IsCXXInstanceMethod = true;
3425 } else {
3426 // We're the innermost decl chunk, so must be a function declarator.
3427 assert(D.isFunctionDeclarator())((D.isFunctionDeclarator()) ? static_cast<void> (0) : __assert_fail
("D.isFunctionDeclarator()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3427, __PRETTY_FUNCTION__))
;
3428
3429 // If we're inside a record, we're declaring a method, but it could be
3430 // explicitly or implicitly static.
3431 IsCXXInstanceMethod =
3432 D.isFirstDeclarationOfMember() &&
3433 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3434 !D.isStaticMember();
3435 }
3436 }
3437
3438 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3439 IsCXXInstanceMethod);
3440
3441 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3442 // and AMDGPU targets, hence it cannot be treated as a calling
3443 // convention attribute. This is the simplest place to infer
3444 // calling convention for OpenCL kernels.
3445 if (S.getLangOpts().OpenCL) {
3446 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3447 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3448 CC = CC_OpenCLKernel;
3449 break;
3450 }
3451 }
3452 }
3453
3454 return CC;
3455}
3456
3457namespace {
3458 /// A simple notion of pointer kinds, which matches up with the various
3459 /// pointer declarators.
3460 enum class SimplePointerKind {
3461 Pointer,
3462 BlockPointer,
3463 MemberPointer,
3464 Array,
3465 };
3466} // end anonymous namespace
3467
3468IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3469 switch (nullability) {
3470 case NullabilityKind::NonNull:
3471 if (!Ident__Nonnull)
3472 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3473 return Ident__Nonnull;
3474
3475 case NullabilityKind::Nullable:
3476 if (!Ident__Nullable)
3477 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3478 return Ident__Nullable;
3479
3480 case NullabilityKind::Unspecified:
3481 if (!Ident__Null_unspecified)
3482 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3483 return Ident__Null_unspecified;
3484 }
3485 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3485)
;
3486}
3487
3488/// Retrieve the identifier "NSError".
3489IdentifierInfo *Sema::getNSErrorIdent() {
3490 if (!Ident_NSError)
3491 Ident_NSError = PP.getIdentifierInfo("NSError");
3492
3493 return Ident_NSError;
3494}
3495
3496/// Check whether there is a nullability attribute of any kind in the given
3497/// attribute list.
3498static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3499 for (const ParsedAttr &AL : attrs) {
3500 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3501 AL.getKind() == ParsedAttr::AT_TypeNullable ||
3502 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3503 return true;
3504 }
3505
3506 return false;
3507}
3508
3509namespace {
3510 /// Describes the kind of a pointer a declarator describes.
3511 enum class PointerDeclaratorKind {
3512 // Not a pointer.
3513 NonPointer,
3514 // Single-level pointer.
3515 SingleLevelPointer,
3516 // Multi-level pointer (of any pointer kind).
3517 MultiLevelPointer,
3518 // CFFooRef*
3519 MaybePointerToCFRef,
3520 // CFErrorRef*
3521 CFErrorRefPointer,
3522 // NSError**
3523 NSErrorPointerPointer,
3524 };
3525
3526 /// Describes a declarator chunk wrapping a pointer that marks inference as
3527 /// unexpected.
3528 // These values must be kept in sync with diagnostics.
3529 enum class PointerWrappingDeclaratorKind {
3530 /// Pointer is top-level.
3531 None = -1,
3532 /// Pointer is an array element.
3533 Array = 0,
3534 /// Pointer is the referent type of a C++ reference.
3535 Reference = 1
3536 };
3537} // end anonymous namespace
3538
3539/// Classify the given declarator, whose type-specified is \c type, based on
3540/// what kind of pointer it refers to.
3541///
3542/// This is used to determine the default nullability.
3543static PointerDeclaratorKind
3544classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3545 PointerWrappingDeclaratorKind &wrappingKind) {
3546 unsigned numNormalPointers = 0;
3547
3548 // For any dependent type, we consider it a non-pointer.
3549 if (type->isDependentType())
3550 return PointerDeclaratorKind::NonPointer;
3551
3552 // Look through the declarator chunks to identify pointers.
3553 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3554 DeclaratorChunk &chunk = declarator.getTypeObject(i);
3555 switch (chunk.Kind) {
3556 case DeclaratorChunk::Array:
3557 if (numNormalPointers == 0)
3558 wrappingKind = PointerWrappingDeclaratorKind::Array;
3559 break;
3560
3561 case DeclaratorChunk::Function:
3562 case DeclaratorChunk::Pipe:
3563 break;
3564
3565 case DeclaratorChunk::BlockPointer:
3566 case DeclaratorChunk::MemberPointer:
3567 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3568 : PointerDeclaratorKind::SingleLevelPointer;
3569
3570 case DeclaratorChunk::Paren:
3571 break;
3572
3573 case DeclaratorChunk::Reference:
3574 if (numNormalPointers == 0)
3575 wrappingKind = PointerWrappingDeclaratorKind::Reference;
3576 break;
3577
3578 case DeclaratorChunk::Pointer:
3579 ++numNormalPointers;
3580 if (numNormalPointers > 2)
3581 return PointerDeclaratorKind::MultiLevelPointer;
3582 break;
3583 }
3584 }
3585
3586 // Then, dig into the type specifier itself.
3587 unsigned numTypeSpecifierPointers = 0;
3588 do {
3589 // Decompose normal pointers.
3590 if (auto ptrType = type->getAs<PointerType>()) {
3591 ++numNormalPointers;
3592
3593 if (numNormalPointers > 2)
3594 return PointerDeclaratorKind::MultiLevelPointer;
3595
3596 type = ptrType->getPointeeType();
3597 ++numTypeSpecifierPointers;
3598 continue;
3599 }
3600
3601 // Decompose block pointers.
3602 if (type->getAs<BlockPointerType>()) {
3603 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3604 : PointerDeclaratorKind::SingleLevelPointer;
3605 }
3606
3607 // Decompose member pointers.
3608 if (type->getAs<MemberPointerType>()) {
3609 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3610 : PointerDeclaratorKind::SingleLevelPointer;
3611 }
3612
3613 // Look at Objective-C object pointers.
3614 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3615 ++numNormalPointers;
3616 ++numTypeSpecifierPointers;
3617
3618 // If this is NSError**, report that.
3619 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3620 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
3621 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3622 return PointerDeclaratorKind::NSErrorPointerPointer;
3623 }
3624 }
3625
3626 break;
3627 }
3628
3629 // Look at Objective-C class types.
3630 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3631 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
3632 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3633 return PointerDeclaratorKind::NSErrorPointerPointer;
3634 }
3635
3636 break;
3637 }
3638
3639 // If at this point we haven't seen a pointer, we won't see one.
3640 if (numNormalPointers == 0)
3641 return PointerDeclaratorKind::NonPointer;
3642
3643 if (auto recordType = type->getAs<RecordType>()) {
3644 RecordDecl *recordDecl = recordType->getDecl();
3645
3646 bool isCFError = false;
3647 if (S.CFError) {
3648 // If we already know about CFError, test it directly.
3649 isCFError = (S.CFError == recordDecl);
3650 } else {
3651 // Check whether this is CFError, which we identify based on its bridge
3652 // to NSError. CFErrorRef used to be declared with "objc_bridge" but is
3653 // now declared with "objc_bridge_mutable", so look for either one of
3654 // the two attributes.
3655 if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
3656 IdentifierInfo *bridgedType = nullptr;
3657 if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>())
3658 bridgedType = bridgeAttr->getBridgedType();
3659 else if (auto bridgeAttr =
3660 recordDecl->getAttr<ObjCBridgeMutableAttr>())
3661 bridgedType = bridgeAttr->getBridgedType();
3662
3663 if (bridgedType == S.getNSErrorIdent()) {
3664 S.CFError = recordDecl;
3665 isCFError = true;
3666 }
3667 }
3668 }
3669
3670 // If this is CFErrorRef*, report it as such.
3671 if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3672 return PointerDeclaratorKind::CFErrorRefPointer;
3673 }
3674 break;
3675 }
3676
3677 break;
3678 } while (true);
3679
3680 switch (numNormalPointers) {
3681 case 0:
3682 return PointerDeclaratorKind::NonPointer;
3683
3684 case 1:
3685 return PointerDeclaratorKind::SingleLevelPointer;
3686
3687 case 2:
3688 return PointerDeclaratorKind::MaybePointerToCFRef;
3689
3690 default:
3691 return PointerDeclaratorKind::MultiLevelPointer;
3692 }
3693}
3694
3695static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3696 SourceLocation loc) {
3697 // If we're anywhere in a function, method, or closure context, don't perform
3698 // completeness checks.
3699 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3700 if (ctx->isFunctionOrMethod())
3701 return FileID();
3702
3703 if (ctx->isFileContext())
3704 break;
3705 }
3706
3707 // We only care about the expansion location.
3708 loc = S.SourceMgr.getExpansionLoc(loc);
3709 FileID file = S.SourceMgr.getFileID(loc);
3710 if (file.isInvalid())
3711 return FileID();
3712
3713 // Retrieve file information.
3714 bool invalid = false;
3715 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3716 if (invalid || !sloc.isFile())
3717 return FileID();
3718
3719 // We don't want to perform completeness checks on the main file or in
3720 // system headers.
3721 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3722 if (fileInfo.getIncludeLoc().isInvalid())
3723 return FileID();
3724 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3725 S.Diags.getSuppressSystemWarnings()) {
3726 return FileID();
3727 }
3728
3729 return file;
3730}
3731
3732/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
3733/// taking into account whitespace before and after.
3734static void fixItNullability(Sema &S, DiagnosticBuilder &Diag,
3735 SourceLocation PointerLoc,
3736 NullabilityKind Nullability) {
3737 assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail
("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3737, __PRETTY_FUNCTION__))
;
3738 if (PointerLoc.isMacroID())
3739 return;
3740
3741 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
3742 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
3743 return;
3744
3745 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
3746 if (!NextChar)
3747 return;
3748
3749 SmallString<32> InsertionTextBuf{" "};
3750 InsertionTextBuf += getNullabilitySpelling(Nullability);
3751 InsertionTextBuf += " ";
3752 StringRef InsertionText = InsertionTextBuf.str();
3753
3754 if (isWhitespace(*NextChar)) {
3755 InsertionText = InsertionText.drop_back();
3756 } else if (NextChar[-1] == '[') {
3757 if (NextChar[0] == ']')
3758 InsertionText = InsertionText.drop_back().drop_front();
3759 else
3760 InsertionText = InsertionText.drop_front();
3761 } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
3762 !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
3763 InsertionText = InsertionText.drop_back().drop_front();
3764 }
3765
3766 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
3767}
3768
3769static void emitNullabilityConsistencyWarning(Sema &S,
3770 SimplePointerKind PointerKind,
3771 SourceLocation PointerLoc,
3772 SourceLocation PointerEndLoc) {
3773 assert(PointerLoc.isValid())((PointerLoc.isValid()) ? static_cast<void> (0) : __assert_fail
("PointerLoc.isValid()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3773, __PRETTY_FUNCTION__))
;
3774
3775 if (PointerKind == SimplePointerKind::Array) {
3776 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
3777 } else {
3778 S.Diag(PointerLoc, diag::warn_nullability_missing)
3779 << static_cast<unsigned>(PointerKind);
3780 }
3781
3782 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
3783 if (FixItLoc.isMacroID())
3784 return;
3785
3786 auto addFixIt = [&](NullabilityKind Nullability) {
3787 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
3788 Diag << static_cast<unsigned>(Nullability);
3789 Diag << static_cast<unsigned>(PointerKind);
3790 fixItNullability(S, Diag, FixItLoc, Nullability);
3791 };
3792 addFixIt(NullabilityKind::Nullable);
3793 addFixIt(NullabilityKind::NonNull);
3794}
3795
3796/// Complains about missing nullability if the file containing \p pointerLoc
3797/// has other uses of nullability (either the keywords or the \c assume_nonnull
3798/// pragma).
3799///
3800/// If the file has \e not seen other uses of nullability, this particular
3801/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
3802static void
3803checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
3804 SourceLocation pointerLoc,
3805 SourceLocation pointerEndLoc = SourceLocation()) {
3806 // Determine which file we're performing consistency checking for.
3807 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
3808 if (file.isInvalid())
3809 return;
3810
3811 // If we haven't seen any type nullability in this file, we won't warn now
3812 // about anything.
3813 FileNullability &fileNullability = S.NullabilityMap[file];
3814 if (!fileNullability.SawTypeNullability) {
3815 // If this is the first pointer declarator in the file, and the appropriate
3816 // warning is on, record it in case we need to diagnose it retroactively.
3817 diag::kind diagKind;
3818 if (pointerKind == SimplePointerKind::Array)
3819 diagKind = diag::warn_nullability_missing_array;
3820 else
3821 diagKind = diag::warn_nullability_missing;
3822
3823 if (fileNullability.PointerLoc.isInvalid() &&
3824 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
3825 fileNullability.PointerLoc = pointerLoc;
3826 fileNullability.PointerEndLoc = pointerEndLoc;
3827 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
3828 }
3829
3830 return;
3831 }
3832
3833 // Complain about missing nullability.
3834 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
3835}
3836
3837/// Marks that a nullability feature has been used in the file containing
3838/// \p loc.
3839///
3840/// If this file already had pointer types in it that were missing nullability,
3841/// the first such instance is retroactively diagnosed.
3842///
3843/// \sa checkNullabilityConsistency
3844static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
3845 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
3846 if (file.isInvalid())
3847 return;
3848
3849 FileNullability &fileNullability = S.NullabilityMap[file];
3850 if (fileNullability.SawTypeNullability)
3851 return;
3852 fileNullability.SawTypeNullability = true;
3853
3854 // If we haven't seen any type nullability before, now we have. Retroactively
3855 // diagnose the first unannotated pointer, if there was one.
3856 if (fileNullability.PointerLoc.isInvalid())
3857 return;
3858
3859 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
3860 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
3861 fileNullability.PointerEndLoc);
3862}
3863
3864/// Returns true if any of the declarator chunks before \p endIndex include a
3865/// level of indirection: array, pointer, reference, or pointer-to-member.
3866///
3867/// Because declarator chunks are stored in outer-to-inner order, testing
3868/// every chunk before \p endIndex is testing all chunks that embed the current
3869/// chunk as part of their type.
3870///
3871/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
3872/// end index, in which case all chunks are tested.
3873static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
3874 unsigned i = endIndex;
3875 while (i != 0) {
3876 // Walk outwards along the declarator chunks.
3877 --i;
3878 const DeclaratorChunk &DC = D.getTypeObject(i);
3879 switch (DC.Kind) {
3880 case DeclaratorChunk::Paren:
3881 break;
3882 case DeclaratorChunk::Array:
3883 case DeclaratorChunk::Pointer:
3884 case DeclaratorChunk::Reference:
3885 case DeclaratorChunk::MemberPointer:
3886 return true;
3887 case DeclaratorChunk::Function:
3888 case DeclaratorChunk::BlockPointer:
3889 case DeclaratorChunk::Pipe:
3890 // These are invalid anyway, so just ignore.
3891 break;
3892 }
3893 }
3894 return false;
3895}
3896
3897static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
3898 return (Chunk.Kind == DeclaratorChunk::Pointer ||
3899 Chunk.Kind == DeclaratorChunk::Array);
3900}
3901
3902template<typename AttrT>
3903static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &Attr) {
3904 Attr.setUsedAsTypeAttr();
3905 return ::new (Ctx)
3906 AttrT(Attr.getRange(), Ctx, Attr.getAttributeSpellingListIndex());
3907}
3908
3909static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
3910 NullabilityKind NK) {
3911 switch (NK) {
3912 case NullabilityKind::NonNull:
3913 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
3914
3915 case NullabilityKind::Nullable:
3916 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
3917
3918 case NullabilityKind::Unspecified:
3919 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
3920 }
3921 llvm_unreachable("unknown NullabilityKind")::llvm::llvm_unreachable_internal("unknown NullabilityKind", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 3921)
;
3922}
3923
3924static TypeSourceInfo *
3925GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3926 QualType T, TypeSourceInfo *ReturnTypeInfo);
3927
3928static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
3929 QualType declSpecType,
3930 TypeSourceInfo *TInfo) {
3931 // The TypeSourceInfo that this function returns will not be a null type.
3932 // If there is an error, this function will fill in a dummy type as fallback.
3933 QualType T = declSpecType;
3934 Declarator &D = state.getDeclarator();
3935 Sema &S = state.getSema();
3936 ASTContext &Context = S.Context;
3937 const LangOptions &LangOpts = S.getLangOpts();
3938
3939 // The name we're declaring, if any.
3940 DeclarationName Name;
3941 if (D.getIdentifier())
3942 Name = D.getIdentifier();
3943
3944 // Does this declaration declare a typedef-name?
3945 bool IsTypedefName =
3946 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
3947 D.getContext() == DeclaratorContext::AliasDeclContext ||
3948 D.getContext() == DeclaratorContext::AliasTemplateContext;
3949
3950 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
3951 bool IsQualifiedFunction = T->isFunctionProtoType() &&
3952 (!T->castAs<FunctionProtoType>()->getTypeQuals().empty() ||
3953 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
3954
3955 // If T is 'decltype(auto)', the only declarators we can have are parens
3956 // and at most one function declarator if this is a function declaration.
3957 // If T is a deduced class template specialization type, we can have no
3958 // declarator chunks at all.
3959 if (auto *DT = T->getAs<DeducedType>()) {
3960 const AutoType *AT = T->getAs<AutoType>();
3961 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
3962 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
3963 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3964 unsigned Index = E - I - 1;
3965 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
3966 unsigned DiagId = IsClassTemplateDeduction
3967 ? diag::err_deduced_class_template_compound_type
3968 : diag::err_decltype_auto_compound_type;
3969 unsigned DiagKind = 0;
3970 switch (DeclChunk.Kind) {
3971 case DeclaratorChunk::Paren:
3972 // FIXME: Rejecting this is a little silly.
3973 if (IsClassTemplateDeduction) {
3974 DiagKind = 4;
3975 break;
3976 }
3977 continue;
3978 case DeclaratorChunk::Function: {
3979 if (IsClassTemplateDeduction) {
3980 DiagKind = 3;
3981 break;
3982 }
3983 unsigned FnIndex;
3984 if (D.isFunctionDeclarationContext() &&
3985 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
3986 continue;
3987 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
3988 break;
3989 }
3990 case DeclaratorChunk::Pointer:
3991 case DeclaratorChunk::BlockPointer:
3992 case DeclaratorChunk::MemberPointer:
3993 DiagKind = 0;
3994 break;
3995 case DeclaratorChunk::Reference:
3996 DiagKind = 1;
3997 break;
3998 case DeclaratorChunk::Array:
3999 DiagKind = 2;
4000 break;
4001 case DeclaratorChunk::Pipe:
4002 break;
4003 }
4004
4005 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4006 D.setInvalidType(true);
4007 break;
4008 }
4009 }
4010 }
4011
4012 // Determine whether we should infer _Nonnull on pointer types.
4013 Optional<NullabilityKind> inferNullability;
4014 bool inferNullabilityCS = false;
4015 bool inferNullabilityInnerOnly = false;
4016 bool inferNullabilityInnerOnlyComplete = false;
4017
4018 // Are we in an assume-nonnull region?
4019 bool inAssumeNonNullRegion = false;
4020 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4021 if (assumeNonNullLoc.isValid()) {
4022 inAssumeNonNullRegion = true;
4023 recordNullabilitySeen(S, assumeNonNullLoc);
4024 }
4025
4026 // Whether to complain about missing nullability specifiers or not.
4027 enum {
4028 /// Never complain.
4029 CAMN_No,
4030 /// Complain on the inner pointers (but not the outermost
4031 /// pointer).
4032 CAMN_InnerPointers,
4033 /// Complain about any pointers that don't have nullability
4034 /// specified or inferred.
4035 CAMN_Yes
4036 } complainAboutMissingNullability = CAMN_No;
4037 unsigned NumPointersRemaining = 0;
4038 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4039
4040 if (IsTypedefName) {
4041 // For typedefs, we do not infer any nullability (the default),
4042 // and we only complain about missing nullability specifiers on
4043 // inner pointers.
4044 complainAboutMissingNullability = CAMN_InnerPointers;
4045
4046 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4047 !T->getNullability(S.Context)) {
4048 // Note that we allow but don't require nullability on dependent types.
4049 ++NumPointersRemaining;
4050 }
4051
4052 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4053 DeclaratorChunk &chunk = D.getTypeObject(i);
4054 switch (chunk.Kind) {
4055 case DeclaratorChunk::Array:
4056 case DeclaratorChunk::Function:
4057 case DeclaratorChunk::Pipe:
4058 break;
4059
4060 case DeclaratorChunk::BlockPointer:
4061 case DeclaratorChunk::MemberPointer:
4062 ++NumPointersRemaining;
4063 break;
4064
4065 case DeclaratorChunk::Paren:
4066 case DeclaratorChunk::Reference:
4067 continue;
4068
4069 case DeclaratorChunk::Pointer:
4070 ++NumPointersRemaining;
4071 continue;
4072 }
4073 }
4074 } else {
4075 bool isFunctionOrMethod = false;
4076 switch (auto context = state.getDeclarator().getContext()) {
4077 case DeclaratorContext::ObjCParameterContext:
4078 case DeclaratorContext::ObjCResultContext:
4079 case DeclaratorContext::PrototypeContext:
4080 case DeclaratorContext::TrailingReturnContext:
4081 case DeclaratorContext::TrailingReturnVarContext:
4082 isFunctionOrMethod = true;
4083 LLVM_FALLTHROUGH[[clang::fallthrough]];
4084
4085 case DeclaratorContext::MemberContext:
4086 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4087 complainAboutMissingNullability = CAMN_No;
4088 break;
4089 }
4090
4091 // Weak properties are inferred to be nullable.
4092 if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4093 inferNullability = NullabilityKind::Nullable;
4094 break;
4095 }
4096
4097 LLVM_FALLTHROUGH[[clang::fallthrough]];
4098
4099 case DeclaratorContext::FileContext:
4100 case DeclaratorContext::KNRTypeListContext: {
4101 complainAboutMissingNullability = CAMN_Yes;
4102
4103 // Nullability inference depends on the type and declarator.
4104 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4105 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4106 case PointerDeclaratorKind::NonPointer:
4107 case PointerDeclaratorKind::MultiLevelPointer:
4108 // Cannot infer nullability.
4109 break;
4110
4111 case PointerDeclaratorKind::SingleLevelPointer:
4112 // Infer _Nonnull if we are in an assumes-nonnull region.
4113 if (inAssumeNonNullRegion) {
4114 complainAboutInferringWithinChunk = wrappingKind;
4115 inferNullability = NullabilityKind::NonNull;
4116 inferNullabilityCS =
4117 (context == DeclaratorContext::ObjCParameterContext ||
4118 context == DeclaratorContext::ObjCResultContext);
4119 }
4120 break;
4121
4122 case PointerDeclaratorKind::CFErrorRefPointer:
4123 case PointerDeclaratorKind::NSErrorPointerPointer:
4124 // Within a function or method signature, infer _Nullable at both
4125 // levels.
4126 if (isFunctionOrMethod && inAssumeNonNullRegion)
4127 inferNullability = NullabilityKind::Nullable;
4128 break;
4129
4130 case PointerDeclaratorKind::MaybePointerToCFRef:
4131 if (isFunctionOrMethod) {
4132 // On pointer-to-pointer parameters marked cf_returns_retained or
4133 // cf_returns_not_retained, if the outer pointer is explicit then
4134 // infer the inner pointer as _Nullable.
4135 auto hasCFReturnsAttr =
4136 [](const ParsedAttributesView &AttrList) -> bool {
4137 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4138 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4139 };
4140 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4141 if (hasCFReturnsAttr(D.getAttributes()) ||
4142 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4143 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4144 inferNullability = NullabilityKind::Nullable;
4145 inferNullabilityInnerOnly = true;
4146 }
4147 }
4148 }
4149 break;
4150 }
4151 break;
4152 }
4153
4154 case DeclaratorContext::ConversionIdContext:
4155 complainAboutMissingNullability = CAMN_Yes;
4156 break;
4157
4158 case DeclaratorContext::AliasDeclContext:
4159 case DeclaratorContext::AliasTemplateContext:
4160 case DeclaratorContext::BlockContext:
4161 case DeclaratorContext::BlockLiteralContext:
4162 case DeclaratorContext::ConditionContext:
4163 case DeclaratorContext::CXXCatchContext:
4164 case DeclaratorContext::CXXNewContext:
4165 case DeclaratorContext::ForContext:
4166 case DeclaratorContext::InitStmtContext:
4167 case DeclaratorContext::LambdaExprContext:
4168 case DeclaratorContext::LambdaExprParameterContext:
4169 case DeclaratorContext::ObjCCatchContext:
4170 case DeclaratorContext::TemplateParamContext:
4171 case DeclaratorContext::TemplateArgContext:
4172 case DeclaratorContext::TemplateTypeArgContext:
4173 case DeclaratorContext::TypeNameContext:
4174 case DeclaratorContext::FunctionalCastContext:
4175 // Don't infer in these contexts.
4176 break;
4177 }
4178 }
4179
4180 // Local function that returns true if its argument looks like a va_list.
4181 auto isVaList = [&S](QualType T) -> bool {
4182 auto *typedefTy = T->getAs<TypedefType>();
4183 if (!typedefTy)
4184 return false;
4185 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4186 do {
4187 if (typedefTy->getDecl() == vaListTypedef)
4188 return true;
4189 if (auto *name = typedefTy->getDecl()->getIdentifier())
4190 if (name->isStr("va_list"))
4191 return true;
4192 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4193 } while (typedefTy);
4194 return false;
4195 };
4196
4197 // Local function that checks the nullability for a given pointer declarator.
4198 // Returns true if _Nonnull was inferred.
4199 auto inferPointerNullability =
4200 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4201 SourceLocation pointerEndLoc,
4202 ParsedAttributesView &attrs) -> ParsedAttr * {
4203 // We've seen a pointer.
4204 if (NumPointersRemaining > 0)
4205 --NumPointersRemaining;
4206
4207 // If a nullability attribute is present, there's nothing to do.
4208 if (hasNullabilityAttr(attrs))
4209 return nullptr;
4210
4211 // If we're supposed to infer nullability, do so now.
4212 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4213 ParsedAttr::Syntax syntax = inferNullabilityCS
4214 ? ParsedAttr::AS_ContextSensitiveKeyword
4215 : ParsedAttr::AS_Keyword;
4216 ParsedAttr *nullabilityAttr =
4217 state.getDeclarator().getAttributePool().create(
4218 S.getNullabilityKeyword(*inferNullability),
4219 SourceRange(pointerLoc), nullptr, SourceLocation(), nullptr, 0,
4220 syntax);
4221
4222 attrs.addAtEnd(nullabilityAttr);
4223
4224 if (inferNullabilityCS) {
4225 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4226 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4227 }
4228
4229 if (pointerLoc.isValid() &&
4230 complainAboutInferringWithinChunk !=
4231 PointerWrappingDeclaratorKind::None) {
4232 auto Diag =
4233 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4234 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4235 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4236 }
4237
4238 if (inferNullabilityInnerOnly)
4239 inferNullabilityInnerOnlyComplete = true;
4240 return nullabilityAttr;
4241 }
4242
4243 // If we're supposed to complain about missing nullability, do so
4244 // now if it's truly missing.
4245 switch (complainAboutMissingNullability) {
4246 case CAMN_No:
4247 break;
4248
4249 case CAMN_InnerPointers:
4250 if (NumPointersRemaining == 0)
4251 break;
4252 LLVM_FALLTHROUGH[[clang::fallthrough]];
4253
4254 case CAMN_Yes:
4255 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4256 }
4257 return nullptr;
4258 };
4259
4260 // If the type itself could have nullability but does not, infer pointer
4261 // nullability and perform consistency checking.
4262 if (S.CodeSynthesisContexts.empty()) {
4263 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4264 !T->getNullability(S.Context)) {
4265 if (isVaList(T)) {
4266 // Record that we've seen a pointer, but do nothing else.
4267 if (NumPointersRemaining > 0)
4268 --NumPointersRemaining;
4269 } else {
4270 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4271 if (T->isBlockPointerType())
4272 pointerKind = SimplePointerKind::BlockPointer;
4273 else if (T->isMemberPointerType())
4274 pointerKind = SimplePointerKind::MemberPointer;
4275
4276 if (auto *attr = inferPointerNullability(
4277 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4278 D.getDeclSpec().getEndLoc(),
4279 D.getMutableDeclSpec().getAttributes())) {
4280 T = state.getAttributedType(
4281 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4282 }
4283 }
4284 }
4285
4286 if (complainAboutMissingNullability == CAMN_Yes &&
4287 T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4288 D.isPrototypeContext() &&
4289 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4290 checkNullabilityConsistency(S, SimplePointerKind::Array,
4291 D.getDeclSpec().getTypeSpecTypeLoc());
4292 }
4293 }
4294
4295 bool ExpectNoDerefChunk =
4296 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4297
4298 // Walk the DeclTypeInfo, building the recursive type as we go.
4299 // DeclTypeInfos are ordered from the identifier out, which is
4300 // opposite of what we want :).
4301 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4302 unsigned chunkIndex = e - i - 1;
4303 state.setCurrentChunkIndex(chunkIndex);
4304 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4305 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4306 switch (DeclType.Kind) {
4307 case DeclaratorChunk::Paren:
4308 if (i == 0)
4309 warnAboutRedundantParens(S, D, T);
4310 T = S.BuildParenType(T);
4311 break;
4312 case DeclaratorChunk::BlockPointer:
4313 // If blocks are disabled, emit an error.
4314 if (!LangOpts.Blocks)
4315 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4316
4317 // Handle pointer nullability.
4318 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4319 DeclType.EndLoc, DeclType.getAttrs());
4320
4321 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4322 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4323 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4324 // qualified with const.
4325 if (LangOpts.OpenCL)
4326 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4327 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4328 }
4329 break;
4330 case DeclaratorChunk::Pointer:
4331 // Verify that we're not building a pointer to pointer to function with
4332 // exception specification.
4333 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4334 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4335 D.setInvalidType(true);
4336 // Build the type anyway.
4337 }
4338
4339 // Handle pointer nullability
4340 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4341 DeclType.EndLoc, DeclType.getAttrs());
4342
4343 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4344 T = Context.getObjCObjectPointerType(T);
4345 if (DeclType.Ptr.TypeQuals)
4346 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4347 break;
4348 }
4349
4350 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4351 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4352 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4353 if (LangOpts.OpenCL) {
4354 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4355 T->isBlockPointerType()) {
4356 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4357 D.setInvalidType(true);
4358 }
4359 }
4360
4361 T = S.BuildPointerType(T, DeclType.Loc, Name);
4362 if (DeclType.Ptr.TypeQuals)
4363 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4364 break;
4365 case DeclaratorChunk::Reference: {
4366 // Verify that we're not building a reference to pointer to function with
4367 // exception specification.
4368 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4369 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4370 D.setInvalidType(true);
4371 // Build the type anyway.
4372 }
4373 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4374
4375 if (DeclType.Ref.HasRestrict)
4376 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4377 break;
4378 }
4379 case DeclaratorChunk::Array: {
4380 // Verify that we're not building an array of pointers to function with
4381 // exception specification.
4382 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4383 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4384 D.setInvalidType(true);
4385 // Build the type anyway.
4386 }
4387 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4388 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4389 ArrayType::ArraySizeModifier ASM;
4390 if (ATI.isStar)
4391 ASM = ArrayType::Star;
4392 else if (ATI.hasStatic)
4393 ASM = ArrayType::Static;
4394 else
4395 ASM = ArrayType::Normal;
4396 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4397 // FIXME: This check isn't quite right: it allows star in prototypes
4398 // for function definitions, and disallows some edge cases detailed
4399 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4400 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4401 ASM = ArrayType::Normal;
4402 D.setInvalidType(true);
4403 }
4404
4405 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4406 // shall appear only in a declaration of a function parameter with an
4407 // array type, ...
4408 if (ASM == ArrayType::Static || ATI.TypeQuals) {
4409 if (!(D.isPrototypeContext() ||
4410 D.getContext() == DeclaratorContext::KNRTypeListContext)) {
4411 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4412 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4413 // Remove the 'static' and the type qualifiers.
4414 if (ASM == ArrayType::Static)
4415 ASM = ArrayType::Normal;
4416 ATI.TypeQuals = 0;
4417 D.setInvalidType(true);
4418 }
4419
4420 // C99 6.7.5.2p1: ... and then only in the outermost array type
4421 // derivation.
4422 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4423 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4424 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4425 if (ASM == ArrayType::Static)
4426 ASM = ArrayType::Normal;
4427 ATI.TypeQuals = 0;
4428 D.setInvalidType(true);
4429 }
4430 }
4431 const AutoType *AT = T->getContainedAutoType();
4432 // Allow arrays of auto if we are a generic lambda parameter.
4433 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4434 if (AT &&
4435 D.getContext() != DeclaratorContext::LambdaExprParameterContext) {
4436 // We've already diagnosed this for decltype(auto).
4437 if (!AT->isDecltypeAuto())
4438 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4439 << getPrintableNameForEntity(Name) << T;
4440 T = QualType();
4441 break;
4442 }
4443
4444 // Array parameters can be marked nullable as well, although it's not
4445 // necessary if they're marked 'static'.
4446 if (complainAboutMissingNullability == CAMN_Yes &&
4447 !hasNullabilityAttr(DeclType.getAttrs()) &&
4448 ASM != ArrayType::Static &&
4449 D.isPrototypeContext() &&
4450 !hasOuterPointerLikeChunk(D, chunkIndex)) {
4451 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4452 }
4453
4454 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4455 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4456 break;
4457 }
4458 case DeclaratorChunk::Function: {
4459 // If the function declarator has a prototype (i.e. it is not () and
4460 // does not have a K&R-style identifier list), then the arguments are part
4461 // of the type, otherwise the argument list is ().
4462 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4463 IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
4464
4465 // Check for auto functions and trailing return type and adjust the
4466 // return type accordingly.
4467 if (!D.isInvalidType()) {
4468 // trailing-return-type is only required if we're declaring a function,
4469 // and not, for instance, a pointer to a function.
4470 if (D.getDeclSpec().hasAutoTypeSpec() &&
4471 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4472 if (!S.getLangOpts().CPlusPlus14) {
4473 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4474 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4475 ? diag::err_auto_missing_trailing_return
4476 : diag::err_deduced_return_type);
4477 T = Context.IntTy;
4478 D.setInvalidType(true);
4479 } else {
4480 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4481 diag::warn_cxx11_compat_deduced_return_type);
4482 }
4483 } else if (FTI.hasTrailingReturnType()) {
4484 // T must be exactly 'auto' at this point. See CWG issue 681.
4485 if (isa<ParenType>(T)) {
4486 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4487 << T << D.getSourceRange();
4488 D.setInvalidType(true);
4489 } else if (D.getName().getKind() ==
4490 UnqualifiedIdKind::IK_DeductionGuideName) {
4491 if (T != Context.DependentTy) {
4492 S.Diag(D.getDeclSpec().getBeginLoc(),
4493 diag::err_deduction_guide_with_complex_decl)
4494 << D.getSourceRange();
4495 D.setInvalidType(true);
4496 }
4497 } else if (D.getContext() != DeclaratorContext::LambdaExprContext &&
4498 (T.hasQualifiers() || !isa<AutoType>(T) ||
4499 cast<AutoType>(T)->getKeyword() !=
4500 AutoTypeKeyword::Auto)) {
4501 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4502 diag::err_trailing_return_without_auto)
4503 << T << D.getDeclSpec().getSourceRange();
4504 D.setInvalidType(true);
4505 }
4506 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4507 if (T.isNull()) {
4508 // An error occurred parsing the trailing return type.
4509 T = Context.IntTy;
4510 D.setInvalidType(true);
4511 }
4512 } else {
4513 // This function type is not the type of the entity being declared,
4514 // so checking the 'auto' is not the responsibility of this chunk.
4515 }
4516 }
4517
4518 // C99 6.7.5.3p1: The return type may not be a function or array type.
4519 // For conversion functions, we'll diagnose this particular error later.
4520 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4521 (D.getName().getKind() !=
4522 UnqualifiedIdKind::IK_ConversionFunctionId)) {
4523 unsigned diagID = diag::err_func_returning_array_function;
4524 // Last processing chunk in block context means this function chunk
4525 // represents the block.
4526 if (chunkIndex == 0 &&
4527 D.getContext() == DeclaratorContext::BlockLiteralContext)
4528 diagID = diag::err_block_returning_array_function;
4529 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4530 T = Context.IntTy;
4531 D.setInvalidType(true);
4532 }
4533
4534 // Do not allow returning half FP value.
4535 // FIXME: This really should be in BuildFunctionType.
4536 if (T->isHalfType()) {
4537 if (S.getLangOpts().OpenCL) {
4538 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4539 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4540 << T << 0 /*pointer hint*/;
4541 D.setInvalidType(true);
4542 }
4543 } else if (!S.getLangOpts().HalfArgsAndReturns) {
4544 S.Diag(D.getIdentifierLoc(),
4545 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4546 D.setInvalidType(true);
4547 }
4548 }
4549
4550 if (LangOpts.OpenCL) {
4551 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4552 // function.
4553 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4554 T->isPipeType()) {
4555 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4556 << T << 1 /*hint off*/;
4557 D.setInvalidType(true);
4558 }
4559 // OpenCL doesn't support variadic functions and blocks
4560 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4561 // We also allow here any toolchain reserved identifiers.
4562 if (FTI.isVariadic &&
4563 !(D.getIdentifier() &&
4564 ((D.getIdentifier()->getName() == "printf" &&
4565 LangOpts.OpenCLVersion >= 120) ||
4566 D.getIdentifier()->getName().startswith("__")))) {
4567 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4568 D.setInvalidType(true);
4569 }
4570 }
4571
4572 // Methods cannot return interface types. All ObjC objects are
4573 // passed by reference.
4574 if (T->isObjCObjectType()) {
4575 SourceLocation DiagLoc, FixitLoc;
4576 if (TInfo) {
4577 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4578 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4579 } else {
4580 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4581 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4582 }
4583 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4584 << 0 << T
4585 << FixItHint::CreateInsertion(FixitLoc, "*");
4586
4587 T = Context.getObjCObjectPointerType(T);
4588 if (TInfo) {
4589 TypeLocBuilder TLB;
4590 TLB.pushFullCopy(TInfo->getTypeLoc());
4591 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
4592 TLoc.setStarLoc(FixitLoc);
4593 TInfo = TLB.getTypeSourceInfo(Context, T);
4594 }
4595
4596 D.setInvalidType(true);
4597 }
4598
4599 // cv-qualifiers on return types are pointless except when the type is a
4600 // class type in C++.
4601 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
4602 !(S.getLangOpts().CPlusPlus &&
4603 (T->isDependentType() || T->isRecordType()))) {
4604 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
4605 D.getFunctionDefinitionKind() == FDK_Definition) {
4606 // [6.9.1/3] qualified void return is invalid on a C
4607 // function definition. Apparently ok on declarations and
4608 // in C++ though (!)
4609 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
4610 } else
4611 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
4612 }
4613
4614 // Objective-C ARC ownership qualifiers are ignored on the function
4615 // return type (by type canonicalization). Complain if this attribute
4616 // was written here.
4617 if (T.getQualifiers().hasObjCLifetime()) {
4618 SourceLocation AttrLoc;
4619 if (chunkIndex + 1 < D.getNumTypeObjects()) {
4620 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
4621 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
4622 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4623 AttrLoc = AL.getLoc();
4624 break;
4625 }
4626 }
4627 }
4628 if (AttrLoc.isInvalid()) {
4629 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4630 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
4631 AttrLoc = AL.getLoc();
4632 break;
4633 }
4634 }
4635 }
4636
4637 if (AttrLoc.isValid()) {
4638 // The ownership attributes are almost always written via
4639 // the predefined
4640 // __strong/__weak/__autoreleasing/__unsafe_unretained.
4641 if (AttrLoc.isMacroID())
4642 AttrLoc =
4643 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
4644
4645 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
4646 << T.getQualifiers().getObjCLifetime();
4647 }
4648 }
4649
4650 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
4651 // C++ [dcl.fct]p6:
4652 // Types shall not be defined in return or parameter types.
4653 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
4654 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
4655 << Context.getTypeDeclType(Tag);
4656 }
4657
4658 // Exception specs are not allowed in typedefs. Complain, but add it
4659 // anyway.
4660 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
4661 S.Diag(FTI.getExceptionSpecLocBeg(),
4662 diag::err_exception_spec_in_typedef)
4663 << (D.getContext() == DeclaratorContext::AliasDeclContext ||
4664 D.getContext() == DeclaratorContext::AliasTemplateContext);
4665
4666 // If we see "T var();" or "T var(T());" at block scope, it is probably
4667 // an attempt to initialize a variable, not a function declaration.
4668 if (FTI.isAmbiguous)
4669 warnAboutAmbiguousFunction(S, D, DeclType, T);
4670
4671 FunctionType::ExtInfo EI(
4672 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
4673
4674 if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
4675 && !LangOpts.OpenCL) {
4676 // Simple void foo(), where the incoming T is the result type.
4677 T = Context.getFunctionNoProtoType(T, EI);
4678 } else {
4679 // We allow a zero-parameter variadic function in C if the
4680 // function is marked with the "overloadable" attribute. Scan
4681 // for this attribute now.
4682 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
4683 if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
4684 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
4685
4686 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
4687 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
4688 // definition.
4689 S.Diag(FTI.Params[0].IdentLoc,
4690 diag::err_ident_list_in_fn_declaration);
4691 D.setInvalidType(true);
4692 // Recover by creating a K&R-style function type.
4693 T = Context.getFunctionNoProtoType(T, EI);
4694 break;
4695 }
4696
4697 FunctionProtoType::ExtProtoInfo EPI;
4698 EPI.ExtInfo = EI;
4699 EPI.Variadic = FTI.isVariadic;
4700 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
4701 EPI.TypeQuals.addCVRUQualifiers(FTI.TypeQuals);
4702 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
4703 : FTI.RefQualifierIsLValueRef? RQ_LValue
4704 : RQ_RValue;
4705
4706 // Otherwise, we have a function with a parameter list that is
4707 // potentially variadic.
4708 SmallVector<QualType, 16> ParamTys;
4709 ParamTys.reserve(FTI.NumParams);
4710
4711 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
4712 ExtParameterInfos(FTI.NumParams);
4713 bool HasAnyInterestingExtParameterInfos = false;
4714
4715 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
4716 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
4717 QualType ParamTy = Param->getType();
4718 assert(!ParamTy.isNull() && "Couldn't parse type?")((!ParamTy.isNull() && "Couldn't parse type?") ? static_cast
<void> (0) : __assert_fail ("!ParamTy.isNull() && \"Couldn't parse type?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 4718, __PRETTY_FUNCTION__))
;
4719
4720 // Look for 'void'. void is allowed only as a single parameter to a
4721 // function with no other parameters (C99 6.7.5.3p10). We record
4722 // int(void) as a FunctionProtoType with an empty parameter list.
4723 if (ParamTy->isVoidType()) {
4724 // If this is something like 'float(int, void)', reject it. 'void'
4725 // is an incomplete type (C99 6.2.5p19) and function decls cannot
4726 // have parameters of incomplete type.
4727 if (FTI.NumParams != 1 || FTI.isVariadic) {
4728 S.Diag(DeclType.Loc, diag::err_void_only_param);
4729 ParamTy = Context.IntTy;
4730 Param->setType(ParamTy);
4731 } else if (FTI.Params[i].Ident) {
4732 // Reject, but continue to parse 'int(void abc)'.
4733 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
4734 ParamTy = Context.IntTy;
4735 Param->setType(ParamTy);
4736 } else {
4737 // Reject, but continue to parse 'float(const void)'.
4738 if (ParamTy.hasQualifiers())
4739 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
4740
4741 // Do not add 'void' to the list.
4742 break;
4743 }
4744 } else if (ParamTy->isHalfType()) {
4745 // Disallow half FP parameters.
4746 // FIXME: This really should be in BuildFunctionType.
4747 if (S.getLangOpts().OpenCL) {
4748 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
4749 S.Diag(Param->getLocation(),
4750 diag::err_opencl_half_param) << ParamTy;
4751 D.setInvalidType();
4752 Param->setInvalidDecl();
4753 }
4754 } else if (!S.getLangOpts().HalfArgsAndReturns) {
4755 S.Diag(Param->getLocation(),
4756 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
4757 D.setInvalidType();
4758 }
4759 } else if (!FTI.hasPrototype) {
4760 if (ParamTy->isPromotableIntegerType()) {
4761 ParamTy = Context.getPromotedIntegerType(ParamTy);
4762 Param->setKNRPromoted(true);
4763 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
4764 if (BTy->getKind() == BuiltinType::Float) {
4765 ParamTy = Context.DoubleTy;
4766 Param->setKNRPromoted(true);
4767 }
4768 }
4769 }
4770
4771 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
4772 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
4773 HasAnyInterestingExtParameterInfos = true;
4774 }
4775
4776 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
4777 ExtParameterInfos[i] =
4778 ExtParameterInfos[i].withABI(attr->getABI());
4779 HasAnyInterestingExtParameterInfos = true;
4780 }
4781
4782 if (Param->hasAttr<PassObjectSizeAttr>()) {
4783 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
4784 HasAnyInterestingExtParameterInfos = true;
4785 }
4786
4787 if (Param->hasAttr<NoEscapeAttr>()) {
4788 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
4789 HasAnyInterestingExtParameterInfos = true;
4790 }
4791
4792 ParamTys.push_back(ParamTy);
4793 }
4794
4795 if (HasAnyInterestingExtParameterInfos) {
4796 EPI.ExtParameterInfos = ExtParameterInfos.data();
4797 checkExtParameterInfos(S, ParamTys, EPI,
4798 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
4799 }
4800
4801 SmallVector<QualType, 4> Exceptions;
4802 SmallVector<ParsedType, 2> DynamicExceptions;
4803 SmallVector<SourceRange, 2> DynamicExceptionRanges;
4804 Expr *NoexceptExpr = nullptr;
4805
4806 if (FTI.getExceptionSpecType() == EST_Dynamic) {
4807 // FIXME: It's rather inefficient to have to split into two vectors
4808 // here.
4809 unsigned N = FTI.getNumExceptions();
4810 DynamicExceptions.reserve(N);
4811 DynamicExceptionRanges.reserve(N);
4812 for (unsigned I = 0; I != N; ++I) {
4813 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
4814 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
4815 }
4816 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
4817 NoexceptExpr = FTI.NoexceptExpr;
4818 }
4819
4820 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
4821 FTI.getExceptionSpecType(),
4822 DynamicExceptions,
4823 DynamicExceptionRanges,
4824 NoexceptExpr,
4825 Exceptions,
4826 EPI.ExceptionSpec);
4827
4828 const auto &Spec = D.getCXXScopeSpec();
4829 // OpenCLCPlusPlus: A class member function has an address space.
4830 if (state.getSema().getLangOpts().OpenCLCPlusPlus &&
4831 ((!Spec.isEmpty() &&
4832 Spec.getScopeRep()->getKind() == NestedNameSpecifier::TypeSpec) ||
4833 state.getDeclarator().getContext() ==
4834 DeclaratorContext::MemberContext)) {
4835 LangAS CurAS = EPI.TypeQuals.getAddressSpace();
4836 // If a class member function's address space is not set, set it to
4837 // __generic.
4838 LangAS AS =
4839 (CurAS == LangAS::Default ? LangAS::opencl_generic : CurAS);
4840 EPI.TypeQuals.addAddressSpace(AS);
4841 T = Context.getFunctionType(T, ParamTys, EPI);
4842 T = state.getSema().Context.getAddrSpaceQualType(T, AS);
4843 } else {
4844 T = Context.getFunctionType(T, ParamTys, EPI);
4845 }
4846 }
4847 break;
4848 }
4849 case DeclaratorChunk::MemberPointer: {
4850 // The scope spec must refer to a class, or be dependent.
4851 CXXScopeSpec &SS = DeclType.Mem.Scope();
4852 QualType ClsType;
4853
4854 // Handle pointer nullability.
4855 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
4856 DeclType.EndLoc, DeclType.getAttrs());
4857
4858 if (SS.isInvalid()) {
4859 // Avoid emitting extra errors if we already errored on the scope.
4860 D.setInvalidType(true);
4861 } else if (S.isDependentScopeSpecifier(SS) ||
4862 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
4863 NestedNameSpecifier *NNS = SS.getScopeRep();
4864 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
4865 switch (NNS->getKind()) {
4866 case NestedNameSpecifier::Identifier:
4867 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
4868 NNS->getAsIdentifier());
4869 break;
4870
4871 case NestedNameSpecifier::Namespace:
4872 case NestedNameSpecifier::NamespaceAlias:
4873 case NestedNameSpecifier::Global:
4874 case NestedNameSpecifier::Super:
4875 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 4875)
;
4876
4877 case NestedNameSpecifier::TypeSpec:
4878 case NestedNameSpecifier::TypeSpecWithTemplate:
4879 ClsType = QualType(NNS->getAsType(), 0);
4880 // Note: if the NNS has a prefix and ClsType is a nondependent
4881 // TemplateSpecializationType, then the NNS prefix is NOT included
4882 // in ClsType; hence we wrap ClsType into an ElaboratedType.
4883 // NOTE: in particular, no wrap occurs if ClsType already is an
4884 // Elaborated, DependentName, or DependentTemplateSpecialization.
4885 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
4886 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
4887 break;
4888 }
4889 } else {
4890 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
4891 diag::err_illegal_decl_mempointer_in_nonclass)
4892 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
4893 << DeclType.Mem.Scope().getRange();
4894 D.setInvalidType(true);
4895 }
4896
4897 if (!ClsType.isNull())
4898 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
4899 D.getIdentifier());
4900 if (T.isNull()) {
4901 T = Context.IntTy;
4902 D.setInvalidType(true);
4903 } else if (DeclType.Mem.TypeQuals) {
4904 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
4905 }
4906 break;
4907 }
4908
4909 case DeclaratorChunk::Pipe: {
4910 T = S.BuildReadPipeType(T, DeclType.Loc);
4911 processTypeAttrs(state, T, TAL_DeclSpec,
4912 D.getMutableDeclSpec().getAttributes());
4913 break;
4914 }
4915 }
4916
4917 if (T.isNull()) {
4918 D.setInvalidType(true);
4919 T = Context.IntTy;
4920 }
4921
4922 // See if there are any attributes on this declarator chunk.
4923 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
4924
4925 if (DeclType.Kind != DeclaratorChunk::Paren) {
4926 if (ExpectNoDerefChunk) {
4927 if (!IsNoDerefableChunk(DeclType))
4928 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
4929 ExpectNoDerefChunk = false;
Value stored to 'ExpectNoDerefChunk' is never read
4930 }
4931
4932 ExpectNoDerefChunk = state.didParseNoDeref();
4933 }
4934 }
4935
4936 if (ExpectNoDerefChunk)
4937 S.Diag(state.getDeclarator().getBeginLoc(),
4938 diag::warn_noderef_on_non_pointer_or_array);
4939
4940 // GNU warning -Wstrict-prototypes
4941 // Warn if a function declaration is without a prototype.
4942 // This warning is issued for all kinds of unprototyped function
4943 // declarations (i.e. function type typedef, function pointer etc.)
4944 // C99 6.7.5.3p14:
4945 // The empty list in a function declarator that is not part of a definition
4946 // of that function specifies that no information about the number or types
4947 // of the parameters is supplied.
4948 if (!LangOpts.CPlusPlus && D.getFunctionDefinitionKind() == FDK_Declaration) {
4949 bool IsBlock = false;
4950 for (const DeclaratorChunk &DeclType : D.type_objects()) {
4951 switch (DeclType.Kind) {
4952 case DeclaratorChunk::BlockPointer:
4953 IsBlock = true;
4954 break;
4955 case DeclaratorChunk::Function: {
4956 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4957 if (FTI.NumParams == 0 && !FTI.isVariadic)
4958 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
4959 << IsBlock
4960 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
4961 IsBlock = false;
4962 break;
4963 }
4964 default:
4965 break;
4966 }
4967 }
4968 }
4969
4970 assert(!T.isNull() && "T must not be null after this point")((!T.isNull() && "T must not be null after this point"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null after this point\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 4970, __PRETTY_FUNCTION__))
;
4971
4972 if (LangOpts.CPlusPlus && T->isFunctionType()) {
4973 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
4974 assert(FnTy && "Why oh why is there not a FunctionProtoType here?")((FnTy && "Why oh why is there not a FunctionProtoType here?"
) ? static_cast<void> (0) : __assert_fail ("FnTy && \"Why oh why is there not a FunctionProtoType here?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 4974, __PRETTY_FUNCTION__))
;
4975
4976 // C++ 8.3.5p4:
4977 // A cv-qualifier-seq shall only be part of the function type
4978 // for a nonstatic member function, the function type to which a pointer
4979 // to member refers, or the top-level function type of a function typedef
4980 // declaration.
4981 //
4982 // Core issue 547 also allows cv-qualifiers on function types that are
4983 // top-level template type arguments.
4984 enum { NonMember, Member, DeductionGuide } Kind = NonMember;
4985 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
4986 Kind = DeductionGuide;
4987 else if (!D.getCXXScopeSpec().isSet()) {
4988 if ((D.getContext() == DeclaratorContext::MemberContext ||
4989 D.getContext() == DeclaratorContext::LambdaExprContext) &&
4990 !D.getDeclSpec().isFriendSpecified())
4991 Kind = Member;
4992 } else {
4993 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
4994 if (!DC || DC->isRecord())
4995 Kind = Member;
4996 }
4997
4998 // C++11 [dcl.fct]p6 (w/DR1417):
4999 // An attempt to specify a function type with a cv-qualifier-seq or a
5000 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5001 // - the function type for a non-static member function,
5002 // - the function type to which a pointer to member refers,
5003 // - the top-level function type of a function typedef declaration or
5004 // alias-declaration,
5005 // - the type-id in the default argument of a type-parameter, or
5006 // - the type-id of a template-argument for a type-parameter
5007 //
5008 // FIXME: Checking this here is insufficient. We accept-invalid on:
5009 //
5010 // template<typename T> struct S { void f(T); };
5011 // S<int() const> s;
5012 //
5013 // ... for instance.
5014 if (IsQualifiedFunction &&
5015 !(Kind == Member &&
5016 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5017 !IsTypedefName &&
5018 D.getContext() != DeclaratorContext::TemplateArgContext &&
5019 D.getContext() != DeclaratorContext::TemplateTypeArgContext) {
5020 SourceLocation Loc = D.getBeginLoc();
5021 SourceRange RemovalRange;
5022 unsigned I;
5023 if (D.isFunctionDeclarator(I)) {
5024 SmallVector<SourceLocation, 4> RemovalLocs;
5025 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5026 assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5026, __PRETTY_FUNCTION__))
;
5027 if (Chunk.Fun.hasRefQualifier())
5028 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5029 if (Chunk.Fun.TypeQuals & Qualifiers::Const)
5030 RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
5031 if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
5032 RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
5033 if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
5034 RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
5035 if (!RemovalLocs.empty()) {
5036 llvm::sort(RemovalLocs,
5037 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5038 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5039 Loc = RemovalLocs.front();
5040 }
5041 }
5042
5043 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5044 << Kind << D.isFunctionDeclarator() << T
5045 << getFunctionQualifiersAsString(FnTy)
5046 << FixItHint::CreateRemoval(RemovalRange);
5047
5048 // Strip the cv-qualifiers and ref-qualifiers from the type.
5049 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5050 EPI.TypeQuals.removeCVRQualifiers();
5051 EPI.RefQualifier = RQ_None;
5052
5053 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5054 EPI);
5055 // Rebuild any parens around the identifier in the function type.
5056 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5057 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5058 break;
5059 T = S.BuildParenType(T);
5060 }
5061 }
5062 }
5063
5064 // Apply any undistributed attributes from the declarator.
5065 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5066
5067 // Diagnose any ignored type attributes.
5068 state.diagnoseIgnoredTypeAttrs(T);
5069
5070 // C++0x [dcl.constexpr]p9:
5071 // A constexpr specifier used in an object declaration declares the object
5072 // as const.
5073 if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
5074 T.addConst();
5075 }
5076
5077 // If there was an ellipsis in the declarator, the declaration declares a
5078 // parameter pack whose type may be a pack expansion type.
5079 if (D.hasEllipsis()) {
5080 // C++0x [dcl.fct]p13:
5081 // A declarator-id or abstract-declarator containing an ellipsis shall
5082 // only be used in a parameter-declaration. Such a parameter-declaration
5083 // is a parameter pack (14.5.3). [...]
5084 switch (D.getContext()) {
5085 case DeclaratorContext::PrototypeContext:
5086 case DeclaratorContext::LambdaExprParameterContext:
5087 // C++0x [dcl.fct]p13:
5088 // [...] When it is part of a parameter-declaration-clause, the
5089 // parameter pack is a function parameter pack (14.5.3). The type T
5090 // of the declarator-id of the function parameter pack shall contain
5091 // a template parameter pack; each template parameter pack in T is
5092 // expanded by the function parameter pack.
5093 //
5094 // We represent function parameter packs as function parameters whose
5095 // type is a pack expansion.
5096 if (!T->containsUnexpandedParameterPack()) {
5097 S.Diag(D.getEllipsisLoc(),
5098 diag::err_function_parameter_pack_without_parameter_packs)
5099 << T << D.getSourceRange();
5100 D.setEllipsisLoc(SourceLocation());
5101 } else {
5102 T = Context.getPackExpansionType(T, None);
5103 }
5104 break;
5105 case DeclaratorContext::TemplateParamContext:
5106 // C++0x [temp.param]p15:
5107 // If a template-parameter is a [...] is a parameter-declaration that
5108 // declares a parameter pack (8.3.5), then the template-parameter is a
5109 // template parameter pack (14.5.3).
5110 //
5111 // Note: core issue 778 clarifies that, if there are any unexpanded
5112 // parameter packs in the type of the non-type template parameter, then
5113 // it expands those parameter packs.
5114 if (T->containsUnexpandedParameterPack())
5115 T = Context.getPackExpansionType(T, None);
5116 else
5117 S.Diag(D.getEllipsisLoc(),
5118 LangOpts.CPlusPlus11
5119 ? diag::warn_cxx98_compat_variadic_templates
5120 : diag::ext_variadic_templates);
5121 break;
5122
5123 case DeclaratorContext::FileContext:
5124 case DeclaratorContext::KNRTypeListContext:
5125 case DeclaratorContext::ObjCParameterContext: // FIXME: special diagnostic
5126 // here?
5127 case DeclaratorContext::ObjCResultContext: // FIXME: special diagnostic
5128 // here?
5129 case DeclaratorContext::TypeNameContext:
5130 case DeclaratorContext::FunctionalCastContext:
5131 case DeclaratorContext::CXXNewContext:
5132 case DeclaratorContext::AliasDeclContext:
5133 case DeclaratorContext::AliasTemplateContext:
5134 case DeclaratorContext::MemberContext:
5135 case DeclaratorContext::BlockContext:
5136 case DeclaratorContext::ForContext:
5137 case DeclaratorContext::InitStmtContext:
5138 case DeclaratorContext::ConditionContext:
5139 case DeclaratorContext::CXXCatchContext:
5140 case DeclaratorContext::ObjCCatchContext:
5141 case DeclaratorContext::BlockLiteralContext:
5142 case DeclaratorContext::LambdaExprContext:
5143 case DeclaratorContext::ConversionIdContext:
5144 case DeclaratorContext::TrailingReturnContext:
5145 case DeclaratorContext::TrailingReturnVarContext:
5146 case DeclaratorContext::TemplateArgContext:
5147 case DeclaratorContext::TemplateTypeArgContext:
5148 // FIXME: We may want to allow parameter packs in block-literal contexts
5149 // in the future.
5150 S.Diag(D.getEllipsisLoc(),
5151 diag::err_ellipsis_in_declarator_not_parameter);
5152 D.setEllipsisLoc(SourceLocation());
5153 break;
5154 }
5155 }
5156
5157 assert(!T.isNull() && "T must not be null at the end of this function")((!T.isNull() && "T must not be null at the end of this function"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"T must not be null at the end of this function\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5157, __PRETTY_FUNCTION__))
;
5158 if (D.isInvalidType())
5159 return Context.getTrivialTypeSourceInfo(T);
5160
5161 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5162}
5163
5164/// GetTypeForDeclarator - Convert the type for the specified
5165/// declarator to Type instances.
5166///
5167/// The result of this call will never be null, but the associated
5168/// type may be a null type if there's an unrecoverable error.
5169TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5170 // Determine the type of the declarator. Not all forms of declarator
5171 // have a type.
5172
5173 TypeProcessingState state(*this, D);
5174
5175 TypeSourceInfo *ReturnTypeInfo = nullptr;
5176 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5177 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5178 inferARCWriteback(state, T);
5179
5180 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5181}
5182
5183static void transferARCOwnershipToDeclSpec(Sema &S,
5184 QualType &declSpecTy,
5185 Qualifiers::ObjCLifetime ownership) {
5186 if (declSpecTy->isObjCRetainableType() &&
5187 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5188 Qualifiers qs;
5189 qs.addObjCLifetime(ownership);
5190 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5191 }
5192}
5193
5194static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5195 Qualifiers::ObjCLifetime ownership,
5196 unsigned chunkIndex) {
5197 Sema &S = state.getSema();
5198 Declarator &D = state.getDeclarator();
5199
5200 // Look for an explicit lifetime attribute.
5201 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5202 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5203 return;
5204
5205 const char *attrStr = nullptr;
5206 switch (ownership) {
5207 case Qualifiers::OCL_None: llvm_unreachable("no ownership!")::llvm::llvm_unreachable_internal("no ownership!", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5207)
;
5208 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5209 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5210 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5211 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5212 }
5213
5214 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5215 Arg->Ident = &S.Context.Idents.get(attrStr);
5216 Arg->Loc = SourceLocation();
5217
5218 ArgsUnion Args(Arg);
5219
5220 // If there wasn't one, add one (with an invalid source location
5221 // so that we don't make an AttributedType for it).
5222 ParsedAttr *attr = D.getAttributePool().create(
5223 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5224 /*scope*/ nullptr, SourceLocation(),
5225 /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5226 chunk.getAttrs().addAtEnd(attr);
5227 // TODO: mark whether we did this inference?
5228}
5229
5230/// Used for transferring ownership in casts resulting in l-values.
5231static void transferARCOwnership(TypeProcessingState &state,
5232 QualType &declSpecTy,
5233 Qualifiers::ObjCLifetime ownership) {
5234 Sema &S = state.getSema();
5235 Declarator &D = state.getDeclarator();
5236
5237 int inner = -1;
5238 bool hasIndirection = false;
5239 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5240 DeclaratorChunk &chunk = D.getTypeObject(i);
5241 switch (chunk.Kind) {
5242 case DeclaratorChunk::Paren:
5243 // Ignore parens.
5244 break;
5245
5246 case DeclaratorChunk::Array:
5247 case DeclaratorChunk::Reference:
5248 case DeclaratorChunk::Pointer:
5249 if (inner != -1)
5250 hasIndirection = true;
5251 inner = i;
5252 break;
5253
5254 case DeclaratorChunk::BlockPointer:
5255 if (inner != -1)
5256 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5257 return;
5258
5259 case DeclaratorChunk::Function:
5260 case DeclaratorChunk::MemberPointer:
5261 case DeclaratorChunk::Pipe:
5262 return;
5263 }
5264 }
5265
5266 if (inner == -1)
5267 return;
5268
5269 DeclaratorChunk &chunk = D.getTypeObject(inner);
5270 if (chunk.Kind == DeclaratorChunk::Pointer) {
5271 if (declSpecTy->isObjCRetainableType())
5272 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5273 if (declSpecTy->isObjCObjectType() && hasIndirection)
5274 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5275 } else {
5276 assert(chunk.Kind == DeclaratorChunk::Array ||((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk
::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5277, __PRETTY_FUNCTION__))
5277 chunk.Kind == DeclaratorChunk::Reference)((chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk
::Reference) ? static_cast<void> (0) : __assert_fail ("chunk.Kind == DeclaratorChunk::Array || chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5277, __PRETTY_FUNCTION__))
;
5278 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5279 }
5280}
5281
5282TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5283 TypeProcessingState state(*this, D);
5284
5285 TypeSourceInfo *ReturnTypeInfo = nullptr;
5286 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5287
5288 if (getLangOpts().ObjC) {
5289 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5290 if (ownership != Qualifiers::OCL_None)
5291 transferARCOwnership(state, declSpecTy, ownership);
5292 }
5293
5294 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5295}
5296
5297static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5298 TypeProcessingState &State) {
5299 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5300}
5301
5302namespace {
5303 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5304 ASTContext &Context;
5305 TypeProcessingState &State;
5306 const DeclSpec &DS;
5307
5308 public:
5309 TypeSpecLocFiller(ASTContext &Context, TypeProcessingState &State,
5310 const DeclSpec &DS)
5311 : Context(Context), State(State), DS(DS) {}
5312
5313 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5314 Visit(TL.getModifiedLoc());
5315 fillAttributedTypeLoc(TL, State);
5316 }
5317 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5318 Visit(TL.getUnqualifiedLoc());
5319 }
5320 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5321 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5322 }
5323 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5324 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5325 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5326 // addition field. What we have is good enough for dispay of location
5327 // of 'fixit' on interface name.
5328 TL.setNameEndLoc(DS.getEndLoc());
5329 }
5330 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5331 TypeSourceInfo *RepTInfo = nullptr;
5332 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5333 TL.copy(RepTInfo->getTypeLoc());
5334 }
5335 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5336 TypeSourceInfo *RepTInfo = nullptr;
5337 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5338 TL.copy(RepTInfo->getTypeLoc());
5339 }
5340 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5341 TypeSourceInfo *TInfo = nullptr;
5342 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5343
5344 // If we got no declarator info from previous Sema routines,
5345 // just fill with the typespec loc.
5346 if (!TInfo) {
5347 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5348 return;
5349 }
5350
5351 TypeLoc OldTL = TInfo->getTypeLoc();
5352 if (TInfo->getType()->getAs<ElaboratedType>()) {
5353 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5354 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5355 .castAs<TemplateSpecializationTypeLoc>();
5356 TL.copy(NamedTL);
5357 } else {
5358 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5359 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())((TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc
>().getRAngleLoc()) ? static_cast<void> (0) : __assert_fail
("TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5359, __PRETTY_FUNCTION__))
;
5360 }
5361
5362 }
5363 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5364 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)((DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofExpr"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5364, __PRETTY_FUNCTION__))
;
5365 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5366 TL.setParensRange(DS.getTypeofParensRange());
5367 }
5368 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5369 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)((DS.getTypeSpecType() == DeclSpec::TST_typeofType) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_typeofType"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5369, __PRETTY_FUNCTION__))
;
5370 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5371 TL.setParensRange(DS.getTypeofParensRange());
5372 assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail
("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5372, __PRETTY_FUNCTION__))
;
5373 TypeSourceInfo *TInfo = nullptr;
5374 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5375 TL.setUnderlyingTInfo(TInfo);
5376 }
5377 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5378 // FIXME: This holds only because we only have one unary transform.
5379 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)((DS.getTypeSpecType() == DeclSpec::TST_underlyingType) ? static_cast
<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_underlyingType"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5379, __PRETTY_FUNCTION__))
;
5380 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5381 TL.setParensRange(DS.getTypeofParensRange());
5382 assert(DS.getRepAsType())((DS.getRepAsType()) ? static_cast<void> (0) : __assert_fail
("DS.getRepAsType()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5382, __PRETTY_FUNCTION__))
;
5383 TypeSourceInfo *TInfo = nullptr;
5384 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5385 TL.setUnderlyingTInfo(TInfo);
5386 }
5387 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5388 // By default, use the source location of the type specifier.
5389 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5390 if (TL.needsExtraLocalData()) {
5391 // Set info for the written builtin specifiers.
5392 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5393 // Try to have a meaningful source location.
5394 if (TL.getWrittenSignSpec() != TSS_unspecified)
5395 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5396 if (TL.getWrittenWidthSpec() != TSW_unspecified)
5397 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5398 }
5399 }
5400 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5401 ElaboratedTypeKeyword Keyword
5402 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
5403 if (DS.getTypeSpecType() == TST_typename) {
5404 TypeSourceInfo *TInfo = nullptr;
5405 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5406 if (TInfo) {
5407 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5408 return;
5409 }
5410 }
5411 TL.setElaboratedKeywordLoc(Keyword != ETK_None
5412 ? DS.getTypeSpecTypeLoc()
5413 : SourceLocation());
5414 const CXXScopeSpec& SS = DS.getTypeSpecScope();
5415 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5416 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5417 }
5418 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5419 assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5419, __PRETTY_FUNCTION__))
;
5420 TypeSourceInfo *TInfo = nullptr;
5421 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5422 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5422, __PRETTY_FUNCTION__))
;
5423 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5424 }
5425 void VisitDependentTemplateSpecializationTypeLoc(
5426 DependentTemplateSpecializationTypeLoc TL) {
5427 assert(DS.getTypeSpecType() == TST_typename)((DS.getTypeSpecType() == TST_typename) ? static_cast<void
> (0) : __assert_fail ("DS.getTypeSpecType() == TST_typename"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5427, __PRETTY_FUNCTION__))
;
5428 TypeSourceInfo *TInfo = nullptr;
5429 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5430 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5430, __PRETTY_FUNCTION__))
;
5431 TL.copy(
5432 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5433 }
5434 void VisitTagTypeLoc(TagTypeLoc TL) {
5435 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
5436 }
5437 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
5438 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
5439 // or an _Atomic qualifier.
5440 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
5441 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5442 TL.setParensRange(DS.getTypeofParensRange());
5443
5444 TypeSourceInfo *TInfo = nullptr;
5445 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5446 assert(TInfo)((TInfo) ? static_cast<void> (0) : __assert_fail ("TInfo"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5446, __PRETTY_FUNCTION__))
;
5447 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5448 } else {
5449 TL.setKWLoc(DS.getAtomicSpecLoc());
5450 // No parens, to indicate this was spelled as an _Atomic qualifier.
5451 TL.setParensRange(SourceRange());
5452 Visit(TL.getValueLoc());
5453 }
5454 }
5455
5456 void VisitPipeTypeLoc(PipeTypeLoc TL) {
5457 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5458
5459 TypeSourceInfo *TInfo = nullptr;
5460 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5461 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
5462 }
5463
5464 void VisitTypeLoc(TypeLoc TL) {
5465 // FIXME: add other typespec types and change this to an assert.
5466 TL.initialize(Context, DS.getTypeSpecTypeLoc());
5467 }
5468 };
5469
5470 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
5471 ASTContext &Context;
5472 TypeProcessingState &State;
5473 const DeclaratorChunk &Chunk;
5474
5475 public:
5476 DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
5477 const DeclaratorChunk &Chunk)
5478 : Context(Context), State(State), Chunk(Chunk) {}
5479
5480 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5481 llvm_unreachable("qualified type locs not expected here!")::llvm::llvm_unreachable_internal("qualified type locs not expected here!"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5481)
;
5482 }
5483 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
5484 llvm_unreachable("decayed type locs not expected here!")::llvm::llvm_unreachable_internal("decayed type locs not expected here!"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5484)
;
5485 }
5486
5487 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5488 fillAttributedTypeLoc(TL, State);
5489 }
5490 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
5491 // nothing
5492 }
5493 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
5494 assert(Chunk.Kind == DeclaratorChunk::BlockPointer)((Chunk.Kind == DeclaratorChunk::BlockPointer) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::BlockPointer"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5494, __PRETTY_FUNCTION__))
;
5495 TL.setCaretLoc(Chunk.Loc);
5496 }
5497 void VisitPointerTypeLoc(PointerTypeLoc TL) {
5498 assert(Chunk.Kind == DeclaratorChunk::Pointer)((Chunk.Kind == DeclaratorChunk::Pointer) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5498, __PRETTY_FUNCTION__))
;
5499 TL.setStarLoc(Chunk.Loc);
5500 }
5501 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5502 assert(Chunk.Kind == DeclaratorChunk::Pointer)((Chunk.Kind == DeclaratorChunk::Pointer) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pointer"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5502, __PRETTY_FUNCTION__))
;
5503 TL.setStarLoc(Chunk.Loc);
5504 }
5505 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
5506 assert(Chunk.Kind == DeclaratorChunk::MemberPointer)((Chunk.Kind == DeclaratorChunk::MemberPointer) ? static_cast
<void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::MemberPointer"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5506, __PRETTY_FUNCTION__))
;
5507 const CXXScopeSpec& SS = Chunk.Mem.Scope();
5508 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
5509
5510 const Type* ClsTy = TL.getClass();
5511 QualType ClsQT = QualType(ClsTy, 0);
5512 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
5513 // Now copy source location info into the type loc component.
5514 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
5515 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
5516 case NestedNameSpecifier::Identifier:
5517 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc")((isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc"
) ? static_cast<void> (0) : __assert_fail ("isa<DependentNameType>(ClsTy) && \"Unexpected TypeLoc\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5517, __PRETTY_FUNCTION__))
;
5518 {
5519 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
5520 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
5521 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
5522 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
5523 }
5524 break;
5525
5526 case NestedNameSpecifier::TypeSpec:
5527 case NestedNameSpecifier::TypeSpecWithTemplate:
5528 if (isa<ElaboratedType>(ClsTy)) {
5529 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
5530 ETLoc.setElaboratedKeywordLoc(SourceLocation());
5531 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
5532 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
5533 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
5534 } else {
5535 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
5536 }
5537 break;
5538
5539 case NestedNameSpecifier::Namespace:
5540 case NestedNameSpecifier::NamespaceAlias:
5541 case NestedNameSpecifier::Global:
5542 case NestedNameSpecifier::Super:
5543 llvm_unreachable("Nested-name-specifier must name a type")::llvm::llvm_unreachable_internal("Nested-name-specifier must name a type"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5543)
;
5544 }
5545
5546 // Finally fill in MemberPointerLocInfo fields.
5547 TL.setStarLoc(Chunk.Loc);
5548 TL.setClassTInfo(ClsTInfo);
5549 }
5550 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
5551 assert(Chunk.Kind == DeclaratorChunk::Reference)((Chunk.Kind == DeclaratorChunk::Reference) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5551, __PRETTY_FUNCTION__))
;
5552 // 'Amp' is misleading: this might have been originally
5553 /// spelled with AmpAmp.
5554 TL.setAmpLoc(Chunk.Loc);
5555 }
5556 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
5557 assert(Chunk.Kind == DeclaratorChunk::Reference)((Chunk.Kind == DeclaratorChunk::Reference) ? static_cast<
void> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Reference"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5557, __PRETTY_FUNCTION__))
;
5558 assert(!Chunk.Ref.LValueRef)((!Chunk.Ref.LValueRef) ? static_cast<void> (0) : __assert_fail
("!Chunk.Ref.LValueRef", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5558, __PRETTY_FUNCTION__))
;
5559 TL.setAmpAmpLoc(Chunk.Loc);
5560 }
5561 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
5562 assert(Chunk.Kind == DeclaratorChunk::Array)((Chunk.Kind == DeclaratorChunk::Array) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Array"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5562, __PRETTY_FUNCTION__))
;
5563 TL.setLBracketLoc(Chunk.Loc);
5564 TL.setRBracketLoc(Chunk.EndLoc);
5565 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
5566 }
5567 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
5568 assert(Chunk.Kind == DeclaratorChunk::Function)((Chunk.Kind == DeclaratorChunk::Function) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Function"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5568, __PRETTY_FUNCTION__))
;
5569 TL.setLocalRangeBegin(Chunk.Loc);
5570 TL.setLocalRangeEnd(Chunk.EndLoc);
5571
5572 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
5573 TL.setLParenLoc(FTI.getLParenLoc());
5574 TL.setRParenLoc(FTI.getRParenLoc());
5575 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
5576 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5577 TL.setParam(tpi++, Param);
5578 }
5579 TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
5580 }
5581 void VisitParenTypeLoc(ParenTypeLoc TL) {
5582 assert(Chunk.Kind == DeclaratorChunk::Paren)((Chunk.Kind == DeclaratorChunk::Paren) ? static_cast<void
> (0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Paren"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5582, __PRETTY_FUNCTION__))
;
5583 TL.setLParenLoc(Chunk.Loc);
5584 TL.setRParenLoc(Chunk.EndLoc);
5585 }
5586 void VisitPipeTypeLoc(PipeTypeLoc TL) {
5587 assert(Chunk.Kind == DeclaratorChunk::Pipe)((Chunk.Kind == DeclaratorChunk::Pipe) ? static_cast<void>
(0) : __assert_fail ("Chunk.Kind == DeclaratorChunk::Pipe", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5587, __PRETTY_FUNCTION__))
;
5588 TL.setKWLoc(Chunk.Loc);
5589 }
5590
5591 void VisitTypeLoc(TypeLoc TL) {
5592 llvm_unreachable("unsupported TypeLoc kind in declarator!")::llvm::llvm_unreachable_internal("unsupported TypeLoc kind in declarator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5592)
;
5593 }
5594 };
5595} // end anonymous namespace
5596
5597static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
5598 SourceLocation Loc;
5599 switch (Chunk.Kind) {
5600 case DeclaratorChunk::Function:
5601 case DeclaratorChunk::Array:
5602 case DeclaratorChunk::Paren:
5603 case DeclaratorChunk::Pipe:
5604 llvm_unreachable("cannot be _Atomic qualified")::llvm::llvm_unreachable_internal("cannot be _Atomic qualified"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5604)
;
5605
5606 case DeclaratorChunk::Pointer:
5607 Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
5608 break;
5609
5610 case DeclaratorChunk::BlockPointer:
5611 case DeclaratorChunk::Reference:
5612 case DeclaratorChunk::MemberPointer:
5613 // FIXME: Provide a source location for the _Atomic keyword.
5614 break;
5615 }
5616
5617 ATL.setKWLoc(Loc);
5618 ATL.setParensRange(SourceRange());
5619}
5620
5621static void
5622fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
5623 const ParsedAttributesView &Attrs) {
5624 for (const ParsedAttr &AL : Attrs) {
5625 if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
5626 DASTL.setAttrNameLoc(AL.getLoc());
5627 DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
5628 DASTL.setAttrOperandParensRange(SourceRange());
5629 return;
5630 }
5631 }
5632
5633 llvm_unreachable(::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5634)
5634 "no address_space attribute found at the expected location!")::llvm::llvm_unreachable_internal("no address_space attribute found at the expected location!"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5634)
;
5635}
5636
5637/// Create and instantiate a TypeSourceInfo with type source information.
5638///
5639/// \param T QualType referring to the type as written in source code.
5640///
5641/// \param ReturnTypeInfo For declarators whose return type does not show
5642/// up in the normal place in the declaration specifiers (such as a C++
5643/// conversion function), this pointer will refer to a type source information
5644/// for that return type.
5645static TypeSourceInfo *
5646GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
5647 QualType T, TypeSourceInfo *ReturnTypeInfo) {
5648 Sema &S = State.getSema();
5649 Declarator &D = State.getDeclarator();
5650
5651 TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
5652 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
5653
5654 // Handle parameter packs whose type is a pack expansion.
5655 if (isa<PackExpansionType>(T)) {
5656 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
5657 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5658 }
5659
5660 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5661 // An AtomicTypeLoc might be produced by an atomic qualifier in this
5662 // declarator chunk.
5663 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
5664 fillAtomicQualLoc(ATL, D.getTypeObject(i));
5665 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
5666 }
5667
5668 while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
5669 fillAttributedTypeLoc(TL, State);
5670 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5671 }
5672
5673 while (DependentAddressSpaceTypeLoc TL =
5674 CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
5675 fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
5676 CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
5677 }
5678
5679 // FIXME: Ordering here?
5680 while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
5681 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
5682
5683 DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
5684 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
5685 }
5686
5687 // If we have different source information for the return type, use
5688 // that. This really only applies to C++ conversion functions.
5689 if (ReturnTypeInfo) {
5690 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
5691 assert(TL.getFullDataSize() == CurrTL.getFullDataSize())((TL.getFullDataSize() == CurrTL.getFullDataSize()) ? static_cast
<void> (0) : __assert_fail ("TL.getFullDataSize() == CurrTL.getFullDataSize()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5691, __PRETTY_FUNCTION__))
;
5692 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
5693 } else {
5694 TypeSpecLocFiller(S.Context, State, D.getDeclSpec()).Visit(CurrTL);
5695 }
5696
5697 return TInfo;
5698}
5699
5700/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
5701ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
5702 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
5703 // and Sema during declaration parsing. Try deallocating/caching them when
5704 // it's appropriate, instead of allocating them and keeping them around.
5705 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
5706 TypeAlignment);
5707 new (LocT) LocInfoType(T, TInfo);
5708 assert(LocT->getTypeClass() != T->getTypeClass() &&((LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? static_cast<void> (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5709, __PRETTY_FUNCTION__))
5709 "LocInfoType's TypeClass conflicts with an existing Type class")((LocT->getTypeClass() != T->getTypeClass() && "LocInfoType's TypeClass conflicts with an existing Type class"
) ? static_cast<void> (0) : __assert_fail ("LocT->getTypeClass() != T->getTypeClass() && \"LocInfoType's TypeClass conflicts with an existing Type class\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5709, __PRETTY_FUNCTION__))
;
5710 return ParsedType::make(QualType(LocT, 0));
5711}
5712
5713void LocInfoType::getAsStringInternal(std::string &Str,
5714 const PrintingPolicy &Policy) const {
5715 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5717)
5716 " was used directly instead of getting the QualType through"::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5717)
5717 " GetTypeFromParser")::llvm::llvm_unreachable_internal("LocInfoType leaked into the type system; an opaque TypeTy*"
" was used directly instead of getting the QualType through"
" GetTypeFromParser", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5717)
;
5718}
5719
5720TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
5721 // C99 6.7.6: Type names have no identifier. This is already validated by
5722 // the parser.
5723 assert(D.getIdentifier() == nullptr &&((D.getIdentifier() == nullptr && "Type name should have no identifier!"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5724, __PRETTY_FUNCTION__))
5724 "Type name should have no identifier!")((D.getIdentifier() == nullptr && "Type name should have no identifier!"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() == nullptr && \"Type name should have no identifier!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5724, __PRETTY_FUNCTION__))
;
5725
5726 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5727 QualType T = TInfo->getType();
5728 if (D.isInvalidType())
5729 return true;
5730
5731 // Make sure there are no unused decl attributes on the declarator.
5732 // We don't want to do this for ObjC parameters because we're going
5733 // to apply them to the actual parameter declaration.
5734 // Likewise, we don't want to do this for alias declarations, because
5735 // we are actually going to build a declaration from this eventually.
5736 if (D.getContext() != DeclaratorContext::ObjCParameterContext &&
5737 D.getContext() != DeclaratorContext::AliasDeclContext &&
5738 D.getContext() != DeclaratorContext::AliasTemplateContext)
5739 checkUnusedDeclAttributes(D);
5740
5741 if (getLangOpts().CPlusPlus) {
5742 // Check that there are no default arguments (C++ only).
5743 CheckExtraCXXDefaultArguments(D);
5744 }
5745
5746 return CreateParsedType(T, TInfo);
5747}
5748
5749ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
5750 QualType T = Context.getObjCInstanceType();
5751 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
5752 return CreateParsedType(T, TInfo);
5753}
5754
5755//===----------------------------------------------------------------------===//
5756// Type Attribute Processing
5757//===----------------------------------------------------------------------===//
5758
5759/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
5760/// is uninstantiated. If instantiated it will apply the appropriate address space
5761/// to the type. This function allows dependent template variables to be used in
5762/// conjunction with the address_space attribute
5763QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
5764 SourceLocation AttrLoc) {
5765 if (!AddrSpace->isValueDependent()) {
5766
5767 llvm::APSInt addrSpace(32);
5768 if (!AddrSpace->isIntegerConstantExpr(addrSpace, Context)) {
5769 Diag(AttrLoc, diag::err_attribute_argument_type)
5770 << "'address_space'" << AANT_ArgumentIntegerConstant
5771 << AddrSpace->getSourceRange();
5772 return QualType();
5773 }
5774
5775 // Bounds checking.
5776 if (addrSpace.isSigned()) {
5777 if (addrSpace.isNegative()) {
5778 Diag(AttrLoc, diag::err_attribute_address_space_negative)
5779 << AddrSpace->getSourceRange();
5780 return QualType();
5781 }
5782 addrSpace.setIsSigned(false);
5783 }
5784
5785 llvm::APSInt max(addrSpace.getBitWidth());
5786 max =
5787 Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
5788 if (addrSpace > max) {
5789 Diag(AttrLoc, diag::err_attribute_address_space_too_high)
5790 << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
5791 return QualType();
5792 }
5793
5794 LangAS ASIdx =
5795 getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
5796
5797 // If this type is already address space qualified with a different
5798 // address space, reject it.
5799 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
5800 // by qualifiers for two or more different address spaces."
5801 if (T.getAddressSpace() != LangAS::Default) {
5802 if (T.getAddressSpace() != ASIdx) {
5803 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
5804 return QualType();
5805 } else
5806 // Emit a warning if they are identical; it's likely unintended.
5807 Diag(AttrLoc,
5808 diag::warn_attribute_address_multiple_identical_qualifiers);
5809 }
5810
5811 return Context.getAddrSpaceQualType(T, ASIdx);
5812 }
5813
5814 // A check with similar intentions as checking if a type already has an
5815 // address space except for on a dependent types, basically if the
5816 // current type is already a DependentAddressSpaceType then its already
5817 // lined up to have another address space on it and we can't have
5818 // multiple address spaces on the one pointer indirection
5819 if (T->getAs<DependentAddressSpaceType>()) {
5820 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
5821 return QualType();
5822 }
5823
5824 return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
5825}
5826
5827/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
5828/// specified type. The attribute contains 1 argument, the id of the address
5829/// space for the type.
5830static void HandleAddressSpaceTypeAttribute(QualType &Type,
5831 const ParsedAttr &Attr,
5832 TypeProcessingState &State) {
5833 Sema &S = State.getSema();
5834
5835 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
5836 // qualified by an address-space qualifier."
5837 if (Type->isFunctionType()) {
5838 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
5839 Attr.setInvalid();
5840 return;
5841 }
5842
5843 LangAS ASIdx;
5844 if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
5845
5846 // Check the attribute arguments.
5847 if (Attr.getNumArgs() != 1) {
5848 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
5849 << 1;
5850 Attr.setInvalid();
5851 return;
5852 }
5853
5854 Expr *ASArgExpr;
5855 if (Attr.isArgIdent(0)) {
5856 // Special case where the argument is a template id.
5857 CXXScopeSpec SS;
5858 SourceLocation TemplateKWLoc;
5859 UnqualifiedId id;
5860 id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
5861
5862 ExprResult AddrSpace = S.ActOnIdExpression(
5863 S.getCurScope(), SS, TemplateKWLoc, id, false, false);
5864 if (AddrSpace.isInvalid())
5865 return;
5866
5867 ASArgExpr = static_cast<Expr *>(AddrSpace.get());
5868 } else {
5869 ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
5870 }
5871
5872 // Create the DependentAddressSpaceType or append an address space onto
5873 // the type.
5874 QualType T = S.BuildAddressSpaceAttr(Type, ASArgExpr, Attr.getLoc());
5875
5876 if (!T.isNull()) {
5877 ASTContext &Ctx = S.Context;
5878 auto *ASAttr = ::new (Ctx) AddressSpaceAttr(
5879 Attr.getRange(), Ctx, Attr.getAttributeSpellingListIndex(),
5880 static_cast<unsigned>(T.getQualifiers().getAddressSpace()));
5881 Type = State.getAttributedType(ASAttr, T, T);
5882 } else {
5883 Attr.setInvalid();
5884 }
5885 } else {
5886 // The keyword-based type attributes imply which address space to use.
5887 switch (Attr.getKind()) {
5888 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
5889 ASIdx = LangAS::opencl_global; break;
5890 case ParsedAttr::AT_OpenCLLocalAddressSpace:
5891 ASIdx = LangAS::opencl_local; break;
5892 case ParsedAttr::AT_OpenCLConstantAddressSpace:
5893 ASIdx = LangAS::opencl_constant; break;
5894 case ParsedAttr::AT_OpenCLGenericAddressSpace:
5895 ASIdx = LangAS::opencl_generic; break;
5896 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
5897 ASIdx = LangAS::opencl_private; break;
5898 default:
5899 llvm_unreachable("Invalid address space")::llvm::llvm_unreachable_internal("Invalid address space", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5899)
;
5900 }
5901
5902 // If this type is already address space qualified with a different
5903 // address space, reject it.
5904 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
5905 // qualifiers for two or more different address spaces."
5906 if (Type.getAddressSpace() != LangAS::Default) {
5907 if (Type.getAddressSpace() != ASIdx) {
5908 S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
5909 Attr.setInvalid();
5910 return;
5911 } else
5912 // Emit a warning if they are identical; it's likely unintended.
5913 S.Diag(Attr.getLoc(),
5914 diag::warn_attribute_address_multiple_identical_qualifiers);
5915 }
5916
5917 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
5918 }
5919}
5920
5921/// Does this type have a "direct" ownership qualifier? That is,
5922/// is it written like "__strong id", as opposed to something like
5923/// "typeof(foo)", where that happens to be strong?
5924static bool hasDirectOwnershipQualifier(QualType type) {
5925 // Fast path: no qualifier at all.
5926 assert(type.getQualifiers().hasObjCLifetime())((type.getQualifiers().hasObjCLifetime()) ? static_cast<void
> (0) : __assert_fail ("type.getQualifiers().hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 5926, __PRETTY_FUNCTION__))
;
5927
5928 while (true) {
5929 // __strong id
5930 if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
5931 if (attr->getAttrKind() == attr::ObjCOwnership)
5932 return true;
5933
5934 type = attr->getModifiedType();
5935
5936 // X *__strong (...)
5937 } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
5938 type = paren->getInnerType();
5939
5940 // That's it for things we want to complain about. In particular,
5941 // we do not want to look through typedefs, typeof(expr),
5942 // typeof(type), or any other way that the type is somehow
5943 // abstracted.
5944 } else {
5945
5946 return false;
5947 }
5948 }
5949}
5950
5951/// handleObjCOwnershipTypeAttr - Process an objc_ownership
5952/// attribute on the specified type.
5953///
5954/// Returns 'true' if the attribute was handled.
5955static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
5956 ParsedAttr &attr, QualType &type) {
5957 bool NonObjCPointer = false;
5958
5959 if (!type->isDependentType() && !type->isUndeducedType()) {
5960 if (const PointerType *ptr = type->getAs<PointerType>()) {
5961 QualType pointee = ptr->getPointeeType();
5962 if (pointee->isObjCRetainableType() || pointee->isPointerType())
5963 return false;
5964 // It is important not to lose the source info that there was an attribute
5965 // applied to non-objc pointer. We will create an attributed type but
5966 // its type will be the same as the original type.
5967 NonObjCPointer = true;
5968 } else if (!type->isObjCRetainableType()) {
5969 return false;
5970 }
5971
5972 // Don't accept an ownership attribute in the declspec if it would
5973 // just be the return type of a block pointer.
5974 if (state.isProcessingDeclSpec()) {
5975 Declarator &D = state.getDeclarator();
5976 if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
5977 /*onlyBlockPointers=*/true))
5978 return false;
5979 }
5980 }
5981
5982 Sema &S = state.getSema();
5983 SourceLocation AttrLoc = attr.getLoc();
5984 if (AttrLoc.isMacroID())
5985 AttrLoc =
5986 S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
5987
5988 if (!attr.isArgIdent(0)) {
5989 S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
5990 << AANT_ArgumentString;
5991 attr.setInvalid();
5992 return true;
5993 }
5994
5995 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
5996 Qualifiers::ObjCLifetime lifetime;
5997 if (II->isStr("none"))
5998 lifetime = Qualifiers::OCL_ExplicitNone;
5999 else if (II->isStr("strong"))
6000 lifetime = Qualifiers::OCL_Strong;
6001 else if (II->isStr("weak"))
6002 lifetime = Qualifiers::OCL_Weak;
6003 else if (II->isStr("autoreleasing"))
6004 lifetime = Qualifiers::OCL_Autoreleasing;
6005 else {
6006 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
6007 << attr.getName() << II;
6008 attr.setInvalid();
6009 return true;
6010 }
6011
6012 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6013 // outside of ARC mode.
6014 if (!S.getLangOpts().ObjCAutoRefCount &&
6015 lifetime != Qualifiers::OCL_Weak &&
6016 lifetime != Qualifiers::OCL_ExplicitNone) {
6017 return true;
6018 }
6019
6020 SplitQualType underlyingType = type.split();
6021
6022 // Check for redundant/conflicting ownership qualifiers.
6023 if (Qualifiers::ObjCLifetime previousLifetime
6024 = type.getQualifiers().getObjCLifetime()) {
6025 // If it's written directly, that's an error.
6026 if (hasDirectOwnershipQualifier(type)) {
6027 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6028 << type;
6029 return true;
6030 }
6031
6032 // Otherwise, if the qualifiers actually conflict, pull sugar off
6033 // and remove the ObjCLifetime qualifiers.
6034 if (previousLifetime != lifetime) {
6035 // It's possible to have multiple local ObjCLifetime qualifiers. We
6036 // can't stop after we reach a type that is directly qualified.
6037 const Type *prevTy = nullptr;
6038 while (!prevTy || prevTy != underlyingType.Ty) {
6039 prevTy = underlyingType.Ty;
6040 underlyingType = underlyingType.getSingleStepDesugaredType();
6041 }
6042 underlyingType.Quals.removeObjCLifetime();
6043 }
6044 }
6045
6046 underlyingType.Quals.addObjCLifetime(lifetime);
6047
6048 if (NonObjCPointer) {
6049 StringRef name = attr.getName()->getName();
6050 switch (lifetime) {
6051 case Qualifiers::OCL_None:
6052 case Qualifiers::OCL_ExplicitNone:
6053 break;
6054 case Qualifiers::OCL_Strong: name = "__strong"; break;
6055 case Qualifiers::OCL_Weak: name = "__weak"; break;
6056 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6057 }
6058 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6059 << TDS_ObjCObjOrBlock << type;
6060 }
6061
6062 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6063 // because having both 'T' and '__unsafe_unretained T' exist in the type
6064 // system causes unfortunate widespread consistency problems. (For example,
6065 // they're not considered compatible types, and we mangle them identicially
6066 // as template arguments.) These problems are all individually fixable,
6067 // but it's easier to just not add the qualifier and instead sniff it out
6068 // in specific places using isObjCInertUnsafeUnretainedType().
6069 //
6070 // Doing this does means we miss some trivial consistency checks that
6071 // would've triggered in ARC, but that's better than trying to solve all
6072 // the coexistence problems with __unsafe_unretained.
6073 if (!S.getLangOpts().ObjCAutoRefCount &&
6074 lifetime == Qualifiers::OCL_ExplicitNone) {
6075 type = state.getAttributedType(
6076 createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6077 type, type);
6078 return true;
6079 }
6080
6081 QualType origType = type;
6082 if (!NonObjCPointer)
6083 type = S.Context.getQualifiedType(underlyingType);
6084
6085 // If we have a valid source location for the attribute, use an
6086 // AttributedType instead.
6087 if (AttrLoc.isValid()) {
6088 type = state.getAttributedType(::new (S.Context) ObjCOwnershipAttr(
6089 attr.getRange(), S.Context, II,
6090 attr.getAttributeSpellingListIndex()),
6091 origType, type);
6092 }
6093
6094 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6095 unsigned diagnostic, QualType type) {
6096 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6097 S.DelayedDiagnostics.add(
6098 sema::DelayedDiagnostic::makeForbiddenType(
6099 S.getSourceManager().getExpansionLoc(loc),
6100 diagnostic, type, /*ignored*/ 0));
6101 } else {
6102 S.Diag(loc, diagnostic);
6103 }
6104 };
6105
6106 // Sometimes, __weak isn't allowed.
6107 if (lifetime == Qualifiers::OCL_Weak &&
6108 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6109
6110 // Use a specialized diagnostic if the runtime just doesn't support them.
6111 unsigned diagnostic =
6112 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6113 : diag::err_arc_weak_no_runtime);
6114
6115 // In any case, delay the diagnostic until we know what we're parsing.
6116 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6117
6118 attr.setInvalid();
6119 return true;
6120 }
6121
6122 // Forbid __weak for class objects marked as
6123 // objc_arc_weak_reference_unavailable
6124 if (lifetime == Qualifiers::OCL_Weak) {
6125 if (const ObjCObjectPointerType *ObjT =
6126 type->getAs<ObjCObjectPointerType>()) {
6127 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6128 if (Class->isArcWeakrefUnavailable()) {
6129 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6130 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6131 diag::note_class_declared);
6132 }
6133 }
6134 }
6135 }
6136
6137 return true;
6138}
6139
6140/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6141/// attribute on the specified type. Returns true to indicate that
6142/// the attribute was handled, false to indicate that the type does
6143/// not permit the attribute.
6144static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6145 QualType &type) {
6146 Sema &S = state.getSema();
6147
6148 // Delay if this isn't some kind of pointer.
6149 if (!type->isPointerType() &&
6150 !type->isObjCObjectPointerType() &&
6151 !type->isBlockPointerType())
6152 return false;
6153
6154 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6155 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6156 attr.setInvalid();
6157 return true;
6158 }
6159
6160 // Check the attribute arguments.
6161 if (!attr.isArgIdent(0)) {
6162 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6163 << attr << AANT_ArgumentString;
6164 attr.setInvalid();
6165 return true;
6166 }
6167 Qualifiers::GC GCAttr;
6168 if (attr.getNumArgs() > 1) {
6169 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6170 << 1;
6171 attr.setInvalid();
6172 return true;
6173 }
6174
6175 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6176 if (II->isStr("weak"))
6177 GCAttr = Qualifiers::Weak;
6178 else if (II->isStr("strong"))
6179 GCAttr = Qualifiers::Strong;
6180 else {
6181 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6182 << attr.getName() << II;
6183 attr.setInvalid();
6184 return true;
6185 }
6186
6187 QualType origType = type;
6188 type = S.Context.getObjCGCQualType(origType, GCAttr);
6189
6190 // Make an attributed type to preserve the source information.
6191 if (attr.getLoc().isValid())
6192 type = state.getAttributedType(
6193 ::new (S.Context) ObjCGCAttr(attr.getRange(), S.Context, II,
6194 attr.getAttributeSpellingListIndex()),
6195 origType, type);
6196
6197 return true;
6198}
6199
6200namespace {
6201 /// A helper class to unwrap a type down to a function for the
6202 /// purposes of applying attributes there.
6203 ///
6204 /// Use:
6205 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
6206 /// if (unwrapped.isFunctionType()) {
6207 /// const FunctionType *fn = unwrapped.get();
6208 /// // change fn somehow
6209 /// T = unwrapped.wrap(fn);
6210 /// }
6211 struct FunctionTypeUnwrapper {
6212 enum WrapKind {
6213 Desugar,
6214 Attributed,
6215 Parens,
6216 Pointer,
6217 BlockPointer,
6218 Reference,
6219 MemberPointer
6220 };
6221
6222 QualType Original;
6223 const FunctionType *Fn;
6224 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6225
6226 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6227 while (true) {
6228 const Type *Ty = T.getTypePtr();
6229 if (isa<FunctionType>(Ty)) {
6230 Fn = cast<FunctionType>(Ty);
6231 return;
6232 } else if (isa<ParenType>(Ty)) {
6233 T = cast<ParenType>(Ty)->getInnerType();
6234 Stack.push_back(Parens);
6235 } else if (isa<PointerType>(Ty)) {
6236 T = cast<PointerType>(Ty)->getPointeeType();
6237 Stack.push_back(Pointer);
6238 } else if (isa<BlockPointerType>(Ty)) {
6239 T = cast<BlockPointerType>(Ty)->getPointeeType();
6240 Stack.push_back(BlockPointer);
6241 } else if (isa<MemberPointerType>(Ty)) {
6242 T = cast<MemberPointerType>(Ty)->getPointeeType();
6243 Stack.push_back(MemberPointer);
6244 } else if (isa<ReferenceType>(Ty)) {
6245 T = cast<ReferenceType>(Ty)->getPointeeType();
6246 Stack.push_back(Reference);
6247 } else if (isa<AttributedType>(Ty)) {
6248 T = cast<AttributedType>(Ty)->getEquivalentType();
6249 Stack.push_back(Attributed);
6250 } else {
6251 const Type *DTy = Ty->getUnqualifiedDesugaredType();
6252 if (Ty == DTy) {
6253 Fn = nullptr;
6254 return;
6255 }
6256
6257 T = QualType(DTy, 0);
6258 Stack.push_back(Desugar);
6259 }
6260 }
6261 }
6262
6263 bool isFunctionType() const { return (Fn != nullptr); }
6264 const FunctionType *get() const { return Fn; }
6265
6266 QualType wrap(Sema &S, const FunctionType *New) {
6267 // If T wasn't modified from the unwrapped type, do nothing.
6268 if (New == get()) return Original;
6269
6270 Fn = New;
6271 return wrap(S.Context, Original, 0);
6272 }
6273
6274 private:
6275 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6276 if (I == Stack.size())
6277 return C.getQualifiedType(Fn, Old.getQualifiers());
6278
6279 // Build up the inner type, applying the qualifiers from the old
6280 // type to the new type.
6281 SplitQualType SplitOld = Old.split();
6282
6283 // As a special case, tail-recurse if there are no qualifiers.
6284 if (SplitOld.Quals.empty())
6285 return wrap(C, SplitOld.Ty, I);
6286 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6287 }
6288
6289 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6290 if (I == Stack.size()) return QualType(Fn, 0);
6291
6292 switch (static_cast<WrapKind>(Stack[I++])) {
6293 case Desugar:
6294 // This is the point at which we potentially lose source
6295 // information.
6296 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6297
6298 case Attributed:
6299 return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6300
6301 case Parens: {
6302 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6303 return C.getParenType(New);
6304 }
6305
6306 case Pointer: {
6307 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6308 return C.getPointerType(New);
6309 }
6310
6311 case BlockPointer: {
6312 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6313 return C.getBlockPointerType(New);
6314 }
6315
6316 case MemberPointer: {
6317 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6318 QualType New = wrap(C, OldMPT->getPointeeType(), I);
6319 return C.getMemberPointerType(New, OldMPT->getClass());
6320 }
6321
6322 case Reference: {
6323 const ReferenceType *OldRef = cast<ReferenceType>(Old);
6324 QualType New = wrap(C, OldRef->getPointeeType(), I);
6325 if (isa<LValueReferenceType>(OldRef))
6326 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6327 else
6328 return C.getRValueReferenceType(New);
6329 }
6330 }
6331
6332 llvm_unreachable("unknown wrapping kind")::llvm::llvm_unreachable_internal("unknown wrapping kind", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 6332)
;
6333 }
6334 };
6335} // end anonymous namespace
6336
6337static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6338 ParsedAttr &PAttr, QualType &Type) {
6339 Sema &S = State.getSema();
6340
6341 Attr *A;
6342 switch (PAttr.getKind()) {
6343 default: llvm_unreachable("Unknown attribute kind")::llvm::llvm_unreachable_internal("Unknown attribute kind", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 6343)
;
6344 case ParsedAttr::AT_Ptr32:
6345 A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
6346 break;
6347 case ParsedAttr::AT_Ptr64:
6348 A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
6349 break;
6350 case ParsedAttr::AT_SPtr:
6351 A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
6352 break;
6353 case ParsedAttr::AT_UPtr:
6354 A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
6355 break;
6356 }
6357
6358 attr::Kind NewAttrKind = A->getKind();
6359 QualType Desugared = Type;
6360 const AttributedType *AT = dyn_cast<AttributedType>(Type);
6361 while (AT) {
6362 attr::Kind CurAttrKind = AT->getAttrKind();
6363
6364 // You cannot specify duplicate type attributes, so if the attribute has
6365 // already been applied, flag it.
6366 if (NewAttrKind == CurAttrKind) {
6367 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact)
6368 << PAttr.getName();
6369 return true;
6370 }
6371
6372 // You cannot have both __sptr and __uptr on the same type, nor can you
6373 // have __ptr32 and __ptr64.
6374 if ((CurAttrKind == attr::Ptr32 && NewAttrKind == attr::Ptr64) ||
6375 (CurAttrKind == attr::Ptr64 && NewAttrKind == attr::Ptr32)) {
6376 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6377 << "'__ptr32'" << "'__ptr64'";
6378 return true;
6379 } else if ((CurAttrKind == attr::SPtr && NewAttrKind == attr::UPtr) ||
6380 (CurAttrKind == attr::UPtr && NewAttrKind == attr::SPtr)) {
6381 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
6382 << "'__sptr'" << "'__uptr'";
6383 return true;
6384 }
6385
6386 Desugared = AT->getEquivalentType();
6387 AT = dyn_cast<AttributedType>(Desugared);
6388 }
6389
6390 // Pointer type qualifiers can only operate on pointer types, but not
6391 // pointer-to-member types.
6392 //
6393 // FIXME: Should we really be disallowing this attribute if there is any
6394 // type sugar between it and the pointer (other than attributes)? Eg, this
6395 // disallows the attribute on a parenthesized pointer.
6396 // And if so, should we really allow *any* type attribute?
6397 if (!isa<PointerType>(Desugared)) {
6398 if (Type->isMemberPointerType())
6399 S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
6400 else
6401 S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
6402 return true;
6403 }
6404
6405 Type = State.getAttributedType(A, Type, Type);
6406 return false;
6407}
6408
6409/// Map a nullability attribute kind to a nullability kind.
6410static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
6411 switch (kind) {
6412 case ParsedAttr::AT_TypeNonNull:
6413 return NullabilityKind::NonNull;
6414
6415 case ParsedAttr::AT_TypeNullable:
6416 return NullabilityKind::Nullable;
6417
6418 case ParsedAttr::AT_TypeNullUnspecified:
6419 return NullabilityKind::Unspecified;
6420
6421 default:
6422 llvm_unreachable("not a nullability attribute kind")::llvm::llvm_unreachable_internal("not a nullability attribute kind"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 6422)
;
6423 }
6424}
6425
6426/// Applies a nullability type specifier to the given type, if possible.
6427///
6428/// \param state The type processing state.
6429///
6430/// \param type The type to which the nullability specifier will be
6431/// added. On success, this type will be updated appropriately.
6432///
6433/// \param attr The attribute as written on the type.
6434///
6435/// \param allowOnArrayType Whether to accept nullability specifiers on an
6436/// array type (e.g., because it will decay to a pointer).
6437///
6438/// \returns true if a problem has been diagnosed, false on success.
6439static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
6440 QualType &type,
6441 ParsedAttr &attr,
6442 bool allowOnArrayType) {
6443 Sema &S = state.getSema();
6444
6445 NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
6446 SourceLocation nullabilityLoc = attr.getLoc();
6447 bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
6448
6449 recordNullabilitySeen(S, nullabilityLoc);
6450
6451 // Check for existing nullability attributes on the type.
6452 QualType desugared = type;
6453 while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
6454 // Check whether there is already a null
6455 if (auto existingNullability = attributed->getImmediateNullability()) {
6456 // Duplicated nullability.
6457 if (nullability == *existingNullability) {
6458 S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
6459 << DiagNullabilityKind(nullability, isContextSensitive)
6460 << FixItHint::CreateRemoval(nullabilityLoc);
6461
6462 break;
6463 }
6464
6465 // Conflicting nullability.
6466 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
6467 << DiagNullabilityKind(nullability, isContextSensitive)
6468 << DiagNullabilityKind(*existingNullability, false);
6469 return true;
6470 }
6471
6472 desugared = attributed->getModifiedType();
6473 }
6474
6475 // If there is already a different nullability specifier, complain.
6476 // This (unlike the code above) looks through typedefs that might
6477 // have nullability specifiers on them, which means we cannot
6478 // provide a useful Fix-It.
6479 if (auto existingNullability = desugared->getNullability(S.Context)) {
6480 if (nullability != *existingNullability) {
6481 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
6482 << DiagNullabilityKind(nullability, isContextSensitive)
6483 << DiagNullabilityKind(*existingNullability, false);
6484
6485 // Try to find the typedef with the existing nullability specifier.
6486 if (auto typedefType = desugared->getAs<TypedefType>()) {
6487 TypedefNameDecl *typedefDecl = typedefType->getDecl();
6488 QualType underlyingType = typedefDecl->getUnderlyingType();
6489 if (auto typedefNullability
6490 = AttributedType::stripOuterNullability(underlyingType)) {
6491 if (*typedefNullability == *existingNullability) {
6492 S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
6493 << DiagNullabilityKind(*existingNullability, false);
6494 }
6495 }
6496 }
6497
6498 return true;
6499 }
6500 }
6501
6502 // If this definitely isn't a pointer type, reject the specifier.
6503 if (!desugared->canHaveNullability() &&
6504 !(allowOnArrayType && desugared->isArrayType())) {
6505 S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
6506 << DiagNullabilityKind(nullability, isContextSensitive) << type;
6507 return true;
6508 }
6509
6510 // For the context-sensitive keywords/Objective-C property
6511 // attributes, require that the type be a single-level pointer.
6512 if (isContextSensitive) {
6513 // Make sure that the pointee isn't itself a pointer type.
6514 const Type *pointeeType;
6515 if (desugared->isArrayType())
6516 pointeeType = desugared->getArrayElementTypeNoTypeQual();
6517 else
6518 pointeeType = desugared->getPointeeType().getTypePtr();
6519
6520 if (pointeeType->isAnyPointerType() ||
6521 pointeeType->isObjCObjectPointerType() ||
6522 pointeeType->isMemberPointerType()) {
6523 S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
6524 << DiagNullabilityKind(nullability, true)
6525 << type;
6526 S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
6527 << DiagNullabilityKind(nullability, false)
6528 << type
6529 << FixItHint::CreateReplacement(nullabilityLoc,
6530 getNullabilitySpelling(nullability));
6531 return true;
6532 }
6533 }
6534
6535 // Form the attributed type.
6536 type = state.getAttributedType(
6537 createNullabilityAttr(S.Context, attr, nullability), type, type);
6538 return false;
6539}
6540
6541/// Check the application of the Objective-C '__kindof' qualifier to
6542/// the given type.
6543static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
6544 ParsedAttr &attr) {
6545 Sema &S = state.getSema();
6546
6547 if (isa<ObjCTypeParamType>(type)) {
6548 // Build the attributed type to record where __kindof occurred.
6549 type = state.getAttributedType(
6550 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
6551 return false;
6552 }
6553
6554 // Find out if it's an Objective-C object or object pointer type;
6555 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
6556 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
6557 : type->getAs<ObjCObjectType>();
6558
6559 // If not, we can't apply __kindof.
6560 if (!objType) {
6561 // FIXME: Handle dependent types that aren't yet object types.
6562 S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
6563 << type;
6564 return true;
6565 }
6566
6567 // Rebuild the "equivalent" type, which pushes __kindof down into
6568 // the object type.
6569 // There is no need to apply kindof on an unqualified id type.
6570 QualType equivType = S.Context.getObjCObjectType(
6571 objType->getBaseType(), objType->getTypeArgsAsWritten(),
6572 objType->getProtocols(),
6573 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
6574
6575 // If we started with an object pointer type, rebuild it.
6576 if (ptrType) {
6577 equivType = S.Context.getObjCObjectPointerType(equivType);
6578 if (auto nullability = type->getNullability(S.Context)) {
6579 // We create a nullability attribute from the __kindof attribute.
6580 // Make sure that will make sense.
6581 assert(attr.getAttributeSpellingListIndex() == 0 &&((attr.getAttributeSpellingListIndex() == 0 && "multiple spellings for __kindof?"
) ? static_cast<void> (0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 6582, __PRETTY_FUNCTION__))
6582 "multiple spellings for __kindof?")((attr.getAttributeSpellingListIndex() == 0 && "multiple spellings for __kindof?"
) ? static_cast<void> (0) : __assert_fail ("attr.getAttributeSpellingListIndex() == 0 && \"multiple spellings for __kindof?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 6582, __PRETTY_FUNCTION__))
;
6583 Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
6584 A->setImplicit(true);
6585 equivType = state.getAttributedType(A, equivType, equivType);
6586 }
6587 }
6588
6589 // Build the attributed type to record where __kindof occurred.
6590 type = state.getAttributedType(
6591 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
6592 return false;
6593}
6594
6595/// Distribute a nullability type attribute that cannot be applied to
6596/// the type specifier to a pointer, block pointer, or member pointer
6597/// declarator, complaining if necessary.
6598///
6599/// \returns true if the nullability annotation was distributed, false
6600/// otherwise.
6601static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
6602 QualType type, ParsedAttr &attr) {
6603 Declarator &declarator = state.getDeclarator();
6604
6605 /// Attempt to move the attribute to the specified chunk.
6606 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
6607 // If there is already a nullability attribute there, don't add
6608 // one.
6609 if (hasNullabilityAttr(chunk.getAttrs()))
6610 return false;
6611
6612 // Complain about the nullability qualifier being in the wrong
6613 // place.
6614 enum {
6615 PK_Pointer,
6616 PK_BlockPointer,
6617 PK_MemberPointer,
6618 PK_FunctionPointer,
6619 PK_MemberFunctionPointer,
6620 } pointerKind
6621 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
6622 : PK_Pointer)
6623 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
6624 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
6625
6626 auto diag = state.getSema().Diag(attr.getLoc(),
6627 diag::warn_nullability_declspec)
6628 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
6629 attr.isContextSensitiveKeywordAttribute())
6630 << type
6631 << static_cast<unsigned>(pointerKind);
6632
6633 // FIXME: MemberPointer chunks don't carry the location of the *.
6634 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
6635 diag << FixItHint::CreateRemoval(attr.getLoc())
6636 << FixItHint::CreateInsertion(
6637 state.getSema().getPreprocessor()
6638 .getLocForEndOfToken(chunk.Loc),
6639 " " + attr.getName()->getName().str() + " ");
6640 }
6641
6642 moveAttrFromListToList(attr, state.getCurrentAttributes(),
6643 chunk.getAttrs());
6644 return true;
6645 };
6646
6647 // Move it to the outermost pointer, member pointer, or block
6648 // pointer declarator.
6649 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
6650 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
6651 switch (chunk.Kind) {
6652 case DeclaratorChunk::Pointer:
6653 case DeclaratorChunk::BlockPointer:
6654 case DeclaratorChunk::MemberPointer:
6655 return moveToChunk(chunk, false);
6656
6657 case DeclaratorChunk::Paren:
6658 case DeclaratorChunk::Array:
6659 continue;
6660
6661 case DeclaratorChunk::Function:
6662 // Try to move past the return type to a function/block/member
6663 // function pointer.
6664 if (DeclaratorChunk *dest = maybeMovePastReturnType(
6665 declarator, i,
6666 /*onlyBlockPointers=*/false)) {
6667 return moveToChunk(*dest, true);
6668 }
6669
6670 return false;
6671
6672 // Don't walk through these.
6673 case DeclaratorChunk::Reference:
6674 case DeclaratorChunk::Pipe:
6675 return false;
6676 }
6677 }
6678
6679 return false;
6680}
6681
6682static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
6683 assert(!Attr.isInvalid())((!Attr.isInvalid()) ? static_cast<void> (0) : __assert_fail
("!Attr.isInvalid()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 6683, __PRETTY_FUNCTION__))
;
6684 switch (Attr.getKind()) {
6685 default:
6686 llvm_unreachable("not a calling convention attribute")::llvm::llvm_unreachable_internal("not a calling convention attribute"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 6686)
;
6687 case ParsedAttr::AT_CDecl:
6688 return createSimpleAttr<CDeclAttr>(Ctx, Attr);
6689 case ParsedAttr::AT_FastCall:
6690 return createSimpleAttr<FastCallAttr>(Ctx, Attr);
6691 case ParsedAttr::AT_StdCall:
6692 return createSimpleAttr<StdCallAttr>(Ctx, Attr);
6693 case ParsedAttr::AT_ThisCall:
6694 return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
6695 case ParsedAttr::AT_RegCall:
6696 return createSimpleAttr<RegCallAttr>(Ctx, Attr);
6697 case ParsedAttr::AT_Pascal:
6698 return createSimpleAttr<PascalAttr>(Ctx, Attr);
6699 case ParsedAttr::AT_SwiftCall:
6700 return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
6701 case ParsedAttr::AT_VectorCall:
6702 return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
6703 case ParsedAttr::AT_AArch64VectorPcs:
6704 return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
6705 case ParsedAttr::AT_Pcs: {
6706 // The attribute may have had a fixit applied where we treated an
6707 // identifier as a string literal. The contents of the string are valid,
6708 // but the form may not be.
6709 StringRef Str;
6710 if (Attr.isArgExpr(0))
6711 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
6712 else
6713 Str = Attr.getArgAsIdent(0)->Ident->getName();
6714 PcsAttr::PCSType Type;
6715 if (!PcsAttr::ConvertStrToPCSType(Str, Type))
6716 llvm_unreachable("already validated the attribute")::llvm::llvm_unreachable_internal("already validated the attribute"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 6716)
;
6717 return ::new (Ctx) PcsAttr(Attr.getRange(), Ctx, Type,
6718 Attr.getAttributeSpellingListIndex());
6719 }
6720 case ParsedAttr::AT_IntelOclBicc:
6721 return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
6722 case ParsedAttr::AT_MSABI:
6723 return createSimpleAttr<MSABIAttr>(Ctx, Attr);
6724 case ParsedAttr::AT_SysVABI:
6725 return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
6726 case ParsedAttr::AT_PreserveMost:
6727 return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
6728 case ParsedAttr::AT_PreserveAll:
6729 return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
6730 }
6731 llvm_unreachable("unexpected attribute kind!")::llvm::llvm_unreachable_internal("unexpected attribute kind!"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 6731)
;
6732}
6733
6734/// Process an individual function attribute. Returns true to
6735/// indicate that the attribute was handled, false if it wasn't.
6736static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6737 QualType &type) {
6738 Sema &S = state.getSema();
6739
6740 FunctionTypeUnwrapper unwrapped(S, type);
6741
6742 if (attr.getKind() == ParsedAttr::AT_NoReturn) {
6743 if (S.CheckAttrNoArgs(attr))
6744 return true;
6745
6746 // Delay if this is not a function type.
6747 if (!unwrapped.isFunctionType())
6748 return false;
6749
6750 // Otherwise we can process right away.
6751 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
6752 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6753 return true;
6754 }
6755
6756 // ns_returns_retained is not always a type attribute, but if we got
6757 // here, we're treating it as one right now.
6758 if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
6759 if (attr.getNumArgs()) return true;
6760
6761 // Delay if this is not a function type.
6762 if (!unwrapped.isFunctionType())
6763 return false;
6764
6765 // Check whether the return type is reasonable.
6766 if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
6767 unwrapped.get()->getReturnType()))
6768 return true;
6769
6770 // Only actually change the underlying type in ARC builds.
6771 QualType origType = type;
6772 if (state.getSema().getLangOpts().ObjCAutoRefCount) {
6773 FunctionType::ExtInfo EI
6774 = unwrapped.get()->getExtInfo().withProducesResult(true);
6775 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6776 }
6777 type = state.getAttributedType(
6778 createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
6779 origType, type);
6780 return true;
6781 }
6782
6783 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
6784 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
6785 return true;
6786
6787 // Delay if this is not a function type.
6788 if (!unwrapped.isFunctionType())
6789 return false;
6790
6791 FunctionType::ExtInfo EI =
6792 unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
6793 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6794 return true;
6795 }
6796
6797 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
6798 if (!S.getLangOpts().CFProtectionBranch) {
6799 S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
6800 attr.setInvalid();
6801 return true;
6802 }
6803
6804 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
6805 return true;
6806
6807 // If this is not a function type, warning will be asserted by subject
6808 // check.
6809 if (!unwrapped.isFunctionType())
6810 return true;
6811
6812 FunctionType::ExtInfo EI =
6813 unwrapped.get()->getExtInfo().withNoCfCheck(true);
6814 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6815 return true;
6816 }
6817
6818 if (attr.getKind() == ParsedAttr::AT_Regparm) {
6819 unsigned value;
6820 if (S.CheckRegparmAttr(attr, value))
6821 return true;
6822
6823 // Delay if this is not a function type.
6824 if (!unwrapped.isFunctionType())
6825 return false;
6826
6827 // Diagnose regparm with fastcall.
6828 const FunctionType *fn = unwrapped.get();
6829 CallingConv CC = fn->getCallConv();
6830 if (CC == CC_X86FastCall) {
6831 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6832 << FunctionType::getNameForCallConv(CC)
6833 << "regparm";
6834 attr.setInvalid();
6835 return true;
6836 }
6837
6838 FunctionType::ExtInfo EI =
6839 unwrapped.get()->getExtInfo().withRegParm(value);
6840 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6841 return true;
6842 }
6843
6844 // Delay if the type didn't work out to a function.
6845 if (!unwrapped.isFunctionType()) return false;
6846
6847 // Otherwise, a calling convention.
6848 CallingConv CC;
6849 if (S.CheckCallingConvAttr(attr, CC))
6850 return true;
6851
6852 const FunctionType *fn = unwrapped.get();
6853 CallingConv CCOld = fn->getCallConv();
6854 Attr *CCAttr = getCCTypeAttr(S.Context, attr);
6855
6856 if (CCOld != CC) {
6857 // Error out on when there's already an attribute on the type
6858 // and the CCs don't match.
6859 if (S.getCallingConvAttributedType(type)) {
6860 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6861 << FunctionType::getNameForCallConv(CC)
6862 << FunctionType::getNameForCallConv(CCOld);
6863 attr.setInvalid();
6864 return true;
6865 }
6866 }
6867
6868 // Diagnose use of variadic functions with calling conventions that
6869 // don't support them (e.g. because they're callee-cleanup).
6870 // We delay warning about this on unprototyped function declarations
6871 // until after redeclaration checking, just in case we pick up a
6872 // prototype that way. And apparently we also "delay" warning about
6873 // unprototyped function types in general, despite not necessarily having
6874 // much ability to diagnose it later.
6875 if (!supportsVariadicCall(CC)) {
6876 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
6877 if (FnP && FnP->isVariadic()) {
6878 unsigned DiagID = diag::err_cconv_varargs;
6879
6880 // stdcall and fastcall are ignored with a warning for GCC and MS
6881 // compatibility.
6882 bool IsInvalid = true;
6883 if (CC == CC_X86StdCall || CC == CC_X86FastCall) {
6884 DiagID = diag::warn_cconv_varargs;
6885 IsInvalid = false;
6886 }
6887
6888 S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
6889 if (IsInvalid) attr.setInvalid();
6890 return true;
6891 }
6892 }
6893
6894 // Also diagnose fastcall with regparm.
6895 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
6896 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
6897 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
6898 attr.setInvalid();
6899 return true;
6900 }
6901
6902 // Modify the CC from the wrapped function type, wrap it all back, and then
6903 // wrap the whole thing in an AttributedType as written. The modified type
6904 // might have a different CC if we ignored the attribute.
6905 QualType Equivalent;
6906 if (CCOld == CC) {
6907 Equivalent = type;
6908 } else {
6909 auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
6910 Equivalent =
6911 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
6912 }
6913 type = state.getAttributedType(CCAttr, type, Equivalent);
6914 return true;
6915}
6916
6917bool Sema::hasExplicitCallingConv(QualType &T) {
6918 QualType R = T.IgnoreParens();
6919 while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
6920 if (AT->isCallingConv())
6921 return true;
6922 R = AT->getModifiedType().IgnoreParens();
6923 }
6924 return false;
6925}
6926
6927void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
6928 SourceLocation Loc) {
6929 FunctionTypeUnwrapper Unwrapped(*this, T);
6930 const FunctionType *FT = Unwrapped.get();
6931 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
6932 cast<FunctionProtoType>(FT)->isVariadic());
6933 CallingConv CurCC = FT->getCallConv();
6934 CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
6935
6936 if (CurCC == ToCC)
6937 return;
6938
6939 // MS compiler ignores explicit calling convention attributes on structors. We
6940 // should do the same.
6941 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
6942 // Issue a warning on ignored calling convention -- except of __stdcall.
6943 // Again, this is what MS compiler does.
6944 if (CurCC != CC_X86StdCall)
6945 Diag(Loc, diag::warn_cconv_structors)
6946 << FunctionType::getNameForCallConv(CurCC);
6947 // Default adjustment.
6948 } else {
6949 // Only adjust types with the default convention. For example, on Windows
6950 // we should adjust a __cdecl type to __thiscall for instance methods, and a
6951 // __thiscall type to __cdecl for static methods.
6952 CallingConv DefaultCC =
6953 Context.getDefaultCallingConvention(IsVariadic, IsStatic);
6954
6955 if (CurCC != DefaultCC || DefaultCC == ToCC)
6956 return;
6957
6958 if (hasExplicitCallingConv(T))
6959 return;
6960 }
6961
6962 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
6963 QualType Wrapped = Unwrapped.wrap(*this, FT);
6964 T = Context.getAdjustedType(T, Wrapped);
6965}
6966
6967/// HandleVectorSizeAttribute - this attribute is only applicable to integral
6968/// and float scalars, although arrays, pointers, and function return values are
6969/// allowed in conjunction with this construct. Aggregates with this attribute
6970/// are invalid, even if they are of the same size as a corresponding scalar.
6971/// The raw attribute should contain precisely 1 argument, the vector size for
6972/// the variable, measured in bytes. If curType and rawAttr are well formed,
6973/// this routine will return a new vector type.
6974static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
6975 Sema &S) {
6976 // Check the attribute arguments.
6977 if (Attr.getNumArgs() != 1) {
6978 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6979 << 1;
6980 Attr.setInvalid();
6981 return;
6982 }
6983
6984 Expr *SizeExpr;
6985 // Special case where the argument is a template id.
6986 if (Attr.isArgIdent(0)) {
6987 CXXScopeSpec SS;
6988 SourceLocation TemplateKWLoc;
6989 UnqualifiedId Id;
6990 Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
6991
6992 ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
6993 Id, false, false);
6994
6995 if (Size.isInvalid())
6996 return;
6997 SizeExpr = Size.get();
6998 } else {
6999 SizeExpr = Attr.getArgAsExpr(0);
7000 }
7001
7002 QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7003 if (!T.isNull())
7004 CurType = T;
7005 else
7006 Attr.setInvalid();
7007}
7008
7009/// Process the OpenCL-like ext_vector_type attribute when it occurs on
7010/// a type.
7011static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7012 Sema &S) {
7013 // check the attribute arguments.
7014 if (Attr.getNumArgs() != 1) {
7015 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7016 << 1;
7017 return;
7018 }
7019
7020 Expr *sizeExpr;
7021
7022 // Special case where the argument is a template id.
7023 if (Attr.isArgIdent(0)) {
7024 CXXScopeSpec SS;
7025 SourceLocation TemplateKWLoc;
7026 UnqualifiedId id;
7027 id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
7028
7029 ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
7030 id, false, false);
7031 if (Size.isInvalid())
7032 return;
7033
7034 sizeExpr = Size.get();
7035 } else {
7036 sizeExpr = Attr.getArgAsExpr(0);
7037 }
7038
7039 // Create the vector type.
7040 QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
7041 if (!T.isNull())
7042 CurType = T;
7043}
7044
7045static bool isPermittedNeonBaseType(QualType &Ty,
7046 VectorType::VectorKind VecKind, Sema &S) {
7047 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7048 if (!BTy)
7049 return false;
7050
7051 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7052
7053 // Signed poly is mathematically wrong, but has been baked into some ABIs by
7054 // now.
7055 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7056 Triple.getArch() == llvm::Triple::aarch64_be;
7057 if (VecKind == VectorType::NeonPolyVector) {
7058 if (IsPolyUnsigned) {
7059 // AArch64 polynomial vectors are unsigned and support poly64.
7060 return BTy->getKind() == BuiltinType::UChar ||
7061 BTy->getKind() == BuiltinType::UShort ||
7062 BTy->getKind() == BuiltinType::ULong ||
7063 BTy->getKind() == BuiltinType::ULongLong;
7064 } else {
7065 // AArch32 polynomial vector are signed.
7066 return BTy->getKind() == BuiltinType::SChar ||
7067 BTy->getKind() == BuiltinType::Short;
7068 }
7069 }
7070
7071 // Non-polynomial vector types: the usual suspects are allowed, as well as
7072 // float64_t on AArch64.
7073 bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
7074 Triple.getArch() == llvm::Triple::aarch64_be;
7075
7076 if (Is64Bit && BTy->getKind() == BuiltinType::Double)
7077 return true;
7078
7079 return BTy->getKind() == BuiltinType::SChar ||
7080 BTy->getKind() == BuiltinType::UChar ||
7081 BTy->getKind() == BuiltinType::Short ||
7082 BTy->getKind() == BuiltinType::UShort ||
7083 BTy->getKind() == BuiltinType::Int ||
7084 BTy->getKind() == BuiltinType::UInt ||
7085 BTy->getKind() == BuiltinType::Long ||
7086 BTy->getKind() == BuiltinType::ULong ||
7087 BTy->getKind() == BuiltinType::LongLong ||
7088 BTy->getKind() == BuiltinType::ULongLong ||
7089 BTy->getKind() == BuiltinType::Float ||
7090 BTy->getKind() == BuiltinType::Half;
7091}
7092
7093/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7094/// "neon_polyvector_type" attributes are used to create vector types that
7095/// are mangled according to ARM's ABI. Otherwise, these types are identical
7096/// to those created with the "vector_size" attribute. Unlike "vector_size"
7097/// the argument to these Neon attributes is the number of vector elements,
7098/// not the vector size in bytes. The vector width and element type must
7099/// match one of the standard Neon vector types.
7100static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7101 Sema &S, VectorType::VectorKind VecKind) {
7102 // Target must have NEON
7103 if (!S.Context.getTargetInfo().hasFeature("neon")) {
7104 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr;
7105 Attr.setInvalid();
7106 return;
7107 }
7108 // Check the attribute arguments.
7109 if (Attr.getNumArgs() != 1) {
7110 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7111 << 1;
7112 Attr.setInvalid();
7113 return;
7114 }
7115 // The number of elements must be an ICE.
7116 Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
7117 llvm::APSInt numEltsInt(32);
7118 if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
7119 !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
7120 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7121 << Attr << AANT_ArgumentIntegerConstant
7122 << numEltsExpr->getSourceRange();
7123 Attr.setInvalid();
7124 return;
7125 }
7126 // Only certain element types are supported for Neon vectors.
7127 if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7128 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7129 Attr.setInvalid();
7130 return;
7131 }
7132
7133 // The total size of the vector must be 64 or 128 bits.
7134 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7135 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7136 unsigned vecSize = typeSize * numElts;
7137 if (vecSize != 64 && vecSize != 128) {
7138 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7139 Attr.setInvalid();
7140 return;
7141 }
7142
7143 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7144}
7145
7146/// Handle OpenCL Access Qualifier Attribute.
7147static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
7148 Sema &S) {
7149 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7150 if (!(CurType->isImageType() || CurType->isPipeType())) {
7151 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7152 Attr.setInvalid();
7153 return;
7154 }
7155
7156 if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7157 QualType BaseTy = TypedefTy->desugar();
7158
7159 std::string PrevAccessQual;
7160 if (BaseTy->isPipeType()) {
7161 if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
7162 OpenCLAccessAttr *Attr =
7163 TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
7164 PrevAccessQual = Attr->getSpelling();
7165 } else {
7166 PrevAccessQual = "read_only";
7167 }
7168 } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
7169
7170 switch (ImgType->getKind()) {
7171 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7172 case BuiltinType::Id: \
7173 PrevAccessQual = #Access; \
7174 break;
7175 #include "clang/Basic/OpenCLImageTypes.def"
7176 default:
7177 llvm_unreachable("Unable to find corresponding image type.")::llvm::llvm_unreachable_internal("Unable to find corresponding image type."
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 7177)
;
7178 }
7179 } else {
7180 llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 7180)
;
7181 }
7182 StringRef AttrName = Attr.getName()->getName();
7183 if (PrevAccessQual == AttrName.ltrim("_")) {
7184 // Duplicated qualifiers
7185 S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
7186 << AttrName << Attr.getRange();
7187 } else {
7188 // Contradicting qualifiers
7189 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
7190 }
7191
7192 S.Diag(TypedefTy->getDecl()->getBeginLoc(),
7193 diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
7194 } else if (CurType->isPipeType()) {
7195 if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
7196 QualType ElemType = CurType->getAs<PipeType>()->getElementType();
7197 CurType = S.Context.getWritePipeType(ElemType);
7198 }
7199 }
7200}
7201
7202static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State,
7203 QualType &T, TypeAttrLocation TAL) {
7204 Declarator &D = State.getDeclarator();
7205
7206 // Handle the cases where address space should not be deduced.
7207 //
7208 // The pointee type of a pointer type is always deduced since a pointer always
7209 // points to some memory location which should has an address space.
7210 //
7211 // There are situations that at the point of certain declarations, the address
7212 // space may be unknown and better to be left as default. For example, when
7213 // defining a typedef or struct type, they are not associated with any
7214 // specific address space. Later on, they may be used with any address space
7215 // to declare a variable.
7216 //
7217 // The return value of a function is r-value, therefore should not have
7218 // address space.
7219 //
7220 // The void type does not occupy memory, therefore should not have address
7221 // space, except when it is used as a pointee type.
7222 //
7223 // Since LLVM assumes function type is in default address space, it should not
7224 // have address space.
7225 auto ChunkIndex = State.getCurrentChunkIndex();
7226 bool IsPointee =
7227 ChunkIndex > 0 &&
7228 (D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Pointer ||
7229 D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::BlockPointer ||
7230 D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Reference);
7231 bool IsFuncReturnType =
7232 ChunkIndex > 0 &&
7233 D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Function;
7234 bool IsFuncType =
7235 ChunkIndex < D.getNumTypeObjects() &&
7236 D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function;
7237 if ( // Do not deduce addr space for function return type and function type,
7238 // otherwise it will fail some sema check.
7239 IsFuncReturnType || IsFuncType ||
7240 // Do not deduce addr space for member types of struct, except the pointee
7241 // type of a pointer member type.
7242 (D.getContext() == DeclaratorContext::MemberContext && !IsPointee) ||
7243 // Do not deduce addr space for types used to define a typedef and the
7244 // typedef itself, except the pointee type of a pointer type which is used
7245 // to define the typedef.
7246 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef &&
7247 !IsPointee) ||
7248 // Do not deduce addr space of the void type, e.g. in f(void), otherwise
7249 // it will fail some sema check.
7250 (T->isVoidType() && !IsPointee) ||
7251 // Do not deduce address spaces for dependent types because they might end
7252 // up instantiating to a type with an explicit address space qualifier.
7253 T->isDependentType())
7254 return;
7255
7256 LangAS ImpAddr = LangAS::Default;
7257 // Put OpenCL automatic variable in private address space.
7258 // OpenCL v1.2 s6.5:
7259 // The default address space name for arguments to a function in a
7260 // program, or local variables of a function is __private. All function
7261 // arguments shall be in the __private address space.
7262 if (State.getSema().getLangOpts().OpenCLVersion <= 120 &&
7263 !State.getSema().getLangOpts().OpenCLCPlusPlus) {
7264 ImpAddr = LangAS::opencl_private;
7265 } else {
7266 // If address space is not set, OpenCL 2.0 defines non private default
7267 // address spaces for some cases:
7268 // OpenCL 2.0, section 6.5:
7269 // The address space for a variable at program scope or a static variable
7270 // inside a function can either be __global or __constant, but defaults to
7271 // __global if not specified.
7272 // (...)
7273 // Pointers that are declared without pointing to a named address space
7274 // point to the generic address space.
7275 if (IsPointee) {
7276 ImpAddr = LangAS::opencl_generic;
7277 } else {
7278 if (D.getContext() == DeclaratorContext::TemplateArgContext) {
7279 // Do not deduce address space for non-pointee type in template arg.
7280 } else if (D.getContext() == DeclaratorContext::FileContext) {
7281 ImpAddr = LangAS::opencl_global;
7282 } else {
7283 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
7284 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern) {
7285 ImpAddr = LangAS::opencl_global;
7286 } else {
7287 ImpAddr = LangAS::opencl_private;
7288 }
7289 }
7290 }
7291 }
7292 T = State.getSema().Context.getAddrSpaceQualType(T, ImpAddr);
7293}
7294
7295static void HandleLifetimeBoundAttr(TypeProcessingState &State,
7296 QualType &CurType,
7297 ParsedAttr &Attr) {
7298 if (State.getDeclarator().isDeclarationOfFunction()) {
7299 CurType = State.getAttributedType(
7300 createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
7301 CurType, CurType);
7302 } else {
7303 Attr.diagnoseAppertainsTo(State.getSema(), nullptr);
7304 }
7305}
7306
7307
7308static void processTypeAttrs(TypeProcessingState &state, QualType &type,
7309 TypeAttrLocation TAL,
7310 ParsedAttributesView &attrs) {
7311 // Scan through and apply attributes to this type where it makes sense. Some
7312 // attributes (such as __address_space__, __vector_size__, etc) apply to the
7313 // type, but others can be present in the type specifiers even though they
7314 // apply to the decl. Here we apply type attributes and ignore the rest.
7315
7316 // This loop modifies the list pretty frequently, but we still need to make
7317 // sure we visit every element once. Copy the attributes list, and iterate
7318 // over that.
7319 ParsedAttributesView AttrsCopy{attrs};
7320
7321 state.setParsedNoDeref(false);
7322
7323 for (ParsedAttr &attr : AttrsCopy) {
7324
7325 // Skip attributes that were marked to be invalid.
7326 if (attr.isInvalid())
7327 continue;
7328
7329 if (attr.isCXX11Attribute()) {
7330 // [[gnu::...]] attributes are treated as declaration attributes, so may
7331 // not appertain to a DeclaratorChunk. If we handle them as type
7332 // attributes, accept them in that position and diagnose the GCC
7333 // incompatibility.
7334 if (attr.isGNUScope()) {
7335 bool IsTypeAttr = attr.isTypeAttr();
7336 if (TAL == TAL_DeclChunk) {
7337 state.getSema().Diag(attr.getLoc(),
7338 IsTypeAttr
7339 ? diag::warn_gcc_ignores_type_attr
7340 : diag::warn_cxx11_gnu_attribute_on_type)
7341 << attr.getName();
7342 if (!IsTypeAttr)
7343 continue;
7344 }
7345 } else if (TAL != TAL_DeclChunk) {
7346 // Otherwise, only consider type processing for a C++11 attribute if
7347 // it's actually been applied to a type.
7348 continue;
7349 }
7350 }
7351
7352 // If this is an attribute we can handle, do so now,
7353 // otherwise, add it to the FnAttrs list for rechaining.
7354 switch (attr.getKind()) {
7355 default:
7356 // A C++11 attribute on a declarator chunk must appertain to a type.
7357 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
7358 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
7359 << attr;
7360 attr.setUsedAsTypeAttr();
7361 }
7362 break;
7363
7364 case ParsedAttr::UnknownAttribute:
7365 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
7366 state.getSema().Diag(attr.getLoc(),
7367 diag::warn_unknown_attribute_ignored)
7368 << attr.getName();
7369 break;
7370
7371 case ParsedAttr::IgnoredAttribute:
7372 break;
7373
7374 case ParsedAttr::AT_MayAlias:
7375 // FIXME: This attribute needs to actually be handled, but if we ignore
7376 // it it breaks large amounts of Linux software.
7377 attr.setUsedAsTypeAttr();
7378 break;
7379 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
7380 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
7381 case ParsedAttr::AT_OpenCLLocalAddressSpace:
7382 case ParsedAttr::AT_OpenCLConstantAddressSpace:
7383 case ParsedAttr::AT_OpenCLGenericAddressSpace:
7384 case ParsedAttr::AT_AddressSpace:
7385 HandleAddressSpaceTypeAttribute(type, attr, state);
7386 attr.setUsedAsTypeAttr();
7387 break;
7388 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
7389 if (!handleObjCPointerTypeAttr(state, attr, type))
7390 distributeObjCPointerTypeAttr(state, attr, type);
7391 attr.setUsedAsTypeAttr();
7392 break;
7393 case ParsedAttr::AT_VectorSize:
7394 HandleVectorSizeAttr(type, attr, state.getSema());
7395 attr.setUsedAsTypeAttr();
7396 break;
7397 case ParsedAttr::AT_ExtVectorType:
7398 HandleExtVectorTypeAttr(type, attr, state.getSema());
7399 attr.setUsedAsTypeAttr();
7400 break;
7401 case ParsedAttr::AT_NeonVectorType:
7402 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7403 VectorType::NeonVector);
7404 attr.setUsedAsTypeAttr();
7405 break;
7406 case ParsedAttr::AT_NeonPolyVectorType:
7407 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
7408 VectorType::NeonPolyVector);
7409 attr.setUsedAsTypeAttr();
7410 break;
7411 case ParsedAttr::AT_OpenCLAccess:
7412 HandleOpenCLAccessAttr(type, attr, state.getSema());
7413 attr.setUsedAsTypeAttr();
7414 break;
7415 case ParsedAttr::AT_LifetimeBound:
7416 if (TAL == TAL_DeclChunk)
7417 HandleLifetimeBoundAttr(state, type, attr);
7418 break;
7419
7420 case ParsedAttr::AT_NoDeref: {
7421 ASTContext &Ctx = state.getSema().Context;
7422 type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
7423 type, type);
7424 attr.setUsedAsTypeAttr();
7425 state.setParsedNoDeref(true);
7426 break;
7427 }
7428
7429 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
7430 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
7431 attr.setUsedAsTypeAttr();
7432 break;
7433
7434
7435 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullUnspecified
:
7436 // Either add nullability here or try to distribute it. We
7437 // don't want to distribute the nullability specifier past any
7438 // dependent type, because that complicates the user model.
7439 if (type->canHaveNullability() || type->isDependentType() ||
7440 type->isArrayType() ||
7441 !distributeNullabilityTypeAttr(state, type, attr)) {
7442 unsigned endIndex;
7443 if (TAL == TAL_DeclChunk)
7444 endIndex = state.getCurrentChunkIndex();
7445 else
7446 endIndex = state.getDeclarator().getNumTypeObjects();
7447 bool allowOnArrayType =
7448 state.getDeclarator().isPrototypeContext() &&
7449 !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
7450 if (checkNullabilityTypeSpecifier(
7451 state,
7452 type,
7453 attr,
7454 allowOnArrayType)) {
7455 attr.setInvalid();
7456 }
7457
7458 attr.setUsedAsTypeAttr();
7459 }
7460 break;
7461
7462 case ParsedAttr::AT_ObjCKindOf:
7463 // '__kindof' must be part of the decl-specifiers.
7464 switch (TAL) {
7465 case TAL_DeclSpec:
7466 break;
7467
7468 case TAL_DeclChunk:
7469 case TAL_DeclName:
7470 state.getSema().Diag(attr.getLoc(),
7471 diag::err_objc_kindof_wrong_position)
7472 << FixItHint::CreateRemoval(attr.getLoc())
7473 << FixItHint::CreateInsertion(
7474 state.getDeclarator().getDeclSpec().getBeginLoc(),
7475 "__kindof ");
7476 break;
7477 }
7478
7479 // Apply it regardless.
7480 if (checkObjCKindOfType(state, type, attr))
7481 attr.setInvalid();
7482 break;
7483
7484 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters
: case ParsedAttr::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl
: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_StdCall: case
ParsedAttr::AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr
::AT_Pascal: case ParsedAttr::AT_SwiftCall: case ParsedAttr::
AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr
::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs
: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost
: case ParsedAttr::AT_PreserveAll
:
7485 attr.setUsedAsTypeAttr();
7486
7487 // Never process function type attributes as part of the
7488 // declaration-specifiers.
7489 if (TAL == TAL_DeclSpec)
7490 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
7491
7492 // Otherwise, handle the possible delays.
7493 else if (!handleFunctionTypeAttr(state, attr, type))
7494 distributeFunctionTypeAttr(state, attr, type);
7495 break;
7496 }
7497 }
7498
7499 if (!state.getSema().getLangOpts().OpenCL ||
7500 type.getAddressSpace() != LangAS::Default)
7501 return;
7502
7503 deduceOpenCLImplicitAddrSpace(state, type, TAL);
7504}
7505
7506void Sema::completeExprArrayBound(Expr *E) {
7507 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
7508 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
7509 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
7510 auto *Def = Var->getDefinition();
7511 if (!Def) {
7512 SourceLocation PointOfInstantiation = E->getExprLoc();
7513 InstantiateVariableDefinition(PointOfInstantiation, Var);
7514 Def = Var->getDefinition();
7515
7516 // If we don't already have a point of instantiation, and we managed
7517 // to instantiate a definition, this is the point of instantiation.
7518 // Otherwise, we don't request an end-of-TU instantiation, so this is
7519 // not a point of instantiation.
7520 // FIXME: Is this really the right behavior?
7521 if (Var->getPointOfInstantiation().isInvalid() && Def) {
7522 assert(Var->getTemplateSpecializationKind() ==((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 7524, __PRETTY_FUNCTION__))
7523 TSK_ImplicitInstantiation &&((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 7524, __PRETTY_FUNCTION__))
7524 "explicit instantiation with no point of instantiation")((Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
&& "explicit instantiation with no point of instantiation"
) ? static_cast<void> (0) : __assert_fail ("Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation && \"explicit instantiation with no point of instantiation\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 7524, __PRETTY_FUNCTION__))
;
7525 Var->setTemplateSpecializationKind(
7526 Var->getTemplateSpecializationKind(), PointOfInstantiation);
7527 }
7528 }
7529
7530 // Update the type to the definition's type both here and within the
7531 // expression.
7532 if (Def) {
7533 DRE->setDecl(Def);
7534 QualType T = Def->getType();
7535 DRE->setType(T);
7536 // FIXME: Update the type on all intervening expressions.
7537 E->setType(T);
7538 }
7539
7540 // We still go on to try to complete the type independently, as it
7541 // may also require instantiations or diagnostics if it remains
7542 // incomplete.
7543 }
7544 }
7545 }
7546}
7547
7548/// Ensure that the type of the given expression is complete.
7549///
7550/// This routine checks whether the expression \p E has a complete type. If the
7551/// expression refers to an instantiable construct, that instantiation is
7552/// performed as needed to complete its type. Furthermore
7553/// Sema::RequireCompleteType is called for the expression's type (or in the
7554/// case of a reference type, the referred-to type).
7555///
7556/// \param E The expression whose type is required to be complete.
7557/// \param Diagnoser The object that will emit a diagnostic if the type is
7558/// incomplete.
7559///
7560/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
7561/// otherwise.
7562bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
7563 QualType T = E->getType();
7564
7565 // Incomplete array types may be completed by the initializer attached to
7566 // their definitions. For static data members of class templates and for
7567 // variable templates, we need to instantiate the definition to get this
7568 // initializer and complete the type.
7569 if (T->isIncompleteArrayType()) {
7570 completeExprArrayBound(E);
7571 T = E->getType();
7572 }
7573
7574 // FIXME: Are there other cases which require instantiating something other
7575 // than the type to complete the type of an expression?
7576
7577 return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
7578}
7579
7580bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
7581 BoundTypeDiagnoser<> Diagnoser(DiagID);
7582 return RequireCompleteExprType(E, Diagnoser);
7583}
7584
7585/// Ensure that the type T is a complete type.
7586///
7587/// This routine checks whether the type @p T is complete in any
7588/// context where a complete type is required. If @p T is a complete
7589/// type, returns false. If @p T is a class template specialization,
7590/// this routine then attempts to perform class template
7591/// instantiation. If instantiation fails, or if @p T is incomplete
7592/// and cannot be completed, issues the diagnostic @p diag (giving it
7593/// the type @p T) and returns true.
7594///
7595/// @param Loc The location in the source that the incomplete type
7596/// diagnostic should refer to.
7597///
7598/// @param T The type that this routine is examining for completeness.
7599///
7600/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
7601/// @c false otherwise.
7602bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
7603 TypeDiagnoser &Diagnoser) {
7604 if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
7605 return true;
7606 if (const TagType *Tag = T->getAs<TagType>()) {
7607 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
7608 Tag->getDecl()->setCompleteDefinitionRequired();
7609 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
7610 }
7611 }
7612 return false;
7613}
7614
7615bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
7616 llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
7617 if (!Suggested)
7618 return false;
7619
7620 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
7621 // and isolate from other C++ specific checks.
7622 StructuralEquivalenceContext Ctx(
7623 D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
7624 StructuralEquivalenceKind::Default,
7625 false /*StrictTypeSpelling*/, true /*Complain*/,
7626 true /*ErrorOnTagTypeMismatch*/);
7627 return Ctx.IsEquivalent(D, Suggested);
7628}
7629
7630/// Determine whether there is any declaration of \p D that was ever a
7631/// definition (perhaps before module merging) and is currently visible.
7632/// \param D The definition of the entity.
7633/// \param Suggested Filled in with the declaration that should be made visible
7634/// in order to provide a definition of this entity.
7635/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
7636/// not defined. This only matters for enums with a fixed underlying
7637/// type, since in all other cases, a type is complete if and only if it
7638/// is defined.
7639bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
7640 bool OnlyNeedComplete) {
7641 // Easy case: if we don't have modules, all declarations are visible.
7642 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
7643 return true;
7644
7645 // If this definition was instantiated from a template, map back to the
7646 // pattern from which it was instantiated.
7647 if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
7648 // We're in the middle of defining it; this definition should be treated
7649 // as visible.
7650 return true;
7651 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
7652 if (auto *Pattern = RD->getTemplateInstantiationPattern())
7653 RD = Pattern;
7654 D = RD->getDefinition();
7655 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
7656 if (auto *Pattern = ED->getTemplateInstantiationPattern())
7657 ED = Pattern;
7658 if (OnlyNeedComplete && ED->isFixed()) {
7659 // If the enum has a fixed underlying type, and we're only looking for a
7660 // complete type (not a definition), any visible declaration of it will
7661 // do.
7662 *Suggested = nullptr;
7663 for (auto *Redecl : ED->redecls()) {
7664 if (isVisible(Redecl))
7665 return true;
7666 if (Redecl->isThisDeclarationADefinition() ||
7667 (Redecl->isCanonicalDecl() && !*Suggested))
7668 *Suggested = Redecl;
7669 }
7670 return false;
7671 }
7672 D = ED->getDefinition();
7673 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7674 if (auto *Pattern = FD->getTemplateInstantiationPattern())
7675 FD = Pattern;
7676 D = FD->getDefinition();
7677 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
7678 if (auto *Pattern = VD->getTemplateInstantiationPattern())
7679 VD = Pattern;
7680 D = VD->getDefinition();
7681 }
7682 assert(D && "missing definition for pattern of instantiated definition")((D && "missing definition for pattern of instantiated definition"
) ? static_cast<void> (0) : __assert_fail ("D && \"missing definition for pattern of instantiated definition\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 7682, __PRETTY_FUNCTION__))
;
7683
7684 *Suggested = D;
7685
7686 auto DefinitionIsVisible = [&] {
7687 // The (primary) definition might be in a visible module.
7688 if (isVisible(D))
7689 return true;
7690
7691 // A visible module might have a merged definition instead.
7692 if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
7693 : hasVisibleMergedDefinition(D)) {
7694 if (CodeSynthesisContexts.empty() &&
7695 !getLangOpts().ModulesLocalVisibility) {
7696 // Cache the fact that this definition is implicitly visible because
7697 // there is a visible merged definition.
7698 D->setVisibleDespiteOwningModule();
7699 }
7700 return true;
7701 }
7702
7703 return false;
7704 };
7705
7706 if (DefinitionIsVisible())
7707 return true;
7708
7709 // The external source may have additional definitions of this entity that are
7710 // visible, so complete the redeclaration chain now and ask again.
7711 if (auto *Source = Context.getExternalSource()) {
7712 Source->CompleteRedeclChain(D);
7713 return DefinitionIsVisible();
7714 }
7715
7716 return false;
7717}
7718
7719/// Locks in the inheritance model for the given class and all of its bases.
7720static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
7721 RD = RD->getMostRecentNonInjectedDecl();
7722 if (!RD->hasAttr<MSInheritanceAttr>()) {
7723 MSInheritanceAttr::Spelling IM;
7724
7725 switch (S.MSPointerToMemberRepresentationMethod) {
7726 case LangOptions::PPTMK_BestCase:
7727 IM = RD->calculateInheritanceModel();
7728 break;
7729 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
7730 IM = MSInheritanceAttr::Keyword_single_inheritance;
7731 break;
7732 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
7733 IM = MSInheritanceAttr::Keyword_multiple_inheritance;
7734 break;
7735 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
7736 IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
7737 break;
7738 }
7739
7740 RD->addAttr(MSInheritanceAttr::CreateImplicit(
7741 S.getASTContext(), IM,
7742 /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
7743 LangOptions::PPTMK_BestCase,
7744 S.ImplicitMSInheritanceAttrLoc.isValid()
7745 ? S.ImplicitMSInheritanceAttrLoc
7746 : RD->getSourceRange()));
7747 S.Consumer.AssignInheritanceModel(RD);
7748 }
7749}
7750
7751/// The implementation of RequireCompleteType
7752bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
7753 TypeDiagnoser *Diagnoser) {
7754 // FIXME: Add this assertion to make sure we always get instantiation points.
7755 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
7756 // FIXME: Add this assertion to help us flush out problems with
7757 // checking for dependent types and type-dependent expressions.
7758 //
7759 // assert(!T->isDependentType() &&
7760 // "Can't ask whether a dependent type is complete");
7761
7762 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
7763 if (!MPTy->getClass()->isDependentType()) {
7764 if (getLangOpts().CompleteMemberPointers &&
7765 !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
7766 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0),
7767 diag::err_memptr_incomplete))
7768 return true;
7769
7770 // We lock in the inheritance model once somebody has asked us to ensure
7771 // that a pointer-to-member type is complete.
7772 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7773 (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
7774 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
7775 }
7776 }
7777 }
7778
7779 NamedDecl *Def = nullptr;
7780 bool Incomplete = T->isIncompleteType(&Def);
7781
7782 // Check that any necessary explicit specializations are visible. For an
7783 // enum, we just need the declaration, so don't check this.
7784 if (Def && !isa<EnumDecl>(Def))
7785 checkSpecializationVisibility(Loc, Def);
7786
7787 // If we have a complete type, we're done.
7788 if (!Incomplete) {
7789 // If we know about the definition but it is not visible, complain.
7790 NamedDecl *SuggestedDef = nullptr;
7791 if (Def &&
7792 !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
7793 // If the user is going to see an error here, recover by making the
7794 // definition visible.
7795 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
7796 if (Diagnoser && SuggestedDef)
7797 diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
7798 /*Recover*/TreatAsComplete);
7799 return !TreatAsComplete;
7800 } else if (Def && !TemplateInstCallbacks.empty()) {
7801 CodeSynthesisContext TempInst;
7802 TempInst.Kind = CodeSynthesisContext::Memoization;
7803 TempInst.Template = Def;
7804 TempInst.Entity = Def;
7805 TempInst.PointOfInstantiation = Loc;
7806 atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
7807 atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
7808 }
7809
7810 return false;
7811 }
7812
7813 TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
7814 ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
7815
7816 // Give the external source a chance to provide a definition of the type.
7817 // This is kept separate from completing the redeclaration chain so that
7818 // external sources such as LLDB can avoid synthesizing a type definition
7819 // unless it's actually needed.
7820 if (Tag || IFace) {
7821 // Avoid diagnosing invalid decls as incomplete.
7822 if (Def->isInvalidDecl())
7823 return true;
7824
7825 // Give the external AST source a chance to complete the type.
7826 if (auto *Source = Context.getExternalSource()) {
7827 if (Tag && Tag->hasExternalLexicalStorage())
7828 Source->CompleteType(Tag);
7829 if (IFace && IFace->hasExternalLexicalStorage())
7830 Source->CompleteType(IFace);
7831 // If the external source completed the type, go through the motions
7832 // again to ensure we're allowed to use the completed type.
7833 if (!T->isIncompleteType())
7834 return RequireCompleteTypeImpl(Loc, T, Diagnoser);
7835 }
7836 }
7837
7838 // If we have a class template specialization or a class member of a
7839 // class template specialization, or an array with known size of such,
7840 // try to instantiate it.
7841 if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
7842 bool Instantiated = false;
7843 bool Diagnosed = false;
7844 if (RD->isDependentContext()) {
7845 // Don't try to instantiate a dependent class (eg, a member template of
7846 // an instantiated class template specialization).
7847 // FIXME: Can this ever happen?
7848 } else if (auto *ClassTemplateSpec =
7849 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
7850 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
7851 Diagnosed = InstantiateClassTemplateSpecialization(
7852 Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
7853 /*Complain=*/Diagnoser);
7854 Instantiated = true;
7855 }
7856 } else {
7857 CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
7858 if (!RD->isBeingDefined() && Pattern) {
7859 MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
7860 assert(MSI && "Missing member specialization information?")((MSI && "Missing member specialization information?"
) ? static_cast<void> (0) : __assert_fail ("MSI && \"Missing member specialization information?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 7860, __PRETTY_FUNCTION__))
;
7861 // This record was instantiated from a class within a template.
7862 if (MSI->getTemplateSpecializationKind() !=
7863 TSK_ExplicitSpecialization) {
7864 Diagnosed = InstantiateClass(Loc, RD, Pattern,
7865 getTemplateInstantiationArgs(RD),
7866 TSK_ImplicitInstantiation,
7867 /*Complain=*/Diagnoser);
7868 Instantiated = true;
7869 }
7870 }
7871 }
7872
7873 if (Instantiated) {
7874 // Instantiate* might have already complained that the template is not
7875 // defined, if we asked it to.
7876 if (Diagnoser && Diagnosed)
7877 return true;
7878 // If we instantiated a definition, check that it's usable, even if
7879 // instantiation produced an error, so that repeated calls to this
7880 // function give consistent answers.
7881 if (!T->isIncompleteType())
7882 return RequireCompleteTypeImpl(Loc, T, Diagnoser);
7883 }
7884 }
7885
7886 // FIXME: If we didn't instantiate a definition because of an explicit
7887 // specialization declaration, check that it's visible.
7888
7889 if (!Diagnoser)
7890 return true;
7891
7892 Diagnoser->diagnose(*this, Loc, T);
7893
7894 // If the type was a forward declaration of a class/struct/union
7895 // type, produce a note.
7896 if (Tag && !Tag->isInvalidDecl())
7897 Diag(Tag->getLocation(),
7898 Tag->isBeingDefined() ? diag::note_type_being_defined
7899 : diag::note_forward_declaration)
7900 << Context.getTagDeclType(Tag);
7901
7902 // If the Objective-C class was a forward declaration, produce a note.
7903 if (IFace && !IFace->isInvalidDecl())
7904 Diag(IFace->getLocation(), diag::note_forward_class);
7905
7906 // If we have external information that we can use to suggest a fix,
7907 // produce a note.
7908 if (ExternalSource)
7909 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
7910
7911 return true;
7912}
7913
7914bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
7915 unsigned DiagID) {
7916 BoundTypeDiagnoser<> Diagnoser(DiagID);
7917 return RequireCompleteType(Loc, T, Diagnoser);
7918}
7919
7920/// Get diagnostic %select index for tag kind for
7921/// literal type diagnostic message.
7922/// WARNING: Indexes apply to particular diagnostics only!
7923///
7924/// \returns diagnostic %select index.
7925static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
7926 switch (Tag) {
7927 case TTK_Struct: return 0;
7928 case TTK_Interface: return 1;
7929 case TTK_Class: return 2;
7930 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for literal type diagnostic!"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 7930)
;
7931 }
7932}
7933
7934/// Ensure that the type T is a literal type.
7935///
7936/// This routine checks whether the type @p T is a literal type. If @p T is an
7937/// incomplete type, an attempt is made to complete it. If @p T is a literal
7938/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
7939/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
7940/// it the type @p T), along with notes explaining why the type is not a
7941/// literal type, and returns true.
7942///
7943/// @param Loc The location in the source that the non-literal type
7944/// diagnostic should refer to.
7945///
7946/// @param T The type that this routine is examining for literalness.
7947///
7948/// @param Diagnoser Emits a diagnostic if T is not a literal type.
7949///
7950/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
7951/// @c false otherwise.
7952bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
7953 TypeDiagnoser &Diagnoser) {
7954 assert(!T->isDependentType() && "type should not be dependent")((!T->isDependentType() && "type should not be dependent"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"type should not be dependent\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 7954, __PRETTY_FUNCTION__))
;
7955
7956 QualType ElemType = Context.getBaseElementType(T);
7957 if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
7958 T->isLiteralType(Context))
7959 return false;
7960
7961 Diagnoser.diagnose(*this, Loc, T);
7962
7963 if (T->isVariableArrayType())
7964 return true;
7965
7966 const RecordType *RT = ElemType->getAs<RecordType>();
7967 if (!RT)
7968 return true;
7969
7970 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7971
7972 // A partially-defined class type can't be a literal type, because a literal
7973 // class type must have a trivial destructor (which can't be checked until
7974 // the class definition is complete).
7975 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
7976 return true;
7977
7978 // [expr.prim.lambda]p3:
7979 // This class type is [not] a literal type.
7980 if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
7981 Diag(RD->getLocation(), diag::note_non_literal_lambda);
7982 return true;
7983 }
7984
7985 // If the class has virtual base classes, then it's not an aggregate, and
7986 // cannot have any constexpr constructors or a trivial default constructor,
7987 // so is non-literal. This is better to diagnose than the resulting absence
7988 // of constexpr constructors.
7989 if (RD->getNumVBases()) {
7990 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
7991 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
7992 for (const auto &I : RD->vbases())
7993 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
7994 << I.getSourceRange();
7995 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
7996 !RD->hasTrivialDefaultConstructor()) {
7997 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
7998 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
7999 for (const auto &I : RD->bases()) {
8000 if (!I.getType()->isLiteralType(Context)) {
8001 Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
8002 << RD << I.getType() << I.getSourceRange();
8003 return true;
8004 }
8005 }
8006 for (const auto *I : RD->fields()) {
8007 if (!I->getType()->isLiteralType(Context) ||
8008 I->getType().isVolatileQualified()) {
8009 Diag(I->getLocation(), diag::note_non_literal_field)
8010 << RD << I << I->getType()
8011 << I->getType().isVolatileQualified();
8012 return true;
8013 }
8014 }
8015 } else if (!RD->hasTrivialDestructor()) {
8016 // All fields and bases are of literal types, so have trivial destructors.
8017 // If this class's destructor is non-trivial it must be user-declared.
8018 CXXDestructorDecl *Dtor = RD->getDestructor();
8019 assert(Dtor && "class has literal fields and bases but no dtor?")((Dtor && "class has literal fields and bases but no dtor?"
) ? static_cast<void> (0) : __assert_fail ("Dtor && \"class has literal fields and bases but no dtor?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 8019, __PRETTY_FUNCTION__))
;
8020 if (!Dtor)
8021 return true;
8022
8023 Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
8024 diag::note_non_literal_user_provided_dtor :
8025 diag::note_non_literal_nontrivial_dtor) << RD;
8026 if (!Dtor->isUserProvided())
8027 SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
8028 /*Diagnose*/true);
8029 }
8030
8031 return true;
8032}
8033
8034bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
8035 BoundTypeDiagnoser<> Diagnoser(DiagID);
8036 return RequireLiteralType(Loc, T, Diagnoser);
8037}
8038
8039/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
8040/// by the nested-name-specifier contained in SS, and that is (re)declared by
8041/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
8042QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
8043 const CXXScopeSpec &SS, QualType T,
8044 TagDecl *OwnedTagDecl) {
8045 if (T.isNull())
8046 return T;
8047 NestedNameSpecifier *NNS;
8048 if (SS.isValid())
8049 NNS = SS.getScopeRep();
8050 else {
8051 if (Keyword == ETK_None)
8052 return T;
8053 NNS = nullptr;
8054 }
8055 return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
8056}
8057
8058QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
8059 ExprResult ER = CheckPlaceholderExpr(E);
8060 if (ER.isInvalid()) return QualType();
8061 E = ER.get();
8062
8063 if (!getLangOpts().CPlusPlus && E->refersToBitField())
8064 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
8065
8066 if (!E->isTypeDependent()) {
8067 QualType T = E->getType();
8068 if (const TagType *TT = T->getAs<TagType>())
8069 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
8070 }
8071 return Context.getTypeOfExprType(E);
8072}
8073
8074/// getDecltypeForExpr - Given an expr, will return the decltype for
8075/// that expression, according to the rules in C++11
8076/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
8077static QualType getDecltypeForExpr(Sema &S, Expr *E) {
8078 if (E->isTypeDependent())
8079 return S.Context.DependentTy;
8080
8081 // C++11 [dcl.type.simple]p4:
8082 // The type denoted by decltype(e) is defined as follows:
8083 //
8084 // - if e is an unparenthesized id-expression or an unparenthesized class
8085 // member access (5.2.5), decltype(e) is the type of the entity named
8086 // by e. If there is no such entity, or if e names a set of overloaded
8087 // functions, the program is ill-formed;
8088 //
8089 // We apply the same rules for Objective-C ivar and property references.
8090 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8091 const ValueDecl *VD = DRE->getDecl();
8092 return VD->getType();
8093 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
8094 if (const ValueDecl *VD = ME->getMemberDecl())
8095 if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
8096 return VD->getType();
8097 } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
8098 return IR->getDecl()->getType();
8099 } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
8100 if (PR->isExplicitProperty())
8101 return PR->getExplicitProperty()->getType();
8102 } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
8103 return PE->getType();
8104 }
8105
8106 // C++11 [expr.lambda.prim]p18:
8107 // Every occurrence of decltype((x)) where x is a possibly
8108 // parenthesized id-expression that names an entity of automatic
8109 // storage duration is treated as if x were transformed into an
8110 // access to a corresponding data member of the closure type that
8111 // would have been declared if x were an odr-use of the denoted
8112 // entity.
8113 using namespace sema;
8114 if (S.getCurLambda()) {
8115 if (isa<ParenExpr>(E)) {
8116 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8117 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8118 QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
8119 if (!T.isNull())
8120 return S.Context.getLValueReferenceType(T);
8121 }
8122 }
8123 }
8124 }
8125
8126
8127 // C++11 [dcl.type.simple]p4:
8128 // [...]
8129 QualType T = E->getType();
8130 switch (E->getValueKind()) {
8131 // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
8132 // type of e;
8133 case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
8134 // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
8135 // type of e;
8136 case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
8137 // - otherwise, decltype(e) is the type of e.
8138 case VK_RValue: break;
8139 }
8140
8141 return T;
8142}
8143
8144QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
8145 bool AsUnevaluated) {
8146 ExprResult ER = CheckPlaceholderExpr(E);
8147 if (ER.isInvalid()) return QualType();
8148 E = ER.get();
8149
8150 if (AsUnevaluated && CodeSynthesisContexts.empty() &&
8151 E->HasSideEffects(Context, false)) {
8152 // The expression operand for decltype is in an unevaluated expression
8153 // context, so side effects could result in unintended consequences.
8154 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8155 }
8156
8157 return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
8158}
8159
8160QualType Sema::BuildUnaryTransformType(QualType BaseType,
8161 UnaryTransformType::UTTKind UKind,
8162 SourceLocation Loc) {
8163 switch (UKind) {
8164 case UnaryTransformType::EnumUnderlyingType:
8165 if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
8166 Diag(Loc, diag::err_only_enums_have_underlying_types);
8167 return QualType();
8168 } else {
8169 QualType Underlying = BaseType;
8170 if (!BaseType->isDependentType()) {
8171 // The enum could be incomplete if we're parsing its definition or
8172 // recovering from an error.
8173 NamedDecl *FwdDecl = nullptr;
8174 if (BaseType->isIncompleteType(&FwdDecl)) {
8175 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
8176 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
8177 return QualType();
8178 }
8179
8180 EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
8181 assert(ED && "EnumType has no EnumDecl")((ED && "EnumType has no EnumDecl") ? static_cast<
void> (0) : __assert_fail ("ED && \"EnumType has no EnumDecl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 8181, __PRETTY_FUNCTION__))
;
8182
8183 DiagnoseUseOfDecl(ED, Loc);
8184
8185 Underlying = ED->getIntegerType();
8186 assert(!Underlying.isNull())((!Underlying.isNull()) ? static_cast<void> (0) : __assert_fail
("!Underlying.isNull()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 8186, __PRETTY_FUNCTION__))
;
8187 }
8188 return Context.getUnaryTransformType(BaseType, Underlying,
8189 UnaryTransformType::EnumUnderlyingType);
8190 }
8191 }
8192 llvm_unreachable("unknown unary transform type")::llvm::llvm_unreachable_internal("unknown unary transform type"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaType.cpp"
, 8192)
;
8193}
8194
8195QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
8196 if (!T->isDependentType()) {
8197 // FIXME: It isn't entirely clear whether incomplete atomic types
8198 // are allowed or not; for simplicity, ban them for the moment.
8199 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
8200 return QualType();
8201
8202 int DisallowedKind = -1;
8203 if (T->isArrayType())
8204 DisallowedKind = 1;
8205 else if (T->isFunctionType())
8206 DisallowedKind = 2;
8207 else if (T->isReferenceType())
8208 DisallowedKind = 3;
8209 else if (T->isAtomicType())
8210 DisallowedKind = 4;
8211 else if (T.hasQualifiers())
8212 DisallowedKind = 5;
8213 else if (!T.isTriviallyCopyableType(Context))
8214 // Some other non-trivially-copyable type (probably a C++ class)
8215 DisallowedKind = 6;
8216
8217 if (DisallowedKind != -1) {
8218 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
8219 return QualType();
8220 }
8221
8222 // FIXME: Do we need any handling for ARC here?
8223 }
8224
8225 // Build the pointer type.
8226 return Context.getAtomicType(T);
8227}