Bug Summary

File:lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
Warning:line 1068, column 17
The left operand of '==' is a garbage value

Annotated Source Code

/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp

1//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/SystemZMCTargetDesc.h"
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/ADT/SmallVector.h"
13#include "llvm/ADT/StringRef.h"
14#include "llvm/MC/MCContext.h"
15#include "llvm/MC/MCExpr.h"
16#include "llvm/MC/MCInst.h"
17#include "llvm/MC/MCInstBuilder.h"
18#include "llvm/MC/MCParser/MCAsmLexer.h"
19#include "llvm/MC/MCParser/MCAsmParser.h"
20#include "llvm/MC/MCParser/MCAsmParserExtension.h"
21#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
22#include "llvm/MC/MCParser/MCTargetAsmParser.h"
23#include "llvm/MC/MCStreamer.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/Support/Casting.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/SMLoc.h"
28#include "llvm/Support/TargetRegistry.h"
29#include <algorithm>
30#include <cassert>
31#include <cstddef>
32#include <cstdint>
33#include <iterator>
34#include <memory>
35#include <string>
36
37using namespace llvm;
38
39// Return true if Expr is in the range [MinValue, MaxValue].
40static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
41 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
42 int64_t Value = CE->getValue();
43 return Value >= MinValue && Value <= MaxValue;
44 }
45 return false;
46}
47
48namespace {
49
50enum RegisterKind {
51 GR32Reg,
52 GRH32Reg,
53 GR64Reg,
54 GR128Reg,
55 ADDR32Reg,
56 ADDR64Reg,
57 FP32Reg,
58 FP64Reg,
59 FP128Reg,
60 VR32Reg,
61 VR64Reg,
62 VR128Reg,
63 AR32Reg,
64 CR64Reg,
65};
66
67enum MemoryKind {
68 BDMem,
69 BDXMem,
70 BDLMem,
71 BDRMem,
72 BDVMem
73};
74
75class SystemZOperand : public MCParsedAsmOperand {
76private:
77 enum OperandKind {
78 KindInvalid,
79 KindToken,
80 KindReg,
81 KindImm,
82 KindImmTLS,
83 KindMem
84 };
85
86 OperandKind Kind;
87 SMLoc StartLoc, EndLoc;
88
89 // A string of length Length, starting at Data.
90 struct TokenOp {
91 const char *Data;
92 unsigned Length;
93 };
94
95 // LLVM register Num, which has kind Kind. In some ways it might be
96 // easier for this class to have a register bank (general, floating-point
97 // or access) and a raw register number (0-15). This would postpone the
98 // interpretation of the operand to the add*() methods and avoid the need
99 // for context-dependent parsing. However, we do things the current way
100 // because of the virtual getReg() method, which needs to distinguish
101 // between (say) %r0 used as a single register and %r0 used as a pair.
102 // Context-dependent parsing can also give us slightly better error
103 // messages when invalid pairs like %r1 are used.
104 struct RegOp {
105 RegisterKind Kind;
106 unsigned Num;
107 };
108
109 // Base + Disp + Index, where Base and Index are LLVM registers or 0.
110 // MemKind says what type of memory this is and RegKind says what type
111 // the base register has (ADDR32Reg or ADDR64Reg). Length is the operand
112 // length for D(L,B)-style operands, otherwise it is null.
113 struct MemOp {
114 unsigned Base : 12;
115 unsigned Index : 12;
116 unsigned MemKind : 4;
117 unsigned RegKind : 4;
118 const MCExpr *Disp;
119 union {
120 const MCExpr *Imm;
121 unsigned Reg;
122 } Length;
123 };
124
125 // Imm is an immediate operand, and Sym is an optional TLS symbol
126 // for use with a __tls_get_offset marker relocation.
127 struct ImmTLSOp {
128 const MCExpr *Imm;
129 const MCExpr *Sym;
130 };
131
132 union {
133 TokenOp Token;
134 RegOp Reg;
135 const MCExpr *Imm;
136 ImmTLSOp ImmTLS;
137 MemOp Mem;
138 };
139
140 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
141 // Add as immediates when possible. Null MCExpr = 0.
142 if (!Expr)
143 Inst.addOperand(MCOperand::createImm(0));
144 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
145 Inst.addOperand(MCOperand::createImm(CE->getValue()));
146 else
147 Inst.addOperand(MCOperand::createExpr(Expr));
148 }
149
150public:
151 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
152 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
153
154 // Create particular kinds of operand.
155 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
156 SMLoc EndLoc) {
157 return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
158 }
159
160 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
161 auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc);
162 Op->Token.Data = Str.data();
163 Op->Token.Length = Str.size();
164 return Op;
165 }
166
167 static std::unique_ptr<SystemZOperand>
168 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
169 auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
170 Op->Reg.Kind = Kind;
171 Op->Reg.Num = Num;
172 return Op;
173 }
174
175 static std::unique_ptr<SystemZOperand>
176 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
177 auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
178 Op->Imm = Expr;
179 return Op;
180 }
181
182 static std::unique_ptr<SystemZOperand>
183 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
184 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
185 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
186 auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
187 Op->Mem.MemKind = MemKind;
188 Op->Mem.RegKind = RegKind;
189 Op->Mem.Base = Base;
190 Op->Mem.Index = Index;
191 Op->Mem.Disp = Disp;
192 if (MemKind == BDLMem)
193 Op->Mem.Length.Imm = LengthImm;
194 if (MemKind == BDRMem)
195 Op->Mem.Length.Reg = LengthReg;
196 return Op;
197 }
198
199 static std::unique_ptr<SystemZOperand>
200 createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
201 SMLoc StartLoc, SMLoc EndLoc) {
202 auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
203 Op->ImmTLS.Imm = Imm;
204 Op->ImmTLS.Sym = Sym;
205 return Op;
206 }
207
208 // Token operands
209 bool isToken() const override {
210 return Kind == KindToken;
211 }
212 StringRef getToken() const {
213 assert(Kind == KindToken && "Not a token")(static_cast <bool> (Kind == KindToken && "Not a token"
) ? void (0) : __assert_fail ("Kind == KindToken && \"Not a token\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 213, __extension__ __PRETTY_FUNCTION__))
;
214 return StringRef(Token.Data, Token.Length);
215 }
216
217 // Register operands.
218 bool isReg() const override {
219 return Kind == KindReg;
220 }
221 bool isReg(RegisterKind RegKind) const {
222 return Kind == KindReg && Reg.Kind == RegKind;
223 }
224 unsigned getReg() const override {
225 assert(Kind == KindReg && "Not a register")(static_cast <bool> (Kind == KindReg && "Not a register"
) ? void (0) : __assert_fail ("Kind == KindReg && \"Not a register\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 225, __extension__ __PRETTY_FUNCTION__))
;
226 return Reg.Num;
227 }
228
229 // Immediate operands.
230 bool isImm() const override {
231 return Kind == KindImm;
232 }
233 bool isImm(int64_t MinValue, int64_t MaxValue) const {
234 return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
235 }
236 const MCExpr *getImm() const {
237 assert(Kind == KindImm && "Not an immediate")(static_cast <bool> (Kind == KindImm && "Not an immediate"
) ? void (0) : __assert_fail ("Kind == KindImm && \"Not an immediate\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 237, __extension__ __PRETTY_FUNCTION__))
;
238 return Imm;
239 }
240
241 // Immediate operands with optional TLS symbol.
242 bool isImmTLS() const {
243 return Kind == KindImmTLS;
244 }
245
246 // Memory operands.
247 bool isMem() const override {
248 return Kind == KindMem;
249 }
250 bool isMem(MemoryKind MemKind) const {
251 return (Kind == KindMem &&
252 (Mem.MemKind == MemKind ||
253 // A BDMem can be treated as a BDXMem in which the index
254 // register field is 0.
255 (Mem.MemKind == BDMem && MemKind == BDXMem)));
256 }
257 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
258 return isMem(MemKind) && Mem.RegKind == RegKind;
259 }
260 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
261 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
262 }
263 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
264 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
265 }
266 bool isMemDisp12Len4(RegisterKind RegKind) const {
267 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
268 }
269 bool isMemDisp12Len8(RegisterKind RegKind) const {
270 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
271 }
272
273 // Override MCParsedAsmOperand.
274 SMLoc getStartLoc() const override { return StartLoc; }
275 SMLoc getEndLoc() const override { return EndLoc; }
276 void print(raw_ostream &OS) const override;
277
278 /// getLocRange - Get the range between the first and last token of this
279 /// operand.
280 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
281
282 // Used by the TableGen code to add particular types of operand
283 // to an instruction.
284 void addRegOperands(MCInst &Inst, unsigned N) const {
285 assert(N == 1 && "Invalid number of operands")(static_cast <bool> (N == 1 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 1 && \"Invalid number of operands\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 285, __extension__ __PRETTY_FUNCTION__))
;
286 Inst.addOperand(MCOperand::createReg(getReg()));
287 }
288 void addImmOperands(MCInst &Inst, unsigned N) const {
289 assert(N == 1 && "Invalid number of operands")(static_cast <bool> (N == 1 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 1 && \"Invalid number of operands\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 289, __extension__ __PRETTY_FUNCTION__))
;
290 addExpr(Inst, getImm());
291 }
292 void addBDAddrOperands(MCInst &Inst, unsigned N) const {
293 assert(N == 2 && "Invalid number of operands")(static_cast <bool> (N == 2 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 2 && \"Invalid number of operands\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 293, __extension__ __PRETTY_FUNCTION__))
;
294 assert(isMem(BDMem) && "Invalid operand type")(static_cast <bool> (isMem(BDMem) && "Invalid operand type"
) ? void (0) : __assert_fail ("isMem(BDMem) && \"Invalid operand type\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 294, __extension__ __PRETTY_FUNCTION__))
;
295 Inst.addOperand(MCOperand::createReg(Mem.Base));
296 addExpr(Inst, Mem.Disp);
297 }
298 void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
299 assert(N == 3 && "Invalid number of operands")(static_cast <bool> (N == 3 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 3 && \"Invalid number of operands\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 299, __extension__ __PRETTY_FUNCTION__))
;
300 assert(isMem(BDXMem) && "Invalid operand type")(static_cast <bool> (isMem(BDXMem) && "Invalid operand type"
) ? void (0) : __assert_fail ("isMem(BDXMem) && \"Invalid operand type\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 300, __extension__ __PRETTY_FUNCTION__))
;
301 Inst.addOperand(MCOperand::createReg(Mem.Base));
302 addExpr(Inst, Mem.Disp);
303 Inst.addOperand(MCOperand::createReg(Mem.Index));
304 }
305 void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
306 assert(N == 3 && "Invalid number of operands")(static_cast <bool> (N == 3 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 3 && \"Invalid number of operands\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 306, __extension__ __PRETTY_FUNCTION__))
;
307 assert(isMem(BDLMem) && "Invalid operand type")(static_cast <bool> (isMem(BDLMem) && "Invalid operand type"
) ? void (0) : __assert_fail ("isMem(BDLMem) && \"Invalid operand type\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 307, __extension__ __PRETTY_FUNCTION__))
;
308 Inst.addOperand(MCOperand::createReg(Mem.Base));
309 addExpr(Inst, Mem.Disp);
310 addExpr(Inst, Mem.Length.Imm);
311 }
312 void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
313 assert(N == 3 && "Invalid number of operands")(static_cast <bool> (N == 3 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 3 && \"Invalid number of operands\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 313, __extension__ __PRETTY_FUNCTION__))
;
314 assert(isMem(BDRMem) && "Invalid operand type")(static_cast <bool> (isMem(BDRMem) && "Invalid operand type"
) ? void (0) : __assert_fail ("isMem(BDRMem) && \"Invalid operand type\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 314, __extension__ __PRETTY_FUNCTION__))
;
315 Inst.addOperand(MCOperand::createReg(Mem.Base));
316 addExpr(Inst, Mem.Disp);
317 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
318 }
319 void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
320 assert(N == 3 && "Invalid number of operands")(static_cast <bool> (N == 3 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 3 && \"Invalid number of operands\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 320, __extension__ __PRETTY_FUNCTION__))
;
321 assert(isMem(BDVMem) && "Invalid operand type")(static_cast <bool> (isMem(BDVMem) && "Invalid operand type"
) ? void (0) : __assert_fail ("isMem(BDVMem) && \"Invalid operand type\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 321, __extension__ __PRETTY_FUNCTION__))
;
322 Inst.addOperand(MCOperand::createReg(Mem.Base));
323 addExpr(Inst, Mem.Disp);
324 Inst.addOperand(MCOperand::createReg(Mem.Index));
325 }
326 void addImmTLSOperands(MCInst &Inst, unsigned N) const {
327 assert(N == 2 && "Invalid number of operands")(static_cast <bool> (N == 2 && "Invalid number of operands"
) ? void (0) : __assert_fail ("N == 2 && \"Invalid number of operands\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 327, __extension__ __PRETTY_FUNCTION__))
;
328 assert(Kind == KindImmTLS && "Invalid operand type")(static_cast <bool> (Kind == KindImmTLS && "Invalid operand type"
) ? void (0) : __assert_fail ("Kind == KindImmTLS && \"Invalid operand type\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
;
329 addExpr(Inst, ImmTLS.Imm);
330 if (ImmTLS.Sym)
331 addExpr(Inst, ImmTLS.Sym);
332 }
333
334 // Used by the TableGen code to check for particular operand types.
335 bool isGR32() const { return isReg(GR32Reg); }
336 bool isGRH32() const { return isReg(GRH32Reg); }
337 bool isGRX32() const { return false; }
338 bool isGR64() const { return isReg(GR64Reg); }
339 bool isGR128() const { return isReg(GR128Reg); }
340 bool isADDR32() const { return isReg(ADDR32Reg); }
341 bool isADDR64() const { return isReg(ADDR64Reg); }
342 bool isADDR128() const { return false; }
343 bool isFP32() const { return isReg(FP32Reg); }
344 bool isFP64() const { return isReg(FP64Reg); }
345 bool isFP128() const { return isReg(FP128Reg); }
346 bool isVR32() const { return isReg(VR32Reg); }
347 bool isVR64() const { return isReg(VR64Reg); }
348 bool isVF128() const { return false; }
349 bool isVR128() const { return isReg(VR128Reg); }
350 bool isAR32() const { return isReg(AR32Reg); }
351 bool isCR64() const { return isReg(CR64Reg); }
352 bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
353 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); }
354 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); }
355 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); }
356 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); }
357 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); }
358 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); }
359 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(ADDR64Reg); }
360 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
361 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, ADDR64Reg); }
362 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); }
363 bool isU1Imm() const { return isImm(0, 1); }
364 bool isU2Imm() const { return isImm(0, 3); }
365 bool isU3Imm() const { return isImm(0, 7); }
366 bool isU4Imm() const { return isImm(0, 15); }
367 bool isU6Imm() const { return isImm(0, 63); }
368 bool isU8Imm() const { return isImm(0, 255); }
369 bool isS8Imm() const { return isImm(-128, 127); }
370 bool isU12Imm() const { return isImm(0, 4095); }
371 bool isU16Imm() const { return isImm(0, 65535); }
372 bool isS16Imm() const { return isImm(-32768, 32767); }
373 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
374 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
375 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
376};
377
378class SystemZAsmParser : public MCTargetAsmParser {
379#define GET_ASSEMBLER_HEADER
380#include "SystemZGenAsmMatcher.inc"
381
382private:
383 MCAsmParser &Parser;
384 enum RegisterGroup {
385 RegGR,
386 RegFP,
387 RegV,
388 RegAR,
389 RegCR
390 };
391 struct Register {
392 RegisterGroup Group;
393 unsigned Num;
394 SMLoc StartLoc, EndLoc;
395 };
396
397 bool parseRegister(Register &Reg);
398
399 bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs,
400 bool IsAddress = false);
401
402 OperandMatchResultTy parseRegister(OperandVector &Operands,
403 RegisterGroup Group, const unsigned *Regs,
404 RegisterKind Kind);
405
406 OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
407
408 bool parseAddress(bool &HaveReg1, Register &Reg1,
409 bool &HaveReg2, Register &Reg2,
410 const MCExpr *&Disp, const MCExpr *&Length);
411 bool parseAddressRegister(Register &Reg);
412
413 bool ParseDirectiveInsn(SMLoc L);
414
415 OperandMatchResultTy parseAddress(OperandVector &Operands,
416 MemoryKind MemKind, const unsigned *Regs,
417 RegisterKind RegKind);
418
419 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
420 int64_t MaxVal, bool AllowTLS);
421
422 bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
423
424public:
425 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
426 const MCInstrInfo &MII,
427 const MCTargetOptions &Options)
428 : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
429 MCAsmParserExtension::Initialize(Parser);
430
431 // Alias the .word directive to .short.
432 parser.addAliasForDirective(".word", ".short");
433
434 // Initialize the set of available features.
435 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
436 }
437
438 // Override MCTargetAsmParser.
439 bool ParseDirective(AsmToken DirectiveID) override;
440 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
441 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
442 SMLoc NameLoc, OperandVector &Operands) override;
443 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
444 OperandVector &Operands, MCStreamer &Out,
445 uint64_t &ErrorInfo,
446 bool MatchingInlineAsm) override;
447
448 // Used by the TableGen code to parse particular operand types.
449 OperandMatchResultTy parseGR32(OperandVector &Operands) {
450 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
451 }
452 OperandMatchResultTy parseGRH32(OperandVector &Operands) {
453 return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
454 }
455 OperandMatchResultTy parseGRX32(OperandVector &Operands) {
456 llvm_unreachable("GRX32 should only be used for pseudo instructions")::llvm::llvm_unreachable_internal("GRX32 should only be used for pseudo instructions"
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 456)
;
457 }
458 OperandMatchResultTy parseGR64(OperandVector &Operands) {
459 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
460 }
461 OperandMatchResultTy parseGR128(OperandVector &Operands) {
462 return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
463 }
464 OperandMatchResultTy parseADDR32(OperandVector &Operands) {
465 return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg);
466 }
467 OperandMatchResultTy parseADDR64(OperandVector &Operands) {
468 return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg);
469 }
470 OperandMatchResultTy parseADDR128(OperandVector &Operands) {
471 llvm_unreachable("Shouldn't be used as an operand")::llvm::llvm_unreachable_internal("Shouldn't be used as an operand"
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 471)
;
472 }
473 OperandMatchResultTy parseFP32(OperandVector &Operands) {
474 return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
475 }
476 OperandMatchResultTy parseFP64(OperandVector &Operands) {
477 return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
478 }
479 OperandMatchResultTy parseFP128(OperandVector &Operands) {
480 return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
481 }
482 OperandMatchResultTy parseVR32(OperandVector &Operands) {
483 return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg);
484 }
485 OperandMatchResultTy parseVR64(OperandVector &Operands) {
486 return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg);
487 }
488 OperandMatchResultTy parseVF128(OperandVector &Operands) {
489 llvm_unreachable("Shouldn't be used as an operand")::llvm::llvm_unreachable_internal("Shouldn't be used as an operand"
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 489)
;
490 }
491 OperandMatchResultTy parseVR128(OperandVector &Operands) {
492 return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg);
493 }
494 OperandMatchResultTy parseAR32(OperandVector &Operands) {
495 return parseRegister(Operands, RegAR, SystemZMC::AR32Regs, AR32Reg);
496 }
497 OperandMatchResultTy parseCR64(OperandVector &Operands) {
498 return parseRegister(Operands, RegCR, SystemZMC::CR64Regs, CR64Reg);
499 }
500 OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
501 return parseAnyRegister(Operands);
502 }
503 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
504 return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg);
505 }
506 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
507 return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg);
508 }
509 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
510 return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg);
511 }
512 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
513 return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg);
514 }
515 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
516 return parseAddress(Operands, BDRMem, SystemZMC::GR64Regs, ADDR64Reg);
517 }
518 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
519 return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg);
520 }
521 OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
522 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
523 }
524 OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
525 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
526 }
527 OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
528 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
529 }
530 OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
531 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
532 }
533 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
534 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
535 }
536 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
537 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
538 }
539};
540
541} // end anonymous namespace
542
543#define GET_REGISTER_MATCHER
544#define GET_SUBTARGET_FEATURE_NAME
545#define GET_MATCHER_IMPLEMENTATION
546#define GET_MNEMONIC_SPELL_CHECKER
547#include "SystemZGenAsmMatcher.inc"
548
549// Used for the .insn directives; contains information needed to parse the
550// operands in the directive.
551struct InsnMatchEntry {
552 StringRef Format;
553 uint64_t Opcode;
554 int32_t NumOperands;
555 MatchClassKind OperandKinds[5];
556};
557
558// For equal_range comparison.
559struct CompareInsn {
560 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
561 return LHS.Format < RHS;
562 }
563 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
564 return LHS < RHS.Format;
565 }
566 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
567 return LHS.Format < RHS.Format;
568 }
569};
570
571// Table initializing information for parsing the .insn directive.
572static struct InsnMatchEntry InsnMatchTable[] = {
573 /* Format, Opcode, NumOperands, OperandKinds */
574 { "e", SystemZ::InsnE, 1,
575 { MCK_U16Imm } },
576 { "ri", SystemZ::InsnRI, 3,
577 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
578 { "rie", SystemZ::InsnRIE, 4,
579 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
580 { "ril", SystemZ::InsnRIL, 3,
581 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
582 { "rilu", SystemZ::InsnRILU, 3,
583 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
584 { "ris", SystemZ::InsnRIS, 5,
585 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
586 { "rr", SystemZ::InsnRR, 3,
587 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
588 { "rre", SystemZ::InsnRRE, 3,
589 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
590 { "rrf", SystemZ::InsnRRF, 5,
591 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
592 { "rrs", SystemZ::InsnRRS, 5,
593 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
594 { "rs", SystemZ::InsnRS, 4,
595 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
596 { "rse", SystemZ::InsnRSE, 4,
597 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
598 { "rsi", SystemZ::InsnRSI, 4,
599 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
600 { "rsy", SystemZ::InsnRSY, 4,
601 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
602 { "rx", SystemZ::InsnRX, 3,
603 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
604 { "rxe", SystemZ::InsnRXE, 3,
605 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
606 { "rxf", SystemZ::InsnRXF, 4,
607 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
608 { "rxy", SystemZ::InsnRXY, 3,
609 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
610 { "s", SystemZ::InsnS, 2,
611 { MCK_U32Imm, MCK_BDAddr64Disp12 } },
612 { "si", SystemZ::InsnSI, 3,
613 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
614 { "sil", SystemZ::InsnSIL, 3,
615 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
616 { "siy", SystemZ::InsnSIY, 3,
617 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
618 { "ss", SystemZ::InsnSS, 4,
619 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
620 { "sse", SystemZ::InsnSSE, 3,
621 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
622 { "ssf", SystemZ::InsnSSF, 4,
623 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }
624};
625
626void SystemZOperand::print(raw_ostream &OS) const {
627 llvm_unreachable("Not implemented")::llvm::llvm_unreachable_internal("Not implemented", "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 627)
;
628}
629
630// Parse one register of the form %<prefix><number>.
631bool SystemZAsmParser::parseRegister(Register &Reg) {
632 Reg.StartLoc = Parser.getTok().getLoc();
633
634 // Eat the % prefix.
635 if (Parser.getTok().isNot(AsmToken::Percent))
2
Calling 'AsmToken::isNot'
4
Returning from 'AsmToken::isNot'
5
Taking true branch
636 return Error(Parser.getTok().getLoc(), "register expected");
6
Calling constructor for 'Twine'
13
Returning from constructor for 'Twine'
14
Calling 'MCAsmParserExtension::Error'
17
Returning from 'MCAsmParserExtension::Error'
637 Parser.Lex();
638
639 // Expect a register name.
640 if (Parser.getTok().isNot(AsmToken::Identifier))
641 return Error(Reg.StartLoc, "invalid register");
642
643 // Check that there's a prefix.
644 StringRef Name = Parser.getTok().getString();
645 if (Name.size() < 2)
646 return Error(Reg.StartLoc, "invalid register");
647 char Prefix = Name[0];
648
649 // Treat the rest of the register name as a register number.
650 if (Name.substr(1).getAsInteger(10, Reg.Num))
651 return Error(Reg.StartLoc, "invalid register");
652
653 // Look for valid combinations of prefix and number.
654 if (Prefix == 'r' && Reg.Num < 16)
655 Reg.Group = RegGR;
656 else if (Prefix == 'f' && Reg.Num < 16)
657 Reg.Group = RegFP;
658 else if (Prefix == 'v' && Reg.Num < 32)
659 Reg.Group = RegV;
660 else if (Prefix == 'a' && Reg.Num < 16)
661 Reg.Group = RegAR;
662 else if (Prefix == 'c' && Reg.Num < 16)
663 Reg.Group = RegCR;
664 else
665 return Error(Reg.StartLoc, "invalid register");
666
667 Reg.EndLoc = Parser.getTok().getLoc();
668 Parser.Lex();
669 return false;
670}
671
672// Parse a register of group Group. If Regs is nonnull, use it to map
673// the raw register number to LLVM numbering, with zero entries
674// indicating an invalid register. IsAddress says whether the
675// register appears in an address context. Allow FP Group if expecting
676// RegV Group, since the f-prefix yields the FP group even while used
677// with vector instructions.
678bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
679 const unsigned *Regs, bool IsAddress) {
680 if (parseRegister(Reg))
681 return true;
682 if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV))
683 return Error(Reg.StartLoc, "invalid operand for instruction");
684 if (Regs && Regs[Reg.Num] == 0)
685 return Error(Reg.StartLoc, "invalid register pair");
686 if (Reg.Num == 0 && IsAddress)
687 return Error(Reg.StartLoc, "%r0 used in an address");
688 if (Regs)
689 Reg.Num = Regs[Reg.Num];
690 return false;
691}
692
693// Parse a register and add it to Operands. The other arguments are as above.
694OperandMatchResultTy
695SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
696 const unsigned *Regs, RegisterKind Kind) {
697 if (Parser.getTok().isNot(AsmToken::Percent))
698 return MatchOperand_NoMatch;
699
700 Register Reg;
701 bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg);
702 if (parseRegister(Reg, Group, Regs, IsAddress))
703 return MatchOperand_ParseFail;
704
705 Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
706 Reg.StartLoc, Reg.EndLoc));
707 return MatchOperand_Success;
708}
709
710// Parse any type of register (including integers) and add it to Operands.
711OperandMatchResultTy
712SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
713 // Handle integer values.
714 if (Parser.getTok().is(AsmToken::Integer)) {
715 const MCExpr *Register;
716 SMLoc StartLoc = Parser.getTok().getLoc();
717 if (Parser.parseExpression(Register))
718 return MatchOperand_ParseFail;
719
720 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
721 int64_t Value = CE->getValue();
722 if (Value < 0 || Value > 15) {
723 Error(StartLoc, "invalid register");
724 return MatchOperand_ParseFail;
725 }
726 }
727
728 SMLoc EndLoc =
729 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
730
731 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
732 }
733 else {
734 Register Reg;
735 if (parseRegister(Reg))
736 return MatchOperand_ParseFail;
737
738 // Map to the correct register kind.
739 RegisterKind Kind;
740 unsigned RegNo;
741 if (Reg.Group == RegGR) {
742 Kind = GR64Reg;
743 RegNo = SystemZMC::GR64Regs[Reg.Num];
744 }
745 else if (Reg.Group == RegFP) {
746 Kind = FP64Reg;
747 RegNo = SystemZMC::FP64Regs[Reg.Num];
748 }
749 else if (Reg.Group == RegV) {
750 Kind = VR128Reg;
751 RegNo = SystemZMC::VR128Regs[Reg.Num];
752 }
753 else if (Reg.Group == RegAR) {
754 Kind = AR32Reg;
755 RegNo = SystemZMC::AR32Regs[Reg.Num];
756 }
757 else if (Reg.Group == RegCR) {
758 Kind = CR64Reg;
759 RegNo = SystemZMC::CR64Regs[Reg.Num];
760 }
761 else {
762 return MatchOperand_ParseFail;
763 }
764
765 Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
766 Reg.StartLoc, Reg.EndLoc));
767 }
768 return MatchOperand_Success;
769}
770
771// Parse a memory operand into Reg1, Reg2, Disp, and Length.
772bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
773 bool &HaveReg2, Register &Reg2,
774 const MCExpr *&Disp,
775 const MCExpr *&Length) {
776 // Parse the displacement, which must always be present.
777 if (getParser().parseExpression(Disp))
778 return true;
779
780 // Parse the optional base and index.
781 HaveReg1 = false;
782 HaveReg2 = false;
783 Length = nullptr;
784 if (getLexer().is(AsmToken::LParen)) {
785 Parser.Lex();
786
787 if (getLexer().is(AsmToken::Percent)) {
788 // Parse the first register.
789 HaveReg1 = true;
790 if (parseRegister(Reg1))
791 return true;
792 } else {
793 // Parse the length.
794 if (getParser().parseExpression(Length))
795 return true;
796 }
797
798 // Check whether there's a second register.
799 if (getLexer().is(AsmToken::Comma)) {
800 Parser.Lex();
801 HaveReg2 = true;
802 if (parseRegister(Reg2))
803 return true;
804 }
805
806 // Consume the closing bracket.
807 if (getLexer().isNot(AsmToken::RParen))
808 return Error(Parser.getTok().getLoc(), "unexpected token in address");
809 Parser.Lex();
810 }
811 return false;
812}
813
814// Verify that Reg is a valid address register (base or index).
815bool
816SystemZAsmParser::parseAddressRegister(Register &Reg) {
817 if (Reg.Group == RegV) {
818 Error(Reg.StartLoc, "invalid use of vector addressing");
819 return true;
820 } else if (Reg.Group != RegGR) {
821 Error(Reg.StartLoc, "invalid address register");
822 return true;
823 } else if (Reg.Num == 0) {
824 Error(Reg.StartLoc, "%r0 used in an address");
825 return true;
826 }
827 return false;
828}
829
830// Parse a memory operand and add it to Operands. The other arguments
831// are as above.
832OperandMatchResultTy
833SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
834 const unsigned *Regs, RegisterKind RegKind) {
835 SMLoc StartLoc = Parser.getTok().getLoc();
836 unsigned Base = 0, Index = 0, LengthReg = 0;
837 Register Reg1, Reg2;
838 bool HaveReg1, HaveReg2;
839 const MCExpr *Disp;
840 const MCExpr *Length;
841 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length))
842 return MatchOperand_ParseFail;
843
844 switch (MemKind) {
845 case BDMem:
846 // If we have Reg1, it must be an address register.
847 if (HaveReg1) {
848 if (parseAddressRegister(Reg1))
849 return MatchOperand_ParseFail;
850 Base = Regs[Reg1.Num];
851 }
852 // There must be no Reg2 or length.
853 if (Length) {
854 Error(StartLoc, "invalid use of length addressing");
855 return MatchOperand_ParseFail;
856 }
857 if (HaveReg2) {
858 Error(StartLoc, "invalid use of indexed addressing");
859 return MatchOperand_ParseFail;
860 }
861 break;
862 case BDXMem:
863 // If we have Reg1, it must be an address register.
864 if (HaveReg1) {
865 if (parseAddressRegister(Reg1))
866 return MatchOperand_ParseFail;
867 // If the are two registers, the first one is the index and the
868 // second is the base.
869 if (HaveReg2)
870 Index = Regs[Reg1.Num];
871 else
872 Base = Regs[Reg1.Num];
873 }
874 // If we have Reg2, it must be an address register.
875 if (HaveReg2) {
876 if (parseAddressRegister(Reg2))
877 return MatchOperand_ParseFail;
878 Base = Regs[Reg2.Num];
879 }
880 // There must be no length.
881 if (Length) {
882 Error(StartLoc, "invalid use of length addressing");
883 return MatchOperand_ParseFail;
884 }
885 break;
886 case BDLMem:
887 // If we have Reg2, it must be an address register.
888 if (HaveReg2) {
889 if (parseAddressRegister(Reg2))
890 return MatchOperand_ParseFail;
891 Base = Regs[Reg2.Num];
892 }
893 // We cannot support base+index addressing.
894 if (HaveReg1 && HaveReg2) {
895 Error(StartLoc, "invalid use of indexed addressing");
896 return MatchOperand_ParseFail;
897 }
898 // We must have a length.
899 if (!Length) {
900 Error(StartLoc, "missing length in address");
901 return MatchOperand_ParseFail;
902 }
903 break;
904 case BDRMem:
905 // We must have Reg1, and it must be a GPR.
906 if (!HaveReg1 || Reg1.Group != RegGR) {
907 Error(StartLoc, "invalid operand for instruction");
908 return MatchOperand_ParseFail;
909 }
910 LengthReg = SystemZMC::GR64Regs[Reg1.Num];
911 // If we have Reg2, it must be an address register.
912 if (HaveReg2) {
913 if (parseAddressRegister(Reg2))
914 return MatchOperand_ParseFail;
915 Base = Regs[Reg2.Num];
916 }
917 // There must be no length.
918 if (Length) {
919 Error(StartLoc, "invalid use of length addressing");
920 return MatchOperand_ParseFail;
921 }
922 break;
923 case BDVMem:
924 // We must have Reg1, and it must be a vector register.
925 if (!HaveReg1 || Reg1.Group != RegV) {
926 Error(StartLoc, "vector index required in address");
927 return MatchOperand_ParseFail;
928 }
929 Index = SystemZMC::VR128Regs[Reg1.Num];
930 // If we have Reg2, it must be an address register.
931 if (HaveReg2) {
932 if (parseAddressRegister(Reg2))
933 return MatchOperand_ParseFail;
934 Base = Regs[Reg2.Num];
935 }
936 // There must be no length.
937 if (Length) {
938 Error(StartLoc, "invalid use of length addressing");
939 return MatchOperand_ParseFail;
940 }
941 break;
942 }
943
944 SMLoc EndLoc =
945 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
946 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
947 Index, Length, LengthReg,
948 StartLoc, EndLoc));
949 return MatchOperand_Success;
950}
951
952bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
953 StringRef IDVal = DirectiveID.getIdentifier();
954
955 if (IDVal == ".insn")
956 return ParseDirectiveInsn(DirectiveID.getLoc());
957
958 return true;
959}
960
961/// ParseDirectiveInsn
962/// ::= .insn [ format, encoding, (operands (, operands)*) ]
963bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
964 MCAsmParser &Parser = getParser();
965
966 // Expect instruction format as identifier.
967 StringRef Format;
968 SMLoc ErrorLoc = Parser.getTok().getLoc();
969 if (Parser.parseIdentifier(Format))
970 return Error(ErrorLoc, "expected instruction format");
971
972 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
973
974 // Find entry for this format in InsnMatchTable.
975 auto EntryRange =
976 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
977 Format, CompareInsn());
978
979 // If first == second, couldn't find a match in the table.
980 if (EntryRange.first == EntryRange.second)
981 return Error(ErrorLoc, "unrecognized format");
982
983 struct InsnMatchEntry *Entry = EntryRange.first;
984
985 // Format should match from equal_range.
986 assert(Entry->Format == Format)(static_cast <bool> (Entry->Format == Format) ? void
(0) : __assert_fail ("Entry->Format == Format", "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 986, __extension__ __PRETTY_FUNCTION__))
;
987
988 // Parse the following operands using the table's information.
989 for (int i = 0; i < Entry->NumOperands; i++) {
990 MatchClassKind Kind = Entry->OperandKinds[i];
991
992 SMLoc StartLoc = Parser.getTok().getLoc();
993
994 // Always expect commas as separators for operands.
995 if (getLexer().isNot(AsmToken::Comma))
996 return Error(StartLoc, "unexpected token in directive");
997 Lex();
998
999 // Parse operands.
1000 OperandMatchResultTy ResTy;
1001 if (Kind == MCK_AnyReg)
1002 ResTy = parseAnyReg(Operands);
1003 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1004 ResTy = parseBDXAddr64(Operands);
1005 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1006 ResTy = parseBDAddr64(Operands);
1007 else if (Kind == MCK_PCRel32)
1008 ResTy = parsePCRel32(Operands);
1009 else if (Kind == MCK_PCRel16)
1010 ResTy = parsePCRel16(Operands);
1011 else {
1012 // Only remaining operand kind is an immediate.
1013 const MCExpr *Expr;
1014 SMLoc StartLoc = Parser.getTok().getLoc();
1015
1016 // Expect immediate expression.
1017 if (Parser.parseExpression(Expr))
1018 return Error(StartLoc, "unexpected token in directive");
1019
1020 SMLoc EndLoc =
1021 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1022
1023 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1024 ResTy = MatchOperand_Success;
1025 }
1026
1027 if (ResTy != MatchOperand_Success)
1028 return true;
1029 }
1030
1031 // Build the instruction with the parsed operands.
1032 MCInst Inst = MCInstBuilder(Entry->Opcode);
1033
1034 for (size_t i = 0; i < Operands.size(); i++) {
1035 MCParsedAsmOperand &Operand = *Operands[i];
1036 MatchClassKind Kind = Entry->OperandKinds[i];
1037
1038 // Verify operand.
1039 unsigned Res = validateOperandClass(Operand, Kind);
1040 if (Res != Match_Success)
1041 return Error(Operand.getStartLoc(), "unexpected operand type");
1042
1043 // Add operands to instruction.
1044 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1045 if (ZOperand.isReg())
1046 ZOperand.addRegOperands(Inst, 1);
1047 else if (ZOperand.isMem(BDMem))
1048 ZOperand.addBDAddrOperands(Inst, 2);
1049 else if (ZOperand.isMem(BDXMem))
1050 ZOperand.addBDXAddrOperands(Inst, 3);
1051 else if (ZOperand.isImm())
1052 ZOperand.addImmOperands(Inst, 1);
1053 else
1054 llvm_unreachable("unexpected operand type")::llvm::llvm_unreachable_internal("unexpected operand type", "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 1054)
;
1055 }
1056
1057 // Emit as a regular instruction.
1058 Parser.getStreamer().EmitInstruction(Inst, getSTI());
1059
1060 return false;
1061}
1062
1063bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1064 SMLoc &EndLoc) {
1065 Register Reg;
1066 if (parseRegister(Reg))
1
Calling 'SystemZAsmParser::parseRegister'
18
Returning from 'SystemZAsmParser::parseRegister'
19
Assuming the condition is false
20
Taking false branch
1067 return true;
1068 if (Reg.Group == RegGR)
21
The left operand of '==' is a garbage value
1069 RegNo = SystemZMC::GR64Regs[Reg.Num];
1070 else if (Reg.Group == RegFP)
1071 RegNo = SystemZMC::FP64Regs[Reg.Num];
1072 else if (Reg.Group == RegV)
1073 RegNo = SystemZMC::VR128Regs[Reg.Num];
1074 else if (Reg.Group == RegAR)
1075 RegNo = SystemZMC::AR32Regs[Reg.Num];
1076 else if (Reg.Group == RegCR)
1077 RegNo = SystemZMC::CR64Regs[Reg.Num];
1078 StartLoc = Reg.StartLoc;
1079 EndLoc = Reg.EndLoc;
1080 return false;
1081}
1082
1083bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1084 StringRef Name, SMLoc NameLoc,
1085 OperandVector &Operands) {
1086 Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1087
1088 // Read the remaining operands.
1089 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1090 // Read the first operand.
1091 if (parseOperand(Operands, Name)) {
1092 return true;
1093 }
1094
1095 // Read any subsequent operands.
1096 while (getLexer().is(AsmToken::Comma)) {
1097 Parser.Lex();
1098 if (parseOperand(Operands, Name)) {
1099 return true;
1100 }
1101 }
1102 if (getLexer().isNot(AsmToken::EndOfStatement)) {
1103 SMLoc Loc = getLexer().getLoc();
1104 return Error(Loc, "unexpected token in argument list");
1105 }
1106 }
1107
1108 // Consume the EndOfStatement.
1109 Parser.Lex();
1110 return false;
1111}
1112
1113bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1114 StringRef Mnemonic) {
1115 // Check if the current operand has a custom associated parser, if so, try to
1116 // custom parse the operand, or fallback to the general approach. Force all
1117 // features to be available during the operand check, or else we will fail to
1118 // find the custom parser, and then we will later get an InvalidOperand error
1119 // instead of a MissingFeature errror.
1120 uint64_t AvailableFeatures = getAvailableFeatures();
1121 setAvailableFeatures(~(uint64_t)0);
1122 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1123 setAvailableFeatures(AvailableFeatures);
1124 if (ResTy == MatchOperand_Success)
1125 return false;
1126
1127 // If there wasn't a custom match, try the generic matcher below. Otherwise,
1128 // there was a match, but an error occurred, in which case, just return that
1129 // the operand parsing failed.
1130 if (ResTy == MatchOperand_ParseFail)
1131 return true;
1132
1133 // Check for a register. All real register operands should have used
1134 // a context-dependent parse routine, which gives the required register
1135 // class. The code is here to mop up other cases, like those where
1136 // the instruction isn't recognized.
1137 if (Parser.getTok().is(AsmToken::Percent)) {
1138 Register Reg;
1139 if (parseRegister(Reg))
1140 return true;
1141 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1142 return false;
1143 }
1144
1145 // The only other type of operand is an immediate or address. As above,
1146 // real address operands should have used a context-dependent parse routine,
1147 // so we treat any plain expression as an immediate.
1148 SMLoc StartLoc = Parser.getTok().getLoc();
1149 Register Reg1, Reg2;
1150 bool HaveReg1, HaveReg2;
1151 const MCExpr *Expr;
1152 const MCExpr *Length;
1153 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length))
1154 return true;
1155 // If the register combination is not valid for any instruction, reject it.
1156 // Otherwise, fall back to reporting an unrecognized instruction.
1157 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1158 && parseAddressRegister(Reg1))
1159 return true;
1160 if (HaveReg2 && parseAddressRegister(Reg2))
1161 return true;
1162
1163 SMLoc EndLoc =
1164 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1165 if (HaveReg1 || HaveReg2 || Length)
1166 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1167 else
1168 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1169 return false;
1170}
1171
1172static std::string SystemZMnemonicSpellCheck(StringRef S, uint64_t FBS,
1173 unsigned VariantID = 0);
1174
1175bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1176 OperandVector &Operands,
1177 MCStreamer &Out,
1178 uint64_t &ErrorInfo,
1179 bool MatchingInlineAsm) {
1180 MCInst Inst;
1181 unsigned MatchResult;
1182
1183 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
1184 MatchingInlineAsm);
1185 switch (MatchResult) {
1186 case Match_Success:
1187 Inst.setLoc(IDLoc);
1188 Out.EmitInstruction(Inst, getSTI());
1189 return false;
1190
1191 case Match_MissingFeature: {
1192 assert(ErrorInfo && "Unknown missing feature!")(static_cast <bool> (ErrorInfo && "Unknown missing feature!"
) ? void (0) : __assert_fail ("ErrorInfo && \"Unknown missing feature!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 1192, __extension__ __PRETTY_FUNCTION__))
;
1193 // Special case the error message for the very common case where only
1194 // a single subtarget feature is missing
1195 std::string Msg = "instruction requires:";
1196 uint64_t Mask = 1;
1197 for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
1198 if (ErrorInfo & Mask) {
1199 Msg += " ";
1200 Msg += getSubtargetFeatureName(ErrorInfo & Mask);
1201 }
1202 Mask <<= 1;
1203 }
1204 return Error(IDLoc, Msg);
1205 }
1206
1207 case Match_InvalidOperand: {
1208 SMLoc ErrorLoc = IDLoc;
1209 if (ErrorInfo != ~0ULL) {
1210 if (ErrorInfo >= Operands.size())
1211 return Error(IDLoc, "too few operands for instruction");
1212
1213 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1214 if (ErrorLoc == SMLoc())
1215 ErrorLoc = IDLoc;
1216 }
1217 return Error(ErrorLoc, "invalid operand for instruction");
1218 }
1219
1220 case Match_MnemonicFail: {
1221 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1222 std::string Suggestion = SystemZMnemonicSpellCheck(
1223 ((SystemZOperand &)*Operands[0]).getToken(), FBS);
1224 return Error(IDLoc, "invalid instruction" + Suggestion,
1225 ((SystemZOperand &)*Operands[0]).getLocRange());
1226 }
1227 }
1228
1229 llvm_unreachable("Unexpected match type")::llvm::llvm_unreachable_internal("Unexpected match type", "/build/llvm-toolchain-snapshot-6.0~svn318882/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp"
, 1229)
;
1230}
1231
1232OperandMatchResultTy
1233SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
1234 int64_t MaxVal, bool AllowTLS) {
1235 MCContext &Ctx = getContext();
1236 MCStreamer &Out = getStreamer();
1237 const MCExpr *Expr;
1238 SMLoc StartLoc = Parser.getTok().getLoc();
1239 if (getParser().parseExpression(Expr))
1240 return MatchOperand_NoMatch;
1241
1242 // For consistency with the GNU assembler, treat immediates as offsets
1243 // from ".".
1244 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1245 int64_t Value = CE->getValue();
1246 if ((Value & 1) || Value < MinVal || Value > MaxVal) {
1247 Error(StartLoc, "offset out of range");
1248 return MatchOperand_ParseFail;
1249 }
1250 MCSymbol *Sym = Ctx.createTempSymbol();
1251 Out.EmitLabel(Sym);
1252 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1253 Ctx);
1254 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1255 }
1256
1257 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1258 const MCExpr *Sym = nullptr;
1259 if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1260 Parser.Lex();
1261
1262 if (Parser.getTok().isNot(AsmToken::Identifier)) {
1263 Error(Parser.getTok().getLoc(), "unexpected token");
1264 return MatchOperand_ParseFail;
1265 }
1266
1267 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1268 StringRef Name = Parser.getTok().getString();
1269 if (Name == "tls_gdcall")
1270 Kind = MCSymbolRefExpr::VK_TLSGD;
1271 else if (Name == "tls_ldcall")
1272 Kind = MCSymbolRefExpr::VK_TLSLDM;
1273 else {
1274 Error(Parser.getTok().getLoc(), "unknown TLS tag");
1275 return MatchOperand_ParseFail;
1276 }
1277 Parser.Lex();
1278
1279 if (Parser.getTok().isNot(AsmToken::Colon)) {
1280 Error(Parser.getTok().getLoc(), "unexpected token");
1281 return MatchOperand_ParseFail;
1282 }
1283 Parser.Lex();
1284
1285 if (Parser.getTok().isNot(AsmToken::Identifier)) {
1286 Error(Parser.getTok().getLoc(), "unexpected token");
1287 return MatchOperand_ParseFail;
1288 }
1289
1290 StringRef Identifier = Parser.getTok().getString();
1291 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1292 Kind, Ctx);
1293 Parser.Lex();
1294 }
1295
1296 SMLoc EndLoc =
1297 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1298
1299 if (AllowTLS)
1300 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1301 StartLoc, EndLoc));
1302 else
1303 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1304
1305 return MatchOperand_Success;
1306}
1307
1308// Force static initialization.
1309extern "C" void LLVMInitializeSystemZAsmParser() {
1310 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1311}

/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/MC/MCParser/MCAsmLexer.h

1//===- llvm/MC/MCAsmLexer.h - Abstract Asm Lexer Interface ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCPARSER_MCASMLEXER_H
11#define LLVM_MC_MCPARSER_MCASMLEXER_H
12
13#include "llvm/ADT/APInt.h"
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/StringRef.h"
17#include "llvm/Support/SMLoc.h"
18#include <algorithm>
19#include <cassert>
20#include <cstddef>
21#include <cstdint>
22#include <string>
23
24namespace llvm {
25
26/// Target independent representation for an assembler token.
27class AsmToken {
28public:
29 enum TokenKind {
30 // Markers
31 Eof, Error,
32
33 // String values.
34 Identifier,
35 String,
36
37 // Integer values.
38 Integer,
39 BigNum, // larger than 64 bits
40
41 // Real values.
42 Real,
43
44 // Comments
45 Comment,
46 HashDirective,
47 // No-value.
48 EndOfStatement,
49 Colon,
50 Space,
51 Plus, Minus, Tilde,
52 Slash, // '/'
53 BackSlash, // '\'
54 LParen, RParen, LBrac, RBrac, LCurly, RCurly,
55 Star, Dot, Comma, Dollar, Equal, EqualEqual,
56
57 Pipe, PipePipe, Caret,
58 Amp, AmpAmp, Exclaim, ExclaimEqual, Percent, Hash,
59 Less, LessEqual, LessLess, LessGreater,
60 Greater, GreaterEqual, GreaterGreater, At,
61
62 // MIPS unary expression operators such as %neg.
63 PercentCall16, PercentCall_Hi, PercentCall_Lo, PercentDtprel_Hi,
64 PercentDtprel_Lo, PercentGot, PercentGot_Disp, PercentGot_Hi, PercentGot_Lo,
65 PercentGot_Ofst, PercentGot_Page, PercentGottprel, PercentGp_Rel, PercentHi,
66 PercentHigher, PercentHighest, PercentLo, PercentNeg, PercentPcrel_Hi,
67 PercentPcrel_Lo, PercentTlsgd, PercentTlsldm, PercentTprel_Hi,
68 PercentTprel_Lo
69 };
70
71private:
72 TokenKind Kind;
73
74 /// A reference to the entire token contents; this is always a pointer into
75 /// a memory buffer owned by the source manager.
76 StringRef Str;
77
78 APInt IntVal;
79
80public:
81 AsmToken() = default;
82 AsmToken(TokenKind Kind, StringRef Str, APInt IntVal)
83 : Kind(Kind), Str(Str), IntVal(std::move(IntVal)) {}
84 AsmToken(TokenKind Kind, StringRef Str, int64_t IntVal = 0)
85 : Kind(Kind), Str(Str), IntVal(64, IntVal, true) {}
86
87 TokenKind getKind() const { return Kind; }
88 bool is(TokenKind K) const { return Kind == K; }
89 bool isNot(TokenKind K) const { return Kind != K; }
3
Assuming the condition is true
90
91 SMLoc getLoc() const;
92 SMLoc getEndLoc() const;
93 SMRange getLocRange() const;
94
95 /// Get the contents of a string token (without quotes).
96 StringRef getStringContents() const {
97 assert(Kind == String && "This token isn't a string!")(static_cast <bool> (Kind == String && "This token isn't a string!"
) ? void (0) : __assert_fail ("Kind == String && \"This token isn't a string!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/MC/MCParser/MCAsmLexer.h"
, 97, __extension__ __PRETTY_FUNCTION__))
;
98 return Str.slice(1, Str.size() - 1);
99 }
100
101 /// Get the identifier string for the current token, which should be an
102 /// identifier or a string. This gets the portion of the string which should
103 /// be used as the identifier, e.g., it does not include the quotes on
104 /// strings.
105 StringRef getIdentifier() const {
106 if (Kind == Identifier)
107 return getString();
108 return getStringContents();
109 }
110
111 /// Get the string for the current token, this includes all characters (for
112 /// example, the quotes on strings) in the token.
113 ///
114 /// The returned StringRef points into the source manager's memory buffer, and
115 /// is safe to store across calls to Lex().
116 StringRef getString() const { return Str; }
117
118 // FIXME: Don't compute this in advance, it makes every token larger, and is
119 // also not generally what we want (it is nicer for recovery etc. to lex 123br
120 // as a single token, then diagnose as an invalid number).
121 int64_t getIntVal() const {
122 assert(Kind == Integer && "This token isn't an integer!")(static_cast <bool> (Kind == Integer && "This token isn't an integer!"
) ? void (0) : __assert_fail ("Kind == Integer && \"This token isn't an integer!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/MC/MCParser/MCAsmLexer.h"
, 122, __extension__ __PRETTY_FUNCTION__))
;
123 return IntVal.getZExtValue();
124 }
125
126 APInt getAPIntVal() const {
127 assert((Kind == Integer || Kind == BigNum) &&(static_cast <bool> ((Kind == Integer || Kind == BigNum
) && "This token isn't an integer!") ? void (0) : __assert_fail
("(Kind == Integer || Kind == BigNum) && \"This token isn't an integer!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/MC/MCParser/MCAsmLexer.h"
, 128, __extension__ __PRETTY_FUNCTION__))
128 "This token isn't an integer!")(static_cast <bool> ((Kind == Integer || Kind == BigNum
) && "This token isn't an integer!") ? void (0) : __assert_fail
("(Kind == Integer || Kind == BigNum) && \"This token isn't an integer!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/MC/MCParser/MCAsmLexer.h"
, 128, __extension__ __PRETTY_FUNCTION__))
;
129 return IntVal;
130 }
131};
132
133/// A callback class which is notified of each comment in an assembly file as
134/// it is lexed.
135class AsmCommentConsumer {
136public:
137 virtual ~AsmCommentConsumer() = default;
138
139 /// Callback function for when a comment is lexed. Loc is the start of the
140 /// comment text (excluding the comment-start marker). CommentText is the text
141 /// of the comment, excluding the comment start and end markers, and the
142 /// newline for single-line comments.
143 virtual void HandleComment(SMLoc Loc, StringRef CommentText) = 0;
144};
145
146
147/// Generic assembler lexer interface, for use by target specific assembly
148/// lexers.
149class MCAsmLexer {
150 /// The current token, stored in the base class for faster access.
151 SmallVector<AsmToken, 1> CurTok;
152
153 /// The location and description of the current error
154 SMLoc ErrLoc;
155 std::string Err;
156
157protected: // Can only create subclasses.
158 const char *TokStart = nullptr;
159 bool SkipSpace = true;
160 bool AllowAtInIdentifier;
161 bool IsAtStartOfStatement = true;
162 AsmCommentConsumer *CommentConsumer = nullptr;
163
164 bool AltMacroMode;
165 MCAsmLexer();
166
167 virtual AsmToken LexToken() = 0;
168
169 void SetError(SMLoc errLoc, const std::string &err) {
170 ErrLoc = errLoc;
171 Err = err;
172 }
173
174public:
175 MCAsmLexer(const MCAsmLexer &) = delete;
176 MCAsmLexer &operator=(const MCAsmLexer &) = delete;
177 virtual ~MCAsmLexer();
178
179 bool IsaAltMacroMode() {
180 return AltMacroMode;
181 }
182
183 void SetAltMacroMode(bool AltMacroSet) {
184 AltMacroMode = AltMacroSet;
185 }
186
187 /// Consume the next token from the input stream and return it.
188 ///
189 /// The lexer will continuosly return the end-of-file token once the end of
190 /// the main input file has been reached.
191 const AsmToken &Lex() {
192 assert(!CurTok.empty())(static_cast <bool> (!CurTok.empty()) ? void (0) : __assert_fail
("!CurTok.empty()", "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/MC/MCParser/MCAsmLexer.h"
, 192, __extension__ __PRETTY_FUNCTION__))
;
193 // Mark if we parsing out a EndOfStatement.
194 IsAtStartOfStatement = CurTok.front().getKind() == AsmToken::EndOfStatement;
195 CurTok.erase(CurTok.begin());
196 // LexToken may generate multiple tokens via UnLex but will always return
197 // the first one. Place returned value at head of CurTok vector.
198 if (CurTok.empty()) {
199 AsmToken T = LexToken();
200 CurTok.insert(CurTok.begin(), T);
201 }
202 return CurTok.front();
203 }
204
205 void UnLex(AsmToken const &Token) {
206 IsAtStartOfStatement = false;
207 CurTok.insert(CurTok.begin(), Token);
208 }
209
210 bool isAtStartOfStatement() { return IsAtStartOfStatement; }
211
212 virtual StringRef LexUntilEndOfStatement() = 0;
213
214 /// Get the current source location.
215 SMLoc getLoc() const;
216
217 /// Get the current (last) lexed token.
218 const AsmToken &getTok() const {
219 return CurTok[0];
220 }
221
222 /// Look ahead at the next token to be lexed.
223 const AsmToken peekTok(bool ShouldSkipSpace = true) {
224 AsmToken Tok;
225
226 MutableArrayRef<AsmToken> Buf(Tok);
227 size_t ReadCount = peekTokens(Buf, ShouldSkipSpace);
228
229 assert(ReadCount == 1)(static_cast <bool> (ReadCount == 1) ? void (0) : __assert_fail
("ReadCount == 1", "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/MC/MCParser/MCAsmLexer.h"
, 229, __extension__ __PRETTY_FUNCTION__))
;
230 (void)ReadCount;
231
232 return Tok;
233 }
234
235 /// Look ahead an arbitrary number of tokens.
236 virtual size_t peekTokens(MutableArrayRef<AsmToken> Buf,
237 bool ShouldSkipSpace = true) = 0;
238
239 /// Get the current error location
240 SMLoc getErrLoc() {
241 return ErrLoc;
242 }
243
244 /// Get the current error string
245 const std::string &getErr() {
246 return Err;
247 }
248
249 /// Get the kind of current token.
250 AsmToken::TokenKind getKind() const { return getTok().getKind(); }
251
252 /// Check if the current token has kind \p K.
253 bool is(AsmToken::TokenKind K) const { return getTok().is(K); }
254
255 /// Check if the current token has kind \p K.
256 bool isNot(AsmToken::TokenKind K) const { return getTok().isNot(K); }
257
258 /// Set whether spaces should be ignored by the lexer
259 void setSkipSpace(bool val) { SkipSpace = val; }
260
261 bool getAllowAtInIdentifier() { return AllowAtInIdentifier; }
262 void setAllowAtInIdentifier(bool v) { AllowAtInIdentifier = v; }
263
264 void setCommentConsumer(AsmCommentConsumer *CommentConsumer) {
265 this->CommentConsumer = CommentConsumer;
266 }
267};
268
269} // end namespace llvm
270
271#endif // LLVM_MC_MCPARSER_MCASMLEXER_H

/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h

1//===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_TWINE_H
11#define LLVM_ADT_TWINE_H
12
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/ADT/StringRef.h"
15#include "llvm/Support/ErrorHandling.h"
16#include <cassert>
17#include <cstdint>
18#include <string>
19
20namespace llvm {
21
22 class formatv_object_base;
23 class raw_ostream;
24
25 /// Twine - A lightweight data structure for efficiently representing the
26 /// concatenation of temporary values as strings.
27 ///
28 /// A Twine is a kind of rope, it represents a concatenated string using a
29 /// binary-tree, where the string is the preorder of the nodes. Since the
30 /// Twine can be efficiently rendered into a buffer when its result is used,
31 /// it avoids the cost of generating temporary values for intermediate string
32 /// results -- particularly in cases when the Twine result is never
33 /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34 /// the creation of temporary strings for conversions operations (such as
35 /// appending an integer to a string).
36 ///
37 /// A Twine is not intended for use directly and should not be stored, its
38 /// implementation relies on the ability to store pointers to temporary stack
39 /// objects which may be deallocated at the end of a statement. Twines should
40 /// only be used accepted as const references in arguments, when an API wishes
41 /// to accept possibly-concatenated strings.
42 ///
43 /// Twines support a special 'null' value, which always concatenates to form
44 /// itself, and renders as an empty string. This can be returned from APIs to
45 /// effectively nullify any concatenations performed on the result.
46 ///
47 /// \b Implementation
48 ///
49 /// Given the nature of a Twine, it is not possible for the Twine's
50 /// concatenation method to construct interior nodes; the result must be
51 /// represented inside the returned value. For this reason a Twine object
52 /// actually holds two values, the left- and right-hand sides of a
53 /// concatenation. We also have nullary Twine objects, which are effectively
54 /// sentinel values that represent empty strings.
55 ///
56 /// Thus, a Twine can effectively have zero, one, or two children. The \see
57 /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58 /// testing the number of children.
59 ///
60 /// We maintain a number of invariants on Twine objects (FIXME: Why):
61 /// - Nullary twines are always represented with their Kind on the left-hand
62 /// side, and the Empty kind on the right-hand side.
63 /// - Unary twines are always represented with the value on the left-hand
64 /// side, and the Empty kind on the right-hand side.
65 /// - If a Twine has another Twine as a child, that child should always be
66 /// binary (otherwise it could have been folded into the parent).
67 ///
68 /// These invariants are check by \see isValid().
69 ///
70 /// \b Efficiency Considerations
71 ///
72 /// The Twine is designed to yield efficient and small code for common
73 /// situations. For this reason, the concat() method is inlined so that
74 /// concatenations of leaf nodes can be optimized into stores directly into a
75 /// single stack allocated object.
76 ///
77 /// In practice, not all compilers can be trusted to optimize concat() fully,
78 /// so we provide two additional methods (and accompanying operator+
79 /// overloads) to guarantee that particularly important cases (cstring plus
80 /// StringRef) codegen as desired.
81 class Twine {
82 /// NodeKind - Represent the type of an argument.
83 enum NodeKind : unsigned char {
84 /// An empty string; the result of concatenating anything with it is also
85 /// empty.
86 NullKind,
87
88 /// The empty string.
89 EmptyKind,
90
91 /// A pointer to a Twine instance.
92 TwineKind,
93
94 /// A pointer to a C string instance.
95 CStringKind,
96
97 /// A pointer to an std::string instance.
98 StdStringKind,
99
100 /// A pointer to a StringRef instance.
101 StringRefKind,
102
103 /// A pointer to a SmallString instance.
104 SmallStringKind,
105
106 /// A pointer to a formatv_object_base instance.
107 FormatvObjectKind,
108
109 /// A char value, to render as a character.
110 CharKind,
111
112 /// An unsigned int value, to render as an unsigned decimal integer.
113 DecUIKind,
114
115 /// An int value, to render as a signed decimal integer.
116 DecIKind,
117
118 /// A pointer to an unsigned long value, to render as an unsigned decimal
119 /// integer.
120 DecULKind,
121
122 /// A pointer to a long value, to render as a signed decimal integer.
123 DecLKind,
124
125 /// A pointer to an unsigned long long value, to render as an unsigned
126 /// decimal integer.
127 DecULLKind,
128
129 /// A pointer to a long long value, to render as a signed decimal integer.
130 DecLLKind,
131
132 /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
133 /// integer.
134 UHexKind
135 };
136
137 union Child
138 {
139 const Twine *twine;
140 const char *cString;
141 const std::string *stdString;
142 const StringRef *stringRef;
143 const SmallVectorImpl<char> *smallString;
144 const formatv_object_base *formatvObject;
145 char character;
146 unsigned int decUI;
147 int decI;
148 const unsigned long *decUL;
149 const long *decL;
150 const unsigned long long *decULL;
151 const long long *decLL;
152 const uint64_t *uHex;
153 };
154
155 /// LHS - The prefix in the concatenation, which may be uninitialized for
156 /// Null or Empty kinds.
157 Child LHS;
158
159 /// RHS - The suffix in the concatenation, which may be uninitialized for
160 /// Null or Empty kinds.
161 Child RHS;
162
163 /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
164 NodeKind LHSKind = EmptyKind;
165
166 /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
167 NodeKind RHSKind = EmptyKind;
168
169 /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
170 explicit Twine(NodeKind Kind) : LHSKind(Kind) {
171 assert(isNullary() && "Invalid kind!")(static_cast <bool> (isNullary() && "Invalid kind!"
) ? void (0) : __assert_fail ("isNullary() && \"Invalid kind!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 171, __extension__ __PRETTY_FUNCTION__))
;
172 }
173
174 /// Construct a binary twine.
175 explicit Twine(const Twine &LHS, const Twine &RHS)
176 : LHSKind(TwineKind), RHSKind(TwineKind) {
177 this->LHS.twine = &LHS;
178 this->RHS.twine = &RHS;
179 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 179, __extension__ __PRETTY_FUNCTION__))
;
180 }
181
182 /// Construct a twine from explicit values.
183 explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
184 : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
185 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 185, __extension__ __PRETTY_FUNCTION__))
;
186 }
187
188 /// Check for the null twine.
189 bool isNull() const {
190 return getLHSKind() == NullKind;
191 }
192
193 /// Check for the empty twine.
194 bool isEmpty() const {
195 return getLHSKind() == EmptyKind;
196 }
197
198 /// Check if this is a nullary twine (null or empty).
199 bool isNullary() const {
200 return isNull() || isEmpty();
201 }
202
203 /// Check if this is a unary twine.
204 bool isUnary() const {
205 return getRHSKind() == EmptyKind && !isNullary();
206 }
207
208 /// Check if this is a binary twine.
209 bool isBinary() const {
210 return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
211 }
212
213 /// Check if this is a valid twine (satisfying the invariants on
214 /// order and number of arguments).
215 bool isValid() const {
216 // Nullary twines always have Empty on the RHS.
217 if (isNullary() && getRHSKind() != EmptyKind)
218 return false;
219
220 // Null should never appear on the RHS.
221 if (getRHSKind() == NullKind)
222 return false;
223
224 // The RHS cannot be non-empty if the LHS is empty.
225 if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
226 return false;
227
228 // A twine child should always be binary.
229 if (getLHSKind() == TwineKind &&
230 !LHS.twine->isBinary())
231 return false;
232 if (getRHSKind() == TwineKind &&
233 !RHS.twine->isBinary())
234 return false;
235
236 return true;
237 }
238
239 /// Get the NodeKind of the left-hand side.
240 NodeKind getLHSKind() const { return LHSKind; }
241
242 /// Get the NodeKind of the right-hand side.
243 NodeKind getRHSKind() const { return RHSKind; }
244
245 /// Print one child from a twine.
246 void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
247
248 /// Print the representation of one child from a twine.
249 void printOneChildRepr(raw_ostream &OS, Child Ptr,
250 NodeKind Kind) const;
251
252 public:
253 /// @name Constructors
254 /// @{
255
256 /// Construct from an empty string.
257 /*implicit*/ Twine() {
258 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 258, __extension__ __PRETTY_FUNCTION__))
;
259 }
260
261 Twine(const Twine &) = default;
262
263 /// Construct from a C string.
264 ///
265 /// We take care here to optimize "" into the empty twine -- this will be
266 /// optimized out for string constants. This allows Twine arguments have
267 /// default "" values, without introducing unnecessary string constants.
268 /*implicit*/ Twine(const char *Str) {
7
Calling implicit default constructor for 'Child'
8
Returning from default constructor for 'Child'
9
Calling implicit default constructor for 'Child'
10
Returning from default constructor for 'Child'
269 if (Str[0] != '\0') {
11
Taking true branch
270 LHS.cString = Str;
271 LHSKind = CStringKind;
272 } else
273 LHSKind = EmptyKind;
274
275 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 275, __extension__ __PRETTY_FUNCTION__))
;
12
Within the expansion of the macro 'assert':
a
Assuming the condition is true
276 }
277
278 /// Construct from an std::string.
279 /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) {
280 LHS.stdString = &Str;
281 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 281, __extension__ __PRETTY_FUNCTION__))
;
282 }
283
284 /// Construct from a StringRef.
285 /*implicit*/ Twine(const StringRef &Str) : LHSKind(StringRefKind) {
286 LHS.stringRef = &Str;
287 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 287, __extension__ __PRETTY_FUNCTION__))
;
288 }
289
290 /// Construct from a SmallString.
291 /*implicit*/ Twine(const SmallVectorImpl<char> &Str)
292 : LHSKind(SmallStringKind) {
293 LHS.smallString = &Str;
294 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 294, __extension__ __PRETTY_FUNCTION__))
;
295 }
296
297 /// Construct from a formatv_object_base.
298 /*implicit*/ Twine(const formatv_object_base &Fmt)
299 : LHSKind(FormatvObjectKind) {
300 LHS.formatvObject = &Fmt;
301 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 301, __extension__ __PRETTY_FUNCTION__))
;
302 }
303
304 /// Construct from a char.
305 explicit Twine(char Val) : LHSKind(CharKind) {
306 LHS.character = Val;
307 }
308
309 /// Construct from a signed char.
310 explicit Twine(signed char Val) : LHSKind(CharKind) {
311 LHS.character = static_cast<char>(Val);
312 }
313
314 /// Construct from an unsigned char.
315 explicit Twine(unsigned char Val) : LHSKind(CharKind) {
316 LHS.character = static_cast<char>(Val);
317 }
318
319 /// Construct a twine to print \p Val as an unsigned decimal integer.
320 explicit Twine(unsigned Val) : LHSKind(DecUIKind) {
321 LHS.decUI = Val;
322 }
323
324 /// Construct a twine to print \p Val as a signed decimal integer.
325 explicit Twine(int Val) : LHSKind(DecIKind) {
326 LHS.decI = Val;
327 }
328
329 /// Construct a twine to print \p Val as an unsigned decimal integer.
330 explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) {
331 LHS.decUL = &Val;
332 }
333
334 /// Construct a twine to print \p Val as a signed decimal integer.
335 explicit Twine(const long &Val) : LHSKind(DecLKind) {
336 LHS.decL = &Val;
337 }
338
339 /// Construct a twine to print \p Val as an unsigned decimal integer.
340 explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) {
341 LHS.decULL = &Val;
342 }
343
344 /// Construct a twine to print \p Val as a signed decimal integer.
345 explicit Twine(const long long &Val) : LHSKind(DecLLKind) {
346 LHS.decLL = &Val;
347 }
348
349 // FIXME: Unfortunately, to make sure this is as efficient as possible we
350 // need extra binary constructors from particular types. We can't rely on
351 // the compiler to be smart enough to fold operator+()/concat() down to the
352 // right thing. Yet.
353
354 /// Construct as the concatenation of a C string and a StringRef.
355 /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
356 : LHSKind(CStringKind), RHSKind(StringRefKind) {
357 this->LHS.cString = LHS;
358 this->RHS.stringRef = &RHS;
359 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 359, __extension__ __PRETTY_FUNCTION__))
;
360 }
361
362 /// Construct as the concatenation of a StringRef and a C string.
363 /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
364 : LHSKind(StringRefKind), RHSKind(CStringKind) {
365 this->LHS.stringRef = &LHS;
366 this->RHS.cString = RHS;
367 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 367, __extension__ __PRETTY_FUNCTION__))
;
368 }
369
370 /// Since the intended use of twines is as temporary objects, assignments
371 /// when concatenating might cause undefined behavior or stack corruptions
372 Twine &operator=(const Twine &) = delete;
373
374 /// Create a 'null' string, which is an empty string that always
375 /// concatenates to form another empty string.
376 static Twine createNull() {
377 return Twine(NullKind);
378 }
379
380 /// @}
381 /// @name Numeric Conversions
382 /// @{
383
384 // Construct a twine to print \p Val as an unsigned hexadecimal integer.
385 static Twine utohexstr(const uint64_t &Val) {
386 Child LHS, RHS;
387 LHS.uHex = &Val;
388 RHS.twine = nullptr;
389 return Twine(LHS, UHexKind, RHS, EmptyKind);
390 }
391
392 /// @}
393 /// @name Predicate Operations
394 /// @{
395
396 /// Check if this twine is trivially empty; a false return value does not
397 /// necessarily mean the twine is empty.
398 bool isTriviallyEmpty() const {
399 return isNullary();
400 }
401
402 /// Return true if this twine can be dynamically accessed as a single
403 /// StringRef value with getSingleStringRef().
404 bool isSingleStringRef() const {
405 if (getRHSKind() != EmptyKind) return false;
406
407 switch (getLHSKind()) {
408 case EmptyKind:
409 case CStringKind:
410 case StdStringKind:
411 case StringRefKind:
412 case SmallStringKind:
413 return true;
414 default:
415 return false;
416 }
417 }
418
419 /// @}
420 /// @name String Operations
421 /// @{
422
423 Twine concat(const Twine &Suffix) const;
424
425 /// @}
426 /// @name Output & Conversion.
427 /// @{
428
429 /// Return the twine contents as a std::string.
430 std::string str() const;
431
432 /// Append the concatenated string into the given SmallString or SmallVector.
433 void toVector(SmallVectorImpl<char> &Out) const;
434
435 /// This returns the twine as a single StringRef. This method is only valid
436 /// if isSingleStringRef() is true.
437 StringRef getSingleStringRef() const {
438 assert(isSingleStringRef() &&"This cannot be had as a single stringref!")(static_cast <bool> (isSingleStringRef() &&"This cannot be had as a single stringref!"
) ? void (0) : __assert_fail ("isSingleStringRef() &&\"This cannot be had as a single stringref!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 438, __extension__ __PRETTY_FUNCTION__))
;
439 switch (getLHSKind()) {
440 default: llvm_unreachable("Out of sync with isSingleStringRef")::llvm::llvm_unreachable_internal("Out of sync with isSingleStringRef"
, "/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/ADT/Twine.h"
, 440)
;
441 case EmptyKind: return StringRef();
442 case CStringKind: return StringRef(LHS.cString);
443 case StdStringKind: return StringRef(*LHS.stdString);
444 case StringRefKind: return *LHS.stringRef;
445 case SmallStringKind:
446 return StringRef(LHS.smallString->data(), LHS.smallString->size());
447 }
448 }
449
450 /// This returns the twine as a single StringRef if it can be
451 /// represented as such. Otherwise the twine is written into the given
452 /// SmallVector and a StringRef to the SmallVector's data is returned.
453 StringRef toStringRef(SmallVectorImpl<char> &Out) const {
454 if (isSingleStringRef())
455 return getSingleStringRef();
456 toVector(Out);
457 return StringRef(Out.data(), Out.size());
458 }
459
460 /// This returns the twine as a single null terminated StringRef if it
461 /// can be represented as such. Otherwise the twine is written into the
462 /// given SmallVector and a StringRef to the SmallVector's data is returned.
463 ///
464 /// The returned StringRef's size does not include the null terminator.
465 StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
466
467 /// Write the concatenated string represented by this twine to the
468 /// stream \p OS.
469 void print(raw_ostream &OS) const;
470
471 /// Dump the concatenated string represented by this twine to stderr.
472 void dump() const;
473
474 /// Write the representation of this twine to the stream \p OS.
475 void printRepr(raw_ostream &OS) const;
476
477 /// Dump the representation of this twine to stderr.
478 void dumpRepr() const;
479
480 /// @}
481 };
482
483 /// @name Twine Inline Implementations
484 /// @{
485
486 inline Twine Twine::concat(const Twine &Suffix) const {
487 // Concatenation with null is null.
488 if (isNull() || Suffix.isNull())
489 return Twine(NullKind);
490
491 // Concatenation with empty yields the other side.
492 if (isEmpty())
493 return Suffix;
494 if (Suffix.isEmpty())
495 return *this;
496
497 // Otherwise we need to create a new node, taking care to fold in unary
498 // twines.
499 Child NewLHS, NewRHS;
500 NewLHS.twine = this;
501 NewRHS.twine = &Suffix;
502 NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
503 if (isUnary()) {
504 NewLHS = LHS;
505 NewLHSKind = getLHSKind();
506 }
507 if (Suffix.isUnary()) {
508 NewRHS = Suffix.LHS;
509 NewRHSKind = Suffix.getLHSKind();
510 }
511
512 return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
513 }
514
515 inline Twine operator+(const Twine &LHS, const Twine &RHS) {
516 return LHS.concat(RHS);
517 }
518
519 /// Additional overload to guarantee simplified codegen; this is equivalent to
520 /// concat().
521
522 inline Twine operator+(const char *LHS, const StringRef &RHS) {
523 return Twine(LHS, RHS);
524 }
525
526 /// Additional overload to guarantee simplified codegen; this is equivalent to
527 /// concat().
528
529 inline Twine operator+(const StringRef &LHS, const char *RHS) {
530 return Twine(LHS, RHS);
531 }
532
533 inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
534 RHS.print(OS);
535 return OS;
536 }
537
538 /// @}
539
540} // end namespace llvm
541
542#endif // LLVM_ADT_TWINE_H

/build/llvm-toolchain-snapshot-6.0~svn318882/include/llvm/MC/MCParser/MCAsmParserExtension.h

1//===- llvm/MC/MCAsmParserExtension.h - Asm Parser Hooks --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCPARSER_MCASMPARSEREXTENSION_H
11#define LLVM_MC_MCPARSER_MCASMPARSEREXTENSION_H
12
13#include "llvm/ADT/STLExtras.h"
14#include "llvm/ADT/StringRef.h"
15#include "llvm/MC/MCParser/MCAsmLexer.h"
16#include "llvm/MC/MCParser/MCAsmParser.h"
17#include "llvm/Support/SMLoc.h"
18
19namespace llvm {
20
21class Twine;
22
23/// \brief Generic interface for extending the MCAsmParser,
24/// which is implemented by target and object file assembly parser
25/// implementations.
26class MCAsmParserExtension {
27 MCAsmParser *Parser;
28
29protected:
30 MCAsmParserExtension();
31
32 // Helper template for implementing static dispatch functions.
33 template<typename T, bool (T::*Handler)(StringRef, SMLoc)>
34 static bool HandleDirective(MCAsmParserExtension *Target,
35 StringRef Directive,
36 SMLoc DirectiveLoc) {
37 T *Obj = static_cast<T*>(Target);
38 return (Obj->*Handler)(Directive, DirectiveLoc);
39 }
40
41 bool BracketExpressionsSupported = false;
42
43public:
44 MCAsmParserExtension(const MCAsmParserExtension &) = delete;
45 MCAsmParserExtension &operator=(const MCAsmParserExtension &) = delete;
46 virtual ~MCAsmParserExtension();
47
48 /// \brief Initialize the extension for parsing using the given \p Parser.
49 /// The extension should use the AsmParser interfaces to register its
50 /// parsing routines.
51 virtual void Initialize(MCAsmParser &Parser);
52
53 /// \name MCAsmParser Proxy Interfaces
54 /// @{
55
56 MCContext &getContext() { return getParser().getContext(); }
57
58 MCAsmLexer &getLexer() { return getParser().getLexer(); }
59 const MCAsmLexer &getLexer() const {
60 return const_cast<MCAsmParserExtension *>(this)->getLexer();
61 }
62
63 MCAsmParser &getParser() { return *Parser; }
64 const MCAsmParser &getParser() const {
65 return const_cast<MCAsmParserExtension*>(this)->getParser();
66 }
67
68 SourceMgr &getSourceManager() { return getParser().getSourceManager(); }
69 MCStreamer &getStreamer() { return getParser().getStreamer(); }
70
71 bool Warning(SMLoc L, const Twine &Msg) {
72 return getParser().Warning(L, Msg);
73 }
74
75 bool Error(SMLoc L, const Twine &Msg, SMRange Range = SMRange()) {
76 return getParser().Error(L, Msg, Range);
15
Calling 'MCAsmParserExtension::getParser'
16
Returning from 'MCAsmParserExtension::getParser'
77 }
78
79 void Note(SMLoc L, const Twine &Msg) {
80 getParser().Note(L, Msg);
81 }
82
83 bool TokError(const Twine &Msg) {
84 return getParser().TokError(Msg);
85 }
86
87 const AsmToken &Lex() { return getParser().Lex(); }
88 const AsmToken &getTok() { return getParser().getTok(); }
89 bool parseToken(AsmToken::TokenKind T,
90 const Twine &Msg = "unexpected token") {
91 return getParser().parseToken(T, Msg);
92 }
93
94 bool parseMany(function_ref<bool()> parseOne, bool hasComma = true) {
95 return getParser().parseMany(parseOne, hasComma);
96 }
97
98 bool parseOptionalToken(AsmToken::TokenKind T) {
99 return getParser().parseOptionalToken(T);
100 }
101
102 bool check(bool P, const Twine &Msg) {
103 return getParser().check(P, Msg);
104 }
105
106 bool check(bool P, SMLoc Loc, const Twine &Msg) {
107 return getParser().check(P, Loc, Msg);
108 }
109
110 bool addErrorSuffix(const Twine &Suffix) {
111 return getParser().addErrorSuffix(Suffix);
112 }
113
114 bool HasBracketExpressions() const { return BracketExpressionsSupported; }
115
116 /// @}
117};
118
119} // end namespace llvm
120
121#endif // LLVM_MC_MCPARSER_MCASMPARSEREXTENSION_H