Bug Summary

File:llvm/include/llvm/ADT/APInt.h
Warning:line 450, column 36
The result of the left shift is undefined due to shifting by '4294967295', which is greater or equal to the width of type 'llvm::APInt::WordType'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name TargetLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/CodeGen/SelectionDAG -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/CodeGen/SelectionDAG -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp

1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/TargetLowering.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/CodeGen/CallingConvLower.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineJumpTableInfo.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/CodeGen/TargetRegisterInfo.h"
22#include "llvm/CodeGen/TargetSubtargetInfo.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/LLVMContext.h"
27#include "llvm/MC/MCAsmInfo.h"
28#include "llvm/MC/MCExpr.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/KnownBits.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetLoweringObjectFile.h"
33#include "llvm/Target/TargetMachine.h"
34#include <cctype>
35using namespace llvm;
36
37/// NOTE: The TargetMachine owns TLOF.
38TargetLowering::TargetLowering(const TargetMachine &tm)
39 : TargetLoweringBase(tm) {}
40
41const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42 return nullptr;
43}
44
45bool TargetLowering::isPositionIndependent() const {
46 return getTargetMachine().isPositionIndependent();
47}
48
49/// Check whether a given call node is in tail position within its function. If
50/// so, it sets Chain to the input chain of the tail call.
51bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52 SDValue &Chain) const {
53 const Function &F = DAG.getMachineFunction().getFunction();
54
55 // First, check if tail calls have been disabled in this function.
56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57 return false;
58
59 // Conservatively require the attributes of the call to match those of
60 // the return. Ignore following attributes because they don't affect the
61 // call sequence.
62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64 Attribute::DereferenceableOrNull, Attribute::NoAlias,
65 Attribute::NonNull})
66 CallerAttrs.removeAttribute(Attr);
67
68 if (CallerAttrs.hasAttributes())
69 return false;
70
71 // It's not safe to eliminate the sign / zero extension of the return value.
72 if (CallerAttrs.contains(Attribute::ZExt) ||
73 CallerAttrs.contains(Attribute::SExt))
74 return false;
75
76 // Check if the only use is a function return node.
77 return isUsedByReturnOnly(Node, Chain);
78}
79
80bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81 const uint32_t *CallerPreservedMask,
82 const SmallVectorImpl<CCValAssign> &ArgLocs,
83 const SmallVectorImpl<SDValue> &OutVals) const {
84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85 const CCValAssign &ArgLoc = ArgLocs[I];
86 if (!ArgLoc.isRegLoc())
87 continue;
88 MCRegister Reg = ArgLoc.getLocReg();
89 // Only look at callee saved registers.
90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91 continue;
92 // Check that we pass the value used for the caller.
93 // (We look for a CopyFromReg reading a virtual register that is used
94 // for the function live-in value of register Reg)
95 SDValue Value = OutVals[I];
96 if (Value->getOpcode() != ISD::CopyFromReg)
97 return false;
98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
99 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
100 return false;
101 }
102 return true;
103}
104
105/// Set CallLoweringInfo attribute flags based on a call instruction
106/// and called function attributes.
107void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
108 unsigned ArgIdx) {
109 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
110 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
111 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
112 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
113 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
114 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
115 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
116 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
117 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
118 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
119 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
120 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
121 Alignment = Call->getParamStackAlign(ArgIdx);
122 IndirectType = nullptr;
123 assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&(static_cast <bool> (IsByVal + IsPreallocated + IsInAlloca
<= 1 && "multiple ABI attributes?") ? void (0) : __assert_fail
("IsByVal + IsPreallocated + IsInAlloca <= 1 && \"multiple ABI attributes?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 124, __extension__ __PRETTY_FUNCTION__))
124 "multiple ABI attributes?")(static_cast <bool> (IsByVal + IsPreallocated + IsInAlloca
<= 1 && "multiple ABI attributes?") ? void (0) : __assert_fail
("IsByVal + IsPreallocated + IsInAlloca <= 1 && \"multiple ABI attributes?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 124, __extension__ __PRETTY_FUNCTION__))
;
125 if (IsByVal) {
126 IndirectType = Call->getParamByValType(ArgIdx);
127 if (!Alignment)
128 Alignment = Call->getParamAlign(ArgIdx);
129 }
130 if (IsPreallocated)
131 IndirectType = Call->getParamPreallocatedType(ArgIdx);
132 if (IsInAlloca)
133 IndirectType = Call->getParamInAllocaType(ArgIdx);
134}
135
136/// Generate a libcall taking the given operands as arguments and returning a
137/// result of type RetVT.
138std::pair<SDValue, SDValue>
139TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
140 ArrayRef<SDValue> Ops,
141 MakeLibCallOptions CallOptions,
142 const SDLoc &dl,
143 SDValue InChain) const {
144 if (!InChain)
145 InChain = DAG.getEntryNode();
146
147 TargetLowering::ArgListTy Args;
148 Args.reserve(Ops.size());
149
150 TargetLowering::ArgListEntry Entry;
151 for (unsigned i = 0; i < Ops.size(); ++i) {
152 SDValue NewOp = Ops[i];
153 Entry.Node = NewOp;
154 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
155 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
156 CallOptions.IsSExt);
157 Entry.IsZExt = !Entry.IsSExt;
158
159 if (CallOptions.IsSoften &&
160 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
161 Entry.IsSExt = Entry.IsZExt = false;
162 }
163 Args.push_back(Entry);
164 }
165
166 if (LC == RTLIB::UNKNOWN_LIBCALL)
167 report_fatal_error("Unsupported library call operation!");
168 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
169 getPointerTy(DAG.getDataLayout()));
170
171 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
172 TargetLowering::CallLoweringInfo CLI(DAG);
173 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
174 bool zeroExtend = !signExtend;
175
176 if (CallOptions.IsSoften &&
177 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
178 signExtend = zeroExtend = false;
179 }
180
181 CLI.setDebugLoc(dl)
182 .setChain(InChain)
183 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
184 .setNoReturn(CallOptions.DoesNotReturn)
185 .setDiscardResult(!CallOptions.IsReturnValueUsed)
186 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
187 .setSExtResult(signExtend)
188 .setZExtResult(zeroExtend);
189 return LowerCallTo(CLI);
190}
191
192bool TargetLowering::findOptimalMemOpLowering(
193 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
194 unsigned SrcAS, const AttributeList &FuncAttributes) const {
195 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
196 return false;
197
198 EVT VT = getOptimalMemOpType(Op, FuncAttributes);
199
200 if (VT == MVT::Other) {
201 // Use the largest integer type whose alignment constraints are satisfied.
202 // We only need to check DstAlign here as SrcAlign is always greater or
203 // equal to DstAlign (or zero).
204 VT = MVT::i64;
205 if (Op.isFixedDstAlign())
206 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
207 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
208 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
209 assert(VT.isInteger())(static_cast <bool> (VT.isInteger()) ? void (0) : __assert_fail
("VT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 209, __extension__ __PRETTY_FUNCTION__))
;
210
211 // Find the largest legal integer type.
212 MVT LVT = MVT::i64;
213 while (!isTypeLegal(LVT))
214 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
215 assert(LVT.isInteger())(static_cast <bool> (LVT.isInteger()) ? void (0) : __assert_fail
("LVT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 215, __extension__ __PRETTY_FUNCTION__))
;
216
217 // If the type we've chosen is larger than the largest legal integer type
218 // then use that instead.
219 if (VT.bitsGT(LVT))
220 VT = LVT;
221 }
222
223 unsigned NumMemOps = 0;
224 uint64_t Size = Op.size();
225 while (Size) {
226 unsigned VTSize = VT.getSizeInBits() / 8;
227 while (VTSize > Size) {
228 // For now, only use non-vector load / store's for the left-over pieces.
229 EVT NewVT = VT;
230 unsigned NewVTSize;
231
232 bool Found = false;
233 if (VT.isVector() || VT.isFloatingPoint()) {
234 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
235 if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
236 isSafeMemOpType(NewVT.getSimpleVT()))
237 Found = true;
238 else if (NewVT == MVT::i64 &&
239 isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
240 isSafeMemOpType(MVT::f64)) {
241 // i64 is usually not legal on 32-bit targets, but f64 may be.
242 NewVT = MVT::f64;
243 Found = true;
244 }
245 }
246
247 if (!Found) {
248 do {
249 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
250 if (NewVT == MVT::i8)
251 break;
252 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
253 }
254 NewVTSize = NewVT.getSizeInBits() / 8;
255
256 // If the new VT cannot cover all of the remaining bits, then consider
257 // issuing a (or a pair of) unaligned and overlapping load / store.
258 bool Fast;
259 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
260 allowsMisalignedMemoryAccesses(
261 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
262 MachineMemOperand::MONone, &Fast) &&
263 Fast)
264 VTSize = Size;
265 else {
266 VT = NewVT;
267 VTSize = NewVTSize;
268 }
269 }
270
271 if (++NumMemOps > Limit)
272 return false;
273
274 MemOps.push_back(VT);
275 Size -= VTSize;
276 }
277
278 return true;
279}
280
281/// Soften the operands of a comparison. This code is shared among BR_CC,
282/// SELECT_CC, and SETCC handlers.
283void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
284 SDValue &NewLHS, SDValue &NewRHS,
285 ISD::CondCode &CCCode,
286 const SDLoc &dl, const SDValue OldLHS,
287 const SDValue OldRHS) const {
288 SDValue Chain;
289 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
290 OldRHS, Chain);
291}
292
293void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
294 SDValue &NewLHS, SDValue &NewRHS,
295 ISD::CondCode &CCCode,
296 const SDLoc &dl, const SDValue OldLHS,
297 const SDValue OldRHS,
298 SDValue &Chain,
299 bool IsSignaling) const {
300 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
301 // not supporting it. We can update this code when libgcc provides such
302 // functions.
303
304 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)(static_cast <bool> ((VT == MVT::f32 || VT == MVT::f64 ||
VT == MVT::f128 || VT == MVT::ppcf128) && "Unsupported setcc type!"
) ? void (0) : __assert_fail ("(VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) && \"Unsupported setcc type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 305, __extension__ __PRETTY_FUNCTION__))
305 && "Unsupported setcc type!")(static_cast <bool> ((VT == MVT::f32 || VT == MVT::f64 ||
VT == MVT::f128 || VT == MVT::ppcf128) && "Unsupported setcc type!"
) ? void (0) : __assert_fail ("(VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) && \"Unsupported setcc type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 305, __extension__ __PRETTY_FUNCTION__))
;
306
307 // Expand into one or more soft-fp libcall(s).
308 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
309 bool ShouldInvertCC = false;
310 switch (CCCode) {
311 case ISD::SETEQ:
312 case ISD::SETOEQ:
313 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
314 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
315 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
316 break;
317 case ISD::SETNE:
318 case ISD::SETUNE:
319 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
320 (VT == MVT::f64) ? RTLIB::UNE_F64 :
321 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
322 break;
323 case ISD::SETGE:
324 case ISD::SETOGE:
325 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
326 (VT == MVT::f64) ? RTLIB::OGE_F64 :
327 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
328 break;
329 case ISD::SETLT:
330 case ISD::SETOLT:
331 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
332 (VT == MVT::f64) ? RTLIB::OLT_F64 :
333 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
334 break;
335 case ISD::SETLE:
336 case ISD::SETOLE:
337 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
338 (VT == MVT::f64) ? RTLIB::OLE_F64 :
339 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
340 break;
341 case ISD::SETGT:
342 case ISD::SETOGT:
343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
344 (VT == MVT::f64) ? RTLIB::OGT_F64 :
345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
346 break;
347 case ISD::SETO:
348 ShouldInvertCC = true;
349 LLVM_FALLTHROUGH[[gnu::fallthrough]];
350 case ISD::SETUO:
351 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352 (VT == MVT::f64) ? RTLIB::UO_F64 :
353 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354 break;
355 case ISD::SETONE:
356 // SETONE = O && UNE
357 ShouldInvertCC = true;
358 LLVM_FALLTHROUGH[[gnu::fallthrough]];
359 case ISD::SETUEQ:
360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
361 (VT == MVT::f64) ? RTLIB::UO_F64 :
362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
363 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
364 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
365 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
366 break;
367 default:
368 // Invert CC for unordered comparisons
369 ShouldInvertCC = true;
370 switch (CCCode) {
371 case ISD::SETULT:
372 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
373 (VT == MVT::f64) ? RTLIB::OGE_F64 :
374 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
375 break;
376 case ISD::SETULE:
377 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
378 (VT == MVT::f64) ? RTLIB::OGT_F64 :
379 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
380 break;
381 case ISD::SETUGT:
382 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
383 (VT == MVT::f64) ? RTLIB::OLE_F64 :
384 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
385 break;
386 case ISD::SETUGE:
387 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
388 (VT == MVT::f64) ? RTLIB::OLT_F64 :
389 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
390 break;
391 default: llvm_unreachable("Do not know how to soften this setcc!")::llvm::llvm_unreachable_internal("Do not know how to soften this setcc!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 391)
;
392 }
393 }
394
395 // Use the target specific return value for comparions lib calls.
396 EVT RetVT = getCmpLibcallReturnType();
397 SDValue Ops[2] = {NewLHS, NewRHS};
398 TargetLowering::MakeLibCallOptions CallOptions;
399 EVT OpsVT[2] = { OldLHS.getValueType(),
400 OldRHS.getValueType() };
401 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
402 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
403 NewLHS = Call.first;
404 NewRHS = DAG.getConstant(0, dl, RetVT);
405
406 CCCode = getCmpLibcallCC(LC1);
407 if (ShouldInvertCC) {
408 assert(RetVT.isInteger())(static_cast <bool> (RetVT.isInteger()) ? void (0) : __assert_fail
("RetVT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 408, __extension__ __PRETTY_FUNCTION__))
;
409 CCCode = getSetCCInverse(CCCode, RetVT);
410 }
411
412 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
413 // Update Chain.
414 Chain = Call.second;
415 } else {
416 EVT SetCCVT =
417 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
418 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
419 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
420 CCCode = getCmpLibcallCC(LC2);
421 if (ShouldInvertCC)
422 CCCode = getSetCCInverse(CCCode, RetVT);
423 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
424 if (Chain)
425 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
426 Call2.second);
427 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
428 Tmp.getValueType(), Tmp, NewLHS);
429 NewRHS = SDValue();
430 }
431}
432
433/// Return the entry encoding for a jump table in the current function. The
434/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
435unsigned TargetLowering::getJumpTableEncoding() const {
436 // In non-pic modes, just use the address of a block.
437 if (!isPositionIndependent())
438 return MachineJumpTableInfo::EK_BlockAddress;
439
440 // In PIC mode, if the target supports a GPRel32 directive, use it.
441 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
442 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
443
444 // Otherwise, use a label difference.
445 return MachineJumpTableInfo::EK_LabelDifference32;
446}
447
448SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
449 SelectionDAG &DAG) const {
450 // If our PIC model is GP relative, use the global offset table as the base.
451 unsigned JTEncoding = getJumpTableEncoding();
452
453 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
454 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
455 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
456
457 return Table;
458}
459
460/// This returns the relocation base for the given PIC jumptable, the same as
461/// getPICJumpTableRelocBase, but as an MCExpr.
462const MCExpr *
463TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
464 unsigned JTI,MCContext &Ctx) const{
465 // The normal PIC reloc base is the label at the start of the jump table.
466 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
467}
468
469bool
470TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
471 const TargetMachine &TM = getTargetMachine();
472 const GlobalValue *GV = GA->getGlobal();
473
474 // If the address is not even local to this DSO we will have to load it from
475 // a got and then add the offset.
476 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
477 return false;
478
479 // If the code is position independent we will have to add a base register.
480 if (isPositionIndependent())
481 return false;
482
483 // Otherwise we can do it.
484 return true;
485}
486
487//===----------------------------------------------------------------------===//
488// Optimization Methods
489//===----------------------------------------------------------------------===//
490
491/// If the specified instruction has a constant integer operand and there are
492/// bits set in that constant that are not demanded, then clear those bits and
493/// return true.
494bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
495 const APInt &DemandedBits,
496 const APInt &DemandedElts,
497 TargetLoweringOpt &TLO) const {
498 SDLoc DL(Op);
499 unsigned Opcode = Op.getOpcode();
500
501 // Do target-specific constant optimization.
502 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
503 return TLO.New.getNode();
504
505 // FIXME: ISD::SELECT, ISD::SELECT_CC
506 switch (Opcode) {
507 default:
508 break;
509 case ISD::XOR:
510 case ISD::AND:
511 case ISD::OR: {
512 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
513 if (!Op1C || Op1C->isOpaque())
514 return false;
515
516 // If this is a 'not' op, don't touch it because that's a canonical form.
517 const APInt &C = Op1C->getAPIntValue();
518 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
519 return false;
520
521 if (!C.isSubsetOf(DemandedBits)) {
522 EVT VT = Op.getValueType();
523 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
524 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
525 return TLO.CombineTo(Op, NewOp);
526 }
527
528 break;
529 }
530 }
531
532 return false;
533}
534
535bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
536 const APInt &DemandedBits,
537 TargetLoweringOpt &TLO) const {
538 EVT VT = Op.getValueType();
539 APInt DemandedElts = VT.isVector()
540 ? APInt::getAllOnesValue(VT.getVectorNumElements())
541 : APInt(1, 1);
542 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
543}
544
545/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
546/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
547/// generalized for targets with other types of implicit widening casts.
548bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
549 const APInt &Demanded,
550 TargetLoweringOpt &TLO) const {
551 assert(Op.getNumOperands() == 2 &&(static_cast <bool> (Op.getNumOperands() == 2 &&
"ShrinkDemandedOp only supports binary operators!") ? void (
0) : __assert_fail ("Op.getNumOperands() == 2 && \"ShrinkDemandedOp only supports binary operators!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 552, __extension__ __PRETTY_FUNCTION__))
552 "ShrinkDemandedOp only supports binary operators!")(static_cast <bool> (Op.getNumOperands() == 2 &&
"ShrinkDemandedOp only supports binary operators!") ? void (
0) : __assert_fail ("Op.getNumOperands() == 2 && \"ShrinkDemandedOp only supports binary operators!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 552, __extension__ __PRETTY_FUNCTION__))
;
553 assert(Op.getNode()->getNumValues() == 1 &&(static_cast <bool> (Op.getNode()->getNumValues() ==
1 && "ShrinkDemandedOp only supports nodes with one result!"
) ? void (0) : __assert_fail ("Op.getNode()->getNumValues() == 1 && \"ShrinkDemandedOp only supports nodes with one result!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 554, __extension__ __PRETTY_FUNCTION__))
554 "ShrinkDemandedOp only supports nodes with one result!")(static_cast <bool> (Op.getNode()->getNumValues() ==
1 && "ShrinkDemandedOp only supports nodes with one result!"
) ? void (0) : __assert_fail ("Op.getNode()->getNumValues() == 1 && \"ShrinkDemandedOp only supports nodes with one result!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 554, __extension__ __PRETTY_FUNCTION__))
;
555
556 SelectionDAG &DAG = TLO.DAG;
557 SDLoc dl(Op);
558
559 // Early return, as this function cannot handle vector types.
560 if (Op.getValueType().isVector())
561 return false;
562
563 // Don't do this if the node has another user, which may require the
564 // full value.
565 if (!Op.getNode()->hasOneUse())
566 return false;
567
568 // Search for the smallest integer type with free casts to and from
569 // Op's type. For expedience, just check power-of-2 integer types.
570 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
571 unsigned DemandedSize = Demanded.getActiveBits();
572 unsigned SmallVTBits = DemandedSize;
573 if (!isPowerOf2_32(SmallVTBits))
574 SmallVTBits = NextPowerOf2(SmallVTBits);
575 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
576 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
577 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
578 TLI.isZExtFree(SmallVT, Op.getValueType())) {
579 // We found a type with free casts.
580 SDValue X = DAG.getNode(
581 Op.getOpcode(), dl, SmallVT,
582 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
584 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?")(static_cast <bool> (DemandedSize <= SmallVTBits &&
"Narrowed below demanded bits?") ? void (0) : __assert_fail (
"DemandedSize <= SmallVTBits && \"Narrowed below demanded bits?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 584, __extension__ __PRETTY_FUNCTION__))
;
585 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
586 return TLO.CombineTo(Op, Z);
587 }
588 }
589 return false;
590}
591
592bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
593 DAGCombinerInfo &DCI) const {
594 SelectionDAG &DAG = DCI.DAG;
595 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
596 !DCI.isBeforeLegalizeOps());
597 KnownBits Known;
598
599 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
600 if (Simplified) {
601 DCI.AddToWorklist(Op.getNode());
602 DCI.CommitTargetLoweringOpt(TLO);
603 }
604 return Simplified;
605}
606
607bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
608 KnownBits &Known,
609 TargetLoweringOpt &TLO,
610 unsigned Depth,
611 bool AssumeSingleUse) const {
612 EVT VT = Op.getValueType();
613
614 // TODO: We can probably do more work on calculating the known bits and
615 // simplifying the operations for scalable vectors, but for now we just
616 // bail out.
617 if (VT.isScalableVector()) {
618 // Pretend we don't know anything for now.
619 Known = KnownBits(DemandedBits.getBitWidth());
620 return false;
621 }
622
623 APInt DemandedElts = VT.isVector()
624 ? APInt::getAllOnesValue(VT.getVectorNumElements())
625 : APInt(1, 1);
626 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
627 AssumeSingleUse);
628}
629
630// TODO: Can we merge SelectionDAG::GetDemandedBits into this?
631// TODO: Under what circumstances can we create nodes? Constant folding?
632SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
633 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
634 SelectionDAG &DAG, unsigned Depth) const {
635 // Limit search depth.
636 if (Depth >= SelectionDAG::MaxRecursionDepth)
637 return SDValue();
638
639 // Ignore UNDEFs.
640 if (Op.isUndef())
641 return SDValue();
642
643 // Not demanding any bits/elts from Op.
644 if (DemandedBits == 0 || DemandedElts == 0)
645 return DAG.getUNDEF(Op.getValueType());
646
647 unsigned NumElts = DemandedElts.getBitWidth();
648 unsigned BitWidth = DemandedBits.getBitWidth();
649 KnownBits LHSKnown, RHSKnown;
650 switch (Op.getOpcode()) {
651 case ISD::BITCAST: {
652 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
653 EVT SrcVT = Src.getValueType();
654 EVT DstVT = Op.getValueType();
655 if (SrcVT == DstVT)
656 return Src;
657
658 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
659 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
660 if (NumSrcEltBits == NumDstEltBits)
661 if (SDValue V = SimplifyMultipleUseDemandedBits(
662 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
663 return DAG.getBitcast(DstVT, V);
664
665 // TODO - bigendian once we have test coverage.
666 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
667 DAG.getDataLayout().isLittleEndian()) {
668 unsigned Scale = NumDstEltBits / NumSrcEltBits;
669 unsigned NumSrcElts = SrcVT.getVectorNumElements();
670 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
671 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
672 for (unsigned i = 0; i != Scale; ++i) {
673 unsigned Offset = i * NumSrcEltBits;
674 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
675 if (!Sub.isNullValue()) {
676 DemandedSrcBits |= Sub;
677 for (unsigned j = 0; j != NumElts; ++j)
678 if (DemandedElts[j])
679 DemandedSrcElts.setBit((j * Scale) + i);
680 }
681 }
682
683 if (SDValue V = SimplifyMultipleUseDemandedBits(
684 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
685 return DAG.getBitcast(DstVT, V);
686 }
687
688 // TODO - bigendian once we have test coverage.
689 if ((NumSrcEltBits % NumDstEltBits) == 0 &&
690 DAG.getDataLayout().isLittleEndian()) {
691 unsigned Scale = NumSrcEltBits / NumDstEltBits;
692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
694 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
695 for (unsigned i = 0; i != NumElts; ++i)
696 if (DemandedElts[i]) {
697 unsigned Offset = (i % Scale) * NumDstEltBits;
698 DemandedSrcBits.insertBits(DemandedBits, Offset);
699 DemandedSrcElts.setBit(i / Scale);
700 }
701
702 if (SDValue V = SimplifyMultipleUseDemandedBits(
703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704 return DAG.getBitcast(DstVT, V);
705 }
706
707 break;
708 }
709 case ISD::AND: {
710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712
713 // If all of the demanded bits are known 1 on one side, return the other.
714 // These bits cannot contribute to the result of the 'and' in this
715 // context.
716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717 return Op.getOperand(0);
718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719 return Op.getOperand(1);
720 break;
721 }
722 case ISD::OR: {
723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725
726 // If all of the demanded bits are known zero on one side, return the
727 // other. These bits cannot contribute to the result of the 'or' in this
728 // context.
729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730 return Op.getOperand(0);
731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732 return Op.getOperand(1);
733 break;
734 }
735 case ISD::XOR: {
736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738
739 // If all of the demanded bits are known zero on one side, return the
740 // other.
741 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742 return Op.getOperand(0);
743 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744 return Op.getOperand(1);
745 break;
746 }
747 case ISD::SHL: {
748 // If we are only demanding sign bits then we can use the shift source
749 // directly.
750 if (const APInt *MaxSA =
751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752 SDValue Op0 = Op.getOperand(0);
753 unsigned ShAmt = MaxSA->getZExtValue();
754 unsigned NumSignBits =
755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758 return Op0;
759 }
760 break;
761 }
762 case ISD::SETCC: {
763 SDValue Op0 = Op.getOperand(0);
764 SDValue Op1 = Op.getOperand(1);
765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766 // If (1) we only need the sign-bit, (2) the setcc operands are the same
767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768 // -1, we may be able to bypass the setcc.
769 if (DemandedBits.isSignMask() &&
770 Op0.getScalarValueSizeInBits() == BitWidth &&
771 getBooleanContents(Op0.getValueType()) ==
772 BooleanContent::ZeroOrNegativeOneBooleanContent) {
773 // If we're testing X < 0, then this compare isn't needed - just use X!
774 // FIXME: We're limiting to integer types here, but this should also work
775 // if we don't care about FP signed-zero. The use of SETLT with FP means
776 // that we don't care about NaNs.
777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779 return Op0;
780 }
781 break;
782 }
783 case ISD::SIGN_EXTEND_INREG: {
784 // If none of the extended bits are demanded, eliminate the sextinreg.
785 SDValue Op0 = Op.getOperand(0);
786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787 unsigned ExBits = ExVT.getScalarSizeInBits();
788 if (DemandedBits.getActiveBits() <= ExBits)
789 return Op0;
790 // If the input is already sign extended, just drop the extension.
791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792 if (NumSignBits >= (BitWidth - ExBits + 1))
793 return Op0;
794 break;
795 }
796 case ISD::ANY_EXTEND_VECTOR_INREG:
797 case ISD::SIGN_EXTEND_VECTOR_INREG:
798 case ISD::ZERO_EXTEND_VECTOR_INREG: {
799 // If we only want the lowest element and none of extended bits, then we can
800 // return the bitcasted source vector.
801 SDValue Src = Op.getOperand(0);
802 EVT SrcVT = Src.getValueType();
803 EVT DstVT = Op.getValueType();
804 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
805 DAG.getDataLayout().isLittleEndian() &&
806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807 return DAG.getBitcast(DstVT, Src);
808 }
809 break;
810 }
811 case ISD::INSERT_VECTOR_ELT: {
812 // If we don't demand the inserted element, return the base vector.
813 SDValue Vec = Op.getOperand(0);
814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815 EVT VecVT = Vec.getValueType();
816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817 !DemandedElts[CIdx->getZExtValue()])
818 return Vec;
819 break;
820 }
821 case ISD::INSERT_SUBVECTOR: {
822 // If we don't demand the inserted subvector, return the base vector.
823 SDValue Vec = Op.getOperand(0);
824 SDValue Sub = Op.getOperand(1);
825 uint64_t Idx = Op.getConstantOperandVal(2);
826 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
827 if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
828 return Vec;
829 break;
830 }
831 case ISD::VECTOR_SHUFFLE: {
832 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
833
834 // If all the demanded elts are from one operand and are inline,
835 // then we can use the operand directly.
836 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
837 for (unsigned i = 0; i != NumElts; ++i) {
838 int M = ShuffleMask[i];
839 if (M < 0 || !DemandedElts[i])
840 continue;
841 AllUndef = false;
842 IdentityLHS &= (M == (int)i);
843 IdentityRHS &= ((M - NumElts) == i);
844 }
845
846 if (AllUndef)
847 return DAG.getUNDEF(Op.getValueType());
848 if (IdentityLHS)
849 return Op.getOperand(0);
850 if (IdentityRHS)
851 return Op.getOperand(1);
852 break;
853 }
854 default:
855 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
856 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
857 Op, DemandedBits, DemandedElts, DAG, Depth))
858 return V;
859 break;
860 }
861 return SDValue();
862}
863
864SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
865 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
866 unsigned Depth) const {
867 EVT VT = Op.getValueType();
868 APInt DemandedElts = VT.isVector()
869 ? APInt::getAllOnesValue(VT.getVectorNumElements())
870 : APInt(1, 1);
871 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
872 Depth);
873}
874
875SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
876 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
877 unsigned Depth) const {
878 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880 Depth);
881}
882
883/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
884/// result of Op are ever used downstream. If we can use this information to
885/// simplify Op, create a new simplified DAG node and return true, returning the
886/// original and new nodes in Old and New. Otherwise, analyze the expression and
887/// return a mask of Known bits for the expression (used to simplify the
888/// caller). The Known bits may only be accurate for those bits in the
889/// OriginalDemandedBits and OriginalDemandedElts.
890bool TargetLowering::SimplifyDemandedBits(
891 SDValue Op, const APInt &OriginalDemandedBits,
892 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
893 unsigned Depth, bool AssumeSingleUse) const {
894 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
895 assert(Op.getScalarValueSizeInBits() == BitWidth &&(static_cast <bool> (Op.getScalarValueSizeInBits() == BitWidth
&& "Mask size mismatches value type size!") ? void (
0) : __assert_fail ("Op.getScalarValueSizeInBits() == BitWidth && \"Mask size mismatches value type size!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 896, __extension__ __PRETTY_FUNCTION__))
896 "Mask size mismatches value type size!")(static_cast <bool> (Op.getScalarValueSizeInBits() == BitWidth
&& "Mask size mismatches value type size!") ? void (
0) : __assert_fail ("Op.getScalarValueSizeInBits() == BitWidth && \"Mask size mismatches value type size!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 896, __extension__ __PRETTY_FUNCTION__))
;
897
898 // Don't know anything.
899 Known = KnownBits(BitWidth);
900
901 // TODO: We can probably do more work on calculating the known bits and
902 // simplifying the operations for scalable vectors, but for now we just
903 // bail out.
904 if (Op.getValueType().isScalableVector())
905 return false;
906
907 unsigned NumElts = OriginalDemandedElts.getBitWidth();
908 assert((!Op.getValueType().isVector() ||(static_cast <bool> ((!Op.getValueType().isVector() || NumElts
== Op.getValueType().getVectorNumElements()) && "Unexpected vector size"
) ? void (0) : __assert_fail ("(!Op.getValueType().isVector() || NumElts == Op.getValueType().getVectorNumElements()) && \"Unexpected vector size\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 910, __extension__ __PRETTY_FUNCTION__))
909 NumElts == Op.getValueType().getVectorNumElements()) &&(static_cast <bool> ((!Op.getValueType().isVector() || NumElts
== Op.getValueType().getVectorNumElements()) && "Unexpected vector size"
) ? void (0) : __assert_fail ("(!Op.getValueType().isVector() || NumElts == Op.getValueType().getVectorNumElements()) && \"Unexpected vector size\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 910, __extension__ __PRETTY_FUNCTION__))
910 "Unexpected vector size")(static_cast <bool> ((!Op.getValueType().isVector() || NumElts
== Op.getValueType().getVectorNumElements()) && "Unexpected vector size"
) ? void (0) : __assert_fail ("(!Op.getValueType().isVector() || NumElts == Op.getValueType().getVectorNumElements()) && \"Unexpected vector size\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 910, __extension__ __PRETTY_FUNCTION__))
;
911
912 APInt DemandedBits = OriginalDemandedBits;
913 APInt DemandedElts = OriginalDemandedElts;
914 SDLoc dl(Op);
915 auto &DL = TLO.DAG.getDataLayout();
916
917 // Undef operand.
918 if (Op.isUndef())
919 return false;
920
921 if (Op.getOpcode() == ISD::Constant) {
922 // We know all of the bits for a constant!
923 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
924 return false;
925 }
926
927 if (Op.getOpcode() == ISD::ConstantFP) {
928 // We know all of the bits for a floating point constant!
929 Known = KnownBits::makeConstant(
930 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
931 return false;
932 }
933
934 // Other users may use these bits.
935 EVT VT = Op.getValueType();
936 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
937 if (Depth != 0) {
938 // If not at the root, Just compute the Known bits to
939 // simplify things downstream.
940 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
941 return false;
942 }
943 // If this is the root being simplified, allow it to have multiple uses,
944 // just set the DemandedBits/Elts to all bits.
945 DemandedBits = APInt::getAllOnesValue(BitWidth);
946 DemandedElts = APInt::getAllOnesValue(NumElts);
947 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
948 // Not demanding any bits/elts from Op.
949 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
950 } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
951 // Limit search depth.
952 return false;
953 }
954
955 KnownBits Known2;
956 switch (Op.getOpcode()) {
957 case ISD::TargetConstant:
958 llvm_unreachable("Can't simplify this node")::llvm::llvm_unreachable_internal("Can't simplify this node",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 958)
;
959 case ISD::SCALAR_TO_VECTOR: {
960 if (!DemandedElts[0])
961 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
962
963 KnownBits SrcKnown;
964 SDValue Src = Op.getOperand(0);
965 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
966 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
967 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
968 return true;
969
970 // Upper elements are undef, so only get the knownbits if we just demand
971 // the bottom element.
972 if (DemandedElts == 1)
973 Known = SrcKnown.anyextOrTrunc(BitWidth);
974 break;
975 }
976 case ISD::BUILD_VECTOR:
977 // Collect the known bits that are shared by every demanded element.
978 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
979 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
980 return false; // Don't fall through, will infinitely loop.
981 case ISD::LOAD: {
982 auto *LD = cast<LoadSDNode>(Op);
983 if (getTargetConstantFromLoad(LD)) {
984 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
985 return false; // Don't fall through, will infinitely loop.
986 }
987 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
988 // If this is a ZEXTLoad and we are looking at the loaded value.
989 EVT MemVT = LD->getMemoryVT();
990 unsigned MemBits = MemVT.getScalarSizeInBits();
991 Known.Zero.setBitsFrom(MemBits);
992 return false; // Don't fall through, will infinitely loop.
993 }
994 break;
995 }
996 case ISD::INSERT_VECTOR_ELT: {
997 SDValue Vec = Op.getOperand(0);
998 SDValue Scl = Op.getOperand(1);
999 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1000 EVT VecVT = Vec.getValueType();
1001
1002 // If index isn't constant, assume we need all vector elements AND the
1003 // inserted element.
1004 APInt DemandedVecElts(DemandedElts);
1005 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1006 unsigned Idx = CIdx->getZExtValue();
1007 DemandedVecElts.clearBit(Idx);
1008
1009 // Inserted element is not required.
1010 if (!DemandedElts[Idx])
1011 return TLO.CombineTo(Op, Vec);
1012 }
1013
1014 KnownBits KnownScl;
1015 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1016 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1017 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1018 return true;
1019
1020 Known = KnownScl.anyextOrTrunc(BitWidth);
1021
1022 KnownBits KnownVec;
1023 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1024 Depth + 1))
1025 return true;
1026
1027 if (!!DemandedVecElts)
1028 Known = KnownBits::commonBits(Known, KnownVec);
1029
1030 return false;
1031 }
1032 case ISD::INSERT_SUBVECTOR: {
1033 // Demand any elements from the subvector and the remainder from the src its
1034 // inserted into.
1035 SDValue Src = Op.getOperand(0);
1036 SDValue Sub = Op.getOperand(1);
1037 uint64_t Idx = Op.getConstantOperandVal(2);
1038 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1039 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1040 APInt DemandedSrcElts = DemandedElts;
1041 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1042
1043 KnownBits KnownSub, KnownSrc;
1044 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1045 Depth + 1))
1046 return true;
1047 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1048 Depth + 1))
1049 return true;
1050
1051 Known.Zero.setAllBits();
1052 Known.One.setAllBits();
1053 if (!!DemandedSubElts)
1054 Known = KnownBits::commonBits(Known, KnownSub);
1055 if (!!DemandedSrcElts)
1056 Known = KnownBits::commonBits(Known, KnownSrc);
1057
1058 // Attempt to avoid multi-use src if we don't need anything from it.
1059 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1060 !DemandedSrcElts.isAllOnesValue()) {
1061 SDValue NewSub = SimplifyMultipleUseDemandedBits(
1062 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1063 SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1064 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1065 if (NewSub || NewSrc) {
1066 NewSub = NewSub ? NewSub : Sub;
1067 NewSrc = NewSrc ? NewSrc : Src;
1068 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1069 Op.getOperand(2));
1070 return TLO.CombineTo(Op, NewOp);
1071 }
1072 }
1073 break;
1074 }
1075 case ISD::EXTRACT_SUBVECTOR: {
1076 // Offset the demanded elts by the subvector index.
1077 SDValue Src = Op.getOperand(0);
1078 if (Src.getValueType().isScalableVector())
1079 break;
1080 uint64_t Idx = Op.getConstantOperandVal(1);
1081 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1082 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1083
1084 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1085 Depth + 1))
1086 return true;
1087
1088 // Attempt to avoid multi-use src if we don't need anything from it.
1089 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1090 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1091 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1092 if (DemandedSrc) {
1093 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1094 Op.getOperand(1));
1095 return TLO.CombineTo(Op, NewOp);
1096 }
1097 }
1098 break;
1099 }
1100 case ISD::CONCAT_VECTORS: {
1101 Known.Zero.setAllBits();
1102 Known.One.setAllBits();
1103 EVT SubVT = Op.getOperand(0).getValueType();
1104 unsigned NumSubVecs = Op.getNumOperands();
1105 unsigned NumSubElts = SubVT.getVectorNumElements();
1106 for (unsigned i = 0; i != NumSubVecs; ++i) {
1107 APInt DemandedSubElts =
1108 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1109 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1110 Known2, TLO, Depth + 1))
1111 return true;
1112 // Known bits are shared by every demanded subvector element.
1113 if (!!DemandedSubElts)
1114 Known = KnownBits::commonBits(Known, Known2);
1115 }
1116 break;
1117 }
1118 case ISD::VECTOR_SHUFFLE: {
1119 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1120
1121 // Collect demanded elements from shuffle operands..
1122 APInt DemandedLHS(NumElts, 0);
1123 APInt DemandedRHS(NumElts, 0);
1124 for (unsigned i = 0; i != NumElts; ++i) {
1125 if (!DemandedElts[i])
1126 continue;
1127 int M = ShuffleMask[i];
1128 if (M < 0) {
1129 // For UNDEF elements, we don't know anything about the common state of
1130 // the shuffle result.
1131 DemandedLHS.clearAllBits();
1132 DemandedRHS.clearAllBits();
1133 break;
1134 }
1135 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range")(static_cast <bool> (0 <= M && M < (int)(
2 * NumElts) && "Shuffle index out of range") ? void (
0) : __assert_fail ("0 <= M && M < (int)(2 * NumElts) && \"Shuffle index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1135, __extension__ __PRETTY_FUNCTION__))
;
1136 if (M < (int)NumElts)
1137 DemandedLHS.setBit(M);
1138 else
1139 DemandedRHS.setBit(M - NumElts);
1140 }
1141
1142 if (!!DemandedLHS || !!DemandedRHS) {
1143 SDValue Op0 = Op.getOperand(0);
1144 SDValue Op1 = Op.getOperand(1);
1145
1146 Known.Zero.setAllBits();
1147 Known.One.setAllBits();
1148 if (!!DemandedLHS) {
1149 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1150 Depth + 1))
1151 return true;
1152 Known = KnownBits::commonBits(Known, Known2);
1153 }
1154 if (!!DemandedRHS) {
1155 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1156 Depth + 1))
1157 return true;
1158 Known = KnownBits::commonBits(Known, Known2);
1159 }
1160
1161 // Attempt to avoid multi-use ops if we don't need anything from them.
1162 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1163 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1164 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1165 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1166 if (DemandedOp0 || DemandedOp1) {
1167 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1168 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1169 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1170 return TLO.CombineTo(Op, NewOp);
1171 }
1172 }
1173 break;
1174 }
1175 case ISD::AND: {
1176 SDValue Op0 = Op.getOperand(0);
1177 SDValue Op1 = Op.getOperand(1);
1178
1179 // If the RHS is a constant, check to see if the LHS would be zero without
1180 // using the bits from the RHS. Below, we use knowledge about the RHS to
1181 // simplify the LHS, here we're using information from the LHS to simplify
1182 // the RHS.
1183 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1184 // Do not increment Depth here; that can cause an infinite loop.
1185 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1186 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1187 if ((LHSKnown.Zero & DemandedBits) ==
1188 (~RHSC->getAPIntValue() & DemandedBits))
1189 return TLO.CombineTo(Op, Op0);
1190
1191 // If any of the set bits in the RHS are known zero on the LHS, shrink
1192 // the constant.
1193 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1194 DemandedElts, TLO))
1195 return true;
1196
1197 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1198 // constant, but if this 'and' is only clearing bits that were just set by
1199 // the xor, then this 'and' can be eliminated by shrinking the mask of
1200 // the xor. For example, for a 32-bit X:
1201 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1202 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1203 LHSKnown.One == ~RHSC->getAPIntValue()) {
1204 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1205 return TLO.CombineTo(Op, Xor);
1206 }
1207 }
1208
1209 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1210 Depth + 1))
1211 return true;
1212 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1212, __extension__ __PRETTY_FUNCTION__))
;
1213 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1214 Known2, TLO, Depth + 1))
1215 return true;
1216 assert(!Known2.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known2.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known2.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1216, __extension__ __PRETTY_FUNCTION__))
;
1217
1218 // Attempt to avoid multi-use ops if we don't need anything from them.
1219 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1220 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1221 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1222 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1223 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1224 if (DemandedOp0 || DemandedOp1) {
1225 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1226 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1227 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1228 return TLO.CombineTo(Op, NewOp);
1229 }
1230 }
1231
1232 // If all of the demanded bits are known one on one side, return the other.
1233 // These bits cannot contribute to the result of the 'and'.
1234 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1235 return TLO.CombineTo(Op, Op0);
1236 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1237 return TLO.CombineTo(Op, Op1);
1238 // If all of the demanded bits in the inputs are known zeros, return zero.
1239 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1240 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1241 // If the RHS is a constant, see if we can simplify it.
1242 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1243 TLO))
1244 return true;
1245 // If the operation can be done in a smaller type, do so.
1246 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1247 return true;
1248
1249 Known &= Known2;
1250 break;
1251 }
1252 case ISD::OR: {
1253 SDValue Op0 = Op.getOperand(0);
1254 SDValue Op1 = Op.getOperand(1);
1255
1256 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1257 Depth + 1))
1258 return true;
1259 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1259, __extension__ __PRETTY_FUNCTION__))
;
1260 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1261 Known2, TLO, Depth + 1))
1262 return true;
1263 assert(!Known2.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known2.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known2.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1263, __extension__ __PRETTY_FUNCTION__))
;
1264
1265 // Attempt to avoid multi-use ops if we don't need anything from them.
1266 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1267 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1268 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1269 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1270 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1271 if (DemandedOp0 || DemandedOp1) {
1272 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1273 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1274 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1275 return TLO.CombineTo(Op, NewOp);
1276 }
1277 }
1278
1279 // If all of the demanded bits are known zero on one side, return the other.
1280 // These bits cannot contribute to the result of the 'or'.
1281 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1282 return TLO.CombineTo(Op, Op0);
1283 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1284 return TLO.CombineTo(Op, Op1);
1285 // If the RHS is a constant, see if we can simplify it.
1286 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1287 return true;
1288 // If the operation can be done in a smaller type, do so.
1289 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1290 return true;
1291
1292 Known |= Known2;
1293 break;
1294 }
1295 case ISD::XOR: {
1296 SDValue Op0 = Op.getOperand(0);
1297 SDValue Op1 = Op.getOperand(1);
1298
1299 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1300 Depth + 1))
1301 return true;
1302 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1302, __extension__ __PRETTY_FUNCTION__))
;
1303 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1304 Depth + 1))
1305 return true;
1306 assert(!Known2.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known2.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known2.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1306, __extension__ __PRETTY_FUNCTION__))
;
1307
1308 // Attempt to avoid multi-use ops if we don't need anything from them.
1309 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1310 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1311 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1312 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1313 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1314 if (DemandedOp0 || DemandedOp1) {
1315 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1316 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1317 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1318 return TLO.CombineTo(Op, NewOp);
1319 }
1320 }
1321
1322 // If all of the demanded bits are known zero on one side, return the other.
1323 // These bits cannot contribute to the result of the 'xor'.
1324 if (DemandedBits.isSubsetOf(Known.Zero))
1325 return TLO.CombineTo(Op, Op0);
1326 if (DemandedBits.isSubsetOf(Known2.Zero))
1327 return TLO.CombineTo(Op, Op1);
1328 // If the operation can be done in a smaller type, do so.
1329 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1330 return true;
1331
1332 // If all of the unknown bits are known to be zero on one side or the other
1333 // turn this into an *inclusive* or.
1334 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1335 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1336 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1337
1338 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1339 if (C) {
1340 // If one side is a constant, and all of the set bits in the constant are
1341 // also known set on the other side, turn this into an AND, as we know
1342 // the bits will be cleared.
1343 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1344 // NB: it is okay if more bits are known than are requested
1345 if (C->getAPIntValue() == Known2.One) {
1346 SDValue ANDC =
1347 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1348 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1349 }
1350
1351 // If the RHS is a constant, see if we can change it. Don't alter a -1
1352 // constant because that's a 'not' op, and that is better for combining
1353 // and codegen.
1354 if (!C->isAllOnesValue() &&
1355 DemandedBits.isSubsetOf(C->getAPIntValue())) {
1356 // We're flipping all demanded bits. Flip the undemanded bits too.
1357 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1358 return TLO.CombineTo(Op, New);
1359 }
1360 }
1361
1362 // If we can't turn this into a 'not', try to shrink the constant.
1363 if (!C || !C->isAllOnesValue())
1364 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1365 return true;
1366
1367 Known ^= Known2;
1368 break;
1369 }
1370 case ISD::SELECT:
1371 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1372 Depth + 1))
1373 return true;
1374 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1375 Depth + 1))
1376 return true;
1377 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1377, __extension__ __PRETTY_FUNCTION__))
;
1378 assert(!Known2.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known2.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known2.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1378, __extension__ __PRETTY_FUNCTION__))
;
1379
1380 // If the operands are constants, see if we can simplify them.
1381 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1382 return true;
1383
1384 // Only known if known in both the LHS and RHS.
1385 Known = KnownBits::commonBits(Known, Known2);
1386 break;
1387 case ISD::SELECT_CC:
1388 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1389 Depth + 1))
1390 return true;
1391 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1392 Depth + 1))
1393 return true;
1394 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1394, __extension__ __PRETTY_FUNCTION__))
;
1395 assert(!Known2.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known2.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known2.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1395, __extension__ __PRETTY_FUNCTION__))
;
1396
1397 // If the operands are constants, see if we can simplify them.
1398 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1399 return true;
1400
1401 // Only known if known in both the LHS and RHS.
1402 Known = KnownBits::commonBits(Known, Known2);
1403 break;
1404 case ISD::SETCC: {
1405 SDValue Op0 = Op.getOperand(0);
1406 SDValue Op1 = Op.getOperand(1);
1407 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1408 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1409 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1410 // -1, we may be able to bypass the setcc.
1411 if (DemandedBits.isSignMask() &&
1412 Op0.getScalarValueSizeInBits() == BitWidth &&
1413 getBooleanContents(Op0.getValueType()) ==
1414 BooleanContent::ZeroOrNegativeOneBooleanContent) {
1415 // If we're testing X < 0, then this compare isn't needed - just use X!
1416 // FIXME: We're limiting to integer types here, but this should also work
1417 // if we don't care about FP signed-zero. The use of SETLT with FP means
1418 // that we don't care about NaNs.
1419 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1420 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1421 return TLO.CombineTo(Op, Op0);
1422
1423 // TODO: Should we check for other forms of sign-bit comparisons?
1424 // Examples: X <= -1, X >= 0
1425 }
1426 if (getBooleanContents(Op0.getValueType()) ==
1427 TargetLowering::ZeroOrOneBooleanContent &&
1428 BitWidth > 1)
1429 Known.Zero.setBitsFrom(1);
1430 break;
1431 }
1432 case ISD::SHL: {
1433 SDValue Op0 = Op.getOperand(0);
1434 SDValue Op1 = Op.getOperand(1);
1435 EVT ShiftVT = Op1.getValueType();
1436
1437 if (const APInt *SA =
1438 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1439 unsigned ShAmt = SA->getZExtValue();
1440 if (ShAmt == 0)
1441 return TLO.CombineTo(Op, Op0);
1442
1443 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1444 // single shift. We can do this if the bottom bits (which are shifted
1445 // out) are never demanded.
1446 // TODO - support non-uniform vector amounts.
1447 if (Op0.getOpcode() == ISD::SRL) {
1448 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1449 if (const APInt *SA2 =
1450 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1451 unsigned C1 = SA2->getZExtValue();
1452 unsigned Opc = ISD::SHL;
1453 int Diff = ShAmt - C1;
1454 if (Diff < 0) {
1455 Diff = -Diff;
1456 Opc = ISD::SRL;
1457 }
1458 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1459 return TLO.CombineTo(
1460 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1461 }
1462 }
1463 }
1464
1465 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1466 // are not demanded. This will likely allow the anyext to be folded away.
1467 // TODO - support non-uniform vector amounts.
1468 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1469 SDValue InnerOp = Op0.getOperand(0);
1470 EVT InnerVT = InnerOp.getValueType();
1471 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1472 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1473 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1474 EVT ShTy = getShiftAmountTy(InnerVT, DL);
1475 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1476 ShTy = InnerVT;
1477 SDValue NarrowShl =
1478 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1479 TLO.DAG.getConstant(ShAmt, dl, ShTy));
1480 return TLO.CombineTo(
1481 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1482 }
1483
1484 // Repeat the SHL optimization above in cases where an extension
1485 // intervenes: (shl (anyext (shr x, c1)), c2) to
1486 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1487 // aren't demanded (as above) and that the shifted upper c1 bits of
1488 // x aren't demanded.
1489 // TODO - support non-uniform vector amounts.
1490 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1491 InnerOp.hasOneUse()) {
1492 if (const APInt *SA2 =
1493 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1494 unsigned InnerShAmt = SA2->getZExtValue();
1495 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1496 DemandedBits.getActiveBits() <=
1497 (InnerBits - InnerShAmt + ShAmt) &&
1498 DemandedBits.countTrailingZeros() >= ShAmt) {
1499 SDValue NewSA =
1500 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1501 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1502 InnerOp.getOperand(0));
1503 return TLO.CombineTo(
1504 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1505 }
1506 }
1507 }
1508 }
1509
1510 APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1511 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1512 Depth + 1))
1513 return true;
1514 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1514, __extension__ __PRETTY_FUNCTION__))
;
1515 Known.Zero <<= ShAmt;
1516 Known.One <<= ShAmt;
1517 // low bits known zero.
1518 Known.Zero.setLowBits(ShAmt);
1519
1520 // Try shrinking the operation as long as the shift amount will still be
1521 // in range.
1522 if ((ShAmt < DemandedBits.getActiveBits()) &&
1523 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1524 return true;
1525 }
1526
1527 // If we are only demanding sign bits then we can use the shift source
1528 // directly.
1529 if (const APInt *MaxSA =
1530 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1531 unsigned ShAmt = MaxSA->getZExtValue();
1532 unsigned NumSignBits =
1533 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1534 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1535 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1536 return TLO.CombineTo(Op, Op0);
1537 }
1538 break;
1539 }
1540 case ISD::SRL: {
1541 SDValue Op0 = Op.getOperand(0);
1542 SDValue Op1 = Op.getOperand(1);
1543 EVT ShiftVT = Op1.getValueType();
1544
1545 if (const APInt *SA =
1546 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1547 unsigned ShAmt = SA->getZExtValue();
1548 if (ShAmt == 0)
1549 return TLO.CombineTo(Op, Op0);
1550
1551 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1552 // single shift. We can do this if the top bits (which are shifted out)
1553 // are never demanded.
1554 // TODO - support non-uniform vector amounts.
1555 if (Op0.getOpcode() == ISD::SHL) {
1556 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1557 if (const APInt *SA2 =
1558 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1559 unsigned C1 = SA2->getZExtValue();
1560 unsigned Opc = ISD::SRL;
1561 int Diff = ShAmt - C1;
1562 if (Diff < 0) {
1563 Diff = -Diff;
1564 Opc = ISD::SHL;
1565 }
1566 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1567 return TLO.CombineTo(
1568 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1569 }
1570 }
1571 }
1572
1573 APInt InDemandedMask = (DemandedBits << ShAmt);
1574
1575 // If the shift is exact, then it does demand the low bits (and knows that
1576 // they are zero).
1577 if (Op->getFlags().hasExact())
1578 InDemandedMask.setLowBits(ShAmt);
1579
1580 // Compute the new bits that are at the top now.
1581 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1582 Depth + 1))
1583 return true;
1584 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1584, __extension__ __PRETTY_FUNCTION__))
;
1585 Known.Zero.lshrInPlace(ShAmt);
1586 Known.One.lshrInPlace(ShAmt);
1587 // High bits known zero.
1588 Known.Zero.setHighBits(ShAmt);
1589 }
1590 break;
1591 }
1592 case ISD::SRA: {
1593 SDValue Op0 = Op.getOperand(0);
1594 SDValue Op1 = Op.getOperand(1);
1595 EVT ShiftVT = Op1.getValueType();
1596
1597 // If we only want bits that already match the signbit then we don't need
1598 // to shift.
1599 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1600 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1601 NumHiDemandedBits)
1602 return TLO.CombineTo(Op, Op0);
1603
1604 // If this is an arithmetic shift right and only the low-bit is set, we can
1605 // always convert this into a logical shr, even if the shift amount is
1606 // variable. The low bit of the shift cannot be an input sign bit unless
1607 // the shift amount is >= the size of the datatype, which is undefined.
1608 if (DemandedBits.isOneValue())
1609 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1610
1611 if (const APInt *SA =
1612 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1613 unsigned ShAmt = SA->getZExtValue();
1614 if (ShAmt == 0)
1615 return TLO.CombineTo(Op, Op0);
1616
1617 APInt InDemandedMask = (DemandedBits << ShAmt);
1618
1619 // If the shift is exact, then it does demand the low bits (and knows that
1620 // they are zero).
1621 if (Op->getFlags().hasExact())
1622 InDemandedMask.setLowBits(ShAmt);
1623
1624 // If any of the demanded bits are produced by the sign extension, we also
1625 // demand the input sign bit.
1626 if (DemandedBits.countLeadingZeros() < ShAmt)
1627 InDemandedMask.setSignBit();
1628
1629 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1630 Depth + 1))
1631 return true;
1632 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1632, __extension__ __PRETTY_FUNCTION__))
;
1633 Known.Zero.lshrInPlace(ShAmt);
1634 Known.One.lshrInPlace(ShAmt);
1635
1636 // If the input sign bit is known to be zero, or if none of the top bits
1637 // are demanded, turn this into an unsigned shift right.
1638 if (Known.Zero[BitWidth - ShAmt - 1] ||
1639 DemandedBits.countLeadingZeros() >= ShAmt) {
1640 SDNodeFlags Flags;
1641 Flags.setExact(Op->getFlags().hasExact());
1642 return TLO.CombineTo(
1643 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1644 }
1645
1646 int Log2 = DemandedBits.exactLogBase2();
1647 if (Log2 >= 0) {
1648 // The bit must come from the sign.
1649 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1650 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1651 }
1652
1653 if (Known.One[BitWidth - ShAmt - 1])
1654 // New bits are known one.
1655 Known.One.setHighBits(ShAmt);
1656
1657 // Attempt to avoid multi-use ops if we don't need anything from them.
1658 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1659 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1660 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1661 if (DemandedOp0) {
1662 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1663 return TLO.CombineTo(Op, NewOp);
1664 }
1665 }
1666 }
1667 break;
1668 }
1669 case ISD::FSHL:
1670 case ISD::FSHR: {
1671 SDValue Op0 = Op.getOperand(0);
1672 SDValue Op1 = Op.getOperand(1);
1673 SDValue Op2 = Op.getOperand(2);
1674 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1675
1676 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1677 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1678
1679 // For fshl, 0-shift returns the 1st arg.
1680 // For fshr, 0-shift returns the 2nd arg.
1681 if (Amt == 0) {
1682 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1683 Known, TLO, Depth + 1))
1684 return true;
1685 break;
1686 }
1687
1688 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1689 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1690 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1691 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1692 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1693 Depth + 1))
1694 return true;
1695 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1696 Depth + 1))
1697 return true;
1698
1699 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1700 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1701 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1702 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1703 Known.One |= Known2.One;
1704 Known.Zero |= Known2.Zero;
1705 }
1706
1707 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1708 if (isPowerOf2_32(BitWidth)) {
1709 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1710 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1711 Known2, TLO, Depth + 1))
1712 return true;
1713 }
1714 break;
1715 }
1716 case ISD::ROTL:
1717 case ISD::ROTR: {
1718 SDValue Op0 = Op.getOperand(0);
1719 SDValue Op1 = Op.getOperand(1);
1720
1721 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1722 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1723 return TLO.CombineTo(Op, Op0);
1724
1725 // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1726 if (isPowerOf2_32(BitWidth)) {
1727 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1728 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1729 Depth + 1))
1730 return true;
1731 }
1732 break;
1733 }
1734 case ISD::UMIN: {
1735 // Check if one arg is always less than (or equal) to the other arg.
1736 SDValue Op0 = Op.getOperand(0);
1737 SDValue Op1 = Op.getOperand(1);
1738 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1739 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1740 Known = KnownBits::umin(Known0, Known1);
1741 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1742 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1743 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1744 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1745 break;
1746 }
1747 case ISD::UMAX: {
1748 // Check if one arg is always greater than (or equal) to the other arg.
1749 SDValue Op0 = Op.getOperand(0);
1750 SDValue Op1 = Op.getOperand(1);
1751 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1752 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1753 Known = KnownBits::umax(Known0, Known1);
1754 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1755 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1756 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1757 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1758 break;
1759 }
1760 case ISD::BITREVERSE: {
1761 SDValue Src = Op.getOperand(0);
1762 APInt DemandedSrcBits = DemandedBits.reverseBits();
1763 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1764 Depth + 1))
1765 return true;
1766 Known.One = Known2.One.reverseBits();
1767 Known.Zero = Known2.Zero.reverseBits();
1768 break;
1769 }
1770 case ISD::BSWAP: {
1771 SDValue Src = Op.getOperand(0);
1772 APInt DemandedSrcBits = DemandedBits.byteSwap();
1773 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1774 Depth + 1))
1775 return true;
1776 Known.One = Known2.One.byteSwap();
1777 Known.Zero = Known2.Zero.byteSwap();
1778 break;
1779 }
1780 case ISD::CTPOP: {
1781 // If only 1 bit is demanded, replace with PARITY as long as we're before
1782 // op legalization.
1783 // FIXME: Limit to scalars for now.
1784 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1785 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1786 Op.getOperand(0)));
1787
1788 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1789 break;
1790 }
1791 case ISD::SIGN_EXTEND_INREG: {
1792 SDValue Op0 = Op.getOperand(0);
1793 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1794 unsigned ExVTBits = ExVT.getScalarSizeInBits();
1795
1796 // If we only care about the highest bit, don't bother shifting right.
1797 if (DemandedBits.isSignMask()) {
1798 unsigned NumSignBits =
1799 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1800 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1801 // However if the input is already sign extended we expect the sign
1802 // extension to be dropped altogether later and do not simplify.
1803 if (!AlreadySignExtended) {
1804 // Compute the correct shift amount type, which must be getShiftAmountTy
1805 // for scalar types after legalization.
1806 EVT ShiftAmtTy = VT;
1807 if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1808 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1809
1810 SDValue ShiftAmt =
1811 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1812 return TLO.CombineTo(Op,
1813 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1814 }
1815 }
1816
1817 // If none of the extended bits are demanded, eliminate the sextinreg.
1818 if (DemandedBits.getActiveBits() <= ExVTBits)
1819 return TLO.CombineTo(Op, Op0);
1820
1821 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1822
1823 // Since the sign extended bits are demanded, we know that the sign
1824 // bit is demanded.
1825 InputDemandedBits.setBit(ExVTBits - 1);
1826
1827 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1828 return true;
1829 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1829, __extension__ __PRETTY_FUNCTION__))
;
1830
1831 // If the sign bit of the input is known set or clear, then we know the
1832 // top bits of the result.
1833
1834 // If the input sign bit is known zero, convert this into a zero extension.
1835 if (Known.Zero[ExVTBits - 1])
1836 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1837
1838 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1839 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1840 Known.One.setBitsFrom(ExVTBits);
1841 Known.Zero &= Mask;
1842 } else { // Input sign bit unknown
1843 Known.Zero &= Mask;
1844 Known.One &= Mask;
1845 }
1846 break;
1847 }
1848 case ISD::BUILD_PAIR: {
1849 EVT HalfVT = Op.getOperand(0).getValueType();
1850 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1851
1852 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1853 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1854
1855 KnownBits KnownLo, KnownHi;
1856
1857 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1858 return true;
1859
1860 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1861 return true;
1862
1863 Known.Zero = KnownLo.Zero.zext(BitWidth) |
1864 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1865
1866 Known.One = KnownLo.One.zext(BitWidth) |
1867 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1868 break;
1869 }
1870 case ISD::ZERO_EXTEND:
1871 case ISD::ZERO_EXTEND_VECTOR_INREG: {
1872 SDValue Src = Op.getOperand(0);
1873 EVT SrcVT = Src.getValueType();
1874 unsigned InBits = SrcVT.getScalarSizeInBits();
1875 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1876 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1877
1878 // If none of the top bits are demanded, convert this into an any_extend.
1879 if (DemandedBits.getActiveBits() <= InBits) {
1880 // If we only need the non-extended bits of the bottom element
1881 // then we can just bitcast to the result.
1882 if (IsVecInReg && DemandedElts == 1 &&
1883 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1884 TLO.DAG.getDataLayout().isLittleEndian())
1885 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1886
1887 unsigned Opc =
1888 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1889 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1890 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1891 }
1892
1893 APInt InDemandedBits = DemandedBits.trunc(InBits);
1894 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1895 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1896 Depth + 1))
1897 return true;
1898 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1898, __extension__ __PRETTY_FUNCTION__))
;
1899 assert(Known.getBitWidth() == InBits && "Src width has changed?")(static_cast <bool> (Known.getBitWidth() == InBits &&
"Src width has changed?") ? void (0) : __assert_fail ("Known.getBitWidth() == InBits && \"Src width has changed?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1899, __extension__ __PRETTY_FUNCTION__))
;
1900 Known = Known.zext(BitWidth);
1901
1902 // Attempt to avoid multi-use ops if we don't need anything from them.
1903 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1904 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1905 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1906 break;
1907 }
1908 case ISD::SIGN_EXTEND:
1909 case ISD::SIGN_EXTEND_VECTOR_INREG: {
1910 SDValue Src = Op.getOperand(0);
1911 EVT SrcVT = Src.getValueType();
1912 unsigned InBits = SrcVT.getScalarSizeInBits();
1913 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1914 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1915
1916 // If none of the top bits are demanded, convert this into an any_extend.
1917 if (DemandedBits.getActiveBits() <= InBits) {
1918 // If we only need the non-extended bits of the bottom element
1919 // then we can just bitcast to the result.
1920 if (IsVecInReg && DemandedElts == 1 &&
1921 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1922 TLO.DAG.getDataLayout().isLittleEndian())
1923 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1924
1925 unsigned Opc =
1926 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1927 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1928 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1929 }
1930
1931 APInt InDemandedBits = DemandedBits.trunc(InBits);
1932 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1933
1934 // Since some of the sign extended bits are demanded, we know that the sign
1935 // bit is demanded.
1936 InDemandedBits.setBit(InBits - 1);
1937
1938 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1939 Depth + 1))
1940 return true;
1941 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1941, __extension__ __PRETTY_FUNCTION__))
;
1942 assert(Known.getBitWidth() == InBits && "Src width has changed?")(static_cast <bool> (Known.getBitWidth() == InBits &&
"Src width has changed?") ? void (0) : __assert_fail ("Known.getBitWidth() == InBits && \"Src width has changed?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1942, __extension__ __PRETTY_FUNCTION__))
;
1943
1944 // If the sign bit is known one, the top bits match.
1945 Known = Known.sext(BitWidth);
1946
1947 // If the sign bit is known zero, convert this to a zero extend.
1948 if (Known.isNonNegative()) {
1949 unsigned Opc =
1950 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1951 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1952 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1953 }
1954
1955 // Attempt to avoid multi-use ops if we don't need anything from them.
1956 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1957 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1958 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1959 break;
1960 }
1961 case ISD::ANY_EXTEND:
1962 case ISD::ANY_EXTEND_VECTOR_INREG: {
1963 SDValue Src = Op.getOperand(0);
1964 EVT SrcVT = Src.getValueType();
1965 unsigned InBits = SrcVT.getScalarSizeInBits();
1966 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1967 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1968
1969 // If we only need the bottom element then we can just bitcast.
1970 // TODO: Handle ANY_EXTEND?
1971 if (IsVecInReg && DemandedElts == 1 &&
1972 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1973 TLO.DAG.getDataLayout().isLittleEndian())
1974 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1975
1976 APInt InDemandedBits = DemandedBits.trunc(InBits);
1977 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1978 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1979 Depth + 1))
1980 return true;
1981 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1981, __extension__ __PRETTY_FUNCTION__))
;
1982 assert(Known.getBitWidth() == InBits && "Src width has changed?")(static_cast <bool> (Known.getBitWidth() == InBits &&
"Src width has changed?") ? void (0) : __assert_fail ("Known.getBitWidth() == InBits && \"Src width has changed?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 1982, __extension__ __PRETTY_FUNCTION__))
;
1983 Known = Known.anyext(BitWidth);
1984
1985 // Attempt to avoid multi-use ops if we don't need anything from them.
1986 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1987 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1988 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1989 break;
1990 }
1991 case ISD::TRUNCATE: {
1992 SDValue Src = Op.getOperand(0);
1993
1994 // Simplify the input, using demanded bit information, and compute the known
1995 // zero/one bits live out.
1996 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1997 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1998 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
1999 Depth + 1))
2000 return true;
2001 Known = Known.trunc(BitWidth);
2002
2003 // Attempt to avoid multi-use ops if we don't need anything from them.
2004 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2005 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2006 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2007
2008 // If the input is only used by this truncate, see if we can shrink it based
2009 // on the known demanded bits.
2010 if (Src.getNode()->hasOneUse()) {
2011 switch (Src.getOpcode()) {
2012 default:
2013 break;
2014 case ISD::SRL:
2015 // Shrink SRL by a constant if none of the high bits shifted in are
2016 // demanded.
2017 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2018 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2019 // undesirable.
2020 break;
2021
2022 const APInt *ShAmtC =
2023 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2024 if (!ShAmtC || ShAmtC->uge(BitWidth))
2025 break;
2026 uint64_t ShVal = ShAmtC->getZExtValue();
2027
2028 APInt HighBits =
2029 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2030 HighBits.lshrInPlace(ShVal);
2031 HighBits = HighBits.trunc(BitWidth);
2032
2033 if (!(HighBits & DemandedBits)) {
2034 // None of the shifted in bits are needed. Add a truncate of the
2035 // shift input, then shift it.
2036 SDValue NewShAmt = TLO.DAG.getConstant(
2037 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2038 SDValue NewTrunc =
2039 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2040 return TLO.CombineTo(
2041 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2042 }
2043 break;
2044 }
2045 }
2046
2047 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2047, __extension__ __PRETTY_FUNCTION__))
;
2048 break;
2049 }
2050 case ISD::AssertZext: {
2051 // AssertZext demands all of the high bits, plus any of the low bits
2052 // demanded by its users.
2053 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2054 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2055 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2056 TLO, Depth + 1))
2057 return true;
2058 assert(!Known.hasConflict() && "Bits known to be one AND zero?")(static_cast <bool> (!Known.hasConflict() && "Bits known to be one AND zero?"
) ? void (0) : __assert_fail ("!Known.hasConflict() && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2058, __extension__ __PRETTY_FUNCTION__))
;
2059
2060 Known.Zero |= ~InMask;
2061 break;
2062 }
2063 case ISD::EXTRACT_VECTOR_ELT: {
2064 SDValue Src = Op.getOperand(0);
2065 SDValue Idx = Op.getOperand(1);
2066 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2067 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2068
2069 if (SrcEltCnt.isScalable())
2070 return false;
2071
2072 // Demand the bits from every vector element without a constant index.
2073 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2074 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2075 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2076 if (CIdx->getAPIntValue().ult(NumSrcElts))
2077 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2078
2079 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2080 // anything about the extended bits.
2081 APInt DemandedSrcBits = DemandedBits;
2082 if (BitWidth > EltBitWidth)
2083 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2084
2085 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2086 Depth + 1))
2087 return true;
2088
2089 // Attempt to avoid multi-use ops if we don't need anything from them.
2090 if (!DemandedSrcBits.isAllOnesValue() ||
2091 !DemandedSrcElts.isAllOnesValue()) {
2092 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2093 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2094 SDValue NewOp =
2095 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2096 return TLO.CombineTo(Op, NewOp);
2097 }
2098 }
2099
2100 Known = Known2;
2101 if (BitWidth > EltBitWidth)
2102 Known = Known.anyext(BitWidth);
2103 break;
2104 }
2105 case ISD::BITCAST: {
2106 SDValue Src = Op.getOperand(0);
2107 EVT SrcVT = Src.getValueType();
2108 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2109
2110 // If this is an FP->Int bitcast and if the sign bit is the only
2111 // thing demanded, turn this into a FGETSIGN.
2112 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2113 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2114 SrcVT.isFloatingPoint()) {
2115 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2116 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2117 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2118 SrcVT != MVT::f128) {
2119 // Cannot eliminate/lower SHL for f128 yet.
2120 EVT Ty = OpVTLegal ? VT : MVT::i32;
2121 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2122 // place. We expect the SHL to be eliminated by other optimizations.
2123 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2124 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2125 if (!OpVTLegal && OpVTSizeInBits > 32)
2126 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2127 unsigned ShVal = Op.getValueSizeInBits() - 1;
2128 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2129 return TLO.CombineTo(Op,
2130 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2131 }
2132 }
2133
2134 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2135 // Demand the elt/bit if any of the original elts/bits are demanded.
2136 // TODO - bigendian once we have test coverage.
2137 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2138 TLO.DAG.getDataLayout().isLittleEndian()) {
2139 unsigned Scale = BitWidth / NumSrcEltBits;
2140 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2141 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2142 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2143 for (unsigned i = 0; i != Scale; ++i) {
2144 unsigned Offset = i * NumSrcEltBits;
2145 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2146 if (!Sub.isNullValue()) {
2147 DemandedSrcBits |= Sub;
2148 for (unsigned j = 0; j != NumElts; ++j)
2149 if (DemandedElts[j])
2150 DemandedSrcElts.setBit((j * Scale) + i);
2151 }
2152 }
2153
2154 APInt KnownSrcUndef, KnownSrcZero;
2155 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2156 KnownSrcZero, TLO, Depth + 1))
2157 return true;
2158
2159 KnownBits KnownSrcBits;
2160 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2161 KnownSrcBits, TLO, Depth + 1))
2162 return true;
2163 } else if ((NumSrcEltBits % BitWidth) == 0 &&
2164 TLO.DAG.getDataLayout().isLittleEndian()) {
2165 unsigned Scale = NumSrcEltBits / BitWidth;
2166 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2167 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2168 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2169 for (unsigned i = 0; i != NumElts; ++i)
2170 if (DemandedElts[i]) {
2171 unsigned Offset = (i % Scale) * BitWidth;
2172 DemandedSrcBits.insertBits(DemandedBits, Offset);
2173 DemandedSrcElts.setBit(i / Scale);
2174 }
2175
2176 if (SrcVT.isVector()) {
2177 APInt KnownSrcUndef, KnownSrcZero;
2178 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2179 KnownSrcZero, TLO, Depth + 1))
2180 return true;
2181 }
2182
2183 KnownBits KnownSrcBits;
2184 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2185 KnownSrcBits, TLO, Depth + 1))
2186 return true;
2187 }
2188
2189 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
2190 // recursive call where Known may be useful to the caller.
2191 if (Depth > 0) {
2192 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2193 return false;
2194 }
2195 break;
2196 }
2197 case ISD::ADD:
2198 case ISD::MUL:
2199 case ISD::SUB: {
2200 // Add, Sub, and Mul don't demand any bits in positions beyond that
2201 // of the highest bit demanded of them.
2202 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2203 SDNodeFlags Flags = Op.getNode()->getFlags();
2204 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2205 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2206 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2207 Depth + 1) ||
2208 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2209 Depth + 1) ||
2210 // See if the operation should be performed at a smaller bit width.
2211 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2212 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2213 // Disable the nsw and nuw flags. We can no longer guarantee that we
2214 // won't wrap after simplification.
2215 Flags.setNoSignedWrap(false);
2216 Flags.setNoUnsignedWrap(false);
2217 SDValue NewOp =
2218 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2219 return TLO.CombineTo(Op, NewOp);
2220 }
2221 return true;
2222 }
2223
2224 // Attempt to avoid multi-use ops if we don't need anything from them.
2225 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2226 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2227 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2228 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2229 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2230 if (DemandedOp0 || DemandedOp1) {
2231 Flags.setNoSignedWrap(false);
2232 Flags.setNoUnsignedWrap(false);
2233 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2234 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2235 SDValue NewOp =
2236 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2237 return TLO.CombineTo(Op, NewOp);
2238 }
2239 }
2240
2241 // If we have a constant operand, we may be able to turn it into -1 if we
2242 // do not demand the high bits. This can make the constant smaller to
2243 // encode, allow more general folding, or match specialized instruction
2244 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2245 // is probably not useful (and could be detrimental).
2246 ConstantSDNode *C = isConstOrConstSplat(Op1);
2247 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2248 if (C && !C->isAllOnesValue() && !C->isOne() &&
2249 (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2250 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2251 // Disable the nsw and nuw flags. We can no longer guarantee that we
2252 // won't wrap after simplification.
2253 Flags.setNoSignedWrap(false);
2254 Flags.setNoUnsignedWrap(false);
2255 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2256 return TLO.CombineTo(Op, NewOp);
2257 }
2258
2259 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2260 }
2261 default:
2262 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2263 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2264 Known, TLO, Depth))
2265 return true;
2266 break;
2267 }
2268
2269 // Just use computeKnownBits to compute output bits.
2270 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2271 break;
2272 }
2273
2274 // If we know the value of all of the demanded bits, return this as a
2275 // constant.
2276 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2277 // Avoid folding to a constant if any OpaqueConstant is involved.
2278 const SDNode *N = Op.getNode();
2279 for (SDNode *Op :
2280 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2281 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2282 if (C->isOpaque())
2283 return false;
2284 }
2285 if (VT.isInteger())
2286 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2287 if (VT.isFloatingPoint())
2288 return TLO.CombineTo(
2289 Op,
2290 TLO.DAG.getConstantFP(
2291 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2292 }
2293
2294 return false;
2295}
2296
2297bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2298 const APInt &DemandedElts,
2299 APInt &KnownUndef,
2300 APInt &KnownZero,
2301 DAGCombinerInfo &DCI) const {
2302 SelectionDAG &DAG = DCI.DAG;
2303 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2304 !DCI.isBeforeLegalizeOps());
2305
2306 bool Simplified =
2307 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2308 if (Simplified) {
2309 DCI.AddToWorklist(Op.getNode());
2310 DCI.CommitTargetLoweringOpt(TLO);
2311 }
2312
2313 return Simplified;
2314}
2315
2316/// Given a vector binary operation and known undefined elements for each input
2317/// operand, compute whether each element of the output is undefined.
2318static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2319 const APInt &UndefOp0,
2320 const APInt &UndefOp1) {
2321 EVT VT = BO.getValueType();
2322 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&(static_cast <bool> (DAG.getTargetLoweringInfo().isBinOp
(BO.getOpcode()) && VT.isVector() && "Vector binop only"
) ? void (0) : __assert_fail ("DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && \"Vector binop only\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2323, __extension__ __PRETTY_FUNCTION__))
2323 "Vector binop only")(static_cast <bool> (DAG.getTargetLoweringInfo().isBinOp
(BO.getOpcode()) && VT.isVector() && "Vector binop only"
) ? void (0) : __assert_fail ("DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && \"Vector binop only\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2323, __extension__ __PRETTY_FUNCTION__))
;
2324
2325 EVT EltVT = VT.getVectorElementType();
2326 unsigned NumElts = VT.getVectorNumElements();
2327 assert(UndefOp0.getBitWidth() == NumElts &&(static_cast <bool> (UndefOp0.getBitWidth() == NumElts &&
UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"
) ? void (0) : __assert_fail ("UndefOp0.getBitWidth() == NumElts && UndefOp1.getBitWidth() == NumElts && \"Bad type for undef analysis\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2328, __extension__ __PRETTY_FUNCTION__))
2328 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis")(static_cast <bool> (UndefOp0.getBitWidth() == NumElts &&
UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"
) ? void (0) : __assert_fail ("UndefOp0.getBitWidth() == NumElts && UndefOp1.getBitWidth() == NumElts && \"Bad type for undef analysis\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2328, __extension__ __PRETTY_FUNCTION__))
;
2329
2330 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2331 const APInt &UndefVals) {
2332 if (UndefVals[Index])
2333 return DAG.getUNDEF(EltVT);
2334
2335 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2336 // Try hard to make sure that the getNode() call is not creating temporary
2337 // nodes. Ignore opaque integers because they do not constant fold.
2338 SDValue Elt = BV->getOperand(Index);
2339 auto *C = dyn_cast<ConstantSDNode>(Elt);
2340 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2341 return Elt;
2342 }
2343
2344 return SDValue();
2345 };
2346
2347 APInt KnownUndef = APInt::getNullValue(NumElts);
2348 for (unsigned i = 0; i != NumElts; ++i) {
2349 // If both inputs for this element are either constant or undef and match
2350 // the element type, compute the constant/undef result for this element of
2351 // the vector.
2352 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2353 // not handle FP constants. The code within getNode() should be refactored
2354 // to avoid the danger of creating a bogus temporary node here.
2355 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2356 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2357 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2358 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2359 KnownUndef.setBit(i);
2360 }
2361 return KnownUndef;
2362}
2363
2364bool TargetLowering::SimplifyDemandedVectorElts(
2365 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2366 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2367 bool AssumeSingleUse) const {
2368 EVT VT = Op.getValueType();
2369 unsigned Opcode = Op.getOpcode();
2370 APInt DemandedElts = OriginalDemandedElts;
2371 unsigned NumElts = DemandedElts.getBitWidth();
2372 assert(VT.isVector() && "Expected vector op")(static_cast <bool> (VT.isVector() && "Expected vector op"
) ? void (0) : __assert_fail ("VT.isVector() && \"Expected vector op\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2372, __extension__ __PRETTY_FUNCTION__))
;
2373
2374 KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2375
2376 // TODO: For now we assume we know nothing about scalable vectors.
2377 if (VT.isScalableVector())
2378 return false;
2379
2380 assert(VT.getVectorNumElements() == NumElts &&(static_cast <bool> (VT.getVectorNumElements() == NumElts
&& "Mask size mismatches value type element count!")
? void (0) : __assert_fail ("VT.getVectorNumElements() == NumElts && \"Mask size mismatches value type element count!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2381, __extension__ __PRETTY_FUNCTION__))
2381 "Mask size mismatches value type element count!")(static_cast <bool> (VT.getVectorNumElements() == NumElts
&& "Mask size mismatches value type element count!")
? void (0) : __assert_fail ("VT.getVectorNumElements() == NumElts && \"Mask size mismatches value type element count!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2381, __extension__ __PRETTY_FUNCTION__))
;
2382
2383 // Undef operand.
2384 if (Op.isUndef()) {
2385 KnownUndef.setAllBits();
2386 return false;
2387 }
2388
2389 // If Op has other users, assume that all elements are needed.
2390 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2391 DemandedElts.setAllBits();
2392
2393 // Not demanding any elements from Op.
2394 if (DemandedElts == 0) {
2395 KnownUndef.setAllBits();
2396 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2397 }
2398
2399 // Limit search depth.
2400 if (Depth >= SelectionDAG::MaxRecursionDepth)
2401 return false;
2402
2403 SDLoc DL(Op);
2404 unsigned EltSizeInBits = VT.getScalarSizeInBits();
2405
2406 // Helper for demanding the specified elements and all the bits of both binary
2407 // operands.
2408 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2409 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2410 TLO.DAG, Depth + 1);
2411 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2412 TLO.DAG, Depth + 1);
2413 if (NewOp0 || NewOp1) {
2414 SDValue NewOp = TLO.DAG.getNode(
2415 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2416 return TLO.CombineTo(Op, NewOp);
2417 }
2418 return false;
2419 };
2420
2421 switch (Opcode) {
2422 case ISD::SCALAR_TO_VECTOR: {
2423 if (!DemandedElts[0]) {
2424 KnownUndef.setAllBits();
2425 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2426 }
2427 SDValue ScalarSrc = Op.getOperand(0);
2428 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2429 SDValue Src = ScalarSrc.getOperand(0);
2430 SDValue Idx = ScalarSrc.getOperand(1);
2431 EVT SrcVT = Src.getValueType();
2432
2433 ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2434
2435 if (SrcEltCnt.isScalable())
2436 return false;
2437
2438 unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2439 if (isNullConstant(Idx)) {
2440 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2441 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2442 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2443 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2444 TLO, Depth + 1))
2445 return true;
2446 }
2447 }
2448 KnownUndef.setHighBits(NumElts - 1);
2449 break;
2450 }
2451 case ISD::BITCAST: {
2452 SDValue Src = Op.getOperand(0);
2453 EVT SrcVT = Src.getValueType();
2454
2455 // We only handle vectors here.
2456 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2457 if (!SrcVT.isVector())
2458 break;
2459
2460 // Fast handling of 'identity' bitcasts.
2461 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2462 if (NumSrcElts == NumElts)
2463 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2464 KnownZero, TLO, Depth + 1);
2465
2466 APInt SrcZero, SrcUndef;
2467 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2468
2469 // Bitcast from 'large element' src vector to 'small element' vector, we
2470 // must demand a source element if any DemandedElt maps to it.
2471 if ((NumElts % NumSrcElts) == 0) {
2472 unsigned Scale = NumElts / NumSrcElts;
2473 for (unsigned i = 0; i != NumElts; ++i)
2474 if (DemandedElts[i])
2475 SrcDemandedElts.setBit(i / Scale);
2476
2477 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2478 TLO, Depth + 1))
2479 return true;
2480
2481 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2482 // of the large element.
2483 // TODO - bigendian once we have test coverage.
2484 if (TLO.DAG.getDataLayout().isLittleEndian()) {
2485 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2486 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2487 for (unsigned i = 0; i != NumElts; ++i)
2488 if (DemandedElts[i]) {
2489 unsigned Ofs = (i % Scale) * EltSizeInBits;
2490 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2491 }
2492
2493 KnownBits Known;
2494 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2495 TLO, Depth + 1))
2496 return true;
2497 }
2498
2499 // If the src element is zero/undef then all the output elements will be -
2500 // only demanded elements are guaranteed to be correct.
2501 for (unsigned i = 0; i != NumSrcElts; ++i) {
2502 if (SrcDemandedElts[i]) {
2503 if (SrcZero[i])
2504 KnownZero.setBits(i * Scale, (i + 1) * Scale);
2505 if (SrcUndef[i])
2506 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2507 }
2508 }
2509 }
2510
2511 // Bitcast from 'small element' src vector to 'large element' vector, we
2512 // demand all smaller source elements covered by the larger demanded element
2513 // of this vector.
2514 if ((NumSrcElts % NumElts) == 0) {
2515 unsigned Scale = NumSrcElts / NumElts;
2516 for (unsigned i = 0; i != NumElts; ++i)
2517 if (DemandedElts[i])
2518 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2519
2520 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2521 TLO, Depth + 1))
2522 return true;
2523
2524 // If all the src elements covering an output element are zero/undef, then
2525 // the output element will be as well, assuming it was demanded.
2526 for (unsigned i = 0; i != NumElts; ++i) {
2527 if (DemandedElts[i]) {
2528 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2529 KnownZero.setBit(i);
2530 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2531 KnownUndef.setBit(i);
2532 }
2533 }
2534 }
2535 break;
2536 }
2537 case ISD::BUILD_VECTOR: {
2538 // Check all elements and simplify any unused elements with UNDEF.
2539 if (!DemandedElts.isAllOnesValue()) {
2540 // Don't simplify BROADCASTS.
2541 if (llvm::any_of(Op->op_values(),
2542 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2543 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2544 bool Updated = false;
2545 for (unsigned i = 0; i != NumElts; ++i) {
2546 if (!DemandedElts[i] && !Ops[i].isUndef()) {
2547 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2548 KnownUndef.setBit(i);
2549 Updated = true;
2550 }
2551 }
2552 if (Updated)
2553 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2554 }
2555 }
2556 for (unsigned i = 0; i != NumElts; ++i) {
2557 SDValue SrcOp = Op.getOperand(i);
2558 if (SrcOp.isUndef()) {
2559 KnownUndef.setBit(i);
2560 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2561 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2562 KnownZero.setBit(i);
2563 }
2564 }
2565 break;
2566 }
2567 case ISD::CONCAT_VECTORS: {
2568 EVT SubVT = Op.getOperand(0).getValueType();
2569 unsigned NumSubVecs = Op.getNumOperands();
2570 unsigned NumSubElts = SubVT.getVectorNumElements();
2571 for (unsigned i = 0; i != NumSubVecs; ++i) {
2572 SDValue SubOp = Op.getOperand(i);
2573 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2574 APInt SubUndef, SubZero;
2575 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2576 Depth + 1))
2577 return true;
2578 KnownUndef.insertBits(SubUndef, i * NumSubElts);
2579 KnownZero.insertBits(SubZero, i * NumSubElts);
2580 }
2581 break;
2582 }
2583 case ISD::INSERT_SUBVECTOR: {
2584 // Demand any elements from the subvector and the remainder from the src its
2585 // inserted into.
2586 SDValue Src = Op.getOperand(0);
2587 SDValue Sub = Op.getOperand(1);
2588 uint64_t Idx = Op.getConstantOperandVal(2);
2589 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2590 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2591 APInt DemandedSrcElts = DemandedElts;
2592 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2593
2594 APInt SubUndef, SubZero;
2595 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2596 Depth + 1))
2597 return true;
2598
2599 // If none of the src operand elements are demanded, replace it with undef.
2600 if (!DemandedSrcElts && !Src.isUndef())
2601 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2602 TLO.DAG.getUNDEF(VT), Sub,
2603 Op.getOperand(2)));
2604
2605 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2606 TLO, Depth + 1))
2607 return true;
2608 KnownUndef.insertBits(SubUndef, Idx);
2609 KnownZero.insertBits(SubZero, Idx);
2610
2611 // Attempt to avoid multi-use ops if we don't need anything from them.
2612 if (!DemandedSrcElts.isAllOnesValue() ||
2613 !DemandedSubElts.isAllOnesValue()) {
2614 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2615 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2616 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2617 Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2618 if (NewSrc || NewSub) {
2619 NewSrc = NewSrc ? NewSrc : Src;
2620 NewSub = NewSub ? NewSub : Sub;
2621 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2622 NewSub, Op.getOperand(2));
2623 return TLO.CombineTo(Op, NewOp);
2624 }
2625 }
2626 break;
2627 }
2628 case ISD::EXTRACT_SUBVECTOR: {
2629 // Offset the demanded elts by the subvector index.
2630 SDValue Src = Op.getOperand(0);
2631 if (Src.getValueType().isScalableVector())
2632 break;
2633 uint64_t Idx = Op.getConstantOperandVal(1);
2634 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2635 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2636
2637 APInt SrcUndef, SrcZero;
2638 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2639 Depth + 1))
2640 return true;
2641 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2642 KnownZero = SrcZero.extractBits(NumElts, Idx);
2643
2644 // Attempt to avoid multi-use ops if we don't need anything from them.
2645 if (!DemandedElts.isAllOnesValue()) {
2646 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2647 Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2648 if (NewSrc) {
2649 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2650 Op.getOperand(1));
2651 return TLO.CombineTo(Op, NewOp);
2652 }
2653 }
2654 break;
2655 }
2656 case ISD::INSERT_VECTOR_ELT: {
2657 SDValue Vec = Op.getOperand(0);
2658 SDValue Scl = Op.getOperand(1);
2659 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2660
2661 // For a legal, constant insertion index, if we don't need this insertion
2662 // then strip it, else remove it from the demanded elts.
2663 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2664 unsigned Idx = CIdx->getZExtValue();
2665 if (!DemandedElts[Idx])
2666 return TLO.CombineTo(Op, Vec);
2667
2668 APInt DemandedVecElts(DemandedElts);
2669 DemandedVecElts.clearBit(Idx);
2670 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2671 KnownZero, TLO, Depth + 1))
2672 return true;
2673
2674 KnownUndef.setBitVal(Idx, Scl.isUndef());
2675
2676 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2677 break;
2678 }
2679
2680 APInt VecUndef, VecZero;
2681 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2682 Depth + 1))
2683 return true;
2684 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2685 break;
2686 }
2687 case ISD::VSELECT: {
2688 // Try to transform the select condition based on the current demanded
2689 // elements.
2690 // TODO: If a condition element is undef, we can choose from one arm of the
2691 // select (and if one arm is undef, then we can propagate that to the
2692 // result).
2693 // TODO - add support for constant vselect masks (see IR version of this).
2694 APInt UnusedUndef, UnusedZero;
2695 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2696 UnusedZero, TLO, Depth + 1))
2697 return true;
2698
2699 // See if we can simplify either vselect operand.
2700 APInt DemandedLHS(DemandedElts);
2701 APInt DemandedRHS(DemandedElts);
2702 APInt UndefLHS, ZeroLHS;
2703 APInt UndefRHS, ZeroRHS;
2704 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2705 ZeroLHS, TLO, Depth + 1))
2706 return true;
2707 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2708 ZeroRHS, TLO, Depth + 1))
2709 return true;
2710
2711 KnownUndef = UndefLHS & UndefRHS;
2712 KnownZero = ZeroLHS & ZeroRHS;
2713 break;
2714 }
2715 case ISD::VECTOR_SHUFFLE: {
2716 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2717
2718 // Collect demanded elements from shuffle operands..
2719 APInt DemandedLHS(NumElts, 0);
2720 APInt DemandedRHS(NumElts, 0);
2721 for (unsigned i = 0; i != NumElts; ++i) {
2722 int M = ShuffleMask[i];
2723 if (M < 0 || !DemandedElts[i])
2724 continue;
2725 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range")(static_cast <bool> (0 <= M && M < (int)(
2 * NumElts) && "Shuffle index out of range") ? void (
0) : __assert_fail ("0 <= M && M < (int)(2 * NumElts) && \"Shuffle index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2725, __extension__ __PRETTY_FUNCTION__))
;
2726 if (M < (int)NumElts)
2727 DemandedLHS.setBit(M);
2728 else
2729 DemandedRHS.setBit(M - NumElts);
2730 }
2731
2732 // See if we can simplify either shuffle operand.
2733 APInt UndefLHS, ZeroLHS;
2734 APInt UndefRHS, ZeroRHS;
2735 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2736 ZeroLHS, TLO, Depth + 1))
2737 return true;
2738 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2739 ZeroRHS, TLO, Depth + 1))
2740 return true;
2741
2742 // Simplify mask using undef elements from LHS/RHS.
2743 bool Updated = false;
2744 bool IdentityLHS = true, IdentityRHS = true;
2745 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2746 for (unsigned i = 0; i != NumElts; ++i) {
2747 int &M = NewMask[i];
2748 if (M < 0)
2749 continue;
2750 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2751 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2752 Updated = true;
2753 M = -1;
2754 }
2755 IdentityLHS &= (M < 0) || (M == (int)i);
2756 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2757 }
2758
2759 // Update legal shuffle masks based on demanded elements if it won't reduce
2760 // to Identity which can cause premature removal of the shuffle mask.
2761 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2762 SDValue LegalShuffle =
2763 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2764 NewMask, TLO.DAG);
2765 if (LegalShuffle)
2766 return TLO.CombineTo(Op, LegalShuffle);
2767 }
2768
2769 // Propagate undef/zero elements from LHS/RHS.
2770 for (unsigned i = 0; i != NumElts; ++i) {
2771 int M = ShuffleMask[i];
2772 if (M < 0) {
2773 KnownUndef.setBit(i);
2774 } else if (M < (int)NumElts) {
2775 if (UndefLHS[M])
2776 KnownUndef.setBit(i);
2777 if (ZeroLHS[M])
2778 KnownZero.setBit(i);
2779 } else {
2780 if (UndefRHS[M - NumElts])
2781 KnownUndef.setBit(i);
2782 if (ZeroRHS[M - NumElts])
2783 KnownZero.setBit(i);
2784 }
2785 }
2786 break;
2787 }
2788 case ISD::ANY_EXTEND_VECTOR_INREG:
2789 case ISD::SIGN_EXTEND_VECTOR_INREG:
2790 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2791 APInt SrcUndef, SrcZero;
2792 SDValue Src = Op.getOperand(0);
2793 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2794 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2795 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2796 Depth + 1))
2797 return true;
2798 KnownZero = SrcZero.zextOrTrunc(NumElts);
2799 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2800
2801 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2802 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2803 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2804 // aext - if we just need the bottom element then we can bitcast.
2805 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2806 }
2807
2808 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2809 // zext(undef) upper bits are guaranteed to be zero.
2810 if (DemandedElts.isSubsetOf(KnownUndef))
2811 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2812 KnownUndef.clearAllBits();
2813 }
2814 break;
2815 }
2816
2817 // TODO: There are more binop opcodes that could be handled here - MIN,
2818 // MAX, saturated math, etc.
2819 case ISD::OR:
2820 case ISD::XOR:
2821 case ISD::ADD:
2822 case ISD::SUB:
2823 case ISD::FADD:
2824 case ISD::FSUB:
2825 case ISD::FMUL:
2826 case ISD::FDIV:
2827 case ISD::FREM: {
2828 SDValue Op0 = Op.getOperand(0);
2829 SDValue Op1 = Op.getOperand(1);
2830
2831 APInt UndefRHS, ZeroRHS;
2832 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2833 Depth + 1))
2834 return true;
2835 APInt UndefLHS, ZeroLHS;
2836 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2837 Depth + 1))
2838 return true;
2839
2840 KnownZero = ZeroLHS & ZeroRHS;
2841 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2842
2843 // Attempt to avoid multi-use ops if we don't need anything from them.
2844 // TODO - use KnownUndef to relax the demandedelts?
2845 if (!DemandedElts.isAllOnesValue())
2846 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2847 return true;
2848 break;
2849 }
2850 case ISD::SHL:
2851 case ISD::SRL:
2852 case ISD::SRA:
2853 case ISD::ROTL:
2854 case ISD::ROTR: {
2855 SDValue Op0 = Op.getOperand(0);
2856 SDValue Op1 = Op.getOperand(1);
2857
2858 APInt UndefRHS, ZeroRHS;
2859 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2860 Depth + 1))
2861 return true;
2862 APInt UndefLHS, ZeroLHS;
2863 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2864 Depth + 1))
2865 return true;
2866
2867 KnownZero = ZeroLHS;
2868 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2869
2870 // Attempt to avoid multi-use ops if we don't need anything from them.
2871 // TODO - use KnownUndef to relax the demandedelts?
2872 if (!DemandedElts.isAllOnesValue())
2873 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2874 return true;
2875 break;
2876 }
2877 case ISD::MUL:
2878 case ISD::AND: {
2879 SDValue Op0 = Op.getOperand(0);
2880 SDValue Op1 = Op.getOperand(1);
2881
2882 APInt SrcUndef, SrcZero;
2883 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2884 Depth + 1))
2885 return true;
2886 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2887 TLO, Depth + 1))
2888 return true;
2889
2890 // If either side has a zero element, then the result element is zero, even
2891 // if the other is an UNDEF.
2892 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2893 // and then handle 'and' nodes with the rest of the binop opcodes.
2894 KnownZero |= SrcZero;
2895 KnownUndef &= SrcUndef;
2896 KnownUndef &= ~KnownZero;
2897
2898 // Attempt to avoid multi-use ops if we don't need anything from them.
2899 // TODO - use KnownUndef to relax the demandedelts?
2900 if (!DemandedElts.isAllOnesValue())
2901 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2902 return true;
2903 break;
2904 }
2905 case ISD::TRUNCATE:
2906 case ISD::SIGN_EXTEND:
2907 case ISD::ZERO_EXTEND:
2908 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2909 KnownZero, TLO, Depth + 1))
2910 return true;
2911
2912 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2913 // zext(undef) upper bits are guaranteed to be zero.
2914 if (DemandedElts.isSubsetOf(KnownUndef))
2915 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2916 KnownUndef.clearAllBits();
2917 }
2918 break;
2919 default: {
2920 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2921 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2922 KnownZero, TLO, Depth))
2923 return true;
2924 } else {
2925 KnownBits Known;
2926 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2927 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2928 TLO, Depth, AssumeSingleUse))
2929 return true;
2930 }
2931 break;
2932 }
2933 }
2934 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero")(static_cast <bool> ((KnownUndef & KnownZero) == 0 &&
"Elements flagged as undef AND zero") ? void (0) : __assert_fail
("(KnownUndef & KnownZero) == 0 && \"Elements flagged as undef AND zero\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2934, __extension__ __PRETTY_FUNCTION__))
;
2935
2936 // Constant fold all undef cases.
2937 // TODO: Handle zero cases as well.
2938 if (DemandedElts.isSubsetOf(KnownUndef))
2939 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2940
2941 return false;
2942}
2943
2944/// Determine which of the bits specified in Mask are known to be either zero or
2945/// one and return them in the Known.
2946void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2947 KnownBits &Known,
2948 const APInt &DemandedElts,
2949 const SelectionDAG &DAG,
2950 unsigned Depth) const {
2951 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2956, __extension__ __PRETTY_FUNCTION__))
2952 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2956, __extension__ __PRETTY_FUNCTION__))
2953 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2956, __extension__ __PRETTY_FUNCTION__))
2954 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2956, __extension__ __PRETTY_FUNCTION__))
2955 "Should use MaskedValueIsZero if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2956, __extension__ __PRETTY_FUNCTION__))
2956 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use MaskedValueIsZero if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2956, __extension__ __PRETTY_FUNCTION__))
;
2957 Known.resetAll();
2958}
2959
2960void TargetLowering::computeKnownBitsForTargetInstr(
2961 GISelKnownBits &Analysis, Register R, KnownBits &Known,
2962 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2963 unsigned Depth) const {
2964 Known.resetAll();
2965}
2966
2967void TargetLowering::computeKnownBitsForFrameIndex(
2968 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2969 // The low bits are known zero if the pointer is aligned.
2970 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2971}
2972
2973Align TargetLowering::computeKnownAlignForTargetInstr(
2974 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2975 unsigned Depth) const {
2976 return Align(1);
2977}
2978
2979/// This method can be implemented by targets that want to expose additional
2980/// information about sign bits to the DAG Combiner.
2981unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2982 const APInt &,
2983 const SelectionDAG &,
2984 unsigned Depth) const {
2985 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2990, __extension__ __PRETTY_FUNCTION__))
2986 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2990, __extension__ __PRETTY_FUNCTION__))
2987 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2990, __extension__ __PRETTY_FUNCTION__))
2988 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2990, __extension__ __PRETTY_FUNCTION__))
2989 "Should use ComputeNumSignBits if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2990, __extension__ __PRETTY_FUNCTION__))
2990 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use ComputeNumSignBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use ComputeNumSignBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 2990, __extension__ __PRETTY_FUNCTION__))
;
2991 return 1;
2992}
2993
2994unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2995 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2996 const MachineRegisterInfo &MRI, unsigned Depth) const {
2997 return 1;
2998}
2999
3000bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3001 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3002 TargetLoweringOpt &TLO, unsigned Depth) const {
3003 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3008, __extension__ __PRETTY_FUNCTION__))
3004 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3008, __extension__ __PRETTY_FUNCTION__))
3005 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3008, __extension__ __PRETTY_FUNCTION__))
3006 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3008, __extension__ __PRETTY_FUNCTION__))
3007 "Should use SimplifyDemandedVectorElts if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3008, __extension__ __PRETTY_FUNCTION__))
3008 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedVectorElts if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedVectorElts if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3008, __extension__ __PRETTY_FUNCTION__))
;
3009 return false;
3010}
3011
3012bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3013 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3014 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3015 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3020, __extension__ __PRETTY_FUNCTION__))
3016 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3020, __extension__ __PRETTY_FUNCTION__))
3017 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3020, __extension__ __PRETTY_FUNCTION__))
3018 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3020, __extension__ __PRETTY_FUNCTION__))
3019 "Should use SimplifyDemandedBits if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3020, __extension__ __PRETTY_FUNCTION__))
3020 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3020, __extension__ __PRETTY_FUNCTION__))
;
3021 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3022 return false;
3023}
3024
3025SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3026 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3027 SelectionDAG &DAG, unsigned Depth) const {
3028 assert((static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3034, __extension__ __PRETTY_FUNCTION__))
3029 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3034, __extension__ __PRETTY_FUNCTION__))
3030 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3034, __extension__ __PRETTY_FUNCTION__))
3031 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3034, __extension__ __PRETTY_FUNCTION__))
3032 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3034, __extension__ __PRETTY_FUNCTION__))
3033 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3034, __extension__ __PRETTY_FUNCTION__))
3034 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3034, __extension__ __PRETTY_FUNCTION__))
;
3035 return SDValue();
3036}
3037
3038SDValue
3039TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3040 SDValue N1, MutableArrayRef<int> Mask,
3041 SelectionDAG &DAG) const {
3042 bool LegalMask = isShuffleMaskLegal(Mask, VT);
3043 if (!LegalMask) {
3044 std::swap(N0, N1);
3045 ShuffleVectorSDNode::commuteMask(Mask);
3046 LegalMask = isShuffleMaskLegal(Mask, VT);
3047 }
3048
3049 if (!LegalMask)
3050 return SDValue();
3051
3052 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3053}
3054
3055const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3056 return nullptr;
3057}
3058
3059bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3060 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3061 bool PoisonOnly, unsigned Depth) const {
3062 assert((static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3068, __extension__ __PRETTY_FUNCTION__))
3063 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3068, __extension__ __PRETTY_FUNCTION__))
3064 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3068, __extension__ __PRETTY_FUNCTION__))
3065 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3068, __extension__ __PRETTY_FUNCTION__))
3066 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3068, __extension__ __PRETTY_FUNCTION__))
3067 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3068, __extension__ __PRETTY_FUNCTION__))
3068 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3068, __extension__ __PRETTY_FUNCTION__))
;
3069 return false;
3070}
3071
3072bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3073 const SelectionDAG &DAG,
3074 bool SNaN,
3075 unsigned Depth) const {
3076 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3081, __extension__ __PRETTY_FUNCTION__))
3077 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3081, __extension__ __PRETTY_FUNCTION__))
3078 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3081, __extension__ __PRETTY_FUNCTION__))
3079 Op.getOpcode() == ISD::INTRINSIC_VOID) &&(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3081, __extension__ __PRETTY_FUNCTION__))
3080 "Should use isKnownNeverNaN if you don't know whether Op"(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3081, __extension__ __PRETTY_FUNCTION__))
3081 " is a target node!")(static_cast <bool> ((Op.getOpcode() >= ISD::BUILTIN_OP_END
|| Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode
() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID
) && "Should use isKnownNeverNaN if you don't know whether Op"
" is a target node!") ? void (0) : __assert_fail ("(Op.getOpcode() >= ISD::BUILTIN_OP_END || Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || Op.getOpcode() == ISD::INTRINSIC_VOID) && \"Should use isKnownNeverNaN if you don't know whether Op\" \" is a target node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3081, __extension__ __PRETTY_FUNCTION__))
;
3082 return false;
3083}
3084
3085// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3086// work with truncating build vectors and vectors with elements of less than
3087// 8 bits.
3088bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3089 if (!N)
3090 return false;
3091
3092 APInt CVal;
3093 if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3094 CVal = CN->getAPIntValue();
3095 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3096 auto *CN = BV->getConstantSplatNode();
3097 if (!CN)
3098 return false;
3099
3100 // If this is a truncating build vector, truncate the splat value.
3101 // Otherwise, we may fail to match the expected values below.
3102 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3103 CVal = CN->getAPIntValue();
3104 if (BVEltWidth < CVal.getBitWidth())
3105 CVal = CVal.trunc(BVEltWidth);
3106 } else {
3107 return false;
3108 }
3109
3110 switch (getBooleanContents(N->getValueType(0))) {
3111 case UndefinedBooleanContent:
3112 return CVal[0];
3113 case ZeroOrOneBooleanContent:
3114 return CVal.isOneValue();
3115 case ZeroOrNegativeOneBooleanContent:
3116 return CVal.isAllOnesValue();
3117 }
3118
3119 llvm_unreachable("Invalid boolean contents")::llvm::llvm_unreachable_internal("Invalid boolean contents",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3119)
;
3120}
3121
3122bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3123 if (!N)
3124 return false;
3125
3126 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3127 if (!CN) {
3128 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3129 if (!BV)
3130 return false;
3131
3132 // Only interested in constant splats, we don't care about undef
3133 // elements in identifying boolean constants and getConstantSplatNode
3134 // returns NULL if all ops are undef;
3135 CN = BV->getConstantSplatNode();
3136 if (!CN)
3137 return false;
3138 }
3139
3140 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3141 return !CN->getAPIntValue()[0];
3142
3143 return CN->isNullValue();
3144}
3145
3146bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3147 bool SExt) const {
3148 if (VT == MVT::i1)
3149 return N->isOne();
3150
3151 TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3152 switch (Cnt) {
3153 case TargetLowering::ZeroOrOneBooleanContent:
3154 // An extended value of 1 is always true, unless its original type is i1,
3155 // in which case it will be sign extended to -1.
3156 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3157 case TargetLowering::UndefinedBooleanContent:
3158 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3159 return N->isAllOnesValue() && SExt;
3160 }
3161 llvm_unreachable("Unexpected enumeration.")::llvm::llvm_unreachable_internal("Unexpected enumeration.", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3161)
;
3162}
3163
3164/// This helper function of SimplifySetCC tries to optimize the comparison when
3165/// either operand of the SetCC node is a bitwise-and instruction.
3166SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3167 ISD::CondCode Cond, const SDLoc &DL,
3168 DAGCombinerInfo &DCI) const {
3169 // Match these patterns in any of their permutations:
3170 // (X & Y) == Y
3171 // (X & Y) != Y
3172 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3173 std::swap(N0, N1);
3174
3175 EVT OpVT = N0.getValueType();
3176 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3177 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3178 return SDValue();
3179
3180 SDValue X, Y;
3181 if (N0.getOperand(0) == N1) {
3182 X = N0.getOperand(1);
3183 Y = N0.getOperand(0);
3184 } else if (N0.getOperand(1) == N1) {
3185 X = N0.getOperand(0);
3186 Y = N0.getOperand(1);
3187 } else {
3188 return SDValue();
3189 }
3190
3191 SelectionDAG &DAG = DCI.DAG;
3192 SDValue Zero = DAG.getConstant(0, DL, OpVT);
3193 if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3194 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3195 // Note that where Y is variable and is known to have at most one bit set
3196 // (for example, if it is Z & 1) we cannot do this; the expressions are not
3197 // equivalent when Y == 0.
3198 assert(OpVT.isInteger())(static_cast <bool> (OpVT.isInteger()) ? void (0) : __assert_fail
("OpVT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3198, __extension__ __PRETTY_FUNCTION__))
;
3199 Cond = ISD::getSetCCInverse(Cond, OpVT);
3200 if (DCI.isBeforeLegalizeOps() ||
3201 isCondCodeLegal(Cond, N0.getSimpleValueType()))
3202 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3203 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3204 // If the target supports an 'and-not' or 'and-complement' logic operation,
3205 // try to use that to make a comparison operation more efficient.
3206 // But don't do this transform if the mask is a single bit because there are
3207 // more efficient ways to deal with that case (for example, 'bt' on x86 or
3208 // 'rlwinm' on PPC).
3209
3210 // Bail out if the compare operand that we want to turn into a zero is
3211 // already a zero (otherwise, infinite loop).
3212 auto *YConst = dyn_cast<ConstantSDNode>(Y);
3213 if (YConst && YConst->isNullValue())
3214 return SDValue();
3215
3216 // Transform this into: ~X & Y == 0.
3217 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3218 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3219 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3220 }
3221
3222 return SDValue();
3223}
3224
3225/// There are multiple IR patterns that could be checking whether certain
3226/// truncation of a signed number would be lossy or not. The pattern which is
3227/// best at IR level, may not lower optimally. Thus, we want to unfold it.
3228/// We are looking for the following pattern: (KeptBits is a constant)
3229/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3230/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3231/// KeptBits also can't be 1, that would have been folded to %x dstcond 0
3232/// We will unfold it into the natural trunc+sext pattern:
3233/// ((%x << C) a>> C) dstcond %x
3234/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
3235SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3236 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3237 const SDLoc &DL) const {
3238 // We must be comparing with a constant.
3239 ConstantSDNode *C1;
3240 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3241 return SDValue();
3242
3243 // N0 should be: add %x, (1 << (KeptBits-1))
3244 if (N0->getOpcode() != ISD::ADD)
3245 return SDValue();
3246
3247 // And we must be 'add'ing a constant.
3248 ConstantSDNode *C01;
3249 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3250 return SDValue();
3251
3252 SDValue X = N0->getOperand(0);
3253 EVT XVT = X.getValueType();
3254
3255 // Validate constants ...
3256
3257 APInt I1 = C1->getAPIntValue();
3258
3259 ISD::CondCode NewCond;
3260 if (Cond == ISD::CondCode::SETULT) {
3261 NewCond = ISD::CondCode::SETEQ;
3262 } else if (Cond == ISD::CondCode::SETULE) {
3263 NewCond = ISD::CondCode::SETEQ;
3264 // But need to 'canonicalize' the constant.
3265 I1 += 1;
3266 } else if (Cond == ISD::CondCode::SETUGT) {
3267 NewCond = ISD::CondCode::SETNE;
3268 // But need to 'canonicalize' the constant.
3269 I1 += 1;
3270 } else if (Cond == ISD::CondCode::SETUGE) {
3271 NewCond = ISD::CondCode::SETNE;
3272 } else
3273 return SDValue();
3274
3275 APInt I01 = C01->getAPIntValue();
3276
3277 auto checkConstants = [&I1, &I01]() -> bool {
3278 // Both of them must be power-of-two, and the constant from setcc is bigger.
3279 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3280 };
3281
3282 if (checkConstants()) {
3283 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
3284 } else {
3285 // What if we invert constants? (and the target predicate)
3286 I1.negate();
3287 I01.negate();
3288 assert(XVT.isInteger())(static_cast <bool> (XVT.isInteger()) ? void (0) : __assert_fail
("XVT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3288, __extension__ __PRETTY_FUNCTION__))
;
3289 NewCond = getSetCCInverse(NewCond, XVT);
3290 if (!checkConstants())
3291 return SDValue();
3292 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
3293 }
3294
3295 // They are power-of-two, so which bit is set?
3296 const unsigned KeptBits = I1.logBase2();
3297 const unsigned KeptBitsMinusOne = I01.logBase2();
3298
3299 // Magic!
3300 if (KeptBits != (KeptBitsMinusOne + 1))
3301 return SDValue();
3302 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable")(static_cast <bool> (KeptBits > 0 && KeptBits
< XVT.getSizeInBits() && "unreachable") ? void (0
) : __assert_fail ("KeptBits > 0 && KeptBits < XVT.getSizeInBits() && \"unreachable\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3302, __extension__ __PRETTY_FUNCTION__))
;
3303
3304 // We don't want to do this in every single case.
3305 SelectionDAG &DAG = DCI.DAG;
3306 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3307 XVT, KeptBits))
3308 return SDValue();
3309
3310 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3311 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable")(static_cast <bool> (MaskedBits > 0 && MaskedBits
< XVT.getSizeInBits() && "unreachable") ? void (0
) : __assert_fail ("MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && \"unreachable\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3311, __extension__ __PRETTY_FUNCTION__))
;
3312
3313 // Unfold into: ((%x << C) a>> C) cond %x
3314 // Where 'cond' will be either 'eq' or 'ne'.
3315 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3316 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3317 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3318 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3319
3320 return T2;
3321}
3322
3323// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
3324SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3325 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3326 DAGCombinerInfo &DCI, const SDLoc &DL) const {
3327 assert(isConstOrConstSplat(N1C) &&(static_cast <bool> (isConstOrConstSplat(N1C) &&
isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
"Should be a comparison with 0.") ? void (0) : __assert_fail
("isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && \"Should be a comparison with 0.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3329, __extension__ __PRETTY_FUNCTION__))
3328 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&(static_cast <bool> (isConstOrConstSplat(N1C) &&
isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
"Should be a comparison with 0.") ? void (0) : __assert_fail
("isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && \"Should be a comparison with 0.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3329, __extension__ __PRETTY_FUNCTION__))
3329 "Should be a comparison with 0.")(static_cast <bool> (isConstOrConstSplat(N1C) &&
isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
"Should be a comparison with 0.") ? void (0) : __assert_fail
("isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && \"Should be a comparison with 0.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3329, __extension__ __PRETTY_FUNCTION__))
;
3330 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Valid only for [in]equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Valid only for [in]equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3331, __extension__ __PRETTY_FUNCTION__))
3331 "Valid only for [in]equality comparisons.")(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Valid only for [in]equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Valid only for [in]equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3331, __extension__ __PRETTY_FUNCTION__))
;
3332
3333 unsigned NewShiftOpcode;
3334 SDValue X, C, Y;
3335
3336 SelectionDAG &DAG = DCI.DAG;
3337 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3338
3339 // Look for '(C l>>/<< Y)'.
3340 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3341 // The shift should be one-use.
3342 if (!V.hasOneUse())
3343 return false;
3344 unsigned OldShiftOpcode = V.getOpcode();
3345 switch (OldShiftOpcode) {
3346 case ISD::SHL:
3347 NewShiftOpcode = ISD::SRL;
3348 break;
3349 case ISD::SRL:
3350 NewShiftOpcode = ISD::SHL;
3351 break;
3352 default:
3353 return false; // must be a logical shift.
3354 }
3355 // We should be shifting a constant.
3356 // FIXME: best to use isConstantOrConstantVector().
3357 C = V.getOperand(0);
3358 ConstantSDNode *CC =
3359 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3360 if (!CC)
3361 return false;
3362 Y = V.getOperand(1);
3363
3364 ConstantSDNode *XC =
3365 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3366 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3367 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3368 };
3369
3370 // LHS of comparison should be an one-use 'and'.
3371 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3372 return SDValue();
3373
3374 X = N0.getOperand(0);
3375 SDValue Mask = N0.getOperand(1);
3376
3377 // 'and' is commutative!
3378 if (!Match(Mask)) {
3379 std::swap(X, Mask);
3380 if (!Match(Mask))
3381 return SDValue();
3382 }
3383
3384 EVT VT = X.getValueType();
3385
3386 // Produce:
3387 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3388 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3389 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3390 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3391 return T2;
3392}
3393
3394/// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3395/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3396/// handle the commuted versions of these patterns.
3397SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3398 ISD::CondCode Cond, const SDLoc &DL,
3399 DAGCombinerInfo &DCI) const {
3400 unsigned BOpcode = N0.getOpcode();
3401 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&(static_cast <bool> ((BOpcode == ISD::ADD || BOpcode ==
ISD::SUB || BOpcode == ISD::XOR) && "Unexpected binop"
) ? void (0) : __assert_fail ("(BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && \"Unexpected binop\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3402, __extension__ __PRETTY_FUNCTION__))
3402 "Unexpected binop")(static_cast <bool> ((BOpcode == ISD::ADD || BOpcode ==
ISD::SUB || BOpcode == ISD::XOR) && "Unexpected binop"
) ? void (0) : __assert_fail ("(BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && \"Unexpected binop\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3402, __extension__ __PRETTY_FUNCTION__))
;
3403 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode")(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Unexpected condcode") ? void (0) : __assert_fail
("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Unexpected condcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3403, __extension__ __PRETTY_FUNCTION__))
;
3404
3405 // (X + Y) == X --> Y == 0
3406 // (X - Y) == X --> Y == 0
3407 // (X ^ Y) == X --> Y == 0
3408 SelectionDAG &DAG = DCI.DAG;
3409 EVT OpVT = N0.getValueType();
3410 SDValue X = N0.getOperand(0);
3411 SDValue Y = N0.getOperand(1);
3412 if (X == N1)
3413 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3414
3415 if (Y != N1)
3416 return SDValue();
3417
3418 // (X + Y) == Y --> X == 0
3419 // (X ^ Y) == Y --> X == 0
3420 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3421 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3422
3423 // The shift would not be valid if the operands are boolean (i1).
3424 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3425 return SDValue();
3426
3427 // (X - Y) == Y --> X == Y << 1
3428 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3429 !DCI.isBeforeLegalize());
3430 SDValue One = DAG.getConstant(1, DL, ShiftVT);
3431 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3432 if (!DCI.isCalledByLegalizer())
3433 DCI.AddToWorklist(YShl1.getNode());
3434 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3435}
3436
3437static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3438 SDValue N0, const APInt &C1,
3439 ISD::CondCode Cond, const SDLoc &dl,
3440 SelectionDAG &DAG) {
3441 // Look through truncs that don't change the value of a ctpop.
3442 // FIXME: Add vector support? Need to be careful with setcc result type below.
3443 SDValue CTPOP = N0;
3444 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3445 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3446 CTPOP = N0.getOperand(0);
3447
3448 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3449 return SDValue();
3450
3451 EVT CTVT = CTPOP.getValueType();
3452 SDValue CTOp = CTPOP.getOperand(0);
3453
3454 // If this is a vector CTPOP, keep the CTPOP if it is legal.
3455 // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3456 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3457 return SDValue();
3458
3459 // (ctpop x) u< 2 -> (x & x-1) == 0
3460 // (ctpop x) u> 1 -> (x & x-1) != 0
3461 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3462 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3463 if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3464 return SDValue();
3465 if (C1 == 0 && (Cond == ISD::SETULT))
3466 return SDValue(); // This is handled elsewhere.
3467
3468 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3469
3470 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3471 SDValue Result = CTOp;
3472 for (unsigned i = 0; i < Passes; i++) {
3473 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3474 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3475 }
3476 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3477 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3478 }
3479
3480 // If ctpop is not supported, expand a power-of-2 comparison based on it.
3481 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3482 // For scalars, keep CTPOP if it is legal or custom.
3483 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3484 return SDValue();
3485 // This is based on X86's custom lowering for CTPOP which produces more
3486 // instructions than the expansion here.
3487
3488 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3489 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3490 SDValue Zero = DAG.getConstant(0, dl, CTVT);
3491 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3492 assert(CTVT.isInteger())(static_cast <bool> (CTVT.isInteger()) ? void (0) : __assert_fail
("CTVT.isInteger()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3492, __extension__ __PRETTY_FUNCTION__))
;
3493 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3494 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3495 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3496 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3497 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3498 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3499 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3500 }
3501
3502 return SDValue();
3503}
3504
3505/// Try to simplify a setcc built with the specified operands and cc. If it is
3506/// unable to simplify it, return a null SDValue.
3507SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3508 ISD::CondCode Cond, bool foldBooleans,
3509 DAGCombinerInfo &DCI,
3510 const SDLoc &dl) const {
3511 SelectionDAG &DAG = DCI.DAG;
3512 const DataLayout &Layout = DAG.getDataLayout();
3513 EVT OpVT = N0.getValueType();
3514
3515 // Constant fold or commute setcc.
3516 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3517 return Fold;
3518
3519 // Ensure that the constant occurs on the RHS and fold constant comparisons.
3520 // TODO: Handle non-splat vector constants. All undef causes trouble.
3521 // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3522 // infinite loop here when we encounter one.
3523 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3524 if (isConstOrConstSplat(N0) &&
3525 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3526 (DCI.isBeforeLegalizeOps() ||
3527 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3528 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3529
3530 // If we have a subtract with the same 2 non-constant operands as this setcc
3531 // -- but in reverse order -- then try to commute the operands of this setcc
3532 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3533 // instruction on some targets.
3534 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3535 (DCI.isBeforeLegalizeOps() ||
3536 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3537 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3538 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3539 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3540
3541 if (auto *N1C = isConstOrConstSplat(N1)) {
3542 const APInt &C1 = N1C->getAPIntValue();
3543
3544 // Optimize some CTPOP cases.
3545 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3546 return V;
3547
3548 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3549 // equality comparison, then we're just comparing whether X itself is
3550 // zero.
3551 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3552 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3553 isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3554 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3555 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3556 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3557 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3558 // (srl (ctlz x), 5) == 0 -> X != 0
3559 // (srl (ctlz x), 5) != 1 -> X != 0
3560 Cond = ISD::SETNE;
3561 } else {
3562 // (srl (ctlz x), 5) != 0 -> X == 0
3563 // (srl (ctlz x), 5) == 1 -> X == 0
3564 Cond = ISD::SETEQ;
3565 }
3566 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3567 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3568 Cond);
3569 }
3570 }
3571 }
3572 }
3573
3574 // FIXME: Support vectors.
3575 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3576 const APInt &C1 = N1C->getAPIntValue();
3577
3578 // (zext x) == C --> x == (trunc C)
3579 // (sext x) == C --> x == (trunc C)
3580 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3581 DCI.isBeforeLegalize() && N0->hasOneUse()) {
3582 unsigned MinBits = N0.getValueSizeInBits();
3583 SDValue PreExt;
3584 bool Signed = false;
3585 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3586 // ZExt
3587 MinBits = N0->getOperand(0).getValueSizeInBits();
3588 PreExt = N0->getOperand(0);
3589 } else if (N0->getOpcode() == ISD::AND) {
3590 // DAGCombine turns costly ZExts into ANDs
3591 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3592 if ((C->getAPIntValue()+1).isPowerOf2()) {
3593 MinBits = C->getAPIntValue().countTrailingOnes();
3594 PreExt = N0->getOperand(0);
3595 }
3596 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3597 // SExt
3598 MinBits = N0->getOperand(0).getValueSizeInBits();
3599 PreExt = N0->getOperand(0);
3600 Signed = true;
3601 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3602 // ZEXTLOAD / SEXTLOAD
3603 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3604 MinBits = LN0->getMemoryVT().getSizeInBits();
3605 PreExt = N0;
3606 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3607 Signed = true;
3608 MinBits = LN0->getMemoryVT().getSizeInBits();
3609 PreExt = N0;
3610 }
3611 }
3612
3613 // Figure out how many bits we need to preserve this constant.
3614 unsigned ReqdBits = Signed ?
3615 C1.getBitWidth() - C1.getNumSignBits() + 1 :
3616 C1.getActiveBits();
3617
3618 // Make sure we're not losing bits from the constant.
3619 if (MinBits > 0 &&
3620 MinBits < C1.getBitWidth() &&
3621 MinBits >= ReqdBits) {
3622 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3623 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3624 // Will get folded away.
3625 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3626 if (MinBits == 1 && C1 == 1)
3627 // Invert the condition.
3628 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3629 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3630 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3631 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3632 }
3633
3634 // If truncating the setcc operands is not desirable, we can still
3635 // simplify the expression in some cases:
3636 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3637 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3638 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3639 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3640 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3641 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3642 SDValue TopSetCC = N0->getOperand(0);
3643 unsigned N0Opc = N0->getOpcode();
3644 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3645 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3646 TopSetCC.getOpcode() == ISD::SETCC &&
3647 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3648 (isConstFalseVal(N1C) ||
3649 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3650
3651 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3652 (!N1C->isNullValue() && Cond == ISD::SETNE);
3653
3654 if (!Inverse)
3655 return TopSetCC;
3656
3657 ISD::CondCode InvCond = ISD::getSetCCInverse(
3658 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3659 TopSetCC.getOperand(0).getValueType());
3660 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3661 TopSetCC.getOperand(1),
3662 InvCond);
3663 }
3664 }
3665 }
3666
3667 // If the LHS is '(and load, const)', the RHS is 0, the test is for
3668 // equality or unsigned, and all 1 bits of the const are in the same
3669 // partial word, see if we can shorten the load.
3670 if (DCI.isBeforeLegalize() &&
3671 !ISD::isSignedIntSetCC(Cond) &&
3672 N0.getOpcode() == ISD::AND && C1 == 0 &&
3673 N0.getNode()->hasOneUse() &&
3674 isa<LoadSDNode>(N0.getOperand(0)) &&
3675 N0.getOperand(0).getNode()->hasOneUse() &&
3676 isa<ConstantSDNode>(N0.getOperand(1))) {
3677 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3678 APInt bestMask;
3679 unsigned bestWidth = 0, bestOffset = 0;
3680 if (Lod->isSimple() && Lod->isUnindexed()) {
3681 unsigned origWidth = N0.getValueSizeInBits();
3682 unsigned maskWidth = origWidth;
3683 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3684 // 8 bits, but have to be careful...
3685 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3686 origWidth = Lod->getMemoryVT().getSizeInBits();
3687 const APInt &Mask = N0.getConstantOperandAPInt(1);
3688 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3689 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3690 for (unsigned offset=0; offset<origWidth/width; offset++) {
3691 if (Mask.isSubsetOf(newMask)) {
3692 if (Layout.isLittleEndian())
3693 bestOffset = (uint64_t)offset * (width/8);
3694 else
3695 bestOffset = (origWidth/width - offset - 1) * (width/8);
3696 bestMask = Mask.lshr(offset * (width/8) * 8);
3697 bestWidth = width;
3698 break;
3699 }
3700 newMask <<= width;
3701 }
3702 }
3703 }
3704 if (bestWidth) {
3705 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3706 if (newVT.isRound() &&
3707 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3708 SDValue Ptr = Lod->getBasePtr();
3709 if (bestOffset != 0)
3710 Ptr =
3711 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3712 SDValue NewLoad =
3713 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3714 Lod->getPointerInfo().getWithOffset(bestOffset),
3715 Lod->getOriginalAlign());
3716 return DAG.getSetCC(dl, VT,
3717 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3718 DAG.getConstant(bestMask.trunc(bestWidth),
3719 dl, newVT)),
3720 DAG.getConstant(0LL, dl, newVT), Cond);
3721 }
3722 }
3723 }
3724
3725 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3726 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3727 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3728
3729 // If the comparison constant has bits in the upper part, the
3730 // zero-extended value could never match.
3731 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3732 C1.getBitWidth() - InSize))) {
3733 switch (Cond) {
3734 case ISD::SETUGT:
3735 case ISD::SETUGE:
3736 case ISD::SETEQ:
3737 return DAG.getConstant(0, dl, VT);
3738 case ISD::SETULT:
3739 case ISD::SETULE:
3740 case ISD::SETNE:
3741 return DAG.getConstant(1, dl, VT);
3742 case ISD::SETGT:
3743 case ISD::SETGE:
3744 // True if the sign bit of C1 is set.
3745 return DAG.getConstant(C1.isNegative(), dl, VT);
3746 case ISD::SETLT:
3747 case ISD::SETLE:
3748 // True if the sign bit of C1 isn't set.
3749 return DAG.getConstant(C1.isNonNegative(), dl, VT);
3750 default:
3751 break;
3752 }
3753 }
3754
3755 // Otherwise, we can perform the comparison with the low bits.
3756 switch (Cond) {
3757 case ISD::SETEQ:
3758 case ISD::SETNE:
3759 case ISD::SETUGT:
3760 case ISD::SETUGE:
3761 case ISD::SETULT:
3762 case ISD::SETULE: {
3763 EVT newVT = N0.getOperand(0).getValueType();
3764 if (DCI.isBeforeLegalizeOps() ||
3765 (isOperationLegal(ISD::SETCC, newVT) &&
3766 isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3767 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3768 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3769
3770 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3771 NewConst, Cond);
3772 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3773 }
3774 break;
3775 }
3776 default:
3777 break; // todo, be more careful with signed comparisons
3778 }
3779 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3780 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3781 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3782 OpVT)) {
3783 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3784 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3785 EVT ExtDstTy = N0.getValueType();
3786 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3787
3788 // If the constant doesn't fit into the number of bits for the source of
3789 // the sign extension, it is impossible for both sides to be equal.
3790 if (C1.getMinSignedBits() > ExtSrcTyBits)
3791 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3792
3793 assert(ExtDstTy == N0.getOperand(0).getValueType() &&(static_cast <bool> (ExtDstTy == N0.getOperand(0).getValueType
() && ExtDstTy != ExtSrcTy && "Unexpected types!"
) ? void (0) : __assert_fail ("ExtDstTy == N0.getOperand(0).getValueType() && ExtDstTy != ExtSrcTy && \"Unexpected types!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3794, __extension__ __PRETTY_FUNCTION__))
3794 ExtDstTy != ExtSrcTy && "Unexpected types!")(static_cast <bool> (ExtDstTy == N0.getOperand(0).getValueType
() && ExtDstTy != ExtSrcTy && "Unexpected types!"
) ? void (0) : __assert_fail ("ExtDstTy == N0.getOperand(0).getValueType() && ExtDstTy != ExtSrcTy && \"Unexpected types!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3794, __extension__ __PRETTY_FUNCTION__))
;
3795 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3796 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3797 DAG.getConstant(Imm, dl, ExtDstTy));
3798 if (!DCI.isCalledByLegalizer())
3799 DCI.AddToWorklist(ZextOp.getNode());
3800 // Otherwise, make this a use of a zext.
3801 return DAG.getSetCC(dl, VT, ZextOp,
3802 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3803 } else if ((N1C->isNullValue() || N1C->isOne()) &&
3804 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3805 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
3806 if (N0.getOpcode() == ISD::SETCC &&
3807 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3808 (N0.getValueType() == MVT::i1 ||
3809 getBooleanContents(N0.getOperand(0).getValueType()) ==
3810 ZeroOrOneBooleanContent)) {
3811 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3812 if (TrueWhenTrue)
3813 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3814 // Invert the condition.
3815 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3816 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3817 if (DCI.isBeforeLegalizeOps() ||
3818 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3819 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3820 }
3821
3822 if ((N0.getOpcode() == ISD::XOR ||
3823 (N0.getOpcode() == ISD::AND &&
3824 N0.getOperand(0).getOpcode() == ISD::XOR &&
3825 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3826 isOneConstant(N0.getOperand(1))) {
3827 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3828 // can only do this if the top bits are known zero.
3829 unsigned BitWidth = N0.getValueSizeInBits();
3830 if (DAG.MaskedValueIsZero(N0,
3831 APInt::getHighBitsSet(BitWidth,
3832 BitWidth-1))) {
3833 // Okay, get the un-inverted input value.
3834 SDValue Val;
3835 if (N0.getOpcode() == ISD::XOR) {
3836 Val = N0.getOperand(0);
3837 } else {
3838 assert(N0.getOpcode() == ISD::AND &&(static_cast <bool> (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::XOR) ? void (0) : __assert_fail
("N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3839, __extension__ __PRETTY_FUNCTION__))
3839 N0.getOperand(0).getOpcode() == ISD::XOR)(static_cast <bool> (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::XOR) ? void (0) : __assert_fail
("N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::XOR"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 3839, __extension__ __PRETTY_FUNCTION__))
;
3840 // ((X^1)&1)^1 -> X & 1
3841 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3842 N0.getOperand(0).getOperand(0),
3843 N0.getOperand(1));
3844 }
3845
3846 return DAG.getSetCC(dl, VT, Val, N1,
3847 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3848 }
3849 } else if (N1C->isOne()) {
3850 SDValue Op0 = N0;
3851 if (Op0.getOpcode() == ISD::TRUNCATE)
3852 Op0 = Op0.getOperand(0);
3853
3854 if ((Op0.getOpcode() == ISD::XOR) &&
3855 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3856 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3857 SDValue XorLHS = Op0.getOperand(0);
3858 SDValue XorRHS = Op0.getOperand(1);
3859 // Ensure that the input setccs return an i1 type or 0/1 value.
3860 if (Op0.getValueType() == MVT::i1 ||
3861 (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3862 ZeroOrOneBooleanContent &&
3863 getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3864 ZeroOrOneBooleanContent)) {
3865 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3866 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3867 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3868 }
3869 }
3870 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3871 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3872 if (Op0.getValueType().bitsGT(VT))
3873 Op0 = DAG.getNode(ISD::AND, dl, VT,
3874 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3875 DAG.getConstant(1, dl, VT));
3876 else if (Op0.getValueType().bitsLT(VT))
3877 Op0 = DAG.getNode(ISD::AND, dl, VT,
3878 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3879 DAG.getConstant(1, dl, VT));
3880
3881 return DAG.getSetCC(dl, VT, Op0,
3882 DAG.getConstant(0, dl, Op0.getValueType()),
3883 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3884 }
3885 if (Op0.getOpcode() == ISD::AssertZext &&
3886 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3887 return DAG.getSetCC(dl, VT, Op0,
3888 DAG.getConstant(0, dl, Op0.getValueType()),
3889 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3890 }
3891 }
3892
3893 // Given:
3894 // icmp eq/ne (urem %x, %y), 0
3895 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3896 // icmp eq/ne %x, 0
3897 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3898 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3899 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3900 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3901 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3902 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3903 }
3904
3905 if (SDValue V =
3906 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3907 return V;
3908 }
3909
3910 // These simplifications apply to splat vectors as well.
3911 // TODO: Handle more splat vector cases.
3912 if (auto *N1C = isConstOrConstSplat(N1)) {
3913 const APInt &C1 = N1C->getAPIntValue();
3914
3915 APInt MinVal, MaxVal;
3916 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3917 if (ISD::isSignedIntSetCC(Cond)) {
3918 MinVal = APInt::getSignedMinValue(OperandBitSize);
3919 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3920 } else {
3921 MinVal = APInt::getMinValue(OperandBitSize);
3922 MaxVal = APInt::getMaxValue(OperandBitSize);
3923 }
3924
3925 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3926 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3927 // X >= MIN --> true
3928 if (C1 == MinVal)
3929 return DAG.getBoolConstant(true, dl, VT, OpVT);
3930
3931 if (!VT.isVector()) { // TODO: Support this for vectors.
3932 // X >= C0 --> X > (C0 - 1)
3933 APInt C = C1 - 1;
3934 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3935 if ((DCI.isBeforeLegalizeOps() ||
3936 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3937 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3938 isLegalICmpImmediate(C.getSExtValue())))) {
3939 return DAG.getSetCC(dl, VT, N0,
3940 DAG.getConstant(C, dl, N1.getValueType()),
3941 NewCC);
3942 }
3943 }
3944 }
3945
3946 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3947 // X <= MAX --> true
3948 if (C1 == MaxVal)
3949 return DAG.getBoolConstant(true, dl, VT, OpVT);
3950
3951 // X <= C0 --> X < (C0 + 1)
3952 if (!VT.isVector()) { // TODO: Support this for vectors.
3953 APInt C = C1 + 1;
3954 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3955 if ((DCI.isBeforeLegalizeOps() ||
3956 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3957 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3958 isLegalICmpImmediate(C.getSExtValue())))) {
3959 return DAG.getSetCC(dl, VT, N0,
3960 DAG.getConstant(C, dl, N1.getValueType()),
3961 NewCC);
3962 }
3963 }
3964 }
3965
3966 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3967 if (C1 == MinVal)
3968 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3969
3970 // TODO: Support this for vectors after legalize ops.
3971 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3972 // Canonicalize setlt X, Max --> setne X, Max
3973 if (C1 == MaxVal)
3974 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3975
3976 // If we have setult X, 1, turn it into seteq X, 0
3977 if (C1 == MinVal+1)
3978 return DAG.getSetCC(dl, VT, N0,
3979 DAG.getConstant(MinVal, dl, N0.getValueType()),
3980 ISD::SETEQ);
3981 }
3982 }
3983
3984 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3985 if (C1 == MaxVal)
3986 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3987
3988 // TODO: Support this for vectors after legalize ops.
3989 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3990 // Canonicalize setgt X, Min --> setne X, Min
3991 if (C1 == MinVal)
3992 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3993
3994 // If we have setugt X, Max-1, turn it into seteq X, Max
3995 if (C1 == MaxVal-1)
3996 return DAG.getSetCC(dl, VT, N0,
3997 DAG.getConstant(MaxVal, dl, N0.getValueType()),
3998 ISD::SETEQ);
3999 }
4000 }
4001
4002 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4003 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
4004 if (C1.isNullValue())
4005 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4006 VT, N0, N1, Cond, DCI, dl))
4007 return CC;
4008
4009 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4010 // For example, when high 32-bits of i64 X are known clear:
4011 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0
4012 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1
4013 bool CmpZero = N1C->getAPIntValue().isNullValue();
4014 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
4015 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4016 // Match or(lo,shl(hi,bw/2)) pattern.
4017 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4018 unsigned EltBits = V.getScalarValueSizeInBits();
4019 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4020 return false;
4021 SDValue LHS = V.getOperand(0);
4022 SDValue RHS = V.getOperand(1);
4023 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4024 // Unshifted element must have zero upperbits.
4025 if (RHS.getOpcode() == ISD::SHL &&
4026 isa<ConstantSDNode>(RHS.getOperand(1)) &&
4027 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4028 DAG.MaskedValueIsZero(LHS, HiBits)) {
4029 Lo = LHS;
4030 Hi = RHS.getOperand(0);
4031 return true;
4032 }
4033 if (LHS.getOpcode() == ISD::SHL &&
4034 isa<ConstantSDNode>(LHS.getOperand(1)) &&
4035 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4036 DAG.MaskedValueIsZero(RHS, HiBits)) {
4037 Lo = RHS;
4038 Hi = LHS.getOperand(0);
4039 return true;
4040 }
4041 return false;
4042 };
4043
4044 auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4045 unsigned EltBits = N0.getScalarValueSizeInBits();
4046 unsigned HalfBits = EltBits / 2;
4047 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4048 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4049 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4050 SDValue NewN0 =
4051 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4052 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4053 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4054 };
4055
4056 SDValue Lo, Hi;
4057 if (IsConcat(N0, Lo, Hi))
4058 return MergeConcat(Lo, Hi);
4059
4060 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4061 SDValue Lo0, Lo1, Hi0, Hi1;
4062 if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4063 IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4064 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4065 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4066 }
4067 }
4068 }
4069 }
4070
4071 // If we have "setcc X, C0", check to see if we can shrink the immediate
4072 // by changing cc.
4073 // TODO: Support this for vectors after legalize ops.
4074 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4075 // SETUGT X, SINTMAX -> SETLT X, 0
4076 // SETUGE X, SINTMIN -> SETLT X, 0
4077 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4078 (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4079 return DAG.getSetCC(dl, VT, N0,
4080 DAG.getConstant(0, dl, N1.getValueType()),
4081 ISD::SETLT);
4082
4083 // SETULT X, SINTMIN -> SETGT X, -1
4084 // SETULE X, SINTMAX -> SETGT X, -1
4085 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4086 (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4087 return DAG.getSetCC(dl, VT, N0,
4088 DAG.getAllOnesConstant(dl, N1.getValueType()),
4089 ISD::SETGT);
4090 }
4091 }
4092
4093 // Back to non-vector simplifications.
4094 // TODO: Can we do these for vector splats?
4095 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4096 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4097 const APInt &C1 = N1C->getAPIntValue();
4098 EVT ShValTy = N0.getValueType();
4099
4100 // Fold bit comparisons when we can. This will result in an
4101 // incorrect value when boolean false is negative one, unless
4102 // the bitsize is 1 in which case the false value is the same
4103 // in practice regardless of the representation.
4104 if ((VT.getSizeInBits() == 1 ||
4105 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4106 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4107 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4108 N0.getOpcode() == ISD::AND) {
4109 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4110 EVT ShiftTy =
4111 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4112 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
4113 // Perform the xform if the AND RHS is a single bit.
4114 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4115 if (AndRHS->getAPIntValue().isPowerOf2() &&
4116 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4117 return DAG.getNode(ISD::TRUNCATE, dl, VT,
4118 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4119 DAG.getConstant(ShCt, dl, ShiftTy)));
4120 }
4121 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4122 // (X & 8) == 8 --> (X & 8) >> 3
4123 // Perform the xform if C1 is a single bit.
4124 unsigned ShCt = C1.logBase2();
4125 if (C1.isPowerOf2() &&
4126 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4127 return DAG.getNode(ISD::TRUNCATE, dl, VT,
4128 DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4129 DAG.getConstant(ShCt, dl, ShiftTy)));
4130 }
4131 }
4132 }
4133 }
4134
4135 if (C1.getMinSignedBits() <= 64 &&
4136 !isLegalICmpImmediate(C1.getSExtValue())) {
4137 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4138 // (X & -256) == 256 -> (X >> 8) == 1
4139 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4140 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4141 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4142 const APInt &AndRHSC = AndRHS->getAPIntValue();
4143 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4144 unsigned ShiftBits = AndRHSC.countTrailingZeros();
4145 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4146 SDValue Shift =
4147 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4148 DAG.getConstant(ShiftBits, dl, ShiftTy));
4149 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4150 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4151 }
4152 }
4153 }
4154 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4155 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4156 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4157 // X < 0x100000000 -> (X >> 32) < 1
4158 // X >= 0x100000000 -> (X >> 32) >= 1
4159 // X <= 0x0ffffffff -> (X >> 32) < 1
4160 // X > 0x0ffffffff -> (X >> 32) >= 1
4161 unsigned ShiftBits;
4162 APInt NewC = C1;
4163 ISD::CondCode NewCond = Cond;
4164 if (AdjOne) {
4165 ShiftBits = C1.countTrailingOnes();
4166 NewC = NewC + 1;
4167 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4168 } else {
4169 ShiftBits = C1.countTrailingZeros();
4170 }
4171 NewC.lshrInPlace(ShiftBits);
4172 if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4173 isLegalICmpImmediate(NewC.getSExtValue()) &&
4174 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4175 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4176 DAG.getConstant(ShiftBits, dl, ShiftTy));
4177 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4178 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4179 }
4180 }
4181 }
4182 }
4183
4184 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4185 auto *CFP = cast<ConstantFPSDNode>(N1);
4186 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value")(static_cast <bool> (!CFP->getValueAPF().isNaN() &&
"Unexpected NaN value") ? void (0) : __assert_fail ("!CFP->getValueAPF().isNaN() && \"Unexpected NaN value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4186, __extension__ __PRETTY_FUNCTION__))
;
4187
4188 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
4189 // constant if knowing that the operand is non-nan is enough. We prefer to
4190 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4191 // materialize 0.0.
4192 if (Cond == ISD::SETO || Cond == ISD::SETUO)
4193 return DAG.getSetCC(dl, VT, N0, N0, Cond);
4194
4195 // setcc (fneg x), C -> setcc swap(pred) x, -C
4196 if (N0.getOpcode() == ISD::FNEG) {
4197 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4198 if (DCI.isBeforeLegalizeOps() ||
4199 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4200 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4201 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4202 }
4203 }
4204
4205 // If the condition is not legal, see if we can find an equivalent one
4206 // which is legal.
4207 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4208 // If the comparison was an awkward floating-point == or != and one of
4209 // the comparison operands is infinity or negative infinity, convert the
4210 // condition to a less-awkward <= or >=.
4211 if (CFP->getValueAPF().isInfinity()) {
4212 bool IsNegInf = CFP->getValueAPF().isNegative();
4213 ISD::CondCode NewCond = ISD::SETCC_INVALID;
4214 switch (Cond) {
4215 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4216 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4217 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4218 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4219 default: break;
4220 }
4221 if (NewCond != ISD::SETCC_INVALID &&
4222 isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4223 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4224 }
4225 }
4226 }
4227
4228 if (N0 == N1) {
4229 // The sext(setcc()) => setcc() optimization relies on the appropriate
4230 // constant being emitted.
4231 assert(!N0.getValueType().isInteger() &&(static_cast <bool> (!N0.getValueType().isInteger() &&
"Integer types should be handled by FoldSetCC") ? void (0) :
__assert_fail ("!N0.getValueType().isInteger() && \"Integer types should be handled by FoldSetCC\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4232, __extension__ __PRETTY_FUNCTION__))
4232 "Integer types should be handled by FoldSetCC")(static_cast <bool> (!N0.getValueType().isInteger() &&
"Integer types should be handled by FoldSetCC") ? void (0) :
__assert_fail ("!N0.getValueType().isInteger() && \"Integer types should be handled by FoldSetCC\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4232, __extension__ __PRETTY_FUNCTION__))
;
4233
4234 bool EqTrue = ISD::isTrueWhenEqual(Cond);
4235 unsigned UOF = ISD::getUnorderedFlavor(Cond);
4236 if (UOF == 2) // FP operators that are undefined on NaNs.
4237 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4238 if (UOF == unsigned(EqTrue))
4239 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4240 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
4241 // if it is not already.
4242 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4243 if (NewCond != Cond &&
4244 (DCI.isBeforeLegalizeOps() ||
4245 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4246 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4247 }
4248
4249 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4250 N0.getValueType().isInteger()) {
4251 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4252 N0.getOpcode() == ISD::XOR) {
4253 // Simplify (X+Y) == (X+Z) --> Y == Z
4254 if (N0.getOpcode() == N1.getOpcode()) {
4255 if (N0.getOperand(0) == N1.getOperand(0))
4256 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4257 if (N0.getOperand(1) == N1.getOperand(1))
4258 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4259 if (isCommutativeBinOp(N0.getOpcode())) {
4260 // If X op Y == Y op X, try other combinations.
4261 if (N0.getOperand(0) == N1.getOperand(1))
4262 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4263 Cond);
4264 if (N0.getOperand(1) == N1.getOperand(0))
4265 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4266 Cond);
4267 }
4268 }
4269
4270 // If RHS is a legal immediate value for a compare instruction, we need
4271 // to be careful about increasing register pressure needlessly.
4272 bool LegalRHSImm = false;
4273
4274 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4275 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4276 // Turn (X+C1) == C2 --> X == C2-C1
4277 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4278 return DAG.getSetCC(dl, VT, N0.getOperand(0),
4279 DAG.getConstant(RHSC->getAPIntValue()-
4280 LHSR->getAPIntValue(),
4281 dl, N0.getValueType()), Cond);
4282 }
4283
4284 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4285 if (N0.getOpcode() == ISD::XOR)
4286 // If we know that all of the inverted bits are zero, don't bother
4287 // performing the inversion.
4288 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4289 return
4290 DAG.getSetCC(dl, VT, N0.getOperand(0),
4291 DAG.getConstant(LHSR->getAPIntValue() ^
4292 RHSC->getAPIntValue(),
4293 dl, N0.getValueType()),
4294 Cond);
4295 }
4296
4297 // Turn (C1-X) == C2 --> X == C1-C2
4298 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4299 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4300 return
4301 DAG.getSetCC(dl, VT, N0.getOperand(1),
4302 DAG.getConstant(SUBC->getAPIntValue() -
4303 RHSC->getAPIntValue(),
4304 dl, N0.getValueType()),
4305 Cond);
4306 }
4307 }
4308
4309 // Could RHSC fold directly into a compare?
4310 if (RHSC->getValueType(0).getSizeInBits() <= 64)
4311 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4312 }
4313
4314 // (X+Y) == X --> Y == 0 and similar folds.
4315 // Don't do this if X is an immediate that can fold into a cmp
4316 // instruction and X+Y has other uses. It could be an induction variable
4317 // chain, and the transform would increase register pressure.
4318 if (!LegalRHSImm || N0.hasOneUse())
4319 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4320 return V;
4321 }
4322
4323 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4324 N1.getOpcode() == ISD::XOR)
4325 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4326 return V;
4327
4328 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4329 return V;
4330 }
4331
4332 // Fold remainder of division by a constant.
4333 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4334 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4335 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4336
4337 // When division is cheap or optimizing for minimum size,
4338 // fall through to DIVREM creation by skipping this fold.
4339 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4340 if (N0.getOpcode() == ISD::UREM) {
4341 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4342 return Folded;
4343 } else if (N0.getOpcode() == ISD::SREM) {
4344 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4345 return Folded;
4346 }
4347 }
4348 }
4349
4350 // Fold away ALL boolean setcc's.
4351 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4352 SDValue Temp;
4353 switch (Cond) {
4354 default: llvm_unreachable("Unknown integer setcc!")::llvm::llvm_unreachable_internal("Unknown integer setcc!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4354)
;
4355 case ISD::SETEQ: // X == Y -> ~(X^Y)
4356 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4357 N0 = DAG.getNOT(dl, Temp, OpVT);
4358 if (!DCI.isCalledByLegalizer())
4359 DCI.AddToWorklist(Temp.getNode());
4360 break;
4361 case ISD::SETNE: // X != Y --> (X^Y)
4362 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4363 break;
4364 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
4365 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
4366 Temp = DAG.getNOT(dl, N0, OpVT);
4367 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4368 if (!DCI.isCalledByLegalizer())
4369 DCI.AddToWorklist(Temp.getNode());
4370 break;
4371 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
4372 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
4373 Temp = DAG.getNOT(dl, N1, OpVT);
4374 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4375 if (!DCI.isCalledByLegalizer())
4376 DCI.AddToWorklist(Temp.getNode());
4377 break;
4378 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
4379 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
4380 Temp = DAG.getNOT(dl, N0, OpVT);
4381 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4382 if (!DCI.isCalledByLegalizer())
4383 DCI.AddToWorklist(Temp.getNode());
4384 break;
4385 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
4386 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
4387 Temp = DAG.getNOT(dl, N1, OpVT);
4388 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4389 break;
4390 }
4391 if (VT.getScalarType() != MVT::i1) {
4392 if (!DCI.isCalledByLegalizer())
4393 DCI.AddToWorklist(N0.getNode());
4394 // FIXME: If running after legalize, we probably can't do this.
4395 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4396 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4397 }
4398 return N0;
4399 }
4400
4401 // Could not fold it.
4402 return SDValue();
4403}
4404
4405/// Returns true (and the GlobalValue and the offset) if the node is a
4406/// GlobalAddress + offset.
4407bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4408 int64_t &Offset) const {
4409
4410 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4411
4412 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4413 GA = GASD->getGlobal();
4414 Offset += GASD->getOffset();
4415 return true;
4416 }
4417
4418 if (N->getOpcode() == ISD::ADD) {
4419 SDValue N1 = N->getOperand(0);
4420 SDValue N2 = N->getOperand(1);
4421 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4422 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4423 Offset += V->getSExtValue();
4424 return true;
4425 }
4426 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4427 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4428 Offset += V->getSExtValue();
4429 return true;
4430 }
4431 }
4432 }
4433
4434 return false;
4435}
4436
4437SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4438 DAGCombinerInfo &DCI) const {
4439 // Default implementation: no optimization.
4440 return SDValue();
4441}
4442
4443//===----------------------------------------------------------------------===//
4444// Inline Assembler Implementation Methods
4445//===----------------------------------------------------------------------===//
4446
4447TargetLowering::ConstraintType
4448TargetLowering::getConstraintType(StringRef Constraint) const {
4449 unsigned S = Constraint.size();
4450
4451 if (S == 1) {
4452 switch (Constraint[0]) {
4453 default: break;
4454 case 'r':
4455 return C_RegisterClass;
4456 case 'm': // memory
4457 case 'o': // offsetable
4458 case 'V': // not offsetable
4459 return C_Memory;
4460 case 'n': // Simple Integer
4461 case 'E': // Floating Point Constant
4462 case 'F': // Floating Point Constant
4463 return C_Immediate;
4464 case 'i': // Simple Integer or Relocatable Constant
4465 case 's': // Relocatable Constant
4466 case 'p': // Address.
4467 case 'X': // Allow ANY value.
4468 case 'I': // Target registers.
4469 case 'J':
4470 case 'K':
4471 case 'L':
4472 case 'M':
4473 case 'N':
4474 case 'O':
4475 case 'P':
4476 case '<':
4477 case '>':
4478 return C_Other;
4479 }
4480 }
4481
4482 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4483 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4484 return C_Memory;
4485 return C_Register;
4486 }
4487 return C_Unknown;
4488}
4489
4490/// Try to replace an X constraint, which matches anything, with another that
4491/// has more specific requirements based on the type of the corresponding
4492/// operand.
4493const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4494 if (ConstraintVT.isInteger())
4495 return "r";
4496 if (ConstraintVT.isFloatingPoint())
4497 return "f"; // works for many targets
4498 return nullptr;
4499}
4500
4501SDValue TargetLowering::LowerAsmOutputForConstraint(
4502 SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4503 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4504 return SDValue();
4505}
4506
4507/// Lower the specified operand into the Ops vector.
4508/// If it is invalid, don't add anything to Ops.
4509void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4510 std::string &Constraint,
4511 std::vector<SDValue> &Ops,
4512 SelectionDAG &DAG) const {
4513
4514 if (Constraint.length() > 1) return;
4515
4516 char ConstraintLetter = Constraint[0];
4517 switch (ConstraintLetter) {
4518 default: break;
4519 case 'X': // Allows any operand; labels (basic block) use this.
4520 if (Op.getOpcode() == ISD::BasicBlock ||
4521 Op.getOpcode() == ISD::TargetBlockAddress) {
4522 Ops.push_back(Op);
4523 return;
4524 }
4525 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4526 case 'i': // Simple Integer or Relocatable Constant
4527 case 'n': // Simple Integer
4528 case 's': { // Relocatable Constant
4529
4530 GlobalAddressSDNode *GA;
4531 ConstantSDNode *C;
4532 BlockAddressSDNode *BA;
4533 uint64_t Offset = 0;
4534
4535 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4536 // etc., since getelementpointer is variadic. We can't use
4537 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4538 // while in this case the GA may be furthest from the root node which is
4539 // likely an ISD::ADD.
4540 while (1) {
4541 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4542 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4543 GA->getValueType(0),
4544 Offset + GA->getOffset()));
4545 return;
4546 }
4547 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4548 // gcc prints these as sign extended. Sign extend value to 64 bits
4549 // now; without this it would get ZExt'd later in
4550 // ScheduleDAGSDNodes::EmitNode, which is very generic.
4551 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4552 BooleanContent BCont = getBooleanContents(MVT::i64);
4553 ISD::NodeType ExtOpc =
4554 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4555 int64_t ExtVal =
4556 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4557 Ops.push_back(
4558 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4559 return;
4560 }
4561 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4562 Ops.push_back(DAG.getTargetBlockAddress(
4563 BA->getBlockAddress(), BA->getValueType(0),
4564 Offset + BA->getOffset(), BA->getTargetFlags()));
4565 return;
4566 }
4567 const unsigned OpCode = Op.getOpcode();
4568 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4569 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4570 Op = Op.getOperand(1);
4571 // Subtraction is not commutative.
4572 else if (OpCode == ISD::ADD &&
4573 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4574 Op = Op.getOperand(0);
4575 else
4576 return;
4577 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4578 continue;
4579 }
4580 return;
4581 }
4582 break;
4583 }
4584 }
4585}
4586
4587std::pair<unsigned, const TargetRegisterClass *>
4588TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4589 StringRef Constraint,
4590 MVT VT) const {
4591 if (Constraint.empty() || Constraint[0] != '{')
4592 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4593 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?")(static_cast <bool> (*(Constraint.end() - 1) == '}' &&
"Not a brace enclosed constraint?") ? void (0) : __assert_fail
("*(Constraint.end() - 1) == '}' && \"Not a brace enclosed constraint?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4593, __extension__ __PRETTY_FUNCTION__))
;
4594
4595 // Remove the braces from around the name.
4596 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4597
4598 std::pair<unsigned, const TargetRegisterClass *> R =
4599 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4600
4601 // Figure out which register class contains this reg.
4602 for (const TargetRegisterClass *RC : RI->regclasses()) {
4603 // If none of the value types for this register class are valid, we
4604 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4605 if (!isLegalRC(*RI, *RC))
4606 continue;
4607
4608 for (const MCPhysReg &PR : *RC) {
4609 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4610 std::pair<unsigned, const TargetRegisterClass *> S =
4611 std::make_pair(PR, RC);
4612
4613 // If this register class has the requested value type, return it,
4614 // otherwise keep searching and return the first class found
4615 // if no other is found which explicitly has the requested type.
4616 if (RI->isTypeLegalForClass(*RC, VT))
4617 return S;
4618 if (!R.second)
4619 R = S;
4620 }
4621 }
4622 }
4623
4624 return R;
4625}
4626
4627//===----------------------------------------------------------------------===//
4628// Constraint Selection.
4629
4630/// Return true of this is an input operand that is a matching constraint like
4631/// "4".
4632bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4633 assert(!ConstraintCode.empty() && "No known constraint!")(static_cast <bool> (!ConstraintCode.empty() &&
"No known constraint!") ? void (0) : __assert_fail ("!ConstraintCode.empty() && \"No known constraint!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4633, __extension__ __PRETTY_FUNCTION__))
;
4634 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4635}
4636
4637/// If this is an input matching constraint, this method returns the output
4638/// operand it matches.
4639unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4640 assert(!ConstraintCode.empty() && "No known constraint!")(static_cast <bool> (!ConstraintCode.empty() &&
"No known constraint!") ? void (0) : __assert_fail ("!ConstraintCode.empty() && \"No known constraint!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4640, __extension__ __PRETTY_FUNCTION__))
;
4641 return atoi(ConstraintCode.c_str());
4642}
4643
4644/// Split up the constraint string from the inline assembly value into the
4645/// specific constraints and their prefixes, and also tie in the associated
4646/// operand values.
4647/// If this returns an empty vector, and if the constraint string itself
4648/// isn't empty, there was an error parsing.
4649TargetLowering::AsmOperandInfoVector
4650TargetLowering::ParseConstraints(const DataLayout &DL,
4651 const TargetRegisterInfo *TRI,
4652 const CallBase &Call) const {
4653 /// Information about all of the constraints.
4654 AsmOperandInfoVector ConstraintOperands;
4655 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4656 unsigned maCount = 0; // Largest number of multiple alternative constraints.
4657
4658 // Do a prepass over the constraints, canonicalizing them, and building up the
4659 // ConstraintOperands list.
4660 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4661 unsigned ResNo = 0; // ResNo - The result number of the next output.
4662
4663 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4664 ConstraintOperands.emplace_back(std::move(CI));
4665 AsmOperandInfo &OpInfo = ConstraintOperands.back();
4666
4667 // Update multiple alternative constraint count.
4668 if (OpInfo.multipleAlternatives.size() > maCount)
4669 maCount = OpInfo.multipleAlternatives.size();
4670
4671 OpInfo.ConstraintVT = MVT::Other;
4672
4673 // Compute the value type for each operand.
4674 switch (OpInfo.Type) {
4675 case InlineAsm::isOutput:
4676 // Indirect outputs just consume an argument.
4677 if (OpInfo.isIndirect) {
4678 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4679 break;
4680 }
4681
4682 // The return value of the call is this value. As such, there is no
4683 // corresponding argument.
4684 assert(!Call.getType()->isVoidTy() && "Bad inline asm!")(static_cast <bool> (!Call.getType()->isVoidTy() &&
"Bad inline asm!") ? void (0) : __assert_fail ("!Call.getType()->isVoidTy() && \"Bad inline asm!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4684, __extension__ __PRETTY_FUNCTION__))
;
4685 if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4686 OpInfo.ConstraintVT =
4687 getSimpleValueType(DL, STy->getElementType(ResNo));
4688 } else {
4689 assert(ResNo == 0 && "Asm only has one result!")(static_cast <bool> (ResNo == 0 && "Asm only has one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Asm only has one result!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4689, __extension__ __PRETTY_FUNCTION__))
;
4690 OpInfo.ConstraintVT =
4691 getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4692 }
4693 ++ResNo;
4694 break;
4695 case InlineAsm::isInput:
4696 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4697 break;
4698 case InlineAsm::isClobber:
4699 // Nothing to do.
4700 break;
4701 }
4702
4703 if (OpInfo.CallOperandVal) {
4704 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4705 if (OpInfo.isIndirect) {
4706 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4707 if (!PtrTy)
4708 report_fatal_error("Indirect operand for inline asm not a pointer!");
4709 OpTy = PtrTy->getElementType();
4710 }
4711
4712 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4713 if (StructType *STy = dyn_cast<StructType>(OpTy))
4714 if (STy->getNumElements() == 1)
4715 OpTy = STy->getElementType(0);
4716
4717 // If OpTy is not a single value, it may be a struct/union that we
4718 // can tile with integers.
4719 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4720 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4721 switch (BitSize) {
4722 default: break;
4723 case 1:
4724 case 8:
4725 case 16:
4726 case 32:
4727 case 64:
4728 case 128:
4729 OpInfo.ConstraintVT =
4730 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4731 break;
4732 }
4733 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4734 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4735 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4736 } else {
4737 OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4738 }
4739 }
4740 }
4741
4742 // If we have multiple alternative constraints, select the best alternative.
4743 if (!ConstraintOperands.empty()) {
4744 if (maCount) {
4745 unsigned bestMAIndex = 0;
4746 int bestWeight = -1;
4747 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
4748 int weight = -1;
4749 unsigned maIndex;
4750 // Compute the sums of the weights for each alternative, keeping track
4751 // of the best (highest weight) one so far.
4752 for (maIndex = 0; maIndex < maCount; ++maIndex) {
4753 int weightSum = 0;
4754 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4755 cIndex != eIndex; ++cIndex) {
4756 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4757 if (OpInfo.Type == InlineAsm::isClobber)
4758 continue;
4759
4760 // If this is an output operand with a matching input operand,
4761 // look up the matching input. If their types mismatch, e.g. one
4762 // is an integer, the other is floating point, or their sizes are
4763 // different, flag it as an maCantMatch.
4764 if (OpInfo.hasMatchingInput()) {
4765 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4766 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4767 if ((OpInfo.ConstraintVT.isInteger() !=
4768 Input.ConstraintVT.isInteger()) ||
4769 (OpInfo.ConstraintVT.getSizeInBits() !=
4770 Input.ConstraintVT.getSizeInBits())) {
4771 weightSum = -1; // Can't match.
4772 break;
4773 }
4774 }
4775 }
4776 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4777 if (weight == -1) {
4778 weightSum = -1;
4779 break;
4780 }
4781 weightSum += weight;
4782 }
4783 // Update best.
4784 if (weightSum > bestWeight) {
4785 bestWeight = weightSum;
4786 bestMAIndex = maIndex;
4787 }
4788 }
4789
4790 // Now select chosen alternative in each constraint.
4791 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4792 cIndex != eIndex; ++cIndex) {
4793 AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4794 if (cInfo.Type == InlineAsm::isClobber)
4795 continue;
4796 cInfo.selectAlternative(bestMAIndex);
4797 }
4798 }
4799 }
4800
4801 // Check and hook up tied operands, choose constraint code to use.
4802 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4803 cIndex != eIndex; ++cIndex) {
4804 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4805
4806 // If this is an output operand with a matching input operand, look up the
4807 // matching input. If their types mismatch, e.g. one is an integer, the
4808 // other is floating point, or their sizes are different, flag it as an
4809 // error.
4810 if (OpInfo.hasMatchingInput()) {
4811 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4812
4813 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4814 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4815 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4816 OpInfo.ConstraintVT);
4817 std::pair<unsigned, const TargetRegisterClass *> InputRC =
4818 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4819 Input.ConstraintVT);
4820 if ((OpInfo.ConstraintVT.isInteger() !=
4821 Input.ConstraintVT.isInteger()) ||
4822 (MatchRC.second != InputRC.second)) {
4823 report_fatal_error("Unsupported asm: input constraint"
4824 " with a matching output constraint of"
4825 " incompatible type!");
4826 }
4827 }
4828 }
4829 }
4830
4831 return ConstraintOperands;
4832}
4833
4834/// Return an integer indicating how general CT is.
4835static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4836 switch (CT) {
4837 case TargetLowering::C_Immediate:
4838 case TargetLowering::C_Other:
4839 case TargetLowering::C_Unknown:
4840 return 0;
4841 case TargetLowering::C_Register:
4842 return 1;
4843 case TargetLowering::C_RegisterClass:
4844 return 2;
4845 case TargetLowering::C_Memory:
4846 return 3;
4847 }
4848 llvm_unreachable("Invalid constraint type")::llvm::llvm_unreachable_internal("Invalid constraint type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4848)
;
4849}
4850
4851/// Examine constraint type and operand type and determine a weight value.
4852/// This object must already have been set up with the operand type
4853/// and the current alternative constraint selected.
4854TargetLowering::ConstraintWeight
4855 TargetLowering::getMultipleConstraintMatchWeight(
4856 AsmOperandInfo &info, int maIndex) const {
4857 InlineAsm::ConstraintCodeVector *rCodes;
4858 if (maIndex >= (int)info.multipleAlternatives.size())
4859 rCodes = &info.Codes;
4860 else
4861 rCodes = &info.multipleAlternatives[maIndex].Codes;
4862 ConstraintWeight BestWeight = CW_Invalid;
4863
4864 // Loop over the options, keeping track of the most general one.
4865 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4866 ConstraintWeight weight =
4867 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4868 if (weight > BestWeight)
4869 BestWeight = weight;
4870 }
4871
4872 return BestWeight;
4873}
4874
4875/// Examine constraint type and operand type and determine a weight value.
4876/// This object must already have been set up with the operand type
4877/// and the current alternative constraint selected.
4878TargetLowering::ConstraintWeight
4879 TargetLowering::getSingleConstraintMatchWeight(
4880 AsmOperandInfo &info, const char *constraint) const {
4881 ConstraintWeight weight = CW_Invalid;
4882 Value *CallOperandVal = info.CallOperandVal;
4883 // If we don't have a value, we can't do a match,
4884 // but allow it at the lowest weight.
4885 if (!CallOperandVal)
4886 return CW_Default;
4887 // Look at the constraint type.
4888 switch (*constraint) {
4889 case 'i': // immediate integer.
4890 case 'n': // immediate integer with a known value.
4891 if (isa<ConstantInt>(CallOperandVal))
4892 weight = CW_Constant;
4893 break;
4894 case 's': // non-explicit intregal immediate.
4895 if (isa<GlobalValue>(CallOperandVal))
4896 weight = CW_Constant;
4897 break;
4898 case 'E': // immediate float if host format.
4899 case 'F': // immediate float.
4900 if (isa<ConstantFP>(CallOperandVal))
4901 weight = CW_Constant;
4902 break;
4903 case '<': // memory operand with autodecrement.
4904 case '>': // memory operand with autoincrement.
4905 case 'm': // memory operand.
4906 case 'o': // offsettable memory operand
4907 case 'V': // non-offsettable memory operand
4908 weight = CW_Memory;
4909 break;
4910 case 'r': // general register.
4911 case 'g': // general register, memory operand or immediate integer.
4912 // note: Clang converts "g" to "imr".
4913 if (CallOperandVal->getType()->isIntegerTy())
4914 weight = CW_Register;
4915 break;
4916 case 'X': // any operand.
4917 default:
4918 weight = CW_Default;
4919 break;
4920 }
4921 return weight;
4922}
4923
4924/// If there are multiple different constraints that we could pick for this
4925/// operand (e.g. "imr") try to pick the 'best' one.
4926/// This is somewhat tricky: constraints fall into four classes:
4927/// Other -> immediates and magic values
4928/// Register -> one specific register
4929/// RegisterClass -> a group of regs
4930/// Memory -> memory
4931/// Ideally, we would pick the most specific constraint possible: if we have
4932/// something that fits into a register, we would pick it. The problem here
4933/// is that if we have something that could either be in a register or in
4934/// memory that use of the register could cause selection of *other*
4935/// operands to fail: they might only succeed if we pick memory. Because of
4936/// this the heuristic we use is:
4937///
4938/// 1) If there is an 'other' constraint, and if the operand is valid for
4939/// that constraint, use it. This makes us take advantage of 'i'
4940/// constraints when available.
4941/// 2) Otherwise, pick the most general constraint present. This prefers
4942/// 'm' over 'r', for example.
4943///
4944static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4945 const TargetLowering &TLI,
4946 SDValue Op, SelectionDAG *DAG) {
4947 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options")(static_cast <bool> (OpInfo.Codes.size() > 1 &&
"Doesn't have multiple constraint options") ? void (0) : __assert_fail
("OpInfo.Codes.size() > 1 && \"Doesn't have multiple constraint options\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4947, __extension__ __PRETTY_FUNCTION__))
;
4948 unsigned BestIdx = 0;
4949 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4950 int BestGenerality = -1;
4951
4952 // Loop over the options, keeping track of the most general one.
4953 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4954 TargetLowering::ConstraintType CType =
4955 TLI.getConstraintType(OpInfo.Codes[i]);
4956
4957 // Indirect 'other' or 'immediate' constraints are not allowed.
4958 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4959 CType == TargetLowering::C_Register ||
4960 CType == TargetLowering::C_RegisterClass))
4961 continue;
4962
4963 // If this is an 'other' or 'immediate' constraint, see if the operand is
4964 // valid for it. For example, on X86 we might have an 'rI' constraint. If
4965 // the operand is an integer in the range [0..31] we want to use I (saving a
4966 // load of a register), otherwise we must use 'r'.
4967 if ((CType == TargetLowering::C_Other ||
4968 CType == TargetLowering::C_Immediate) && Op.getNode()) {
4969 assert(OpInfo.Codes[i].size() == 1 &&(static_cast <bool> (OpInfo.Codes[i].size() == 1 &&
"Unhandled multi-letter 'other' constraint") ? void (0) : __assert_fail
("OpInfo.Codes[i].size() == 1 && \"Unhandled multi-letter 'other' constraint\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4970, __extension__ __PRETTY_FUNCTION__))
4970 "Unhandled multi-letter 'other' constraint")(static_cast <bool> (OpInfo.Codes[i].size() == 1 &&
"Unhandled multi-letter 'other' constraint") ? void (0) : __assert_fail
("OpInfo.Codes[i].size() == 1 && \"Unhandled multi-letter 'other' constraint\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 4970, __extension__ __PRETTY_FUNCTION__))
;
4971 std::vector<SDValue> ResultOps;
4972 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4973 ResultOps, *DAG);
4974 if (!ResultOps.empty()) {
4975 BestType = CType;
4976 BestIdx = i;
4977 break;
4978 }
4979 }
4980
4981 // Things with matching constraints can only be registers, per gcc
4982 // documentation. This mainly affects "g" constraints.
4983 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4984 continue;
4985
4986 // This constraint letter is more general than the previous one, use it.
4987 int Generality = getConstraintGenerality(CType);
4988 if (Generality > BestGenerality) {
4989 BestType = CType;
4990 BestIdx = i;
4991 BestGenerality = Generality;
4992 }
4993 }
4994
4995 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4996 OpInfo.ConstraintType = BestType;
4997}
4998
4999/// Determines the constraint code and constraint type to use for the specific
5000/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5001void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5002 SDValue Op,
5003 SelectionDAG *DAG) const {
5004 assert(!OpInfo.Codes.empty() && "Must have at least one constraint")(static_cast <bool> (!OpInfo.Codes.empty() && "Must have at least one constraint"
) ? void (0) : __assert_fail ("!OpInfo.Codes.empty() && \"Must have at least one constraint\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5004, __extension__ __PRETTY_FUNCTION__))
;
5005
5006 // Single-letter constraints ('r') are very common.
5007 if (OpInfo.Codes.size() == 1) {
5008 OpInfo.ConstraintCode = OpInfo.Codes[0];
5009 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5010 } else {
5011 ChooseConstraint(OpInfo, *this, Op, DAG);
5012 }
5013
5014 // 'X' matches anything.
5015 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5016 // Labels and constants are handled elsewhere ('X' is the only thing
5017 // that matches labels). For Functions, the type here is the type of
5018 // the result, which is not what we want to look at; leave them alone.
5019 Value *v = OpInfo.CallOperandVal;
5020 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5021 OpInfo.CallOperandVal = v;
5022 return;
5023 }
5024
5025 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5026 return;
5027
5028 // Otherwise, try to resolve it to something we know about by looking at
5029 // the actual operand type.
5030 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5031 OpInfo.ConstraintCode = Repl;
5032 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5033 }
5034 }
5035}
5036
5037/// Given an exact SDIV by a constant, create a multiplication
5038/// with the multiplicative inverse of the constant.
5039static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5040 const SDLoc &dl, SelectionDAG &DAG,
5041 SmallVectorImpl<SDNode *> &Created) {
5042 SDValue Op0 = N->getOperand(0);
5043 SDValue Op1 = N->getOperand(1);
5044 EVT VT = N->getValueType(0);
5045 EVT SVT = VT.getScalarType();
5046 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5047 EVT ShSVT = ShVT.getScalarType();
5048
5049 bool UseSRA = false;
5050 SmallVector<SDValue, 16> Shifts, Factors;
5051
5052 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5053 if (C->isNullValue())
5054 return false;
5055 APInt Divisor = C->getAPIntValue();
5056 unsigned Shift = Divisor.countTrailingZeros();
5057 if (Shift) {
5058 Divisor.ashrInPlace(Shift);
5059 UseSRA = true;
5060 }
5061 // Calculate the multiplicative inverse, using Newton's method.
5062 APInt t;
5063 APInt Factor = Divisor;
5064 while ((t = Divisor * Factor) != 1)
5065 Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5066 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5067 Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5068 return true;
5069 };
5070
5071 // Collect all magic values from the build vector.
5072 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5073 return SDValue();
5074
5075 SDValue Shift, Factor;
5076 if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5077 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5078 Factor = DAG.getBuildVector(VT, dl, Factors);
5079 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5080 assert(Shifts.size() == 1 && Factors.size() == 1 &&(static_cast <bool> (Shifts.size() == 1 && Factors
.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("Shifts.size() == 1 && Factors.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5082, __extension__ __PRETTY_FUNCTION__))
5081 "Expected matchUnaryPredicate to return one element for scalable "(static_cast <bool> (Shifts.size() == 1 && Factors
.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("Shifts.size() == 1 && Factors.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5082, __extension__ __PRETTY_FUNCTION__))
5082 "vectors")(static_cast <bool> (Shifts.size() == 1 && Factors
.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("Shifts.size() == 1 && Factors.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5082, __extension__ __PRETTY_FUNCTION__))
;
5083 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5084 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5085 } else {
5086 assert(isa<ConstantSDNode>(Op1) && "Expected a constant")(static_cast <bool> (isa<ConstantSDNode>(Op1) &&
"Expected a constant") ? void (0) : __assert_fail ("isa<ConstantSDNode>(Op1) && \"Expected a constant\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5086, __extension__ __PRETTY_FUNCTION__))
;
5087 Shift = Shifts[0];
5088 Factor = Factors[0];
5089 }
5090
5091 SDValue Res = Op0;
5092
5093 // Shift the value upfront if it is even, so the LSB is one.
5094 if (UseSRA) {
5095 // TODO: For UDIV use SRL instead of SRA.
5096 SDNodeFlags Flags;
5097 Flags.setExact(true);
5098 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5099 Created.push_back(Res.getNode());
5100 }
5101
5102 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5103}
5104
5105SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5106 SelectionDAG &DAG,
5107 SmallVectorImpl<SDNode *> &Created) const {
5108 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5109 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5110 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5111 return SDValue(N, 0); // Lower SDIV as SDIV
5112 return SDValue();
5113}
5114
5115/// Given an ISD::SDIV node expressing a divide by constant,
5116/// return a DAG expression to select that will generate the same value by
5117/// multiplying by a magic number.
5118/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5119SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5120 bool IsAfterLegalization,
5121 SmallVectorImpl<SDNode *> &Created) const {
5122 SDLoc dl(N);
5123 EVT VT = N->getValueType(0);
5124 EVT SVT = VT.getScalarType();
5125 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5126 EVT ShSVT = ShVT.getScalarType();
5127 unsigned EltBits = VT.getScalarSizeInBits();
5128 EVT MulVT;
5129
5130 // Check to see if we can do this.
5131 // FIXME: We should be more aggressive here.
5132 if (!isTypeLegal(VT)) {
5133 // Limit this to simple scalars for now.
5134 if (VT.isVector() || !VT.isSimple())
5135 return SDValue();
5136
5137 // If this type will be promoted to a large enough type with a legal
5138 // multiply operation, we can go ahead and do this transform.
5139 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5140 return SDValue();
5141
5142 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5143 if (MulVT.getSizeInBits() < (2 * EltBits) ||
5144 !isOperationLegal(ISD::MUL, MulVT))
5145 return SDValue();
5146 }
5147
5148 // If the sdiv has an 'exact' bit we can use a simpler lowering.
5149 if (N->getFlags().hasExact())
5150 return BuildExactSDIV(*this, N, dl, DAG, Created);
5151
5152 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5153
5154 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5155 if (C->isNullValue())
5156 return false;
5157
5158 const APInt &Divisor = C->getAPIntValue();
5159 APInt::ms magics = Divisor.magic();
5160 int NumeratorFactor = 0;
5161 int ShiftMask = -1;
5162
5163 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5164 // If d is +1/-1, we just multiply the numerator by +1/-1.
5165 NumeratorFactor = Divisor.getSExtValue();
5166 magics.m = 0;
5167 magics.s = 0;
5168 ShiftMask = 0;
5169 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5170 // If d > 0 and m < 0, add the numerator.
5171 NumeratorFactor = 1;
5172 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5173 // If d < 0 and m > 0, subtract the numerator.
5174 NumeratorFactor = -1;
5175 }
5176
5177 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5178 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5179 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5180 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5181 return true;
5182 };
5183
5184 SDValue N0 = N->getOperand(0);
5185 SDValue N1 = N->getOperand(1);
5186
5187 // Collect the shifts / magic values from each element.
5188 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5189 return SDValue();
5190
5191 SDValue MagicFactor, Factor, Shift, ShiftMask;
5192 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5193 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5194 Factor = DAG.getBuildVector(VT, dl, Factors);
5195 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5196 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5197 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5198 assert(MagicFactors.size() == 1 && Factors.size() == 1 &&(static_cast <bool> (MagicFactors.size() == 1 &&
Factors.size() == 1 && Shifts.size() == 1 &&
ShiftMasks.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("MagicFactors.size() == 1 && Factors.size() == 1 && Shifts.size() == 1 && ShiftMasks.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5201, __extension__ __PRETTY_FUNCTION__))
5199 Shifts.size() == 1 && ShiftMasks.size() == 1 &&(static_cast <bool> (MagicFactors.size() == 1 &&
Factors.size() == 1 && Shifts.size() == 1 &&
ShiftMasks.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("MagicFactors.size() == 1 && Factors.size() == 1 && Shifts.size() == 1 && ShiftMasks.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5201, __extension__ __PRETTY_FUNCTION__))
5200 "Expected matchUnaryPredicate to return one element for scalable "(static_cast <bool> (MagicFactors.size() == 1 &&
Factors.size() == 1 && Shifts.size() == 1 &&
ShiftMasks.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("MagicFactors.size() == 1 && Factors.size() == 1 && Shifts.size() == 1 && ShiftMasks.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5201, __extension__ __PRETTY_FUNCTION__))
5201 "vectors")(static_cast <bool> (MagicFactors.size() == 1 &&
Factors.size() == 1 && Shifts.size() == 1 &&
ShiftMasks.size() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("MagicFactors.size() == 1 && Factors.size() == 1 && Shifts.size() == 1 && ShiftMasks.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5201, __extension__ __PRETTY_FUNCTION__))
;
5202 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5203 Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5204 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5205 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5206 } else {
5207 assert(isa<ConstantSDNode>(N1) && "Expected a constant")(static_cast <bool> (isa<ConstantSDNode>(N1) &&
"Expected a constant") ? void (0) : __assert_fail ("isa<ConstantSDNode>(N1) && \"Expected a constant\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5207, __extension__ __PRETTY_FUNCTION__))
;
5208 MagicFactor = MagicFactors[0];
5209 Factor = Factors[0];
5210 Shift = Shifts[0];
5211 ShiftMask = ShiftMasks[0];
5212 }
5213
5214 // Multiply the numerator (operand 0) by the magic value.
5215 // FIXME: We should support doing a MUL in a wider type.
5216 auto GetMULHS = [&](SDValue X, SDValue Y) {
5217 // If the type isn't legal, use a wider mul of the the type calculated
5218 // earlier.
5219 if (!isTypeLegal(VT)) {
5220 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5221 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5222 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5223 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5224 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5225 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5226 }
5227
5228 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5229 return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5230 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5231 SDValue LoHi =
5232 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5233 return SDValue(LoHi.getNode(), 1);
5234 }
5235 return SDValue();
5236 };
5237
5238 SDValue Q = GetMULHS(N0, MagicFactor);
5239 if (!Q)
5240 return SDValue();
5241
5242 Created.push_back(Q.getNode());
5243
5244 // (Optionally) Add/subtract the numerator using Factor.
5245 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5246 Created.push_back(Factor.getNode());
5247 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5248 Created.push_back(Q.getNode());
5249
5250 // Shift right algebraic by shift value.
5251 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5252 Created.push_back(Q.getNode());
5253
5254 // Extract the sign bit, mask it and add it to the quotient.
5255 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5256 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5257 Created.push_back(T.getNode());
5258 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5259 Created.push_back(T.getNode());
5260 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5261}
5262
5263/// Given an ISD::UDIV node expressing a divide by constant,
5264/// return a DAG expression to select that will generate the same value by
5265/// multiplying by a magic number.
5266/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5267SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5268 bool IsAfterLegalization,
5269 SmallVectorImpl<SDNode *> &Created) const {
5270 SDLoc dl(N);
5271 EVT VT = N->getValueType(0);
5272 EVT SVT = VT.getScalarType();
5273 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5274 EVT ShSVT = ShVT.getScalarType();
5275 unsigned EltBits = VT.getScalarSizeInBits();
5276 EVT MulVT;
5277
5278 // Check to see if we can do this.
5279 // FIXME: We should be more aggressive here.
5280 if (!isTypeLegal(VT)) {
5281 // Limit this to simple scalars for now.
5282 if (VT.isVector() || !VT.isSimple())
5283 return SDValue();
5284
5285 // If this type will be promoted to a large enough type with a legal
5286 // multiply operation, we can go ahead and do this transform.
5287 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5288 return SDValue();
5289
5290 MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5291 if (MulVT.getSizeInBits() < (2 * EltBits) ||
5292 !isOperationLegal(ISD::MUL, MulVT))
5293 return SDValue();
5294 }
5295
5296 bool UseNPQ = false;
5297 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5298
5299 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5300 if (C->isNullValue())
5301 return false;
5302 // FIXME: We should use a narrower constant when the upper
5303 // bits are known to be zero.
5304 const APInt& Divisor = C->getAPIntValue();
5305 APInt::mu magics = Divisor.magicu();
5306 unsigned PreShift = 0, PostShift = 0;
5307
5308 // If the divisor is even, we can avoid using the expensive fixup by
5309 // shifting the divided value upfront.
5310 if (magics.a != 0 && !Divisor[0]) {
5311 PreShift = Divisor.countTrailingZeros();
5312 // Get magic number for the shifted divisor.
5313 magics = Divisor.lshr(PreShift).magicu(PreShift);
5314 assert(magics.a == 0 && "Should use cheap fixup now")(static_cast <bool> (magics.a == 0 && "Should use cheap fixup now"
) ? void (0) : __assert_fail ("magics.a == 0 && \"Should use cheap fixup now\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5314, __extension__ __PRETTY_FUNCTION__))
;
5315 }
5316
5317 APInt Magic = magics.m;
5318
5319 unsigned SelNPQ;
5320 if (magics.a == 0 || Divisor.isOneValue()) {
5321 assert(magics.s < Divisor.getBitWidth() &&(static_cast <bool> (magics.s < Divisor.getBitWidth(
) && "We shouldn't generate an undefined shift!") ? void
(0) : __assert_fail ("magics.s < Divisor.getBitWidth() && \"We shouldn't generate an undefined shift!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5322, __extension__ __PRETTY_FUNCTION__))
5322 "We shouldn't generate an undefined shift!")(static_cast <bool> (magics.s < Divisor.getBitWidth(
) && "We shouldn't generate an undefined shift!") ? void
(0) : __assert_fail ("magics.s < Divisor.getBitWidth() && \"We shouldn't generate an undefined shift!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5322, __extension__ __PRETTY_FUNCTION__))
;
5323 PostShift = magics.s;
5324 SelNPQ = false;
5325 } else {
5326 PostShift = magics.s - 1;
5327 SelNPQ = true;
5328 }
5329
5330 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5331 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5332 NPQFactors.push_back(
5333 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5334 : APInt::getNullValue(EltBits),
5335 dl, SVT));
5336 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5337 UseNPQ |= SelNPQ;
5338 return true;
5339 };
5340
5341 SDValue N0 = N->getOperand(0);
5342 SDValue N1 = N->getOperand(1);
5343
5344 // Collect the shifts/magic values from each element.
5345 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5346 return SDValue();
5347
5348 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5349 if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5350 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5351 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5352 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5353 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5354 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5355 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&(static_cast <bool> (PreShifts.size() == 1 && MagicFactors
.size() == 1 && NPQFactors.size() == 1 && PostShifts
.size() == 1 && "Expected matchUnaryPredicate to return one for scalable vectors"
) ? void (0) : __assert_fail ("PreShifts.size() == 1 && MagicFactors.size() == 1 && NPQFactors.size() == 1 && PostShifts.size() == 1 && \"Expected matchUnaryPredicate to return one for scalable vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5357, __extension__ __PRETTY_FUNCTION__))
5356 NPQFactors.size() == 1 && PostShifts.size() == 1 &&(static_cast <bool> (PreShifts.size() == 1 && MagicFactors
.size() == 1 && NPQFactors.size() == 1 && PostShifts
.size() == 1 && "Expected matchUnaryPredicate to return one for scalable vectors"
) ? void (0) : __assert_fail ("PreShifts.size() == 1 && MagicFactors.size() == 1 && NPQFactors.size() == 1 && PostShifts.size() == 1 && \"Expected matchUnaryPredicate to return one for scalable vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5357, __extension__ __PRETTY_FUNCTION__))
5357 "Expected matchUnaryPredicate to return one for scalable vectors")(static_cast <bool> (PreShifts.size() == 1 && MagicFactors
.size() == 1 && NPQFactors.size() == 1 && PostShifts
.size() == 1 && "Expected matchUnaryPredicate to return one for scalable vectors"
) ? void (0) : __assert_fail ("PreShifts.size() == 1 && MagicFactors.size() == 1 && NPQFactors.size() == 1 && PostShifts.size() == 1 && \"Expected matchUnaryPredicate to return one for scalable vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5357, __extension__ __PRETTY_FUNCTION__))
;
5358 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5359 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5360 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5361 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5362 } else {
5363 assert(isa<ConstantSDNode>(N1) && "Expected a constant")(static_cast <bool> (isa<ConstantSDNode>(N1) &&
"Expected a constant") ? void (0) : __assert_fail ("isa<ConstantSDNode>(N1) && \"Expected a constant\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5363, __extension__ __PRETTY_FUNCTION__))
;
5364 PreShift = PreShifts[0];
5365 MagicFactor = MagicFactors[0];
5366 PostShift = PostShifts[0];
5367 }
5368
5369 SDValue Q = N0;
5370 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5371 Created.push_back(Q.getNode());
5372
5373 // FIXME: We should support doing a MUL in a wider type.
5374 auto GetMULHU = [&](SDValue X, SDValue Y) {
5375 // If the type isn't legal, use a wider mul of the the type calculated
5376 // earlier.
5377 if (!isTypeLegal(VT)) {
5378 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5379 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5380 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5381 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5382 DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5383 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5384 }
5385
5386 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5387 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5388 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5389 SDValue LoHi =
5390 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5391 return SDValue(LoHi.getNode(), 1);
5392 }
5393 return SDValue(); // No mulhu or equivalent
5394 };
5395
5396 // Multiply the numerator (operand 0) by the magic value.
5397 Q = GetMULHU(Q, MagicFactor);
5398 if (!Q)
5399 return SDValue();
5400
5401 Created.push_back(Q.getNode());
5402
5403 if (UseNPQ) {
5404 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5405 Created.push_back(NPQ.getNode());
5406
5407 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5408 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5409 if (VT.isVector())
5410 NPQ = GetMULHU(NPQ, NPQFactor);
5411 else
5412 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5413
5414 Created.push_back(NPQ.getNode());
5415
5416 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5417 Created.push_back(Q.getNode());
5418 }
5419
5420 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5421 Created.push_back(Q.getNode());
5422
5423 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5424
5425 SDValue One = DAG.getConstant(1, dl, VT);
5426 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5427 return DAG.getSelect(dl, VT, IsOne, N0, Q);
5428}
5429
5430/// If all values in Values that *don't* match the predicate are same 'splat'
5431/// value, then replace all values with that splat value.
5432/// Else, if AlternativeReplacement was provided, then replace all values that
5433/// do match predicate with AlternativeReplacement value.
5434static void
5435turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5436 std::function<bool(SDValue)> Predicate,
5437 SDValue AlternativeReplacement = SDValue()) {
5438 SDValue Replacement;
5439 // Is there a value for which the Predicate does *NOT* match? What is it?
5440 auto SplatValue = llvm::find_if_not(Values, Predicate);
5441 if (SplatValue != Values.end()) {
5442 // Does Values consist only of SplatValue's and values matching Predicate?
5443 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5444 return Value == *SplatValue || Predicate(Value);
5445 })) // Then we shall replace values matching predicate with SplatValue.
5446 Replacement = *SplatValue;
5447 }
5448 if (!Replacement) {
5449 // Oops, we did not find the "baseline" splat value.
5450 if (!AlternativeReplacement)
5451 return; // Nothing to do.
5452 // Let's replace with provided value then.
5453 Replacement = AlternativeReplacement;
5454 }
5455 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5456}
5457
5458/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5459/// where the divisor is constant and the comparison target is zero,
5460/// return a DAG expression that will generate the same comparison result
5461/// using only multiplications, additions and shifts/rotations.
5462/// Ref: "Hacker's Delight" 10-17.
5463SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5464 SDValue CompTargetNode,
5465 ISD::CondCode Cond,
5466 DAGCombinerInfo &DCI,
5467 const SDLoc &DL) const {
5468 SmallVector<SDNode *, 5> Built;
5469 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5470 DCI, DL, Built)) {
5471 for (SDNode *N : Built)
5472 DCI.AddToWorklist(N);
5473 return Folded;
5474 }
5475
5476 return SDValue();
5477}
5478
5479SDValue
5480TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5481 SDValue CompTargetNode, ISD::CondCode Cond,
5482 DAGCombinerInfo &DCI, const SDLoc &DL,
5483 SmallVectorImpl<SDNode *> &Created) const {
5484 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5485 // - D must be constant, with D = D0 * 2^K where D0 is odd
5486 // - P is the multiplicative inverse of D0 modulo 2^W
5487 // - Q = floor(((2^W) - 1) / D)
5488 // where W is the width of the common type of N and D.
5489 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Only applicable for (in)equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Only applicable for (in)equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5490, __extension__ __PRETTY_FUNCTION__))
5490 "Only applicable for (in)equality comparisons.")(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Only applicable for (in)equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Only applicable for (in)equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5490, __extension__ __PRETTY_FUNCTION__))
;
5491
5492 SelectionDAG &DAG = DCI.DAG;
5493
5494 EVT VT = REMNode.getValueType();
5495 EVT SVT = VT.getScalarType();
5496 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5497 EVT ShSVT = ShVT.getScalarType();
5498
5499 // If MUL is unavailable, we cannot proceed in any case.
5500 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5501 return SDValue();
5502
5503 bool ComparingWithAllZeros = true;
5504 bool AllComparisonsWithNonZerosAreTautological = true;
5505 bool HadTautologicalLanes = false;
5506 bool AllLanesAreTautological = true;
5507 bool HadEvenDivisor = false;
5508 bool AllDivisorsArePowerOfTwo = true;
5509 bool HadTautologicalInvertedLanes = false;
5510 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5511
5512 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5513 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5514 if (CDiv->isNullValue())
5515 return false;
5516
5517 const APInt &D = CDiv->getAPIntValue();
5518 const APInt &Cmp = CCmp->getAPIntValue();
5519
5520 ComparingWithAllZeros &= Cmp.isNullValue();
5521
5522 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5523 // if C2 is not less than C1, the comparison is always false.
5524 // But we will only be able to produce the comparison that will give the
5525 // opposive tautological answer. So this lane would need to be fixed up.
5526 bool TautologicalInvertedLane = D.ule(Cmp);
5527 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5528
5529 // If all lanes are tautological (either all divisors are ones, or divisor
5530 // is not greater than the constant we are comparing with),
5531 // we will prefer to avoid the fold.
5532 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5533 HadTautologicalLanes |= TautologicalLane;
5534 AllLanesAreTautological &= TautologicalLane;
5535
5536 // If we are comparing with non-zero, we need'll need to subtract said
5537 // comparison value from the LHS. But there is no point in doing that if
5538 // every lane where we are comparing with non-zero is tautological..
5539 if (!Cmp.isNullValue())
5540 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5541
5542 // Decompose D into D0 * 2^K
5543 unsigned K = D.countTrailingZeros();
5544 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.")(static_cast <bool> ((!D.isOneValue() || (K == 0)) &&
"For divisor '1' we won't rotate.") ? void (0) : __assert_fail
("(!D.isOneValue() || (K == 0)) && \"For divisor '1' we won't rotate.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5544, __extension__ __PRETTY_FUNCTION__))
;
5545 APInt D0 = D.lshr(K);
5546
5547 // D is even if it has trailing zeros.
5548 HadEvenDivisor |= (K != 0);
5549 // D is a power-of-two if D0 is one.
5550 // If all divisors are power-of-two, we will prefer to avoid the fold.
5551 AllDivisorsArePowerOfTwo &= D0.isOneValue();
5552
5553 // P = inv(D0, 2^W)
5554 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5555 unsigned W = D.getBitWidth();
5556 APInt P = D0.zext(W + 1)
5557 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5558 .trunc(W);
5559 assert(!P.isNullValue() && "No multiplicative inverse!")(static_cast <bool> (!P.isNullValue() && "No multiplicative inverse!"
) ? void (0) : __assert_fail ("!P.isNullValue() && \"No multiplicative inverse!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5559, __extension__ __PRETTY_FUNCTION__))
; // unreachable
5560 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.")(static_cast <bool> ((D0 * P).isOneValue() && "Multiplicative inverse sanity check."
) ? void (0) : __assert_fail ("(D0 * P).isOneValue() && \"Multiplicative inverse sanity check.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5560, __extension__ __PRETTY_FUNCTION__))
;
5561
5562 // Q = floor((2^W - 1) u/ D)
5563 // R = ((2^W - 1) u% D)
5564 APInt Q, R;
5565 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5566
5567 // If we are comparing with zero, then that comparison constant is okay,
5568 // else it may need to be one less than that.
5569 if (Cmp.ugt(R))
5570 Q -= 1;
5571
5572 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&(static_cast <bool> (APInt::getAllOnesValue(ShSVT.getSizeInBits
()).ugt(K) && "We are expecting that K is always less than all-ones for ShSVT"
) ? void (0) : __assert_fail ("APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && \"We are expecting that K is always less than all-ones for ShSVT\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5573, __extension__ __PRETTY_FUNCTION__))
5573 "We are expecting that K is always less than all-ones for ShSVT")(static_cast <bool> (APInt::getAllOnesValue(ShSVT.getSizeInBits
()).ugt(K) && "We are expecting that K is always less than all-ones for ShSVT"
) ? void (0) : __assert_fail ("APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && \"We are expecting that K is always less than all-ones for ShSVT\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5573, __extension__ __PRETTY_FUNCTION__))
;
5574
5575 // If the lane is tautological the result can be constant-folded.
5576 if (TautologicalLane) {
5577 // Set P and K amount to a bogus values so we can try to splat them.
5578 P = 0;
5579 K = -1;
5580 // And ensure that comparison constant is tautological,
5581 // it will always compare true/false.
5582 Q = -1;
5583 }
5584
5585 PAmts.push_back(DAG.getConstant(P, DL, SVT));
5586 KAmts.push_back(
5587 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5588 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5589 return true;
5590 };
5591
5592 SDValue N = REMNode.getOperand(0);
5593 SDValue D = REMNode.getOperand(1);
5594
5595 // Collect the values from each element.
5596 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5597 return SDValue();
5598
5599 // If all lanes are tautological, the result can be constant-folded.
5600 if (AllLanesAreTautological)
5601 return SDValue();
5602
5603 // If this is a urem by a powers-of-two, avoid the fold since it can be
5604 // best implemented as a bit test.
5605 if (AllDivisorsArePowerOfTwo)
5606 return SDValue();
5607
5608 SDValue PVal, KVal, QVal;
5609 if (D.getOpcode() == ISD::BUILD_VECTOR) {
5610 if (HadTautologicalLanes) {
5611 // Try to turn PAmts into a splat, since we don't care about the values
5612 // that are currently '0'. If we can't, just keep '0'`s.
5613 turnVectorIntoSplatVector(PAmts, isNullConstant);
5614 // Try to turn KAmts into a splat, since we don't care about the values
5615 // that are currently '-1'. If we can't, change them to '0'`s.
5616 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5617 DAG.getConstant(0, DL, ShSVT));
5618 }
5619
5620 PVal = DAG.getBuildVector(VT, DL, PAmts);
5621 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5622 QVal = DAG.getBuildVector(VT, DL, QAmts);
5623 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5624 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&(static_cast <bool> (PAmts.size() == 1 && KAmts
.size() == 1 && QAmts.size() == 1 && "Expected matchBinaryPredicate to return one element for "
"SPLAT_VECTORs") ? void (0) : __assert_fail ("PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchBinaryPredicate to return one element for \" \"SPLAT_VECTORs\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5626, __extension__ __PRETTY_FUNCTION__))
5625 "Expected matchBinaryPredicate to return one element for "(static_cast <bool> (PAmts.size() == 1 && KAmts
.size() == 1 && QAmts.size() == 1 && "Expected matchBinaryPredicate to return one element for "
"SPLAT_VECTORs") ? void (0) : __assert_fail ("PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchBinaryPredicate to return one element for \" \"SPLAT_VECTORs\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5626, __extension__ __PRETTY_FUNCTION__))
5626 "SPLAT_VECTORs")(static_cast <bool> (PAmts.size() == 1 && KAmts
.size() == 1 && QAmts.size() == 1 && "Expected matchBinaryPredicate to return one element for "
"SPLAT_VECTORs") ? void (0) : __assert_fail ("PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchBinaryPredicate to return one element for \" \"SPLAT_VECTORs\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5626, __extension__ __PRETTY_FUNCTION__))
;
5627 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5628 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5629 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5630 } else {
5631 PVal = PAmts[0];
5632 KVal = KAmts[0];
5633 QVal = QAmts[0];
5634 }
5635
5636 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5637 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5638 return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5639 assert(CompTargetNode.getValueType() == N.getValueType() &&(static_cast <bool> (CompTargetNode.getValueType() == N
.getValueType() && "Expecting that the types on LHS and RHS of comparisons match."
) ? void (0) : __assert_fail ("CompTargetNode.getValueType() == N.getValueType() && \"Expecting that the types on LHS and RHS of comparisons match.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5640, __extension__ __PRETTY_FUNCTION__))
5640 "Expecting that the types on LHS and RHS of comparisons match.")(static_cast <bool> (CompTargetNode.getValueType() == N
.getValueType() && "Expecting that the types on LHS and RHS of comparisons match."
) ? void (0) : __assert_fail ("CompTargetNode.getValueType() == N.getValueType() && \"Expecting that the types on LHS and RHS of comparisons match.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5640, __extension__ __PRETTY_FUNCTION__))
;
5641 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5642 }
5643
5644 // (mul N, P)
5645 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5646 Created.push_back(Op0.getNode());
5647
5648 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5649 // divisors as a performance improvement, since rotating by 0 is a no-op.
5650 if (HadEvenDivisor) {
5651 // We need ROTR to do this.
5652 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5653 return SDValue();
5654 // UREM: (rotr (mul N, P), K)
5655 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5656 Created.push_back(Op0.getNode());
5657 }
5658
5659 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5660 SDValue NewCC =
5661 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5662 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5663 if (!HadTautologicalInvertedLanes)
5664 return NewCC;
5665
5666 // If any lanes previously compared always-false, the NewCC will give
5667 // always-true result for them, so we need to fixup those lanes.
5668 // Or the other way around for inequality predicate.
5669 assert(VT.isVector() && "Can/should only get here for vectors.")(static_cast <bool> (VT.isVector() && "Can/should only get here for vectors."
) ? void (0) : __assert_fail ("VT.isVector() && \"Can/should only get here for vectors.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5669, __extension__ __PRETTY_FUNCTION__))
;
5670 Created.push_back(NewCC.getNode());
5671
5672 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5673 // if C2 is not less than C1, the comparison is always false.
5674 // But we have produced the comparison that will give the
5675 // opposive tautological answer. So these lanes would need to be fixed up.
5676 SDValue TautologicalInvertedChannels =
5677 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5678 Created.push_back(TautologicalInvertedChannels.getNode());
5679
5680 // NOTE: we avoid letting illegal types through even if we're before legalize
5681 // ops – legalization has a hard time producing good code for this.
5682 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5683 // If we have a vector select, let's replace the comparison results in the
5684 // affected lanes with the correct tautological result.
5685 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5686 DL, SETCCVT, SETCCVT);
5687 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5688 Replacement, NewCC);
5689 }
5690
5691 // Else, we can just invert the comparison result in the appropriate lanes.
5692 //
5693 // NOTE: see the note above VSELECT above.
5694 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5695 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5696 TautologicalInvertedChannels);
5697
5698 return SDValue(); // Don't know how to lower.
5699}
5700
5701/// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5702/// where the divisor is constant and the comparison target is zero,
5703/// return a DAG expression that will generate the same comparison result
5704/// using only multiplications, additions and shifts/rotations.
5705/// Ref: "Hacker's Delight" 10-17.
5706SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5707 SDValue CompTargetNode,
5708 ISD::CondCode Cond,
5709 DAGCombinerInfo &DCI,
5710 const SDLoc &DL) const {
5711 SmallVector<SDNode *, 7> Built;
5712 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5713 DCI, DL, Built)) {
5714 assert(Built.size() <= 7 && "Max size prediction failed.")(static_cast <bool> (Built.size() <= 7 && "Max size prediction failed."
) ? void (0) : __assert_fail ("Built.size() <= 7 && \"Max size prediction failed.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5714, __extension__ __PRETTY_FUNCTION__))
;
5715 for (SDNode *N : Built)
5716 DCI.AddToWorklist(N);
5717 return Folded;
5718 }
5719
5720 return SDValue();
5721}
5722
5723SDValue
5724TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5725 SDValue CompTargetNode, ISD::CondCode Cond,
5726 DAGCombinerInfo &DCI, const SDLoc &DL,
5727 SmallVectorImpl<SDNode *> &Created) const {
5728 // Fold:
5729 // (seteq/ne (srem N, D), 0)
5730 // To:
5731 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
5732 //
5733 // - D must be constant, with D = D0 * 2^K where D0 is odd
5734 // - P is the multiplicative inverse of D0 modulo 2^W
5735 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5736 // - Q = floor((2 * A) / (2^K))
5737 // where W is the width of the common type of N and D.
5738 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Only applicable for (in)equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Only applicable for (in)equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5739, __extension__ __PRETTY_FUNCTION__))
5739 "Only applicable for (in)equality comparisons.")(static_cast <bool> ((Cond == ISD::SETEQ || Cond == ISD
::SETNE) && "Only applicable for (in)equality comparisons."
) ? void (0) : __assert_fail ("(Cond == ISD::SETEQ || Cond == ISD::SETNE) && \"Only applicable for (in)equality comparisons.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5739, __extension__ __PRETTY_FUNCTION__))
;
5740
5741 SelectionDAG &DAG = DCI.DAG;
5742
5743 EVT VT = REMNode.getValueType();
5744 EVT SVT = VT.getScalarType();
5745 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5746 EVT ShSVT = ShVT.getScalarType();
5747
5748 // If we are after ops legalization, and MUL is unavailable, we can not
5749 // proceed.
5750 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5751 return SDValue();
5752
5753 // TODO: Could support comparing with non-zero too.
5754 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5755 if (!CompTarget || !CompTarget->isNullValue())
5756 return SDValue();
5757
5758 bool HadIntMinDivisor = false;
5759 bool HadOneDivisor = false;
5760 bool AllDivisorsAreOnes = true;
5761 bool HadEvenDivisor = false;
5762 bool NeedToApplyOffset = false;
5763 bool AllDivisorsArePowerOfTwo = true;
5764 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5765
5766 auto BuildSREMPattern = [&](ConstantSDNode *C) {
5767 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5768 if (C->isNullValue())
1
Taking false branch
5769 return false;
5770
5771 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5772
5773 // WARNING: this fold is only valid for positive divisors!
5774 APInt D = C->getAPIntValue();
5775 if (D.isNegative())
2
Taking false branch
5776 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
5777
5778 HadIntMinDivisor |= D.isMinSignedValue();
5779
5780 // If all divisors are ones, we will prefer to avoid the fold.
5781 HadOneDivisor |= D.isOneValue();
5782 AllDivisorsAreOnes &= D.isOneValue();
5783
5784 // Decompose D into D0 * 2^K
5785 unsigned K = D.countTrailingZeros();
5786 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.")(static_cast <bool> ((!D.isOneValue() || (K == 0)) &&
"For divisor '1' we won't rotate.") ? void (0) : __assert_fail
("(!D.isOneValue() || (K == 0)) && \"For divisor '1' we won't rotate.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5786, __extension__ __PRETTY_FUNCTION__))
;
3
Assuming 'K' is equal to 0
4
'?' condition is true
5787 APInt D0 = D.lshr(K);
5788
5789 if (!D.isMinSignedValue()) {
5
Calling 'APInt::isMinSignedValue'
5790 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5791 // we don't care about this lane in this fold, we'll special-handle it.
5792 HadEvenDivisor |= (K != 0);
5793 }
5794
5795 // D is a power-of-two if D0 is one. This includes INT_MIN.
5796 // If all divisors are power-of-two, we will prefer to avoid the fold.
5797 AllDivisorsArePowerOfTwo &= D0.isOneValue();
5798
5799 // P = inv(D0, 2^W)
5800 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5801 unsigned W = D.getBitWidth();
5802 APInt P = D0.zext(W + 1)
5803 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5804 .trunc(W);
5805 assert(!P.isNullValue() && "No multiplicative inverse!")(static_cast <bool> (!P.isNullValue() && "No multiplicative inverse!"
) ? void (0) : __assert_fail ("!P.isNullValue() && \"No multiplicative inverse!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5805, __extension__ __PRETTY_FUNCTION__))
; // unreachable
5806 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.")(static_cast <bool> ((D0 * P).isOneValue() && "Multiplicative inverse sanity check."
) ? void (0) : __assert_fail ("(D0 * P).isOneValue() && \"Multiplicative inverse sanity check.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5806, __extension__ __PRETTY_FUNCTION__))
;
5807
5808 // A = floor((2^(W - 1) - 1) / D0) & -2^K
5809 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5810 A.clearLowBits(K);
5811
5812 if (!D.isMinSignedValue()) {
5813 // If divisor INT_MIN, then we don't care about this lane in this fold,
5814 // we'll special-handle it.
5815 NeedToApplyOffset |= A != 0;
5816 }
5817
5818 // Q = floor((2 * A) / (2^K))
5819 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5820
5821 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&(static_cast <bool> (APInt::getAllOnesValue(SVT.getSizeInBits
()).ugt(A) && "We are expecting that A is always less than all-ones for SVT"
) ? void (0) : __assert_fail ("APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && \"We are expecting that A is always less than all-ones for SVT\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5822, __extension__ __PRETTY_FUNCTION__))
5822 "We are expecting that A is always less than all-ones for SVT")(static_cast <bool> (APInt::getAllOnesValue(SVT.getSizeInBits
()).ugt(A) && "We are expecting that A is always less than all-ones for SVT"
) ? void (0) : __assert_fail ("APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && \"We are expecting that A is always less than all-ones for SVT\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5822, __extension__ __PRETTY_FUNCTION__))
;
5823 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&(static_cast <bool> (APInt::getAllOnesValue(ShSVT.getSizeInBits
()).ugt(K) && "We are expecting that K is always less than all-ones for ShSVT"
) ? void (0) : __assert_fail ("APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && \"We are expecting that K is always less than all-ones for ShSVT\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5824, __extension__ __PRETTY_FUNCTION__))
5824 "We are expecting that K is always less than all-ones for ShSVT")(static_cast <bool> (APInt::getAllOnesValue(ShSVT.getSizeInBits
()).ugt(K) && "We are expecting that K is always less than all-ones for ShSVT"
) ? void (0) : __assert_fail ("APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && \"We are expecting that K is always less than all-ones for ShSVT\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5824, __extension__ __PRETTY_FUNCTION__))
;
5825
5826 // If the divisor is 1 the result can be constant-folded. Likewise, we
5827 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5828 if (D.isOneValue()) {
5829 // Set P, A and K to a bogus values so we can try to splat them.
5830 P = 0;
5831 A = -1;
5832 K = -1;
5833
5834 // x ?% 1 == 0 <--> true <--> x u<= -1
5835 Q = -1;
5836 }
5837
5838 PAmts.push_back(DAG.getConstant(P, DL, SVT));
5839 AAmts.push_back(DAG.getConstant(A, DL, SVT));
5840 KAmts.push_back(
5841 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5842 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5843 return true;
5844 };
5845
5846 SDValue N = REMNode.getOperand(0);
5847 SDValue D = REMNode.getOperand(1);
5848
5849 // Collect the values from each element.
5850 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5851 return SDValue();
5852
5853 // If this is a srem by a one, avoid the fold since it can be constant-folded.
5854 if (AllDivisorsAreOnes)
5855 return SDValue();
5856
5857 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5858 // since it can be best implemented as a bit test.
5859 if (AllDivisorsArePowerOfTwo)
5860 return SDValue();
5861
5862 SDValue PVal, AVal, KVal, QVal;
5863 if (D.getOpcode() == ISD::BUILD_VECTOR) {
5864 if (HadOneDivisor) {
5865 // Try to turn PAmts into a splat, since we don't care about the values
5866 // that are currently '0'. If we can't, just keep '0'`s.
5867 turnVectorIntoSplatVector(PAmts, isNullConstant);
5868 // Try to turn AAmts into a splat, since we don't care about the
5869 // values that are currently '-1'. If we can't, change them to '0'`s.
5870 turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5871 DAG.getConstant(0, DL, SVT));
5872 // Try to turn KAmts into a splat, since we don't care about the values
5873 // that are currently '-1'. If we can't, change them to '0'`s.
5874 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5875 DAG.getConstant(0, DL, ShSVT));
5876 }
5877
5878 PVal = DAG.getBuildVector(VT, DL, PAmts);
5879 AVal = DAG.getBuildVector(VT, DL, AAmts);
5880 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5881 QVal = DAG.getBuildVector(VT, DL, QAmts);
5882 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5883 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&(static_cast <bool> (PAmts.size() == 1 && AAmts
.size() == 1 && KAmts.size() == 1 && QAmts.size
() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5886, __extension__ __PRETTY_FUNCTION__))
5884 QAmts.size() == 1 &&(static_cast <bool> (PAmts.size() == 1 && AAmts
.size() == 1 && KAmts.size() == 1 && QAmts.size
() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5886, __extension__ __PRETTY_FUNCTION__))
5885 "Expected matchUnaryPredicate to return one element for scalable "(static_cast <bool> (PAmts.size() == 1 && AAmts
.size() == 1 && KAmts.size() == 1 && QAmts.size
() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5886, __extension__ __PRETTY_FUNCTION__))
5886 "vectors")(static_cast <bool> (PAmts.size() == 1 && AAmts
.size() == 1 && KAmts.size() == 1 && QAmts.size
() == 1 && "Expected matchUnaryPredicate to return one element for scalable "
"vectors") ? void (0) : __assert_fail ("PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && \"Expected matchUnaryPredicate to return one element for scalable \" \"vectors\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5886, __extension__ __PRETTY_FUNCTION__))
;
5887 PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5888 AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5889 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5890 QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5891 } else {
5892 assert(isa<ConstantSDNode>(D) && "Expected a constant")(static_cast <bool> (isa<ConstantSDNode>(D) &&
"Expected a constant") ? void (0) : __assert_fail ("isa<ConstantSDNode>(D) && \"Expected a constant\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5892, __extension__ __PRETTY_FUNCTION__))
;
5893 PVal = PAmts[0];
5894 AVal = AAmts[0];
5895 KVal = KAmts[0];
5896 QVal = QAmts[0];
5897 }
5898
5899 // (mul N, P)
5900 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5901 Created.push_back(Op0.getNode());
5902
5903 if (NeedToApplyOffset) {
5904 // We need ADD to do this.
5905 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5906 return SDValue();
5907
5908 // (add (mul N, P), A)
5909 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5910 Created.push_back(Op0.getNode());
5911 }
5912
5913 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5914 // divisors as a performance improvement, since rotating by 0 is a no-op.
5915 if (HadEvenDivisor) {
5916 // We need ROTR to do this.
5917 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5918 return SDValue();
5919 // SREM: (rotr (add (mul N, P), A), K)
5920 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5921 Created.push_back(Op0.getNode());
5922 }
5923
5924 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5925 SDValue Fold =
5926 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5927 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5928
5929 // If we didn't have lanes with INT_MIN divisor, then we're done.
5930 if (!HadIntMinDivisor)
5931 return Fold;
5932
5933 // That fold is only valid for positive divisors. Which effectively means,
5934 // it is invalid for INT_MIN divisors. So if we have such a lane,
5935 // we must fix-up results for said lanes.
5936 assert(VT.isVector() && "Can/should only get here for vectors.")(static_cast <bool> (VT.isVector() && "Can/should only get here for vectors."
) ? void (0) : __assert_fail ("VT.isVector() && \"Can/should only get here for vectors.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 5936, __extension__ __PRETTY_FUNCTION__))
;
5937
5938 // NOTE: we avoid letting illegal types through even if we're before legalize
5939 // ops – legalization has a hard time producing good code for the code that
5940 // follows.
5941 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5942 !isOperationLegalOrCustom(ISD::AND, VT) ||
5943 !isOperationLegalOrCustom(Cond, VT) ||
5944 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
5945 return SDValue();
5946
5947 Created.push_back(Fold.getNode());
5948
5949 SDValue IntMin = DAG.getConstant(
5950 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5951 SDValue IntMax = DAG.getConstant(
5952 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5953 SDValue Zero =
5954 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5955
5956 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5957 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5958 Created.push_back(DivisorIsIntMin.getNode());
5959
5960 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
5961 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5962 Created.push_back(Masked.getNode());
5963 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5964 Created.push_back(MaskedIsZero.getNode());
5965
5966 // To produce final result we need to blend 2 vectors: 'SetCC' and
5967 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5968 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5969 // constant-folded, select can get lowered to a shuffle with constant mask.
5970 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
5971 MaskedIsZero, Fold);
5972
5973 return Blended;
5974}
5975
5976bool TargetLowering::
5977verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5978 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5979 DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5980 "be a constant integer");
5981 return true;
5982 }
5983
5984 return false;
5985}
5986
5987SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
5988 const DenormalMode &Mode) const {
5989 SDLoc DL(Op);
5990 EVT VT = Op.getValueType();
5991 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5992 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5993 // Testing it with denormal inputs to avoid wrong estimate.
5994 if (Mode.Input == DenormalMode::IEEE) {
5995 // This is specifically a check for the handling of denormal inputs,
5996 // not the result.
5997
5998 // Test = fabs(X) < SmallestNormal
5999 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6000 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6001 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6002 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6003 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6004 }
6005 // Test = X == 0.0
6006 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6007}
6008
6009SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6010 bool LegalOps, bool OptForSize,
6011 NegatibleCost &Cost,
6012 unsigned Depth) const {
6013 // fneg is removable even if it has multiple uses.
6014 if (Op.getOpcode() == ISD::FNEG) {
6015 Cost = NegatibleCost::Cheaper;
6016 return Op.getOperand(0);
6017 }
6018
6019 // Don't recurse exponentially.
6020 if (Depth > SelectionDAG::MaxRecursionDepth)
6021 return SDValue();
6022
6023 // Pre-increment recursion depth for use in recursive calls.
6024 ++Depth;
6025 const SDNodeFlags Flags = Op->getFlags();
6026 const TargetOptions &Options = DAG.getTarget().Options;
6027 EVT VT = Op.getValueType();
6028 unsigned Opcode = Op.getOpcode();
6029
6030 // Don't allow anything with multiple uses unless we know it is free.
6031 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6032 bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6033 isFPExtFree(VT, Op.getOperand(0).getValueType());
6034 if (!IsFreeExtend)
6035 return SDValue();
6036 }
6037
6038 auto RemoveDeadNode = [&](SDValue N) {
6039 if (N && N.getNode()->use_empty())
6040 DAG.RemoveDeadNode(N.getNode());
6041 };
6042
6043 SDLoc DL(Op);
6044
6045 // Because getNegatedExpression can delete nodes we need a handle to keep
6046 // temporary nodes alive in case the recursion manages to create an identical
6047 // node.
6048 std::list<HandleSDNode> Handles;
6049
6050 switch (Opcode) {
6051 case ISD::ConstantFP: {
6052 // Don't invert constant FP values after legalization unless the target says
6053 // the negated constant is legal.
6054 bool IsOpLegal =
6055 isOperationLegal(ISD::ConstantFP, VT) ||
6056 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6057 OptForSize);
6058
6059 if (LegalOps && !IsOpLegal)
6060 break;
6061
6062 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6063 V.changeSign();
6064 SDValue CFP = DAG.getConstantFP(V, DL, VT);
6065
6066 // If we already have the use of the negated floating constant, it is free
6067 // to negate it even it has multiple uses.
6068 if (!Op.hasOneUse() && CFP.use_empty())
6069 break;
6070 Cost = NegatibleCost::Neutral;
6071 return CFP;
6072 }
6073 case ISD::BUILD_VECTOR: {
6074 // Only permit BUILD_VECTOR of constants.
6075 if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6076 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6077 }))
6078 break;
6079
6080 bool IsOpLegal =
6081 (isOperationLegal(ISD::ConstantFP, VT) &&
6082 isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6083 llvm::all_of(Op->op_values(), [&](SDValue N) {
6084 return N.isUndef() ||
6085 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6086 OptForSize);
6087 });
6088
6089 if (LegalOps && !IsOpLegal)
6090 break;
6091
6092 SmallVector<SDValue, 4> Ops;
6093 for (SDValue C : Op->op_values()) {
6094 if (C.isUndef()) {
6095 Ops.push_back(C);
6096 continue;
6097 }
6098 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6099 V.changeSign();
6100 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6101 }
6102 Cost = NegatibleCost::Neutral;
6103 return DAG.getBuildVector(VT, DL, Ops);
6104 }
6105 case ISD::FADD: {
6106 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6107 break;
6108
6109 // After operation legalization, it might not be legal to create new FSUBs.
6110 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6111 break;
6112 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6113
6114 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6115 NegatibleCost CostX = NegatibleCost::Expensive;
6116 SDValue NegX =
6117 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6118 // Prevent this node from being deleted by the next call.
6119 if (NegX)
6120 Handles.emplace_back(NegX);
6121
6122 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6123 NegatibleCost CostY = NegatibleCost::Expensive;
6124 SDValue NegY =
6125 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6126
6127 // We're done with the handles.
6128 Handles.clear();
6129
6130 // Negate the X if its cost is less or equal than Y.
6131 if (NegX && (CostX <= CostY)) {
6132 Cost = CostX;
6133 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6134 if (NegY != N)
6135 RemoveDeadNode(NegY);
6136 return N;
6137 }
6138
6139 // Negate the Y if it is not expensive.
6140 if (NegY) {
6141 Cost = CostY;
6142 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6143 if (NegX != N)
6144 RemoveDeadNode(NegX);
6145 return N;
6146 }
6147 break;
6148 }
6149 case ISD::FSUB: {
6150 // We can't turn -(A-B) into B-A when we honor signed zeros.
6151 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6152 break;
6153
6154 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6155 // fold (fneg (fsub 0, Y)) -> Y
6156 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6157 if (C->isZero()) {
6158 Cost = NegatibleCost::Cheaper;
6159 return Y;
6160 }
6161
6162 // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6163 Cost = NegatibleCost::Neutral;
6164 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6165 }
6166 case ISD::FMUL:
6167 case ISD::FDIV: {
6168 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6169
6170 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6171 NegatibleCost CostX = NegatibleCost::Expensive;
6172 SDValue NegX =
6173 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6174 // Prevent this node from being deleted by the next call.
6175 if (NegX)
6176 Handles.emplace_back(NegX);
6177
6178 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6179 NegatibleCost CostY = NegatibleCost::Expensive;
6180 SDValue NegY =
6181 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6182
6183 // We're done with the handles.
6184 Handles.clear();
6185
6186 // Negate the X if its cost is less or equal than Y.
6187 if (NegX && (CostX <= CostY)) {
6188 Cost = CostX;
6189 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6190 if (NegY != N)
6191 RemoveDeadNode(NegY);
6192 return N;
6193 }
6194
6195 // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6196 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6197 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6198 break;
6199
6200 // Negate the Y if it is not expensive.
6201 if (NegY) {
6202 Cost = CostY;
6203 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6204 if (NegX != N)
6205 RemoveDeadNode(NegX);
6206 return N;
6207 }
6208 break;
6209 }
6210 case ISD::FMA:
6211 case ISD::FMAD: {
6212 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6213 break;
6214
6215 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6216 NegatibleCost CostZ = NegatibleCost::Expensive;
6217 SDValue NegZ =
6218 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6219 // Give up if fail to negate the Z.
6220 if (!NegZ)
6221 break;
6222
6223 // Prevent this node from being deleted by the next two calls.
6224 Handles.emplace_back(NegZ);
6225
6226 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6227 NegatibleCost CostX = NegatibleCost::Expensive;
6228 SDValue NegX =
6229 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6230 // Prevent this node from being deleted by the next call.
6231 if (NegX)
6232 Handles.emplace_back(NegX);
6233
6234 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6235 NegatibleCost CostY = NegatibleCost::Expensive;
6236 SDValue NegY =
6237 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6238
6239 // We're done with the handles.
6240 Handles.clear();
6241
6242 // Negate the X if its cost is less or equal than Y.
6243 if (NegX && (CostX <= CostY)) {
6244 Cost = std::min(CostX, CostZ);
6245 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6246 if (NegY != N)
6247 RemoveDeadNode(NegY);
6248 return N;
6249 }
6250
6251 // Negate the Y if it is not expensive.
6252 if (NegY) {
6253 Cost = std::min(CostY, CostZ);
6254 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6255 if (NegX != N)
6256 RemoveDeadNode(NegX);
6257 return N;
6258 }
6259 break;
6260 }
6261
6262 case ISD::FP_EXTEND:
6263 case ISD::FSIN:
6264 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6265 OptForSize, Cost, Depth))
6266 return DAG.getNode(Opcode, DL, VT, NegV);
6267 break;
6268 case ISD::FP_ROUND:
6269 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6270 OptForSize, Cost, Depth))
6271 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6272 break;
6273 }
6274
6275 return SDValue();
6276}
6277
6278//===----------------------------------------------------------------------===//
6279// Legalization Utilities
6280//===----------------------------------------------------------------------===//
6281
6282bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6283 SDValue LHS, SDValue RHS,
6284 SmallVectorImpl<SDValue> &Result,
6285 EVT HiLoVT, SelectionDAG &DAG,
6286 MulExpansionKind Kind, SDValue LL,
6287 SDValue LH, SDValue RL, SDValue RH) const {
6288 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||(static_cast <bool> (Opcode == ISD::MUL || Opcode == ISD
::UMUL_LOHI || Opcode == ISD::SMUL_LOHI) ? void (0) : __assert_fail
("Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || Opcode == ISD::SMUL_LOHI"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6289, __extension__ __PRETTY_FUNCTION__))
6289 Opcode == ISD::SMUL_LOHI)(static_cast <bool> (Opcode == ISD::MUL || Opcode == ISD
::UMUL_LOHI || Opcode == ISD::SMUL_LOHI) ? void (0) : __assert_fail
("Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || Opcode == ISD::SMUL_LOHI"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6289, __extension__ __PRETTY_FUNCTION__))
;
6290
6291 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6292 isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6293 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6294 isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6295 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6296 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6297 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6298 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6299
6300 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6301 return false;
6302
6303 unsigned OuterBitSize = VT.getScalarSizeInBits();
6304 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6305
6306 // LL, LH, RL, and RH must be either all NULL or all set to a value.
6307 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||(static_cast <bool> ((LL.getNode() && LH.getNode
() && RL.getNode() && RH.getNode()) || (!LL.getNode
() && !LH.getNode() && !RL.getNode() &&
!RH.getNode())) ? void (0) : __assert_fail ("(LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6308, __extension__ __PRETTY_FUNCTION__))
6308 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()))(static_cast <bool> ((LL.getNode() && LH.getNode
() && RL.getNode() && RH.getNode()) || (!LL.getNode
() && !LH.getNode() && !RL.getNode() &&
!RH.getNode())) ? void (0) : __assert_fail ("(LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6308, __extension__ __PRETTY_FUNCTION__))
;
6309
6310 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6311 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6312 bool Signed) -> bool {
6313 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6314 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6315 Hi = SDValue(Lo.getNode(), 1);
6316 return true;
6317 }
6318 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6319 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6320 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6321 return true;
6322 }
6323 return false;
6324 };
6325
6326 SDValue Lo, Hi;
6327
6328 if (!LL.getNode() && !RL.getNode() &&
6329 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6330 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6331 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6332 }
6333
6334 if (!LL.getNode())
6335 return false;
6336
6337 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6338 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6339 DAG.MaskedValueIsZero(RHS, HighMask)) {
6340 // The inputs are both zero-extended.
6341 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6342 Result.push_back(Lo);
6343 Result.push_back(Hi);
6344 if (Opcode != ISD::MUL) {
6345 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6346 Result.push_back(Zero);
6347 Result.push_back(Zero);
6348 }
6349 return true;
6350 }
6351 }
6352
6353 if (!VT.isVector() && Opcode == ISD::MUL &&
6354 DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6355 DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6356 // The input values are both sign-extended.
6357 // TODO non-MUL case?
6358 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6359 Result.push_back(Lo);
6360 Result.push_back(Hi);
6361 return true;
6362 }
6363 }
6364
6365 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6366 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6367 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6368 // FIXME getShiftAmountTy does not always return a sensible result when VT
6369 // is an illegal type, and so the type may be too small to fit the shift
6370 // amount. Override it with i32. The shift will have to be legalized.
6371 ShiftAmountTy = MVT::i32;
6372 }
6373 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6374
6375 if (!LH.getNode() && !RH.getNode() &&
6376 isOperationLegalOrCustom(ISD::SRL, VT) &&
6377 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6378 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6379 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6380 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6381 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6382 }
6383
6384 if (!LH.getNode())
6385 return false;
6386
6387 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6388 return false;
6389
6390 Result.push_back(Lo);
6391
6392 if (Opcode == ISD::MUL) {
6393 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6394 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6395 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6396 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6397 Result.push_back(Hi);
6398 return true;
6399 }
6400
6401 // Compute the full width result.
6402 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6403 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6404 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6405 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6406 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6407 };
6408
6409 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6410 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6411 return false;
6412
6413 // This is effectively the add part of a multiply-add of half-sized operands,
6414 // so it cannot overflow.
6415 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6416
6417 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6418 return false;
6419
6420 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6421 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6422
6423 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6424 isOperationLegalOrCustom(ISD::ADDE, VT));
6425 if (UseGlue)
6426 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6427 Merge(Lo, Hi));
6428 else
6429 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6430 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6431
6432 SDValue Carry = Next.getValue(1);
6433 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6434 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6435
6436 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6437 return false;
6438
6439 if (UseGlue)
6440 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6441 Carry);
6442 else
6443 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6444 Zero, Carry);
6445
6446 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6447
6448 if (Opcode == ISD::SMUL_LOHI) {
6449 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6450 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6451 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6452
6453 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6454 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6455 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6456 }
6457
6458 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6459 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6460 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6461 return true;
6462}
6463
6464bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6465 SelectionDAG &DAG, MulExpansionKind Kind,
6466 SDValue LL, SDValue LH, SDValue RL,
6467 SDValue RH) const {
6468 SmallVector<SDValue, 2> Result;
6469 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6470 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6471 DAG, Kind, LL, LH, RL, RH);
6472 if (Ok) {
6473 assert(Result.size() == 2)(static_cast <bool> (Result.size() == 2) ? void (0) : __assert_fail
("Result.size() == 2", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6473, __extension__ __PRETTY_FUNCTION__))
;
6474 Lo = Result[0];
6475 Hi = Result[1];
6476 }
6477 return Ok;
6478}
6479
6480// Check that (every element of) Z is undef or not an exact multiple of BW.
6481static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6482 return ISD::matchUnaryPredicate(
6483 Z,
6484 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6485 true);
6486}
6487
6488bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6489 SelectionDAG &DAG) const {
6490 EVT VT = Node->getValueType(0);
6491
6492 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6493 !isOperationLegalOrCustom(ISD::SRL, VT) ||
6494 !isOperationLegalOrCustom(ISD::SUB, VT) ||
6495 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6496 return false;
6497
6498 SDValue X = Node->getOperand(0);
6499 SDValue Y = Node->getOperand(1);
6500 SDValue Z = Node->getOperand(2);
6501
6502 unsigned BW = VT.getScalarSizeInBits();
6503 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6504 SDLoc DL(SDValue(Node, 0));
6505
6506 EVT ShVT = Z.getValueType();
6507
6508 // If a funnel shift in the other direction is more supported, use it.
6509 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6510 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6511 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6512 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6513 // fshl X, Y, Z -> fshr X, Y, -Z
6514 // fshr X, Y, Z -> fshl X, Y, -Z
6515 SDValue Zero = DAG.getConstant(0, DL, ShVT);
6516 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6517 } else {
6518 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6519 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6520 SDValue One = DAG.getConstant(1, DL, ShVT);
6521 if (IsFSHL) {
6522 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6523 X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6524 } else {
6525 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6526 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6527 }
6528 Z = DAG.getNOT(DL, Z, ShVT);
6529 }
6530 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6531 return true;
6532 }
6533
6534 SDValue ShX, ShY;
6535 SDValue ShAmt, InvShAmt;
6536 if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6537 // fshl: X << C | Y >> (BW - C)
6538 // fshr: X << (BW - C) | Y >> C
6539 // where C = Z % BW is not zero
6540 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6541 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6542 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6543 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6544 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6545 } else {
6546 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6547 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6548 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6549 if (isPowerOf2_32(BW)) {
6550 // Z % BW -> Z & (BW - 1)
6551 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6552 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6553 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6554 } else {
6555 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6556 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6557 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6558 }
6559
6560 SDValue One = DAG.getConstant(1, DL, ShVT);
6561 if (IsFSHL) {
6562 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6563 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6564 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6565 } else {
6566 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6567 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6568 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6569 }
6570 }
6571 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6572 return true;
6573}
6574
6575// TODO: Merge with expandFunnelShift.
6576bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6577 SDValue &Result, SelectionDAG &DAG) const {
6578 EVT VT = Node->getValueType(0);
6579 unsigned EltSizeInBits = VT.getScalarSizeInBits();
6580 bool IsLeft = Node->getOpcode() == ISD::ROTL;
6581 SDValue Op0 = Node->getOperand(0);
6582 SDValue Op1 = Node->getOperand(1);
6583 SDLoc DL(SDValue(Node, 0));
6584
6585 EVT ShVT = Op1.getValueType();
6586 SDValue Zero = DAG.getConstant(0, DL, ShVT);
6587
6588 // If a rotate in the other direction is supported, use it.
6589 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6590 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6591 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6592 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6593 return true;
6594 }
6595
6596 if (!AllowVectorOps && VT.isVector() &&
6597 (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6598 !isOperationLegalOrCustom(ISD::SRL, VT) ||
6599 !isOperationLegalOrCustom(ISD::SUB, VT) ||
6600 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6601 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6602 return false;
6603
6604 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6605 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6606 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6607 SDValue ShVal;
6608 SDValue HsVal;
6609 if (isPowerOf2_32(EltSizeInBits)) {
6610 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6611 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6612 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6613 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6614 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6615 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6616 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6617 } else {
6618 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6619 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6620 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6621 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6622 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6623 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6624 SDValue One = DAG.getConstant(1, DL, ShVT);
6625 HsVal =
6626 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6627 }
6628 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6629 return true;
6630}
6631
6632void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6633 SelectionDAG &DAG) const {
6634 assert(Node->getNumOperands() == 3 && "Not a double-shift!")(static_cast <bool> (Node->getNumOperands() == 3 &&
"Not a double-shift!") ? void (0) : __assert_fail ("Node->getNumOperands() == 3 && \"Not a double-shift!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6634, __extension__ __PRETTY_FUNCTION__))
;
6635 EVT VT = Node->getValueType(0);
6636 unsigned VTBits = VT.getScalarSizeInBits();
6637 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected")(static_cast <bool> (isPowerOf2_32(VTBits) && "Power-of-two integer type expected"
) ? void (0) : __assert_fail ("isPowerOf2_32(VTBits) && \"Power-of-two integer type expected\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6637, __extension__ __PRETTY_FUNCTION__))
;
6638
6639 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6640 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6641 SDValue ShOpLo = Node->getOperand(0);
6642 SDValue ShOpHi = Node->getOperand(1);
6643 SDValue ShAmt = Node->getOperand(2);
6644 EVT ShAmtVT = ShAmt.getValueType();
6645 EVT ShAmtCCVT =
6646 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6647 SDLoc dl(Node);
6648
6649 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6650 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6651 // away during isel.
6652 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6653 DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6654 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6655 DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6656 : DAG.getConstant(0, dl, VT);
6657
6658 SDValue Tmp2, Tmp3;
6659 if (IsSHL) {
6660 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6661 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6662 } else {
6663 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6664 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6665 }
6666
6667 // If the shift amount is larger or equal than the width of a part we don't
6668 // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6669 // values for large shift amounts.
6670 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6671 DAG.getConstant(VTBits, dl, ShAmtVT));
6672 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6673 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6674
6675 if (IsSHL) {
6676 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6677 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6678 } else {
6679 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6680 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6681 }
6682}
6683
6684bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6685 SelectionDAG &DAG) const {
6686 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6687 SDValue Src = Node->getOperand(OpNo);
6688 EVT SrcVT = Src.getValueType();
6689 EVT DstVT = Node->getValueType(0);
6690 SDLoc dl(SDValue(Node, 0));
6691
6692 // FIXME: Only f32 to i64 conversions are supported.
6693 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6694 return false;
6695
6696 if (Node->isStrictFPOpcode())
6697 // When a NaN is converted to an integer a trap is allowed. We can't
6698 // use this expansion here because it would eliminate that trap. Other
6699 // traps are also allowed and cannot be eliminated. See
6700 // IEEE 754-2008 sec 5.8.
6701 return false;
6702
6703 // Expand f32 -> i64 conversion
6704 // This algorithm comes from compiler-rt's implementation of fixsfdi:
6705 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6706 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6707 EVT IntVT = SrcVT.changeTypeToInteger();
6708 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6709
6710 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6711 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6712 SDValue Bias = DAG.getConstant(127, dl, IntVT);
6713 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6714 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6715 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6716
6717 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6718
6719 SDValue ExponentBits = DAG.getNode(
6720 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6721 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6722 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6723
6724 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6725 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6726 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6727 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6728
6729 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6730 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6731 DAG.getConstant(0x00800000, dl, IntVT));
6732
6733 R = DAG.getZExtOrTrunc(R, dl, DstVT);
6734
6735 R = DAG.getSelectCC(
6736 dl, Exponent, ExponentLoBit,
6737 DAG.getNode(ISD::SHL, dl, DstVT, R,
6738 DAG.getZExtOrTrunc(
6739 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6740 dl, IntShVT)),
6741 DAG.getNode(ISD::SRL, dl, DstVT, R,
6742 DAG.getZExtOrTrunc(
6743 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6744 dl, IntShVT)),
6745 ISD::SETGT);
6746
6747 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6748 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6749
6750 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6751 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6752 return true;
6753}
6754
6755bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6756 SDValue &Chain,
6757 SelectionDAG &DAG) const {
6758 SDLoc dl(SDValue(Node, 0));
6759 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6760 SDValue Src = Node->getOperand(OpNo);
6761
6762 EVT SrcVT = Src.getValueType();
6763 EVT DstVT = Node->getValueType(0);
6764 EVT SetCCVT =
6765 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6766 EVT DstSetCCVT =
6767 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6768
6769 // Only expand vector types if we have the appropriate vector bit operations.
6770 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6771 ISD::FP_TO_SINT;
6772 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6773 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6774 return false;
6775
6776 // If the maximum float value is smaller then the signed integer range,
6777 // the destination signmask can't be represented by the float, so we can
6778 // just use FP_TO_SINT directly.
6779 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6780 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6781 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6782 if (APFloat::opOverflow &
6783 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6784 if (Node->isStrictFPOpcode()) {
6785 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6786 { Node->getOperand(0), Src });
6787 Chain = Result.getValue(1);
6788 } else
6789 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6790 return true;
6791 }
6792
6793 // Don't expand it if there isn't cheap fsub instruction.
6794 if (!isOperationLegalOrCustom(
6795 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6796 return false;
6797
6798 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6799 SDValue Sel;
6800
6801 if (Node->isStrictFPOpcode()) {
6802 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6803 Node->getOperand(0), /*IsSignaling*/ true);
6804 Chain = Sel.getValue(1);
6805 } else {
6806 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6807 }
6808
6809 bool Strict = Node->isStrictFPOpcode() ||
6810 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6811
6812 if (Strict) {
6813 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6814 // signmask then offset (the result of which should be fully representable).
6815 // Sel = Src < 0x8000000000000000
6816 // FltOfs = select Sel, 0, 0x8000000000000000
6817 // IntOfs = select Sel, 0, 0x8000000000000000
6818 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6819
6820 // TODO: Should any fast-math-flags be set for the FSUB?
6821 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6822 DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6823 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6824 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6825 DAG.getConstant(0, dl, DstVT),
6826 DAG.getConstant(SignMask, dl, DstVT));
6827 SDValue SInt;
6828 if (Node->isStrictFPOpcode()) {
6829 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6830 { Chain, Src, FltOfs });
6831 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6832 { Val.getValue(1), Val });
6833 Chain = SInt.getValue(1);
6834 } else {
6835 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6836 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6837 }
6838 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6839 } else {
6840 // Expand based on maximum range of FP_TO_SINT:
6841 // True = fp_to_sint(Src)
6842 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6843 // Result = select (Src < 0x8000000000000000), True, False
6844
6845 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6846 // TODO: Should any fast-math-flags be set for the FSUB?
6847 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6848 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6849 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6850 DAG.getConstant(SignMask, dl, DstVT));
6851 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6852 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6853 }
6854 return true;
6855}
6856
6857bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6858 SDValue &Chain,
6859 SelectionDAG &DAG) const {
6860 // This transform is not correct for converting 0 when rounding mode is set
6861 // to round toward negative infinity which will produce -0.0. So disable under
6862 // strictfp.
6863 if (Node->isStrictFPOpcode())
6864 return false;
6865
6866 SDValue Src = Node->getOperand(0);
6867 EVT SrcVT = Src.getValueType();
6868 EVT DstVT = Node->getValueType(0);
6869
6870 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6871 return false;
6872
6873 // Only expand vector types if we have the appropriate vector bit operations.
6874 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6875 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6876 !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6877 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6878 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6879 return false;
6880
6881 SDLoc dl(SDValue(Node, 0));
6882 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6883
6884 // Implementation of unsigned i64 to f64 following the algorithm in
6885 // __floatundidf in compiler_rt. This implementation performs rounding
6886 // correctly in all rounding modes with the exception of converting 0
6887 // when rounding toward negative infinity. In that case the fsub will produce
6888 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6889 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000)0x4330000000000000UL, dl, SrcVT);
6890 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6891 BitsToDouble(UINT64_C(0x4530000000100000)0x4530000000100000UL), dl, DstVT);
6892 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000)0x4530000000000000UL, dl, SrcVT);
6893 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF)0x00000000FFFFFFFFUL, dl, SrcVT);
6894 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6895
6896 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6897 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6898 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6899 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6900 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6901 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6902 SDValue HiSub =
6903 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6904 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6905 return true;
6906}
6907
6908SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6909 SelectionDAG &DAG) const {
6910 SDLoc dl(Node);
6911 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6912 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6913 EVT VT = Node->getValueType(0);
6914
6915 if (VT.isScalableVector())
6916 report_fatal_error(
6917 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6918
6919 if (isOperationLegalOrCustom(NewOp, VT)) {
6920 SDValue Quiet0 = Node->getOperand(0);
6921 SDValue Quiet1 = Node->getOperand(1);
6922
6923 if (!Node->getFlags().hasNoNaNs()) {
6924 // Insert canonicalizes if it's possible we need to quiet to get correct
6925 // sNaN behavior.
6926 if (!DAG.isKnownNeverSNaN(Quiet0)) {
6927 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6928 Node->getFlags());
6929 }
6930 if (!DAG.isKnownNeverSNaN(Quiet1)) {
6931 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6932 Node->getFlags());
6933 }
6934 }
6935
6936 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6937 }
6938
6939 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6940 // instead if there are no NaNs.
6941 if (Node->getFlags().hasNoNaNs()) {
6942 unsigned IEEE2018Op =
6943 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6944 if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6945 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6946 Node->getOperand(1), Node->getFlags());
6947 }
6948 }
6949
6950 // If none of the above worked, but there are no NaNs, then expand to
6951 // a compare/select sequence. This is required for correctness since
6952 // InstCombine might have canonicalized a fcmp+select sequence to a
6953 // FMINNUM/FMAXNUM node. If we were to fall through to the default
6954 // expansion to libcall, we might introduce a link-time dependency
6955 // on libm into a file that originally did not have one.
6956 if (Node->getFlags().hasNoNaNs()) {
6957 ISD::CondCode Pred =
6958 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6959 SDValue Op1 = Node->getOperand(0);
6960 SDValue Op2 = Node->getOperand(1);
6961 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6962 // Copy FMF flags, but always set the no-signed-zeros flag
6963 // as this is implied by the FMINNUM/FMAXNUM semantics.
6964 SDNodeFlags Flags = Node->getFlags();
6965 Flags.setNoSignedZeros(true);
6966 SelCC->setFlags(Flags);
6967 return SelCC;
6968 }
6969
6970 return SDValue();
6971}
6972
6973SDValue TargetLowering::expandISNAN(EVT ResultVT, SDValue Op, SDNodeFlags Flags,
6974 const SDLoc &DL, SelectionDAG &DAG) const {
6975 EVT OperandVT = Op.getValueType();
6976 assert(OperandVT.isFloatingPoint())(static_cast <bool> (OperandVT.isFloatingPoint()) ? void
(0) : __assert_fail ("OperandVT.isFloatingPoint()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 6976, __extension__ __PRETTY_FUNCTION__))
;
6977
6978 // If floating point exceptions are ignored, expand to unordered comparison.
6979 if ((Flags.hasNoFPExcept() &&
6980 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) ||
6981 OperandVT == MVT::ppcf128)
6982 return DAG.getSetCC(DL, ResultVT, Op, DAG.getConstantFP(0.0, DL, OperandVT),
6983 ISD::SETUO);
6984
6985 // In general case use integer operations to avoid traps if argument is SNaN.
6986
6987 // NaN has all exp bits set and a non zero significand. Therefore:
6988 // isnan(V) == exp mask < abs(V)
6989 unsigned BitSize = OperandVT.getScalarSizeInBits();
6990 EVT IntVT = OperandVT.changeTypeToInteger();
6991 SDValue ArgV = DAG.getBitcast(IntVT, Op);
6992 APInt AndMask = APInt::getSignedMaxValue(BitSize);
6993 SDValue AndMaskV = DAG.getConstant(AndMask, DL, IntVT);
6994 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, ArgV, AndMaskV);
6995 EVT ScalarFloatVT = OperandVT.getScalarType();
6996 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
6997 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
6998 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
6999 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7000 return DAG.getSetCC(DL, ResultVT, ExpMaskV, AbsV, ISD::SETLT);
7001}
7002
7003bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
7004 SelectionDAG &DAG) const {
7005 SDLoc dl(Node);
7006 EVT VT = Node->getValueType(0);
7007 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7008 SDValue Op = Node->getOperand(0);
7009 unsigned Len = VT.getScalarSizeInBits();
7010 assert(VT.isInteger() && "CTPOP not implemented for this type.")(static_cast <bool> (VT.isInteger() && "CTPOP not implemented for this type."
) ? void (0) : __assert_fail ("VT.isInteger() && \"CTPOP not implemented for this type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7010, __extension__ __PRETTY_FUNCTION__))
;
7011
7012 // TODO: Add support for irregular type lengths.
7013 if (!(Len <= 128 && Len % 8 == 0))
7014 return false;
7015
7016 // Only expand vector types if we have the appropriate vector bit operations.
7017 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
7018 !isOperationLegalOrCustom(ISD::SUB, VT) ||
7019 !isOperationLegalOrCustom(ISD::SRL, VT) ||
7020 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
7021 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7022 return false;
7023
7024 // This is the "best" algorithm from
7025 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7026 SDValue Mask55 =
7027 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7028 SDValue Mask33 =
7029 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7030 SDValue Mask0F =
7031 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7032 SDValue Mask01 =
7033 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7034
7035 // v = v - ((v >> 1) & 0x55555555...)
7036 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7037 DAG.getNode(ISD::AND, dl, VT,
7038 DAG.getNode(ISD::SRL, dl, VT, Op,
7039 DAG.getConstant(1, dl, ShVT)),
7040 Mask55));
7041 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7042 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7043 DAG.getNode(ISD::AND, dl, VT,
7044 DAG.getNode(ISD::SRL, dl, VT, Op,
7045 DAG.getConstant(2, dl, ShVT)),
7046 Mask33));
7047 // v = (v + (v >> 4)) & 0x0F0F0F0F...
7048 Op = DAG.getNode(ISD::AND, dl, VT,
7049 DAG.getNode(ISD::ADD, dl, VT, Op,
7050 DAG.getNode(ISD::SRL, dl, VT, Op,
7051 DAG.getConstant(4, dl, ShVT))),
7052 Mask0F);
7053 // v = (v * 0x01010101...) >> (Len - 8)
7054 if (Len > 8)
7055 Op =
7056 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7057 DAG.getConstant(Len - 8, dl, ShVT));
7058
7059 Result = Op;
7060 return true;
7061}
7062
7063bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
7064 SelectionDAG &DAG) const {
7065 SDLoc dl(Node);
7066 EVT VT = Node->getValueType(0);
7067 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7068 SDValue Op = Node->getOperand(0);
7069 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7070
7071 // If the non-ZERO_UNDEF version is supported we can use that instead.
7072 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7073 isOperationLegalOrCustom(ISD::CTLZ, VT)) {
7074 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
7075 return true;
7076 }
7077
7078 // If the ZERO_UNDEF version is supported use that and handle the zero case.
7079 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7080 EVT SetCCVT =
7081 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7082 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7083 SDValue Zero = DAG.getConstant(0, dl, VT);
7084 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7085 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7086 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7087 return true;
7088 }
7089
7090 // Only expand vector types if we have the appropriate vector bit operations.
7091 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7092 !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
7093 !isOperationLegalOrCustom(ISD::SRL, VT) ||
7094 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7095 return false;
7096
7097 // for now, we do this:
7098 // x = x | (x >> 1);
7099 // x = x | (x >> 2);
7100 // ...
7101 // x = x | (x >>16);
7102 // x = x | (x >>32); // for 64-bit input
7103 // return popcount(~x);
7104 //
7105 // Ref: "Hacker's Delight" by Henry Warren
7106 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7107 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7108 Op = DAG.getNode(ISD::OR, dl, VT, Op,
7109 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7110 }
7111 Op = DAG.getNOT(dl, Op, VT);
7112 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
7113 return true;
7114}
7115
7116bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
7117 SelectionDAG &DAG) const {
7118 SDLoc dl(Node);
7119 EVT VT = Node->getValueType(0);
7120 SDValue Op = Node->getOperand(0);
7121 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7122
7123 // If the non-ZERO_UNDEF version is supported we can use that instead.
7124 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7125 isOperationLegalOrCustom(ISD::CTTZ, VT)) {
7126 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
7127 return true;
7128 }
7129
7130 // If the ZERO_UNDEF version is supported use that and handle the zero case.
7131 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7132 EVT SetCCVT =
7133 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7134 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7135 SDValue Zero = DAG.getConstant(0, dl, VT);
7136 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7137 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7138 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7139 return true;
7140 }
7141
7142 // Only expand vector types if we have the appropriate vector bit operations.
7143 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7144 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7145 !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
7146 !isOperationLegalOrCustom(ISD::SUB, VT) ||
7147 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7148 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7149 return false;
7150
7151 // for now, we use: { return popcount(~x & (x - 1)); }
7152 // unless the target has ctlz but not ctpop, in which case we use:
7153 // { return 32 - nlz(~x & (x-1)); }
7154 // Ref: "Hacker's Delight" by Henry Warren
7155 SDValue Tmp = DAG.getNode(
7156 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7157 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7158
7159 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7160 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7161 Result =
7162 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7163 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7164 return true;
7165 }
7166
7167 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7168 return true;
7169}
7170
7171bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7172 SelectionDAG &DAG, bool IsNegative) const {
7173 SDLoc dl(N);
7174 EVT VT = N->getValueType(0);
7175 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7176 SDValue Op = N->getOperand(0);
7177
7178 // abs(x) -> smax(x,sub(0,x))
7179 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7180 isOperationLegal(ISD::SMAX, VT)) {
7181 SDValue Zero = DAG.getConstant(0, dl, VT);
7182 Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7183 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7184 return true;
7185 }
7186
7187 // abs(x) -> umin(x,sub(0,x))
7188 if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7189 isOperationLegal(ISD::UMIN, VT)) {
7190 SDValue Zero = DAG.getConstant(0, dl, VT);
7191 Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7192 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7193 return true;
7194 }
7195
7196 // 0 - abs(x) -> smin(x, sub(0,x))
7197 if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7198 isOperationLegal(ISD::SMIN, VT)) {
7199 SDValue Zero = DAG.getConstant(0, dl, VT);
7200 Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7201 DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7202 return true;
7203 }
7204
7205 // Only expand vector types if we have the appropriate vector operations.
7206 if (VT.isVector() &&
7207 (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7208 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7209 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7210 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7211 return false;
7212
7213 SDValue Shift =
7214 DAG.getNode(ISD::SRA, dl, VT, Op,
7215 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7216 if (!IsNegative) {
7217 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7218 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7219 } else {
7220 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7221 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7222 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7223 }
7224 return true;
7225}
7226
7227SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7228 SDLoc dl(N);
7229 EVT VT = N->getValueType(0);
7230 SDValue Op = N->getOperand(0);
7231
7232 if (!VT.isSimple())
7233 return SDValue();
7234
7235 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7236 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7237 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7238 default:
7239 return SDValue();
7240 case MVT::i16:
7241 // Use a rotate by 8. This can be further expanded if necessary.
7242 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7243 case MVT::i32:
7244 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7245 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7246 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7247 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7248 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7249 DAG.getConstant(0xFF0000, dl, VT));
7250 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7251 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7252 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7253 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7254 case MVT::i64:
7255 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7256 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7257 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7258 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7259 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7260 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7261 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7262 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7263 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7264 DAG.getConstant(255ULL<<48, dl, VT));
7265 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7266 DAG.getConstant(255ULL<<40, dl, VT));
7267 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7268 DAG.getConstant(255ULL<<32, dl, VT));
7269 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7270 DAG.getConstant(255ULL<<24, dl, VT));
7271 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7272 DAG.getConstant(255ULL<<16, dl, VT));
7273 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7274 DAG.getConstant(255ULL<<8 , dl, VT));
7275 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7276 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7277 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7278 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7279 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7280 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7281 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7282 }
7283}
7284
7285SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7286 SDLoc dl(N);
7287 EVT VT = N->getValueType(0);
7288 SDValue Op = N->getOperand(0);
7289 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7290 unsigned Sz = VT.getScalarSizeInBits();
7291
7292 SDValue Tmp, Tmp2, Tmp3;
7293
7294 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7295 // and finally the i1 pairs.
7296 // TODO: We can easily support i4/i2 legal types if any target ever does.
7297 if (Sz >= 8 && isPowerOf2_32(Sz)) {
7298 // Create the masks - repeating the pattern every byte.
7299 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7300 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7301 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7302
7303 // BSWAP if the type is wider than a single byte.
7304 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7305
7306 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7307 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7308 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7309 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7310 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7311 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7312
7313 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7314 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7315 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7316 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7317 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7318 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7319
7320 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7321 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7322 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7323 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7324 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7325 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7326 return Tmp;
7327 }
7328
7329 Tmp = DAG.getConstant(0, dl, VT);
7330 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7331 if (I < J)
7332 Tmp2 =
7333 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7334 else
7335 Tmp2 =
7336 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7337
7338 APInt Shift(Sz, 1);
7339 Shift <<= J;
7340 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7341 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7342 }
7343
7344 return Tmp;
7345}
7346
7347std::pair<SDValue, SDValue>
7348TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7349 SelectionDAG &DAG) const {
7350 SDLoc SL(LD);
7351 SDValue Chain = LD->getChain();
7352 SDValue BasePTR = LD->getBasePtr();
7353 EVT SrcVT = LD->getMemoryVT();
7354 EVT DstVT = LD->getValueType(0);
7355 ISD::LoadExtType ExtType = LD->getExtensionType();
7356
7357 if (SrcVT.isScalableVector())
7358 report_fatal_error("Cannot scalarize scalable vector loads");
7359
7360 unsigned NumElem = SrcVT.getVectorNumElements();
7361
7362 EVT SrcEltVT = SrcVT.getScalarType();
7363 EVT DstEltVT = DstVT.getScalarType();
7364
7365 // A vector must always be stored in memory as-is, i.e. without any padding
7366 // between the elements, since various code depend on it, e.g. in the
7367 // handling of a bitcast of a vector type to int, which may be done with a
7368 // vector store followed by an integer load. A vector that does not have
7369 // elements that are byte-sized must therefore be stored as an integer
7370 // built out of the extracted vector elements.
7371 if (!SrcEltVT.isByteSized()) {
7372 unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7373 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7374
7375 unsigned NumSrcBits = SrcVT.getSizeInBits();
7376 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7377
7378 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7379 SDValue SrcEltBitMask = DAG.getConstant(
7380 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7381
7382 // Load the whole vector and avoid masking off the top bits as it makes
7383 // the codegen worse.
7384 SDValue Load =
7385 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7386 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7387 LD->getMemOperand()->getFlags(), LD->getAAInfo());
7388
7389 SmallVector<SDValue, 8> Vals;
7390 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7391 unsigned ShiftIntoIdx =
7392 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7393 SDValue ShiftAmount =
7394 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7395 LoadVT, SL, /*LegalTypes=*/false);
7396 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7397 SDValue Elt =
7398 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7399 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7400
7401 if (ExtType != ISD::NON_EXTLOAD) {
7402 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7403 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7404 }
7405
7406 Vals.push_back(Scalar);
7407 }
7408
7409 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7410 return std::make_pair(Value, Load.getValue(1));
7411 }
7412
7413 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7414 assert(SrcEltVT.isByteSized())(static_cast <bool> (SrcEltVT.isByteSized()) ? void (0)
: __assert_fail ("SrcEltVT.isByteSized()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7414, __extension__ __PRETTY_FUNCTION__))
;
7415
7416 SmallVector<SDValue, 8> Vals;
7417 SmallVector<SDValue, 8> LoadChains;
7418
7419 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7420 SDValue ScalarLoad =
7421 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7422 LD->getPointerInfo().getWithOffset(Idx * Stride),
7423 SrcEltVT, LD->getOriginalAlign(),
7424 LD->getMemOperand()->getFlags(), LD->getAAInfo());
7425
7426 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7427
7428 Vals.push_back(ScalarLoad.getValue(0));
7429 LoadChains.push_back(ScalarLoad.getValue(1));
7430 }
7431
7432 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7433 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7434
7435 return std::make_pair(Value, NewChain);
7436}
7437
7438SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7439 SelectionDAG &DAG) const {
7440 SDLoc SL(ST);
7441
7442 SDValue Chain = ST->getChain();
7443 SDValue BasePtr = ST->getBasePtr();
7444 SDValue Value = ST->getValue();
7445 EVT StVT = ST->getMemoryVT();
7446
7447 if (StVT.isScalableVector())
7448 report_fatal_error("Cannot scalarize scalable vector stores");
7449
7450 // The type of the data we want to save
7451 EVT RegVT = Value.getValueType();
7452 EVT RegSclVT = RegVT.getScalarType();
7453
7454 // The type of data as saved in memory.
7455 EVT MemSclVT = StVT.getScalarType();
7456
7457 unsigned NumElem = StVT.getVectorNumElements();
7458
7459 // A vector must always be stored in memory as-is, i.e. without any padding
7460 // between the elements, since various code depend on it, e.g. in the
7461 // handling of a bitcast of a vector type to int, which may be done with a
7462 // vector store followed by an integer load. A vector that does not have
7463 // elements that are byte-sized must therefore be stored as an integer
7464 // built out of the extracted vector elements.
7465 if (!MemSclVT.isByteSized()) {
7466 unsigned NumBits = StVT.getSizeInBits();
7467 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7468
7469 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7470
7471 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7472 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7473 DAG.getVectorIdxConstant(Idx, SL));
7474 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7475 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7476 unsigned ShiftIntoIdx =
7477 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7478 SDValue ShiftAmount =
7479 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7480 SDValue ShiftedElt =
7481 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7482 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7483 }
7484
7485 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7486 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7487 ST->getAAInfo());
7488 }
7489
7490 // Store Stride in bytes
7491 unsigned Stride = MemSclVT.getSizeInBits() / 8;
7492 assert(Stride && "Zero stride!")(static_cast <bool> (Stride && "Zero stride!") ?
void (0) : __assert_fail ("Stride && \"Zero stride!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7492, __extension__ __PRETTY_FUNCTION__))
;
7493 // Extract each of the elements from the original vector and save them into
7494 // memory individually.
7495 SmallVector<SDValue, 8> Stores;
7496 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7497 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7498 DAG.getVectorIdxConstant(Idx, SL));
7499
7500 SDValue Ptr =
7501 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7502
7503 // This scalar TruncStore may be illegal, but we legalize it later.
7504 SDValue Store = DAG.getTruncStore(
7505 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7506 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7507 ST->getAAInfo());
7508
7509 Stores.push_back(Store);
7510 }
7511
7512 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7513}
7514
7515std::pair<SDValue, SDValue>
7516TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7517 assert(LD->getAddressingMode() == ISD::UNINDEXED &&(static_cast <bool> (LD->getAddressingMode() == ISD::
UNINDEXED && "unaligned indexed loads not implemented!"
) ? void (0) : __assert_fail ("LD->getAddressingMode() == ISD::UNINDEXED && \"unaligned indexed loads not implemented!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7518, __extension__ __PRETTY_FUNCTION__))
7518 "unaligned indexed loads not implemented!")(static_cast <bool> (LD->getAddressingMode() == ISD::
UNINDEXED && "unaligned indexed loads not implemented!"
) ? void (0) : __assert_fail ("LD->getAddressingMode() == ISD::UNINDEXED && \"unaligned indexed loads not implemented!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7518, __extension__ __PRETTY_FUNCTION__))
;
7519 SDValue Chain = LD->getChain();
7520 SDValue Ptr = LD->getBasePtr();
7521 EVT VT = LD->getValueType(0);
7522 EVT LoadedVT = LD->getMemoryVT();
7523 SDLoc dl(LD);
7524 auto &MF = DAG.getMachineFunction();
7525
7526 if (VT.isFloatingPoint() || VT.isVector()) {
7527 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7528 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7529 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7530 LoadedVT.isVector()) {
7531 // Scalarize the load and let the individual components be handled.
7532 return scalarizeVectorLoad(LD, DAG);
7533 }
7534
7535 // Expand to a (misaligned) integer load of the same size,
7536 // then bitconvert to floating point or vector.
7537 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7538 LD->getMemOperand());
7539 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7540 if (LoadedVT != VT)
7541 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7542 ISD::ANY_EXTEND, dl, VT, Result);
7543
7544 return std::make_pair(Result, newLoad.getValue(1));
7545 }
7546
7547 // Copy the value to a (aligned) stack slot using (unaligned) integer
7548 // loads and stores, then do a (aligned) load from the stack slot.
7549 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7550 unsigned LoadedBytes = LoadedVT.getStoreSize();
7551 unsigned RegBytes = RegVT.getSizeInBits() / 8;
7552 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7553
7554 // Make sure the stack slot is also aligned for the register type.
7555 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7556 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7557 SmallVector<SDValue, 8> Stores;
7558 SDValue StackPtr = StackBase;
7559 unsigned Offset = 0;
7560
7561 EVT PtrVT = Ptr.getValueType();
7562 EVT StackPtrVT = StackPtr.getValueType();
7563
7564 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7565 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7566
7567 // Do all but one copies using the full register width.
7568 for (unsigned i = 1; i < NumRegs; i++) {
7569 // Load one integer register's worth from the original location.
7570 SDValue Load = DAG.getLoad(
7571 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7572 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7573 LD->getAAInfo());
7574 // Follow the load with a store to the stack slot. Remember the store.
7575 Stores.push_back(DAG.getStore(
7576 Load.getValue(1), dl, Load, StackPtr,
7577 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7578 // Increment the pointers.
7579 Offset += RegBytes;
7580
7581 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7582 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7583 }
7584
7585 // The last copy may be partial. Do an extending load.
7586 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7587 8 * (LoadedBytes - Offset));
7588 SDValue Load =
7589 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7590 LD->getPointerInfo().getWithOffset(Offset), MemVT,
7591 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7592 LD->getAAInfo());
7593 // Follow the load with a store to the stack slot. Remember the store.
7594 // On big-endian machines this requires a truncating store to ensure
7595 // that the bits end up in the right place.
7596 Stores.push_back(DAG.getTruncStore(
7597 Load.getValue(1), dl, Load, StackPtr,
7598 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7599
7600 // The order of the stores doesn't matter - say it with a TokenFactor.
7601 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7602
7603 // Finally, perform the original load only redirected to the stack slot.
7604 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7605 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7606 LoadedVT);
7607
7608 // Callers expect a MERGE_VALUES node.
7609 return std::make_pair(Load, TF);
7610 }
7611
7612 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&(static_cast <bool> (LoadedVT.isInteger() && !LoadedVT
.isVector() && "Unaligned load of unsupported type.")
? void (0) : __assert_fail ("LoadedVT.isInteger() && !LoadedVT.isVector() && \"Unaligned load of unsupported type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7613, __extension__ __PRETTY_FUNCTION__))
7613 "Unaligned load of unsupported type.")(static_cast <bool> (LoadedVT.isInteger() && !LoadedVT
.isVector() && "Unaligned load of unsupported type.")
? void (0) : __assert_fail ("LoadedVT.isInteger() && !LoadedVT.isVector() && \"Unaligned load of unsupported type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7613, __extension__ __PRETTY_FUNCTION__))
;
7614
7615 // Compute the new VT that is half the size of the old one. This is an
7616 // integer MVT.
7617 unsigned NumBits = LoadedVT.getSizeInBits();
7618 EVT NewLoadedVT;
7619 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7620 NumBits >>= 1;
7621
7622 Align Alignment = LD->getOriginalAlign();
7623 unsigned IncrementSize = NumBits / 8;
7624 ISD::LoadExtType HiExtType = LD->getExtensionType();
7625
7626 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7627 if (HiExtType == ISD::NON_EXTLOAD)
7628 HiExtType = ISD::ZEXTLOAD;
7629
7630 // Load the value in two parts
7631 SDValue Lo, Hi;
7632 if (DAG.getDataLayout().isLittleEndian()) {
7633 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7634 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7635 LD->getAAInfo());
7636
7637 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7638 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7639 LD->getPointerInfo().getWithOffset(IncrementSize),
7640 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7641 LD->getAAInfo());
7642 } else {
7643 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7644 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7645 LD->getAAInfo());
7646
7647 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7648 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7649 LD->getPointerInfo().getWithOffset(IncrementSize),
7650 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7651 LD->getAAInfo());
7652 }
7653
7654 // aggregate the two parts
7655 SDValue ShiftAmount =
7656 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7657 DAG.getDataLayout()));
7658 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7659 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7660
7661 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7662 Hi.getValue(1));
7663
7664 return std::make_pair(Result, TF);
7665}
7666
7667SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7668 SelectionDAG &DAG) const {
7669 assert(ST->getAddressingMode() == ISD::UNINDEXED &&(static_cast <bool> (ST->getAddressingMode() == ISD::
UNINDEXED && "unaligned indexed stores not implemented!"
) ? void (0) : __assert_fail ("ST->getAddressingMode() == ISD::UNINDEXED && \"unaligned indexed stores not implemented!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7670, __extension__ __PRETTY_FUNCTION__))
7670 "unaligned indexed stores not implemented!")(static_cast <bool> (ST->getAddressingMode() == ISD::
UNINDEXED && "unaligned indexed stores not implemented!"
) ? void (0) : __assert_fail ("ST->getAddressingMode() == ISD::UNINDEXED && \"unaligned indexed stores not implemented!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7670, __extension__ __PRETTY_FUNCTION__))
;
7671 SDValue Chain = ST->getChain();
7672 SDValue Ptr = ST->getBasePtr();
7673 SDValue Val = ST->getValue();
7674 EVT VT = Val.getValueType();
7675 Align Alignment = ST->getOriginalAlign();
7676 auto &MF = DAG.getMachineFunction();
7677 EVT StoreMemVT = ST->getMemoryVT();
7678
7679 SDLoc dl(ST);
7680 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7681 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7682 if (isTypeLegal(intVT)) {
7683 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7684 StoreMemVT.isVector()) {
7685 // Scalarize the store and let the individual components be handled.
7686 SDValue Result = scalarizeVectorStore(ST, DAG);
7687 return Result;
7688 }
7689 // Expand to a bitconvert of the value to the integer type of the
7690 // same size, then a (misaligned) int store.
7691 // FIXME: Does not handle truncating floating point stores!
7692 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7693 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7694 Alignment, ST->getMemOperand()->getFlags());
7695 return Result;
7696 }
7697 // Do a (aligned) store to a stack slot, then copy from the stack slot
7698 // to the final destination using (unaligned) integer loads and stores.
7699 MVT RegVT = getRegisterType(
7700 *DAG.getContext(),
7701 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7702 EVT PtrVT = Ptr.getValueType();
7703 unsigned StoredBytes = StoreMemVT.getStoreSize();
7704 unsigned RegBytes = RegVT.getSizeInBits() / 8;
7705 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7706
7707 // Make sure the stack slot is also aligned for the register type.
7708 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7709 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7710
7711 // Perform the original store, only redirected to the stack slot.
7712 SDValue Store = DAG.getTruncStore(
7713 Chain, dl, Val, StackPtr,
7714 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7715
7716 EVT StackPtrVT = StackPtr.getValueType();
7717
7718 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7719 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7720 SmallVector<SDValue, 8> Stores;
7721 unsigned Offset = 0;
7722
7723 // Do all but one copies using the full register width.
7724 for (unsigned i = 1; i < NumRegs; i++) {
7725 // Load one integer register's worth from the stack slot.
7726 SDValue Load = DAG.getLoad(
7727 RegVT, dl, Store, StackPtr,
7728 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7729 // Store it to the final location. Remember the store.
7730 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7731 ST->getPointerInfo().getWithOffset(Offset),
7732 ST->getOriginalAlign(),
7733 ST->getMemOperand()->getFlags()));
7734 // Increment the pointers.
7735 Offset += RegBytes;
7736 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7737 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7738 }
7739
7740 // The last store may be partial. Do a truncating store. On big-endian
7741 // machines this requires an extending load from the stack slot to ensure
7742 // that the bits are in the right place.
7743 EVT LoadMemVT =
7744 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7745
7746 // Load from the stack slot.
7747 SDValue Load = DAG.getExtLoad(
7748 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7749 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7750
7751 Stores.push_back(
7752 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7753 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7754 ST->getOriginalAlign(),
7755 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7756 // The order of the stores doesn't matter - say it with a TokenFactor.
7757 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7758 return Result;
7759 }
7760
7761 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&(static_cast <bool> (StoreMemVT.isInteger() && !
StoreMemVT.isVector() && "Unaligned store of unknown type."
) ? void (0) : __assert_fail ("StoreMemVT.isInteger() && !StoreMemVT.isVector() && \"Unaligned store of unknown type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7762, __extension__ __PRETTY_FUNCTION__))
7762 "Unaligned store of unknown type.")(static_cast <bool> (StoreMemVT.isInteger() && !
StoreMemVT.isVector() && "Unaligned store of unknown type."
) ? void (0) : __assert_fail ("StoreMemVT.isInteger() && !StoreMemVT.isVector() && \"Unaligned store of unknown type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7762, __extension__ __PRETTY_FUNCTION__))
;
7763 // Get the half-size VT
7764 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7765 unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7766 unsigned IncrementSize = NumBits / 8;
7767
7768 // Divide the stored value in two parts.
7769 SDValue ShiftAmount = DAG.getConstant(
7770 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7771 SDValue Lo = Val;
7772 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7773
7774 // Store the two parts
7775 SDValue Store1, Store2;
7776 Store1 = DAG.getTruncStore(Chain, dl,
7777 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7778 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7779 ST->getMemOperand()->getFlags());
7780
7781 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7782 Store2 = DAG.getTruncStore(
7783 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7784 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7785 ST->getMemOperand()->getFlags(), ST->getAAInfo());
7786
7787 SDValue Result =
7788 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7789 return Result;
7790}
7791
7792SDValue
7793TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7794 const SDLoc &DL, EVT DataVT,
7795 SelectionDAG &DAG,
7796 bool IsCompressedMemory) const {
7797 SDValue Increment;
7798 EVT AddrVT = Addr.getValueType();
7799 EVT MaskVT = Mask.getValueType();
7800 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&(static_cast <bool> (DataVT.getVectorElementCount() == MaskVT
.getVectorElementCount() && "Incompatible types of Data and Mask"
) ? void (0) : __assert_fail ("DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && \"Incompatible types of Data and Mask\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7801, __extension__ __PRETTY_FUNCTION__))
7801 "Incompatible types of Data and Mask")(static_cast <bool> (DataVT.getVectorElementCount() == MaskVT
.getVectorElementCount() && "Incompatible types of Data and Mask"
) ? void (0) : __assert_fail ("DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && \"Incompatible types of Data and Mask\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7801, __extension__ __PRETTY_FUNCTION__))
;
7802 if (IsCompressedMemory) {
7803 if (DataVT.isScalableVector())
7804 report_fatal_error(
7805 "Cannot currently handle compressed memory with scalable vectors");
7806 // Incrementing the pointer according to number of '1's in the mask.
7807 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7808 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7809 if (MaskIntVT.getSizeInBits() < 32) {
7810 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7811 MaskIntVT = MVT::i32;
7812 }
7813
7814 // Count '1's with POPCNT.
7815 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7816 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7817 // Scale is an element size in bytes.
7818 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7819 AddrVT);
7820 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7821 } else if (DataVT.isScalableVector()) {
7822 Increment = DAG.getVScale(DL, AddrVT,
7823 APInt(AddrVT.getFixedSizeInBits(),
7824 DataVT.getStoreSize().getKnownMinSize()));
7825 } else
7826 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7827
7828 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7829}
7830
7831static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7832 EVT VecVT, const SDLoc &dl,
7833 unsigned NumSubElts) {
7834 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7835 return Idx;
7836
7837 EVT IdxVT = Idx.getValueType();
7838 unsigned NElts = VecVT.getVectorMinNumElements();
7839 if (VecVT.isScalableVector()) {
7840 // If this is a constant index and we know the value plus the number of the
7841 // elements in the subvector minus one is less than the minimum number of
7842 // elements then it's safe to return Idx.
7843 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7844 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7845 return Idx;
7846 SDValue VS =
7847 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7848 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7849 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7850 DAG.getConstant(NumSubElts, dl, IdxVT));
7851 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7852 }
7853 if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7854 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7855 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7856 DAG.getConstant(Imm, dl, IdxVT));
7857 }
7858 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7859 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7860 DAG.getConstant(MaxIndex, dl, IdxVT));
7861}
7862
7863SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7864 SDValue VecPtr, EVT VecVT,
7865 SDValue Index) const {
7866 return getVectorSubVecPointer(
7867 DAG, VecPtr, VecVT,
7868 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7869 Index);
7870}
7871
7872SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7873 SDValue VecPtr, EVT VecVT,
7874 EVT SubVecVT,
7875 SDValue Index) const {
7876 SDLoc dl(Index);
7877 // Make sure the index type is big enough to compute in.
7878 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7879
7880 EVT EltVT = VecVT.getVectorElementType();
7881
7882 // Calculate the element offset and add it to the pointer.
7883 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7884 assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&(static_cast <bool> (EltSize * 8 == EltVT.getFixedSizeInBits
() && "Converting bits to bytes lost precision") ? void
(0) : __assert_fail ("EltSize * 8 == EltVT.getFixedSizeInBits() && \"Converting bits to bytes lost precision\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7885, __extension__ __PRETTY_FUNCTION__))
7885 "Converting bits to bytes lost precision")(static_cast <bool> (EltSize * 8 == EltVT.getFixedSizeInBits
() && "Converting bits to bytes lost precision") ? void
(0) : __assert_fail ("EltSize * 8 == EltVT.getFixedSizeInBits() && \"Converting bits to bytes lost precision\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7885, __extension__ __PRETTY_FUNCTION__))
;
7886
7887 // Scalable vectors don't need clamping as these are checked at compile time
7888 if (SubVecVT.isFixedLengthVector()) {
7889 assert(SubVecVT.getVectorElementType() == EltVT &&(static_cast <bool> (SubVecVT.getVectorElementType() ==
EltVT && "Sub-vector must be a fixed vector with matching element type"
) ? void (0) : __assert_fail ("SubVecVT.getVectorElementType() == EltVT && \"Sub-vector must be a fixed vector with matching element type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7890, __extension__ __PRETTY_FUNCTION__))
7890 "Sub-vector must be a fixed vector with matching element type")(static_cast <bool> (SubVecVT.getVectorElementType() ==
EltVT && "Sub-vector must be a fixed vector with matching element type"
) ? void (0) : __assert_fail ("SubVecVT.getVectorElementType() == EltVT && \"Sub-vector must be a fixed vector with matching element type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7890, __extension__ __PRETTY_FUNCTION__))
;
7891 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7892 SubVecVT.getVectorNumElements());
7893 }
7894
7895 EVT IdxVT = Index.getValueType();
7896
7897 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7898 DAG.getConstant(EltSize, dl, IdxVT));
7899 return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7900}
7901
7902//===----------------------------------------------------------------------===//
7903// Implementation of Emulated TLS Model
7904//===----------------------------------------------------------------------===//
7905
7906SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7907 SelectionDAG &DAG) const {
7908 // Access to address of TLS varialbe xyz is lowered to a function call:
7909 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7910 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7911 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7912 SDLoc dl(GA);
7913
7914 ArgListTy Args;
7915 ArgListEntry Entry;
7916 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7917 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7918 StringRef EmuTlsVarName(NameString);
7919 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7920 assert(EmuTlsVar && "Cannot find EmuTlsVar ")(static_cast <bool> (EmuTlsVar && "Cannot find EmuTlsVar "
) ? void (0) : __assert_fail ("EmuTlsVar && \"Cannot find EmuTlsVar \""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7920, __extension__ __PRETTY_FUNCTION__))
;
7921 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7922 Entry.Ty = VoidPtrType;
7923 Args.push_back(Entry);
7924
7925 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7926
7927 TargetLowering::CallLoweringInfo CLI(DAG);
7928 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7929 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7930 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7931
7932 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7933 // At last for X86 targets, maybe good for other targets too?
7934 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7935 MFI.setAdjustsStack(true); // Is this only for X86 target?
7936 MFI.setHasCalls(true);
7937
7938 assert((GA->getOffset() == 0) &&(static_cast <bool> ((GA->getOffset() == 0) &&
"Emulated TLS must have zero offset in GlobalAddressSDNode")
? void (0) : __assert_fail ("(GA->getOffset() == 0) && \"Emulated TLS must have zero offset in GlobalAddressSDNode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7939, __extension__ __PRETTY_FUNCTION__))
7939 "Emulated TLS must have zero offset in GlobalAddressSDNode")(static_cast <bool> ((GA->getOffset() == 0) &&
"Emulated TLS must have zero offset in GlobalAddressSDNode")
? void (0) : __assert_fail ("(GA->getOffset() == 0) && \"Emulated TLS must have zero offset in GlobalAddressSDNode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7939, __extension__ __PRETTY_FUNCTION__))
;
7940 return CallResult.first;
7941}
7942
7943SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7944 SelectionDAG &DAG) const {
7945 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.")(static_cast <bool> ((Op->getOpcode() == ISD::SETCC)
&& "Input has to be a SETCC node.") ? void (0) : __assert_fail
("(Op->getOpcode() == ISD::SETCC) && \"Input has to be a SETCC node.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 7945, __extension__ __PRETTY_FUNCTION__))
;
7946 if (!isCtlzFast())
7947 return SDValue();
7948 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7949 SDLoc dl(Op);
7950 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7951 if (C->isNullValue() && CC == ISD::SETEQ) {
7952 EVT VT = Op.getOperand(0).getValueType();
7953 SDValue Zext = Op.getOperand(0);
7954 if (VT.bitsLT(MVT::i32)) {
7955 VT = MVT::i32;
7956 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7957 }
7958 unsigned Log2b = Log2_32(VT.getSizeInBits());
7959 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7960 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7961 DAG.getConstant(Log2b, dl, MVT::i32));
7962 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7963 }
7964 }
7965 return SDValue();
7966}
7967
7968// Convert redundant addressing modes (e.g. scaling is redundant
7969// when accessing bytes).
7970ISD::MemIndexType
7971TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7972 SDValue Offsets) const {
7973 bool IsScaledIndex =
7974 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7975 bool IsSignedIndex =
7976 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7977
7978 // Scaling is unimportant for bytes, canonicalize to unscaled.
7979 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7980 IsScaledIndex = false;
7981 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7982 }
7983
7984 return IndexType;
7985}
7986
7987SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7988 SDValue Op0 = Node->getOperand(0);
7989 SDValue Op1 = Node->getOperand(1);
7990 EVT VT = Op0.getValueType();
7991 unsigned Opcode = Node->getOpcode();
7992 SDLoc DL(Node);
7993
7994 // umin(x,y) -> sub(x,usubsat(x,y))
7995 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7996 isOperationLegal(ISD::USUBSAT, VT)) {
7997 return DAG.getNode(ISD::SUB, DL, VT, Op0,
7998 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7999 }
8000
8001 // umax(x,y) -> add(x,usubsat(y,x))
8002 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8003 isOperationLegal(ISD::USUBSAT, VT)) {
8004 return DAG.getNode(ISD::ADD, DL, VT, Op0,
8005 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8006 }
8007
8008 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8009 ISD::CondCode CC;
8010 switch (Opcode) {
8011 default: llvm_unreachable("How did we get here?")::llvm::llvm_unreachable_internal("How did we get here?", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8011)
;
8012 case ISD::SMAX: CC = ISD::SETGT; break;
8013 case ISD::SMIN: CC = ISD::SETLT; break;
8014 case ISD::UMAX: CC = ISD::SETUGT; break;
8015 case ISD::UMIN: CC = ISD::SETULT; break;
8016 }
8017
8018 // FIXME: Should really try to split the vector in case it's legal on a
8019 // subvector.
8020 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8021 return DAG.UnrollVectorOp(Node);
8022
8023 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
8024 return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8025}
8026
8027SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8028 unsigned Opcode = Node->getOpcode();
8029 SDValue LHS = Node->getOperand(0);
8030 SDValue RHS = Node->getOperand(1);
8031 EVT VT = LHS.getValueType();
8032 SDLoc dl(Node);
8033
8034 assert(VT == RHS.getValueType() && "Expected operands to be the same type")(static_cast <bool> (VT == RHS.getValueType() &&
"Expected operands to be the same type") ? void (0) : __assert_fail
("VT == RHS.getValueType() && \"Expected operands to be the same type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8034, __extension__ __PRETTY_FUNCTION__))
;
8035 assert(VT.isInteger() && "Expected operands to be integers")(static_cast <bool> (VT.isInteger() && "Expected operands to be integers"
) ? void (0) : __assert_fail ("VT.isInteger() && \"Expected operands to be integers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8035, __extension__ __PRETTY_FUNCTION__))
;
8036
8037 // usub.sat(a, b) -> umax(a, b) - b
8038 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8039 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8040 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8041 }
8042
8043 // uadd.sat(a, b) -> umin(a, ~b) + b
8044 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8045 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8046 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8047 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8048 }
8049
8050 unsigned OverflowOp;
8051 switch (Opcode) {
8052 case ISD::SADDSAT:
8053 OverflowOp = ISD::SADDO;
8054 break;
8055 case ISD::UADDSAT:
8056 OverflowOp = ISD::UADDO;
8057 break;
8058 case ISD::SSUBSAT:
8059 OverflowOp = ISD::SSUBO;
8060 break;
8061 case ISD::USUBSAT:
8062 OverflowOp = ISD::USUBO;
8063 break;
8064 default:
8065 llvm_unreachable("Expected method to receive signed or unsigned saturation "::llvm::llvm_unreachable_internal("Expected method to receive signed or unsigned saturation "
"addition or subtraction node.", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8066)
8066 "addition or subtraction node.")::llvm::llvm_unreachable_internal("Expected method to receive signed or unsigned saturation "
"addition or subtraction node.", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8066)
;
8067 }
8068
8069 // FIXME: Should really try to split the vector in case it's legal on a
8070 // subvector.
8071 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8072 return DAG.UnrollVectorOp(Node);
8073
8074 unsigned BitWidth = LHS.getScalarValueSizeInBits();
8075 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8076 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8077 SDValue SumDiff = Result.getValue(0);
8078 SDValue Overflow = Result.getValue(1);
8079 SDValue Zero = DAG.getConstant(0, dl, VT);
8080 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8081
8082 if (Opcode == ISD::UADDSAT) {
8083 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8084 // (LHS + RHS) | OverflowMask
8085 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8086 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8087 }
8088 // Overflow ? 0xffff.... : (LHS + RHS)
8089 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8090 }
8091
8092 if (Opcode == ISD::USUBSAT) {
8093 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8094 // (LHS - RHS) & ~OverflowMask
8095 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8096 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8097 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8098 }
8099 // Overflow ? 0 : (LHS - RHS)
8100 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8101 }
8102
8103 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8104 APInt MinVal = APInt::getSignedMinValue(BitWidth);
8105 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8106 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8107 DAG.getConstant(BitWidth - 1, dl, VT));
8108 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8109 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8110}
8111
8112SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8113 unsigned Opcode = Node->getOpcode();
8114 bool IsSigned = Opcode == ISD::SSHLSAT;
8115 SDValue LHS = Node->getOperand(0);
8116 SDValue RHS = Node->getOperand(1);
8117 EVT VT = LHS.getValueType();
8118 SDLoc dl(Node);
8119
8120 assert((Node->getOpcode() == ISD::SSHLSAT ||(static_cast <bool> ((Node->getOpcode() == ISD::SSHLSAT
|| Node->getOpcode() == ISD::USHLSAT) && "Expected a SHLSAT opcode"
) ? void (0) : __assert_fail ("(Node->getOpcode() == ISD::SSHLSAT || Node->getOpcode() == ISD::USHLSAT) && \"Expected a SHLSAT opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8122, __extension__ __PRETTY_FUNCTION__))
8121 Node->getOpcode() == ISD::USHLSAT) &&(static_cast <bool> ((Node->getOpcode() == ISD::SSHLSAT
|| Node->getOpcode() == ISD::USHLSAT) && "Expected a SHLSAT opcode"
) ? void (0) : __assert_fail ("(Node->getOpcode() == ISD::SSHLSAT || Node->getOpcode() == ISD::USHLSAT) && \"Expected a SHLSAT opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8122, __extension__ __PRETTY_FUNCTION__))
8122 "Expected a SHLSAT opcode")(static_cast <bool> ((Node->getOpcode() == ISD::SSHLSAT
|| Node->getOpcode() == ISD::USHLSAT) && "Expected a SHLSAT opcode"
) ? void (0) : __assert_fail ("(Node->getOpcode() == ISD::SSHLSAT || Node->getOpcode() == ISD::USHLSAT) && \"Expected a SHLSAT opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8122, __extension__ __PRETTY_FUNCTION__))
;
8123 assert(VT == RHS.getValueType() && "Expected operands to be the same type")(static_cast <bool> (VT == RHS.getValueType() &&
"Expected operands to be the same type") ? void (0) : __assert_fail
("VT == RHS.getValueType() && \"Expected operands to be the same type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8123, __extension__ __PRETTY_FUNCTION__))
;
8124 assert(VT.isInteger() && "Expected operands to be integers")(static_cast <bool> (VT.isInteger() && "Expected operands to be integers"
) ? void (0) : __assert_fail ("VT.isInteger() && \"Expected operands to be integers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8124, __extension__ __PRETTY_FUNCTION__))
;
8125
8126 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8127
8128 unsigned BW = VT.getScalarSizeInBits();
8129 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8130 SDValue Orig =
8131 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8132
8133 SDValue SatVal;
8134 if (IsSigned) {
8135 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8136 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8137 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8138 SatMin, SatMax, ISD::SETLT);
8139 } else {
8140 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8141 }
8142 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8143
8144 return Result;
8145}
8146
8147SDValue
8148TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8149 assert((Node->getOpcode() == ISD::SMULFIX ||(static_cast <bool> ((Node->getOpcode() == ISD::SMULFIX
|| Node->getOpcode() == ISD::UMULFIX || Node->getOpcode
() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT
) && "Expected a fixed point multiplication opcode") ?
void (0) : __assert_fail ("(Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::UMULFIX || Node->getOpcode() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT) && \"Expected a fixed point multiplication opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8153, __extension__ __PRETTY_FUNCTION__))
8150 Node->getOpcode() == ISD::UMULFIX ||(static_cast <bool> ((Node->getOpcode() == ISD::SMULFIX
|| Node->getOpcode() == ISD::UMULFIX || Node->getOpcode
() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT
) && "Expected a fixed point multiplication opcode") ?
void (0) : __assert_fail ("(Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::UMULFIX || Node->getOpcode() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT) && \"Expected a fixed point multiplication opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8153, __extension__ __PRETTY_FUNCTION__))
8151 Node->getOpcode() == ISD::SMULFIXSAT ||(static_cast <bool> ((Node->getOpcode() == ISD::SMULFIX
|| Node->getOpcode() == ISD::UMULFIX || Node->getOpcode
() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT
) && "Expected a fixed point multiplication opcode") ?
void (0) : __assert_fail ("(Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::UMULFIX || Node->getOpcode() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT) && \"Expected a fixed point multiplication opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8153, __extension__ __PRETTY_FUNCTION__))
8152 Node->getOpcode() == ISD::UMULFIXSAT) &&(static_cast <bool> ((Node->getOpcode() == ISD::SMULFIX
|| Node->getOpcode() == ISD::UMULFIX || Node->getOpcode
() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT
) && "Expected a fixed point multiplication opcode") ?
void (0) : __assert_fail ("(Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::UMULFIX || Node->getOpcode() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT) && \"Expected a fixed point multiplication opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8153, __extension__ __PRETTY_FUNCTION__))
8153 "Expected a fixed point multiplication opcode")(static_cast <bool> ((Node->getOpcode() == ISD::SMULFIX
|| Node->getOpcode() == ISD::UMULFIX || Node->getOpcode
() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT
) && "Expected a fixed point multiplication opcode") ?
void (0) : __assert_fail ("(Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::UMULFIX || Node->getOpcode() == ISD::SMULFIXSAT || Node->getOpcode() == ISD::UMULFIXSAT) && \"Expected a fixed point multiplication opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8153, __extension__ __PRETTY_FUNCTION__))
;
8154
8155 SDLoc dl(Node);
8156 SDValue LHS = Node->getOperand(0);
8157 SDValue RHS = Node->getOperand(1);
8158 EVT VT = LHS.getValueType();
8159 unsigned Scale = Node->getConstantOperandVal(2);
8160 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8161 Node->getOpcode() == ISD::UMULFIXSAT);
8162 bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8163 Node->getOpcode() == ISD::SMULFIXSAT);
8164 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8165 unsigned VTSize = VT.getScalarSizeInBits();
8166
8167 if (!Scale) {
8168 // [us]mul.fix(a, b, 0) -> mul(a, b)
8169 if (!Saturating) {
8170 if (isOperationLegalOrCustom(ISD::MUL, VT))
8171 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8172 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8173 SDValue Result =
8174 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8175 SDValue Product = Result.getValue(0);
8176 SDValue Overflow = Result.getValue(1);
8177 SDValue Zero = DAG.getConstant(0, dl, VT);
8178
8179 APInt MinVal = APInt::getSignedMinValue(VTSize);
8180 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8181 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8182 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8183 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
8184 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
8185 return DAG.getSelect(dl, VT, Overflow, Result, Product);
8186 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8187 SDValue Result =
8188 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8189 SDValue Product = Result.getValue(0);
8190 SDValue Overflow = Result.getValue(1);
8191
8192 APInt MaxVal = APInt::getMaxValue(VTSize);
8193 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8194 return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8195 }
8196 }
8197
8198 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&(static_cast <bool> (((Signed && Scale < VTSize
) || (!Signed && Scale <= VTSize)) && "Expected scale to be less than the number of bits if signed or at "
"most the number of bits if unsigned.") ? void (0) : __assert_fail
("((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && \"Expected scale to be less than the number of bits if signed or at \" \"most the number of bits if unsigned.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8200, __extension__ __PRETTY_FUNCTION__))
8199 "Expected scale to be less than the number of bits if signed or at "(static_cast <bool> (((Signed && Scale < VTSize
) || (!Signed && Scale <= VTSize)) && "Expected scale to be less than the number of bits if signed or at "
"most the number of bits if unsigned.") ? void (0) : __assert_fail
("((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && \"Expected scale to be less than the number of bits if signed or at \" \"most the number of bits if unsigned.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8200, __extension__ __PRETTY_FUNCTION__))
8200 "most the number of bits if unsigned.")(static_cast <bool> (((Signed && Scale < VTSize
) || (!Signed && Scale <= VTSize)) && "Expected scale to be less than the number of bits if signed or at "
"most the number of bits if unsigned.") ? void (0) : __assert_fail
("((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && \"Expected scale to be less than the number of bits if signed or at \" \"most the number of bits if unsigned.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8200, __extension__ __PRETTY_FUNCTION__))
;
8201 assert(LHS.getValueType() == RHS.getValueType() &&(static_cast <bool> (LHS.getValueType() == RHS.getValueType
() && "Expected both operands to be the same type") ?
void (0) : __assert_fail ("LHS.getValueType() == RHS.getValueType() && \"Expected both operands to be the same type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8202, __extension__ __PRETTY_FUNCTION__))
8202 "Expected both operands to be the same type")(static_cast <bool> (LHS.getValueType() == RHS.getValueType
() && "Expected both operands to be the same type") ?
void (0) : __assert_fail ("LHS.getValueType() == RHS.getValueType() && \"Expected both operands to be the same type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8202, __extension__ __PRETTY_FUNCTION__))
;
8203
8204 // Get the upper and lower bits of the result.
8205 SDValue Lo, Hi;
8206 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8207 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8208 if (isOperationLegalOrCustom(LoHiOp, VT)) {
8209 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8210 Lo = Result.getValue(0);
8211 Hi = Result.getValue(1);
8212 } else if (isOperationLegalOrCustom(HiOp, VT)) {
8213 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8214 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8215 } else if (VT.isVector()) {
8216 return SDValue();
8217 } else {
8218 report_fatal_error("Unable to expand fixed point multiplication.");
8219 }
8220
8221 if (Scale == VTSize)
8222 // Result is just the top half since we'd be shifting by the width of the
8223 // operand. Overflow impossible so this works for both UMULFIX and
8224 // UMULFIXSAT.
8225 return Hi;
8226
8227 // The result will need to be shifted right by the scale since both operands
8228 // are scaled. The result is given to us in 2 halves, so we only want part of
8229 // both in the result.
8230 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8231 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8232 DAG.getConstant(Scale, dl, ShiftTy));
8233 if (!Saturating)
8234 return Result;
8235
8236 if (!Signed) {
8237 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8238 // widened multiplication) aren't all zeroes.
8239
8240 // Saturate to max if ((Hi >> Scale) != 0),
8241 // which is the same as if (Hi > ((1 << Scale) - 1))
8242 APInt MaxVal = APInt::getMaxValue(VTSize);
8243 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8244 dl, VT);
8245 Result = DAG.getSelectCC(dl, Hi, LowMask,
8246 DAG.getConstant(MaxVal, dl, VT), Result,
8247 ISD::SETUGT);
8248
8249 return Result;
8250 }
8251
8252 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8253 // widened multiplication) aren't all ones or all zeroes.
8254
8255 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8256 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8257
8258 if (Scale == 0) {
8259 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8260 DAG.getConstant(VTSize - 1, dl, ShiftTy));
8261 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8262 // Saturated to SatMin if wide product is negative, and SatMax if wide
8263 // product is positive ...
8264 SDValue Zero = DAG.getConstant(0, dl, VT);
8265 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8266 ISD::SETLT);
8267 // ... but only if we overflowed.
8268 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8269 }
8270
8271 // We handled Scale==0 above so all the bits to examine is in Hi.
8272
8273 // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8274 // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8275 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8276 dl, VT);
8277 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8278 // Saturate to min if (Hi >> (Scale - 1)) < -1),
8279 // which is the same as if (HI < (-1 << (Scale - 1))
8280 SDValue HighMask =
8281 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8282 dl, VT);
8283 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8284 return Result;
8285}
8286
8287SDValue
8288TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8289 SDValue LHS, SDValue RHS,
8290 unsigned Scale, SelectionDAG &DAG) const {
8291 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||(static_cast <bool> ((Opcode == ISD::SDIVFIX || Opcode ==
ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::
UDIVFIXSAT) && "Expected a fixed point division opcode"
) ? void (0) : __assert_fail ("(Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && \"Expected a fixed point division opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8293, __extension__ __PRETTY_FUNCTION__))
8292 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&(static_cast <bool> ((Opcode == ISD::SDIVFIX || Opcode ==
ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::
UDIVFIXSAT) && "Expected a fixed point division opcode"
) ? void (0) : __assert_fail ("(Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && \"Expected a fixed point division opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8293, __extension__ __PRETTY_FUNCTION__))
8293 "Expected a fixed point division opcode")(static_cast <bool> ((Opcode == ISD::SDIVFIX || Opcode ==
ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::
UDIVFIXSAT) && "Expected a fixed point division opcode"
) ? void (0) : __assert_fail ("(Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && \"Expected a fixed point division opcode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8293, __extension__ __PRETTY_FUNCTION__))
;
8294
8295 EVT VT = LHS.getValueType();
8296 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8297 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8298 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8299
8300 // If there is enough room in the type to upscale the LHS or downscale the
8301 // RHS before the division, we can perform it in this type without having to
8302 // resize. For signed operations, the LHS headroom is the number of
8303 // redundant sign bits, and for unsigned ones it is the number of zeroes.
8304 // The headroom for the RHS is the number of trailing zeroes.
8305 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8306 : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8307 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8308
8309 // For signed saturating operations, we need to be able to detect true integer
8310 // division overflow; that is, when you have MIN / -EPS. However, this
8311 // is undefined behavior and if we emit divisions that could take such
8312 // values it may cause undesired behavior (arithmetic exceptions on x86, for
8313 // example).
8314 // Avoid this by requiring an extra bit so that we never get this case.
8315 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8316 // signed saturating division, we need to emit a whopping 32-bit division.
8317 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8318 return SDValue();
8319
8320 unsigned LHSShift = std::min(LHSLead, Scale);
8321 unsigned RHSShift = Scale - LHSShift;
8322
8323 // At this point, we know that if we shift the LHS up by LHSShift and the
8324 // RHS down by RHSShift, we can emit a regular division with a final scaling
8325 // factor of Scale.
8326
8327 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8328 if (LHSShift)
8329 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8330 DAG.getConstant(LHSShift, dl, ShiftTy));
8331 if (RHSShift)
8332 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8333 DAG.getConstant(RHSShift, dl, ShiftTy));
8334
8335 SDValue Quot;
8336 if (Signed) {
8337 // For signed operations, if the resulting quotient is negative and the
8338 // remainder is nonzero, subtract 1 from the quotient to round towards
8339 // negative infinity.
8340 SDValue Rem;
8341 // FIXME: Ideally we would always produce an SDIVREM here, but if the
8342 // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8343 // we couldn't just form a libcall, but the type legalizer doesn't do it.
8344 if (isTypeLegal(VT) &&
8345 isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8346 Quot = DAG.getNode(ISD::SDIVREM, dl,
8347 DAG.getVTList(VT, VT),
8348 LHS, RHS);
8349 Rem = Quot.getValue(1);
8350 Quot = Quot.getValue(0);
8351 } else {
8352 Quot = DAG.getNode(ISD::SDIV, dl, VT,
8353 LHS, RHS);
8354 Rem = DAG.getNode(ISD::SREM, dl, VT,
8355 LHS, RHS);
8356 }
8357 SDValue Zero = DAG.getConstant(0, dl, VT);
8358 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8359 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8360 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8361 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8362 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8363 DAG.getConstant(1, dl, VT));
8364 Quot = DAG.getSelect(dl, VT,
8365 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8366 Sub1, Quot);
8367 } else
8368 Quot = DAG.getNode(ISD::UDIV, dl, VT,
8369 LHS, RHS);
8370
8371 return Quot;
8372}
8373
8374void TargetLowering::expandUADDSUBO(
8375 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8376 SDLoc dl(Node);
8377 SDValue LHS = Node->getOperand(0);
8378 SDValue RHS = Node->getOperand(1);
8379 bool IsAdd = Node->getOpcode() == ISD::UADDO;
8380
8381 // If ADD/SUBCARRY is legal, use that instead.
8382 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8383 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8384 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8385 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8386 { LHS, RHS, CarryIn });
8387 Result = SDValue(NodeCarry.getNode(), 0);
8388 Overflow = SDValue(NodeCarry.getNode(), 1);
8389 return;
8390 }
8391
8392 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8393 LHS.getValueType(), LHS, RHS);
8394
8395 EVT ResultType = Node->getValueType(1);
8396 EVT SetCCType = getSetCCResultType(
8397 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8398 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8399 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8400 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8401}
8402
8403void TargetLowering::expandSADDSUBO(
8404 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8405 SDLoc dl(Node);
8406 SDValue LHS = Node->getOperand(0);
8407 SDValue RHS = Node->getOperand(1);
8408 bool IsAdd = Node->getOpcode() == ISD::SADDO;
8409
8410 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8411 LHS.getValueType(), LHS, RHS);
8412
8413 EVT ResultType = Node->getValueType(1);
8414 EVT OType = getSetCCResultType(
8415 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8416
8417 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8418 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8419 if (isOperationLegal(OpcSat, LHS.getValueType())) {
8420 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8421 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8422 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8423 return;
8424 }
8425
8426 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8427
8428 // For an addition, the result should be less than one of the operands (LHS)
8429 // if and only if the other operand (RHS) is negative, otherwise there will
8430 // be overflow.
8431 // For a subtraction, the result should be less than one of the operands
8432 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8433 // otherwise there will be overflow.
8434 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8435 SDValue ConditionRHS =
8436 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8437
8438 Overflow = DAG.getBoolExtOrTrunc(
8439 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8440 ResultType, ResultType);
8441}
8442
8443bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8444 SDValue &Overflow, SelectionDAG &DAG) const {
8445 SDLoc dl(Node);
8446 EVT VT = Node->getValueType(0);
8447 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8448 SDValue LHS = Node->getOperand(0);
8449 SDValue RHS = Node->getOperand(1);
8450 bool isSigned = Node->getOpcode() == ISD::SMULO;
8451
8452 // For power-of-two multiplications we can use a simpler shift expansion.
8453 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8454 const APInt &C = RHSC->getAPIntValue();
8455 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8456 if (C.isPowerOf2()) {
8457 // smulo(x, signed_min) is same as umulo(x, signed_min).
8458 bool UseArithShift = isSigned && !C.isMinSignedValue();
8459 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8460 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8461 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8462 Overflow = DAG.getSetCC(dl, SetCCVT,
8463 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8464 dl, VT, Result, ShiftAmt),
8465 LHS, ISD::SETNE);
8466 return true;
8467 }
8468 }
8469
8470 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8471 if (VT.isVector())
8472 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8473 VT.getVectorNumElements());
8474
8475 SDValue BottomHalf;
8476 SDValue TopHalf;
8477 static const unsigned Ops[2][3] =
8478 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8479 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8480 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8481 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8482 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8483 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8484 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8485 RHS);
8486 TopHalf = BottomHalf.getValue(1);
8487 } else if (isTypeLegal(WideVT)) {
8488 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8489 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8490 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8491 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8492 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8493 getShiftAmountTy(WideVT, DAG.getDataLayout()));
8494 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8495 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8496 } else {
8497 if (VT.isVector())
8498 return false;
8499
8500 // We can fall back to a libcall with an illegal type for the MUL if we
8501 // have a libcall big enough.
8502 // Also, we can fall back to a division in some cases, but that's a big
8503 // performance hit in the general case.
8504 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8505 if (WideVT == MVT::i16)
8506 LC = RTLIB::MUL_I16;
8507 else if (WideVT == MVT::i32)
8508 LC = RTLIB::MUL_I32;
8509 else if (WideVT == MVT::i64)
8510 LC = RTLIB::MUL_I64;
8511 else if (WideVT == MVT::i128)
8512 LC = RTLIB::MUL_I128;
8513 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!")(static_cast <bool> (LC != RTLIB::UNKNOWN_LIBCALL &&
"Cannot expand this operation!") ? void (0) : __assert_fail (
"LC != RTLIB::UNKNOWN_LIBCALL && \"Cannot expand this operation!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8513, __extension__ __PRETTY_FUNCTION__))
;
8514
8515 SDValue HiLHS;
8516 SDValue HiRHS;
8517 if (isSigned) {
8518 // The high part is obtained by SRA'ing all but one of the bits of low
8519 // part.
8520 unsigned LoSize = VT.getFixedSizeInBits();
8521 HiLHS =
8522 DAG.getNode(ISD::SRA, dl, VT, LHS,
8523 DAG.getConstant(LoSize - 1, dl,
8524 getPointerTy(DAG.getDataLayout())));
8525 HiRHS =
8526 DAG.getNode(ISD::SRA, dl, VT, RHS,
8527 DAG.getConstant(LoSize - 1, dl,
8528 getPointerTy(DAG.getDataLayout())));
8529 } else {
8530 HiLHS = DAG.getConstant(0, dl, VT);
8531 HiRHS = DAG.getConstant(0, dl, VT);
8532 }
8533
8534 // Here we're passing the 2 arguments explicitly as 4 arguments that are
8535 // pre-lowered to the correct types. This all depends upon WideVT not
8536 // being a legal type for the architecture and thus has to be split to
8537 // two arguments.
8538 SDValue Ret;
8539 TargetLowering::MakeLibCallOptions CallOptions;
8540 CallOptions.setSExt(isSigned);
8541 CallOptions.setIsPostTypeLegalization(true);
8542 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8543 // Halves of WideVT are packed into registers in different order
8544 // depending on platform endianness. This is usually handled by
8545 // the C calling convention, but we can't defer to it in
8546 // the legalizer.
8547 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8548 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8549 } else {
8550 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8551 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8552 }
8553 assert(Ret.getOpcode() == ISD::MERGE_VALUES &&(static_cast <bool> (Ret.getOpcode() == ISD::MERGE_VALUES
&& "Ret value is a collection of constituent nodes holding result."
) ? void (0) : __assert_fail ("Ret.getOpcode() == ISD::MERGE_VALUES && \"Ret value is a collection of constituent nodes holding result.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8554, __extension__ __PRETTY_FUNCTION__))
8554 "Ret value is a collection of constituent nodes holding result.")(static_cast <bool> (Ret.getOpcode() == ISD::MERGE_VALUES
&& "Ret value is a collection of constituent nodes holding result."
) ? void (0) : __assert_fail ("Ret.getOpcode() == ISD::MERGE_VALUES && \"Ret value is a collection of constituent nodes holding result.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8554, __extension__ __PRETTY_FUNCTION__))
;
8555 if (DAG.getDataLayout().isLittleEndian()) {
8556 // Same as above.
8557 BottomHalf = Ret.getOperand(0);
8558 TopHalf = Ret.getOperand(1);
8559 } else {
8560 BottomHalf = Ret.getOperand(1);
8561 TopHalf = Ret.getOperand(0);
8562 }
8563 }
8564
8565 Result = BottomHalf;
8566 if (isSigned) {
8567 SDValue ShiftAmt = DAG.getConstant(
8568 VT.getScalarSizeInBits() - 1, dl,
8569 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8570 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8571 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8572 } else {
8573 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8574 DAG.getConstant(0, dl, VT), ISD::SETNE);
8575 }
8576
8577 // Truncate the result if SetCC returns a larger type than needed.
8578 EVT RType = Node->getValueType(1);
8579 if (RType.bitsLT(Overflow.getValueType()))
8580 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8581
8582 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&(static_cast <bool> (RType.getSizeInBits() == Overflow.
getValueSizeInBits() && "Unexpected result type for S/UMULO legalization"
) ? void (0) : __assert_fail ("RType.getSizeInBits() == Overflow.getValueSizeInBits() && \"Unexpected result type for S/UMULO legalization\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8583, __extension__ __PRETTY_FUNCTION__))
8583 "Unexpected result type for S/UMULO legalization")(static_cast <bool> (RType.getSizeInBits() == Overflow.
getValueSizeInBits() && "Unexpected result type for S/UMULO legalization"
) ? void (0) : __assert_fail ("RType.getSizeInBits() == Overflow.getValueSizeInBits() && \"Unexpected result type for S/UMULO legalization\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8583, __extension__ __PRETTY_FUNCTION__))
;
8584 return true;
8585}
8586
8587SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8588 SDLoc dl(Node);
8589 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8590 SDValue Op = Node->getOperand(0);
8591 EVT VT = Op.getValueType();
8592
8593 if (VT.isScalableVector())
8594 report_fatal_error(
8595 "Expanding reductions for scalable vectors is undefined.");
8596
8597 // Try to use a shuffle reduction for power of two vectors.
8598 if (VT.isPow2VectorType()) {
8599 while (VT.getVectorNumElements() > 1) {
8600 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8601 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8602 break;
8603
8604 SDValue Lo, Hi;
8605 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8606 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8607 VT = HalfVT;
8608 }
8609 }
8610
8611 EVT EltVT = VT.getVectorElementType();
8612 unsigned NumElts = VT.getVectorNumElements();
8613
8614 SmallVector<SDValue, 8> Ops;
8615 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8616
8617 SDValue Res = Ops[0];
8618 for (unsigned i = 1; i < NumElts; i++)
8619 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8620
8621 // Result type may be wider than element type.
8622 if (EltVT != Node->getValueType(0))
8623 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8624 return Res;
8625}
8626
8627SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8628 SDLoc dl(Node);
8629 SDValue AccOp = Node->getOperand(0);
8630 SDValue VecOp = Node->getOperand(1);
8631 SDNodeFlags Flags = Node->getFlags();
8632
8633 EVT VT = VecOp.getValueType();
8634 EVT EltVT = VT.getVectorElementType();
8635
8636 if (VT.isScalableVector())
8637 report_fatal_error(
8638 "Expanding reductions for scalable vectors is undefined.");
8639
8640 unsigned NumElts = VT.getVectorNumElements();
8641
8642 SmallVector<SDValue, 8> Ops;
8643 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8644
8645 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8646
8647 SDValue Res = AccOp;
8648 for (unsigned i = 0; i < NumElts; i++)
8649 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8650
8651 return Res;
8652}
8653
8654bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8655 SelectionDAG &DAG) const {
8656 EVT VT = Node->getValueType(0);
8657 SDLoc dl(Node);
8658 bool isSigned = Node->getOpcode() == ISD::SREM;
8659 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8660 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8661 SDValue Dividend = Node->getOperand(0);
8662 SDValue Divisor = Node->getOperand(1);
8663 if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8664 SDVTList VTs = DAG.getVTList(VT, VT);
8665 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8666 return true;
8667 }
8668 if (isOperationLegalOrCustom(DivOpc, VT)) {
8669 // X % Y -> X-X/Y*Y
8670 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8671 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8672 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8673 return true;
8674 }
8675 return false;
8676}
8677
8678SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8679 SelectionDAG &DAG) const {
8680 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8681 SDLoc dl(SDValue(Node, 0));
8682 SDValue Src = Node->getOperand(0);
8683
8684 // DstVT is the result type, while SatVT is the size to which we saturate
8685 EVT SrcVT = Src.getValueType();
8686 EVT DstVT = Node->getValueType(0);
8687
8688 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8689 unsigned SatWidth = SatVT.getScalarSizeInBits();
8690 unsigned DstWidth = DstVT.getScalarSizeInBits();
8691 assert(SatWidth <= DstWidth &&(static_cast <bool> (SatWidth <= DstWidth &&
"Expected saturation width smaller than result width") ? void
(0) : __assert_fail ("SatWidth <= DstWidth && \"Expected saturation width smaller than result width\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8692, __extension__ __PRETTY_FUNCTION__))
8692 "Expected saturation width smaller than result width")(static_cast <bool> (SatWidth <= DstWidth &&
"Expected saturation width smaller than result width") ? void
(0) : __assert_fail ("SatWidth <= DstWidth && \"Expected saturation width smaller than result width\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8692, __extension__ __PRETTY_FUNCTION__))
;
8693
8694 // Determine minimum and maximum integer values and their corresponding
8695 // floating-point values.
8696 APInt MinInt, MaxInt;
8697 if (IsSigned) {
8698 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8699 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8700 } else {
8701 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8702 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8703 }
8704
8705 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8706 // libcall emission cannot handle this. Large result types will fail.
8707 if (SrcVT == MVT::f16) {
8708 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8709 SrcVT = Src.getValueType();
8710 }
8711
8712 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8713 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8714
8715 APFloat::opStatus MinStatus =
8716 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8717 APFloat::opStatus MaxStatus =
8718 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8719 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8720 !(MaxStatus & APFloat::opStatus::opInexact);
8721
8722 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8723 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8724
8725 // If the integer bounds are exactly representable as floats and min/max are
8726 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8727 // of comparisons and selects.
8728 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8729 isOperationLegal(ISD::FMAXNUM, SrcVT);
8730 if (AreExactFloatBounds && MinMaxLegal) {
8731 SDValue Clamped = Src;
8732
8733 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8734 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8735 // Clamp by MaxFloat from above. NaN cannot occur.
8736 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8737 // Convert clamped value to integer.
8738 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8739 dl, DstVT, Clamped);
8740
8741 // In the unsigned case we're done, because we mapped NaN to MinFloat,
8742 // which will cast to zero.
8743 if (!IsSigned)
8744 return FpToInt;
8745
8746 // Otherwise, select 0 if Src is NaN.
8747 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8748 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8749 ISD::CondCode::SETUO);
8750 }
8751
8752 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8753 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8754
8755 // Result of direct conversion. The assumption here is that the operation is
8756 // non-trapping and it's fine to apply it to an out-of-range value if we
8757 // select it away later.
8758 SDValue FpToInt =
8759 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8760
8761 SDValue Select = FpToInt;
8762
8763 // If Src ULT MinFloat, select MinInt. In particular, this also selects
8764 // MinInt if Src is NaN.
8765 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8766 ISD::CondCode::SETULT);
8767 // If Src OGT MaxFloat, select MaxInt.
8768 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8769 ISD::CondCode::SETOGT);
8770
8771 // In the unsigned case we are done, because we mapped NaN to MinInt, which
8772 // is already zero.
8773 if (!IsSigned)
8774 return Select;
8775
8776 // Otherwise, select 0 if Src is NaN.
8777 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8778 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8779}
8780
8781SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8782 SelectionDAG &DAG) const {
8783 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!")(static_cast <bool> (Node->getOpcode() == ISD::VECTOR_SPLICE
&& "Unexpected opcode!") ? void (0) : __assert_fail (
"Node->getOpcode() == ISD::VECTOR_SPLICE && \"Unexpected opcode!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8783, __extension__ __PRETTY_FUNCTION__))
;
8784 assert(Node->getValueType(0).isScalableVector() &&(static_cast <bool> (Node->getValueType(0).isScalableVector
() && "Fixed length vector types expected to use SHUFFLE_VECTOR!"
) ? void (0) : __assert_fail ("Node->getValueType(0).isScalableVector() && \"Fixed length vector types expected to use SHUFFLE_VECTOR!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8785, __extension__ __PRETTY_FUNCTION__))
8785 "Fixed length vector types expected to use SHUFFLE_VECTOR!")(static_cast <bool> (Node->getValueType(0).isScalableVector
() && "Fixed length vector types expected to use SHUFFLE_VECTOR!"
) ? void (0) : __assert_fail ("Node->getValueType(0).isScalableVector() && \"Fixed length vector types expected to use SHUFFLE_VECTOR!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8785, __extension__ __PRETTY_FUNCTION__))
;
8786
8787 EVT VT = Node->getValueType(0);
8788 SDValue V1 = Node->getOperand(0);
8789 SDValue V2 = Node->getOperand(1);
8790 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8791 SDLoc DL(Node);
8792
8793 // Expand through memory thusly:
8794 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8795 // Store V1, Ptr
8796 // Store V2, Ptr + sizeof(V1)
8797 // If (Imm < 0)
8798 // TrailingElts = -Imm
8799 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8800 // else
8801 // Ptr = Ptr + (Imm * sizeof(VT.Elt))
8802 // Res = Load Ptr
8803
8804 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8805
8806 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8807 VT.getVectorElementCount() * 2);
8808 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8809 EVT PtrVT = StackPtr.getValueType();
8810 auto &MF = DAG.getMachineFunction();
8811 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8812 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8813
8814 // Store the lo part of CONCAT_VECTORS(V1, V2)
8815 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8816 // Store the hi part of CONCAT_VECTORS(V1, V2)
8817 SDValue OffsetToV2 = DAG.getVScale(
8818 DL, PtrVT,
8819 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8820 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8821 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8822
8823 if (Imm >= 0) {
8824 // Load back the required element. getVectorElementPointer takes care of
8825 // clamping the index if it's out-of-bounds.
8826 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8827 // Load the spliced result
8828 return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8829 MachinePointerInfo::getUnknownStack(MF));
8830 }
8831
8832 uint64_t TrailingElts = -Imm;
8833
8834 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8835 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8836 SDValue TrailingBytes =
8837 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8838
8839 if (TrailingElts > VT.getVectorMinNumElements()) {
8840 SDValue VLBytes = DAG.getVScale(
8841 DL, PtrVT,
8842 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8843 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8844 }
8845
8846 // Calculate the start address of the spliced result.
8847 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8848
8849 // Load the spliced result
8850 return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8851 MachinePointerInfo::getUnknownStack(MF));
8852}
8853
8854bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8855 SDValue &LHS, SDValue &RHS,
8856 SDValue &CC, bool &NeedInvert,
8857 const SDLoc &dl, SDValue &Chain,
8858 bool IsSignaling) const {
8859 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8860 MVT OpVT = LHS.getSimpleValueType();
8861 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8862 NeedInvert = false;
8863 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8864 default:
8865 llvm_unreachable("Unknown condition code action!")::llvm::llvm_unreachable_internal("Unknown condition code action!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8865)
;
8866 case TargetLowering::Legal:
8867 // Nothing to do.
8868 break;
8869 case TargetLowering::Expand: {
8870 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8871 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8872 std::swap(LHS, RHS);
8873 CC = DAG.getCondCode(InvCC);
8874 return true;
8875 }
8876 // Swapping operands didn't work. Try inverting the condition.
8877 bool NeedSwap = false;
8878 InvCC = getSetCCInverse(CCCode, OpVT);
8879 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8880 // If inverting the condition is not enough, try swapping operands
8881 // on top of it.
8882 InvCC = ISD::getSetCCSwappedOperands(InvCC);
8883 NeedSwap = true;
8884 }
8885 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8886 CC = DAG.getCondCode(InvCC);
8887 NeedInvert = true;
8888 if (NeedSwap)
8889 std::swap(LHS, RHS);
8890 return true;
8891 }
8892
8893 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8894 unsigned Opc = 0;
8895 switch (CCCode) {
8896 default:
8897 llvm_unreachable("Don't know how to expand this condition!")::llvm::llvm_unreachable_internal("Don't know how to expand this condition!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8897)
;
8898 case ISD::SETUO:
8899 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8900 CC1 = ISD::SETUNE;
8901 CC2 = ISD::SETUNE;
8902 Opc = ISD::OR;
8903 break;
8904 }
8905 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&(static_cast <bool> (TLI.isCondCodeLegal(ISD::SETOEQ, OpVT
) && "If SETUE is expanded, SETOEQ or SETUNE must be legal!"
) ? void (0) : __assert_fail ("TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && \"If SETUE is expanded, SETOEQ or SETUNE must be legal!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8906, __extension__ __PRETTY_FUNCTION__))
8906 "If SETUE is expanded, SETOEQ or SETUNE must be legal!")(static_cast <bool> (TLI.isCondCodeLegal(ISD::SETOEQ, OpVT
) && "If SETUE is expanded, SETOEQ or SETUNE must be legal!"
) ? void (0) : __assert_fail ("TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && \"If SETUE is expanded, SETOEQ or SETUNE must be legal!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8906, __extension__ __PRETTY_FUNCTION__))
;
8907 NeedInvert = true;
8908 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8909 case ISD::SETO:
8910 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&(static_cast <bool> (TLI.isCondCodeLegal(ISD::SETOEQ, OpVT
) && "If SETO is expanded, SETOEQ must be legal!") ? void
(0) : __assert_fail ("TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && \"If SETO is expanded, SETOEQ must be legal!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8911, __extension__ __PRETTY_FUNCTION__))
8911 "If SETO is expanded, SETOEQ must be legal!")(static_cast <bool> (TLI.isCondCodeLegal(ISD::SETOEQ, OpVT
) && "If SETO is expanded, SETOEQ must be legal!") ? void
(0) : __assert_fail ("TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && \"If SETO is expanded, SETOEQ must be legal!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8911, __extension__ __PRETTY_FUNCTION__))
;
8912 CC1 = ISD::SETOEQ;
8913 CC2 = ISD::SETOEQ;
8914 Opc = ISD::AND;
8915 break;
8916 case ISD::SETONE:
8917 case ISD::SETUEQ:
8918 // If the SETUO or SETO CC isn't legal, we might be able to use
8919 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8920 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8921 // the operands.
8922 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8923 if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8924 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8925 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8926 CC1 = ISD::SETOGT;
8927 CC2 = ISD::SETOLT;
8928 Opc = ISD::OR;
8929 NeedInvert = ((unsigned)CCCode & 0x8U);
8930 break;
8931 }
8932 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8933 case ISD::SETOEQ:
8934 case ISD::SETOGT:
8935 case ISD::SETOGE:
8936 case ISD::SETOLT:
8937 case ISD::SETOLE:
8938 case ISD::SETUNE:
8939 case ISD::SETUGT:
8940 case ISD::SETUGE:
8941 case ISD::SETULT:
8942 case ISD::SETULE:
8943 // If we are floating point, assign and break, otherwise fall through.
8944 if (!OpVT.isInteger()) {
8945 // We can use the 4th bit to tell if we are the unordered
8946 // or ordered version of the opcode.
8947 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8948 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8949 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8950 break;
8951 }
8952 // Fallthrough if we are unsigned integer.
8953 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8954 case ISD::SETLE:
8955 case ISD::SETGT:
8956 case ISD::SETGE:
8957 case ISD::SETLT:
8958 case ISD::SETNE:
8959 case ISD::SETEQ:
8960 // If all combinations of inverting the condition and swapping operands
8961 // didn't work then we have no means to expand the condition.
8962 llvm_unreachable("Don't know how to expand this condition!")::llvm::llvm_unreachable_internal("Don't know how to expand this condition!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp"
, 8962)
;
8963 }
8964
8965 SDValue SetCC1, SetCC2;
8966 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8967 // If we aren't the ordered or unorder operation,
8968 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8969 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
8970 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
8971 } else {
8972 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
8973 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
8974 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
8975 }
8976 if (Chain)
8977 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
8978 SetCC2.getValue(1));
8979 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
8980 RHS = SDValue();
8981 CC = SDValue();
8982 return true;
8983 }
8984 }
8985 return false;
8986}

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <utility>
24
25namespace llvm {
26class FoldingSetNodeID;
27class StringRef;
28class hash_code;
29class raw_ostream;
30
31template <typename T> class SmallVectorImpl;
32template <typename T> class ArrayRef;
33template <typename T> class Optional;
34template <typename T> struct DenseMapInfo;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69///
70class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
71public:
72 typedef uint64_t WordType;
73
74 /// This enum is used to hold the constants we needed for APInt.
75 enum : unsigned {
76 /// Byte size of a word.
77 APINT_WORD_SIZE = sizeof(WordType),
78 /// Bits in a word.
79 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
80 };
81
82 enum class Rounding {
83 DOWN,
84 TOWARD_ZERO,
85 UP,
86 };
87
88 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
89
90private:
91 /// This union is used to store the integer value. When the
92 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93 union {
94 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
95 uint64_t *pVal; ///< Used to store the >64 bits integer value.
96 } U;
97
98 unsigned BitWidth; ///< The number of bits in this APInt.
99
100 friend struct DenseMapInfo<APInt>;
101
102 friend class APSInt;
103
104 /// Fast internal constructor
105 ///
106 /// This constructor is used only internally for speed of construction of
107 /// temporaries. It is unsafe for general use so it is not public.
108 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
109 U.pVal = val;
110 }
111
112 /// Determine which word a bit is in.
113 ///
114 /// \returns the word position for the specified bit position.
115 static unsigned whichWord(unsigned bitPosition) {
116 return bitPosition / APINT_BITS_PER_WORD;
117 }
118
119 /// Determine which bit in a word a bit is in.
120 ///
121 /// \returns the bit position in a word for the specified bit position
122 /// in the APInt.
123 static unsigned whichBit(unsigned bitPosition) {
124 return bitPosition % APINT_BITS_PER_WORD;
125 }
126
127 /// Get a single bit mask.
128 ///
129 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
130 /// This method generates and returns a uint64_t (word) mask for a single
131 /// bit at a specific bit position. This is used to mask the bit in the
132 /// corresponding word.
133 static uint64_t maskBit(unsigned bitPosition) {
134 return 1ULL << whichBit(bitPosition);
135 }
136
137 /// Clear unused high order bits
138 ///
139 /// This method is used internally to clear the top "N" bits in the high order
140 /// word that are not used by the APInt. This is needed after the most
141 /// significant word is assigned a value to ensure that those bits are
142 /// zero'd out.
143 APInt &clearUnusedBits() {
144 // Compute how many bits are used in the final word
145 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
146
147 // Mask out the high bits.
148 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
149 if (isSingleWord())
150 U.VAL &= mask;
151 else
152 U.pVal[getNumWords() - 1] &= mask;
153 return *this;
154 }
155
156 /// Get the word corresponding to a bit position
157 /// \returns the corresponding word for the specified bit position.
158 uint64_t getWord(unsigned bitPosition) const {
159 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
160 }
161
162 /// Utility method to change the bit width of this APInt to new bit width,
163 /// allocating and/or deallocating as necessary. There is no guarantee on the
164 /// value of any bits upon return. Caller should populate the bits after.
165 void reallocate(unsigned NewBitWidth);
166
167 /// Convert a char array into an APInt
168 ///
169 /// \param radix 2, 8, 10, 16, or 36
170 /// Converts a string into a number. The string must be non-empty
171 /// and well-formed as a number of the given base. The bit-width
172 /// must be sufficient to hold the result.
173 ///
174 /// This is used by the constructors that take string arguments.
175 ///
176 /// StringRef::getAsInteger is superficially similar but (1) does
177 /// not assume that the string is well-formed and (2) grows the
178 /// result to hold the input.
179 void fromString(unsigned numBits, StringRef str, uint8_t radix);
180
181 /// An internal division function for dividing APInts.
182 ///
183 /// This is used by the toString method to divide by the radix. It simply
184 /// provides a more convenient form of divide for internal use since KnuthDiv
185 /// has specific constraints on its inputs. If those constraints are not met
186 /// then it provides a simpler form of divide.
187 static void divide(const WordType *LHS, unsigned lhsWords,
188 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
189 WordType *Remainder);
190
191 /// out-of-line slow case for inline constructor
192 void initSlowCase(uint64_t val, bool isSigned);
193
194 /// shared code between two array constructors
195 void initFromArray(ArrayRef<uint64_t> array);
196
197 /// out-of-line slow case for inline copy constructor
198 void initSlowCase(const APInt &that);
199
200 /// out-of-line slow case for shl
201 void shlSlowCase(unsigned ShiftAmt);
202
203 /// out-of-line slow case for lshr.
204 void lshrSlowCase(unsigned ShiftAmt);
205
206 /// out-of-line slow case for ashr.
207 void ashrSlowCase(unsigned ShiftAmt);
208
209 /// out-of-line slow case for operator=
210 void AssignSlowCase(const APInt &RHS);
211
212 /// out-of-line slow case for operator==
213 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
214
215 /// out-of-line slow case for countLeadingZeros
216 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
217
218 /// out-of-line slow case for countLeadingOnes.
219 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
220
221 /// out-of-line slow case for countTrailingZeros.
222 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
223
224 /// out-of-line slow case for countTrailingOnes
225 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
226
227 /// out-of-line slow case for countPopulation
228 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
229
230 /// out-of-line slow case for intersects.
231 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
232
233 /// out-of-line slow case for isSubsetOf.
234 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
235
236 /// out-of-line slow case for setBits.
237 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
238
239 /// out-of-line slow case for flipAllBits.
240 void flipAllBitsSlowCase();
241
242 /// out-of-line slow case for operator&=.
243 void AndAssignSlowCase(const APInt& RHS);
244
245 /// out-of-line slow case for operator|=.
246 void OrAssignSlowCase(const APInt& RHS);
247
248 /// out-of-line slow case for operator^=.
249 void XorAssignSlowCase(const APInt& RHS);
250
251 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
252 /// to, or greater than RHS.
253 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
254
255 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
256 /// to, or greater than RHS.
257 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
258
259public:
260 /// \name Constructors
261 /// @{
262
263 /// Create a new APInt of numBits width, initialized as val.
264 ///
265 /// If isSigned is true then val is treated as if it were a signed value
266 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
267 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
268 /// the range of val are zero filled).
269 ///
270 /// \param numBits the bit width of the constructed APInt
271 /// \param val the initial value of the APInt
272 /// \param isSigned how to treat signedness of val
273 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
274 : BitWidth(numBits) {
275 assert(BitWidth && "bitwidth too small")(static_cast <bool> (BitWidth && "bitwidth too small"
) ? void (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 275, __extension__ __PRETTY_FUNCTION__))
;
276 if (isSingleWord()) {
277 U.VAL = val;
278 clearUnusedBits();
279 } else {
280 initSlowCase(val, isSigned);
281 }
282 }
283
284 /// Construct an APInt of numBits width, initialized as bigVal[].
285 ///
286 /// Note that bigVal.size() can be smaller or larger than the corresponding
287 /// bit width but any extraneous bits will be dropped.
288 ///
289 /// \param numBits the bit width of the constructed APInt
290 /// \param bigVal a sequence of words to form the initial value of the APInt
291 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
292
293 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
294 /// deprecated because this constructor is prone to ambiguity with the
295 /// APInt(unsigned, uint64_t, bool) constructor.
296 ///
297 /// If this overload is ever deleted, care should be taken to prevent calls
298 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
299 /// constructor.
300 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
301
302 /// Construct an APInt from a string representation.
303 ///
304 /// This constructor interprets the string \p str in the given radix. The
305 /// interpretation stops when the first character that is not suitable for the
306 /// radix is encountered, or the end of the string. Acceptable radix values
307 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
308 /// string to require more bits than numBits.
309 ///
310 /// \param numBits the bit width of the constructed APInt
311 /// \param str the string to be interpreted
312 /// \param radix the radix to use for the conversion
313 APInt(unsigned numBits, StringRef str, uint8_t radix);
314
315 /// Simply makes *this a copy of that.
316 /// Copy Constructor.
317 APInt(const APInt &that) : BitWidth(that.BitWidth) {
318 if (isSingleWord())
319 U.VAL = that.U.VAL;
320 else
321 initSlowCase(that);
322 }
323
324 /// Move Constructor.
325 APInt(APInt &&that) : BitWidth(that.BitWidth) {
326 memcpy(&U, &that.U, sizeof(U));
327 that.BitWidth = 0;
328 }
329
330 /// Destructor.
331 ~APInt() {
332 if (needsCleanup())
333 delete[] U.pVal;
334 }
335
336 /// Default constructor that creates an uninteresting APInt
337 /// representing a 1-bit zero value.
338 ///
339 /// This is useful for object deserialization (pair this with the static
340 /// method Read).
341 explicit APInt() : BitWidth(1) { U.VAL = 0; }
342
343 /// Returns whether this instance allocated memory.
344 bool needsCleanup() const { return !isSingleWord(); }
345
346 /// Used to insert APInt objects, or objects that contain APInt objects, into
347 /// FoldingSets.
348 void Profile(FoldingSetNodeID &id) const;
349
350 /// @}
351 /// \name Value Tests
352 /// @{
353
354 /// Determine if this APInt just has one word to store value.
355 ///
356 /// \returns true if the number of bits <= 64, false otherwise.
357 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
7
Returning the value 1, which participates in a condition later
358
359 /// Determine sign of this APInt.
360 ///
361 /// This tests the high bit of this APInt to determine if it is set.
362 ///
363 /// \returns true if this APInt is negative, false otherwise
364 bool isNegative() const { return (*this)[BitWidth - 1]; }
365
366 /// Determine if this APInt Value is non-negative (>= 0)
367 ///
368 /// This tests the high bit of the APInt to determine if it is unset.
369 bool isNonNegative() const { return !isNegative(); }
370
371 /// Determine if sign bit of this APInt is set.
372 ///
373 /// This tests the high bit of this APInt to determine if it is set.
374 ///
375 /// \returns true if this APInt has its sign bit set, false otherwise.
376 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
377
378 /// Determine if sign bit of this APInt is clear.
379 ///
380 /// This tests the high bit of this APInt to determine if it is clear.
381 ///
382 /// \returns true if this APInt has its sign bit clear, false otherwise.
383 bool isSignBitClear() const { return !isSignBitSet(); }
384
385 /// Determine if this APInt Value is positive.
386 ///
387 /// This tests if the value of this APInt is positive (> 0). Note
388 /// that 0 is not a positive value.
389 ///
390 /// \returns true if this APInt is positive.
391 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392
393 /// Determine if this APInt Value is non-positive (<= 0).
394 ///
395 /// \returns true if this APInt is non-positive.
396 bool isNonPositive() const { return !isStrictlyPositive(); }
397
398 /// Determine if all bits are set
399 ///
400 /// This checks to see if the value has all bits of the APInt are set or not.
401 bool isAllOnesValue() const {
402 if (isSingleWord())
403 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
404 return countTrailingOnesSlowCase() == BitWidth;
405 }
406
407 /// Determine if all bits are clear
408 ///
409 /// This checks to see if the value has all bits of the APInt are clear or
410 /// not.
411 bool isNullValue() const { return !*this; }
412
413 /// Determine if this is a value of 1.
414 ///
415 /// This checks to see if the value of this APInt is one.
416 bool isOneValue() const {
417 if (isSingleWord())
418 return U.VAL == 1;
419 return countLeadingZerosSlowCase() == BitWidth - 1;
420 }
421
422 /// Determine if this is the largest unsigned value.
423 ///
424 /// This checks to see if the value of this APInt is the maximum unsigned
425 /// value for the APInt's bit width.
426 bool isMaxValue() const { return isAllOnesValue(); }
427
428 /// Determine if this is the largest signed value.
429 ///
430 /// This checks to see if the value of this APInt is the maximum signed
431 /// value for the APInt's bit width.
432 bool isMaxSignedValue() const {
433 if (isSingleWord())
434 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
435 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
436 }
437
438 /// Determine if this is the smallest unsigned value.
439 ///
440 /// This checks to see if the value of this APInt is the minimum unsigned
441 /// value for the APInt's bit width.
442 bool isMinValue() const { return isNullValue(); }
443
444 /// Determine if this is the smallest signed value.
445 ///
446 /// This checks to see if the value of this APInt is the minimum signed
447 /// value for the APInt's bit width.
448 bool isMinSignedValue() const {
449 if (isSingleWord())
6
Calling 'APInt::isSingleWord'
8
Returning from 'APInt::isSingleWord'
9
Taking true branch
450 return U.VAL == (WordType(1) << (BitWidth - 1));
10
The result of the left shift is undefined due to shifting by '4294967295', which is greater or equal to the width of type 'llvm::APInt::WordType'
451 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
452 }
453
454 /// Check if this APInt has an N-bits unsigned integer value.
455 bool isIntN(unsigned N) const {
456 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 456, __extension__ __PRETTY_FUNCTION__))
;
457 return getActiveBits() <= N;
458 }
459
460 /// Check if this APInt has an N-bits signed integer value.
461 bool isSignedIntN(unsigned N) const {
462 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 462, __extension__ __PRETTY_FUNCTION__))
;
463 return getMinSignedBits() <= N;
464 }
465
466 /// Check if this APInt's value is a power of two greater than zero.
467 ///
468 /// \returns true if the argument APInt value is a power of two > 0.
469 bool isPowerOf2() const {
470 if (isSingleWord())
471 return isPowerOf2_64(U.VAL);
472 return countPopulationSlowCase() == 1;
473 }
474
475 /// Check if the APInt's value is returned by getSignMask.
476 ///
477 /// \returns true if this is the value returned by getSignMask.
478 bool isSignMask() const { return isMinSignedValue(); }
479
480 /// Convert APInt to a boolean value.
481 ///
482 /// This converts the APInt to a boolean value as a test against zero.
483 bool getBoolValue() const { return !!*this; }
484
485 /// If this value is smaller than the specified limit, return it, otherwise
486 /// return the limit value. This causes the value to saturate to the limit.
487 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
488 return ugt(Limit) ? Limit : getZExtValue();
489 }
490
491 /// Check if the APInt consists of a repeated bit pattern.
492 ///
493 /// e.g. 0x01010101 satisfies isSplat(8).
494 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
495 /// width without remainder.
496 bool isSplat(unsigned SplatSizeInBits) const;
497
498 /// \returns true if this APInt value is a sequence of \param numBits ones
499 /// starting at the least significant bit with the remainder zero.
500 bool isMask(unsigned numBits) const {
501 assert(numBits != 0 && "numBits must be non-zero")(static_cast <bool> (numBits != 0 && "numBits must be non-zero"
) ? void (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 501, __extension__ __PRETTY_FUNCTION__))
;
502 assert(numBits <= BitWidth && "numBits out of range")(static_cast <bool> (numBits <= BitWidth && "numBits out of range"
) ? void (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 502, __extension__ __PRETTY_FUNCTION__))
;
503 if (isSingleWord())
504 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
505 unsigned Ones = countTrailingOnesSlowCase();
506 return (numBits == Ones) &&
507 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
508 }
509
510 /// \returns true if this APInt is a non-empty sequence of ones starting at
511 /// the least significant bit with the remainder zero.
512 /// Ex. isMask(0x0000FFFFU) == true.
513 bool isMask() const {
514 if (isSingleWord())
515 return isMask_64(U.VAL);
516 unsigned Ones = countTrailingOnesSlowCase();
517 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
518 }
519
520 /// Return true if this APInt value contains a sequence of ones with
521 /// the remainder zero.
522 bool isShiftedMask() const {
523 if (isSingleWord())
524 return isShiftedMask_64(U.VAL);
525 unsigned Ones = countPopulationSlowCase();
526 unsigned LeadZ = countLeadingZerosSlowCase();
527 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
528 }
529
530 /// @}
531 /// \name Value Generators
532 /// @{
533
534 /// Gets maximum unsigned value of APInt for specific bit width.
535 static APInt getMaxValue(unsigned numBits) {
536 return getAllOnesValue(numBits);
537 }
538
539 /// Gets maximum signed value of APInt for a specific bit width.
540 static APInt getSignedMaxValue(unsigned numBits) {
541 APInt API = getAllOnesValue(numBits);
542 API.clearBit(numBits - 1);
543 return API;
544 }
545
546 /// Gets minimum unsigned value of APInt for a specific bit width.
547 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
548
549 /// Gets minimum signed value of APInt for a specific bit width.
550 static APInt getSignedMinValue(unsigned numBits) {
551 APInt API(numBits, 0);
552 API.setBit(numBits - 1);
553 return API;
554 }
555
556 /// Get the SignMask for a specific bit width.
557 ///
558 /// This is just a wrapper function of getSignedMinValue(), and it helps code
559 /// readability when we want to get a SignMask.
560 static APInt getSignMask(unsigned BitWidth) {
561 return getSignedMinValue(BitWidth);
562 }
563
564 /// Get the all-ones value.
565 ///
566 /// \returns the all-ones value for an APInt of the specified bit-width.
567 static APInt getAllOnesValue(unsigned numBits) {
568 return APInt(numBits, WORDTYPE_MAX, true);
569 }
570
571 /// Get the '0' value.
572 ///
573 /// \returns the '0' value for an APInt of the specified bit-width.
574 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
575
576 /// Compute an APInt containing numBits highbits from this APInt.
577 ///
578 /// Get an APInt with the same BitWidth as this APInt, just zero mask
579 /// the low bits and right shift to the least significant bit.
580 ///
581 /// \returns the high "numBits" bits of this APInt.
582 APInt getHiBits(unsigned numBits) const;
583
584 /// Compute an APInt containing numBits lowbits from this APInt.
585 ///
586 /// Get an APInt with the same BitWidth as this APInt, just zero mask
587 /// the high bits.
588 ///
589 /// \returns the low "numBits" bits of this APInt.
590 APInt getLoBits(unsigned numBits) const;
591
592 /// Return an APInt with exactly one bit set in the result.
593 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
594 APInt Res(numBits, 0);
595 Res.setBit(BitNo);
596 return Res;
597 }
598
599 /// Get a value with a block of bits set.
600 ///
601 /// Constructs an APInt value that has a contiguous range of bits set. The
602 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
603 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
604 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
605 /// \p hiBit.
606 ///
607 /// \param numBits the intended bit width of the result
608 /// \param loBit the index of the lowest bit set.
609 /// \param hiBit the index of the highest bit set.
610 ///
611 /// \returns An APInt value with the requested bits set.
612 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
613 assert(loBit <= hiBit && "loBit greater than hiBit")(static_cast <bool> (loBit <= hiBit && "loBit greater than hiBit"
) ? void (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 613, __extension__ __PRETTY_FUNCTION__))
;
614 APInt Res(numBits, 0);
615 Res.setBits(loBit, hiBit);
616 return Res;
617 }
618
619 /// Wrap version of getBitsSet.
620 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
621 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
622 /// with parameters (32, 28, 4), you would get 0xF000000F.
623 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
624 /// set.
625 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
626 unsigned hiBit) {
627 APInt Res(numBits, 0);
628 Res.setBitsWithWrap(loBit, hiBit);
629 return Res;
630 }
631
632 /// Get a value with upper bits starting at loBit set.
633 ///
634 /// Constructs an APInt value that has a contiguous range of bits set. The
635 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
636 /// bits will be zero. For example, with parameters(32, 12) you would get
637 /// 0xFFFFF000.
638 ///
639 /// \param numBits the intended bit width of the result
640 /// \param loBit the index of the lowest bit to set.
641 ///
642 /// \returns An APInt value with the requested bits set.
643 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
644 APInt Res(numBits, 0);
645 Res.setBitsFrom(loBit);
646 return Res;
647 }
648
649 /// Get a value with high bits set
650 ///
651 /// Constructs an APInt value that has the top hiBitsSet bits set.
652 ///
653 /// \param numBits the bitwidth of the result
654 /// \param hiBitsSet the number of high-order bits set in the result.
655 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
656 APInt Res(numBits, 0);
657 Res.setHighBits(hiBitsSet);
658 return Res;
659 }
660
661 /// Get a value with low bits set
662 ///
663 /// Constructs an APInt value that has the bottom loBitsSet bits set.
664 ///
665 /// \param numBits the bitwidth of the result
666 /// \param loBitsSet the number of low-order bits set in the result.
667 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
668 APInt Res(numBits, 0);
669 Res.setLowBits(loBitsSet);
670 return Res;
671 }
672
673 /// Return a value containing V broadcasted over NewLen bits.
674 static APInt getSplat(unsigned NewLen, const APInt &V);
675
676 /// Determine if two APInts have the same value, after zero-extending
677 /// one of them (if needed!) to ensure that the bit-widths match.
678 static bool isSameValue(const APInt &I1, const APInt &I2) {
679 if (I1.getBitWidth() == I2.getBitWidth())
680 return I1 == I2;
681
682 if (I1.getBitWidth() > I2.getBitWidth())
683 return I1 == I2.zext(I1.getBitWidth());
684
685 return I1.zext(I2.getBitWidth()) == I2;
686 }
687
688 /// Overload to compute a hash_code for an APInt value.
689 friend hash_code hash_value(const APInt &Arg);
690
691 /// This function returns a pointer to the internal storage of the APInt.
692 /// This is useful for writing out the APInt in binary form without any
693 /// conversions.
694 const uint64_t *getRawData() const {
695 if (isSingleWord())
696 return &U.VAL;
697 return &U.pVal[0];
698 }
699
700 /// @}
701 /// \name Unary Operators
702 /// @{
703
704 /// Postfix increment operator.
705 ///
706 /// Increments *this by 1.
707 ///
708 /// \returns a new APInt value representing the original value of *this.
709 APInt operator++(int) {
710 APInt API(*this);
711 ++(*this);
712 return API;
713 }
714
715 /// Prefix increment operator.
716 ///
717 /// \returns *this incremented by one
718 APInt &operator++();
719
720 /// Postfix decrement operator.
721 ///
722 /// Decrements *this by 1.
723 ///
724 /// \returns a new APInt value representing the original value of *this.
725 APInt operator--(int) {
726 APInt API(*this);
727 --(*this);
728 return API;
729 }
730
731 /// Prefix decrement operator.
732 ///
733 /// \returns *this decremented by one.
734 APInt &operator--();
735
736 /// Logical negation operator.
737 ///
738 /// Performs logical negation operation on this APInt.
739 ///
740 /// \returns true if *this is zero, false otherwise.
741 bool operator!() const {
742 if (isSingleWord())
743 return U.VAL == 0;
744 return countLeadingZerosSlowCase() == BitWidth;
745 }
746
747 /// @}
748 /// \name Assignment Operators
749 /// @{
750
751 /// Copy assignment operator.
752 ///
753 /// \returns *this after assignment of RHS.
754 APInt &operator=(const APInt &RHS) {
755 // If the bitwidths are the same, we can avoid mucking with memory
756 if (isSingleWord() && RHS.isSingleWord()) {
757 U.VAL = RHS.U.VAL;
758 BitWidth = RHS.BitWidth;
759 return clearUnusedBits();
760 }
761
762 AssignSlowCase(RHS);
763 return *this;
764 }
765
766 /// Move assignment operator.
767 APInt &operator=(APInt &&that) {
768#ifdef EXPENSIVE_CHECKS
769 // Some std::shuffle implementations still do self-assignment.
770 if (this == &that)
771 return *this;
772#endif
773 assert(this != &that && "Self-move not supported")(static_cast <bool> (this != &that && "Self-move not supported"
) ? void (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 773, __extension__ __PRETTY_FUNCTION__))
;
774 if (!isSingleWord())
775 delete[] U.pVal;
776
777 // Use memcpy so that type based alias analysis sees both VAL and pVal
778 // as modified.
779 memcpy(&U, &that.U, sizeof(U));
780
781 BitWidth = that.BitWidth;
782 that.BitWidth = 0;
783
784 return *this;
785 }
786
787 /// Assignment operator.
788 ///
789 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
790 /// the bit width, the excess bits are truncated. If the bit width is larger
791 /// than 64, the value is zero filled in the unspecified high order bits.
792 ///
793 /// \returns *this after assignment of RHS value.
794 APInt &operator=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL = RHS;
797 return clearUnusedBits();
798 }
799 U.pVal[0] = RHS;
800 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// Bitwise AND assignment operator.
805 ///
806 /// Performs a bitwise AND operation on this APInt and RHS. The result is
807 /// assigned to *this.
808 ///
809 /// \returns *this after ANDing with RHS.
810 APInt &operator&=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 811, __extension__ __PRETTY_FUNCTION__))
;
812 if (isSingleWord())
813 U.VAL &= RHS.U.VAL;
814 else
815 AndAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// Bitwise AND assignment operator.
820 ///
821 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator&=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL &= RHS;
827 return *this;
828 }
829 U.pVal[0] &= RHS;
830 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
831 return *this;
832 }
833
834 /// Bitwise OR assignment operator.
835 ///
836 /// Performs a bitwise OR operation on this APInt and RHS. The result is
837 /// assigned *this;
838 ///
839 /// \returns *this after ORing with RHS.
840 APInt &operator|=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 841, __extension__ __PRETTY_FUNCTION__))
;
842 if (isSingleWord())
843 U.VAL |= RHS.U.VAL;
844 else
845 OrAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// Bitwise OR assignment operator.
850 ///
851 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator|=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL |= RHS;
857 return clearUnusedBits();
858 }
859 U.pVal[0] |= RHS;
860 return *this;
861 }
862
863 /// Bitwise XOR assignment operator.
864 ///
865 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
866 /// assigned to *this.
867 ///
868 /// \returns *this after XORing with RHS.
869 APInt &operator^=(const APInt &RHS) {
870 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 870, __extension__ __PRETTY_FUNCTION__))
;
871 if (isSingleWord())
872 U.VAL ^= RHS.U.VAL;
873 else
874 XorAssignSlowCase(RHS);
875 return *this;
876 }
877
878 /// Bitwise XOR assignment operator.
879 ///
880 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
881 /// logically zero-extended or truncated to match the bit-width of
882 /// the LHS.
883 APInt &operator^=(uint64_t RHS) {
884 if (isSingleWord()) {
885 U.VAL ^= RHS;
886 return clearUnusedBits();
887 }
888 U.pVal[0] ^= RHS;
889 return *this;
890 }
891
892 /// Multiplication assignment operator.
893 ///
894 /// Multiplies this APInt by RHS and assigns the result to *this.
895 ///
896 /// \returns *this
897 APInt &operator*=(const APInt &RHS);
898 APInt &operator*=(uint64_t RHS);
899
900 /// Addition assignment operator.
901 ///
902 /// Adds RHS to *this and assigns the result to *this.
903 ///
904 /// \returns *this
905 APInt &operator+=(const APInt &RHS);
906 APInt &operator+=(uint64_t RHS);
907
908 /// Subtraction assignment operator.
909 ///
910 /// Subtracts RHS from *this and assigns the result to *this.
911 ///
912 /// \returns *this
913 APInt &operator-=(const APInt &RHS);
914 APInt &operator-=(uint64_t RHS);
915
916 /// Left-shift assignment function.
917 ///
918 /// Shifts *this left by shiftAmt and assigns the result to *this.
919 ///
920 /// \returns *this after shifting left by ShiftAmt
921 APInt &operator<<=(unsigned ShiftAmt) {
922 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 922, __extension__ __PRETTY_FUNCTION__))
;
923 if (isSingleWord()) {
924 if (ShiftAmt == BitWidth)
925 U.VAL = 0;
926 else
927 U.VAL <<= ShiftAmt;
928 return clearUnusedBits();
929 }
930 shlSlowCase(ShiftAmt);
931 return *this;
932 }
933
934 /// Left-shift assignment function.
935 ///
936 /// Shifts *this left by shiftAmt and assigns the result to *this.
937 ///
938 /// \returns *this after shifting left by ShiftAmt
939 APInt &operator<<=(const APInt &ShiftAmt);
940
941 /// @}
942 /// \name Binary Operators
943 /// @{
944
945 /// Multiplication operator.
946 ///
947 /// Multiplies this APInt by RHS and returns the result.
948 APInt operator*(const APInt &RHS) const;
949
950 /// Left logical shift operator.
951 ///
952 /// Shifts this APInt left by \p Bits and returns the result.
953 APInt operator<<(unsigned Bits) const { return shl(Bits); }
954
955 /// Left logical shift operator.
956 ///
957 /// Shifts this APInt left by \p Bits and returns the result.
958 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
959
960 /// Arithmetic right-shift function.
961 ///
962 /// Arithmetic right-shift this APInt by shiftAmt.
963 APInt ashr(unsigned ShiftAmt) const {
964 APInt R(*this);
965 R.ashrInPlace(ShiftAmt);
966 return R;
967 }
968
969 /// Arithmetic right-shift this APInt by ShiftAmt in place.
970 void ashrInPlace(unsigned ShiftAmt) {
971 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 971, __extension__ __PRETTY_FUNCTION__))
;
972 if (isSingleWord()) {
973 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
974 if (ShiftAmt == BitWidth)
975 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
976 else
977 U.VAL = SExtVAL >> ShiftAmt;
978 clearUnusedBits();
979 return;
980 }
981 ashrSlowCase(ShiftAmt);
982 }
983
984 /// Logical right-shift function.
985 ///
986 /// Logical right-shift this APInt by shiftAmt.
987 APInt lshr(unsigned shiftAmt) const {
988 APInt R(*this);
989 R.lshrInPlace(shiftAmt);
990 return R;
991 }
992
993 /// Logical right-shift this APInt by ShiftAmt in place.
994 void lshrInPlace(unsigned ShiftAmt) {
995 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 995, __extension__ __PRETTY_FUNCTION__))
;
996 if (isSingleWord()) {
997 if (ShiftAmt == BitWidth)
998 U.VAL = 0;
999 else
1000 U.VAL >>= ShiftAmt;
1001 return;
1002 }
1003 lshrSlowCase(ShiftAmt);
1004 }
1005
1006 /// Left-shift function.
1007 ///
1008 /// Left-shift this APInt by shiftAmt.
1009 APInt shl(unsigned shiftAmt) const {
1010 APInt R(*this);
1011 R <<= shiftAmt;
1012 return R;
1013 }
1014
1015 /// Rotate left by rotateAmt.
1016 APInt rotl(unsigned rotateAmt) const;
1017
1018 /// Rotate right by rotateAmt.
1019 APInt rotr(unsigned rotateAmt) const;
1020
1021 /// Arithmetic right-shift function.
1022 ///
1023 /// Arithmetic right-shift this APInt by shiftAmt.
1024 APInt ashr(const APInt &ShiftAmt) const {
1025 APInt R(*this);
1026 R.ashrInPlace(ShiftAmt);
1027 return R;
1028 }
1029
1030 /// Arithmetic right-shift this APInt by shiftAmt in place.
1031 void ashrInPlace(const APInt &shiftAmt);
1032
1033 /// Logical right-shift function.
1034 ///
1035 /// Logical right-shift this APInt by shiftAmt.
1036 APInt lshr(const APInt &ShiftAmt) const {
1037 APInt R(*this);
1038 R.lshrInPlace(ShiftAmt);
1039 return R;
1040 }
1041
1042 /// Logical right-shift this APInt by ShiftAmt in place.
1043 void lshrInPlace(const APInt &ShiftAmt);
1044
1045 /// Left-shift function.
1046 ///
1047 /// Left-shift this APInt by shiftAmt.
1048 APInt shl(const APInt &ShiftAmt) const {
1049 APInt R(*this);
1050 R <<= ShiftAmt;
1051 return R;
1052 }
1053
1054 /// Rotate left by rotateAmt.
1055 APInt rotl(const APInt &rotateAmt) const;
1056
1057 /// Rotate right by rotateAmt.
1058 APInt rotr(const APInt &rotateAmt) const;
1059
1060 /// Unsigned division operation.
1061 ///
1062 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1063 /// RHS are treated as unsigned quantities for purposes of this division.
1064 ///
1065 /// \returns a new APInt value containing the division result, rounded towards
1066 /// zero.
1067 APInt udiv(const APInt &RHS) const;
1068 APInt udiv(uint64_t RHS) const;
1069
1070 /// Signed division function for APInt.
1071 ///
1072 /// Signed divide this APInt by APInt RHS.
1073 ///
1074 /// The result is rounded towards zero.
1075 APInt sdiv(const APInt &RHS) const;
1076 APInt sdiv(int64_t RHS) const;
1077
1078 /// Unsigned remainder operation.
1079 ///
1080 /// Perform an unsigned remainder operation on this APInt with RHS being the
1081 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1082 /// of this operation. Note that this is a true remainder operation and not a
1083 /// modulo operation because the sign follows the sign of the dividend which
1084 /// is *this.
1085 ///
1086 /// \returns a new APInt value containing the remainder result
1087 APInt urem(const APInt &RHS) const;
1088 uint64_t urem(uint64_t RHS) const;
1089
1090 /// Function for signed remainder operation.
1091 ///
1092 /// Signed remainder operation on APInt.
1093 APInt srem(const APInt &RHS) const;
1094 int64_t srem(int64_t RHS) const;
1095
1096 /// Dual division/remainder interface.
1097 ///
1098 /// Sometimes it is convenient to divide two APInt values and obtain both the
1099 /// quotient and remainder. This function does both operations in the same
1100 /// computation making it a little more efficient. The pair of input arguments
1101 /// may overlap with the pair of output arguments. It is safe to call
1102 /// udivrem(X, Y, X, Y), for example.
1103 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1104 APInt &Remainder);
1105 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1106 uint64_t &Remainder);
1107
1108 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1109 APInt &Remainder);
1110 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1111 int64_t &Remainder);
1112
1113 // Operations that return overflow indicators.
1114 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1115 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1116 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1117 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1118 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1119 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1120 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1121 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1122 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1123
1124 // Operations that saturate
1125 APInt sadd_sat(const APInt &RHS) const;
1126 APInt uadd_sat(const APInt &RHS) const;
1127 APInt ssub_sat(const APInt &RHS) const;
1128 APInt usub_sat(const APInt &RHS) const;
1129 APInt smul_sat(const APInt &RHS) const;
1130 APInt umul_sat(const APInt &RHS) const;
1131 APInt sshl_sat(const APInt &RHS) const;
1132 APInt ushl_sat(const APInt &RHS) const;
1133
1134 /// Array-indexing support.
1135 ///
1136 /// \returns the bit value at bitPosition
1137 bool operator[](unsigned bitPosition) const {
1138 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")(static_cast <bool> (bitPosition < getBitWidth() &&
"Bit position out of bounds!") ? void (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1138, __extension__ __PRETTY_FUNCTION__))
;
1139 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1140 }
1141
1142 /// @}
1143 /// \name Comparison Operators
1144 /// @{
1145
1146 /// Equality operator.
1147 ///
1148 /// Compares this APInt with RHS for the validity of the equality
1149 /// relationship.
1150 bool operator==(const APInt &RHS) const {
1151 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Comparison requires equal bit widths") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1151, __extension__ __PRETTY_FUNCTION__))
;
1152 if (isSingleWord())
1153 return U.VAL == RHS.U.VAL;
1154 return EqualSlowCase(RHS);
1155 }
1156
1157 /// Equality operator.
1158 ///
1159 /// Compares this APInt with a uint64_t for the validity of the equality
1160 /// relationship.
1161 ///
1162 /// \returns true if *this == Val
1163 bool operator==(uint64_t Val) const {
1164 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1165 }
1166
1167 /// Equality comparison.
1168 ///
1169 /// Compares this APInt with RHS for the validity of the equality
1170 /// relationship.
1171 ///
1172 /// \returns true if *this == Val
1173 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1174
1175 /// Inequality operator.
1176 ///
1177 /// Compares this APInt with RHS for the validity of the inequality
1178 /// relationship.
1179 ///
1180 /// \returns true if *this != Val
1181 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1182
1183 /// Inequality operator.
1184 ///
1185 /// Compares this APInt with a uint64_t for the validity of the inequality
1186 /// relationship.
1187 ///
1188 /// \returns true if *this != Val
1189 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1190
1191 /// Inequality comparison
1192 ///
1193 /// Compares this APInt with RHS for the validity of the inequality
1194 /// relationship.
1195 ///
1196 /// \returns true if *this != Val
1197 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1198
1199 /// Unsigned less than comparison
1200 ///
1201 /// Regards both *this and RHS as unsigned quantities and compares them for
1202 /// the validity of the less-than relationship.
1203 ///
1204 /// \returns true if *this < RHS when both are considered unsigned.
1205 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1206
1207 /// Unsigned less than comparison
1208 ///
1209 /// Regards both *this as an unsigned quantity and compares it with RHS for
1210 /// the validity of the less-than relationship.
1211 ///
1212 /// \returns true if *this < RHS when considered unsigned.
1213 bool ult(uint64_t RHS) const {
1214 // Only need to check active bits if not a single word.
1215 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1216 }
1217
1218 /// Signed less than comparison
1219 ///
1220 /// Regards both *this and RHS as signed quantities and compares them for
1221 /// validity of the less-than relationship.
1222 ///
1223 /// \returns true if *this < RHS when both are considered signed.
1224 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1225
1226 /// Signed less than comparison
1227 ///
1228 /// Regards both *this as a signed quantity and compares it with RHS for
1229 /// the validity of the less-than relationship.
1230 ///
1231 /// \returns true if *this < RHS when considered signed.
1232 bool slt(int64_t RHS) const {
1233 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1234 : getSExtValue() < RHS;
1235 }
1236
1237 /// Unsigned less or equal comparison
1238 ///
1239 /// Regards both *this and RHS as unsigned quantities and compares them for
1240 /// validity of the less-or-equal relationship.
1241 ///
1242 /// \returns true if *this <= RHS when both are considered unsigned.
1243 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1244
1245 /// Unsigned less or equal comparison
1246 ///
1247 /// Regards both *this as an unsigned quantity and compares it with RHS for
1248 /// the validity of the less-or-equal relationship.
1249 ///
1250 /// \returns true if *this <= RHS when considered unsigned.
1251 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1252
1253 /// Signed less or equal comparison
1254 ///
1255 /// Regards both *this and RHS as signed quantities and compares them for
1256 /// validity of the less-or-equal relationship.
1257 ///
1258 /// \returns true if *this <= RHS when both are considered signed.
1259 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1260
1261 /// Signed less or equal comparison
1262 ///
1263 /// Regards both *this as a signed quantity and compares it with RHS for the
1264 /// validity of the less-or-equal relationship.
1265 ///
1266 /// \returns true if *this <= RHS when considered signed.
1267 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1268
1269 /// Unsigned greater than comparison
1270 ///
1271 /// Regards both *this and RHS as unsigned quantities and compares them for
1272 /// the validity of the greater-than relationship.
1273 ///
1274 /// \returns true if *this > RHS when both are considered unsigned.
1275 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1276
1277 /// Unsigned greater than comparison
1278 ///
1279 /// Regards both *this as an unsigned quantity and compares it with RHS for
1280 /// the validity of the greater-than relationship.
1281 ///
1282 /// \returns true if *this > RHS when considered unsigned.
1283 bool ugt(uint64_t RHS) const {
1284 // Only need to check active bits if not a single word.
1285 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1286 }
1287
1288 /// Signed greater than comparison
1289 ///
1290 /// Regards both *this and RHS as signed quantities and compares them for the
1291 /// validity of the greater-than relationship.
1292 ///
1293 /// \returns true if *this > RHS when both are considered signed.
1294 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1295
1296 /// Signed greater than comparison
1297 ///
1298 /// Regards both *this as a signed quantity and compares it with RHS for
1299 /// the validity of the greater-than relationship.
1300 ///
1301 /// \returns true if *this > RHS when considered signed.
1302 bool sgt(int64_t RHS) const {
1303 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1304 : getSExtValue() > RHS;
1305 }
1306
1307 /// Unsigned greater or equal comparison
1308 ///
1309 /// Regards both *this and RHS as unsigned quantities and compares them for
1310 /// validity of the greater-or-equal relationship.
1311 ///
1312 /// \returns true if *this >= RHS when both are considered unsigned.
1313 bool uge(const APInt &RHS) const { return !ult(RHS); }
1314
1315 /// Unsigned greater or equal comparison
1316 ///
1317 /// Regards both *this as an unsigned quantity and compares it with RHS for
1318 /// the validity of the greater-or-equal relationship.
1319 ///
1320 /// \returns true if *this >= RHS when considered unsigned.
1321 bool uge(uint64_t RHS) const { return !ult(RHS); }
1322
1323 /// Signed greater or equal comparison
1324 ///
1325 /// Regards both *this and RHS as signed quantities and compares them for
1326 /// validity of the greater-or-equal relationship.
1327 ///
1328 /// \returns true if *this >= RHS when both are considered signed.
1329 bool sge(const APInt &RHS) const { return !slt(RHS); }
1330
1331 /// Signed greater or equal comparison
1332 ///
1333 /// Regards both *this as a signed quantity and compares it with RHS for
1334 /// the validity of the greater-or-equal relationship.
1335 ///
1336 /// \returns true if *this >= RHS when considered signed.
1337 bool sge(int64_t RHS) const { return !slt(RHS); }
1338
1339 /// This operation tests if there are any pairs of corresponding bits
1340 /// between this APInt and RHS that are both set.
1341 bool intersects(const APInt &RHS) const {
1342 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1342, __extension__ __PRETTY_FUNCTION__))
;
1343 if (isSingleWord())
1344 return (U.VAL & RHS.U.VAL) != 0;
1345 return intersectsSlowCase(RHS);
1346 }
1347
1348 /// This operation checks that all bits set in this APInt are also set in RHS.
1349 bool isSubsetOf(const APInt &RHS) const {
1350 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1350, __extension__ __PRETTY_FUNCTION__))
;
1351 if (isSingleWord())
1352 return (U.VAL & ~RHS.U.VAL) == 0;
1353 return isSubsetOfSlowCase(RHS);
1354 }
1355
1356 /// @}
1357 /// \name Resizing Operators
1358 /// @{
1359
1360 /// Truncate to new width.
1361 ///
1362 /// Truncate the APInt to a specified width. It is an error to specify a width
1363 /// that is greater than or equal to the current width.
1364 APInt trunc(unsigned width) const;
1365
1366 /// Truncate to new width with unsigned saturation.
1367 ///
1368 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1369 /// the new bitwidth, then return truncated APInt. Else, return max value.
1370 APInt truncUSat(unsigned width) const;
1371
1372 /// Truncate to new width with signed saturation.
1373 ///
1374 /// If this APInt, treated as signed integer, can be losslessly truncated to
1375 /// the new bitwidth, then return truncated APInt. Else, return either
1376 /// signed min value if the APInt was negative, or signed max value.
1377 APInt truncSSat(unsigned width) const;
1378
1379 /// Sign extend to a new width.
1380 ///
1381 /// This operation sign extends the APInt to a new width. If the high order
1382 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1383 /// It is an error to specify a width that is less than or equal to the
1384 /// current width.
1385 APInt sext(unsigned width) const;
1386
1387 /// Zero extend to a new width.
1388 ///
1389 /// This operation zero extends the APInt to a new width. The high order bits
1390 /// are filled with 0 bits. It is an error to specify a width that is less
1391 /// than or equal to the current width.
1392 APInt zext(unsigned width) const;
1393
1394 /// Sign extend or truncate to width
1395 ///
1396 /// Make this APInt have the bit width given by \p width. The value is sign
1397 /// extended, truncated, or left alone to make it that width.
1398 APInt sextOrTrunc(unsigned width) const;
1399
1400 /// Zero extend or truncate to width
1401 ///
1402 /// Make this APInt have the bit width given by \p width. The value is zero
1403 /// extended, truncated, or left alone to make it that width.
1404 APInt zextOrTrunc(unsigned width) const;
1405
1406 /// Truncate to width
1407 ///
1408 /// Make this APInt have the bit width given by \p width. The value is
1409 /// truncated or left alone to make it that width.
1410 APInt truncOrSelf(unsigned width) const;
1411
1412 /// Sign extend or truncate to width
1413 ///
1414 /// Make this APInt have the bit width given by \p width. The value is sign
1415 /// extended, or left alone to make it that width.
1416 APInt sextOrSelf(unsigned width) const;
1417
1418 /// Zero extend or truncate to width
1419 ///
1420 /// Make this APInt have the bit width given by \p width. The value is zero
1421 /// extended, or left alone to make it that width.
1422 APInt zextOrSelf(unsigned width) const;
1423
1424 /// @}
1425 /// \name Bit Manipulation Operators
1426 /// @{
1427
1428 /// Set every bit to 1.
1429 void setAllBits() {
1430 if (isSingleWord())
1431 U.VAL = WORDTYPE_MAX;
1432 else
1433 // Set all the bits in all the words.
1434 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1435 // Clear the unused ones
1436 clearUnusedBits();
1437 }
1438
1439 /// Set a given bit to 1.
1440 ///
1441 /// Set the given bit to 1 whose position is given as "bitPosition".
1442 void setBit(unsigned BitPosition) {
1443 assert(BitPosition < BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition < BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1443, __extension__ __PRETTY_FUNCTION__))
;
1444 WordType Mask = maskBit(BitPosition);
1445 if (isSingleWord())
1446 U.VAL |= Mask;
1447 else
1448 U.pVal[whichWord(BitPosition)] |= Mask;
1449 }
1450
1451 /// Set the sign bit to 1.
1452 void setSignBit() {
1453 setBit(BitWidth - 1);
1454 }
1455
1456 /// Set a given bit to a given value.
1457 void setBitVal(unsigned BitPosition, bool BitValue) {
1458 if (BitValue)
1459 setBit(BitPosition);
1460 else
1461 clearBit(BitPosition);
1462 }
1463
1464 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1465 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1466 /// setBits when \p loBit < \p hiBit.
1467 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1468 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1469 assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range"
) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1469, __extension__ __PRETTY_FUNCTION__))
;
1470 assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range"
) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1470, __extension__ __PRETTY_FUNCTION__))
;
1471 if (loBit < hiBit) {
1472 setBits(loBit, hiBit);
1473 return;
1474 }
1475 setLowBits(hiBit);
1476 setHighBits(BitWidth - loBit);
1477 }
1478
1479 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1480 /// This function handles case when \p loBit <= \p hiBit.
1481 void setBits(unsigned loBit, unsigned hiBit) {
1482 assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range"
) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1482, __extension__ __PRETTY_FUNCTION__))
;
1483 assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range"
) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1483, __extension__ __PRETTY_FUNCTION__))
;
1484 assert(loBit <= hiBit && "loBit greater than hiBit")(static_cast <bool> (loBit <= hiBit && "loBit greater than hiBit"
) ? void (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1484, __extension__ __PRETTY_FUNCTION__))
;
1485 if (loBit == hiBit)
1486 return;
1487 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1488 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1489 mask <<= loBit;
1490 if (isSingleWord())
1491 U.VAL |= mask;
1492 else
1493 U.pVal[0] |= mask;
1494 } else {
1495 setBitsSlowCase(loBit, hiBit);
1496 }
1497 }
1498
1499 /// Set the top bits starting from loBit.
1500 void setBitsFrom(unsigned loBit) {
1501 return setBits(loBit, BitWidth);
1502 }
1503
1504 /// Set the bottom loBits bits.
1505 void setLowBits(unsigned loBits) {
1506 return setBits(0, loBits);
1507 }
1508
1509 /// Set the top hiBits bits.
1510 void setHighBits(unsigned hiBits) {
1511 return setBits(BitWidth - hiBits, BitWidth);
1512 }
1513
1514 /// Set every bit to 0.
1515 void clearAllBits() {
1516 if (isSingleWord())
1517 U.VAL = 0;
1518 else
1519 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1520 }
1521
1522 /// Set a given bit to 0.
1523 ///
1524 /// Set the given bit to 0 whose position is given as "bitPosition".
1525 void clearBit(unsigned BitPosition) {
1526 assert(BitPosition < BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition < BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1526, __extension__ __PRETTY_FUNCTION__))
;
1527 WordType Mask = ~maskBit(BitPosition);
1528 if (isSingleWord())
1529 U.VAL &= Mask;
1530 else
1531 U.pVal[whichWord(BitPosition)] &= Mask;
1532 }
1533
1534 /// Set bottom loBits bits to 0.
1535 void clearLowBits(unsigned loBits) {
1536 assert(loBits <= BitWidth && "More bits than bitwidth")(static_cast <bool> (loBits <= BitWidth && "More bits than bitwidth"
) ? void (0) : __assert_fail ("loBits <= BitWidth && \"More bits than bitwidth\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1536, __extension__ __PRETTY_FUNCTION__))
;
1537 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1538 *this &= Keep;
1539 }
1540
1541 /// Set the sign bit to 0.
1542 void clearSignBit() {
1543 clearBit(BitWidth - 1);
1544 }
1545
1546 /// Toggle every bit to its opposite value.
1547 void flipAllBits() {
1548 if (isSingleWord()) {
1549 U.VAL ^= WORDTYPE_MAX;
1550 clearUnusedBits();
1551 } else {
1552 flipAllBitsSlowCase();
1553 }
1554 }
1555
1556 /// Toggles a given bit to its opposite value.
1557 ///
1558 /// Toggle a given bit to its opposite value whose position is given
1559 /// as "bitPosition".
1560 void flipBit(unsigned bitPosition);
1561
1562 /// Negate this APInt in place.
1563 void negate() {
1564 flipAllBits();
1565 ++(*this);
1566 }
1567
1568 /// Insert the bits from a smaller APInt starting at bitPosition.
1569 void insertBits(const APInt &SubBits, unsigned bitPosition);
1570 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1571
1572 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1573 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1574 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1575
1576 /// @}
1577 /// \name Value Characterization Functions
1578 /// @{
1579
1580 /// Return the number of bits in the APInt.
1581 unsigned getBitWidth() const { return BitWidth; }
1582
1583 /// Get the number of words.
1584 ///
1585 /// Here one word's bitwidth equals to that of uint64_t.
1586 ///
1587 /// \returns the number of words to hold the integer value of this APInt.
1588 unsigned getNumWords() const { return getNumWords(BitWidth); }
1589
1590 /// Get the number of words.
1591 ///
1592 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1593 ///
1594 /// \returns the number of words to hold the integer value with a given bit
1595 /// width.
1596 static unsigned getNumWords(unsigned BitWidth) {
1597 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1598 }
1599
1600 /// Compute the number of active bits in the value
1601 ///
1602 /// This function returns the number of active bits which is defined as the
1603 /// bit width minus the number of leading zeros. This is used in several
1604 /// computations to see how "wide" the value is.
1605 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1606
1607 /// Compute the number of active words in the value of this APInt.
1608 ///
1609 /// This is used in conjunction with getActiveData to extract the raw value of
1610 /// the APInt.
1611 unsigned getActiveWords() const {
1612 unsigned numActiveBits = getActiveBits();
1613 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1614 }
1615
1616 /// Get the minimum bit size for this signed APInt
1617 ///
1618 /// Computes the minimum bit width for this APInt while considering it to be a
1619 /// signed (and probably negative) value. If the value is not negative, this
1620 /// function returns the same value as getActiveBits()+1. Otherwise, it
1621 /// returns the smallest bit width that will retain the negative value. For
1622 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1623 /// for -1, this function will always return 1.
1624 unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; }
1625
1626 /// Get zero extended value
1627 ///
1628 /// This method attempts to return the value of this APInt as a zero extended
1629 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1630 /// uint64_t. Otherwise an assertion will result.
1631 uint64_t getZExtValue() const {
1632 if (isSingleWord())
1633 return U.VAL;
1634 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")(static_cast <bool> (getActiveBits() <= 64 &&
"Too many bits for uint64_t") ? void (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1634, __extension__ __PRETTY_FUNCTION__))
;
1635 return U.pVal[0];
1636 }
1637
1638 /// Get sign extended value
1639 ///
1640 /// This method attempts to return the value of this APInt as a sign extended
1641 /// int64_t. The bit width must be <= 64 or the value must fit within an
1642 /// int64_t. Otherwise an assertion will result.
1643 int64_t getSExtValue() const {
1644 if (isSingleWord())
1645 return SignExtend64(U.VAL, BitWidth);
1646 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")(static_cast <bool> (getMinSignedBits() <= 64 &&
"Too many bits for int64_t") ? void (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/APInt.h"
, 1646, __extension__ __PRETTY_FUNCTION__))
;
1647 return int64_t(U.pVal[0]);
1648 }
1649
1650 /// Get bits required for string value.
1651 ///
1652 /// This method determines how many bits are required to hold the APInt
1653 /// equivalent of the string given by \p str.
1654 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1655
1656 /// The APInt version of the countLeadingZeros functions in
1657 /// MathExtras.h.
1658 ///
1659 /// It counts the number of zeros from the most significant bit to the first
1660 /// one bit.
1661 ///
1662 /// \returns BitWidth if the value is zero, otherwise returns the number of
1663 /// zeros from the most significant bit to the first one bits.
1664 unsigned countLeadingZeros() const {
1665 if (isSingleWord()) {
1666 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1667 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1668 }
1669 return countLeadingZerosSlowCase();
1670 }
1671
1672 /// Count the number of leading one bits.
1673 ///
1674 /// This function is an APInt version of the countLeadingOnes
1675 /// functions in MathExtras.h. It counts the number of ones from the most
1676 /// significant bit to the first zero bit.
1677 ///
1678 /// \returns 0 if the high order bit is not set, otherwise returns the number
1679 /// of 1 bits from the most significant to the least
1680 unsigned countLeadingOnes() const {
1681 if (isSingleWord())
1682 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1683 return countLeadingOnesSlowCase();
1684 }
1685
1686 /// Computes the number of leading bits of this APInt that are equal to its
1687 /// sign bit.
1688 unsigned getNumSignBits() const {
1689 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1690 }
1691
1692 /// Count the number of trailing zero bits.
1693 ///
1694 /// This function is an APInt version of the countTrailingZeros
1695 /// functions in MathExtras.h. It counts the number of zeros from the least
1696 /// significant bit to the first set bit.
1697 ///
1698 /// \returns BitWidth if the value is zero, otherwise returns the number of
1699 /// zeros from the least significant bit to the first one bit.
1700 unsigned countTrailingZeros() const {
1701 if (isSingleWord()) {
1702 unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL);
1703 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1704 }
1705 return countTrailingZerosSlowCase();
1706 }
1707
1708 /// Count the number of trailing one bits.
1709 ///
1710 /// This function is an APInt version of the countTrailingOnes
1711 /// functions in MathExtras.h. It counts the number of ones from the least
1712 /// significant bit to the first zero bit.
1713 ///
1714 /// \returns BitWidth if the value is all ones, otherwise returns the number
1715 /// of ones from the least significant bit to the first zero bit.
1716 unsigned countTrailingOnes() const {
1717 if (isSingleWord())
1718 return llvm::countTrailingOnes(U.VAL);
1719 return countTrailingOnesSlowCase();
1720 }
1721
1722 /// Count the number of bits set.
1723 ///
1724 /// This function is an APInt version of the countPopulation functions
1725 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1726 ///
1727 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1728 unsigned countPopulation() const {
1729 if (isSingleWord())
1730 return llvm::countPopulation(U.VAL);
1731 return countPopulationSlowCase();
1732 }
1733
1734 /// @}
1735 /// \name Conversion Functions
1736 /// @{
1737 void print(raw_ostream &OS, bool isSigned) const;
1738
1739 /// Converts an APInt to a string and append it to Str. Str is commonly a
1740 /// SmallString.
1741 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1742 bool formatAsCLiteral = false) const;
1743
1744 /// Considers the APInt to be unsigned and converts it into a string in the
1745 /// radix given. The radix can be 2, 8, 10 16, or 36.
1746 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1747 toString(Str, Radix, false, false);
1748 }
1749
1750 /// Considers the APInt to be signed and converts it into a string in the
1751 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1752 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1753 toString(Str, Radix, true, false);
1754 }
1755
1756 /// \returns a byte-swapped representation of this APInt Value.
1757 APInt byteSwap() const;
1758
1759 /// \returns the value with the bit representation reversed of this APInt
1760 /// Value.
1761 APInt reverseBits() const;
1762
1763 /// Converts this APInt to a double value.
1764 double roundToDouble(bool isSigned) const;
1765
1766 /// Converts this unsigned APInt to a double value.
1767 double roundToDouble() const { return roundToDouble(false); }
1768
1769 /// Converts this signed APInt to a double value.
1770 double signedRoundToDouble() const { return roundToDouble(true); }
1771
1772 /// Converts APInt bits to a double
1773 ///
1774 /// The conversion does not do a translation from integer to double, it just
1775 /// re-interprets the bits as a double. Note that it is valid to do this on
1776 /// any bit width. Exactly 64 bits will be translated.
1777 double bitsToDouble() const {
1778 return BitsToDouble(getWord(0));
1779 }
1780
1781 /// Converts APInt bits to a float
1782 ///
1783 /// The conversion does not do a translation from integer to float, it just
1784 /// re-interprets the bits as a float. Note that it is valid to do this on
1785 /// any bit width. Exactly 32 bits will be translated.
1786 float bitsToFloat() const {
1787 return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1788 }
1789
1790 /// Converts a double to APInt bits.
1791 ///
1792 /// The conversion does not do a translation from double to integer, it just
1793 /// re-interprets the bits of the double.
1794 static APInt doubleToBits(double V) {
1795 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1796 }
1797
1798 /// Converts a float to APInt bits.
1799 ///
1800 /// The conversion does not do a translation from float to integer, it just
1801 /// re-interprets the bits of the float.
1802 static APInt floatToBits(float V) {
1803 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1804 }
1805
1806 /// @}
1807 /// \name Mathematics Operations
1808 /// @{
1809
1810 /// \returns the floor log base 2 of this APInt.
1811 unsigned logBase2() const { return getActiveBits() - 1; }
1812
1813 /// \returns the ceil log base 2 of this APInt.
1814 unsigned ceilLogBase2() const {
1815 APInt temp(*this);
1816 --temp;
1817 return temp.getActiveBits();
1818 }
1819
1820 /// \returns the nearest log base 2 of this APInt. Ties round up.
1821 ///
1822 /// NOTE: When we have a BitWidth of 1, we define:
1823 ///
1824 /// log2(0) = UINT32_MAX
1825 /// log2(1) = 0
1826 ///
1827 /// to get around any mathematical concerns resulting from
1828 /// referencing 2 in a space where 2 does no exist.
1829 unsigned nearestLogBase2() const {
1830 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1831 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1832 // UINT32_MAX.
1833 if (BitWidth == 1)
1834 return U.VAL - 1;
1835
1836 // Handle the zero case.
1837 if (isNullValue())
1838 return UINT32_MAX(4294967295U);
1839
1840 // The non-zero case is handled by computing:
1841 //
1842 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1843 //
1844 // where x[i] is referring to the value of the ith bit of x.
1845 unsigned lg = logBase2();
1846 return lg + unsigned((*this)[lg - 1]);
1847 }
1848
1849 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1850 /// otherwise
1851 int32_t exactLogBase2() const {
1852 if (!isPowerOf2())
1853 return -1;
1854 return logBase2();
1855 }
1856
1857 /// Compute the square root
1858 APInt sqrt() const;
1859
1860 /// Get the absolute value;
1861 ///
1862 /// If *this is < 0 then return -(*this), otherwise *this;
1863 APInt abs() const {
1864 if (isNegative())
1865 return -(*this);
1866 return *this;
1867 }
1868
1869 /// \returns the multiplicative inverse for a given modulo.
1870 APInt multiplicativeInverse(const APInt &modulo) const;
1871
1872 /// @}
1873 /// \name Support for division by constant
1874 /// @{
1875
1876 /// Calculate the magic number for signed division by a constant.
1877 struct ms;
1878 ms magic() const;
1879
1880 /// Calculate the magic number for unsigned division by a constant.
1881 struct mu;
1882 mu magicu(unsigned LeadingZeros = 0) const;
1883
1884 /// @}
1885 /// \name Building-block Operations for APInt and APFloat
1886 /// @{
1887
1888 // These building block operations operate on a representation of arbitrary
1889 // precision, two's-complement, bignum integer values. They should be
1890 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1891 // generally a pointer to the base of an array of integer parts, representing
1892 // an unsigned bignum, and a count of how many parts there are.
1893
1894 /// Sets the least significant part of a bignum to the input value, and zeroes
1895 /// out higher parts.
1896 static void tcSet(WordType *, WordType, unsigned);
1897
1898 /// Assign one bignum to another.
1899 static void tcAssign(WordType *, const WordType *, unsigned);
1900
1901 /// Returns true if a bignum is zero, false otherwise.
1902 static bool tcIsZero(const WordType *, unsigned);
1903
1904 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1905 static int tcExtractBit(const WordType *, unsigned bit);
1906
1907 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1908 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1909 /// significant bit of DST. All high bits above srcBITS in DST are
1910 /// zero-filled.
1911 static void tcExtract(WordType *, unsigned dstCount,
1912 const WordType *, unsigned srcBits,
1913 unsigned srcLSB);
1914
1915 /// Set the given bit of a bignum. Zero-based.
1916 static void tcSetBit(WordType *, unsigned bit);
1917
1918 /// Clear the given bit of a bignum. Zero-based.
1919 static void tcClearBit(WordType *, unsigned bit);
1920
1921 /// Returns the bit number of the least or most significant set bit of a
1922 /// number. If the input number has no bits set -1U is returned.
1923 static unsigned tcLSB(const WordType *, unsigned n);
1924 static unsigned tcMSB(const WordType *parts, unsigned n);
1925
1926 /// Negate a bignum in-place.
1927 static void tcNegate(WordType *, unsigned);
1928
1929 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1930 static WordType tcAdd(WordType *, const WordType *,
1931 WordType carry, unsigned);
1932 /// DST += RHS. Returns the carry flag.
1933 static WordType tcAddPart(WordType *, WordType, unsigned);
1934
1935 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1936 static WordType tcSubtract(WordType *, const WordType *,
1937 WordType carry, unsigned);
1938 /// DST -= RHS. Returns the carry flag.
1939 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1940
1941 /// DST += SRC * MULTIPLIER + PART if add is true
1942 /// DST = SRC * MULTIPLIER + PART if add is false
1943 ///
1944 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1945 /// start at the same point, i.e. DST == SRC.
1946 ///
1947 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1948 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1949 /// result, and if all of the omitted higher parts were zero return zero,
1950 /// otherwise overflow occurred and return one.
1951 static int tcMultiplyPart(WordType *dst, const WordType *src,
1952 WordType multiplier, WordType carry,
1953 unsigned srcParts, unsigned dstParts,
1954 bool add);
1955
1956 /// DST = LHS * RHS, where DST has the same width as the operands and is
1957 /// filled with the least significant parts of the result. Returns one if
1958 /// overflow occurred, otherwise zero. DST must be disjoint from both
1959 /// operands.
1960 static int tcMultiply(WordType *, const WordType *, const WordType *,
1961 unsigned);
1962
1963 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1964 /// operands. No overflow occurs. DST must be disjoint from both operands.
1965 static void tcFullMultiply(WordType *, const WordType *,
1966 const WordType *, unsigned, unsigned);
1967
1968 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1969 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1970 /// REMAINDER to the remainder, return zero. i.e.
1971 ///
1972 /// OLD_LHS = RHS * LHS + REMAINDER
1973 ///
1974 /// SCRATCH is a bignum of the same size as the operands and result for use by
1975 /// the routine; its contents need not be initialized and are destroyed. LHS,
1976 /// REMAINDER and SCRATCH must be distinct.
1977 static int tcDivide(WordType *lhs, const WordType *rhs,
1978 WordType *remainder, WordType *scratch,
1979 unsigned parts);
1980
1981 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1982 /// restrictions on Count.
1983 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1984
1985 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1986 /// restrictions on Count.
1987 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1988
1989 /// The obvious AND, OR and XOR and complement operations.
1990 static void tcAnd(WordType *, const WordType *, unsigned);
1991 static void tcOr(WordType *, const WordType *, unsigned);
1992 static void tcXor(WordType *, const WordType *, unsigned);
1993 static void tcComplement(WordType *, unsigned);
1994
1995 /// Comparison (unsigned) of two bignums.
1996 static int tcCompare(const WordType *, const WordType *, unsigned);
1997
1998 /// Increment a bignum in-place. Return the carry flag.
1999 static WordType tcIncrement(WordType *dst, unsigned parts) {
2000 return tcAddPart(dst, 1, parts);
2001 }
2002
2003 /// Decrement a bignum in-place. Return the borrow flag.
2004 static WordType tcDecrement(WordType *dst, unsigned parts) {
2005 return tcSubtractPart(dst, 1, parts);
2006 }
2007
2008 /// Set the least significant BITS and clear the rest.
2009 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
2010
2011 /// debug method
2012 void dump() const;
2013
2014 /// @}
2015};
2016
2017/// Magic data for optimising signed division by a constant.
2018struct APInt::ms {
2019 APInt m; ///< magic number
2020 unsigned s; ///< shift amount
2021};
2022
2023/// Magic data for optimising unsigned division by a constant.
2024struct APInt::mu {
2025 APInt m; ///< magic number
2026 bool a; ///< add indicator
2027 unsigned s; ///< shift amount
2028};
2029
2030inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2031
2032inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2033
2034/// Unary bitwise complement operator.
2035///
2036/// \returns an APInt that is the bitwise complement of \p v.
2037inline APInt operator~(APInt v) {
2038 v.flipAllBits();
2039 return v;
2040}
2041
2042inline APInt operator&(APInt a, const APInt &b) {
2043 a &= b;
2044 return a;
2045}
2046
2047inline APInt operator&(const APInt &a, APInt &&b) {
2048 b &= a;
2049 return std::move(b);
2050}
2051
2052inline APInt operator&(APInt a, uint64_t RHS) {
2053 a &= RHS;
2054 return a;
2055}
2056
2057inline APInt operator&(uint64_t LHS, APInt b) {
2058 b &= LHS;
2059 return b;
2060}
2061
2062inline APInt operator|(APInt a, const APInt &b) {
2063 a |= b;
2064 return a;
2065}
2066
2067inline APInt operator|(const APInt &a, APInt &&b) {
2068 b |= a;
2069 return std::move(b);
2070}
2071
2072inline APInt operator|(APInt a, uint64_t RHS) {
2073 a |= RHS;
2074 return a;
2075}
2076
2077inline APInt operator|(uint64_t LHS, APInt b) {
2078 b |= LHS;
2079 return b;
2080}
2081
2082inline APInt operator^(APInt a, const APInt &b) {
2083 a ^= b;
2084 return a;
2085}
2086
2087inline APInt operator^(const APInt &a, APInt &&b) {
2088 b ^= a;
2089 return std::move(b);
2090}
2091
2092inline APInt operator^(APInt a, uint64_t RHS) {
2093 a ^= RHS;
2094 return a;
2095}
2096
2097inline APInt operator^(uint64_t LHS, APInt b) {
2098 b ^= LHS;
2099 return b;
2100}
2101
2102inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2103 I.print(OS, true);
2104 return OS;
2105}
2106
2107inline APInt operator-(APInt v) {
2108 v.negate();
2109 return v;
2110}
2111
2112inline APInt operator+(APInt a, const APInt &b) {
2113 a += b;
2114 return a;
2115}
2116
2117inline APInt operator+(const APInt &a, APInt &&b) {
2118 b += a;
2119 return std::move(b);
2120}
2121
2122inline APInt operator+(APInt a, uint64_t RHS) {
2123 a += RHS;
2124 return a;
2125}
2126
2127inline APInt operator+(uint64_t LHS, APInt b) {
2128 b += LHS;
2129 return b;
2130}
2131
2132inline APInt operator-(APInt a, const APInt &b) {
2133 a -= b;
2134 return a;
2135}
2136
2137inline APInt operator-(const APInt &a, APInt &&b) {
2138 b.negate();
2139 b += a;
2140 return std::move(b);
2141}
2142
2143inline APInt operator-(APInt a, uint64_t RHS) {
2144 a -= RHS;
2145 return a;
2146}
2147
2148inline APInt operator-(uint64_t LHS, APInt b) {
2149 b.negate();
2150 b += LHS;
2151 return b;
2152}
2153
2154inline APInt operator*(APInt a, uint64_t RHS) {
2155 a *= RHS;
2156 return a;
2157}
2158
2159inline APInt operator*(uint64_t LHS, APInt b) {
2160 b *= LHS;
2161 return b;
2162}
2163
2164
2165namespace APIntOps {
2166
2167/// Determine the smaller of two APInts considered to be signed.
2168inline const APInt &smin(const APInt &A, const APInt &B) {
2169 return A.slt(B) ? A : B;
2170}
2171
2172/// Determine the larger of two APInts considered to be signed.
2173inline const APInt &smax(const APInt &A, const APInt &B) {
2174 return A.sgt(B) ? A : B;
2175}
2176
2177/// Determine the smaller of two APInts considered to be unsigned.
2178inline const APInt &umin(const APInt &A, const APInt &B) {
2179 return A.ult(B) ? A : B;
2180}
2181
2182/// Determine the larger of two APInts considered to be unsigned.
2183inline const APInt &umax(const APInt &A, const APInt &B) {
2184 return A.ugt(B) ? A : B;
2185}
2186
2187/// Compute GCD of two unsigned APInt values.
2188///
2189/// This function returns the greatest common divisor of the two APInt values
2190/// using Stein's algorithm.
2191///
2192/// \returns the greatest common divisor of A and B.
2193APInt GreatestCommonDivisor(APInt A, APInt B);
2194
2195/// Converts the given APInt to a double value.
2196///
2197/// Treats the APInt as an unsigned value for conversion purposes.
2198inline double RoundAPIntToDouble(const APInt &APIVal) {
2199 return APIVal.roundToDouble();
2200}
2201
2202/// Converts the given APInt to a double value.
2203///
2204/// Treats the APInt as a signed value for conversion purposes.
2205inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2206 return APIVal.signedRoundToDouble();
2207}
2208
2209/// Converts the given APInt to a float value.
2210inline float RoundAPIntToFloat(const APInt &APIVal) {
2211 return float(RoundAPIntToDouble(APIVal));
2212}
2213
2214/// Converts the given APInt to a float value.
2215///
2216/// Treats the APInt as a signed value for conversion purposes.
2217inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2218 return float(APIVal.signedRoundToDouble());
2219}
2220
2221/// Converts the given double value into a APInt.
2222///
2223/// This function convert a double value to an APInt value.
2224APInt RoundDoubleToAPInt(double Double, unsigned width);
2225
2226/// Converts a float value into a APInt.
2227///
2228/// Converts a float value into an APInt value.
2229inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2230 return RoundDoubleToAPInt(double(Float), width);
2231}
2232
2233/// Return A unsign-divided by B, rounded by the given rounding mode.
2234APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2235
2236/// Return A sign-divided by B, rounded by the given rounding mode.
2237APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2238
2239/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2240/// (e.g. 32 for i32).
2241/// This function finds the smallest number n, such that
2242/// (a) n >= 0 and q(n) = 0, or
2243/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2244/// integers, belong to two different intervals [Rk, Rk+R),
2245/// where R = 2^BW, and k is an integer.
2246/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2247/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2248/// subtraction (treated as addition of negated numbers) would always
2249/// count as an overflow, but here we want to allow values to decrease
2250/// and increase as long as they are within the same interval.
2251/// Specifically, adding of two negative numbers should not cause an
2252/// overflow (as long as the magnitude does not exceed the bit width).
2253/// On the other hand, given a positive number, adding a negative
2254/// number to it can give a negative result, which would cause the
2255/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2256/// treated as a special case of an overflow.
2257///
2258/// This function returns None if after finding k that minimizes the
2259/// positive solution to q(n) = kR, both solutions are contained between
2260/// two consecutive integers.
2261///
2262/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2263/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2264/// virtue of *signed* overflow. This function will *not* find such an n,
2265/// however it may find a value of n satisfying the inequalities due to
2266/// an *unsigned* overflow (if the values are treated as unsigned).
2267/// To find a solution for a signed overflow, treat it as a problem of
2268/// finding an unsigned overflow with a range with of BW-1.
2269///
2270/// The returned value may have a different bit width from the input
2271/// coefficients.
2272Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2273 unsigned RangeWidth);
2274
2275/// Compare two values, and if they are different, return the position of the
2276/// most significant bit that is different in the values.
2277Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2278 const APInt &B);
2279
2280} // End of APIntOps namespace
2281
2282// See friend declaration above. This additional declaration is required in
2283// order to compile LLVM with IBM xlC compiler.
2284hash_code hash_value(const APInt &Arg);
2285
2286/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2287/// with the integer held in IntVal.
2288void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2289
2290/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2291/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2292void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2293
2294/// Provide DenseMapInfo for APInt.
2295template <> struct DenseMapInfo<APInt> {
2296 static inline APInt getEmptyKey() {
2297 APInt V(nullptr, 0);
2298 V.U.VAL = 0;
2299 return V;
2300 }
2301
2302 static inline APInt getTombstoneKey() {
2303 APInt V(nullptr, 0);
2304 V.U.VAL = 1;
2305 return V;
2306 }
2307
2308 static unsigned getHashValue(const APInt &Key);
2309
2310 static bool isEqual(const APInt &LHS, const APInt &RHS) {
2311 return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2312 }
2313};
2314
2315} // namespace llvm
2316
2317#endif