Bug Summary

File:include/llvm/IR/PatternMatch.h
Warning:line 163, column 9
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ValueTracking.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Analysis -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp

1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/ValueTracking.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/AssumptionCache.h"
28#include "llvm/Analysis/GuardUtils.h"
29#include "llvm/Analysis/InstructionSimplify.h"
30#include "llvm/Analysis/Loads.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/OptimizationRemarkEmitter.h"
33#include "llvm/Analysis/TargetLibraryInfo.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/Attributes.h"
36#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/CallSite.h"
38#include "llvm/IR/Constant.h"
39#include "llvm/IR/ConstantRange.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/DiagnosticInfo.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/GetElementPtrTypeIterator.h"
47#include "llvm/IR/GlobalAlias.h"
48#include "llvm/IR/GlobalValue.h"
49#include "llvm/IR/GlobalVariable.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
54#include "llvm/IR/Intrinsics.h"
55#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
57#include "llvm/IR/Module.h"
58#include "llvm/IR/Operator.h"
59#include "llvm/IR/PatternMatch.h"
60#include "llvm/IR/Type.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/ErrorHandling.h"
67#include "llvm/Support/KnownBits.h"
68#include "llvm/Support/MathExtras.h"
69#include <algorithm>
70#include <array>
71#include <cassert>
72#include <cstdint>
73#include <iterator>
74#include <utility>
75
76using namespace llvm;
77using namespace llvm::PatternMatch;
78
79const unsigned MaxDepth = 6;
80
81// Controls the number of uses of the value searched for possible
82// dominating comparisons.
83static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
84 cl::Hidden, cl::init(20));
85
86/// Returns the bitwidth of the given scalar or pointer type. For vector types,
87/// returns the element type's bitwidth.
88static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
89 if (unsigned BitWidth = Ty->getScalarSizeInBits())
90 return BitWidth;
91
92 return DL.getIndexTypeSizeInBits(Ty);
93}
94
95namespace {
96
97// Simplifying using an assume can only be done in a particular control-flow
98// context (the context instruction provides that context). If an assume and
99// the context instruction are not in the same block then the DT helps in
100// figuring out if we can use it.
101struct Query {
102 const DataLayout &DL;
103 AssumptionCache *AC;
104 const Instruction *CxtI;
105 const DominatorTree *DT;
106
107 // Unlike the other analyses, this may be a nullptr because not all clients
108 // provide it currently.
109 OptimizationRemarkEmitter *ORE;
110
111 /// Set of assumptions that should be excluded from further queries.
112 /// This is because of the potential for mutual recursion to cause
113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114 /// classic case of this is assume(x = y), which will attempt to determine
115 /// bits in x from bits in y, which will attempt to determine bits in y from
116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118 /// (all of which can call computeKnownBits), and so on.
119 std::array<const Value *, MaxDepth> Excluded;
120
121 /// If true, it is safe to use metadata during simplification.
122 InstrInfoQuery IIQ;
123
124 unsigned NumExcluded = 0;
125
126 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
127 const DominatorTree *DT, bool UseInstrInfo,
128 OptimizationRemarkEmitter *ORE = nullptr)
129 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
130
131 Query(const Query &Q, const Value *NewExcl)
132 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
133 NumExcluded(Q.NumExcluded) {
134 Excluded = Q.Excluded;
135 Excluded[NumExcluded++] = NewExcl;
136 assert(NumExcluded <= Excluded.size())((NumExcluded <= Excluded.size()) ? static_cast<void>
(0) : __assert_fail ("NumExcluded <= Excluded.size()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 136, __PRETTY_FUNCTION__))
;
137 }
138
139 bool isExcluded(const Value *Value) const {
140 if (NumExcluded == 0)
141 return false;
142 auto End = Excluded.begin() + NumExcluded;
143 return std::find(Excluded.begin(), End, Value) != End;
144 }
145};
146
147} // end anonymous namespace
148
149// Given the provided Value and, potentially, a context instruction, return
150// the preferred context instruction (if any).
151static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
152 // If we've been provided with a context instruction, then use that (provided
153 // it has been inserted).
154 if (CxtI && CxtI->getParent())
155 return CxtI;
156
157 // If the value is really an already-inserted instruction, then use that.
158 CxtI = dyn_cast<Instruction>(V);
159 if (CxtI && CxtI->getParent())
160 return CxtI;
161
162 return nullptr;
163}
164
165static void computeKnownBits(const Value *V, KnownBits &Known,
166 unsigned Depth, const Query &Q);
167
168void llvm::computeKnownBits(const Value *V, KnownBits &Known,
169 const DataLayout &DL, unsigned Depth,
170 AssumptionCache *AC, const Instruction *CxtI,
171 const DominatorTree *DT,
172 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
173 ::computeKnownBits(V, Known, Depth,
174 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
175}
176
177static KnownBits computeKnownBits(const Value *V, unsigned Depth,
178 const Query &Q);
179
180KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
181 unsigned Depth, AssumptionCache *AC,
182 const Instruction *CxtI,
183 const DominatorTree *DT,
184 OptimizationRemarkEmitter *ORE,
185 bool UseInstrInfo) {
186 return ::computeKnownBits(
187 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
188}
189
190bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
191 const DataLayout &DL, AssumptionCache *AC,
192 const Instruction *CxtI, const DominatorTree *DT,
193 bool UseInstrInfo) {
194 assert(LHS->getType() == RHS->getType() &&((LHS->getType() == RHS->getType() && "LHS and RHS should have the same type"
) ? static_cast<void> (0) : __assert_fail ("LHS->getType() == RHS->getType() && \"LHS and RHS should have the same type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 195, __PRETTY_FUNCTION__))
195 "LHS and RHS should have the same type")((LHS->getType() == RHS->getType() && "LHS and RHS should have the same type"
) ? static_cast<void> (0) : __assert_fail ("LHS->getType() == RHS->getType() && \"LHS and RHS should have the same type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 195, __PRETTY_FUNCTION__))
;
196 assert(LHS->getType()->isIntOrIntVectorTy() &&((LHS->getType()->isIntOrIntVectorTy() && "LHS and RHS should be integers"
) ? static_cast<void> (0) : __assert_fail ("LHS->getType()->isIntOrIntVectorTy() && \"LHS and RHS should be integers\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 197, __PRETTY_FUNCTION__))
197 "LHS and RHS should be integers")((LHS->getType()->isIntOrIntVectorTy() && "LHS and RHS should be integers"
) ? static_cast<void> (0) : __assert_fail ("LHS->getType()->isIntOrIntVectorTy() && \"LHS and RHS should be integers\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 197, __PRETTY_FUNCTION__))
;
198 // Look for an inverted mask: (X & ~M) op (Y & M).
199 Value *M;
200 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
201 match(RHS, m_c_And(m_Specific(M), m_Value())))
202 return true;
203 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
204 match(LHS, m_c_And(m_Specific(M), m_Value())))
205 return true;
206 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
207 KnownBits LHSKnown(IT->getBitWidth());
208 KnownBits RHSKnown(IT->getBitWidth());
209 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
210 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
211 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
212}
213
214bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
215 for (const User *U : CxtI->users()) {
216 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
217 if (IC->isEquality())
218 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
219 if (C->isNullValue())
220 continue;
221 return false;
222 }
223 return true;
224}
225
226static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
227 const Query &Q);
228
229bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
230 bool OrZero, unsigned Depth,
231 AssumptionCache *AC, const Instruction *CxtI,
232 const DominatorTree *DT, bool UseInstrInfo) {
233 return ::isKnownToBeAPowerOfTwo(
234 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
235}
236
237static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
238
239bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
240 AssumptionCache *AC, const Instruction *CxtI,
241 const DominatorTree *DT, bool UseInstrInfo) {
242 return ::isKnownNonZero(V, Depth,
243 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
244}
245
246bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
247 unsigned Depth, AssumptionCache *AC,
248 const Instruction *CxtI, const DominatorTree *DT,
249 bool UseInstrInfo) {
250 KnownBits Known =
251 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
252 return Known.isNonNegative();
253}
254
255bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
256 AssumptionCache *AC, const Instruction *CxtI,
257 const DominatorTree *DT, bool UseInstrInfo) {
258 if (auto *CI = dyn_cast<ConstantInt>(V))
259 return CI->getValue().isStrictlyPositive();
260
261 // TODO: We'd doing two recursive queries here. We should factor this such
262 // that only a single query is needed.
263 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
264 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
265}
266
267bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
268 AssumptionCache *AC, const Instruction *CxtI,
269 const DominatorTree *DT, bool UseInstrInfo) {
270 KnownBits Known =
271 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
272 return Known.isNegative();
273}
274
275static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
276
277bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
278 const DataLayout &DL, AssumptionCache *AC,
279 const Instruction *CxtI, const DominatorTree *DT,
280 bool UseInstrInfo) {
281 return ::isKnownNonEqual(V1, V2,
282 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
283 UseInstrInfo, /*ORE=*/nullptr));
284}
285
286static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
287 const Query &Q);
288
289bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
290 const DataLayout &DL, unsigned Depth,
291 AssumptionCache *AC, const Instruction *CxtI,
292 const DominatorTree *DT, bool UseInstrInfo) {
293 return ::MaskedValueIsZero(
294 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
295}
296
297static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
298 const Query &Q);
299
300unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
301 unsigned Depth, AssumptionCache *AC,
302 const Instruction *CxtI,
303 const DominatorTree *DT, bool UseInstrInfo) {
304 return ::ComputeNumSignBits(
305 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
306}
307
308static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
309 bool NSW,
310 KnownBits &KnownOut, KnownBits &Known2,
311 unsigned Depth, const Query &Q) {
312 unsigned BitWidth = KnownOut.getBitWidth();
313
314 // If an initial sequence of bits in the result is not needed, the
315 // corresponding bits in the operands are not needed.
316 KnownBits LHSKnown(BitWidth);
317 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
318 computeKnownBits(Op1, Known2, Depth + 1, Q);
319
320 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
321}
322
323static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
324 KnownBits &Known, KnownBits &Known2,
325 unsigned Depth, const Query &Q) {
326 unsigned BitWidth = Known.getBitWidth();
327 computeKnownBits(Op1, Known, Depth + 1, Q);
328 computeKnownBits(Op0, Known2, Depth + 1, Q);
329
330 bool isKnownNegative = false;
331 bool isKnownNonNegative = false;
332 // If the multiplication is known not to overflow, compute the sign bit.
333 if (NSW) {
334 if (Op0 == Op1) {
335 // The product of a number with itself is non-negative.
336 isKnownNonNegative = true;
337 } else {
338 bool isKnownNonNegativeOp1 = Known.isNonNegative();
339 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
340 bool isKnownNegativeOp1 = Known.isNegative();
341 bool isKnownNegativeOp0 = Known2.isNegative();
342 // The product of two numbers with the same sign is non-negative.
343 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
344 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
345 // The product of a negative number and a non-negative number is either
346 // negative or zero.
347 if (!isKnownNonNegative)
348 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
349 isKnownNonZero(Op0, Depth, Q)) ||
350 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
351 isKnownNonZero(Op1, Depth, Q));
352 }
353 }
354
355 assert(!Known.hasConflict() && !Known2.hasConflict())((!Known.hasConflict() && !Known2.hasConflict()) ? static_cast
<void> (0) : __assert_fail ("!Known.hasConflict() && !Known2.hasConflict()"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 355, __PRETTY_FUNCTION__))
;
356 // Compute a conservative estimate for high known-0 bits.
357 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
358 Known2.countMinLeadingZeros(),
359 BitWidth) - BitWidth;
360 LeadZ = std::min(LeadZ, BitWidth);
361
362 // The result of the bottom bits of an integer multiply can be
363 // inferred by looking at the bottom bits of both operands and
364 // multiplying them together.
365 // We can infer at least the minimum number of known trailing bits
366 // of both operands. Depending on number of trailing zeros, we can
367 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
368 // a and b are divisible by m and n respectively.
369 // We then calculate how many of those bits are inferrable and set
370 // the output. For example, the i8 mul:
371 // a = XXXX1100 (12)
372 // b = XXXX1110 (14)
373 // We know the bottom 3 bits are zero since the first can be divided by
374 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
375 // Applying the multiplication to the trimmed arguments gets:
376 // XX11 (3)
377 // X111 (7)
378 // -------
379 // XX11
380 // XX11
381 // XX11
382 // XX11
383 // -------
384 // XXXXX01
385 // Which allows us to infer the 2 LSBs. Since we're multiplying the result
386 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
387 // The proof for this can be described as:
388 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
389 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
390 // umin(countTrailingZeros(C2), C6) +
391 // umin(C5 - umin(countTrailingZeros(C1), C5),
392 // C6 - umin(countTrailingZeros(C2), C6)))) - 1)
393 // %aa = shl i8 %a, C5
394 // %bb = shl i8 %b, C6
395 // %aaa = or i8 %aa, C1
396 // %bbb = or i8 %bb, C2
397 // %mul = mul i8 %aaa, %bbb
398 // %mask = and i8 %mul, C7
399 // =>
400 // %mask = i8 ((C1*C2)&C7)
401 // Where C5, C6 describe the known bits of %a, %b
402 // C1, C2 describe the known bottom bits of %a, %b.
403 // C7 describes the mask of the known bits of the result.
404 APInt Bottom0 = Known.One;
405 APInt Bottom1 = Known2.One;
406
407 // How many times we'd be able to divide each argument by 2 (shr by 1).
408 // This gives us the number of trailing zeros on the multiplication result.
409 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
410 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
411 unsigned TrailZero0 = Known.countMinTrailingZeros();
412 unsigned TrailZero1 = Known2.countMinTrailingZeros();
413 unsigned TrailZ = TrailZero0 + TrailZero1;
414
415 // Figure out the fewest known-bits operand.
416 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
417 TrailBitsKnown1 - TrailZero1);
418 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
419
420 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
421 Bottom1.getLoBits(TrailBitsKnown1);
422
423 Known.resetAll();
424 Known.Zero.setHighBits(LeadZ);
425 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
426 Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
427
428 // Only make use of no-wrap flags if we failed to compute the sign bit
429 // directly. This matters if the multiplication always overflows, in
430 // which case we prefer to follow the result of the direct computation,
431 // though as the program is invoking undefined behaviour we can choose
432 // whatever we like here.
433 if (isKnownNonNegative && !Known.isNegative())
434 Known.makeNonNegative();
435 else if (isKnownNegative && !Known.isNonNegative())
436 Known.makeNegative();
437}
438
439void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
440 KnownBits &Known) {
441 unsigned BitWidth = Known.getBitWidth();
442 unsigned NumRanges = Ranges.getNumOperands() / 2;
443 assert(NumRanges >= 1)((NumRanges >= 1) ? static_cast<void> (0) : __assert_fail
("NumRanges >= 1", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 443, __PRETTY_FUNCTION__))
;
444
445 Known.Zero.setAllBits();
446 Known.One.setAllBits();
447
448 for (unsigned i = 0; i < NumRanges; ++i) {
449 ConstantInt *Lower =
450 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
451 ConstantInt *Upper =
452 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
453 ConstantRange Range(Lower->getValue(), Upper->getValue());
454
455 // The first CommonPrefixBits of all values in Range are equal.
456 unsigned CommonPrefixBits =
457 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
458
459 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
460 Known.One &= Range.getUnsignedMax() & Mask;
461 Known.Zero &= ~Range.getUnsignedMax() & Mask;
462 }
463}
464
465static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
466 SmallVector<const Value *, 16> WorkSet(1, I);
467 SmallPtrSet<const Value *, 32> Visited;
468 SmallPtrSet<const Value *, 16> EphValues;
469
470 // The instruction defining an assumption's condition itself is always
471 // considered ephemeral to that assumption (even if it has other
472 // non-ephemeral users). See r246696's test case for an example.
473 if (is_contained(I->operands(), E))
474 return true;
475
476 while (!WorkSet.empty()) {
477 const Value *V = WorkSet.pop_back_val();
478 if (!Visited.insert(V).second)
479 continue;
480
481 // If all uses of this value are ephemeral, then so is this value.
482 if (llvm::all_of(V->users(), [&](const User *U) {
483 return EphValues.count(U);
484 })) {
485 if (V == E)
486 return true;
487
488 if (V == I || isSafeToSpeculativelyExecute(V)) {
489 EphValues.insert(V);
490 if (const User *U = dyn_cast<User>(V))
491 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
492 J != JE; ++J)
493 WorkSet.push_back(*J);
494 }
495 }
496 }
497
498 return false;
499}
500
501// Is this an intrinsic that cannot be speculated but also cannot trap?
502bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
503 if (const CallInst *CI = dyn_cast<CallInst>(I))
504 if (Function *F = CI->getCalledFunction())
505 switch (F->getIntrinsicID()) {
506 default: break;
507 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
508 case Intrinsic::assume:
509 case Intrinsic::sideeffect:
510 case Intrinsic::dbg_declare:
511 case Intrinsic::dbg_value:
512 case Intrinsic::dbg_label:
513 case Intrinsic::invariant_start:
514 case Intrinsic::invariant_end:
515 case Intrinsic::lifetime_start:
516 case Intrinsic::lifetime_end:
517 case Intrinsic::objectsize:
518 case Intrinsic::ptr_annotation:
519 case Intrinsic::var_annotation:
520 return true;
521 }
522
523 return false;
524}
525
526bool llvm::isValidAssumeForContext(const Instruction *Inv,
527 const Instruction *CxtI,
528 const DominatorTree *DT) {
529 // There are two restrictions on the use of an assume:
530 // 1. The assume must dominate the context (or the control flow must
531 // reach the assume whenever it reaches the context).
532 // 2. The context must not be in the assume's set of ephemeral values
533 // (otherwise we will use the assume to prove that the condition
534 // feeding the assume is trivially true, thus causing the removal of
535 // the assume).
536
537 if (DT) {
538 if (DT->dominates(Inv, CxtI))
539 return true;
540 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
541 // We don't have a DT, but this trivially dominates.
542 return true;
543 }
544
545 // With or without a DT, the only remaining case we will check is if the
546 // instructions are in the same BB. Give up if that is not the case.
547 if (Inv->getParent() != CxtI->getParent())
548 return false;
549
550 // If we have a dom tree, then we now know that the assume doesn't dominate
551 // the other instruction. If we don't have a dom tree then we can check if
552 // the assume is first in the BB.
553 if (!DT) {
554 // Search forward from the assume until we reach the context (or the end
555 // of the block); the common case is that the assume will come first.
556 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
557 IE = Inv->getParent()->end(); I != IE; ++I)
558 if (&*I == CxtI)
559 return true;
560 }
561
562 // The context comes first, but they're both in the same block. Make sure
563 // there is nothing in between that might interrupt the control flow.
564 for (BasicBlock::const_iterator I =
565 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
566 I != IE; ++I)
567 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
568 return false;
569
570 return !isEphemeralValueOf(Inv, CxtI);
571}
572
573static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
574 unsigned Depth, const Query &Q) {
575 // Use of assumptions is context-sensitive. If we don't have a context, we
576 // cannot use them!
577 if (!Q.AC || !Q.CxtI)
578 return;
579
580 unsigned BitWidth = Known.getBitWidth();
581
582 // Note that the patterns below need to be kept in sync with the code
583 // in AssumptionCache::updateAffectedValues.
584
585 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
586 if (!AssumeVH)
587 continue;
588 CallInst *I = cast<CallInst>(AssumeVH);
589 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&((I->getParent()->getParent() == Q.CxtI->getParent()
->getParent() && "Got assumption for the wrong function!"
) ? static_cast<void> (0) : __assert_fail ("I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && \"Got assumption for the wrong function!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 590, __PRETTY_FUNCTION__))
590 "Got assumption for the wrong function!")((I->getParent()->getParent() == Q.CxtI->getParent()
->getParent() && "Got assumption for the wrong function!"
) ? static_cast<void> (0) : __assert_fail ("I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && \"Got assumption for the wrong function!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 590, __PRETTY_FUNCTION__))
;
591 if (Q.isExcluded(I))
592 continue;
593
594 // Warning: This loop can end up being somewhat performance sensitive.
595 // We're running this loop for once for each value queried resulting in a
596 // runtime of ~O(#assumes * #values).
597
598 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&((I->getCalledFunction()->getIntrinsicID() == Intrinsic
::assume && "must be an assume intrinsic") ? static_cast
<void> (0) : __assert_fail ("I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && \"must be an assume intrinsic\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 599, __PRETTY_FUNCTION__))
599 "must be an assume intrinsic")((I->getCalledFunction()->getIntrinsicID() == Intrinsic
::assume && "must be an assume intrinsic") ? static_cast
<void> (0) : __assert_fail ("I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && \"must be an assume intrinsic\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 599, __PRETTY_FUNCTION__))
;
600
601 Value *Arg = I->getArgOperand(0);
602
603 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
604 assert(BitWidth == 1 && "assume operand is not i1?")((BitWidth == 1 && "assume operand is not i1?") ? static_cast
<void> (0) : __assert_fail ("BitWidth == 1 && \"assume operand is not i1?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 604, __PRETTY_FUNCTION__))
;
605 Known.setAllOnes();
606 return;
607 }
608 if (match(Arg, m_Not(m_Specific(V))) &&
609 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
610 assert(BitWidth == 1 && "assume operand is not i1?")((BitWidth == 1 && "assume operand is not i1?") ? static_cast
<void> (0) : __assert_fail ("BitWidth == 1 && \"assume operand is not i1?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 610, __PRETTY_FUNCTION__))
;
611 Known.setAllZero();
612 return;
613 }
614
615 // The remaining tests are all recursive, so bail out if we hit the limit.
616 if (Depth == MaxDepth)
617 continue;
618
619 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
620 if (!Cmp)
621 continue;
622
623 Value *A, *B;
624 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
625
626 CmpInst::Predicate Pred;
627 uint64_t C;
628 switch (Cmp->getPredicate()) {
629 default:
630 break;
631 case ICmpInst::ICMP_EQ:
632 // assume(v = a)
633 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
634 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
635 KnownBits RHSKnown(BitWidth);
636 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
637 Known.Zero |= RHSKnown.Zero;
638 Known.One |= RHSKnown.One;
639 // assume(v & b = a)
640 } else if (match(Cmp,
641 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
643 KnownBits RHSKnown(BitWidth);
644 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
645 KnownBits MaskKnown(BitWidth);
646 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
647
648 // For those bits in the mask that are known to be one, we can propagate
649 // known bits from the RHS to V.
650 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
651 Known.One |= RHSKnown.One & MaskKnown.One;
652 // assume(~(v & b) = a)
653 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
654 m_Value(A))) &&
655 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
656 KnownBits RHSKnown(BitWidth);
657 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
658 KnownBits MaskKnown(BitWidth);
659 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
660
661 // For those bits in the mask that are known to be one, we can propagate
662 // inverted known bits from the RHS to V.
663 Known.Zero |= RHSKnown.One & MaskKnown.One;
664 Known.One |= RHSKnown.Zero & MaskKnown.One;
665 // assume(v | b = a)
666 } else if (match(Cmp,
667 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
668 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
669 KnownBits RHSKnown(BitWidth);
670 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
671 KnownBits BKnown(BitWidth);
672 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
673
674 // For those bits in B that are known to be zero, we can propagate known
675 // bits from the RHS to V.
676 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
677 Known.One |= RHSKnown.One & BKnown.Zero;
678 // assume(~(v | b) = a)
679 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
680 m_Value(A))) &&
681 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
682 KnownBits RHSKnown(BitWidth);
683 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
684 KnownBits BKnown(BitWidth);
685 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
686
687 // For those bits in B that are known to be zero, we can propagate
688 // inverted known bits from the RHS to V.
689 Known.Zero |= RHSKnown.One & BKnown.Zero;
690 Known.One |= RHSKnown.Zero & BKnown.Zero;
691 // assume(v ^ b = a)
692 } else if (match(Cmp,
693 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
694 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
695 KnownBits RHSKnown(BitWidth);
696 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
697 KnownBits BKnown(BitWidth);
698 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
699
700 // For those bits in B that are known to be zero, we can propagate known
701 // bits from the RHS to V. For those bits in B that are known to be one,
702 // we can propagate inverted known bits from the RHS to V.
703 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
704 Known.One |= RHSKnown.One & BKnown.Zero;
705 Known.Zero |= RHSKnown.One & BKnown.One;
706 Known.One |= RHSKnown.Zero & BKnown.One;
707 // assume(~(v ^ b) = a)
708 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
709 m_Value(A))) &&
710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
711 KnownBits RHSKnown(BitWidth);
712 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
713 KnownBits BKnown(BitWidth);
714 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
715
716 // For those bits in B that are known to be zero, we can propagate
717 // inverted known bits from the RHS to V. For those bits in B that are
718 // known to be one, we can propagate known bits from the RHS to V.
719 Known.Zero |= RHSKnown.One & BKnown.Zero;
720 Known.One |= RHSKnown.Zero & BKnown.Zero;
721 Known.Zero |= RHSKnown.Zero & BKnown.One;
722 Known.One |= RHSKnown.One & BKnown.One;
723 // assume(v << c = a)
724 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
725 m_Value(A))) &&
726 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
727 KnownBits RHSKnown(BitWidth);
728 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
729 // For those bits in RHS that are known, we can propagate them to known
730 // bits in V shifted to the right by C.
731 RHSKnown.Zero.lshrInPlace(C);
732 Known.Zero |= RHSKnown.Zero;
733 RHSKnown.One.lshrInPlace(C);
734 Known.One |= RHSKnown.One;
735 // assume(~(v << c) = a)
736 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
737 m_Value(A))) &&
738 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
739 KnownBits RHSKnown(BitWidth);
740 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
741 // For those bits in RHS that are known, we can propagate them inverted
742 // to known bits in V shifted to the right by C.
743 RHSKnown.One.lshrInPlace(C);
744 Known.Zero |= RHSKnown.One;
745 RHSKnown.Zero.lshrInPlace(C);
746 Known.One |= RHSKnown.Zero;
747 // assume(v >> c = a)
748 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
749 m_Value(A))) &&
750 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
751 KnownBits RHSKnown(BitWidth);
752 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
753 // For those bits in RHS that are known, we can propagate them to known
754 // bits in V shifted to the right by C.
755 Known.Zero |= RHSKnown.Zero << C;
756 Known.One |= RHSKnown.One << C;
757 // assume(~(v >> c) = a)
758 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
759 m_Value(A))) &&
760 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
761 KnownBits RHSKnown(BitWidth);
762 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
763 // For those bits in RHS that are known, we can propagate them inverted
764 // to known bits in V shifted to the right by C.
765 Known.Zero |= RHSKnown.One << C;
766 Known.One |= RHSKnown.Zero << C;
767 }
768 break;
769 case ICmpInst::ICMP_SGE:
770 // assume(v >=_s c) where c is non-negative
771 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
772 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
773 KnownBits RHSKnown(BitWidth);
774 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
775
776 if (RHSKnown.isNonNegative()) {
777 // We know that the sign bit is zero.
778 Known.makeNonNegative();
779 }
780 }
781 break;
782 case ICmpInst::ICMP_SGT:
783 // assume(v >_s c) where c is at least -1.
784 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
785 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
786 KnownBits RHSKnown(BitWidth);
787 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
788
789 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
790 // We know that the sign bit is zero.
791 Known.makeNonNegative();
792 }
793 }
794 break;
795 case ICmpInst::ICMP_SLE:
796 // assume(v <=_s c) where c is negative
797 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
798 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
799 KnownBits RHSKnown(BitWidth);
800 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
801
802 if (RHSKnown.isNegative()) {
803 // We know that the sign bit is one.
804 Known.makeNegative();
805 }
806 }
807 break;
808 case ICmpInst::ICMP_SLT:
809 // assume(v <_s c) where c is non-positive
810 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
811 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
812 KnownBits RHSKnown(BitWidth);
813 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
814
815 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
816 // We know that the sign bit is one.
817 Known.makeNegative();
818 }
819 }
820 break;
821 case ICmpInst::ICMP_ULE:
822 // assume(v <=_u c)
823 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
824 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
825 KnownBits RHSKnown(BitWidth);
826 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
827
828 // Whatever high bits in c are zero are known to be zero.
829 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
830 }
831 break;
832 case ICmpInst::ICMP_ULT:
833 // assume(v <_u c)
834 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
835 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
836 KnownBits RHSKnown(BitWidth);
837 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
838
839 // If the RHS is known zero, then this assumption must be wrong (nothing
840 // is unsigned less than zero). Signal a conflict and get out of here.
841 if (RHSKnown.isZero()) {
842 Known.Zero.setAllBits();
843 Known.One.setAllBits();
844 break;
845 }
846
847 // Whatever high bits in c are zero are known to be zero (if c is a power
848 // of 2, then one more).
849 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
850 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
851 else
852 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
853 }
854 break;
855 }
856 }
857
858 // If assumptions conflict with each other or previous known bits, then we
859 // have a logical fallacy. It's possible that the assumption is not reachable,
860 // so this isn't a real bug. On the other hand, the program may have undefined
861 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
862 // clear out the known bits, try to warn the user, and hope for the best.
863 if (Known.Zero.intersects(Known.One)) {
864 Known.resetAll();
865
866 if (Q.ORE)
867 Q.ORE->emit([&]() {
868 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
869 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
870 CxtI)
871 << "Detected conflicting code assumptions. Program may "
872 "have undefined behavior, or compiler may have "
873 "internal error.";
874 });
875 }
876}
877
878/// Compute known bits from a shift operator, including those with a
879/// non-constant shift amount. Known is the output of this function. Known2 is a
880/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
881/// operator-specific functions that, given the known-zero or known-one bits
882/// respectively, and a shift amount, compute the implied known-zero or
883/// known-one bits of the shift operator's result respectively for that shift
884/// amount. The results from calling KZF and KOF are conservatively combined for
885/// all permitted shift amounts.
886static void computeKnownBitsFromShiftOperator(
887 const Operator *I, KnownBits &Known, KnownBits &Known2,
888 unsigned Depth, const Query &Q,
889 function_ref<APInt(const APInt &, unsigned)> KZF,
890 function_ref<APInt(const APInt &, unsigned)> KOF) {
891 unsigned BitWidth = Known.getBitWidth();
892
893 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
894 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
895
896 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
897 Known.Zero = KZF(Known.Zero, ShiftAmt);
898 Known.One = KOF(Known.One, ShiftAmt);
899 // If the known bits conflict, this must be an overflowing left shift, so
900 // the shift result is poison. We can return anything we want. Choose 0 for
901 // the best folding opportunity.
902 if (Known.hasConflict())
903 Known.setAllZero();
904
905 return;
906 }
907
908 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
909
910 // If the shift amount could be greater than or equal to the bit-width of the
911 // LHS, the value could be poison, but bail out because the check below is
912 // expensive. TODO: Should we just carry on?
913 if ((~Known.Zero).uge(BitWidth)) {
914 Known.resetAll();
915 return;
916 }
917
918 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
919 // BitWidth > 64 and any upper bits are known, we'll end up returning the
920 // limit value (which implies all bits are known).
921 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
922 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
923
924 // It would be more-clearly correct to use the two temporaries for this
925 // calculation. Reusing the APInts here to prevent unnecessary allocations.
926 Known.resetAll();
927
928 // If we know the shifter operand is nonzero, we can sometimes infer more
929 // known bits. However this is expensive to compute, so be lazy about it and
930 // only compute it when absolutely necessary.
931 Optional<bool> ShifterOperandIsNonZero;
932
933 // Early exit if we can't constrain any well-defined shift amount.
934 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
935 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
936 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
937 if (!*ShifterOperandIsNonZero)
938 return;
939 }
940
941 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
942
943 Known.Zero.setAllBits();
944 Known.One.setAllBits();
945 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
946 // Combine the shifted known input bits only for those shift amounts
947 // compatible with its known constraints.
948 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
949 continue;
950 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
951 continue;
952 // If we know the shifter is nonzero, we may be able to infer more known
953 // bits. This check is sunk down as far as possible to avoid the expensive
954 // call to isKnownNonZero if the cheaper checks above fail.
955 if (ShiftAmt == 0) {
956 if (!ShifterOperandIsNonZero.hasValue())
957 ShifterOperandIsNonZero =
958 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
959 if (*ShifterOperandIsNonZero)
960 continue;
961 }
962
963 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
964 Known.One &= KOF(Known2.One, ShiftAmt);
965 }
966
967 // If the known bits conflict, the result is poison. Return a 0 and hope the
968 // caller can further optimize that.
969 if (Known.hasConflict())
970 Known.setAllZero();
971}
972
973static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
974 unsigned Depth, const Query &Q) {
975 unsigned BitWidth = Known.getBitWidth();
976
977 KnownBits Known2(Known);
978 switch (I->getOpcode()) {
979 default: break;
980 case Instruction::Load:
981 if (MDNode *MD =
982 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
983 computeKnownBitsFromRangeMetadata(*MD, Known);
984 break;
985 case Instruction::And: {
986 // If either the LHS or the RHS are Zero, the result is zero.
987 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
988 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
989
990 // Output known-1 bits are only known if set in both the LHS & RHS.
991 Known.One &= Known2.One;
992 // Output known-0 are known to be clear if zero in either the LHS | RHS.
993 Known.Zero |= Known2.Zero;
994
995 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
996 // here we handle the more general case of adding any odd number by
997 // matching the form add(x, add(x, y)) where y is odd.
998 // TODO: This could be generalized to clearing any bit set in y where the
999 // following bit is known to be unset in y.
1000 Value *X = nullptr, *Y = nullptr;
1001 if (!Known.Zero[0] && !Known.One[0] &&
1002 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1003 Known2.resetAll();
1004 computeKnownBits(Y, Known2, Depth + 1, Q);
1005 if (Known2.countMinTrailingOnes() > 0)
1006 Known.Zero.setBit(0);
1007 }
1008 break;
1009 }
1010 case Instruction::Or:
1011 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1012 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1013
1014 // Output known-0 bits are only known if clear in both the LHS & RHS.
1015 Known.Zero &= Known2.Zero;
1016 // Output known-1 are known to be set if set in either the LHS | RHS.
1017 Known.One |= Known2.One;
1018 break;
1019 case Instruction::Xor: {
1020 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1021 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1022
1023 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1024 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1025 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1026 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1027 Known.Zero = std::move(KnownZeroOut);
1028 break;
1029 }
1030 case Instruction::Mul: {
1031 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1032 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1033 Known2, Depth, Q);
1034 break;
1035 }
1036 case Instruction::UDiv: {
1037 // For the purposes of computing leading zeros we can conservatively
1038 // treat a udiv as a logical right shift by the power of 2 known to
1039 // be less than the denominator.
1040 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1041 unsigned LeadZ = Known2.countMinLeadingZeros();
1042
1043 Known2.resetAll();
1044 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1045 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1046 if (RHSMaxLeadingZeros != BitWidth)
1047 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1048
1049 Known.Zero.setHighBits(LeadZ);
1050 break;
1051 }
1052 case Instruction::Select: {
1053 const Value *LHS, *RHS;
1054 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1055 if (SelectPatternResult::isMinOrMax(SPF)) {
1056 computeKnownBits(RHS, Known, Depth + 1, Q);
1057 computeKnownBits(LHS, Known2, Depth + 1, Q);
1058 } else {
1059 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1060 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1061 }
1062
1063 unsigned MaxHighOnes = 0;
1064 unsigned MaxHighZeros = 0;
1065 if (SPF == SPF_SMAX) {
1066 // If both sides are negative, the result is negative.
1067 if (Known.isNegative() && Known2.isNegative())
1068 // We can derive a lower bound on the result by taking the max of the
1069 // leading one bits.
1070 MaxHighOnes =
1071 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1072 // If either side is non-negative, the result is non-negative.
1073 else if (Known.isNonNegative() || Known2.isNonNegative())
1074 MaxHighZeros = 1;
1075 } else if (SPF == SPF_SMIN) {
1076 // If both sides are non-negative, the result is non-negative.
1077 if (Known.isNonNegative() && Known2.isNonNegative())
1078 // We can derive an upper bound on the result by taking the max of the
1079 // leading zero bits.
1080 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1081 Known2.countMinLeadingZeros());
1082 // If either side is negative, the result is negative.
1083 else if (Known.isNegative() || Known2.isNegative())
1084 MaxHighOnes = 1;
1085 } else if (SPF == SPF_UMAX) {
1086 // We can derive a lower bound on the result by taking the max of the
1087 // leading one bits.
1088 MaxHighOnes =
1089 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1090 } else if (SPF == SPF_UMIN) {
1091 // We can derive an upper bound on the result by taking the max of the
1092 // leading zero bits.
1093 MaxHighZeros =
1094 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1095 } else if (SPF == SPF_ABS) {
1096 // RHS from matchSelectPattern returns the negation part of abs pattern.
1097 // If the negate has an NSW flag we can assume the sign bit of the result
1098 // will be 0 because that makes abs(INT_MIN) undefined.
1099 if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1100 MaxHighZeros = 1;
1101 }
1102
1103 // Only known if known in both the LHS and RHS.
1104 Known.One &= Known2.One;
1105 Known.Zero &= Known2.Zero;
1106 if (MaxHighOnes > 0)
1107 Known.One.setHighBits(MaxHighOnes);
1108 if (MaxHighZeros > 0)
1109 Known.Zero.setHighBits(MaxHighZeros);
1110 break;
1111 }
1112 case Instruction::FPTrunc:
1113 case Instruction::FPExt:
1114 case Instruction::FPToUI:
1115 case Instruction::FPToSI:
1116 case Instruction::SIToFP:
1117 case Instruction::UIToFP:
1118 break; // Can't work with floating point.
1119 case Instruction::PtrToInt:
1120 case Instruction::IntToPtr:
1121 // Fall through and handle them the same as zext/trunc.
1122 LLVM_FALLTHROUGH[[clang::fallthrough]];
1123 case Instruction::ZExt:
1124 case Instruction::Trunc: {
1125 Type *SrcTy = I->getOperand(0)->getType();
1126
1127 unsigned SrcBitWidth;
1128 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1129 // which fall through here.
1130 Type *ScalarTy = SrcTy->getScalarType();
1131 SrcBitWidth = ScalarTy->isPointerTy() ?
1132 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1133 Q.DL.getTypeSizeInBits(ScalarTy);
1134
1135 assert(SrcBitWidth && "SrcBitWidth can't be zero")((SrcBitWidth && "SrcBitWidth can't be zero") ? static_cast
<void> (0) : __assert_fail ("SrcBitWidth && \"SrcBitWidth can't be zero\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1135, __PRETTY_FUNCTION__))
;
1136 Known = Known.zextOrTrunc(SrcBitWidth, false);
1137 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1138 Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */);
1139 break;
1140 }
1141 case Instruction::BitCast: {
1142 Type *SrcTy = I->getOperand(0)->getType();
1143 if (SrcTy->isIntOrPtrTy() &&
1144 // TODO: For now, not handling conversions like:
1145 // (bitcast i64 %x to <2 x i32>)
1146 !I->getType()->isVectorTy()) {
1147 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1148 break;
1149 }
1150 break;
1151 }
1152 case Instruction::SExt: {
1153 // Compute the bits in the result that are not present in the input.
1154 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1155
1156 Known = Known.trunc(SrcBitWidth);
1157 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1158 // If the sign bit of the input is known set or clear, then we know the
1159 // top bits of the result.
1160 Known = Known.sext(BitWidth);
1161 break;
1162 }
1163 case Instruction::Shl: {
1164 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1165 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1166 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1167 APInt KZResult = KnownZero << ShiftAmt;
1168 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1169 // If this shift has "nsw" keyword, then the result is either a poison
1170 // value or has the same sign bit as the first operand.
1171 if (NSW && KnownZero.isSignBitSet())
1172 KZResult.setSignBit();
1173 return KZResult;
1174 };
1175
1176 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1177 APInt KOResult = KnownOne << ShiftAmt;
1178 if (NSW && KnownOne.isSignBitSet())
1179 KOResult.setSignBit();
1180 return KOResult;
1181 };
1182
1183 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1184 break;
1185 }
1186 case Instruction::LShr: {
1187 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1188 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1189 APInt KZResult = KnownZero.lshr(ShiftAmt);
1190 // High bits known zero.
1191 KZResult.setHighBits(ShiftAmt);
1192 return KZResult;
1193 };
1194
1195 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1196 return KnownOne.lshr(ShiftAmt);
1197 };
1198
1199 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1200 break;
1201 }
1202 case Instruction::AShr: {
1203 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1204 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1205 return KnownZero.ashr(ShiftAmt);
1206 };
1207
1208 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1209 return KnownOne.ashr(ShiftAmt);
1210 };
1211
1212 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1213 break;
1214 }
1215 case Instruction::Sub: {
1216 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1217 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1218 Known, Known2, Depth, Q);
1219 break;
1220 }
1221 case Instruction::Add: {
1222 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1223 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1224 Known, Known2, Depth, Q);
1225 break;
1226 }
1227 case Instruction::SRem:
1228 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1229 APInt RA = Rem->getValue().abs();
1230 if (RA.isPowerOf2()) {
1231 APInt LowBits = RA - 1;
1232 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1233
1234 // The low bits of the first operand are unchanged by the srem.
1235 Known.Zero = Known2.Zero & LowBits;
1236 Known.One = Known2.One & LowBits;
1237
1238 // If the first operand is non-negative or has all low bits zero, then
1239 // the upper bits are all zero.
1240 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1241 Known.Zero |= ~LowBits;
1242
1243 // If the first operand is negative and not all low bits are zero, then
1244 // the upper bits are all one.
1245 if (Known2.isNegative() && LowBits.intersects(Known2.One))
1246 Known.One |= ~LowBits;
1247
1248 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?")(((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"
) ? static_cast<void> (0) : __assert_fail ("(Known.Zero & Known.One) == 0 && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1248, __PRETTY_FUNCTION__))
;
1249 break;
1250 }
1251 }
1252
1253 // The sign bit is the LHS's sign bit, except when the result of the
1254 // remainder is zero.
1255 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1256 // If it's known zero, our sign bit is also zero.
1257 if (Known2.isNonNegative())
1258 Known.makeNonNegative();
1259
1260 break;
1261 case Instruction::URem: {
1262 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1263 const APInt &RA = Rem->getValue();
1264 if (RA.isPowerOf2()) {
1265 APInt LowBits = (RA - 1);
1266 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1267 Known.Zero |= ~LowBits;
1268 Known.One &= LowBits;
1269 break;
1270 }
1271 }
1272
1273 // Since the result is less than or equal to either operand, any leading
1274 // zero bits in either operand must also exist in the result.
1275 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1276 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1277
1278 unsigned Leaders =
1279 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1280 Known.resetAll();
1281 Known.Zero.setHighBits(Leaders);
1282 break;
1283 }
1284
1285 case Instruction::Alloca: {
1286 const AllocaInst *AI = cast<AllocaInst>(I);
1287 unsigned Align = AI->getAlignment();
1288 if (Align == 0)
1289 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1290
1291 if (Align > 0)
1292 Known.Zero.setLowBits(countTrailingZeros(Align));
1293 break;
1294 }
1295 case Instruction::GetElementPtr: {
1296 // Analyze all of the subscripts of this getelementptr instruction
1297 // to determine if we can prove known low zero bits.
1298 KnownBits LocalKnown(BitWidth);
1299 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1300 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1301
1302 gep_type_iterator GTI = gep_type_begin(I);
1303 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1304 Value *Index = I->getOperand(i);
1305 if (StructType *STy = GTI.getStructTypeOrNull()) {
1306 // Handle struct member offset arithmetic.
1307
1308 // Handle case when index is vector zeroinitializer
1309 Constant *CIndex = cast<Constant>(Index);
1310 if (CIndex->isZeroValue())
1311 continue;
1312
1313 if (CIndex->getType()->isVectorTy())
1314 Index = CIndex->getSplatValue();
1315
1316 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1317 const StructLayout *SL = Q.DL.getStructLayout(STy);
1318 uint64_t Offset = SL->getElementOffset(Idx);
1319 TrailZ = std::min<unsigned>(TrailZ,
1320 countTrailingZeros(Offset));
1321 } else {
1322 // Handle array index arithmetic.
1323 Type *IndexedTy = GTI.getIndexedType();
1324 if (!IndexedTy->isSized()) {
1325 TrailZ = 0;
1326 break;
1327 }
1328 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1329 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1330 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1331 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1332 TrailZ = std::min(TrailZ,
1333 unsigned(countTrailingZeros(TypeSize) +
1334 LocalKnown.countMinTrailingZeros()));
1335 }
1336 }
1337
1338 Known.Zero.setLowBits(TrailZ);
1339 break;
1340 }
1341 case Instruction::PHI: {
1342 const PHINode *P = cast<PHINode>(I);
1343 // Handle the case of a simple two-predecessor recurrence PHI.
1344 // There's a lot more that could theoretically be done here, but
1345 // this is sufficient to catch some interesting cases.
1346 if (P->getNumIncomingValues() == 2) {
1347 for (unsigned i = 0; i != 2; ++i) {
1348 Value *L = P->getIncomingValue(i);
1349 Value *R = P->getIncomingValue(!i);
1350 Operator *LU = dyn_cast<Operator>(L);
1351 if (!LU)
1352 continue;
1353 unsigned Opcode = LU->getOpcode();
1354 // Check for operations that have the property that if
1355 // both their operands have low zero bits, the result
1356 // will have low zero bits.
1357 if (Opcode == Instruction::Add ||
1358 Opcode == Instruction::Sub ||
1359 Opcode == Instruction::And ||
1360 Opcode == Instruction::Or ||
1361 Opcode == Instruction::Mul) {
1362 Value *LL = LU->getOperand(0);
1363 Value *LR = LU->getOperand(1);
1364 // Find a recurrence.
1365 if (LL == I)
1366 L = LR;
1367 else if (LR == I)
1368 L = LL;
1369 else
1370 break;
1371 // Ok, we have a PHI of the form L op= R. Check for low
1372 // zero bits.
1373 computeKnownBits(R, Known2, Depth + 1, Q);
1374
1375 // We need to take the minimum number of known bits
1376 KnownBits Known3(Known);
1377 computeKnownBits(L, Known3, Depth + 1, Q);
1378
1379 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1380 Known3.countMinTrailingZeros()));
1381
1382 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1383 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1384 // If initial value of recurrence is nonnegative, and we are adding
1385 // a nonnegative number with nsw, the result can only be nonnegative
1386 // or poison value regardless of the number of times we execute the
1387 // add in phi recurrence. If initial value is negative and we are
1388 // adding a negative number with nsw, the result can only be
1389 // negative or poison value. Similar arguments apply to sub and mul.
1390 //
1391 // (add non-negative, non-negative) --> non-negative
1392 // (add negative, negative) --> negative
1393 if (Opcode == Instruction::Add) {
1394 if (Known2.isNonNegative() && Known3.isNonNegative())
1395 Known.makeNonNegative();
1396 else if (Known2.isNegative() && Known3.isNegative())
1397 Known.makeNegative();
1398 }
1399
1400 // (sub nsw non-negative, negative) --> non-negative
1401 // (sub nsw negative, non-negative) --> negative
1402 else if (Opcode == Instruction::Sub && LL == I) {
1403 if (Known2.isNonNegative() && Known3.isNegative())
1404 Known.makeNonNegative();
1405 else if (Known2.isNegative() && Known3.isNonNegative())
1406 Known.makeNegative();
1407 }
1408
1409 // (mul nsw non-negative, non-negative) --> non-negative
1410 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1411 Known3.isNonNegative())
1412 Known.makeNonNegative();
1413 }
1414
1415 break;
1416 }
1417 }
1418 }
1419
1420 // Unreachable blocks may have zero-operand PHI nodes.
1421 if (P->getNumIncomingValues() == 0)
1422 break;
1423
1424 // Otherwise take the unions of the known bit sets of the operands,
1425 // taking conservative care to avoid excessive recursion.
1426 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1427 // Skip if every incoming value references to ourself.
1428 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1429 break;
1430
1431 Known.Zero.setAllBits();
1432 Known.One.setAllBits();
1433 for (Value *IncValue : P->incoming_values()) {
1434 // Skip direct self references.
1435 if (IncValue == P) continue;
1436
1437 Known2 = KnownBits(BitWidth);
1438 // Recurse, but cap the recursion to one level, because we don't
1439 // want to waste time spinning around in loops.
1440 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1441 Known.Zero &= Known2.Zero;
1442 Known.One &= Known2.One;
1443 // If all bits have been ruled out, there's no need to check
1444 // more operands.
1445 if (!Known.Zero && !Known.One)
1446 break;
1447 }
1448 }
1449 break;
1450 }
1451 case Instruction::Call:
1452 case Instruction::Invoke:
1453 // If range metadata is attached to this call, set known bits from that,
1454 // and then intersect with known bits based on other properties of the
1455 // function.
1456 if (MDNode *MD =
1457 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1458 computeKnownBitsFromRangeMetadata(*MD, Known);
1459 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1460 computeKnownBits(RV, Known2, Depth + 1, Q);
1461 Known.Zero |= Known2.Zero;
1462 Known.One |= Known2.One;
1463 }
1464 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1465 switch (II->getIntrinsicID()) {
1466 default: break;
1467 case Intrinsic::bitreverse:
1468 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1469 Known.Zero |= Known2.Zero.reverseBits();
1470 Known.One |= Known2.One.reverseBits();
1471 break;
1472 case Intrinsic::bswap:
1473 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1474 Known.Zero |= Known2.Zero.byteSwap();
1475 Known.One |= Known2.One.byteSwap();
1476 break;
1477 case Intrinsic::ctlz: {
1478 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1479 // If we have a known 1, its position is our upper bound.
1480 unsigned PossibleLZ = Known2.One.countLeadingZeros();
1481 // If this call is undefined for 0, the result will be less than 2^n.
1482 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1483 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1484 unsigned LowBits = Log2_32(PossibleLZ)+1;
1485 Known.Zero.setBitsFrom(LowBits);
1486 break;
1487 }
1488 case Intrinsic::cttz: {
1489 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1490 // If we have a known 1, its position is our upper bound.
1491 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1492 // If this call is undefined for 0, the result will be less than 2^n.
1493 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1494 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1495 unsigned LowBits = Log2_32(PossibleTZ)+1;
1496 Known.Zero.setBitsFrom(LowBits);
1497 break;
1498 }
1499 case Intrinsic::ctpop: {
1500 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1501 // We can bound the space the count needs. Also, bits known to be zero
1502 // can't contribute to the population.
1503 unsigned BitsPossiblySet = Known2.countMaxPopulation();
1504 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1505 Known.Zero.setBitsFrom(LowBits);
1506 // TODO: we could bound KnownOne using the lower bound on the number
1507 // of bits which might be set provided by popcnt KnownOne2.
1508 break;
1509 }
1510 case Intrinsic::fshr:
1511 case Intrinsic::fshl: {
1512 const APInt *SA;
1513 if (!match(I->getOperand(2), m_APInt(SA)))
1514 break;
1515
1516 // Normalize to funnel shift left.
1517 uint64_t ShiftAmt = SA->urem(BitWidth);
1518 if (II->getIntrinsicID() == Intrinsic::fshr)
1519 ShiftAmt = BitWidth - ShiftAmt;
1520
1521 KnownBits Known3(Known);
1522 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1523 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1524
1525 Known.Zero =
1526 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1527 Known.One =
1528 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1529 break;
1530 }
1531 case Intrinsic::uadd_sat:
1532 case Intrinsic::usub_sat: {
1533 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1534 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1535 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1536
1537 // Add: Leading ones of either operand are preserved.
1538 // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1539 // as leading zeros in the result.
1540 unsigned LeadingKnown;
1541 if (IsAdd)
1542 LeadingKnown = std::max(Known.countMinLeadingOnes(),
1543 Known2.countMinLeadingOnes());
1544 else
1545 LeadingKnown = std::max(Known.countMinLeadingZeros(),
1546 Known2.countMinLeadingOnes());
1547
1548 Known = KnownBits::computeForAddSub(
1549 IsAdd, /* NSW */ false, Known, Known2);
1550
1551 // We select between the operation result and all-ones/zero
1552 // respectively, so we can preserve known ones/zeros.
1553 if (IsAdd) {
1554 Known.One.setHighBits(LeadingKnown);
1555 Known.Zero.clearAllBits();
1556 } else {
1557 Known.Zero.setHighBits(LeadingKnown);
1558 Known.One.clearAllBits();
1559 }
1560 break;
1561 }
1562 case Intrinsic::x86_sse42_crc32_64_64:
1563 Known.Zero.setBitsFrom(32);
1564 break;
1565 }
1566 }
1567 break;
1568 case Instruction::ExtractElement:
1569 // Look through extract element. At the moment we keep this simple and skip
1570 // tracking the specific element. But at least we might find information
1571 // valid for all elements of the vector (for example if vector is sign
1572 // extended, shifted, etc).
1573 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1574 break;
1575 case Instruction::ExtractValue:
1576 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1577 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1578 if (EVI->getNumIndices() != 1) break;
1579 if (EVI->getIndices()[0] == 0) {
1580 switch (II->getIntrinsicID()) {
1581 default: break;
1582 case Intrinsic::uadd_with_overflow:
1583 case Intrinsic::sadd_with_overflow:
1584 computeKnownBitsAddSub(true, II->getArgOperand(0),
1585 II->getArgOperand(1), false, Known, Known2,
1586 Depth, Q);
1587 break;
1588 case Intrinsic::usub_with_overflow:
1589 case Intrinsic::ssub_with_overflow:
1590 computeKnownBitsAddSub(false, II->getArgOperand(0),
1591 II->getArgOperand(1), false, Known, Known2,
1592 Depth, Q);
1593 break;
1594 case Intrinsic::umul_with_overflow:
1595 case Intrinsic::smul_with_overflow:
1596 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1597 Known, Known2, Depth, Q);
1598 break;
1599 }
1600 }
1601 }
1602 }
1603}
1604
1605/// Determine which bits of V are known to be either zero or one and return
1606/// them.
1607KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1608 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1609 computeKnownBits(V, Known, Depth, Q);
1610 return Known;
1611}
1612
1613/// Determine which bits of V are known to be either zero or one and return
1614/// them in the Known bit set.
1615///
1616/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1617/// we cannot optimize based on the assumption that it is zero without changing
1618/// it to be an explicit zero. If we don't change it to zero, other code could
1619/// optimized based on the contradictory assumption that it is non-zero.
1620/// Because instcombine aggressively folds operations with undef args anyway,
1621/// this won't lose us code quality.
1622///
1623/// This function is defined on values with integer type, values with pointer
1624/// type, and vectors of integers. In the case
1625/// where V is a vector, known zero, and known one values are the
1626/// same width as the vector element, and the bit is set only if it is true
1627/// for all of the elements in the vector.
1628void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1629 const Query &Q) {
1630 assert(V && "No Value?")((V && "No Value?") ? static_cast<void> (0) : __assert_fail
("V && \"No Value?\"", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1630, __PRETTY_FUNCTION__))
;
1631 assert(Depth <= MaxDepth && "Limit Search Depth")((Depth <= MaxDepth && "Limit Search Depth") ? static_cast
<void> (0) : __assert_fail ("Depth <= MaxDepth && \"Limit Search Depth\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1631, __PRETTY_FUNCTION__))
;
1632 unsigned BitWidth = Known.getBitWidth();
1633
1634 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||(((V->getType()->isIntOrIntVectorTy(BitWidth) || V->
getType()->isPtrOrPtrVectorTy()) && "Not integer or pointer type!"
) ? static_cast<void> (0) : __assert_fail ("(V->getType()->isIntOrIntVectorTy(BitWidth) || V->getType()->isPtrOrPtrVectorTy()) && \"Not integer or pointer type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1636, __PRETTY_FUNCTION__))
1635 V->getType()->isPtrOrPtrVectorTy()) &&(((V->getType()->isIntOrIntVectorTy(BitWidth) || V->
getType()->isPtrOrPtrVectorTy()) && "Not integer or pointer type!"
) ? static_cast<void> (0) : __assert_fail ("(V->getType()->isIntOrIntVectorTy(BitWidth) || V->getType()->isPtrOrPtrVectorTy()) && \"Not integer or pointer type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1636, __PRETTY_FUNCTION__))
1636 "Not integer or pointer type!")(((V->getType()->isIntOrIntVectorTy(BitWidth) || V->
getType()->isPtrOrPtrVectorTy()) && "Not integer or pointer type!"
) ? static_cast<void> (0) : __assert_fail ("(V->getType()->isIntOrIntVectorTy(BitWidth) || V->getType()->isPtrOrPtrVectorTy()) && \"Not integer or pointer type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1636, __PRETTY_FUNCTION__))
;
1637
1638 Type *ScalarTy = V->getType()->getScalarType();
1639 unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1640 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1641 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth")((ExpectedWidth == BitWidth && "V and Known should have same BitWidth"
) ? static_cast<void> (0) : __assert_fail ("ExpectedWidth == BitWidth && \"V and Known should have same BitWidth\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1641, __PRETTY_FUNCTION__))
;
1642 (void)BitWidth;
1643 (void)ExpectedWidth;
1644
1645 const APInt *C;
1646 if (match(V, m_APInt(C))) {
1647 // We know all of the bits for a scalar constant or a splat vector constant!
1648 Known.One = *C;
1649 Known.Zero = ~Known.One;
1650 return;
1651 }
1652 // Null and aggregate-zero are all-zeros.
1653 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1654 Known.setAllZero();
1655 return;
1656 }
1657 // Handle a constant vector by taking the intersection of the known bits of
1658 // each element.
1659 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1660 // We know that CDS must be a vector of integers. Take the intersection of
1661 // each element.
1662 Known.Zero.setAllBits(); Known.One.setAllBits();
1663 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1664 APInt Elt = CDS->getElementAsAPInt(i);
1665 Known.Zero &= ~Elt;
1666 Known.One &= Elt;
1667 }
1668 return;
1669 }
1670
1671 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1672 // We know that CV must be a vector of integers. Take the intersection of
1673 // each element.
1674 Known.Zero.setAllBits(); Known.One.setAllBits();
1675 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1676 Constant *Element = CV->getAggregateElement(i);
1677 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1678 if (!ElementCI) {
1679 Known.resetAll();
1680 return;
1681 }
1682 const APInt &Elt = ElementCI->getValue();
1683 Known.Zero &= ~Elt;
1684 Known.One &= Elt;
1685 }
1686 return;
1687 }
1688
1689 // Start out not knowing anything.
1690 Known.resetAll();
1691
1692 // We can't imply anything about undefs.
1693 if (isa<UndefValue>(V))
1694 return;
1695
1696 // There's no point in looking through other users of ConstantData for
1697 // assumptions. Confirm that we've handled them all.
1698 assert(!isa<ConstantData>(V) && "Unhandled constant data!")((!isa<ConstantData>(V) && "Unhandled constant data!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ConstantData>(V) && \"Unhandled constant data!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1698, __PRETTY_FUNCTION__))
;
1699
1700 // Limit search depth.
1701 // All recursive calls that increase depth must come after this.
1702 if (Depth == MaxDepth)
1703 return;
1704
1705 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1706 // the bits of its aliasee.
1707 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1708 if (!GA->isInterposable())
1709 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1710 return;
1711 }
1712
1713 if (const Operator *I = dyn_cast<Operator>(V))
1714 computeKnownBitsFromOperator(I, Known, Depth, Q);
1715
1716 // Aligned pointers have trailing zeros - refine Known.Zero set
1717 if (V->getType()->isPointerTy()) {
1718 unsigned Align = V->getPointerAlignment(Q.DL);
1719 if (Align)
1720 Known.Zero.setLowBits(countTrailingZeros(Align));
1721 }
1722
1723 // computeKnownBitsFromAssume strictly refines Known.
1724 // Therefore, we run them after computeKnownBitsFromOperator.
1725
1726 // Check whether a nearby assume intrinsic can determine some known bits.
1727 computeKnownBitsFromAssume(V, Known, Depth, Q);
1728
1729 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?")(((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"
) ? static_cast<void> (0) : __assert_fail ("(Known.Zero & Known.One) == 0 && \"Bits known to be one AND zero?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1729, __PRETTY_FUNCTION__))
;
1730}
1731
1732/// Return true if the given value is known to have exactly one
1733/// bit set when defined. For vectors return true if every element is known to
1734/// be a power of two when defined. Supports values with integer or pointer
1735/// types and vectors of integers.
1736bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1737 const Query &Q) {
1738 assert(Depth <= MaxDepth && "Limit Search Depth")((Depth <= MaxDepth && "Limit Search Depth") ? static_cast
<void> (0) : __assert_fail ("Depth <= MaxDepth && \"Limit Search Depth\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1738, __PRETTY_FUNCTION__))
;
1739
1740 // Attempt to match against constants.
1741 if (OrZero && match(V, m_Power2OrZero()))
1742 return true;
1743 if (match(V, m_Power2()))
1744 return true;
1745
1746 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1747 // it is shifted off the end then the result is undefined.
1748 if (match(V, m_Shl(m_One(), m_Value())))
1749 return true;
1750
1751 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1752 // the bottom. If it is shifted off the bottom then the result is undefined.
1753 if (match(V, m_LShr(m_SignMask(), m_Value())))
1754 return true;
1755
1756 // The remaining tests are all recursive, so bail out if we hit the limit.
1757 if (Depth++ == MaxDepth)
1758 return false;
1759
1760 Value *X = nullptr, *Y = nullptr;
1761 // A shift left or a logical shift right of a power of two is a power of two
1762 // or zero.
1763 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1764 match(V, m_LShr(m_Value(X), m_Value()))))
1765 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1766
1767 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1768 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1769
1770 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1771 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1772 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1773
1774 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1775 // A power of two and'd with anything is a power of two or zero.
1776 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1777 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1778 return true;
1779 // X & (-X) is always a power of two or zero.
1780 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1781 return true;
1782 return false;
1783 }
1784
1785 // Adding a power-of-two or zero to the same power-of-two or zero yields
1786 // either the original power-of-two, a larger power-of-two or zero.
1787 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1788 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1789 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1790 Q.IIQ.hasNoSignedWrap(VOBO)) {
1791 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1792 match(X, m_And(m_Value(), m_Specific(Y))))
1793 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1794 return true;
1795 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1796 match(Y, m_And(m_Value(), m_Specific(X))))
1797 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1798 return true;
1799
1800 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1801 KnownBits LHSBits(BitWidth);
1802 computeKnownBits(X, LHSBits, Depth, Q);
1803
1804 KnownBits RHSBits(BitWidth);
1805 computeKnownBits(Y, RHSBits, Depth, Q);
1806 // If i8 V is a power of two or zero:
1807 // ZeroBits: 1 1 1 0 1 1 1 1
1808 // ~ZeroBits: 0 0 0 1 0 0 0 0
1809 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1810 // If OrZero isn't set, we cannot give back a zero result.
1811 // Make sure either the LHS or RHS has a bit set.
1812 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1813 return true;
1814 }
1815 }
1816
1817 // An exact divide or right shift can only shift off zero bits, so the result
1818 // is a power of two only if the first operand is a power of two and not
1819 // copying a sign bit (sdiv int_min, 2).
1820 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1821 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1822 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1823 Depth, Q);
1824 }
1825
1826 return false;
1827}
1828
1829/// Test whether a GEP's result is known to be non-null.
1830///
1831/// Uses properties inherent in a GEP to try to determine whether it is known
1832/// to be non-null.
1833///
1834/// Currently this routine does not support vector GEPs.
1835static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1836 const Query &Q) {
1837 const Function *F = nullptr;
1838 if (const Instruction *I = dyn_cast<Instruction>(GEP))
1839 F = I->getFunction();
1840
1841 if (!GEP->isInBounds() ||
1842 NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1843 return false;
1844
1845 // FIXME: Support vector-GEPs.
1846 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP")((GEP->getType()->isPointerTy() && "We only support plain pointer GEP"
) ? static_cast<void> (0) : __assert_fail ("GEP->getType()->isPointerTy() && \"We only support plain pointer GEP\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1846, __PRETTY_FUNCTION__))
;
1847
1848 // If the base pointer is non-null, we cannot walk to a null address with an
1849 // inbounds GEP in address space zero.
1850 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1851 return true;
1852
1853 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1854 // If so, then the GEP cannot produce a null pointer, as doing so would
1855 // inherently violate the inbounds contract within address space zero.
1856 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1857 GTI != GTE; ++GTI) {
1858 // Struct types are easy -- they must always be indexed by a constant.
1859 if (StructType *STy = GTI.getStructTypeOrNull()) {
1860 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1861 unsigned ElementIdx = OpC->getZExtValue();
1862 const StructLayout *SL = Q.DL.getStructLayout(STy);
1863 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1864 if (ElementOffset > 0)
1865 return true;
1866 continue;
1867 }
1868
1869 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1870 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1871 continue;
1872
1873 // Fast path the constant operand case both for efficiency and so we don't
1874 // increment Depth when just zipping down an all-constant GEP.
1875 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1876 if (!OpC->isZero())
1877 return true;
1878 continue;
1879 }
1880
1881 // We post-increment Depth here because while isKnownNonZero increments it
1882 // as well, when we pop back up that increment won't persist. We don't want
1883 // to recurse 10k times just because we have 10k GEP operands. We don't
1884 // bail completely out because we want to handle constant GEPs regardless
1885 // of depth.
1886 if (Depth++ >= MaxDepth)
1887 continue;
1888
1889 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1890 return true;
1891 }
1892
1893 return false;
1894}
1895
1896static bool isKnownNonNullFromDominatingCondition(const Value *V,
1897 const Instruction *CtxI,
1898 const DominatorTree *DT) {
1899 assert(V->getType()->isPointerTy() && "V must be pointer type")((V->getType()->isPointerTy() && "V must be pointer type"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isPointerTy() && \"V must be pointer type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1899, __PRETTY_FUNCTION__))
;
1900 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull")((!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"
) ? static_cast<void> (0) : __assert_fail ("!isa<ConstantData>(V) && \"Did not expect ConstantPointerNull\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1900, __PRETTY_FUNCTION__))
;
1901
1902 if (!CtxI || !DT)
1903 return false;
1904
1905 unsigned NumUsesExplored = 0;
1906 for (auto *U : V->users()) {
1907 // Avoid massive lists
1908 if (NumUsesExplored >= DomConditionsMaxUses)
1909 break;
1910 NumUsesExplored++;
1911
1912 // If the value is used as an argument to a call or invoke, then argument
1913 // attributes may provide an answer about null-ness.
1914 if (auto CS = ImmutableCallSite(U))
1915 if (auto *CalledFunc = CS.getCalledFunction())
1916 for (const Argument &Arg : CalledFunc->args())
1917 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1918 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1919 return true;
1920
1921 // Consider only compare instructions uniquely controlling a branch
1922 CmpInst::Predicate Pred;
1923 if (!match(const_cast<User *>(U),
1924 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1925 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1926 continue;
1927
1928 SmallVector<const User *, 4> WorkList;
1929 SmallPtrSet<const User *, 4> Visited;
1930 for (auto *CmpU : U->users()) {
1931 assert(WorkList.empty() && "Should be!")((WorkList.empty() && "Should be!") ? static_cast<
void> (0) : __assert_fail ("WorkList.empty() && \"Should be!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1931, __PRETTY_FUNCTION__))
;
1932 if (Visited.insert(CmpU).second)
1933 WorkList.push_back(CmpU);
1934
1935 while (!WorkList.empty()) {
1936 auto *Curr = WorkList.pop_back_val();
1937
1938 // If a user is an AND, add all its users to the work list. We only
1939 // propagate "pred != null" condition through AND because it is only
1940 // correct to assume that all conditions of AND are met in true branch.
1941 // TODO: Support similar logic of OR and EQ predicate?
1942 if (Pred == ICmpInst::ICMP_NE)
1943 if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1944 if (BO->getOpcode() == Instruction::And) {
1945 for (auto *BOU : BO->users())
1946 if (Visited.insert(BOU).second)
1947 WorkList.push_back(BOU);
1948 continue;
1949 }
1950
1951 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1952 assert(BI->isConditional() && "uses a comparison!")((BI->isConditional() && "uses a comparison!") ? static_cast
<void> (0) : __assert_fail ("BI->isConditional() && \"uses a comparison!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1952, __PRETTY_FUNCTION__))
;
1953
1954 BasicBlock *NonNullSuccessor =
1955 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1956 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1957 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1958 return true;
1959 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1960 DT->dominates(cast<Instruction>(Curr), CtxI)) {
1961 return true;
1962 }
1963 }
1964 }
1965 }
1966
1967 return false;
1968}
1969
1970/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1971/// ensure that the value it's attached to is never Value? 'RangeType' is
1972/// is the type of the value described by the range.
1973static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1974 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1975 assert(NumRanges >= 1)((NumRanges >= 1) ? static_cast<void> (0) : __assert_fail
("NumRanges >= 1", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 1975, __PRETTY_FUNCTION__))
;
1976 for (unsigned i = 0; i < NumRanges; ++i) {
1977 ConstantInt *Lower =
1978 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1979 ConstantInt *Upper =
1980 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1981 ConstantRange Range(Lower->getValue(), Upper->getValue());
1982 if (Range.contains(Value))
1983 return false;
1984 }
1985 return true;
1986}
1987
1988/// Return true if the given value is known to be non-zero when defined. For
1989/// vectors, return true if every element is known to be non-zero when
1990/// defined. For pointers, if the context instruction and dominator tree are
1991/// specified, perform context-sensitive analysis and return true if the
1992/// pointer couldn't possibly be null at the specified instruction.
1993/// Supports values with integer or pointer type and vectors of integers.
1994bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1995 if (auto *C = dyn_cast<Constant>(V)) {
1996 if (C->isNullValue())
1997 return false;
1998 if (isa<ConstantInt>(C))
1999 // Must be non-zero due to null test above.
2000 return true;
2001
2002 // For constant vectors, check that all elements are undefined or known
2003 // non-zero to determine that the whole vector is known non-zero.
2004 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
2005 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2006 Constant *Elt = C->getAggregateElement(i);
2007 if (!Elt || Elt->isNullValue())
2008 return false;
2009 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2010 return false;
2011 }
2012 return true;
2013 }
2014
2015 // A global variable in address space 0 is non null unless extern weak
2016 // or an absolute symbol reference. Other address spaces may have null as a
2017 // valid address for a global, so we can't assume anything.
2018 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2019 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2020 GV->getType()->getAddressSpace() == 0)
2021 return true;
2022 } else
2023 return false;
2024 }
2025
2026 if (auto *I = dyn_cast<Instruction>(V)) {
2027 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2028 // If the possible ranges don't contain zero, then the value is
2029 // definitely non-zero.
2030 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2031 const APInt ZeroValue(Ty->getBitWidth(), 0);
2032 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2033 return true;
2034 }
2035 }
2036 }
2037
2038 // Some of the tests below are recursive, so bail out if we hit the limit.
2039 if (Depth++ >= MaxDepth)
2040 return false;
2041
2042 // Check for pointer simplifications.
2043 if (V->getType()->isPointerTy()) {
2044 // Alloca never returns null, malloc might.
2045 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2046 return true;
2047
2048 // A byval, inalloca, or nonnull argument is never null.
2049 if (const Argument *A = dyn_cast<Argument>(V))
2050 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
2051 return true;
2052
2053 // A Load tagged with nonnull metadata is never null.
2054 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2055 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2056 return true;
2057
2058 if (const auto *Call = dyn_cast<CallBase>(V)) {
2059 if (Call->isReturnNonNull())
2060 return true;
2061 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call))
2062 return isKnownNonZero(RP, Depth, Q);
2063 }
2064 }
2065
2066
2067 // Check for recursive pointer simplifications.
2068 if (V->getType()->isPointerTy()) {
2069 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2070 return true;
2071
2072 // Look through bitcast operations, GEPs, and int2ptr instructions as they
2073 // do not alter the value, or at least not the nullness property of the
2074 // value, e.g., int2ptr is allowed to zero/sign extend the value.
2075 //
2076 // Note that we have to take special care to avoid looking through
2077 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2078 // as casts that can alter the value, e.g., AddrSpaceCasts.
2079 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2080 if (isGEPKnownNonNull(GEP, Depth, Q))
2081 return true;
2082
2083 if (auto *BCO = dyn_cast<BitCastOperator>(V))
2084 return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2085
2086 if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2087 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2088 Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2089 return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2090 }
2091
2092 // Similar to int2ptr above, we can look through ptr2int here if the cast
2093 // is a no-op or an extend and not a truncate.
2094 if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2095 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2096 Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2097 return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2098
2099 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2100
2101 // X | Y != 0 if X != 0 or Y != 0.
2102 Value *X = nullptr, *Y = nullptr;
2103 if (match(V, m_Or(m_Value(X), m_Value(Y))))
2104 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2105
2106 // ext X != 0 if X != 0.
2107 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2108 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2109
2110 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
2111 // if the lowest bit is shifted off the end.
2112 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2113 // shl nuw can't remove any non-zero bits.
2114 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2115 if (Q.IIQ.hasNoUnsignedWrap(BO))
2116 return isKnownNonZero(X, Depth, Q);
2117
2118 KnownBits Known(BitWidth);
2119 computeKnownBits(X, Known, Depth, Q);
2120 if (Known.One[0])
2121 return true;
2122 }
2123 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
2124 // defined if the sign bit is shifted off the end.
2125 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2126 // shr exact can only shift out zero bits.
2127 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2128 if (BO->isExact())
2129 return isKnownNonZero(X, Depth, Q);
2130
2131 KnownBits Known = computeKnownBits(X, Depth, Q);
2132 if (Known.isNegative())
2133 return true;
2134
2135 // If the shifter operand is a constant, and all of the bits shifted
2136 // out are known to be zero, and X is known non-zero then at least one
2137 // non-zero bit must remain.
2138 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2139 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2140 // Is there a known one in the portion not shifted out?
2141 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2142 return true;
2143 // Are all the bits to be shifted out known zero?
2144 if (Known.countMinTrailingZeros() >= ShiftVal)
2145 return isKnownNonZero(X, Depth, Q);
2146 }
2147 }
2148 // div exact can only produce a zero if the dividend is zero.
2149 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2150 return isKnownNonZero(X, Depth, Q);
2151 }
2152 // X + Y.
2153 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2154 KnownBits XKnown = computeKnownBits(X, Depth, Q);
2155 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2156
2157 // If X and Y are both non-negative (as signed values) then their sum is not
2158 // zero unless both X and Y are zero.
2159 if (XKnown.isNonNegative() && YKnown.isNonNegative())
2160 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2161 return true;
2162
2163 // If X and Y are both negative (as signed values) then their sum is not
2164 // zero unless both X and Y equal INT_MIN.
2165 if (XKnown.isNegative() && YKnown.isNegative()) {
2166 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2167 // The sign bit of X is set. If some other bit is set then X is not equal
2168 // to INT_MIN.
2169 if (XKnown.One.intersects(Mask))
2170 return true;
2171 // The sign bit of Y is set. If some other bit is set then Y is not equal
2172 // to INT_MIN.
2173 if (YKnown.One.intersects(Mask))
2174 return true;
2175 }
2176
2177 // The sum of a non-negative number and a power of two is not zero.
2178 if (XKnown.isNonNegative() &&
2179 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2180 return true;
2181 if (YKnown.isNonNegative() &&
2182 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2183 return true;
2184 }
2185 // X * Y.
2186 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2187 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2188 // If X and Y are non-zero then so is X * Y as long as the multiplication
2189 // does not overflow.
2190 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2191 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2192 return true;
2193 }
2194 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2195 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2196 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2197 isKnownNonZero(SI->getFalseValue(), Depth, Q))
2198 return true;
2199 }
2200 // PHI
2201 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2202 // Try and detect a recurrence that monotonically increases from a
2203 // starting value, as these are common as induction variables.
2204 if (PN->getNumIncomingValues() == 2) {
2205 Value *Start = PN->getIncomingValue(0);
2206 Value *Induction = PN->getIncomingValue(1);
2207 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2208 std::swap(Start, Induction);
2209 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2210 if (!C->isZero() && !C->isNegative()) {
2211 ConstantInt *X;
2212 if (Q.IIQ.UseInstrInfo &&
2213 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2214 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2215 !X->isNegative())
2216 return true;
2217 }
2218 }
2219 }
2220 // Check if all incoming values are non-zero constant.
2221 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2222 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2223 });
2224 if (AllNonZeroConstants)
2225 return true;
2226 }
2227
2228 KnownBits Known(BitWidth);
2229 computeKnownBits(V, Known, Depth, Q);
2230 return Known.One != 0;
2231}
2232
2233/// Return true if V2 == V1 + X, where X is known non-zero.
2234static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2235 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2236 if (!BO || BO->getOpcode() != Instruction::Add)
2237 return false;
2238 Value *Op = nullptr;
2239 if (V2 == BO->getOperand(0))
2240 Op = BO->getOperand(1);
2241 else if (V2 == BO->getOperand(1))
2242 Op = BO->getOperand(0);
2243 else
2244 return false;
2245 return isKnownNonZero(Op, 0, Q);
2246}
2247
2248/// Return true if it is known that V1 != V2.
2249static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2250 if (V1 == V2)
2251 return false;
2252 if (V1->getType() != V2->getType())
2253 // We can't look through casts yet.
2254 return false;
2255 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2256 return true;
2257
2258 if (V1->getType()->isIntOrIntVectorTy()) {
2259 // Are any known bits in V1 contradictory to known bits in V2? If V1
2260 // has a known zero where V2 has a known one, they must not be equal.
2261 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2262 KnownBits Known2 = computeKnownBits(V2, 0, Q);
2263
2264 if (Known1.Zero.intersects(Known2.One) ||
2265 Known2.Zero.intersects(Known1.One))
2266 return true;
2267 }
2268 return false;
2269}
2270
2271/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2272/// simplify operations downstream. Mask is known to be zero for bits that V
2273/// cannot have.
2274///
2275/// This function is defined on values with integer type, values with pointer
2276/// type, and vectors of integers. In the case
2277/// where V is a vector, the mask, known zero, and known one values are the
2278/// same width as the vector element, and the bit is set only if it is true
2279/// for all of the elements in the vector.
2280bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2281 const Query &Q) {
2282 KnownBits Known(Mask.getBitWidth());
2283 computeKnownBits(V, Known, Depth, Q);
2284 return Mask.isSubsetOf(Known.Zero);
2285}
2286
2287// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2288// Returns the input and lower/upper bounds.
2289static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2290 const APInt *&CLow, const APInt *&CHigh) {
2291 assert(isa<Operator>(Select) &&((isa<Operator>(Select) && cast<Operator>
(Select)->getOpcode() == Instruction::Select && "Input should be a Select!"
) ? static_cast<void> (0) : __assert_fail ("isa<Operator>(Select) && cast<Operator>(Select)->getOpcode() == Instruction::Select && \"Input should be a Select!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2293, __PRETTY_FUNCTION__))
2292 cast<Operator>(Select)->getOpcode() == Instruction::Select &&((isa<Operator>(Select) && cast<Operator>
(Select)->getOpcode() == Instruction::Select && "Input should be a Select!"
) ? static_cast<void> (0) : __assert_fail ("isa<Operator>(Select) && cast<Operator>(Select)->getOpcode() == Instruction::Select && \"Input should be a Select!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2293, __PRETTY_FUNCTION__))
2293 "Input should be a Select!")((isa<Operator>(Select) && cast<Operator>
(Select)->getOpcode() == Instruction::Select && "Input should be a Select!"
) ? static_cast<void> (0) : __assert_fail ("isa<Operator>(Select) && cast<Operator>(Select)->getOpcode() == Instruction::Select && \"Input should be a Select!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2293, __PRETTY_FUNCTION__))
;
2294
2295 const Value *LHS, *RHS, *LHS2, *RHS2;
2296 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2297 if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2298 return false;
2299
2300 if (!match(RHS, m_APInt(CLow)))
2301 return false;
2302
2303 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2304 if (getInverseMinMaxFlavor(SPF) != SPF2)
2305 return false;
2306
2307 if (!match(RHS2, m_APInt(CHigh)))
2308 return false;
2309
2310 if (SPF == SPF_SMIN)
2311 std::swap(CLow, CHigh);
2312
2313 In = LHS2;
2314 return CLow->sle(*CHigh);
2315}
2316
2317/// For vector constants, loop over the elements and find the constant with the
2318/// minimum number of sign bits. Return 0 if the value is not a vector constant
2319/// or if any element was not analyzed; otherwise, return the count for the
2320/// element with the minimum number of sign bits.
2321static unsigned computeNumSignBitsVectorConstant(const Value *V,
2322 unsigned TyBits) {
2323 const auto *CV = dyn_cast<Constant>(V);
2324 if (!CV || !CV->getType()->isVectorTy())
2325 return 0;
2326
2327 unsigned MinSignBits = TyBits;
2328 unsigned NumElts = CV->getType()->getVectorNumElements();
2329 for (unsigned i = 0; i != NumElts; ++i) {
2330 // If we find a non-ConstantInt, bail out.
2331 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2332 if (!Elt)
2333 return 0;
2334
2335 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2336 }
2337
2338 return MinSignBits;
2339}
2340
2341static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2342 const Query &Q);
2343
2344static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2345 const Query &Q) {
2346 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2347 assert(Result > 0 && "At least one sign bit needs to be present!")((Result > 0 && "At least one sign bit needs to be present!"
) ? static_cast<void> (0) : __assert_fail ("Result > 0 && \"At least one sign bit needs to be present!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2347, __PRETTY_FUNCTION__))
;
2348 return Result;
2349}
2350
2351/// Return the number of times the sign bit of the register is replicated into
2352/// the other bits. We know that at least 1 bit is always equal to the sign bit
2353/// (itself), but other cases can give us information. For example, immediately
2354/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2355/// other, so we return 3. For vectors, return the number of sign bits for the
2356/// vector element with the minimum number of known sign bits.
2357static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2358 const Query &Q) {
2359 assert(Depth <= MaxDepth && "Limit Search Depth")((Depth <= MaxDepth && "Limit Search Depth") ? static_cast
<void> (0) : __assert_fail ("Depth <= MaxDepth && \"Limit Search Depth\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2359, __PRETTY_FUNCTION__))
;
2360
2361 // We return the minimum number of sign bits that are guaranteed to be present
2362 // in V, so for undef we have to conservatively return 1. We don't have the
2363 // same behavior for poison though -- that's a FIXME today.
2364
2365 Type *ScalarTy = V->getType()->getScalarType();
2366 unsigned TyBits = ScalarTy->isPointerTy() ?
2367 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2368 Q.DL.getTypeSizeInBits(ScalarTy);
2369
2370 unsigned Tmp, Tmp2;
2371 unsigned FirstAnswer = 1;
2372
2373 // Note that ConstantInt is handled by the general computeKnownBits case
2374 // below.
2375
2376 if (Depth == MaxDepth)
2377 return 1; // Limit search depth.
2378
2379 const Operator *U = dyn_cast<Operator>(V);
2380 switch (Operator::getOpcode(V)) {
2381 default: break;
2382 case Instruction::SExt:
2383 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2384 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2385
2386 case Instruction::SDiv: {
2387 const APInt *Denominator;
2388 // sdiv X, C -> adds log(C) sign bits.
2389 if (match(U->getOperand(1), m_APInt(Denominator))) {
2390
2391 // Ignore non-positive denominator.
2392 if (!Denominator->isStrictlyPositive())
2393 break;
2394
2395 // Calculate the incoming numerator bits.
2396 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2397
2398 // Add floor(log(C)) bits to the numerator bits.
2399 return std::min(TyBits, NumBits + Denominator->logBase2());
2400 }
2401 break;
2402 }
2403
2404 case Instruction::SRem: {
2405 const APInt *Denominator;
2406 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2407 // positive constant. This let us put a lower bound on the number of sign
2408 // bits.
2409 if (match(U->getOperand(1), m_APInt(Denominator))) {
2410
2411 // Ignore non-positive denominator.
2412 if (!Denominator->isStrictlyPositive())
2413 break;
2414
2415 // Calculate the incoming numerator bits. SRem by a positive constant
2416 // can't lower the number of sign bits.
2417 unsigned NumrBits =
2418 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2419
2420 // Calculate the leading sign bit constraints by examining the
2421 // denominator. Given that the denominator is positive, there are two
2422 // cases:
2423 //
2424 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2425 // (1 << ceilLogBase2(C)).
2426 //
2427 // 2. the numerator is negative. Then the result range is (-C,0] and
2428 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2429 //
2430 // Thus a lower bound on the number of sign bits is `TyBits -
2431 // ceilLogBase2(C)`.
2432
2433 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2434 return std::max(NumrBits, ResBits);
2435 }
2436 break;
2437 }
2438
2439 case Instruction::AShr: {
2440 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2441 // ashr X, C -> adds C sign bits. Vectors too.
2442 const APInt *ShAmt;
2443 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2444 if (ShAmt->uge(TyBits))
2445 break; // Bad shift.
2446 unsigned ShAmtLimited = ShAmt->getZExtValue();
2447 Tmp += ShAmtLimited;
2448 if (Tmp > TyBits) Tmp = TyBits;
2449 }
2450 return Tmp;
2451 }
2452 case Instruction::Shl: {
2453 const APInt *ShAmt;
2454 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2455 // shl destroys sign bits.
2456 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2457 if (ShAmt->uge(TyBits) || // Bad shift.
2458 ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2459 Tmp2 = ShAmt->getZExtValue();
2460 return Tmp - Tmp2;
2461 }
2462 break;
2463 }
2464 case Instruction::And:
2465 case Instruction::Or:
2466 case Instruction::Xor: // NOT is handled here.
2467 // Logical binary ops preserve the number of sign bits at the worst.
2468 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2469 if (Tmp != 1) {
2470 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2471 FirstAnswer = std::min(Tmp, Tmp2);
2472 // We computed what we know about the sign bits as our first
2473 // answer. Now proceed to the generic code that uses
2474 // computeKnownBits, and pick whichever answer is better.
2475 }
2476 break;
2477
2478 case Instruction::Select: {
2479 // If we have a clamp pattern, we know that the number of sign bits will be
2480 // the minimum of the clamp min/max range.
2481 const Value *X;
2482 const APInt *CLow, *CHigh;
2483 if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2484 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2485
2486 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2487 if (Tmp == 1) break;
2488 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2489 return std::min(Tmp, Tmp2);
2490 }
2491
2492 case Instruction::Add:
2493 // Add can have at most one carry bit. Thus we know that the output
2494 // is, at worst, one more bit than the inputs.
2495 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2496 if (Tmp == 1) break;
2497
2498 // Special case decrementing a value (ADD X, -1):
2499 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2500 if (CRHS->isAllOnesValue()) {
2501 KnownBits Known(TyBits);
2502 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2503
2504 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2505 // sign bits set.
2506 if ((Known.Zero | 1).isAllOnesValue())
2507 return TyBits;
2508
2509 // If we are subtracting one from a positive number, there is no carry
2510 // out of the result.
2511 if (Known.isNonNegative())
2512 return Tmp;
2513 }
2514
2515 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2516 if (Tmp2 == 1) break;
2517 return std::min(Tmp, Tmp2)-1;
2518
2519 case Instruction::Sub:
2520 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2521 if (Tmp2 == 1) break;
2522
2523 // Handle NEG.
2524 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2525 if (CLHS->isNullValue()) {
2526 KnownBits Known(TyBits);
2527 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2528 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2529 // sign bits set.
2530 if ((Known.Zero | 1).isAllOnesValue())
2531 return TyBits;
2532
2533 // If the input is known to be positive (the sign bit is known clear),
2534 // the output of the NEG has the same number of sign bits as the input.
2535 if (Known.isNonNegative())
2536 return Tmp2;
2537
2538 // Otherwise, we treat this like a SUB.
2539 }
2540
2541 // Sub can have at most one carry bit. Thus we know that the output
2542 // is, at worst, one more bit than the inputs.
2543 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2544 if (Tmp == 1) break;
2545 return std::min(Tmp, Tmp2)-1;
2546
2547 case Instruction::Mul: {
2548 // The output of the Mul can be at most twice the valid bits in the inputs.
2549 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2550 if (SignBitsOp0 == 1) break;
2551 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2552 if (SignBitsOp1 == 1) break;
2553 unsigned OutValidBits =
2554 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2555 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2556 }
2557
2558 case Instruction::PHI: {
2559 const PHINode *PN = cast<PHINode>(U);
2560 unsigned NumIncomingValues = PN->getNumIncomingValues();
2561 // Don't analyze large in-degree PHIs.
2562 if (NumIncomingValues > 4) break;
2563 // Unreachable blocks may have zero-operand PHI nodes.
2564 if (NumIncomingValues == 0) break;
2565
2566 // Take the minimum of all incoming values. This can't infinitely loop
2567 // because of our depth threshold.
2568 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2569 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2570 if (Tmp == 1) return Tmp;
2571 Tmp = std::min(
2572 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2573 }
2574 return Tmp;
2575 }
2576
2577 case Instruction::Trunc:
2578 // FIXME: it's tricky to do anything useful for this, but it is an important
2579 // case for targets like X86.
2580 break;
2581
2582 case Instruction::ExtractElement:
2583 // Look through extract element. At the moment we keep this simple and skip
2584 // tracking the specific element. But at least we might find information
2585 // valid for all elements of the vector (for example if vector is sign
2586 // extended, shifted, etc).
2587 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2588
2589 case Instruction::ShuffleVector: {
2590 // TODO: This is copied almost directly from the SelectionDAG version of
2591 // ComputeNumSignBits. It would be better if we could share common
2592 // code. If not, make sure that changes are translated to the DAG.
2593
2594 // Collect the minimum number of sign bits that are shared by every vector
2595 // element referenced by the shuffle.
2596 auto *Shuf = cast<ShuffleVectorInst>(U);
2597 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
2598 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
2599 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2600 for (int i = 0; i != NumMaskElts; ++i) {
2601 int M = Shuf->getMaskValue(i);
2602 assert(M < NumElts * 2 && "Invalid shuffle mask constant")((M < NumElts * 2 && "Invalid shuffle mask constant"
) ? static_cast<void> (0) : __assert_fail ("M < NumElts * 2 && \"Invalid shuffle mask constant\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2602, __PRETTY_FUNCTION__))
;
2603 // For undef elements, we don't know anything about the common state of
2604 // the shuffle result.
2605 if (M == -1)
2606 return 1;
2607 if (M < NumElts)
2608 DemandedLHS.setBit(M % NumElts);
2609 else
2610 DemandedRHS.setBit(M % NumElts);
2611 }
2612 Tmp = std::numeric_limits<unsigned>::max();
2613 if (!!DemandedLHS)
2614 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
2615 if (!!DemandedRHS) {
2616 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
2617 Tmp = std::min(Tmp, Tmp2);
2618 }
2619 // If we don't know anything, early out and try computeKnownBits fall-back.
2620 if (Tmp == 1)
2621 break;
2622 assert(Tmp <= V->getType()->getScalarSizeInBits() &&((Tmp <= V->getType()->getScalarSizeInBits() &&
"Failed to determine minimum sign bits") ? static_cast<void
> (0) : __assert_fail ("Tmp <= V->getType()->getScalarSizeInBits() && \"Failed to determine minimum sign bits\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2623, __PRETTY_FUNCTION__))
2623 "Failed to determine minimum sign bits")((Tmp <= V->getType()->getScalarSizeInBits() &&
"Failed to determine minimum sign bits") ? static_cast<void
> (0) : __assert_fail ("Tmp <= V->getType()->getScalarSizeInBits() && \"Failed to determine minimum sign bits\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2623, __PRETTY_FUNCTION__))
;
2624 return Tmp;
2625 }
2626 }
2627
2628 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2629 // use this information.
2630
2631 // If we can examine all elements of a vector constant successfully, we're
2632 // done (we can't do any better than that). If not, keep trying.
2633 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2634 return VecSignBits;
2635
2636 KnownBits Known(TyBits);
2637 computeKnownBits(V, Known, Depth, Q);
2638
2639 // If we know that the sign bit is either zero or one, determine the number of
2640 // identical bits in the top of the input value.
2641 return std::max(FirstAnswer, Known.countMinSignBits());
2642}
2643
2644/// This function computes the integer multiple of Base that equals V.
2645/// If successful, it returns true and returns the multiple in
2646/// Multiple. If unsuccessful, it returns false. It looks
2647/// through SExt instructions only if LookThroughSExt is true.
2648bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2649 bool LookThroughSExt, unsigned Depth) {
2650 const unsigned MaxDepth = 6;
2651
2652 assert(V && "No Value?")((V && "No Value?") ? static_cast<void> (0) : __assert_fail
("V && \"No Value?\"", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2652, __PRETTY_FUNCTION__))
;
2653 assert(Depth <= MaxDepth && "Limit Search Depth")((Depth <= MaxDepth && "Limit Search Depth") ? static_cast
<void> (0) : __assert_fail ("Depth <= MaxDepth && \"Limit Search Depth\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2653, __PRETTY_FUNCTION__))
;
2654 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!")((V->getType()->isIntegerTy() && "Not integer or pointer type!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntegerTy() && \"Not integer or pointer type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 2654, __PRETTY_FUNCTION__))
;
2655
2656 Type *T = V->getType();
2657
2658 ConstantInt *CI = dyn_cast<ConstantInt>(V);
2659
2660 if (Base == 0)
2661 return false;
2662
2663 if (Base == 1) {
2664 Multiple = V;
2665 return true;
2666 }
2667
2668 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2669 Constant *BaseVal = ConstantInt::get(T, Base);
2670 if (CO && CO == BaseVal) {
2671 // Multiple is 1.
2672 Multiple = ConstantInt::get(T, 1);
2673 return true;
2674 }
2675
2676 if (CI && CI->getZExtValue() % Base == 0) {
2677 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2678 return true;
2679 }
2680
2681 if (Depth == MaxDepth) return false; // Limit search depth.
2682
2683 Operator *I = dyn_cast<Operator>(V);
2684 if (!I) return false;
2685
2686 switch (I->getOpcode()) {
2687 default: break;
2688 case Instruction::SExt:
2689 if (!LookThroughSExt) return false;
2690 // otherwise fall through to ZExt
2691 LLVM_FALLTHROUGH[[clang::fallthrough]];
2692 case Instruction::ZExt:
2693 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2694 LookThroughSExt, Depth+1);
2695 case Instruction::Shl:
2696 case Instruction::Mul: {
2697 Value *Op0 = I->getOperand(0);
2698 Value *Op1 = I->getOperand(1);
2699
2700 if (I->getOpcode() == Instruction::Shl) {
2701 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2702 if (!Op1CI) return false;
2703 // Turn Op0 << Op1 into Op0 * 2^Op1
2704 APInt Op1Int = Op1CI->getValue();
2705 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2706 APInt API(Op1Int.getBitWidth(), 0);
2707 API.setBit(BitToSet);
2708 Op1 = ConstantInt::get(V->getContext(), API);
2709 }
2710
2711 Value *Mul0 = nullptr;
2712 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2713 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2714 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2715 if (Op1C->getType()->getPrimitiveSizeInBits() <
2716 MulC->getType()->getPrimitiveSizeInBits())
2717 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2718 if (Op1C->getType()->getPrimitiveSizeInBits() >
2719 MulC->getType()->getPrimitiveSizeInBits())
2720 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2721
2722 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2723 Multiple = ConstantExpr::getMul(MulC, Op1C);
2724 return true;
2725 }
2726
2727 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2728 if (Mul0CI->getValue() == 1) {
2729 // V == Base * Op1, so return Op1
2730 Multiple = Op1;
2731 return true;
2732 }
2733 }
2734
2735 Value *Mul1 = nullptr;
2736 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2737 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2738 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2739 if (Op0C->getType()->getPrimitiveSizeInBits() <
2740 MulC->getType()->getPrimitiveSizeInBits())
2741 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2742 if (Op0C->getType()->getPrimitiveSizeInBits() >
2743 MulC->getType()->getPrimitiveSizeInBits())
2744 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2745
2746 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2747 Multiple = ConstantExpr::getMul(MulC, Op0C);
2748 return true;
2749 }
2750
2751 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2752 if (Mul1CI->getValue() == 1) {
2753 // V == Base * Op0, so return Op0
2754 Multiple = Op0;
2755 return true;
2756 }
2757 }
2758 }
2759 }
2760
2761 // We could not determine if V is a multiple of Base.
2762 return false;
2763}
2764
2765Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2766 const TargetLibraryInfo *TLI) {
2767 const Function *F = ICS.getCalledFunction();
2768 if (!F)
2769 return Intrinsic::not_intrinsic;
2770
2771 if (F->isIntrinsic())
2772 return F->getIntrinsicID();
2773
2774 if (!TLI)
2775 return Intrinsic::not_intrinsic;
2776
2777 LibFunc Func;
2778 // We're going to make assumptions on the semantics of the functions, check
2779 // that the target knows that it's available in this environment and it does
2780 // not have local linkage.
2781 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2782 return Intrinsic::not_intrinsic;
2783
2784 if (!ICS.onlyReadsMemory())
2785 return Intrinsic::not_intrinsic;
2786
2787 // Otherwise check if we have a call to a function that can be turned into a
2788 // vector intrinsic.
2789 switch (Func) {
2790 default:
2791 break;
2792 case LibFunc_sin:
2793 case LibFunc_sinf:
2794 case LibFunc_sinl:
2795 return Intrinsic::sin;
2796 case LibFunc_cos:
2797 case LibFunc_cosf:
2798 case LibFunc_cosl:
2799 return Intrinsic::cos;
2800 case LibFunc_exp:
2801 case LibFunc_expf:
2802 case LibFunc_expl:
2803 return Intrinsic::exp;
2804 case LibFunc_exp2:
2805 case LibFunc_exp2f:
2806 case LibFunc_exp2l:
2807 return Intrinsic::exp2;
2808 case LibFunc_log:
2809 case LibFunc_logf:
2810 case LibFunc_logl:
2811 return Intrinsic::log;
2812 case LibFunc_log10:
2813 case LibFunc_log10f:
2814 case LibFunc_log10l:
2815 return Intrinsic::log10;
2816 case LibFunc_log2:
2817 case LibFunc_log2f:
2818 case LibFunc_log2l:
2819 return Intrinsic::log2;
2820 case LibFunc_fabs:
2821 case LibFunc_fabsf:
2822 case LibFunc_fabsl:
2823 return Intrinsic::fabs;
2824 case LibFunc_fmin:
2825 case LibFunc_fminf:
2826 case LibFunc_fminl:
2827 return Intrinsic::minnum;
2828 case LibFunc_fmax:
2829 case LibFunc_fmaxf:
2830 case LibFunc_fmaxl:
2831 return Intrinsic::maxnum;
2832 case LibFunc_copysign:
2833 case LibFunc_copysignf:
2834 case LibFunc_copysignl:
2835 return Intrinsic::copysign;
2836 case LibFunc_floor:
2837 case LibFunc_floorf:
2838 case LibFunc_floorl:
2839 return Intrinsic::floor;
2840 case LibFunc_ceil:
2841 case LibFunc_ceilf:
2842 case LibFunc_ceill:
2843 return Intrinsic::ceil;
2844 case LibFunc_trunc:
2845 case LibFunc_truncf:
2846 case LibFunc_truncl:
2847 return Intrinsic::trunc;
2848 case LibFunc_rint:
2849 case LibFunc_rintf:
2850 case LibFunc_rintl:
2851 return Intrinsic::rint;
2852 case LibFunc_nearbyint:
2853 case LibFunc_nearbyintf:
2854 case LibFunc_nearbyintl:
2855 return Intrinsic::nearbyint;
2856 case LibFunc_round:
2857 case LibFunc_roundf:
2858 case LibFunc_roundl:
2859 return Intrinsic::round;
2860 case LibFunc_pow:
2861 case LibFunc_powf:
2862 case LibFunc_powl:
2863 return Intrinsic::pow;
2864 case LibFunc_sqrt:
2865 case LibFunc_sqrtf:
2866 case LibFunc_sqrtl:
2867 return Intrinsic::sqrt;
2868 }
2869
2870 return Intrinsic::not_intrinsic;
2871}
2872
2873/// Return true if we can prove that the specified FP value is never equal to
2874/// -0.0.
2875///
2876/// NOTE: this function will need to be revisited when we support non-default
2877/// rounding modes!
2878bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2879 unsigned Depth) {
2880 if (auto *CFP = dyn_cast<ConstantFP>(V))
2881 return !CFP->getValueAPF().isNegZero();
2882
2883 // Limit search depth.
2884 if (Depth == MaxDepth)
2885 return false;
2886
2887 auto *Op = dyn_cast<Operator>(V);
2888 if (!Op)
2889 return false;
2890
2891 // Check if the nsz fast-math flag is set.
2892 if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2893 if (FPO->hasNoSignedZeros())
2894 return true;
2895
2896 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2897 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2898 return true;
2899
2900 // sitofp and uitofp turn into +0.0 for zero.
2901 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2902 return true;
2903
2904 if (auto *Call = dyn_cast<CallInst>(Op)) {
2905 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2906 switch (IID) {
2907 default:
2908 break;
2909 // sqrt(-0.0) = -0.0, no other negative results are possible.
2910 case Intrinsic::sqrt:
2911 case Intrinsic::canonicalize:
2912 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2913 // fabs(x) != -0.0
2914 case Intrinsic::fabs:
2915 return true;
2916 }
2917 }
2918
2919 return false;
2920}
2921
2922/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2923/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2924/// bit despite comparing equal.
2925static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2926 const TargetLibraryInfo *TLI,
2927 bool SignBitOnly,
2928 unsigned Depth) {
2929 // TODO: This function does not do the right thing when SignBitOnly is true
2930 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2931 // which flips the sign bits of NaNs. See
2932 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2933
2934 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2935 return !CFP->getValueAPF().isNegative() ||
2936 (!SignBitOnly && CFP->getValueAPF().isZero());
2937 }
2938
2939 // Handle vector of constants.
2940 if (auto *CV = dyn_cast<Constant>(V)) {
2941 if (CV->getType()->isVectorTy()) {
2942 unsigned NumElts = CV->getType()->getVectorNumElements();
2943 for (unsigned i = 0; i != NumElts; ++i) {
2944 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2945 if (!CFP)
2946 return false;
2947 if (CFP->getValueAPF().isNegative() &&
2948 (SignBitOnly || !CFP->getValueAPF().isZero()))
2949 return false;
2950 }
2951
2952 // All non-negative ConstantFPs.
2953 return true;
2954 }
2955 }
2956
2957 if (Depth == MaxDepth)
2958 return false; // Limit search depth.
2959
2960 const Operator *I = dyn_cast<Operator>(V);
2961 if (!I)
2962 return false;
2963
2964 switch (I->getOpcode()) {
2965 default:
2966 break;
2967 // Unsigned integers are always nonnegative.
2968 case Instruction::UIToFP:
2969 return true;
2970 case Instruction::FMul:
2971 // x*x is always non-negative or a NaN.
2972 if (I->getOperand(0) == I->getOperand(1) &&
2973 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2974 return true;
2975
2976 LLVM_FALLTHROUGH[[clang::fallthrough]];
2977 case Instruction::FAdd:
2978 case Instruction::FDiv:
2979 case Instruction::FRem:
2980 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2981 Depth + 1) &&
2982 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2983 Depth + 1);
2984 case Instruction::Select:
2985 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2986 Depth + 1) &&
2987 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2988 Depth + 1);
2989 case Instruction::FPExt:
2990 case Instruction::FPTrunc:
2991 // Widening/narrowing never change sign.
2992 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2993 Depth + 1);
2994 case Instruction::ExtractElement:
2995 // Look through extract element. At the moment we keep this simple and skip
2996 // tracking the specific element. But at least we might find information
2997 // valid for all elements of the vector.
2998 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2999 Depth + 1);
3000 case Instruction::Call:
3001 const auto *CI = cast<CallInst>(I);
3002 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
3003 switch (IID) {
3004 default:
3005 break;
3006 case Intrinsic::maxnum:
3007 return (isKnownNeverNaN(I->getOperand(0), TLI) &&
3008 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
3009 SignBitOnly, Depth + 1)) ||
3010 (isKnownNeverNaN(I->getOperand(1), TLI) &&
3011 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
3012 SignBitOnly, Depth + 1));
3013
3014 case Intrinsic::maximum:
3015 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3016 Depth + 1) ||
3017 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3018 Depth + 1);
3019 case Intrinsic::minnum:
3020 case Intrinsic::minimum:
3021 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3022 Depth + 1) &&
3023 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3024 Depth + 1);
3025 case Intrinsic::exp:
3026 case Intrinsic::exp2:
3027 case Intrinsic::fabs:
3028 return true;
3029
3030 case Intrinsic::sqrt:
3031 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
3032 if (!SignBitOnly)
3033 return true;
3034 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3035 CannotBeNegativeZero(CI->getOperand(0), TLI));
3036
3037 case Intrinsic::powi:
3038 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3039 // powi(x,n) is non-negative if n is even.
3040 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3041 return true;
3042 }
3043 // TODO: This is not correct. Given that exp is an integer, here are the
3044 // ways that pow can return a negative value:
3045 //
3046 // pow(x, exp) --> negative if exp is odd and x is negative.
3047 // pow(-0, exp) --> -inf if exp is negative odd.
3048 // pow(-0, exp) --> -0 if exp is positive odd.
3049 // pow(-inf, exp) --> -0 if exp is negative odd.
3050 // pow(-inf, exp) --> -inf if exp is positive odd.
3051 //
3052 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3053 // but we must return false if x == -0. Unfortunately we do not currently
3054 // have a way of expressing this constraint. See details in
3055 // https://llvm.org/bugs/show_bug.cgi?id=31702.
3056 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3057 Depth + 1);
3058
3059 case Intrinsic::fma:
3060 case Intrinsic::fmuladd:
3061 // x*x+y is non-negative if y is non-negative.
3062 return I->getOperand(0) == I->getOperand(1) &&
3063 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3064 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3065 Depth + 1);
3066 }
3067 break;
3068 }
3069 return false;
3070}
3071
3072bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3073 const TargetLibraryInfo *TLI) {
3074 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3075}
3076
3077bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3078 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3079}
3080
3081bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3082 unsigned Depth) {
3083 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type")((V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isFPOrFPVectorTy() && \"Querying for NaN on non-FP type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3083, __PRETTY_FUNCTION__))
;
3084
3085 // If we're told that NaNs won't happen, assume they won't.
3086 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3087 if (FPMathOp->hasNoNaNs())
3088 return true;
3089
3090 // Handle scalar constants.
3091 if (auto *CFP = dyn_cast<ConstantFP>(V))
3092 return !CFP->isNaN();
3093
3094 if (Depth == MaxDepth)
3095 return false;
3096
3097 if (auto *Inst = dyn_cast<Instruction>(V)) {
3098 switch (Inst->getOpcode()) {
3099 case Instruction::FAdd:
3100 case Instruction::FMul:
3101 case Instruction::FSub:
3102 case Instruction::FDiv:
3103 case Instruction::FRem: {
3104 // TODO: Need isKnownNeverInfinity
3105 return false;
3106 }
3107 case Instruction::Select: {
3108 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3109 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3110 }
3111 case Instruction::SIToFP:
3112 case Instruction::UIToFP:
3113 return true;
3114 case Instruction::FPTrunc:
3115 case Instruction::FPExt:
3116 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3117 default:
3118 break;
3119 }
3120 }
3121
3122 if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3123 switch (II->getIntrinsicID()) {
3124 case Intrinsic::canonicalize:
3125 case Intrinsic::fabs:
3126 case Intrinsic::copysign:
3127 case Intrinsic::exp:
3128 case Intrinsic::exp2:
3129 case Intrinsic::floor:
3130 case Intrinsic::ceil:
3131 case Intrinsic::trunc:
3132 case Intrinsic::rint:
3133 case Intrinsic::nearbyint:
3134 case Intrinsic::round:
3135 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3136 case Intrinsic::sqrt:
3137 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3138 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3139 case Intrinsic::minnum:
3140 case Intrinsic::maxnum:
3141 // If either operand is not NaN, the result is not NaN.
3142 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3143 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3144 default:
3145 return false;
3146 }
3147 }
3148
3149 // Bail out for constant expressions, but try to handle vector constants.
3150 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3151 return false;
3152
3153 // For vectors, verify that each element is not NaN.
3154 unsigned NumElts = V->getType()->getVectorNumElements();
3155 for (unsigned i = 0; i != NumElts; ++i) {
3156 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3157 if (!Elt)
3158 return false;
3159 if (isa<UndefValue>(Elt))
3160 continue;
3161 auto *CElt = dyn_cast<ConstantFP>(Elt);
3162 if (!CElt || CElt->isNaN())
3163 return false;
3164 }
3165 // All elements were confirmed not-NaN or undefined.
3166 return true;
3167}
3168
3169Value *llvm::isBytewiseValue(Value *V) {
3170
3171 // All byte-wide stores are splatable, even of arbitrary variables.
3172 if (V->getType()->isIntegerTy(8))
3173 return V;
3174
3175 LLVMContext &Ctx = V->getContext();
3176
3177 // Undef don't care.
3178 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3179 if (isa<UndefValue>(V))
3180 return UndefInt8;
3181
3182 Constant *C = dyn_cast<Constant>(V);
3183 if (!C) {
3184 // Conceptually, we could handle things like:
3185 // %a = zext i8 %X to i16
3186 // %b = shl i16 %a, 8
3187 // %c = or i16 %a, %b
3188 // but until there is an example that actually needs this, it doesn't seem
3189 // worth worrying about.
3190 return nullptr;
3191 }
3192
3193 // Handle 'null' ConstantArrayZero etc.
3194 if (C->isNullValue())
3195 return Constant::getNullValue(Type::getInt8Ty(Ctx));
3196
3197 // Constant floating-point values can be handled as integer values if the
3198 // corresponding integer value is "byteable". An important case is 0.0.
3199 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3200 Type *Ty = nullptr;
3201 if (CFP->getType()->isHalfTy())
3202 Ty = Type::getInt16Ty(Ctx);
3203 else if (CFP->getType()->isFloatTy())
3204 Ty = Type::getInt32Ty(Ctx);
3205 else if (CFP->getType()->isDoubleTy())
3206 Ty = Type::getInt64Ty(Ctx);
3207 // Don't handle long double formats, which have strange constraints.
3208 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
3209 }
3210
3211 // We can handle constant integers that are multiple of 8 bits.
3212 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3213 if (CI->getBitWidth() % 8 == 0) {
3214 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!")((CI->getBitWidth() > 8 && "8 bits should be handled above!"
) ? static_cast<void> (0) : __assert_fail ("CI->getBitWidth() > 8 && \"8 bits should be handled above!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3214, __PRETTY_FUNCTION__))
;
3215 if (!CI->getValue().isSplat(8))
3216 return nullptr;
3217 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3218 }
3219 }
3220
3221 auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3222 if (LHS == RHS)
3223 return LHS;
3224 if (!LHS || !RHS)
3225 return nullptr;
3226 if (LHS == UndefInt8)
3227 return RHS;
3228 if (RHS == UndefInt8)
3229 return LHS;
3230 return nullptr;
3231 };
3232
3233 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3234 Value *Val = UndefInt8;
3235 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3236 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
3237 return nullptr;
3238 return Val;
3239 }
3240
3241 if (isa<ConstantVector>(C)) {
3242 Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
3243 return Splat ? isBytewiseValue(Splat) : nullptr;
3244 }
3245
3246 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
3247 Value *Val = UndefInt8;
3248 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3249 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
3250 return nullptr;
3251 return Val;
3252 }
3253
3254 // Don't try to handle the handful of other constants.
3255 return nullptr;
3256}
3257
3258// This is the recursive version of BuildSubAggregate. It takes a few different
3259// arguments. Idxs is the index within the nested struct From that we are
3260// looking at now (which is of type IndexedType). IdxSkip is the number of
3261// indices from Idxs that should be left out when inserting into the resulting
3262// struct. To is the result struct built so far, new insertvalue instructions
3263// build on that.
3264static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3265 SmallVectorImpl<unsigned> &Idxs,
3266 unsigned IdxSkip,
3267 Instruction *InsertBefore) {
3268 StructType *STy = dyn_cast<StructType>(IndexedType);
3269 if (STy) {
3270 // Save the original To argument so we can modify it
3271 Value *OrigTo = To;
3272 // General case, the type indexed by Idxs is a struct
3273 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3274 // Process each struct element recursively
3275 Idxs.push_back(i);
3276 Value *PrevTo = To;
3277 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3278 InsertBefore);
3279 Idxs.pop_back();
3280 if (!To) {
3281 // Couldn't find any inserted value for this index? Cleanup
3282 while (PrevTo != OrigTo) {
3283 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3284 PrevTo = Del->getAggregateOperand();
3285 Del->eraseFromParent();
3286 }
3287 // Stop processing elements
3288 break;
3289 }
3290 }
3291 // If we successfully found a value for each of our subaggregates
3292 if (To)
3293 return To;
3294 }
3295 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3296 // the struct's elements had a value that was inserted directly. In the latter
3297 // case, perhaps we can't determine each of the subelements individually, but
3298 // we might be able to find the complete struct somewhere.
3299
3300 // Find the value that is at that particular spot
3301 Value *V = FindInsertedValue(From, Idxs);
3302
3303 if (!V)
3304 return nullptr;
3305
3306 // Insert the value in the new (sub) aggregate
3307 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3308 "tmp", InsertBefore);
3309}
3310
3311// This helper takes a nested struct and extracts a part of it (which is again a
3312// struct) into a new value. For example, given the struct:
3313// { a, { b, { c, d }, e } }
3314// and the indices "1, 1" this returns
3315// { c, d }.
3316//
3317// It does this by inserting an insertvalue for each element in the resulting
3318// struct, as opposed to just inserting a single struct. This will only work if
3319// each of the elements of the substruct are known (ie, inserted into From by an
3320// insertvalue instruction somewhere).
3321//
3322// All inserted insertvalue instructions are inserted before InsertBefore
3323static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3324 Instruction *InsertBefore) {
3325 assert(InsertBefore && "Must have someplace to insert!")((InsertBefore && "Must have someplace to insert!") ?
static_cast<void> (0) : __assert_fail ("InsertBefore && \"Must have someplace to insert!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3325, __PRETTY_FUNCTION__))
;
3326 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3327 idx_range);
3328 Value *To = UndefValue::get(IndexedType);
3329 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3330 unsigned IdxSkip = Idxs.size();
3331
3332 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3333}
3334
3335/// Given an aggregate and a sequence of indices, see if the scalar value
3336/// indexed is already around as a register, for example if it was inserted
3337/// directly into the aggregate.
3338///
3339/// If InsertBefore is not null, this function will duplicate (modified)
3340/// insertvalues when a part of a nested struct is extracted.
3341Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3342 Instruction *InsertBefore) {
3343 // Nothing to index? Just return V then (this is useful at the end of our
3344 // recursion).
3345 if (idx_range.empty())
3346 return V;
3347 // We have indices, so V should have an indexable type.
3348 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&(((V->getType()->isStructTy() || V->getType()->isArrayTy
()) && "Not looking at a struct or array?") ? static_cast
<void> (0) : __assert_fail ("(V->getType()->isStructTy() || V->getType()->isArrayTy()) && \"Not looking at a struct or array?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3349, __PRETTY_FUNCTION__))
3349 "Not looking at a struct or array?")(((V->getType()->isStructTy() || V->getType()->isArrayTy
()) && "Not looking at a struct or array?") ? static_cast
<void> (0) : __assert_fail ("(V->getType()->isStructTy() || V->getType()->isArrayTy()) && \"Not looking at a struct or array?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3349, __PRETTY_FUNCTION__))
;
3350 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&((ExtractValueInst::getIndexedType(V->getType(), idx_range
) && "Invalid indices for type?") ? static_cast<void
> (0) : __assert_fail ("ExtractValueInst::getIndexedType(V->getType(), idx_range) && \"Invalid indices for type?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3351, __PRETTY_FUNCTION__))
3351 "Invalid indices for type?")((ExtractValueInst::getIndexedType(V->getType(), idx_range
) && "Invalid indices for type?") ? static_cast<void
> (0) : __assert_fail ("ExtractValueInst::getIndexedType(V->getType(), idx_range) && \"Invalid indices for type?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3351, __PRETTY_FUNCTION__))
;
3352
3353 if (Constant *C = dyn_cast<Constant>(V)) {
3354 C = C->getAggregateElement(idx_range[0]);
3355 if (!C) return nullptr;
3356 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3357 }
3358
3359 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3360 // Loop the indices for the insertvalue instruction in parallel with the
3361 // requested indices
3362 const unsigned *req_idx = idx_range.begin();
3363 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3364 i != e; ++i, ++req_idx) {
3365 if (req_idx == idx_range.end()) {
3366 // We can't handle this without inserting insertvalues
3367 if (!InsertBefore)
3368 return nullptr;
3369
3370 // The requested index identifies a part of a nested aggregate. Handle
3371 // this specially. For example,
3372 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3373 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3374 // %C = extractvalue {i32, { i32, i32 } } %B, 1
3375 // This can be changed into
3376 // %A = insertvalue {i32, i32 } undef, i32 10, 0
3377 // %C = insertvalue {i32, i32 } %A, i32 11, 1
3378 // which allows the unused 0,0 element from the nested struct to be
3379 // removed.
3380 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3381 InsertBefore);
3382 }
3383
3384 // This insert value inserts something else than what we are looking for.
3385 // See if the (aggregate) value inserted into has the value we are
3386 // looking for, then.
3387 if (*req_idx != *i)
3388 return FindInsertedValue(I->getAggregateOperand(), idx_range,
3389 InsertBefore);
3390 }
3391 // If we end up here, the indices of the insertvalue match with those
3392 // requested (though possibly only partially). Now we recursively look at
3393 // the inserted value, passing any remaining indices.
3394 return FindInsertedValue(I->getInsertedValueOperand(),
3395 makeArrayRef(req_idx, idx_range.end()),
3396 InsertBefore);
3397 }
3398
3399 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3400 // If we're extracting a value from an aggregate that was extracted from
3401 // something else, we can extract from that something else directly instead.
3402 // However, we will need to chain I's indices with the requested indices.
3403
3404 // Calculate the number of indices required
3405 unsigned size = I->getNumIndices() + idx_range.size();
3406 // Allocate some space to put the new indices in
3407 SmallVector<unsigned, 5> Idxs;
3408 Idxs.reserve(size);
3409 // Add indices from the extract value instruction
3410 Idxs.append(I->idx_begin(), I->idx_end());
3411
3412 // Add requested indices
3413 Idxs.append(idx_range.begin(), idx_range.end());
3414
3415 assert(Idxs.size() == size((Idxs.size() == size && "Number of indices added not correct?"
) ? static_cast<void> (0) : __assert_fail ("Idxs.size() == size && \"Number of indices added not correct?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3416, __PRETTY_FUNCTION__))
3416 && "Number of indices added not correct?")((Idxs.size() == size && "Number of indices added not correct?"
) ? static_cast<void> (0) : __assert_fail ("Idxs.size() == size && \"Number of indices added not correct?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3416, __PRETTY_FUNCTION__))
;
3417
3418 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3419 }
3420 // Otherwise, we don't know (such as, extracting from a function return value
3421 // or load instruction)
3422 return nullptr;
3423}
3424
3425/// Analyze the specified pointer to see if it can be expressed as a base
3426/// pointer plus a constant offset. Return the base and offset to the caller.
3427Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
3428 const DataLayout &DL) {
3429 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
3430 APInt ByteOffset(BitWidth, 0);
3431
3432 // We walk up the defs but use a visited set to handle unreachable code. In
3433 // that case, we stop after accumulating the cycle once (not that it
3434 // matters).
3435 SmallPtrSet<Value *, 16> Visited;
3436 while (Visited.insert(Ptr).second) {
3437 if (Ptr->getType()->isVectorTy())
3438 break;
3439
3440 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
3441 // If one of the values we have visited is an addrspacecast, then
3442 // the pointer type of this GEP may be different from the type
3443 // of the Ptr parameter which was passed to this function. This
3444 // means when we construct GEPOffset, we need to use the size
3445 // of GEP's pointer type rather than the size of the original
3446 // pointer type.
3447 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
3448 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3449 break;
3450
3451 APInt OrigByteOffset(ByteOffset);
3452 ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth());
3453 if (ByteOffset.getMinSignedBits() > 64) {
3454 // Stop traversal if the pointer offset wouldn't fit into int64_t
3455 // (this should be removed if Offset is updated to an APInt)
3456 ByteOffset = OrigByteOffset;
3457 break;
3458 }
3459
3460 Ptr = GEP->getPointerOperand();
3461 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3462 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3463 Ptr = cast<Operator>(Ptr)->getOperand(0);
3464 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3465 if (GA->isInterposable())
3466 break;
3467 Ptr = GA->getAliasee();
3468 } else {
3469 break;
3470 }
3471 }
3472 Offset = ByteOffset.getSExtValue();
3473 return Ptr;
3474}
3475
3476bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3477 unsigned CharSize) {
3478 // Make sure the GEP has exactly three arguments.
3479 if (GEP->getNumOperands() != 3)
3480 return false;
3481
3482 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3483 // CharSize.
3484 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3485 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3486 return false;
3487
3488 // Check to make sure that the first operand of the GEP is an integer and
3489 // has value 0 so that we are sure we're indexing into the initializer.
3490 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3491 if (!FirstIdx || !FirstIdx->isZero())
3492 return false;
3493
3494 return true;
3495}
3496
3497bool llvm::getConstantDataArrayInfo(const Value *V,
3498 ConstantDataArraySlice &Slice,
3499 unsigned ElementSize, uint64_t Offset) {
3500 assert(V)((V) ? static_cast<void> (0) : __assert_fail ("V", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3500, __PRETTY_FUNCTION__))
;
3501
3502 // Look through bitcast instructions and geps.
3503 V = V->stripPointerCasts();
3504
3505 // If the value is a GEP instruction or constant expression, treat it as an
3506 // offset.
3507 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3508 // The GEP operator should be based on a pointer to string constant, and is
3509 // indexing into the string constant.
3510 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3511 return false;
3512
3513 // If the second index isn't a ConstantInt, then this is a variable index
3514 // into the array. If this occurs, we can't say anything meaningful about
3515 // the string.
3516 uint64_t StartIdx = 0;
3517 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3518 StartIdx = CI->getZExtValue();
3519 else
3520 return false;
3521 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3522 StartIdx + Offset);
3523 }
3524
3525 // The GEP instruction, constant or instruction, must reference a global
3526 // variable that is a constant and is initialized. The referenced constant
3527 // initializer is the array that we'll use for optimization.
3528 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3529 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3530 return false;
3531
3532 const ConstantDataArray *Array;
3533 ArrayType *ArrayTy;
3534 if (GV->getInitializer()->isNullValue()) {
3535 Type *GVTy = GV->getValueType();
3536 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3537 // A zeroinitializer for the array; there is no ConstantDataArray.
3538 Array = nullptr;
3539 } else {
3540 const DataLayout &DL = GV->getParent()->getDataLayout();
3541 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3542 uint64_t Length = SizeInBytes / (ElementSize / 8);
3543 if (Length <= Offset)
3544 return false;
3545
3546 Slice.Array = nullptr;
3547 Slice.Offset = 0;
3548 Slice.Length = Length - Offset;
3549 return true;
3550 }
3551 } else {
3552 // This must be a ConstantDataArray.
3553 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3554 if (!Array)
3555 return false;
3556 ArrayTy = Array->getType();
3557 }
3558 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3559 return false;
3560
3561 uint64_t NumElts = ArrayTy->getArrayNumElements();
3562 if (Offset > NumElts)
3563 return false;
3564
3565 Slice.Array = Array;
3566 Slice.Offset = Offset;
3567 Slice.Length = NumElts - Offset;
3568 return true;
3569}
3570
3571/// This function computes the length of a null-terminated C string pointed to
3572/// by V. If successful, it returns true and returns the string in Str.
3573/// If unsuccessful, it returns false.
3574bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3575 uint64_t Offset, bool TrimAtNul) {
3576 ConstantDataArraySlice Slice;
3577 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3578 return false;
3579
3580 if (Slice.Array == nullptr) {
3581 if (TrimAtNul) {
3582 Str = StringRef();
3583 return true;
3584 }
3585 if (Slice.Length == 1) {
3586 Str = StringRef("", 1);
3587 return true;
3588 }
3589 // We cannot instantiate a StringRef as we do not have an appropriate string
3590 // of 0s at hand.
3591 return false;
3592 }
3593
3594 // Start out with the entire array in the StringRef.
3595 Str = Slice.Array->getAsString();
3596 // Skip over 'offset' bytes.
3597 Str = Str.substr(Slice.Offset);
3598
3599 if (TrimAtNul) {
3600 // Trim off the \0 and anything after it. If the array is not nul
3601 // terminated, we just return the whole end of string. The client may know
3602 // some other way that the string is length-bound.
3603 Str = Str.substr(0, Str.find('\0'));
3604 }
3605 return true;
3606}
3607
3608// These next two are very similar to the above, but also look through PHI
3609// nodes.
3610// TODO: See if we can integrate these two together.
3611
3612/// If we can compute the length of the string pointed to by
3613/// the specified pointer, return 'len+1'. If we can't, return 0.
3614static uint64_t GetStringLengthH(const Value *V,
3615 SmallPtrSetImpl<const PHINode*> &PHIs,
3616 unsigned CharSize) {
3617 // Look through noop bitcast instructions.
3618 V = V->stripPointerCasts();
3619
3620 // If this is a PHI node, there are two cases: either we have already seen it
3621 // or we haven't.
3622 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3623 if (!PHIs.insert(PN).second)
3624 return ~0ULL; // already in the set.
3625
3626 // If it was new, see if all the input strings are the same length.
3627 uint64_t LenSoFar = ~0ULL;
3628 for (Value *IncValue : PN->incoming_values()) {
3629 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3630 if (Len == 0) return 0; // Unknown length -> unknown.
3631
3632 if (Len == ~0ULL) continue;
3633
3634 if (Len != LenSoFar && LenSoFar != ~0ULL)
3635 return 0; // Disagree -> unknown.
3636 LenSoFar = Len;
3637 }
3638
3639 // Success, all agree.
3640 return LenSoFar;
3641 }
3642
3643 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3644 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3645 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3646 if (Len1 == 0) return 0;
3647 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3648 if (Len2 == 0) return 0;
3649 if (Len1 == ~0ULL) return Len2;
3650 if (Len2 == ~0ULL) return Len1;
3651 if (Len1 != Len2) return 0;
3652 return Len1;
3653 }
3654
3655 // Otherwise, see if we can read the string.
3656 ConstantDataArraySlice Slice;
3657 if (!getConstantDataArrayInfo(V, Slice, CharSize))
3658 return 0;
3659
3660 if (Slice.Array == nullptr)
3661 return 1;
3662
3663 // Search for nul characters
3664 unsigned NullIndex = 0;
3665 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3666 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3667 break;
3668 }
3669
3670 return NullIndex + 1;
3671}
3672
3673/// If we can compute the length of the string pointed to by
3674/// the specified pointer, return 'len+1'. If we can't, return 0.
3675uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3676 if (!V->getType()->isPointerTy())
3677 return 0;
3678
3679 SmallPtrSet<const PHINode*, 32> PHIs;
3680 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3681 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3682 // an empty string as a length.
3683 return Len == ~0ULL ? 1 : Len;
3684}
3685
3686const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) {
3687 assert(Call &&((Call && "getArgumentAliasingToReturnedPointer only works on nonnull calls"
) ? static_cast<void> (0) : __assert_fail ("Call && \"getArgumentAliasingToReturnedPointer only works on nonnull calls\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3688, __PRETTY_FUNCTION__))
3688 "getArgumentAliasingToReturnedPointer only works on nonnull calls")((Call && "getArgumentAliasingToReturnedPointer only works on nonnull calls"
) ? static_cast<void> (0) : __assert_fail ("Call && \"getArgumentAliasingToReturnedPointer only works on nonnull calls\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3688, __PRETTY_FUNCTION__))
;
3689 if (const Value *RV = Call->getReturnedArgOperand())
3690 return RV;
3691 // This can be used only as a aliasing property.
3692 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call))
3693 return Call->getArgOperand(0);
3694 return nullptr;
3695}
3696
3697bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3698 const CallBase *Call) {
3699 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
3700 Call->getIntrinsicID() == Intrinsic::strip_invariant_group;
3701}
3702
3703/// \p PN defines a loop-variant pointer to an object. Check if the
3704/// previous iteration of the loop was referring to the same object as \p PN.
3705static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3706 const LoopInfo *LI) {
3707 // Find the loop-defined value.
3708 Loop *L = LI->getLoopFor(PN->getParent());
3709 if (PN->getNumIncomingValues() != 2)
3710 return true;
3711
3712 // Find the value from previous iteration.
3713 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3714 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3715 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3716 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3717 return true;
3718
3719 // If a new pointer is loaded in the loop, the pointer references a different
3720 // object in every iteration. E.g.:
3721 // for (i)
3722 // int *p = a[i];
3723 // ...
3724 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3725 if (!L->isLoopInvariant(Load->getPointerOperand()))
3726 return false;
3727 return true;
3728}
3729
3730Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3731 unsigned MaxLookup) {
3732 if (!V->getType()->isPointerTy())
3733 return V;
3734 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3735 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3736 V = GEP->getPointerOperand();
3737 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3738 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3739 V = cast<Operator>(V)->getOperand(0);
3740 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3741 if (GA->isInterposable())
3742 return V;
3743 V = GA->getAliasee();
3744 } else if (isa<AllocaInst>(V)) {
3745 // An alloca can't be further simplified.
3746 return V;
3747 } else {
3748 if (auto *Call = dyn_cast<CallBase>(V)) {
3749 // CaptureTracking can know about special capturing properties of some
3750 // intrinsics like launder.invariant.group, that can't be expressed with
3751 // the attributes, but have properties like returning aliasing pointer.
3752 // Because some analysis may assume that nocaptured pointer is not
3753 // returned from some special intrinsic (because function would have to
3754 // be marked with returns attribute), it is crucial to use this function
3755 // because it should be in sync with CaptureTracking. Not using it may
3756 // cause weird miscompilations where 2 aliasing pointers are assumed to
3757 // noalias.
3758 if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) {
3759 V = RP;
3760 continue;
3761 }
3762 }
3763
3764 // See if InstructionSimplify knows any relevant tricks.
3765 if (Instruction *I = dyn_cast<Instruction>(V))
3766 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3767 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3768 V = Simplified;
3769 continue;
3770 }
3771
3772 return V;
3773 }
3774 assert(V->getType()->isPointerTy() && "Unexpected operand type!")((V->getType()->isPointerTy() && "Unexpected operand type!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isPointerTy() && \"Unexpected operand type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3774, __PRETTY_FUNCTION__))
;
3775 }
3776 return V;
3777}
3778
3779void llvm::GetUnderlyingObjects(const Value *V,
3780 SmallVectorImpl<const Value *> &Objects,
3781 const DataLayout &DL, LoopInfo *LI,
3782 unsigned MaxLookup) {
3783 SmallPtrSet<const Value *, 4> Visited;
3784 SmallVector<const Value *, 4> Worklist;
3785 Worklist.push_back(V);
3786 do {
3787 const Value *P = Worklist.pop_back_val();
3788 P = GetUnderlyingObject(P, DL, MaxLookup);
3789
3790 if (!Visited.insert(P).second)
3791 continue;
3792
3793 if (auto *SI = dyn_cast<SelectInst>(P)) {
3794 Worklist.push_back(SI->getTrueValue());
3795 Worklist.push_back(SI->getFalseValue());
3796 continue;
3797 }
3798
3799 if (auto *PN = dyn_cast<PHINode>(P)) {
3800 // If this PHI changes the underlying object in every iteration of the
3801 // loop, don't look through it. Consider:
3802 // int **A;
3803 // for (i) {
3804 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3805 // Curr = A[i];
3806 // *Prev, *Curr;
3807 //
3808 // Prev is tracking Curr one iteration behind so they refer to different
3809 // underlying objects.
3810 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3811 isSameUnderlyingObjectInLoop(PN, LI))
3812 for (Value *IncValue : PN->incoming_values())
3813 Worklist.push_back(IncValue);
3814 continue;
3815 }
3816
3817 Objects.push_back(P);
3818 } while (!Worklist.empty());
3819}
3820
3821/// This is the function that does the work of looking through basic
3822/// ptrtoint+arithmetic+inttoptr sequences.
3823static const Value *getUnderlyingObjectFromInt(const Value *V) {
3824 do {
3825 if (const Operator *U = dyn_cast<Operator>(V)) {
3826 // If we find a ptrtoint, we can transfer control back to the
3827 // regular getUnderlyingObjectFromInt.
3828 if (U->getOpcode() == Instruction::PtrToInt)
3829 return U->getOperand(0);
3830 // If we find an add of a constant, a multiplied value, or a phi, it's
3831 // likely that the other operand will lead us to the base
3832 // object. We don't have to worry about the case where the
3833 // object address is somehow being computed by the multiply,
3834 // because our callers only care when the result is an
3835 // identifiable object.
3836 if (U->getOpcode() != Instruction::Add ||
3837 (!isa<ConstantInt>(U->getOperand(1)) &&
3838 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3839 !isa<PHINode>(U->getOperand(1))))
3840 return V;
3841 V = U->getOperand(0);
3842 } else {
3843 return V;
3844 }
3845 assert(V->getType()->isIntegerTy() && "Unexpected operand type!")((V->getType()->isIntegerTy() && "Unexpected operand type!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntegerTy() && \"Unexpected operand type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 3845, __PRETTY_FUNCTION__))
;
3846 } while (true);
3847}
3848
3849/// This is a wrapper around GetUnderlyingObjects and adds support for basic
3850/// ptrtoint+arithmetic+inttoptr sequences.
3851/// It returns false if unidentified object is found in GetUnderlyingObjects.
3852bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3853 SmallVectorImpl<Value *> &Objects,
3854 const DataLayout &DL) {
3855 SmallPtrSet<const Value *, 16> Visited;
3856 SmallVector<const Value *, 4> Working(1, V);
3857 do {
3858 V = Working.pop_back_val();
3859
3860 SmallVector<const Value *, 4> Objs;
3861 GetUnderlyingObjects(V, Objs, DL);
3862
3863 for (const Value *V : Objs) {
3864 if (!Visited.insert(V).second)
3865 continue;
3866 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3867 const Value *O =
3868 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3869 if (O->getType()->isPointerTy()) {
3870 Working.push_back(O);
3871 continue;
3872 }
3873 }
3874 // If GetUnderlyingObjects fails to find an identifiable object,
3875 // getUnderlyingObjectsForCodeGen also fails for safety.
3876 if (!isIdentifiedObject(V)) {
3877 Objects.clear();
3878 return false;
3879 }
3880 Objects.push_back(const_cast<Value *>(V));
3881 }
3882 } while (!Working.empty());
3883 return true;
3884}
3885
3886/// Return true if the only users of this pointer are lifetime markers.
3887bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3888 for (const User *U : V->users()) {
3889 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3890 if (!II) return false;
3891
3892 if (!II->isLifetimeStartOrEnd())
3893 return false;
3894 }
3895 return true;
3896}
3897
3898bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3899 const Instruction *CtxI,
3900 const DominatorTree *DT) {
3901 const Operator *Inst = dyn_cast<Operator>(V);
3902 if (!Inst)
3903 return false;
3904
3905 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3906 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3907 if (C->canTrap())
3908 return false;
3909
3910 switch (Inst->getOpcode()) {
3911 default:
3912 return true;
3913 case Instruction::UDiv:
3914 case Instruction::URem: {
3915 // x / y is undefined if y == 0.
3916 const APInt *V;
3917 if (match(Inst->getOperand(1), m_APInt(V)))
3918 return *V != 0;
3919 return false;
3920 }
3921 case Instruction::SDiv:
3922 case Instruction::SRem: {
3923 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3924 const APInt *Numerator, *Denominator;
3925 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3926 return false;
3927 // We cannot hoist this division if the denominator is 0.
3928 if (*Denominator == 0)
3929 return false;
3930 // It's safe to hoist if the denominator is not 0 or -1.
3931 if (*Denominator != -1)
3932 return true;
3933 // At this point we know that the denominator is -1. It is safe to hoist as
3934 // long we know that the numerator is not INT_MIN.
3935 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3936 return !Numerator->isMinSignedValue();
3937 // The numerator *might* be MinSignedValue.
3938 return false;
3939 }
3940 case Instruction::Load: {
3941 const LoadInst *LI = cast<LoadInst>(Inst);
3942 if (!LI->isUnordered() ||
3943 // Speculative load may create a race that did not exist in the source.
3944 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3945 // Speculative load may load data from dirty regions.
3946 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3947 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3948 return false;
3949 const DataLayout &DL = LI->getModule()->getDataLayout();
3950 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3951 LI->getAlignment(), DL, CtxI, DT);
3952 }
3953 case Instruction::Call: {
3954 auto *CI = cast<const CallInst>(Inst);
3955 const Function *Callee = CI->getCalledFunction();
3956
3957 // The called function could have undefined behavior or side-effects, even
3958 // if marked readnone nounwind.
3959 return Callee && Callee->isSpeculatable();
3960 }
3961 case Instruction::VAArg:
3962 case Instruction::Alloca:
3963 case Instruction::Invoke:
3964 case Instruction::CallBr:
3965 case Instruction::PHI:
3966 case Instruction::Store:
3967 case Instruction::Ret:
3968 case Instruction::Br:
3969 case Instruction::IndirectBr:
3970 case Instruction::Switch:
3971 case Instruction::Unreachable:
3972 case Instruction::Fence:
3973 case Instruction::AtomicRMW:
3974 case Instruction::AtomicCmpXchg:
3975 case Instruction::LandingPad:
3976 case Instruction::Resume:
3977 case Instruction::CatchSwitch:
3978 case Instruction::CatchPad:
3979 case Instruction::CatchRet:
3980 case Instruction::CleanupPad:
3981 case Instruction::CleanupRet:
3982 return false; // Misc instructions which have effects
3983 }
3984}
3985
3986bool llvm::mayBeMemoryDependent(const Instruction &I) {
3987 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3988}
3989
3990/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
3991static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
3992 switch (OR) {
3993 case ConstantRange::OverflowResult::MayOverflow:
3994 return OverflowResult::MayOverflow;
3995 case ConstantRange::OverflowResult::AlwaysOverflowsLow:
3996 return OverflowResult::AlwaysOverflowsLow;
3997 case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
3998 return OverflowResult::AlwaysOverflowsHigh;
3999 case ConstantRange::OverflowResult::NeverOverflows:
4000 return OverflowResult::NeverOverflows;
4001 }
4002 llvm_unreachable("Unknown OverflowResult")::llvm::llvm_unreachable_internal("Unknown OverflowResult", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 4002)
;
4003}
4004
4005/// Combine constant ranges from computeConstantRange() and computeKnownBits().
4006static ConstantRange computeConstantRangeIncludingKnownBits(
4007 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4008 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4009 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4010 KnownBits Known = computeKnownBits(
4011 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4012 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4013 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4014 ConstantRange::PreferredRangeType RangeType =
4015 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4016 return CR1.intersectWith(CR2, RangeType);
4017}
4018
4019OverflowResult llvm::computeOverflowForUnsignedMul(
4020 const Value *LHS, const Value *RHS, const DataLayout &DL,
4021 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4022 bool UseInstrInfo) {
4023 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4024 nullptr, UseInstrInfo);
4025 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4026 nullptr, UseInstrInfo);
4027 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4028 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4029 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4030}
4031
4032OverflowResult
4033llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4034 const DataLayout &DL, AssumptionCache *AC,
4035 const Instruction *CxtI,
4036 const DominatorTree *DT, bool UseInstrInfo) {
4037 // Multiplying n * m significant bits yields a result of n + m significant
4038 // bits. If the total number of significant bits does not exceed the
4039 // result bit width (minus 1), there is no overflow.
4040 // This means if we have enough leading sign bits in the operands
4041 // we can guarantee that the result does not overflow.
4042 // Ref: "Hacker's Delight" by Henry Warren
4043 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4044
4045 // Note that underestimating the number of sign bits gives a more
4046 // conservative answer.
4047 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4048 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4049
4050 // First handle the easy case: if we have enough sign bits there's
4051 // definitely no overflow.
4052 if (SignBits > BitWidth + 1)
4053 return OverflowResult::NeverOverflows;
4054
4055 // There are two ambiguous cases where there can be no overflow:
4056 // SignBits == BitWidth + 1 and
4057 // SignBits == BitWidth
4058 // The second case is difficult to check, therefore we only handle the
4059 // first case.
4060 if (SignBits == BitWidth + 1) {
4061 // It overflows only when both arguments are negative and the true
4062 // product is exactly the minimum negative number.
4063 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4064 // For simplicity we just check if at least one side is not negative.
4065 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4066 nullptr, UseInstrInfo);
4067 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4068 nullptr, UseInstrInfo);
4069 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4070 return OverflowResult::NeverOverflows;
4071 }
4072 return OverflowResult::MayOverflow;
4073}
4074
4075OverflowResult llvm::computeOverflowForUnsignedAdd(
4076 const Value *LHS, const Value *RHS, const DataLayout &DL,
4077 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4078 bool UseInstrInfo) {
4079 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4080 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4081 nullptr, UseInstrInfo);
4082 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4083 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4084 nullptr, UseInstrInfo);
4085 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4086}
4087
4088static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4089 const Value *RHS,
4090 const AddOperator *Add,
4091 const DataLayout &DL,
4092 AssumptionCache *AC,
4093 const Instruction *CxtI,
4094 const DominatorTree *DT) {
4095 if (Add && Add->hasNoSignedWrap()) {
4096 return OverflowResult::NeverOverflows;
4097 }
4098
4099 // If LHS and RHS each have at least two sign bits, the addition will look
4100 // like
4101 //
4102 // XX..... +
4103 // YY.....
4104 //
4105 // If the carry into the most significant position is 0, X and Y can't both
4106 // be 1 and therefore the carry out of the addition is also 0.
4107 //
4108 // If the carry into the most significant position is 1, X and Y can't both
4109 // be 0 and therefore the carry out of the addition is also 1.
4110 //
4111 // Since the carry into the most significant position is always equal to
4112 // the carry out of the addition, there is no signed overflow.
4113 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4114 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4115 return OverflowResult::NeverOverflows;
4116
4117 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4118 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4119 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4120 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4121 OverflowResult OR =
4122 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4123 if (OR != OverflowResult::MayOverflow)
4124 return OR;
4125
4126 // The remaining code needs Add to be available. Early returns if not so.
4127 if (!Add)
4128 return OverflowResult::MayOverflow;
4129
4130 // If the sign of Add is the same as at least one of the operands, this add
4131 // CANNOT overflow. If this can be determined from the known bits of the
4132 // operands the above signedAddMayOverflow() check will have already done so.
4133 // The only other way to improve on the known bits is from an assumption, so
4134 // call computeKnownBitsFromAssume() directly.
4135 bool LHSOrRHSKnownNonNegative =
4136 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4137 bool LHSOrRHSKnownNegative =
4138 (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4139 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4140 KnownBits AddKnown(LHSRange.getBitWidth());
4141 computeKnownBitsFromAssume(
4142 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4143 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4144 (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4145 return OverflowResult::NeverOverflows;
4146 }
4147
4148 return OverflowResult::MayOverflow;
4149}
4150
4151OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4152 const Value *RHS,
4153 const DataLayout &DL,
4154 AssumptionCache *AC,
4155 const Instruction *CxtI,
4156 const DominatorTree *DT) {
4157 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4158 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4159 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4160 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4161 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4162}
4163
4164OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4165 const Value *RHS,
4166 const DataLayout &DL,
4167 AssumptionCache *AC,
4168 const Instruction *CxtI,
4169 const DominatorTree *DT) {
4170 // If LHS and RHS each have at least two sign bits, the subtraction
4171 // cannot overflow.
4172 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4173 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4174 return OverflowResult::NeverOverflows;
4175
4176 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4177 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4178 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4179 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4180 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4181}
4182
4183bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4184 const DominatorTree &DT) {
4185 SmallVector<const BranchInst *, 2> GuardingBranches;
4186 SmallVector<const ExtractValueInst *, 2> Results;
4187
4188 for (const User *U : WO->users()) {
4189 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4190 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type")((EVI->getNumIndices() == 1 && "Obvious from CI's type"
) ? static_cast<void> (0) : __assert_fail ("EVI->getNumIndices() == 1 && \"Obvious from CI's type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 4190, __PRETTY_FUNCTION__))
;
4191
4192 if (EVI->getIndices()[0] == 0)
4193 Results.push_back(EVI);
4194 else {
4195 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type")((EVI->getIndices()[0] == 1 && "Obvious from CI's type"
) ? static_cast<void> (0) : __assert_fail ("EVI->getIndices()[0] == 1 && \"Obvious from CI's type\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 4195, __PRETTY_FUNCTION__))
;
4196
4197 for (const auto *U : EVI->users())
4198 if (const auto *B = dyn_cast<BranchInst>(U)) {
4199 assert(B->isConditional() && "How else is it using an i1?")((B->isConditional() && "How else is it using an i1?"
) ? static_cast<void> (0) : __assert_fail ("B->isConditional() && \"How else is it using an i1?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 4199, __PRETTY_FUNCTION__))
;
4200 GuardingBranches.push_back(B);
4201 }
4202 }
4203 } else {
4204 // We are using the aggregate directly in a way we don't want to analyze
4205 // here (storing it to a global, say).
4206 return false;
4207 }
4208 }
4209
4210 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4211 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4212 if (!NoWrapEdge.isSingleEdge())
4213 return false;
4214
4215 // Check if all users of the add are provably no-wrap.
4216 for (const auto *Result : Results) {
4217 // If the extractvalue itself is not executed on overflow, the we don't
4218 // need to check each use separately, since domination is transitive.
4219 if (DT.dominates(NoWrapEdge, Result->getParent()))
4220 continue;
4221
4222 for (auto &RU : Result->uses())
4223 if (!DT.dominates(NoWrapEdge, RU))
4224 return false;
4225 }
4226
4227 return true;
4228 };
4229
4230 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4231}
4232
4233
4234OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4235 const DataLayout &DL,
4236 AssumptionCache *AC,
4237 const Instruction *CxtI,
4238 const DominatorTree *DT) {
4239 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4240 Add, DL, AC, CxtI, DT);
4241}
4242
4243OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4244 const Value *RHS,
4245 const DataLayout &DL,
4246 AssumptionCache *AC,
4247 const Instruction *CxtI,
4248 const DominatorTree *DT) {
4249 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4250}
4251
4252bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4253 // A memory operation returns normally if it isn't volatile. A volatile
4254 // operation is allowed to trap.
4255 //
4256 // An atomic operation isn't guaranteed to return in a reasonable amount of
4257 // time because it's possible for another thread to interfere with it for an
4258 // arbitrary length of time, but programs aren't allowed to rely on that.
4259 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4260 return !LI->isVolatile();
4261 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4262 return !SI->isVolatile();
4263 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4264 return !CXI->isVolatile();
4265 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4266 return !RMWI->isVolatile();
4267 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4268 return !MII->isVolatile();
4269
4270 // If there is no successor, then execution can't transfer to it.
4271 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4272 return !CRI->unwindsToCaller();
4273 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4274 return !CatchSwitch->unwindsToCaller();
4275 if (isa<ResumeInst>(I))
4276 return false;
4277 if (isa<ReturnInst>(I))
4278 return false;
4279 if (isa<UnreachableInst>(I))
4280 return false;
4281
4282 // Calls can throw, or contain an infinite loop, or kill the process.
4283 if (auto CS = ImmutableCallSite(I)) {
4284 // Call sites that throw have implicit non-local control flow.
4285 if (!CS.doesNotThrow())
4286 return false;
4287
4288 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4289 // etc. and thus not return. However, LLVM already assumes that
4290 //
4291 // - Thread exiting actions are modeled as writes to memory invisible to
4292 // the program.
4293 //
4294 // - Loops that don't have side effects (side effects are volatile/atomic
4295 // stores and IO) always terminate (see http://llvm.org/PR965).
4296 // Furthermore IO itself is also modeled as writes to memory invisible to
4297 // the program.
4298 //
4299 // We rely on those assumptions here, and use the memory effects of the call
4300 // target as a proxy for checking that it always returns.
4301
4302 // FIXME: This isn't aggressive enough; a call which only writes to a global
4303 // is guaranteed to return.
4304 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
4305 match(I, m_Intrinsic<Intrinsic::assume>()) ||
4306 match(I, m_Intrinsic<Intrinsic::sideeffect>()) ||
4307 match(I, m_Intrinsic<Intrinsic::experimental_widenable_condition>());
4308 }
4309
4310 // Other instructions return normally.
4311 return true;
4312}
4313
4314bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4315 // TODO: This is slightly conservative for invoke instruction since exiting
4316 // via an exception *is* normal control for them.
4317 for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4318 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4319 return false;
4320 return true;
4321}
4322
4323bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4324 const Loop *L) {
4325 // The loop header is guaranteed to be executed for every iteration.
4326 //
4327 // FIXME: Relax this constraint to cover all basic blocks that are
4328 // guaranteed to be executed at every iteration.
4329 if (I->getParent() != L->getHeader()) return false;
4330
4331 for (const Instruction &LI : *L->getHeader()) {
4332 if (&LI == I) return true;
4333 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4334 }
4335 llvm_unreachable("Instruction not contained in its own parent basic block.")::llvm::llvm_unreachable_internal("Instruction not contained in its own parent basic block."
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 4335)
;
4336}
4337
4338bool llvm::propagatesFullPoison(const Instruction *I) {
4339 switch (I->getOpcode()) {
4340 case Instruction::Add:
4341 case Instruction::Sub:
4342 case Instruction::Xor:
4343 case Instruction::Trunc:
4344 case Instruction::BitCast:
4345 case Instruction::AddrSpaceCast:
4346 case Instruction::Mul:
4347 case Instruction::Shl:
4348 case Instruction::GetElementPtr:
4349 // These operations all propagate poison unconditionally. Note that poison
4350 // is not any particular value, so xor or subtraction of poison with
4351 // itself still yields poison, not zero.
4352 return true;
4353
4354 case Instruction::AShr:
4355 case Instruction::SExt:
4356 // For these operations, one bit of the input is replicated across
4357 // multiple output bits. A replicated poison bit is still poison.
4358 return true;
4359
4360 case Instruction::ICmp:
4361 // Comparing poison with any value yields poison. This is why, for
4362 // instance, x s< (x +nsw 1) can be folded to true.
4363 return true;
4364
4365 default:
4366 return false;
4367 }
4368}
4369
4370const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4371 switch (I->getOpcode()) {
4372 case Instruction::Store:
4373 return cast<StoreInst>(I)->getPointerOperand();
4374
4375 case Instruction::Load:
4376 return cast<LoadInst>(I)->getPointerOperand();
4377
4378 case Instruction::AtomicCmpXchg:
4379 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4380
4381 case Instruction::AtomicRMW:
4382 return cast<AtomicRMWInst>(I)->getPointerOperand();
4383
4384 case Instruction::UDiv:
4385 case Instruction::SDiv:
4386 case Instruction::URem:
4387 case Instruction::SRem:
4388 return I->getOperand(1);
4389
4390 default:
4391 return nullptr;
4392 }
4393}
4394
4395bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4396 // We currently only look for uses of poison values within the same basic
4397 // block, as that makes it easier to guarantee that the uses will be
4398 // executed given that PoisonI is executed.
4399 //
4400 // FIXME: Expand this to consider uses beyond the same basic block. To do
4401 // this, look out for the distinction between post-dominance and strong
4402 // post-dominance.
4403 const BasicBlock *BB = PoisonI->getParent();
4404
4405 // Set of instructions that we have proved will yield poison if PoisonI
4406 // does.
4407 SmallSet<const Value *, 16> YieldsPoison;
4408 SmallSet<const BasicBlock *, 4> Visited;
4409 YieldsPoison.insert(PoisonI);
4410 Visited.insert(PoisonI->getParent());
4411
4412 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4413
4414 unsigned Iter = 0;
4415 while (Iter++ < MaxDepth) {
4416 for (auto &I : make_range(Begin, End)) {
4417 if (&I != PoisonI) {
4418 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4419 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4420 return true;
4421 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4422 return false;
4423 }
4424
4425 // Mark poison that propagates from I through uses of I.
4426 if (YieldsPoison.count(&I)) {
4427 for (const User *User : I.users()) {
4428 const Instruction *UserI = cast<Instruction>(User);
4429 if (propagatesFullPoison(UserI))
4430 YieldsPoison.insert(User);
4431 }
4432 }
4433 }
4434
4435 if (auto *NextBB = BB->getSingleSuccessor()) {
4436 if (Visited.insert(NextBB).second) {
4437 BB = NextBB;
4438 Begin = BB->getFirstNonPHI()->getIterator();
4439 End = BB->end();
4440 continue;
4441 }
4442 }
4443
4444 break;
4445 }
4446 return false;
4447}
4448
4449static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4450 if (FMF.noNaNs())
4451 return true;
4452
4453 if (auto *C = dyn_cast<ConstantFP>(V))
4454 return !C->isNaN();
4455
4456 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4457 if (!C->getElementType()->isFloatingPointTy())
4458 return false;
4459 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4460 if (C->getElementAsAPFloat(I).isNaN())
4461 return false;
4462 }
4463 return true;
4464 }
4465
4466 return false;
4467}
4468
4469static bool isKnownNonZero(const Value *V) {
4470 if (auto *C = dyn_cast<ConstantFP>(V))
4471 return !C->isZero();
4472
4473 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4474 if (!C->getElementType()->isFloatingPointTy())
4475 return false;
4476 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4477 if (C->getElementAsAPFloat(I).isZero())
4478 return false;
4479 }
4480 return true;
4481 }
4482
4483 return false;
4484}
4485
4486/// Match clamp pattern for float types without care about NaNs or signed zeros.
4487/// Given non-min/max outer cmp/select from the clamp pattern this
4488/// function recognizes if it can be substitued by a "canonical" min/max
4489/// pattern.
4490static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4491 Value *CmpLHS, Value *CmpRHS,
4492 Value *TrueVal, Value *FalseVal,
4493 Value *&LHS, Value *&RHS) {
4494 // Try to match
4495 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4496 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4497 // and return description of the outer Max/Min.
4498
4499 // First, check if select has inverse order:
4500 if (CmpRHS == FalseVal) {
1
Assuming 'CmpRHS' is not equal to 'FalseVal'
2
Taking false branch
4501 std::swap(TrueVal, FalseVal);
4502 Pred = CmpInst::getInversePredicate(Pred);
4503 }
4504
4505 // Assume success now. If there's no match, callers should not use these anyway.
4506 LHS = TrueVal;
4507 RHS = FalseVal;
4508
4509 const APFloat *FC1;
4510 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
3
Assuming 'CmpRHS' is equal to 'TrueVal'
4
Taking false branch
4511 return {SPF_UNKNOWN, SPNB_NA, false};
4512
4513 const APFloat *FC2;
4514 switch (Pred) {
5
Control jumps to 'case FCMP_UGE:' at line 4528
4515 case CmpInst::FCMP_OLT:
4516 case CmpInst::FCMP_OLE:
4517 case CmpInst::FCMP_ULT:
4518 case CmpInst::FCMP_ULE:
4519 if (match(FalseVal,
4520 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4521 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4522 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4523 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4524 break;
4525 case CmpInst::FCMP_OGT:
4526 case CmpInst::FCMP_OGE:
4527 case CmpInst::FCMP_UGT:
4528 case CmpInst::FCMP_UGE:
4529 if (match(FalseVal,
6
Calling 'match<llvm::Value, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::MaxMin_match<llvm::FCmpInst, llvm::PatternMatch::specificval_ty, llvm::PatternMatch::apfloat_match, llvm::PatternMatch::ofmax_pred_ty, false>, llvm::PatternMatch::MaxMin_match<llvm::FCmpInst, llvm::PatternMatch::specificval_ty, llvm::PatternMatch::apfloat_match, llvm::PatternMatch::ufmax_pred_ty, false> >>'
4530 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4531 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4532 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4533 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4534 break;
4535 default:
4536 break;
4537 }
4538
4539 return {SPF_UNKNOWN, SPNB_NA, false};
4540}
4541
4542/// Recognize variations of:
4543/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4544static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4545 Value *CmpLHS, Value *CmpRHS,
4546 Value *TrueVal, Value *FalseVal) {
4547 // Swap the select operands and predicate to match the patterns below.
4548 if (CmpRHS != TrueVal) {
4549 Pred = ICmpInst::getSwappedPredicate(Pred);
4550 std::swap(TrueVal, FalseVal);
4551 }
4552 const APInt *C1;
4553 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4554 const APInt *C2;
4555 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4556 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4557 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4558 return {SPF_SMAX, SPNB_NA, false};
4559
4560 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4561 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4562 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4563 return {SPF_SMIN, SPNB_NA, false};
4564
4565 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4566 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4567 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4568 return {SPF_UMAX, SPNB_NA, false};
4569
4570 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4571 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4572 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4573 return {SPF_UMIN, SPNB_NA, false};
4574 }
4575 return {SPF_UNKNOWN, SPNB_NA, false};
4576}
4577
4578/// Recognize variations of:
4579/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4580static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4581 Value *CmpLHS, Value *CmpRHS,
4582 Value *TVal, Value *FVal,
4583 unsigned Depth) {
4584 // TODO: Allow FP min/max with nnan/nsz.
4585 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison")((CmpInst::isIntPredicate(Pred) && "Expected integer comparison"
) ? static_cast<void> (0) : __assert_fail ("CmpInst::isIntPredicate(Pred) && \"Expected integer comparison\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 4585, __PRETTY_FUNCTION__))
;
4586
4587 Value *A, *B;
4588 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4589 if (!SelectPatternResult::isMinOrMax(L.Flavor))
4590 return {SPF_UNKNOWN, SPNB_NA, false};
4591
4592 Value *C, *D;
4593 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4594 if (L.Flavor != R.Flavor)
4595 return {SPF_UNKNOWN, SPNB_NA, false};
4596
4597 // We have something like: x Pred y ? min(a, b) : min(c, d).
4598 // Try to match the compare to the min/max operations of the select operands.
4599 // First, make sure we have the right compare predicate.
4600 switch (L.Flavor) {
4601 case SPF_SMIN:
4602 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4603 Pred = ICmpInst::getSwappedPredicate(Pred);
4604 std::swap(CmpLHS, CmpRHS);
4605 }
4606 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4607 break;
4608 return {SPF_UNKNOWN, SPNB_NA, false};
4609 case SPF_SMAX:
4610 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4611 Pred = ICmpInst::getSwappedPredicate(Pred);
4612 std::swap(CmpLHS, CmpRHS);
4613 }
4614 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4615 break;
4616 return {SPF_UNKNOWN, SPNB_NA, false};
4617 case SPF_UMIN:
4618 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4619 Pred = ICmpInst::getSwappedPredicate(Pred);
4620 std::swap(CmpLHS, CmpRHS);
4621 }
4622 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4623 break;
4624 return {SPF_UNKNOWN, SPNB_NA, false};
4625 case SPF_UMAX:
4626 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4627 Pred = ICmpInst::getSwappedPredicate(Pred);
4628 std::swap(CmpLHS, CmpRHS);
4629 }
4630 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4631 break;
4632 return {SPF_UNKNOWN, SPNB_NA, false};
4633 default:
4634 return {SPF_UNKNOWN, SPNB_NA, false};
4635 }
4636
4637 // If there is a common operand in the already matched min/max and the other
4638 // min/max operands match the compare operands (either directly or inverted),
4639 // then this is min/max of the same flavor.
4640
4641 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4642 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4643 if (D == B) {
4644 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4645 match(A, m_Not(m_Specific(CmpRHS)))))
4646 return {L.Flavor, SPNB_NA, false};
4647 }
4648 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4649 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4650 if (C == B) {
4651 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4652 match(A, m_Not(m_Specific(CmpRHS)))))
4653 return {L.Flavor, SPNB_NA, false};
4654 }
4655 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4656 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4657 if (D == A) {
4658 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4659 match(B, m_Not(m_Specific(CmpRHS)))))
4660 return {L.Flavor, SPNB_NA, false};
4661 }
4662 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4663 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4664 if (C == A) {
4665 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4666 match(B, m_Not(m_Specific(CmpRHS)))))
4667 return {L.Flavor, SPNB_NA, false};
4668 }
4669
4670 return {SPF_UNKNOWN, SPNB_NA, false};
4671}
4672
4673/// Match non-obvious integer minimum and maximum sequences.
4674static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4675 Value *CmpLHS, Value *CmpRHS,
4676 Value *TrueVal, Value *FalseVal,
4677 Value *&LHS, Value *&RHS,
4678 unsigned Depth) {
4679 // Assume success. If there's no match, callers should not use these anyway.
4680 LHS = TrueVal;
4681 RHS = FalseVal;
4682
4683 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4684 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4685 return SPR;
4686
4687 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4688 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4689 return SPR;
4690
4691 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4692 return {SPF_UNKNOWN, SPNB_NA, false};
4693
4694 // Z = X -nsw Y
4695 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4696 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4697 if (match(TrueVal, m_Zero()) &&
4698 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4699 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4700
4701 // Z = X -nsw Y
4702 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4703 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4704 if (match(FalseVal, m_Zero()) &&
4705 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4706 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4707
4708 const APInt *C1;
4709 if (!match(CmpRHS, m_APInt(C1)))
4710 return {SPF_UNKNOWN, SPNB_NA, false};
4711
4712 // An unsigned min/max can be written with a signed compare.
4713 const APInt *C2;
4714 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4715 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4716 // Is the sign bit set?
4717 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4718 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4719 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4720 C2->isMaxSignedValue())
4721 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4722
4723 // Is the sign bit clear?
4724 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4725 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4726 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4727 C2->isMinSignedValue())
4728 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4729 }
4730
4731 // Look through 'not' ops to find disguised signed min/max.
4732 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4733 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4734 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4735 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4736 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4737
4738 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4739 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4740 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4741 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4742 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4743
4744 return {SPF_UNKNOWN, SPNB_NA, false};
4745}
4746
4747bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4748 assert(X && Y && "Invalid operand")((X && Y && "Invalid operand") ? static_cast<
void> (0) : __assert_fail ("X && Y && \"Invalid operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 4748, __PRETTY_FUNCTION__))
;
4749
4750 // X = sub (0, Y) || X = sub nsw (0, Y)
4751 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4752 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4753 return true;
4754
4755 // Y = sub (0, X) || Y = sub nsw (0, X)
4756 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4757 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4758 return true;
4759
4760 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4761 Value *A, *B;
4762 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4763 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4764 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4765 match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4766}
4767
4768static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4769 FastMathFlags FMF,
4770 Value *CmpLHS, Value *CmpRHS,
4771 Value *TrueVal, Value *FalseVal,
4772 Value *&LHS, Value *&RHS,
4773 unsigned Depth) {
4774 if (CmpInst::isFPPredicate(Pred)) {
4775 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
4776 // 0.0 operand, set the compare's 0.0 operands to that same value for the
4777 // purpose of identifying min/max. Disregard vector constants with undefined
4778 // elements because those can not be back-propagated for analysis.
4779 Value *OutputZeroVal = nullptr;
4780 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
4781 !cast<Constant>(TrueVal)->containsUndefElement())
4782 OutputZeroVal = TrueVal;
4783 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
4784 !cast<Constant>(FalseVal)->containsUndefElement())
4785 OutputZeroVal = FalseVal;
4786
4787 if (OutputZeroVal) {
4788 if (match(CmpLHS, m_AnyZeroFP()))
4789 CmpLHS = OutputZeroVal;
4790 if (match(CmpRHS, m_AnyZeroFP()))
4791 CmpRHS = OutputZeroVal;
4792 }
4793 }
4794
4795 LHS = CmpLHS;
4796 RHS = CmpRHS;
4797
4798 // Signed zero may return inconsistent results between implementations.
4799 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4800 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4801 // Therefore, we behave conservatively and only proceed if at least one of the
4802 // operands is known to not be zero or if we don't care about signed zero.
4803 switch (Pred) {
4804 default: break;
4805 // FIXME: Include OGT/OLT/UGT/ULT.
4806 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4807 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4808 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4809 !isKnownNonZero(CmpRHS))
4810 return {SPF_UNKNOWN, SPNB_NA, false};
4811 }
4812
4813 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4814 bool Ordered = false;
4815
4816 // When given one NaN and one non-NaN input:
4817 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4818 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4819 // ordered comparison fails), which could be NaN or non-NaN.
4820 // so here we discover exactly what NaN behavior is required/accepted.
4821 if (CmpInst::isFPPredicate(Pred)) {
4822 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4823 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4824
4825 if (LHSSafe && RHSSafe) {
4826 // Both operands are known non-NaN.
4827 NaNBehavior = SPNB_RETURNS_ANY;
4828 } else if (CmpInst::isOrdered(Pred)) {
4829 // An ordered comparison will return false when given a NaN, so it
4830 // returns the RHS.
4831 Ordered = true;
4832 if (LHSSafe)
4833 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4834 NaNBehavior = SPNB_RETURNS_NAN;
4835 else if (RHSSafe)
4836 NaNBehavior = SPNB_RETURNS_OTHER;
4837 else
4838 // Completely unsafe.
4839 return {SPF_UNKNOWN, SPNB_NA, false};
4840 } else {
4841 Ordered = false;
4842 // An unordered comparison will return true when given a NaN, so it
4843 // returns the LHS.
4844 if (LHSSafe)
4845 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4846 NaNBehavior = SPNB_RETURNS_OTHER;
4847 else if (RHSSafe)
4848 NaNBehavior = SPNB_RETURNS_NAN;
4849 else
4850 // Completely unsafe.
4851 return {SPF_UNKNOWN, SPNB_NA, false};
4852 }
4853 }
4854
4855 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4856 std::swap(CmpLHS, CmpRHS);
4857 Pred = CmpInst::getSwappedPredicate(Pred);
4858 if (NaNBehavior == SPNB_RETURNS_NAN)
4859 NaNBehavior = SPNB_RETURNS_OTHER;
4860 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4861 NaNBehavior = SPNB_RETURNS_NAN;
4862 Ordered = !Ordered;
4863 }
4864
4865 // ([if]cmp X, Y) ? X : Y
4866 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4867 switch (Pred) {
4868 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4869 case ICmpInst::ICMP_UGT:
4870 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4871 case ICmpInst::ICMP_SGT:
4872 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4873 case ICmpInst::ICMP_ULT:
4874 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4875 case ICmpInst::ICMP_SLT:
4876 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4877 case FCmpInst::FCMP_UGT:
4878 case FCmpInst::FCMP_UGE:
4879 case FCmpInst::FCMP_OGT:
4880 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4881 case FCmpInst::FCMP_ULT:
4882 case FCmpInst::FCMP_ULE:
4883 case FCmpInst::FCMP_OLT:
4884 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4885 }
4886 }
4887
4888 if (isKnownNegation(TrueVal, FalseVal)) {
4889 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4890 // match against either LHS or sext(LHS).
4891 auto MaybeSExtCmpLHS =
4892 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4893 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4894 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4895 if (match(TrueVal, MaybeSExtCmpLHS)) {
4896 // Set the return values. If the compare uses the negated value (-X >s 0),
4897 // swap the return values because the negated value is always 'RHS'.
4898 LHS = TrueVal;
4899 RHS = FalseVal;
4900 if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4901 std::swap(LHS, RHS);
4902
4903 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4904 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4905 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4906 return {SPF_ABS, SPNB_NA, false};
4907
4908 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
4909 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
4910 return {SPF_ABS, SPNB_NA, false};
4911
4912 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4913 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4914 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4915 return {SPF_NABS, SPNB_NA, false};
4916 }
4917 else if (match(FalseVal, MaybeSExtCmpLHS)) {
4918 // Set the return values. If the compare uses the negated value (-X >s 0),
4919 // swap the return values because the negated value is always 'RHS'.
4920 LHS = FalseVal;
4921 RHS = TrueVal;
4922 if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4923 std::swap(LHS, RHS);
4924
4925 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4926 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4927 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4928 return {SPF_NABS, SPNB_NA, false};
4929
4930 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4931 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4932 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4933 return {SPF_ABS, SPNB_NA, false};
4934 }
4935 }
4936
4937 if (CmpInst::isIntPredicate(Pred))
4938 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
4939
4940 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4941 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4942 // semantics than minNum. Be conservative in such case.
4943 if (NaNBehavior != SPNB_RETURNS_ANY ||
4944 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4945 !isKnownNonZero(CmpRHS)))
4946 return {SPF_UNKNOWN, SPNB_NA, false};
4947
4948 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4949}
4950
4951/// Helps to match a select pattern in case of a type mismatch.
4952///
4953/// The function processes the case when type of true and false values of a
4954/// select instruction differs from type of the cmp instruction operands because
4955/// of a cast instruction. The function checks if it is legal to move the cast
4956/// operation after "select". If yes, it returns the new second value of
4957/// "select" (with the assumption that cast is moved):
4958/// 1. As operand of cast instruction when both values of "select" are same cast
4959/// instructions.
4960/// 2. As restored constant (by applying reverse cast operation) when the first
4961/// value of the "select" is a cast operation and the second value is a
4962/// constant.
4963/// NOTE: We return only the new second value because the first value could be
4964/// accessed as operand of cast instruction.
4965static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4966 Instruction::CastOps *CastOp) {
4967 auto *Cast1 = dyn_cast<CastInst>(V1);
4968 if (!Cast1)
4969 return nullptr;
4970
4971 *CastOp = Cast1->getOpcode();
4972 Type *SrcTy = Cast1->getSrcTy();
4973 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4974 // If V1 and V2 are both the same cast from the same type, look through V1.
4975 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4976 return Cast2->getOperand(0);
4977 return nullptr;
4978 }
4979
4980 auto *C = dyn_cast<Constant>(V2);
4981 if (!C)
4982 return nullptr;
4983
4984 Constant *CastedTo = nullptr;
4985 switch (*CastOp) {
4986 case Instruction::ZExt:
4987 if (CmpI->isUnsigned())
4988 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4989 break;
4990 case Instruction::SExt:
4991 if (CmpI->isSigned())
4992 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4993 break;
4994 case Instruction::Trunc:
4995 Constant *CmpConst;
4996 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4997 CmpConst->getType() == SrcTy) {
4998 // Here we have the following case:
4999 //
5000 // %cond = cmp iN %x, CmpConst
5001 // %tr = trunc iN %x to iK
5002 // %narrowsel = select i1 %cond, iK %t, iK C
5003 //
5004 // We can always move trunc after select operation:
5005 //
5006 // %cond = cmp iN %x, CmpConst
5007 // %widesel = select i1 %cond, iN %x, iN CmpConst
5008 // %tr = trunc iN %widesel to iK
5009 //
5010 // Note that C could be extended in any way because we don't care about
5011 // upper bits after truncation. It can't be abs pattern, because it would
5012 // look like:
5013 //
5014 // select i1 %cond, x, -x.
5015 //
5016 // So only min/max pattern could be matched. Such match requires widened C
5017 // == CmpConst. That is why set widened C = CmpConst, condition trunc
5018 // CmpConst == C is checked below.
5019 CastedTo = CmpConst;
5020 } else {
5021 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5022 }
5023 break;
5024 case Instruction::FPTrunc:
5025 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5026 break;
5027 case Instruction::FPExt:
5028 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5029 break;
5030 case Instruction::FPToUI:
5031 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5032 break;
5033 case Instruction::FPToSI:
5034 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5035 break;
5036 case Instruction::UIToFP:
5037 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5038 break;
5039 case Instruction::SIToFP:
5040 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5041 break;
5042 default:
5043 break;
5044 }
5045
5046 if (!CastedTo)
5047 return nullptr;
5048
5049 // Make sure the cast doesn't lose any information.
5050 Constant *CastedBack =
5051 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5052 if (CastedBack != C)
5053 return nullptr;
5054
5055 return CastedTo;
5056}
5057
5058SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5059 Instruction::CastOps *CastOp,
5060 unsigned Depth) {
5061 if (Depth >= MaxDepth)
5062 return {SPF_UNKNOWN, SPNB_NA, false};
5063
5064 SelectInst *SI = dyn_cast<SelectInst>(V);
5065 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5066
5067 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5068 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5069
5070 CmpInst::Predicate Pred = CmpI->getPredicate();
5071 Value *CmpLHS = CmpI->getOperand(0);
5072 Value *CmpRHS = CmpI->getOperand(1);
5073 Value *TrueVal = SI->getTrueValue();
5074 Value *FalseVal = SI->getFalseValue();
5075 FastMathFlags FMF;
5076 if (isa<FPMathOperator>(CmpI))
5077 FMF = CmpI->getFastMathFlags();
5078
5079 // Bail out early.
5080 if (CmpI->isEquality())
5081 return {SPF_UNKNOWN, SPNB_NA, false};
5082
5083 // Deal with type mismatches.
5084 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5085 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5086 // If this is a potential fmin/fmax with a cast to integer, then ignore
5087 // -0.0 because there is no corresponding integer value.
5088 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5089 FMF.setNoSignedZeros();
5090 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5091 cast<CastInst>(TrueVal)->getOperand(0), C,
5092 LHS, RHS, Depth);
5093 }
5094 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5095 // If this is a potential fmin/fmax with a cast to integer, then ignore
5096 // -0.0 because there is no corresponding integer value.
5097 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5098 FMF.setNoSignedZeros();
5099 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5100 C, cast<CastInst>(FalseVal)->getOperand(0),
5101 LHS, RHS, Depth);
5102 }
5103 }
5104 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5105 LHS, RHS, Depth);
5106}
5107
5108CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5109 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5110 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5111 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5112 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5113 if (SPF == SPF_FMINNUM)
5114 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5115 if (SPF == SPF_FMAXNUM)
5116 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5117 llvm_unreachable("unhandled!")::llvm::llvm_unreachable_internal("unhandled!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5117)
;
5118}
5119
5120SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5121 if (SPF == SPF_SMIN) return SPF_SMAX;
5122 if (SPF == SPF_UMIN) return SPF_UMAX;
5123 if (SPF == SPF_SMAX) return SPF_SMIN;
5124 if (SPF == SPF_UMAX) return SPF_UMIN;
5125 llvm_unreachable("unhandled!")::llvm::llvm_unreachable_internal("unhandled!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5125)
;
5126}
5127
5128CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5129 return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5130}
5131
5132/// Return true if "icmp Pred LHS RHS" is always true.
5133static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5134 const Value *RHS, const DataLayout &DL,
5135 unsigned Depth) {
5136 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!")((!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"
) ? static_cast<void> (0) : __assert_fail ("!LHS->getType()->isVectorTy() && \"TODO: extend to handle vectors!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5136, __PRETTY_FUNCTION__))
;
5137 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5138 return true;
5139
5140 switch (Pred) {
5141 default:
5142 return false;
5143
5144 case CmpInst::ICMP_SLE: {
5145 const APInt *C;
5146
5147 // LHS s<= LHS +_{nsw} C if C >= 0
5148 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5149 return !C->isNegative();
5150 return false;
5151 }
5152
5153 case CmpInst::ICMP_ULE: {
5154 const APInt *C;
5155
5156 // LHS u<= LHS +_{nuw} C for any C
5157 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5158 return true;
5159
5160 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5161 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5162 const Value *&X,
5163 const APInt *&CA, const APInt *&CB) {
5164 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5165 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5166 return true;
5167
5168 // If X & C == 0 then (X | C) == X +_{nuw} C
5169 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5170 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5171 KnownBits Known(CA->getBitWidth());
5172 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5173 /*CxtI*/ nullptr, /*DT*/ nullptr);
5174 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5175 return true;
5176 }
5177
5178 return false;
5179 };
5180
5181 const Value *X;
5182 const APInt *CLHS, *CRHS;
5183 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5184 return CLHS->ule(*CRHS);
5185
5186 return false;
5187 }
5188 }
5189}
5190
5191/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5192/// ALHS ARHS" is true. Otherwise, return None.
5193static Optional<bool>
5194isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5195 const Value *ARHS, const Value *BLHS, const Value *BRHS,
5196 const DataLayout &DL, unsigned Depth) {
5197 switch (Pred) {
5198 default:
5199 return None;
5200
5201 case CmpInst::ICMP_SLT:
5202 case CmpInst::ICMP_SLE:
5203 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5204 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5205 return true;
5206 return None;
5207
5208 case CmpInst::ICMP_ULT:
5209 case CmpInst::ICMP_ULE:
5210 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5211 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5212 return true;
5213 return None;
5214 }
5215}
5216
5217/// Return true if the operands of the two compares match. IsSwappedOps is true
5218/// when the operands match, but are swapped.
5219static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5220 const Value *BLHS, const Value *BRHS,
5221 bool &IsSwappedOps) {
5222
5223 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5224 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5225 return IsMatchingOps || IsSwappedOps;
5226}
5227
5228/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5229/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5230/// Otherwise, return None if we can't infer anything.
5231static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5232 CmpInst::Predicate BPred,
5233 bool AreSwappedOps) {
5234 // Canonicalize the predicate as if the operands were not commuted.
5235 if (AreSwappedOps)
5236 BPred = ICmpInst::getSwappedPredicate(BPred);
5237
5238 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5239 return true;
5240 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5241 return false;
5242
5243 return None;
5244}
5245
5246/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5247/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5248/// Otherwise, return None if we can't infer anything.
5249static Optional<bool>
5250isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
5251 const ConstantInt *C1,
5252 CmpInst::Predicate BPred,
5253 const ConstantInt *C2) {
5254 ConstantRange DomCR =
5255 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5256 ConstantRange CR =
5257 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5258 ConstantRange Intersection = DomCR.intersectWith(CR);
5259 ConstantRange Difference = DomCR.difference(CR);
5260 if (Intersection.isEmptySet())
5261 return false;
5262 if (Difference.isEmptySet())
5263 return true;
5264 return None;
5265}
5266
5267/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5268/// false. Otherwise, return None if we can't infer anything.
5269static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5270 const ICmpInst *RHS,
5271 const DataLayout &DL, bool LHSIsTrue,
5272 unsigned Depth) {
5273 Value *ALHS = LHS->getOperand(0);
5274 Value *ARHS = LHS->getOperand(1);
5275 // The rest of the logic assumes the LHS condition is true. If that's not the
5276 // case, invert the predicate to make it so.
5277 ICmpInst::Predicate APred =
5278 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5279
5280 Value *BLHS = RHS->getOperand(0);
5281 Value *BRHS = RHS->getOperand(1);
5282 ICmpInst::Predicate BPred = RHS->getPredicate();
5283
5284 // Can we infer anything when the two compares have matching operands?
5285 bool AreSwappedOps;
5286 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
5287 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5288 APred, BPred, AreSwappedOps))
5289 return Implication;
5290 // No amount of additional analysis will infer the second condition, so
5291 // early exit.
5292 return None;
5293 }
5294
5295 // Can we infer anything when the LHS operands match and the RHS operands are
5296 // constants (not necessarily matching)?
5297 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5298 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5299 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
5300 return Implication;
5301 // No amount of additional analysis will infer the second condition, so
5302 // early exit.
5303 return None;
5304 }
5305
5306 if (APred == BPred)
5307 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5308 return None;
5309}
5310
5311/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5312/// false. Otherwise, return None if we can't infer anything. We expect the
5313/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5314static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5315 const ICmpInst *RHS,
5316 const DataLayout &DL, bool LHSIsTrue,
5317 unsigned Depth) {
5318 // The LHS must be an 'or' or an 'and' instruction.
5319 assert((LHS->getOpcode() == Instruction::And ||(((LHS->getOpcode() == Instruction::And || LHS->getOpcode
() == Instruction::Or) && "Expected LHS to be 'and' or 'or'."
) ? static_cast<void> (0) : __assert_fail ("(LHS->getOpcode() == Instruction::And || LHS->getOpcode() == Instruction::Or) && \"Expected LHS to be 'and' or 'or'.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5321, __PRETTY_FUNCTION__))
5320 LHS->getOpcode() == Instruction::Or) &&(((LHS->getOpcode() == Instruction::And || LHS->getOpcode
() == Instruction::Or) && "Expected LHS to be 'and' or 'or'."
) ? static_cast<void> (0) : __assert_fail ("(LHS->getOpcode() == Instruction::And || LHS->getOpcode() == Instruction::Or) && \"Expected LHS to be 'and' or 'or'.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5321, __PRETTY_FUNCTION__))
5321 "Expected LHS to be 'and' or 'or'.")(((LHS->getOpcode() == Instruction::And || LHS->getOpcode
() == Instruction::Or) && "Expected LHS to be 'and' or 'or'."
) ? static_cast<void> (0) : __assert_fail ("(LHS->getOpcode() == Instruction::And || LHS->getOpcode() == Instruction::Or) && \"Expected LHS to be 'and' or 'or'.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5321, __PRETTY_FUNCTION__))
;
5322
5323 assert(Depth <= MaxDepth && "Hit recursion limit")((Depth <= MaxDepth && "Hit recursion limit") ? static_cast
<void> (0) : __assert_fail ("Depth <= MaxDepth && \"Hit recursion limit\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5323, __PRETTY_FUNCTION__))
;
5324
5325 // If the result of an 'or' is false, then we know both legs of the 'or' are
5326 // false. Similarly, if the result of an 'and' is true, then we know both
5327 // legs of the 'and' are true.
5328 Value *ALHS, *ARHS;
5329 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5330 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5331 // FIXME: Make this non-recursion.
5332 if (Optional<bool> Implication =
5333 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5334 return Implication;
5335 if (Optional<bool> Implication =
5336 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5337 return Implication;
5338 return None;
5339 }
5340 return None;
5341}
5342
5343Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5344 const DataLayout &DL, bool LHSIsTrue,
5345 unsigned Depth) {
5346 // Bail out when we hit the limit.
5347 if (Depth == MaxDepth)
5348 return None;
5349
5350 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5351 // example.
5352 if (LHS->getType() != RHS->getType())
5353 return None;
5354
5355 Type *OpTy = LHS->getType();
5356 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!")((OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"
) ? static_cast<void> (0) : __assert_fail ("OpTy->isIntOrIntVectorTy(1) && \"Expected integer type only!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5356, __PRETTY_FUNCTION__))
;
5357
5358 // LHS ==> RHS by definition
5359 if (LHS == RHS)
5360 return LHSIsTrue;
5361
5362 // FIXME: Extending the code below to handle vectors.
5363 if (OpTy->isVectorTy())
5364 return None;
5365
5366 assert(OpTy->isIntegerTy(1) && "implied by above")((OpTy->isIntegerTy(1) && "implied by above") ? static_cast
<void> (0) : __assert_fail ("OpTy->isIntegerTy(1) && \"implied by above\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5366, __PRETTY_FUNCTION__))
;
5367
5368 // Both LHS and RHS are icmps.
5369 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5370 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5371 if (LHSCmp && RHSCmp)
5372 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5373
5374 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
5375 // an icmp. FIXME: Add support for and/or on the RHS.
5376 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5377 if (LHSBO && RHSCmp) {
5378 if ((LHSBO->getOpcode() == Instruction::And ||
5379 LHSBO->getOpcode() == Instruction::Or))
5380 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5381 }
5382 return None;
5383}
5384
5385Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
5386 const Instruction *ContextI,
5387 const DataLayout &DL) {
5388 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool")((Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"
) ? static_cast<void> (0) : __assert_fail ("Cond->getType()->isIntOrIntVectorTy(1) && \"Condition must be bool\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5388, __PRETTY_FUNCTION__))
;
5389 if (!ContextI || !ContextI->getParent())
5390 return None;
5391
5392 // TODO: This is a poor/cheap way to determine dominance. Should we use a
5393 // dominator tree (eg, from a SimplifyQuery) instead?
5394 const BasicBlock *ContextBB = ContextI->getParent();
5395 const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
5396 if (!PredBB)
5397 return None;
5398
5399 // We need a conditional branch in the predecessor.
5400 Value *PredCond;
5401 BasicBlock *TrueBB, *FalseBB;
5402 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
5403 return None;
5404
5405 // The branch should get simplified. Don't bother simplifying this condition.
5406 if (TrueBB == FalseBB)
5407 return None;
5408
5409 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&(((TrueBB == ContextBB || FalseBB == ContextBB) && "Predecessor block does not point to successor?"
) ? static_cast<void> (0) : __assert_fail ("(TrueBB == ContextBB || FalseBB == ContextBB) && \"Predecessor block does not point to successor?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5410, __PRETTY_FUNCTION__))
5410 "Predecessor block does not point to successor?")(((TrueBB == ContextBB || FalseBB == ContextBB) && "Predecessor block does not point to successor?"
) ? static_cast<void> (0) : __assert_fail ("(TrueBB == ContextBB || FalseBB == ContextBB) && \"Predecessor block does not point to successor?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5410, __PRETTY_FUNCTION__))
;
5411
5412 // Is this condition implied by the predecessor condition?
5413 bool CondIsTrue = TrueBB == ContextBB;
5414 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
5415}
5416
5417static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
5418 APInt &Upper, const InstrInfoQuery &IIQ) {
5419 unsigned Width = Lower.getBitWidth();
5420 const APInt *C;
5421 switch (BO.getOpcode()) {
5422 case Instruction::Add:
5423 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
5424 // FIXME: If we have both nuw and nsw, we should reduce the range further.
5425 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
5426 // 'add nuw x, C' produces [C, UINT_MAX].
5427 Lower = *C;
5428 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
5429 if (C->isNegative()) {
5430 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
5431 Lower = APInt::getSignedMinValue(Width);
5432 Upper = APInt::getSignedMaxValue(Width) + *C + 1;
5433 } else {
5434 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
5435 Lower = APInt::getSignedMinValue(Width) + *C;
5436 Upper = APInt::getSignedMaxValue(Width) + 1;
5437 }
5438 }
5439 }
5440 break;
5441
5442 case Instruction::And:
5443 if (match(BO.getOperand(1), m_APInt(C)))
5444 // 'and x, C' produces [0, C].
5445 Upper = *C + 1;
5446 break;
5447
5448 case Instruction::Or:
5449 if (match(BO.getOperand(1), m_APInt(C)))
5450 // 'or x, C' produces [C, UINT_MAX].
5451 Lower = *C;
5452 break;
5453
5454 case Instruction::AShr:
5455 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
5456 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
5457 Lower = APInt::getSignedMinValue(Width).ashr(*C);
5458 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
5459 } else if (match(BO.getOperand(0), m_APInt(C))) {
5460 unsigned ShiftAmount = Width - 1;
5461 if (!C->isNullValue() && IIQ.isExact(&BO))
5462 ShiftAmount = C->countTrailingZeros();
5463 if (C->isNegative()) {
5464 // 'ashr C, x' produces [C, C >> (Width-1)]
5465 Lower = *C;
5466 Upper = C->ashr(ShiftAmount) + 1;
5467 } else {
5468 // 'ashr C, x' produces [C >> (Width-1), C]
5469 Lower = C->ashr(ShiftAmount);
5470 Upper = *C + 1;
5471 }
5472 }
5473 break;
5474
5475 case Instruction::LShr:
5476 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
5477 // 'lshr x, C' produces [0, UINT_MAX >> C].
5478 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
5479 } else if (match(BO.getOperand(0), m_APInt(C))) {
5480 // 'lshr C, x' produces [C >> (Width-1), C].
5481 unsigned ShiftAmount = Width - 1;
5482 if (!C->isNullValue() && IIQ.isExact(&BO))
5483 ShiftAmount = C->countTrailingZeros();
5484 Lower = C->lshr(ShiftAmount);
5485 Upper = *C + 1;
5486 }
5487 break;
5488
5489 case Instruction::Shl:
5490 if (match(BO.getOperand(0), m_APInt(C))) {
5491 if (IIQ.hasNoUnsignedWrap(&BO)) {
5492 // 'shl nuw C, x' produces [C, C << CLZ(C)]
5493 Lower = *C;
5494 Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
5495 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
5496 if (C->isNegative()) {
5497 // 'shl nsw C, x' produces [C << CLO(C)-1, C]
5498 unsigned ShiftAmount = C->countLeadingOnes() - 1;
5499 Lower = C->shl(ShiftAmount);
5500 Upper = *C + 1;
5501 } else {
5502 // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
5503 unsigned ShiftAmount = C->countLeadingZeros() - 1;
5504 Lower = *C;
5505 Upper = C->shl(ShiftAmount) + 1;
5506 }
5507 }
5508 }
5509 break;
5510
5511 case Instruction::SDiv:
5512 if (match(BO.getOperand(1), m_APInt(C))) {
5513 APInt IntMin = APInt::getSignedMinValue(Width);
5514 APInt IntMax = APInt::getSignedMaxValue(Width);
5515 if (C->isAllOnesValue()) {
5516 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
5517 // where C != -1 and C != 0 and C != 1
5518 Lower = IntMin + 1;
5519 Upper = IntMax + 1;
5520 } else if (C->countLeadingZeros() < Width - 1) {
5521 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
5522 // where C != -1 and C != 0 and C != 1
5523 Lower = IntMin.sdiv(*C);
5524 Upper = IntMax.sdiv(*C);
5525 if (Lower.sgt(Upper))
5526 std::swap(Lower, Upper);
5527 Upper = Upper + 1;
5528 assert(Upper != Lower && "Upper part of range has wrapped!")((Upper != Lower && "Upper part of range has wrapped!"
) ? static_cast<void> (0) : __assert_fail ("Upper != Lower && \"Upper part of range has wrapped!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5528, __PRETTY_FUNCTION__))
;
5529 }
5530 } else if (match(BO.getOperand(0), m_APInt(C))) {
5531 if (C->isMinSignedValue()) {
5532 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
5533 Lower = *C;
5534 Upper = Lower.lshr(1) + 1;
5535 } else {
5536 // 'sdiv C, x' produces [-|C|, |C|].
5537 Upper = C->abs() + 1;
5538 Lower = (-Upper) + 1;
5539 }
5540 }
5541 break;
5542
5543 case Instruction::UDiv:
5544 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
5545 // 'udiv x, C' produces [0, UINT_MAX / C].
5546 Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
5547 } else if (match(BO.getOperand(0), m_APInt(C))) {
5548 // 'udiv C, x' produces [0, C].
5549 Upper = *C + 1;
5550 }
5551 break;
5552
5553 case Instruction::SRem:
5554 if (match(BO.getOperand(1), m_APInt(C))) {
5555 // 'srem x, C' produces (-|C|, |C|).
5556 Upper = C->abs();
5557 Lower = (-Upper) + 1;
5558 }
5559 break;
5560
5561 case Instruction::URem:
5562 if (match(BO.getOperand(1), m_APInt(C)))
5563 // 'urem x, C' produces [0, C).
5564 Upper = *C;
5565 break;
5566
5567 default:
5568 break;
5569 }
5570}
5571
5572static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
5573 APInt &Upper) {
5574 unsigned Width = Lower.getBitWidth();
5575 const APInt *C;
5576 switch (II.getIntrinsicID()) {
5577 case Intrinsic::uadd_sat:
5578 // uadd.sat(x, C) produces [C, UINT_MAX].
5579 if (match(II.getOperand(0), m_APInt(C)) ||
5580 match(II.getOperand(1), m_APInt(C)))
5581 Lower = *C;
5582 break;
5583 case Intrinsic::sadd_sat:
5584 if (match(II.getOperand(0), m_APInt(C)) ||
5585 match(II.getOperand(1), m_APInt(C))) {
5586 if (C->isNegative()) {
5587 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
5588 Lower = APInt::getSignedMinValue(Width);
5589 Upper = APInt::getSignedMaxValue(Width) + *C + 1;
5590 } else {
5591 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
5592 Lower = APInt::getSignedMinValue(Width) + *C;
5593 Upper = APInt::getSignedMaxValue(Width) + 1;
5594 }
5595 }
5596 break;
5597 case Intrinsic::usub_sat:
5598 // usub.sat(C, x) produces [0, C].
5599 if (match(II.getOperand(0), m_APInt(C)))
5600 Upper = *C + 1;
5601 // usub.sat(x, C) produces [0, UINT_MAX - C].
5602 else if (match(II.getOperand(1), m_APInt(C)))
5603 Upper = APInt::getMaxValue(Width) - *C + 1;
5604 break;
5605 case Intrinsic::ssub_sat:
5606 if (match(II.getOperand(0), m_APInt(C))) {
5607 if (C->isNegative()) {
5608 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
5609 Lower = APInt::getSignedMinValue(Width);
5610 Upper = *C - APInt::getSignedMinValue(Width) + 1;
5611 } else {
5612 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
5613 Lower = *C - APInt::getSignedMaxValue(Width);
5614 Upper = APInt::getSignedMaxValue(Width) + 1;
5615 }
5616 } else if (match(II.getOperand(1), m_APInt(C))) {
5617 if (C->isNegative()) {
5618 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
5619 Lower = APInt::getSignedMinValue(Width) - *C;
5620 Upper = APInt::getSignedMaxValue(Width) + 1;
5621 } else {
5622 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
5623 Lower = APInt::getSignedMinValue(Width);
5624 Upper = APInt::getSignedMaxValue(Width) - *C + 1;
5625 }
5626 }
5627 break;
5628 default:
5629 break;
5630 }
5631}
5632
5633static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
5634 APInt &Upper) {
5635 const Value *LHS, *RHS;
5636 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
5637 if (R.Flavor == SPF_UNKNOWN)
5638 return;
5639
5640 unsigned BitWidth = SI.getType()->getScalarSizeInBits();
5641
5642 if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
5643 // If the negation part of the abs (in RHS) has the NSW flag,
5644 // then the result of abs(X) is [0..SIGNED_MAX],
5645 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
5646 Lower = APInt::getNullValue(BitWidth);
5647 if (cast<Instruction>(RHS)->hasNoSignedWrap())
5648 Upper = APInt::getSignedMaxValue(BitWidth) + 1;
5649 else
5650 Upper = APInt::getSignedMinValue(BitWidth) + 1;
5651 return;
5652 }
5653
5654 if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
5655 // The result of -abs(X) is <= 0.
5656 Lower = APInt::getSignedMinValue(BitWidth);
5657 Upper = APInt(BitWidth, 1);
5658 return;
5659 }
5660
5661 const APInt *C;
5662 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
5663 return;
5664
5665 switch (R.Flavor) {
5666 case SPF_UMIN:
5667 Upper = *C + 1;
5668 break;
5669 case SPF_UMAX:
5670 Lower = *C;
5671 break;
5672 case SPF_SMIN:
5673 Lower = APInt::getSignedMinValue(BitWidth);
5674 Upper = *C + 1;
5675 break;
5676 case SPF_SMAX:
5677 Lower = *C;
5678 Upper = APInt::getSignedMaxValue(BitWidth) + 1;
5679 break;
5680 default:
5681 break;
5682 }
5683}
5684
5685ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) {
5686 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction")((V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && \"Expected integer instruction\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Analysis/ValueTracking.cpp"
, 5686, __PRETTY_FUNCTION__))
;
5687
5688 const APInt *C;
5689 if (match(V, m_APInt(C)))
5690 return ConstantRange(*C);
5691
5692 InstrInfoQuery IIQ(UseInstrInfo);
5693 unsigned BitWidth = V->getType()->getScalarSizeInBits();
5694 APInt Lower = APInt(BitWidth, 0);
5695 APInt Upper = APInt(BitWidth, 0);
5696 if (auto *BO = dyn_cast<BinaryOperator>(V))
5697 setLimitsForBinOp(*BO, Lower, Upper, IIQ);
5698 else if (auto *II = dyn_cast<IntrinsicInst>(V))
5699 setLimitsForIntrinsic(*II, Lower, Upper);
5700 else if (auto *SI = dyn_cast<SelectInst>(V))
5701 setLimitsForSelectPattern(*SI, Lower, Upper);
5702
5703 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
5704
5705 if (auto *I = dyn_cast<Instruction>(V))
5706 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
5707 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
5708
5709 return CR;
5710}

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/Intrinsics.h"
39#include "llvm/IR/Operator.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/Casting.h"
42#include <cstdint>
43
44namespace llvm {
45namespace PatternMatch {
46
47template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
48 return const_cast<Pattern &>(P).match(V);
7
Calling 'match_combine_or::match'
49}
50
51template <typename SubPattern_t> struct OneUse_match {
52 SubPattern_t SubPattern;
53
54 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
55
56 template <typename OpTy> bool match(OpTy *V) {
57 return V->hasOneUse() && SubPattern.match(V);
58 }
59};
60
61template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
62 return SubPattern;
63}
64
65template <typename Class> struct class_match {
66 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
67};
68
69/// Match an arbitrary value and ignore it.
70inline class_match<Value> m_Value() { return class_match<Value>(); }
71
72/// Match an arbitrary binary operation and ignore it.
73inline class_match<BinaryOperator> m_BinOp() {
74 return class_match<BinaryOperator>();
75}
76
77/// Matches any compare instruction and ignore it.
78inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
79
80/// Match an arbitrary ConstantInt and ignore it.
81inline class_match<ConstantInt> m_ConstantInt() {
82 return class_match<ConstantInt>();
83}
84
85/// Match an arbitrary undef constant.
86inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
87
88/// Match an arbitrary Constant and ignore it.
89inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
90
91/// Matching combinators
92template <typename LTy, typename RTy> struct match_combine_or {
93 LTy L;
94 RTy R;
95
96 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
97
98 template <typename ITy> bool match(ITy *V) {
99 if (L.match(V))
8
Calling 'MaxMin_match::match'
100 return true;
101 if (R.match(V))
102 return true;
103 return false;
104 }
105};
106
107template <typename LTy, typename RTy> struct match_combine_and {
108 LTy L;
109 RTy R;
110
111 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
112
113 template <typename ITy> bool match(ITy *V) {
114 if (L.match(V))
115 if (R.match(V))
116 return true;
117 return false;
118 }
119};
120
121/// Combine two pattern matchers matching L || R
122template <typename LTy, typename RTy>
123inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
124 return match_combine_or<LTy, RTy>(L, R);
125}
126
127/// Combine two pattern matchers matching L && R
128template <typename LTy, typename RTy>
129inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
130 return match_combine_and<LTy, RTy>(L, R);
131}
132
133struct apint_match {
134 const APInt *&Res;
135
136 apint_match(const APInt *&R) : Res(R) {}
137
138 template <typename ITy> bool match(ITy *V) {
139 if (auto *CI = dyn_cast<ConstantInt>(V)) {
140 Res = &CI->getValue();
141 return true;
142 }
143 if (V->getType()->isVectorTy())
144 if (const auto *C = dyn_cast<Constant>(V))
145 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
146 Res = &CI->getValue();
147 return true;
148 }
149 return false;
150 }
151};
152// Either constexpr if or renaming ConstantFP::getValueAPF to
153// ConstantFP::getValue is needed to do it via single template
154// function for both apint/apfloat.
155struct apfloat_match {
156 const APFloat *&Res;
157 apfloat_match(const APFloat *&R) : Res(R) {}
158 template <typename ITy> bool match(ITy *V) {
159 if (auto *CI = dyn_cast<ConstantFP>(V)) {
33
Taking false branch
160 Res = &CI->getValueAPF();
161 return true;
162 }
163 if (V->getType()->isVectorTy())
34
Called C++ object pointer is null
164 if (const auto *C = dyn_cast<Constant>(V))
165 if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
166 Res = &CI->getValueAPF();
167 return true;
168 }
169 return false;
170 }
171};
172
173/// Match a ConstantInt or splatted ConstantVector, binding the
174/// specified pointer to the contained APInt.
175inline apint_match m_APInt(const APInt *&Res) { return Res; }
176
177/// Match a ConstantFP or splatted ConstantVector, binding the
178/// specified pointer to the contained APFloat.
179inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
180
181template <int64_t Val> struct constantint_match {
182 template <typename ITy> bool match(ITy *V) {
183 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
184 const APInt &CIV = CI->getValue();
185 if (Val >= 0)
186 return CIV == static_cast<uint64_t>(Val);
187 // If Val is negative, and CI is shorter than it, truncate to the right
188 // number of bits. If it is larger, then we have to sign extend. Just
189 // compare their negated values.
190 return -CIV == -Val;
191 }
192 return false;
193 }
194};
195
196/// Match a ConstantInt with a specific value.
197template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
198 return constantint_match<Val>();
199}
200
201/// This helper class is used to match scalar and vector integer constants that
202/// satisfy a specified predicate.
203/// For vector constants, undefined elements are ignored.
204template <typename Predicate> struct cst_pred_ty : public Predicate {
205 template <typename ITy> bool match(ITy *V) {
206 if (const auto *CI = dyn_cast<ConstantInt>(V))
207 return this->isValue(CI->getValue());
208 if (V->getType()->isVectorTy()) {
209 if (const auto *C = dyn_cast<Constant>(V)) {
210 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
211 return this->isValue(CI->getValue());
212
213 // Non-splat vector constant: check each element for a match.
214 unsigned NumElts = V->getType()->getVectorNumElements();
215 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/PatternMatch.h"
, 215, __PRETTY_FUNCTION__))
;
216 bool HasNonUndefElements = false;
217 for (unsigned i = 0; i != NumElts; ++i) {
218 Constant *Elt = C->getAggregateElement(i);
219 if (!Elt)
220 return false;
221 if (isa<UndefValue>(Elt))
222 continue;
223 auto *CI = dyn_cast<ConstantInt>(Elt);
224 if (!CI || !this->isValue(CI->getValue()))
225 return false;
226 HasNonUndefElements = true;
227 }
228 return HasNonUndefElements;
229 }
230 }
231 return false;
232 }
233};
234
235/// This helper class is used to match scalar and vector constants that
236/// satisfy a specified predicate, and bind them to an APInt.
237template <typename Predicate> struct api_pred_ty : public Predicate {
238 const APInt *&Res;
239
240 api_pred_ty(const APInt *&R) : Res(R) {}
241
242 template <typename ITy> bool match(ITy *V) {
243 if (const auto *CI = dyn_cast<ConstantInt>(V))
244 if (this->isValue(CI->getValue())) {
245 Res = &CI->getValue();
246 return true;
247 }
248 if (V->getType()->isVectorTy())
249 if (const auto *C = dyn_cast<Constant>(V))
250 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
251 if (this->isValue(CI->getValue())) {
252 Res = &CI->getValue();
253 return true;
254 }
255
256 return false;
257 }
258};
259
260/// This helper class is used to match scalar and vector floating-point
261/// constants that satisfy a specified predicate.
262/// For vector constants, undefined elements are ignored.
263template <typename Predicate> struct cstfp_pred_ty : public Predicate {
264 template <typename ITy> bool match(ITy *V) {
265 if (const auto *CF = dyn_cast<ConstantFP>(V))
266 return this->isValue(CF->getValueAPF());
267 if (V->getType()->isVectorTy()) {
268 if (const auto *C = dyn_cast<Constant>(V)) {
269 if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
270 return this->isValue(CF->getValueAPF());
271
272 // Non-splat vector constant: check each element for a match.
273 unsigned NumElts = V->getType()->getVectorNumElements();
274 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/PatternMatch.h"
, 274, __PRETTY_FUNCTION__))
;
275 bool HasNonUndefElements = false;
276 for (unsigned i = 0; i != NumElts; ++i) {
277 Constant *Elt = C->getAggregateElement(i);
278 if (!Elt)
279 return false;
280 if (isa<UndefValue>(Elt))
281 continue;
282 auto *CF = dyn_cast<ConstantFP>(Elt);
283 if (!CF || !this->isValue(CF->getValueAPF()))
284 return false;
285 HasNonUndefElements = true;
286 }
287 return HasNonUndefElements;
288 }
289 }
290 return false;
291 }
292};
293
294///////////////////////////////////////////////////////////////////////////////
295//
296// Encapsulate constant value queries for use in templated predicate matchers.
297// This allows checking if constants match using compound predicates and works
298// with vector constants, possibly with relaxed constraints. For example, ignore
299// undef values.
300//
301///////////////////////////////////////////////////////////////////////////////
302
303struct is_all_ones {
304 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
305};
306/// Match an integer or vector with all bits set.
307/// For vectors, this includes constants with undefined elements.
308inline cst_pred_ty<is_all_ones> m_AllOnes() {
309 return cst_pred_ty<is_all_ones>();
310}
311
312struct is_maxsignedvalue {
313 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
314};
315/// Match an integer or vector with values having all bits except for the high
316/// bit set (0x7f...).
317/// For vectors, this includes constants with undefined elements.
318inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
319 return cst_pred_ty<is_maxsignedvalue>();
320}
321inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
322 return V;
323}
324
325struct is_negative {
326 bool isValue(const APInt &C) { return C.isNegative(); }
327};
328/// Match an integer or vector of negative values.
329/// For vectors, this includes constants with undefined elements.
330inline cst_pred_ty<is_negative> m_Negative() {
331 return cst_pred_ty<is_negative>();
332}
333inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
334 return V;
335}
336
337struct is_nonnegative {
338 bool isValue(const APInt &C) { return C.isNonNegative(); }
339};
340/// Match an integer or vector of nonnegative values.
341/// For vectors, this includes constants with undefined elements.
342inline cst_pred_ty<is_nonnegative> m_NonNegative() {
343 return cst_pred_ty<is_nonnegative>();
344}
345inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
346 return V;
347}
348
349struct is_one {
350 bool isValue(const APInt &C) { return C.isOneValue(); }
351};
352/// Match an integer 1 or a vector with all elements equal to 1.
353/// For vectors, this includes constants with undefined elements.
354inline cst_pred_ty<is_one> m_One() {
355 return cst_pred_ty<is_one>();
356}
357
358struct is_zero_int {
359 bool isValue(const APInt &C) { return C.isNullValue(); }
360};
361/// Match an integer 0 or a vector with all elements equal to 0.
362/// For vectors, this includes constants with undefined elements.
363inline cst_pred_ty<is_zero_int> m_ZeroInt() {
364 return cst_pred_ty<is_zero_int>();
365}
366
367struct is_zero {
368 template <typename ITy> bool match(ITy *V) {
369 auto *C = dyn_cast<Constant>(V);
370 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
371 }
372};
373/// Match any null constant or a vector with all elements equal to 0.
374/// For vectors, this includes constants with undefined elements.
375inline is_zero m_Zero() {
376 return is_zero();
377}
378
379struct is_power2 {
380 bool isValue(const APInt &C) { return C.isPowerOf2(); }
381};
382/// Match an integer or vector power-of-2.
383/// For vectors, this includes constants with undefined elements.
384inline cst_pred_ty<is_power2> m_Power2() {
385 return cst_pred_ty<is_power2>();
386}
387inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
388 return V;
389}
390
391struct is_power2_or_zero {
392 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
393};
394/// Match an integer or vector of 0 or power-of-2 values.
395/// For vectors, this includes constants with undefined elements.
396inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
397 return cst_pred_ty<is_power2_or_zero>();
398}
399inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
400 return V;
401}
402
403struct is_sign_mask {
404 bool isValue(const APInt &C) { return C.isSignMask(); }
405};
406/// Match an integer or vector with only the sign bit(s) set.
407/// For vectors, this includes constants with undefined elements.
408inline cst_pred_ty<is_sign_mask> m_SignMask() {
409 return cst_pred_ty<is_sign_mask>();
410}
411
412struct is_lowbit_mask {
413 bool isValue(const APInt &C) { return C.isMask(); }
414};
415/// Match an integer or vector with only the low bit(s) set.
416/// For vectors, this includes constants with undefined elements.
417inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
418 return cst_pred_ty<is_lowbit_mask>();
419}
420
421struct is_nan {
422 bool isValue(const APFloat &C) { return C.isNaN(); }
423};
424/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
425/// For vectors, this includes constants with undefined elements.
426inline cstfp_pred_ty<is_nan> m_NaN() {
427 return cstfp_pred_ty<is_nan>();
428}
429
430struct is_any_zero_fp {
431 bool isValue(const APFloat &C) { return C.isZero(); }
432};
433/// Match a floating-point negative zero or positive zero.
434/// For vectors, this includes constants with undefined elements.
435inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
436 return cstfp_pred_ty<is_any_zero_fp>();
437}
438
439struct is_pos_zero_fp {
440 bool isValue(const APFloat &C) { return C.isPosZero(); }
441};
442/// Match a floating-point positive zero.
443/// For vectors, this includes constants with undefined elements.
444inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
445 return cstfp_pred_ty<is_pos_zero_fp>();
446}
447
448struct is_neg_zero_fp {
449 bool isValue(const APFloat &C) { return C.isNegZero(); }
450};
451/// Match a floating-point negative zero.
452/// For vectors, this includes constants with undefined elements.
453inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
454 return cstfp_pred_ty<is_neg_zero_fp>();
455}
456
457///////////////////////////////////////////////////////////////////////////////
458
459template <typename Class> struct bind_ty {
460 Class *&VR;
461
462 bind_ty(Class *&V) : VR(V) {}
463
464 template <typename ITy> bool match(ITy *V) {
465 if (auto *CV = dyn_cast<Class>(V)) {
466 VR = CV;
467 return true;
468 }
469 return false;
470 }
471};
472
473/// Match a value, capturing it if we match.
474inline bind_ty<Value> m_Value(Value *&V) { return V; }
475inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
476
477/// Match an instruction, capturing it if we match.
478inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
479/// Match a binary operator, capturing it if we match.
480inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
481
482/// Match a ConstantInt, capturing the value if we match.
483inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
484
485/// Match a Constant, capturing the value if we match.
486inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
487
488/// Match a ConstantFP, capturing the value if we match.
489inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
490
491/// Match a specified Value*.
492struct specificval_ty {
493 const Value *Val;
494
495 specificval_ty(const Value *V) : Val(V) {}
496
497 template <typename ITy> bool match(ITy *V) { return V == Val; }
498};
499
500/// Match if we have a specific specified value.
501inline specificval_ty m_Specific(const Value *V) { return V; }
502
503/// Stores a reference to the Value *, not the Value * itself,
504/// thus can be used in commutative matchers.
505template <typename Class> struct deferredval_ty {
506 Class *const &Val;
507
508 deferredval_ty(Class *const &V) : Val(V) {}
509
510 template <typename ITy> bool match(ITy *const V) { return V == Val; }
511};
512
513/// A commutative-friendly version of m_Specific().
514inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
515inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
516 return V;
517}
518
519/// Match a specified floating point value or vector of all elements of
520/// that value.
521struct specific_fpval {
522 double Val;
523
524 specific_fpval(double V) : Val(V) {}
525
526 template <typename ITy> bool match(ITy *V) {
527 if (const auto *CFP = dyn_cast<ConstantFP>(V))
528 return CFP->isExactlyValue(Val);
529 if (V->getType()->isVectorTy())
530 if (const auto *C = dyn_cast<Constant>(V))
531 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
532 return CFP->isExactlyValue(Val);
533 return false;
534 }
535};
536
537/// Match a specific floating point value or vector with all elements
538/// equal to the value.
539inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
540
541/// Match a float 1.0 or vector with all elements equal to 1.0.
542inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
543
544struct bind_const_intval_ty {
545 uint64_t &VR;
546
547 bind_const_intval_ty(uint64_t &V) : VR(V) {}
548
549 template <typename ITy> bool match(ITy *V) {
550 if (const auto *CV = dyn_cast<ConstantInt>(V))
551 if (CV->getValue().ule(UINT64_MAX(18446744073709551615UL))) {
552 VR = CV->getZExtValue();
553 return true;
554 }
555 return false;
556 }
557};
558
559/// Match a specified integer value or vector of all elements of that
560// value.
561struct specific_intval {
562 uint64_t Val;
563
564 specific_intval(uint64_t V) : Val(V) {}
565
566 template <typename ITy> bool match(ITy *V) {
567 const auto *CI = dyn_cast<ConstantInt>(V);
568 if (!CI && V->getType()->isVectorTy())
569 if (const auto *C = dyn_cast<Constant>(V))
570 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
571
572 return CI && CI->getValue() == Val;
573 }
574};
575
576/// Match a specific integer value or vector with all elements equal to
577/// the value.
578inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
579
580/// Match a ConstantInt and bind to its value. This does not match
581/// ConstantInts wider than 64-bits.
582inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
583
584//===----------------------------------------------------------------------===//
585// Matcher for any binary operator.
586//
587template <typename LHS_t, typename RHS_t, bool Commutable = false>
588struct AnyBinaryOp_match {
589 LHS_t L;
590 RHS_t R;
591
592 // The evaluation order is always stable, regardless of Commutability.
593 // The LHS is always matched first.
594 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
595
596 template <typename OpTy> bool match(OpTy *V) {
597 if (auto *I = dyn_cast<BinaryOperator>(V))
598 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
599 (Commutable && L.match(I->getOperand(1)) &&
600 R.match(I->getOperand(0)));
601 return false;
602 }
603};
604
605template <typename LHS, typename RHS>
606inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
607 return AnyBinaryOp_match<LHS, RHS>(L, R);
608}
609
610//===----------------------------------------------------------------------===//
611// Matchers for specific binary operators.
612//
613
614template <typename LHS_t, typename RHS_t, unsigned Opcode,
615 bool Commutable = false>
616struct BinaryOp_match {
617 LHS_t L;
618 RHS_t R;
619
620 // The evaluation order is always stable, regardless of Commutability.
621 // The LHS is always matched first.
622 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
623
624 template <typename OpTy> bool match(OpTy *V) {
625 if (V->getValueID() == Value::InstructionVal + Opcode) {
626 auto *I = cast<BinaryOperator>(V);
627 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
628 (Commutable && L.match(I->getOperand(1)) &&
629 R.match(I->getOperand(0)));
630 }
631 if (auto *CE = dyn_cast<ConstantExpr>(V))
632 return CE->getOpcode() == Opcode &&
633 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
634 (Commutable && L.match(CE->getOperand(1)) &&
635 R.match(CE->getOperand(0))));
636 return false;
637 }
638};
639
640template <typename LHS, typename RHS>
641inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
642 const RHS &R) {
643 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
644}
645
646template <typename LHS, typename RHS>
647inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
648 const RHS &R) {
649 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
650}
651
652template <typename LHS, typename RHS>
653inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
654 const RHS &R) {
655 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
656}
657
658template <typename LHS, typename RHS>
659inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
660 const RHS &R) {
661 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
662}
663
664template <typename Op_t> struct FNeg_match {
665 Op_t X;
666
667 FNeg_match(const Op_t &Op) : X(Op) {}
668 template <typename OpTy> bool match(OpTy *V) {
669 auto *FPMO = dyn_cast<FPMathOperator>(V);
670 if (!FPMO) return false;
671
672 if (FPMO->getOpcode() == Instruction::FNeg)
673 return X.match(FPMO->getOperand(0));
674
675 if (FPMO->getOpcode() == Instruction::FSub) {
676 if (FPMO->hasNoSignedZeros()) {
677 // With 'nsz', any zero goes.
678 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
679 return false;
680 } else {
681 // Without 'nsz', we need fsub -0.0, X exactly.
682 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
683 return false;
684 }
685
686 return X.match(FPMO->getOperand(1));
687 }
688
689 return false;
690 }
691};
692
693/// Match 'fneg X' as 'fsub -0.0, X'.
694template <typename OpTy>
695inline FNeg_match<OpTy>
696m_FNeg(const OpTy &X) {
697 return FNeg_match<OpTy>(X);
698}
699
700/// Match 'fneg X' as 'fsub +-0.0, X'.
701template <typename RHS>
702inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
703m_FNegNSZ(const RHS &X) {
704 return m_FSub(m_AnyZeroFP(), X);
705}
706
707template <typename LHS, typename RHS>
708inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
709 const RHS &R) {
710 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
711}
712
713template <typename LHS, typename RHS>
714inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
715 const RHS &R) {
716 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
717}
718
719template <typename LHS, typename RHS>
720inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
721 const RHS &R) {
722 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
723}
724
725template <typename LHS, typename RHS>
726inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
727 const RHS &R) {
728 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
729}
730
731template <typename LHS, typename RHS>
732inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
733 const RHS &R) {
734 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
735}
736
737template <typename LHS, typename RHS>
738inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
739 const RHS &R) {
740 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
741}
742
743template <typename LHS, typename RHS>
744inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
745 const RHS &R) {
746 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
747}
748
749template <typename LHS, typename RHS>
750inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
751 const RHS &R) {
752 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
753}
754
755template <typename LHS, typename RHS>
756inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
757 const RHS &R) {
758 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
759}
760
761template <typename LHS, typename RHS>
762inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
763 const RHS &R) {
764 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
765}
766
767template <typename LHS, typename RHS>
768inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
769 const RHS &R) {
770 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
771}
772
773template <typename LHS, typename RHS>
774inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
775 const RHS &R) {
776 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
777}
778
779template <typename LHS, typename RHS>
780inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
781 const RHS &R) {
782 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
783}
784
785template <typename LHS, typename RHS>
786inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
787 const RHS &R) {
788 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
789}
790
791template <typename LHS_t, typename RHS_t, unsigned Opcode,
792 unsigned WrapFlags = 0>
793struct OverflowingBinaryOp_match {
794 LHS_t L;
795 RHS_t R;
796
797 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
798 : L(LHS), R(RHS) {}
799
800 template <typename OpTy> bool match(OpTy *V) {
801 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
802 if (Op->getOpcode() != Opcode)
803 return false;
804 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
805 !Op->hasNoUnsignedWrap())
806 return false;
807 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
808 !Op->hasNoSignedWrap())
809 return false;
810 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
811 }
812 return false;
813 }
814};
815
816template <typename LHS, typename RHS>
817inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
818 OverflowingBinaryOperator::NoSignedWrap>
819m_NSWAdd(const LHS &L, const RHS &R) {
820 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
821 OverflowingBinaryOperator::NoSignedWrap>(
822 L, R);
823}
824template <typename LHS, typename RHS>
825inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
826 OverflowingBinaryOperator::NoSignedWrap>
827m_NSWSub(const LHS &L, const RHS &R) {
828 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
829 OverflowingBinaryOperator::NoSignedWrap>(
830 L, R);
831}
832template <typename LHS, typename RHS>
833inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
834 OverflowingBinaryOperator::NoSignedWrap>
835m_NSWMul(const LHS &L, const RHS &R) {
836 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
837 OverflowingBinaryOperator::NoSignedWrap>(
838 L, R);
839}
840template <typename LHS, typename RHS>
841inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
842 OverflowingBinaryOperator::NoSignedWrap>
843m_NSWShl(const LHS &L, const RHS &R) {
844 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
845 OverflowingBinaryOperator::NoSignedWrap>(
846 L, R);
847}
848
849template <typename LHS, typename RHS>
850inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
851 OverflowingBinaryOperator::NoUnsignedWrap>
852m_NUWAdd(const LHS &L, const RHS &R) {
853 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
854 OverflowingBinaryOperator::NoUnsignedWrap>(
855 L, R);
856}
857template <typename LHS, typename RHS>
858inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
859 OverflowingBinaryOperator::NoUnsignedWrap>
860m_NUWSub(const LHS &L, const RHS &R) {
861 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
862 OverflowingBinaryOperator::NoUnsignedWrap>(
863 L, R);
864}
865template <typename LHS, typename RHS>
866inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
867 OverflowingBinaryOperator::NoUnsignedWrap>
868m_NUWMul(const LHS &L, const RHS &R) {
869 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
870 OverflowingBinaryOperator::NoUnsignedWrap>(
871 L, R);
872}
873template <typename LHS, typename RHS>
874inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
875 OverflowingBinaryOperator::NoUnsignedWrap>
876m_NUWShl(const LHS &L, const RHS &R) {
877 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
878 OverflowingBinaryOperator::NoUnsignedWrap>(
879 L, R);
880}
881
882//===----------------------------------------------------------------------===//
883// Class that matches a group of binary opcodes.
884//
885template <typename LHS_t, typename RHS_t, typename Predicate>
886struct BinOpPred_match : Predicate {
887 LHS_t L;
888 RHS_t R;
889
890 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
891
892 template <typename OpTy> bool match(OpTy *V) {
893 if (auto *I = dyn_cast<Instruction>(V))
894 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
895 R.match(I->getOperand(1));
896 if (auto *CE = dyn_cast<ConstantExpr>(V))
897 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
898 R.match(CE->getOperand(1));
899 return false;
900 }
901};
902
903struct is_shift_op {
904 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
905};
906
907struct is_right_shift_op {
908 bool isOpType(unsigned Opcode) {
909 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
910 }
911};
912
913struct is_logical_shift_op {
914 bool isOpType(unsigned Opcode) {
915 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
916 }
917};
918
919struct is_bitwiselogic_op {
920 bool isOpType(unsigned Opcode) {
921 return Instruction::isBitwiseLogicOp(Opcode);
922 }
923};
924
925struct is_idiv_op {
926 bool isOpType(unsigned Opcode) {
927 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
928 }
929};
930
931/// Matches shift operations.
932template <typename LHS, typename RHS>
933inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
934 const RHS &R) {
935 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
936}
937
938/// Matches logical shift operations.
939template <typename LHS, typename RHS>
940inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
941 const RHS &R) {
942 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
943}
944
945/// Matches logical shift operations.
946template <typename LHS, typename RHS>
947inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
948m_LogicalShift(const LHS &L, const RHS &R) {
949 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
950}
951
952/// Matches bitwise logic operations.
953template <typename LHS, typename RHS>
954inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
955m_BitwiseLogic(const LHS &L, const RHS &R) {
956 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
957}
958
959/// Matches integer division operations.
960template <typename LHS, typename RHS>
961inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
962 const RHS &R) {
963 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
964}
965
966//===----------------------------------------------------------------------===//
967// Class that matches exact binary ops.
968//
969template <typename SubPattern_t> struct Exact_match {
970 SubPattern_t SubPattern;
971
972 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
973
974 template <typename OpTy> bool match(OpTy *V) {
975 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
976 return PEO->isExact() && SubPattern.match(V);
977 return false;
978 }
979};
980
981template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
982 return SubPattern;
983}
984
985//===----------------------------------------------------------------------===//
986// Matchers for CmpInst classes
987//
988
989template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
990 bool Commutable = false>
991struct CmpClass_match {
992 PredicateTy &Predicate;
993 LHS_t L;
994 RHS_t R;
995
996 // The evaluation order is always stable, regardless of Commutability.
997 // The LHS is always matched first.
998 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
999 : Predicate(Pred), L(LHS), R(RHS) {}
1000
1001 template <typename OpTy> bool match(OpTy *V) {
1002 if (auto *I = dyn_cast<Class>(V))
1003 if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1004 (Commutable && L.match(I->getOperand(1)) &&
1005 R.match(I->getOperand(0)))) {
1006 Predicate = I->getPredicate();
1007 return true;
1008 }
1009 return false;
1010 }
1011};
1012
1013template <typename LHS, typename RHS>
1014inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1015m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1016 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1017}
1018
1019template <typename LHS, typename RHS>
1020inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1021m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1022 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1023}
1024
1025template <typename LHS, typename RHS>
1026inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1027m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1028 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1029}
1030
1031//===----------------------------------------------------------------------===//
1032// Matchers for instructions with a given opcode and number of operands.
1033//
1034
1035/// Matches instructions with Opcode and three operands.
1036template <typename T0, unsigned Opcode> struct OneOps_match {
1037 T0 Op1;
1038
1039 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1040
1041 template <typename OpTy> bool match(OpTy *V) {
1042 if (V->getValueID() == Value::InstructionVal + Opcode) {
1043 auto *I = cast<Instruction>(V);
1044 return Op1.match(I->getOperand(0));
1045 }
1046 return false;
1047 }
1048};
1049
1050/// Matches instructions with Opcode and three operands.
1051template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1052 T0 Op1;
1053 T1 Op2;
1054
1055 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1056
1057 template <typename OpTy> bool match(OpTy *V) {
1058 if (V->getValueID() == Value::InstructionVal + Opcode) {
1059 auto *I = cast<Instruction>(V);
1060 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1061 }
1062 return false;
1063 }
1064};
1065
1066/// Matches instructions with Opcode and three operands.
1067template <typename T0, typename T1, typename T2, unsigned Opcode>
1068struct ThreeOps_match {
1069 T0 Op1;
1070 T1 Op2;
1071 T2 Op3;
1072
1073 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1074 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1075
1076 template <typename OpTy> bool match(OpTy *V) {
1077 if (V->getValueID() == Value::InstructionVal + Opcode) {
1078 auto *I = cast<Instruction>(V);
1079 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1080 Op3.match(I->getOperand(2));
1081 }
1082 return false;
1083 }
1084};
1085
1086/// Matches SelectInst.
1087template <typename Cond, typename LHS, typename RHS>
1088inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1089m_Select(const Cond &C, const LHS &L, const RHS &R) {
1090 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1091}
1092
1093/// This matches a select of two constants, e.g.:
1094/// m_SelectCst<-1, 0>(m_Value(V))
1095template <int64_t L, int64_t R, typename Cond>
1096inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1097 Instruction::Select>
1098m_SelectCst(const Cond &C) {
1099 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1100}
1101
1102/// Matches InsertElementInst.
1103template <typename Val_t, typename Elt_t, typename Idx_t>
1104inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1105m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1106 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1107 Val, Elt, Idx);
1108}
1109
1110/// Matches ExtractElementInst.
1111template <typename Val_t, typename Idx_t>
1112inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1113m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1114 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1115}
1116
1117/// Matches ShuffleVectorInst.
1118template <typename V1_t, typename V2_t, typename Mask_t>
1119inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>
1120m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1121 return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2,
1122 m);
1123}
1124
1125/// Matches LoadInst.
1126template <typename OpTy>
1127inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1128 return OneOps_match<OpTy, Instruction::Load>(Op);
1129}
1130
1131/// Matches StoreInst.
1132template <typename ValueOpTy, typename PointerOpTy>
1133inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1134m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1135 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1136 PointerOp);
1137}
1138
1139//===----------------------------------------------------------------------===//
1140// Matchers for CastInst classes
1141//
1142
1143template <typename Op_t, unsigned Opcode> struct CastClass_match {
1144 Op_t Op;
1145
1146 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1147
1148 template <typename OpTy> bool match(OpTy *V) {
1149 if (auto *O = dyn_cast<Operator>(V))
1150 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1151 return false;
1152 }
1153};
1154
1155/// Matches BitCast.
1156template <typename OpTy>
1157inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1158 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1159}
1160
1161/// Matches PtrToInt.
1162template <typename OpTy>
1163inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1164 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1165}
1166
1167/// Matches Trunc.
1168template <typename OpTy>
1169inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1170 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1171}
1172
1173/// Matches SExt.
1174template <typename OpTy>
1175inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1176 return CastClass_match<OpTy, Instruction::SExt>(Op);
1177}
1178
1179/// Matches ZExt.
1180template <typename OpTy>
1181inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1182 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1183}
1184
1185template <typename OpTy>
1186inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1187 CastClass_match<OpTy, Instruction::SExt>>
1188m_ZExtOrSExt(const OpTy &Op) {
1189 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1190}
1191
1192/// Matches UIToFP.
1193template <typename OpTy>
1194inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1195 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1196}
1197
1198/// Matches SIToFP.
1199template <typename OpTy>
1200inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1201 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1202}
1203
1204/// Matches FPTrunc
1205template <typename OpTy>
1206inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1207 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1208}
1209
1210/// Matches FPExt
1211template <typename OpTy>
1212inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1213 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1214}
1215
1216//===----------------------------------------------------------------------===//
1217// Matchers for control flow.
1218//
1219
1220struct br_match {
1221 BasicBlock *&Succ;
1222
1223 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1224
1225 template <typename OpTy> bool match(OpTy *V) {
1226 if (auto *BI = dyn_cast<BranchInst>(V))
1227 if (BI->isUnconditional()) {
1228 Succ = BI->getSuccessor(0);
1229 return true;
1230 }
1231 return false;
1232 }
1233};
1234
1235inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1236
1237template <typename Cond_t> struct brc_match {
1238 Cond_t Cond;
1239 BasicBlock *&T, *&F;
1240
1241 brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
1242 : Cond(C), T(t), F(f) {}
1243
1244 template <typename OpTy> bool match(OpTy *V) {
1245 if (auto *BI = dyn_cast<BranchInst>(V))
1246 if (BI->isConditional() && Cond.match(BI->getCondition())) {
1247 T = BI->getSuccessor(0);
1248 F = BI->getSuccessor(1);
1249 return true;
1250 }
1251 return false;
1252 }
1253};
1254
1255template <typename Cond_t>
1256inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1257 return brc_match<Cond_t>(C, T, F);
1258}
1259
1260//===----------------------------------------------------------------------===//
1261// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1262//
1263
1264template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1265 bool Commutable = false>
1266struct MaxMin_match {
1267 LHS_t L;
1268 RHS_t R;
1269
1270 // The evaluation order is always stable, regardless of Commutability.
1271 // The LHS is always matched first.
1272 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1273
1274 template <typename OpTy> bool match(OpTy *V) {
1275 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1276 auto *SI = dyn_cast<SelectInst>(V);
1277 if (!SI)
9
Taking false branch
1278 return false;
1279 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1280 if (!Cmp)
10
Taking false branch
1281 return false;
1282 // At this point we have a select conditioned on a comparison. Check that
1283 // it is the values returned by the select that are being compared.
1284 Value *TrueVal = SI->getTrueValue();
1285 Value *FalseVal = SI->getFalseValue();
1286 Value *LHS = Cmp->getOperand(0);
1287 Value *RHS = Cmp->getOperand(1);
11
Calling 'CmpInst::getOperand'
21
Returning from 'CmpInst::getOperand'
22
'RHS' initialized here
1288 if ((TrueVal != LHS || FalseVal != RHS) &&
23
Assuming 'TrueVal' is equal to 'LHS'
24
Assuming 'FalseVal' is not equal to 'RHS'
28
Taking false branch
1289 (TrueVal != RHS || FalseVal != LHS))
25
Assuming pointer value is null
26
Assuming 'TrueVal' is equal to 'RHS'
27
Assuming 'FalseVal' is equal to 'LHS'
1290 return false;
1291 typename CmpInst_t::Predicate Pred =
1292 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
29
'?' condition is true
1293 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1294 if (!Pred_t::match(Pred))
30
Taking false branch
1295 return false;
1296 // It does! Bind the operands.
1297 return (L.match(LHS) && R.match(RHS)) ||
31
Passing null pointer value via 1st parameter 'V'
32
Calling 'apfloat_match::match'
1298 (Commutable && L.match(RHS) && R.match(LHS));
1299 }
1300};
1301
1302/// Helper class for identifying signed max predicates.
1303struct smax_pred_ty {
1304 static bool match(ICmpInst::Predicate Pred) {
1305 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1306 }
1307};
1308
1309/// Helper class for identifying signed min predicates.
1310struct smin_pred_ty {
1311 static bool match(ICmpInst::Predicate Pred) {
1312 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1313 }
1314};
1315
1316/// Helper class for identifying unsigned max predicates.
1317struct umax_pred_ty {
1318 static bool match(ICmpInst::Predicate Pred) {
1319 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1320 }
1321};
1322
1323/// Helper class for identifying unsigned min predicates.
1324struct umin_pred_ty {
1325 static bool match(ICmpInst::Predicate Pred) {
1326 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1327 }
1328};
1329
1330/// Helper class for identifying ordered max predicates.
1331struct ofmax_pred_ty {
1332 static bool match(FCmpInst::Predicate Pred) {
1333 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1334 }
1335};
1336
1337/// Helper class for identifying ordered min predicates.
1338struct ofmin_pred_ty {
1339 static bool match(FCmpInst::Predicate Pred) {
1340 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1341 }
1342};
1343
1344/// Helper class for identifying unordered max predicates.
1345struct ufmax_pred_ty {
1346 static bool match(FCmpInst::Predicate Pred) {
1347 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1348 }
1349};
1350
1351/// Helper class for identifying unordered min predicates.
1352struct ufmin_pred_ty {
1353 static bool match(FCmpInst::Predicate Pred) {
1354 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1355 }
1356};
1357
1358template <typename LHS, typename RHS>
1359inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1360 const RHS &R) {
1361 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1362}
1363
1364template <typename LHS, typename RHS>
1365inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1366 const RHS &R) {
1367 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1368}
1369
1370template <typename LHS, typename RHS>
1371inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1372 const RHS &R) {
1373 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1374}
1375
1376template <typename LHS, typename RHS>
1377inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1378 const RHS &R) {
1379 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1380}
1381
1382/// Match an 'ordered' floating point maximum function.
1383/// Floating point has one special value 'NaN'. Therefore, there is no total
1384/// order. However, if we can ignore the 'NaN' value (for example, because of a
1385/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1386/// semantics. In the presence of 'NaN' we have to preserve the original
1387/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1388///
1389/// max(L, R) iff L and R are not NaN
1390/// m_OrdFMax(L, R) = R iff L or R are NaN
1391template <typename LHS, typename RHS>
1392inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1393 const RHS &R) {
1394 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1395}
1396
1397/// Match an 'ordered' floating point minimum function.
1398/// Floating point has one special value 'NaN'. Therefore, there is no total
1399/// order. However, if we can ignore the 'NaN' value (for example, because of a
1400/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1401/// semantics. In the presence of 'NaN' we have to preserve the original
1402/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1403///
1404/// min(L, R) iff L and R are not NaN
1405/// m_OrdFMin(L, R) = R iff L or R are NaN
1406template <typename LHS, typename RHS>
1407inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1408 const RHS &R) {
1409 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1410}
1411
1412/// Match an 'unordered' floating point maximum function.
1413/// Floating point has one special value 'NaN'. Therefore, there is no total
1414/// order. However, if we can ignore the 'NaN' value (for example, because of a
1415/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1416/// semantics. In the presence of 'NaN' we have to preserve the original
1417/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1418///
1419/// max(L, R) iff L and R are not NaN
1420/// m_UnordFMax(L, R) = L iff L or R are NaN
1421template <typename LHS, typename RHS>
1422inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1423m_UnordFMax(const LHS &L, const RHS &R) {
1424 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1425}
1426
1427/// Match an 'unordered' floating point minimum function.
1428/// Floating point has one special value 'NaN'. Therefore, there is no total
1429/// order. However, if we can ignore the 'NaN' value (for example, because of a
1430/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1431/// semantics. In the presence of 'NaN' we have to preserve the original
1432/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1433///
1434/// min(L, R) iff L and R are not NaN
1435/// m_UnordFMin(L, R) = L iff L or R are NaN
1436template <typename LHS, typename RHS>
1437inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1438m_UnordFMin(const LHS &L, const RHS &R) {
1439 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1440}
1441
1442//===----------------------------------------------------------------------===//
1443// Matchers for overflow check patterns: e.g. (a + b) u< a
1444//
1445
1446template <typename LHS_t, typename RHS_t, typename Sum_t>
1447struct UAddWithOverflow_match {
1448 LHS_t L;
1449 RHS_t R;
1450 Sum_t S;
1451
1452 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1453 : L(L), R(R), S(S) {}
1454
1455 template <typename OpTy> bool match(OpTy *V) {
1456 Value *ICmpLHS, *ICmpRHS;
1457 ICmpInst::Predicate Pred;
1458 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1459 return false;
1460
1461 Value *AddLHS, *AddRHS;
1462 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1463
1464 // (a + b) u< a, (a + b) u< b
1465 if (Pred == ICmpInst::ICMP_ULT)
1466 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1467 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1468
1469 // a >u (a + b), b >u (a + b)
1470 if (Pred == ICmpInst::ICMP_UGT)
1471 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1472 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1473
1474 // Match special-case for increment-by-1.
1475 if (Pred == ICmpInst::ICMP_EQ) {
1476 // (a + 1) == 0
1477 // (1 + a) == 0
1478 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1479 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1480 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1481 // 0 == (a + 1)
1482 // 0 == (1 + a)
1483 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1484 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1485 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1486 }
1487
1488 return false;
1489 }
1490};
1491
1492/// Match an icmp instruction checking for unsigned overflow on addition.
1493///
1494/// S is matched to the addition whose result is being checked for overflow, and
1495/// L and R are matched to the LHS and RHS of S.
1496template <typename LHS_t, typename RHS_t, typename Sum_t>
1497UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1498m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1499 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1500}
1501
1502template <typename Opnd_t> struct Argument_match {
1503 unsigned OpI;
1504 Opnd_t Val;
1505
1506 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1507
1508 template <typename OpTy> bool match(OpTy *V) {
1509 // FIXME: Should likely be switched to use `CallBase`.
1510 if (const auto *CI = dyn_cast<CallInst>(V))
1511 return Val.match(CI->getArgOperand(OpI));
1512 return false;
1513 }
1514};
1515
1516/// Match an argument.
1517template <unsigned OpI, typename Opnd_t>
1518inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1519 return Argument_match<Opnd_t>(OpI, Op);
1520}
1521
1522/// Intrinsic matchers.
1523struct IntrinsicID_match {
1524 unsigned ID;
1525
1526 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1527
1528 template <typename OpTy> bool match(OpTy *V) {
1529 if (const auto *CI = dyn_cast<CallInst>(V))
1530 if (const auto *F = CI->getCalledFunction())
1531 return F->getIntrinsicID() == ID;
1532 return false;
1533 }
1534};
1535
1536/// Intrinsic matches are combinations of ID matchers, and argument
1537/// matchers. Higher arity matcher are defined recursively in terms of and-ing
1538/// them with lower arity matchers. Here's some convenient typedefs for up to
1539/// several arguments, and more can be added as needed
1540template <typename T0 = void, typename T1 = void, typename T2 = void,
1541 typename T3 = void, typename T4 = void, typename T5 = void,
1542 typename T6 = void, typename T7 = void, typename T8 = void,
1543 typename T9 = void, typename T10 = void>
1544struct m_Intrinsic_Ty;
1545template <typename T0> struct m_Intrinsic_Ty<T0> {
1546 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1547};
1548template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1549 using Ty =
1550 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1551};
1552template <typename T0, typename T1, typename T2>
1553struct m_Intrinsic_Ty<T0, T1, T2> {
1554 using Ty =
1555 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1556 Argument_match<T2>>;
1557};
1558template <typename T0, typename T1, typename T2, typename T3>
1559struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1560 using Ty =
1561 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1562 Argument_match<T3>>;
1563};
1564
1565/// Match intrinsic calls like this:
1566/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1567template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1568 return IntrinsicID_match(IntrID);
1569}
1570
1571template <Intrinsic::ID IntrID, typename T0>
1572inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1573 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1574}
1575
1576template <Intrinsic::ID IntrID, typename T0, typename T1>
1577inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1578 const T1 &Op1) {
1579 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1580}
1581
1582template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1583inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1584m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1585 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1586}
1587
1588template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1589 typename T3>
1590inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1591m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1592 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1593}
1594
1595// Helper intrinsic matching specializations.
1596template <typename Opnd0>
1597inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1598 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1599}
1600
1601template <typename Opnd0>
1602inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1603 return m_Intrinsic<Intrinsic::bswap>(Op0);
1604}
1605
1606template <typename Opnd0>
1607inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1608 return m_Intrinsic<Intrinsic::fabs>(Op0);
1609}
1610
1611template <typename Opnd0>
1612inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1613 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1614}
1615
1616template <typename Opnd0, typename Opnd1>
1617inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1618 const Opnd1 &Op1) {
1619 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1620}
1621
1622template <typename Opnd0, typename Opnd1>
1623inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1624 const Opnd1 &Op1) {
1625 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1626}
1627
1628//===----------------------------------------------------------------------===//
1629// Matchers for two-operands operators with the operators in either order
1630//
1631
1632/// Matches a BinaryOperator with LHS and RHS in either order.
1633template <typename LHS, typename RHS>
1634inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1635 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1636}
1637
1638/// Matches an ICmp with a predicate over LHS and RHS in either order.
1639/// Does not swap the predicate.
1640template <typename LHS, typename RHS>
1641inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1642m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1643 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1644 R);
1645}
1646
1647/// Matches a Add with LHS and RHS in either order.
1648template <typename LHS, typename RHS>
1649inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1650 const RHS &R) {
1651 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1652}
1653
1654/// Matches a Mul with LHS and RHS in either order.
1655template <typename LHS, typename RHS>
1656inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1657 const RHS &R) {
1658 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1659}
1660
1661/// Matches an And with LHS and RHS in either order.
1662template <typename LHS, typename RHS>
1663inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1664 const RHS &R) {
1665 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1666}
1667
1668/// Matches an Or with LHS and RHS in either order.
1669template <typename LHS, typename RHS>
1670inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1671 const RHS &R) {
1672 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1673}
1674
1675/// Matches an Xor with LHS and RHS in either order.
1676template <typename LHS, typename RHS>
1677inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1678 const RHS &R) {
1679 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1680}
1681
1682/// Matches a 'Neg' as 'sub 0, V'.
1683template <typename ValTy>
1684inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1685m_Neg(const ValTy &V) {
1686 return m_Sub(m_ZeroInt(), V);
1687}
1688
1689/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1690template <typename ValTy>
1691inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1692m_Not(const ValTy &V) {
1693 return m_c_Xor(V, m_AllOnes());
1694}
1695
1696/// Matches an SMin with LHS and RHS in either order.
1697template <typename LHS, typename RHS>
1698inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1699m_c_SMin(const LHS &L, const RHS &R) {
1700 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1701}
1702/// Matches an SMax with LHS and RHS in either order.
1703template <typename LHS, typename RHS>
1704inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1705m_c_SMax(const LHS &L, const RHS &R) {
1706 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1707}
1708/// Matches a UMin with LHS and RHS in either order.
1709template <typename LHS, typename RHS>
1710inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1711m_c_UMin(const LHS &L, const RHS &R) {
1712 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1713}
1714/// Matches a UMax with LHS and RHS in either order.
1715template <typename LHS, typename RHS>
1716inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1717m_c_UMax(const LHS &L, const RHS &R) {
1718 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1719}
1720
1721/// Matches FAdd with LHS and RHS in either order.
1722template <typename LHS, typename RHS>
1723inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1724m_c_FAdd(const LHS &L, const RHS &R) {
1725 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1726}
1727
1728/// Matches FMul with LHS and RHS in either order.
1729template <typename LHS, typename RHS>
1730inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1731m_c_FMul(const LHS &L, const RHS &R) {
1732 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1733}
1734
1735template <typename Opnd_t> struct Signum_match {
1736 Opnd_t Val;
1737 Signum_match(const Opnd_t &V) : Val(V) {}
1738
1739 template <typename OpTy> bool match(OpTy *V) {
1740 unsigned TypeSize = V->getType()->getScalarSizeInBits();
1741 if (TypeSize == 0)
1742 return false;
1743
1744 unsigned ShiftWidth = TypeSize - 1;
1745 Value *OpL = nullptr, *OpR = nullptr;
1746
1747 // This is the representation of signum we match:
1748 //
1749 // signum(x) == (x >> 63) | (-x >>u 63)
1750 //
1751 // An i1 value is its own signum, so it's correct to match
1752 //
1753 // signum(x) == (x >> 0) | (-x >>u 0)
1754 //
1755 // for i1 values.
1756
1757 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1758 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1759 auto Signum = m_Or(LHS, RHS);
1760
1761 return Signum.match(V) && OpL == OpR && Val.match(OpL);
1762 }
1763};
1764
1765/// Matches a signum pattern.
1766///
1767/// signum(x) =
1768/// x > 0 -> 1
1769/// x == 0 -> 0
1770/// x < 0 -> -1
1771template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1772 return Signum_match<Val_t>(V);
1773}
1774
1775} // end namespace PatternMatch
1776} // end namespace llvm
1777
1778#endif // LLVM_IR_PATTERNMATCH_H

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h

1//===- llvm/InstrTypes.h - Important Instruction subclasses -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines various meta classes of instructions that exist in the VM
10// representation. Specific concrete subclasses of these may be found in the
11// i*.h files...
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRTYPES_H
16#define LLVM_IR_INSTRTYPES_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Instruction.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/OperandTraits.h"
34#include "llvm/IR/Type.h"
35#include "llvm/IR/User.h"
36#include "llvm/IR/Value.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Support/ErrorHandling.h"
39#include <algorithm>
40#include <cassert>
41#include <cstddef>
42#include <cstdint>
43#include <iterator>
44#include <string>
45#include <vector>
46
47namespace llvm {
48
49namespace Intrinsic {
50enum ID : unsigned;
51}
52
53//===----------------------------------------------------------------------===//
54// UnaryInstruction Class
55//===----------------------------------------------------------------------===//
56
57class UnaryInstruction : public Instruction {
58protected:
59 UnaryInstruction(Type *Ty, unsigned iType, Value *V,
60 Instruction *IB = nullptr)
61 : Instruction(Ty, iType, &Op<0>(), 1, IB) {
62 Op<0>() = V;
63 }
64 UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
65 : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
66 Op<0>() = V;
67 }
68
69public:
70 // allocate space for exactly one operand
71 void *operator new(size_t s) {
72 return User::operator new(s, 1);
73 }
74
75 /// Transparently provide more efficient getOperand methods.
76 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
77
78 // Methods for support type inquiry through isa, cast, and dyn_cast:
79 static bool classof(const Instruction *I) {
80 return I->isUnaryOp() ||
81 I->getOpcode() == Instruction::Alloca ||
82 I->getOpcode() == Instruction::Load ||
83 I->getOpcode() == Instruction::VAArg ||
84 I->getOpcode() == Instruction::ExtractValue ||
85 (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
86 }
87 static bool classof(const Value *V) {
88 return isa<Instruction>(V) && classof(cast<Instruction>(V));
89 }
90};
91
92template <>
93struct OperandTraits<UnaryInstruction> :
94 public FixedNumOperandTraits<UnaryInstruction, 1> {
95};
96
97DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)UnaryInstruction::op_iterator UnaryInstruction::op_begin() { return
OperandTraits<UnaryInstruction>::op_begin(this); } UnaryInstruction
::const_op_iterator UnaryInstruction::op_begin() const { return
OperandTraits<UnaryInstruction>::op_begin(const_cast<
UnaryInstruction*>(this)); } UnaryInstruction::op_iterator
UnaryInstruction::op_end() { return OperandTraits<UnaryInstruction
>::op_end(this); } UnaryInstruction::const_op_iterator UnaryInstruction
::op_end() const { return OperandTraits<UnaryInstruction>
::op_end(const_cast<UnaryInstruction*>(this)); } Value *
UnaryInstruction::getOperand(unsigned i_nocapture) const { ((
i_nocapture < OperandTraits<UnaryInstruction>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<UnaryInstruction>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 97, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<UnaryInstruction>::op_begin(const_cast<
UnaryInstruction*>(this))[i_nocapture].get()); } void UnaryInstruction
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<UnaryInstruction>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<UnaryInstruction>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 97, __PRETTY_FUNCTION__)); OperandTraits<UnaryInstruction
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
UnaryInstruction::getNumOperands() const { return OperandTraits
<UnaryInstruction>::operands(this); } template <int Idx_nocapture
> Use &UnaryInstruction::Op() { return this->OpFrom
<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &UnaryInstruction::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
98
99//===----------------------------------------------------------------------===//
100// UnaryOperator Class
101//===----------------------------------------------------------------------===//
102
103class UnaryOperator : public UnaryInstruction {
104 void AssertOK();
105
106protected:
107 UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
108 const Twine &Name, Instruction *InsertBefore);
109 UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
110 const Twine &Name, BasicBlock *InsertAtEnd);
111
112 // Note: Instruction needs to be a friend here to call cloneImpl.
113 friend class Instruction;
114
115 UnaryOperator *cloneImpl() const;
116
117public:
118
119 /// Construct a unary instruction, given the opcode and an operand.
120 /// Optionally (if InstBefore is specified) insert the instruction
121 /// into a BasicBlock right before the specified instruction. The specified
122 /// Instruction is allowed to be a dereferenced end iterator.
123 ///
124 static UnaryOperator *Create(UnaryOps Op, Value *S,
125 const Twine &Name = Twine(),
126 Instruction *InsertBefore = nullptr);
127
128 /// Construct a unary instruction, given the opcode and an operand.
129 /// Also automatically insert this instruction to the end of the
130 /// BasicBlock specified.
131 ///
132 static UnaryOperator *Create(UnaryOps Op, Value *S,
133 const Twine &Name,
134 BasicBlock *InsertAtEnd);
135
136 /// These methods just forward to Create, and are useful when you
137 /// statically know what type of instruction you're going to create. These
138 /// helpers just save some typing.
139#define HANDLE_UNARY_INST(N, OPC, CLASS) \
140 static UnaryOperator *Create##OPC(Value *V, const Twine &Name = "") {\
141 return Create(Instruction::OPC, V, Name);\
142 }
143#include "llvm/IR/Instruction.def"
144#define HANDLE_UNARY_INST(N, OPC, CLASS) \
145 static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
146 BasicBlock *BB) {\
147 return Create(Instruction::OPC, V, Name, BB);\
148 }
149#include "llvm/IR/Instruction.def"
150#define HANDLE_UNARY_INST(N, OPC, CLASS) \
151 static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
152 Instruction *I) {\
153 return Create(Instruction::OPC, V, Name, I);\
154 }
155#include "llvm/IR/Instruction.def"
156
157 UnaryOps getOpcode() const {
158 return static_cast<UnaryOps>(Instruction::getOpcode());
159 }
160
161 // Methods for support type inquiry through isa, cast, and dyn_cast:
162 static bool classof(const Instruction *I) {
163 return I->isUnaryOp();
164 }
165 static bool classof(const Value *V) {
166 return isa<Instruction>(V) && classof(cast<Instruction>(V));
167 }
168};
169
170//===----------------------------------------------------------------------===//
171// BinaryOperator Class
172//===----------------------------------------------------------------------===//
173
174class BinaryOperator : public Instruction {
175 void AssertOK();
176
177protected:
178 BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
179 const Twine &Name, Instruction *InsertBefore);
180 BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
181 const Twine &Name, BasicBlock *InsertAtEnd);
182
183 // Note: Instruction needs to be a friend here to call cloneImpl.
184 friend class Instruction;
185
186 BinaryOperator *cloneImpl() const;
187
188public:
189 // allocate space for exactly two operands
190 void *operator new(size_t s) {
191 return User::operator new(s, 2);
192 }
193
194 /// Transparently provide more efficient getOperand methods.
195 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
196
197 /// Construct a binary instruction, given the opcode and the two
198 /// operands. Optionally (if InstBefore is specified) insert the instruction
199 /// into a BasicBlock right before the specified instruction. The specified
200 /// Instruction is allowed to be a dereferenced end iterator.
201 ///
202 static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
203 const Twine &Name = Twine(),
204 Instruction *InsertBefore = nullptr);
205
206 /// Construct a binary instruction, given the opcode and the two
207 /// operands. Also automatically insert this instruction to the end of the
208 /// BasicBlock specified.
209 ///
210 static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
211 const Twine &Name, BasicBlock *InsertAtEnd);
212
213 /// These methods just forward to Create, and are useful when you
214 /// statically know what type of instruction you're going to create. These
215 /// helpers just save some typing.
216#define HANDLE_BINARY_INST(N, OPC, CLASS) \
217 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
218 const Twine &Name = "") {\
219 return Create(Instruction::OPC, V1, V2, Name);\
220 }
221#include "llvm/IR/Instruction.def"
222#define HANDLE_BINARY_INST(N, OPC, CLASS) \
223 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
224 const Twine &Name, BasicBlock *BB) {\
225 return Create(Instruction::OPC, V1, V2, Name, BB);\
226 }
227#include "llvm/IR/Instruction.def"
228#define HANDLE_BINARY_INST(N, OPC, CLASS) \
229 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
230 const Twine &Name, Instruction *I) {\
231 return Create(Instruction::OPC, V1, V2, Name, I);\
232 }
233#include "llvm/IR/Instruction.def"
234
235 static BinaryOperator *CreateWithCopiedFlags(BinaryOps Opc,
236 Value *V1, Value *V2,
237 Instruction *CopyO,
238 const Twine &Name = "") {
239 BinaryOperator *BO = Create(Opc, V1, V2, Name);
240 BO->copyIRFlags(CopyO);
241 return BO;
242 }
243
244 static BinaryOperator *CreateFAddFMF(Value *V1, Value *V2,
245 Instruction *FMFSource,
246 const Twine &Name = "") {
247 return CreateWithCopiedFlags(Instruction::FAdd, V1, V2, FMFSource, Name);
248 }
249 static BinaryOperator *CreateFSubFMF(Value *V1, Value *V2,
250 Instruction *FMFSource,
251 const Twine &Name = "") {
252 return CreateWithCopiedFlags(Instruction::FSub, V1, V2, FMFSource, Name);
253 }
254 static BinaryOperator *CreateFMulFMF(Value *V1, Value *V2,
255 Instruction *FMFSource,
256 const Twine &Name = "") {
257 return CreateWithCopiedFlags(Instruction::FMul, V1, V2, FMFSource, Name);
258 }
259 static BinaryOperator *CreateFDivFMF(Value *V1, Value *V2,
260 Instruction *FMFSource,
261 const Twine &Name = "") {
262 return CreateWithCopiedFlags(Instruction::FDiv, V1, V2, FMFSource, Name);
263 }
264 static BinaryOperator *CreateFRemFMF(Value *V1, Value *V2,
265 Instruction *FMFSource,
266 const Twine &Name = "") {
267 return CreateWithCopiedFlags(Instruction::FRem, V1, V2, FMFSource, Name);
268 }
269 static BinaryOperator *CreateFNegFMF(Value *Op, Instruction *FMFSource,
270 const Twine &Name = "") {
271 Value *Zero = ConstantFP::getNegativeZero(Op->getType());
272 return CreateWithCopiedFlags(Instruction::FSub, Zero, Op, FMFSource);
273 }
274
275 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
276 const Twine &Name = "") {
277 BinaryOperator *BO = Create(Opc, V1, V2, Name);
278 BO->setHasNoSignedWrap(true);
279 return BO;
280 }
281 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
282 const Twine &Name, BasicBlock *BB) {
283 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
284 BO->setHasNoSignedWrap(true);
285 return BO;
286 }
287 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
288 const Twine &Name, Instruction *I) {
289 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
290 BO->setHasNoSignedWrap(true);
291 return BO;
292 }
293
294 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
295 const Twine &Name = "") {
296 BinaryOperator *BO = Create(Opc, V1, V2, Name);
297 BO->setHasNoUnsignedWrap(true);
298 return BO;
299 }
300 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
301 const Twine &Name, BasicBlock *BB) {
302 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
303 BO->setHasNoUnsignedWrap(true);
304 return BO;
305 }
306 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
307 const Twine &Name, Instruction *I) {
308 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
309 BO->setHasNoUnsignedWrap(true);
310 return BO;
311 }
312
313 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
314 const Twine &Name = "") {
315 BinaryOperator *BO = Create(Opc, V1, V2, Name);
316 BO->setIsExact(true);
317 return BO;
318 }
319 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
320 const Twine &Name, BasicBlock *BB) {
321 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
322 BO->setIsExact(true);
323 return BO;
324 }
325 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
326 const Twine &Name, Instruction *I) {
327 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
328 BO->setIsExact(true);
329 return BO;
330 }
331
332#define DEFINE_HELPERS(OPC, NUWNSWEXACT) \
333 static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2, \
334 const Twine &Name = "") { \
335 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name); \
336 } \
337 static BinaryOperator *Create##NUWNSWEXACT##OPC( \
338 Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { \
339 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB); \
340 } \
341 static BinaryOperator *Create##NUWNSWEXACT##OPC( \
342 Value *V1, Value *V2, const Twine &Name, Instruction *I) { \
343 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I); \
344 }
345
346 DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
347 DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
348 DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
349 DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
350 DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
351 DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
352 DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
353 DEFINE_HELPERS(Shl, NUW) // CreateNUWShl
354
355 DEFINE_HELPERS(SDiv, Exact) // CreateExactSDiv
356 DEFINE_HELPERS(UDiv, Exact) // CreateExactUDiv
357 DEFINE_HELPERS(AShr, Exact) // CreateExactAShr
358 DEFINE_HELPERS(LShr, Exact) // CreateExactLShr
359
360#undef DEFINE_HELPERS
361
362 /// Helper functions to construct and inspect unary operations (NEG and NOT)
363 /// via binary operators SUB and XOR:
364 ///
365 /// Create the NEG and NOT instructions out of SUB and XOR instructions.
366 ///
367 static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
368 Instruction *InsertBefore = nullptr);
369 static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
370 BasicBlock *InsertAtEnd);
371 static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
372 Instruction *InsertBefore = nullptr);
373 static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
374 BasicBlock *InsertAtEnd);
375 static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
376 Instruction *InsertBefore = nullptr);
377 static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
378 BasicBlock *InsertAtEnd);
379 static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
380 Instruction *InsertBefore = nullptr);
381 static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
382 BasicBlock *InsertAtEnd);
383 static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
384 Instruction *InsertBefore = nullptr);
385 static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
386 BasicBlock *InsertAtEnd);
387
388 BinaryOps getOpcode() const {
389 return static_cast<BinaryOps>(Instruction::getOpcode());
390 }
391
392 /// Exchange the two operands to this instruction.
393 /// This instruction is safe to use on any binary instruction and
394 /// does not modify the semantics of the instruction. If the instruction
395 /// cannot be reversed (ie, it's a Div), then return true.
396 ///
397 bool swapOperands();
398
399 // Methods for support type inquiry through isa, cast, and dyn_cast:
400 static bool classof(const Instruction *I) {
401 return I->isBinaryOp();
402 }
403 static bool classof(const Value *V) {
404 return isa<Instruction>(V) && classof(cast<Instruction>(V));
405 }
406};
407
408template <>
409struct OperandTraits<BinaryOperator> :
410 public FixedNumOperandTraits<BinaryOperator, 2> {
411};
412
413DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)BinaryOperator::op_iterator BinaryOperator::op_begin() { return
OperandTraits<BinaryOperator>::op_begin(this); } BinaryOperator
::const_op_iterator BinaryOperator::op_begin() const { return
OperandTraits<BinaryOperator>::op_begin(const_cast<
BinaryOperator*>(this)); } BinaryOperator::op_iterator BinaryOperator
::op_end() { return OperandTraits<BinaryOperator>::op_end
(this); } BinaryOperator::const_op_iterator BinaryOperator::op_end
() const { return OperandTraits<BinaryOperator>::op_end
(const_cast<BinaryOperator*>(this)); } Value *BinaryOperator
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BinaryOperator>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<BinaryOperator>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 413, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BinaryOperator>::op_begin(const_cast<
BinaryOperator*>(this))[i_nocapture].get()); } void BinaryOperator
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<BinaryOperator>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BinaryOperator>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 413, __PRETTY_FUNCTION__)); OperandTraits<BinaryOperator
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
BinaryOperator::getNumOperands() const { return OperandTraits
<BinaryOperator>::operands(this); } template <int Idx_nocapture
> Use &BinaryOperator::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &BinaryOperator::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
414
415//===----------------------------------------------------------------------===//
416// CastInst Class
417//===----------------------------------------------------------------------===//
418
419/// This is the base class for all instructions that perform data
420/// casts. It is simply provided so that instruction category testing
421/// can be performed with code like:
422///
423/// if (isa<CastInst>(Instr)) { ... }
424/// Base class of casting instructions.
425class CastInst : public UnaryInstruction {
426protected:
427 /// Constructor with insert-before-instruction semantics for subclasses
428 CastInst(Type *Ty, unsigned iType, Value *S,
429 const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
430 : UnaryInstruction(Ty, iType, S, InsertBefore) {
431 setName(NameStr);
432 }
433 /// Constructor with insert-at-end-of-block semantics for subclasses
434 CastInst(Type *Ty, unsigned iType, Value *S,
435 const Twine &NameStr, BasicBlock *InsertAtEnd)
436 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
437 setName(NameStr);
438 }
439
440public:
441 /// Provides a way to construct any of the CastInst subclasses using an
442 /// opcode instead of the subclass's constructor. The opcode must be in the
443 /// CastOps category (Instruction::isCast(opcode) returns true). This
444 /// constructor has insert-before-instruction semantics to automatically
445 /// insert the new CastInst before InsertBefore (if it is non-null).
446 /// Construct any of the CastInst subclasses
447 static CastInst *Create(
448 Instruction::CastOps, ///< The opcode of the cast instruction
449 Value *S, ///< The value to be casted (operand 0)
450 Type *Ty, ///< The type to which cast should be made
451 const Twine &Name = "", ///< Name for the instruction
452 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
453 );
454 /// Provides a way to construct any of the CastInst subclasses using an
455 /// opcode instead of the subclass's constructor. The opcode must be in the
456 /// CastOps category. This constructor has insert-at-end-of-block semantics
457 /// to automatically insert the new CastInst at the end of InsertAtEnd (if
458 /// its non-null).
459 /// Construct any of the CastInst subclasses
460 static CastInst *Create(
461 Instruction::CastOps, ///< The opcode for the cast instruction
462 Value *S, ///< The value to be casted (operand 0)
463 Type *Ty, ///< The type to which operand is casted
464 const Twine &Name, ///< The name for the instruction
465 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
466 );
467
468 /// Create a ZExt or BitCast cast instruction
469 static CastInst *CreateZExtOrBitCast(
470 Value *S, ///< The value to be casted (operand 0)
471 Type *Ty, ///< The type to which cast should be made
472 const Twine &Name = "", ///< Name for the instruction
473 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
474 );
475
476 /// Create a ZExt or BitCast cast instruction
477 static CastInst *CreateZExtOrBitCast(
478 Value *S, ///< The value to be casted (operand 0)
479 Type *Ty, ///< The type to which operand is casted
480 const Twine &Name, ///< The name for the instruction
481 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
482 );
483
484 /// Create a SExt or BitCast cast instruction
485 static CastInst *CreateSExtOrBitCast(
486 Value *S, ///< The value to be casted (operand 0)
487 Type *Ty, ///< The type to which cast should be made
488 const Twine &Name = "", ///< Name for the instruction
489 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
490 );
491
492 /// Create a SExt or BitCast cast instruction
493 static CastInst *CreateSExtOrBitCast(
494 Value *S, ///< The value to be casted (operand 0)
495 Type *Ty, ///< The type to which operand is casted
496 const Twine &Name, ///< The name for the instruction
497 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
498 );
499
500 /// Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
501 static CastInst *CreatePointerCast(
502 Value *S, ///< The pointer value to be casted (operand 0)
503 Type *Ty, ///< The type to which operand is casted
504 const Twine &Name, ///< The name for the instruction
505 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
506 );
507
508 /// Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
509 static CastInst *CreatePointerCast(
510 Value *S, ///< The pointer value to be casted (operand 0)
511 Type *Ty, ///< The type to which cast should be made
512 const Twine &Name = "", ///< Name for the instruction
513 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
514 );
515
516 /// Create a BitCast or an AddrSpaceCast cast instruction.
517 static CastInst *CreatePointerBitCastOrAddrSpaceCast(
518 Value *S, ///< The pointer value to be casted (operand 0)
519 Type *Ty, ///< The type to which operand is casted
520 const Twine &Name, ///< The name for the instruction
521 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
522 );
523
524 /// Create a BitCast or an AddrSpaceCast cast instruction.
525 static CastInst *CreatePointerBitCastOrAddrSpaceCast(
526 Value *S, ///< The pointer value to be casted (operand 0)
527 Type *Ty, ///< The type to which cast should be made
528 const Twine &Name = "", ///< Name for the instruction
529 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
530 );
531
532 /// Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
533 ///
534 /// If the value is a pointer type and the destination an integer type,
535 /// creates a PtrToInt cast. If the value is an integer type and the
536 /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
537 /// a bitcast.
538 static CastInst *CreateBitOrPointerCast(
539 Value *S, ///< The pointer value to be casted (operand 0)
540 Type *Ty, ///< The type to which cast should be made
541 const Twine &Name = "", ///< Name for the instruction
542 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
543 );
544
545 /// Create a ZExt, BitCast, or Trunc for int -> int casts.
546 static CastInst *CreateIntegerCast(
547 Value *S, ///< The pointer value to be casted (operand 0)
548 Type *Ty, ///< The type to which cast should be made
549 bool isSigned, ///< Whether to regard S as signed or not
550 const Twine &Name = "", ///< Name for the instruction
551 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
552 );
553
554 /// Create a ZExt, BitCast, or Trunc for int -> int casts.
555 static CastInst *CreateIntegerCast(
556 Value *S, ///< The integer value to be casted (operand 0)
557 Type *Ty, ///< The integer type to which operand is casted
558 bool isSigned, ///< Whether to regard S as signed or not
559 const Twine &Name, ///< The name for the instruction
560 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
561 );
562
563 /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
564 static CastInst *CreateFPCast(
565 Value *S, ///< The floating point value to be casted
566 Type *Ty, ///< The floating point type to cast to
567 const Twine &Name = "", ///< Name for the instruction
568 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
569 );
570
571 /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
572 static CastInst *CreateFPCast(
573 Value *S, ///< The floating point value to be casted
574 Type *Ty, ///< The floating point type to cast to
575 const Twine &Name, ///< The name for the instruction
576 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
577 );
578
579 /// Create a Trunc or BitCast cast instruction
580 static CastInst *CreateTruncOrBitCast(
581 Value *S, ///< The value to be casted (operand 0)
582 Type *Ty, ///< The type to which cast should be made
583 const Twine &Name = "", ///< Name for the instruction
584 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
585 );
586
587 /// Create a Trunc or BitCast cast instruction
588 static CastInst *CreateTruncOrBitCast(
589 Value *S, ///< The value to be casted (operand 0)
590 Type *Ty, ///< The type to which operand is casted
591 const Twine &Name, ///< The name for the instruction
592 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
593 );
594
595 /// Check whether it is valid to call getCastOpcode for these types.
596 static bool isCastable(
597 Type *SrcTy, ///< The Type from which the value should be cast.
598 Type *DestTy ///< The Type to which the value should be cast.
599 );
600
601 /// Check whether a bitcast between these types is valid
602 static bool isBitCastable(
603 Type *SrcTy, ///< The Type from which the value should be cast.
604 Type *DestTy ///< The Type to which the value should be cast.
605 );
606
607 /// Check whether a bitcast, inttoptr, or ptrtoint cast between these
608 /// types is valid and a no-op.
609 ///
610 /// This ensures that any pointer<->integer cast has enough bits in the
611 /// integer and any other cast is a bitcast.
612 static bool isBitOrNoopPointerCastable(
613 Type *SrcTy, ///< The Type from which the value should be cast.
614 Type *DestTy, ///< The Type to which the value should be cast.
615 const DataLayout &DL);
616
617 /// Returns the opcode necessary to cast Val into Ty using usual casting
618 /// rules.
619 /// Infer the opcode for cast operand and type
620 static Instruction::CastOps getCastOpcode(
621 const Value *Val, ///< The value to cast
622 bool SrcIsSigned, ///< Whether to treat the source as signed
623 Type *Ty, ///< The Type to which the value should be casted
624 bool DstIsSigned ///< Whether to treate the dest. as signed
625 );
626
627 /// There are several places where we need to know if a cast instruction
628 /// only deals with integer source and destination types. To simplify that
629 /// logic, this method is provided.
630 /// @returns true iff the cast has only integral typed operand and dest type.
631 /// Determine if this is an integer-only cast.
632 bool isIntegerCast() const;
633
634 /// A lossless cast is one that does not alter the basic value. It implies
635 /// a no-op cast but is more stringent, preventing things like int->float,
636 /// long->double, or int->ptr.
637 /// @returns true iff the cast is lossless.
638 /// Determine if this is a lossless cast.
639 bool isLosslessCast() const;
640
641 /// A no-op cast is one that can be effected without changing any bits.
642 /// It implies that the source and destination types are the same size. The
643 /// DataLayout argument is to determine the pointer size when examining casts
644 /// involving Integer and Pointer types. They are no-op casts if the integer
645 /// is the same size as the pointer. However, pointer size varies with
646 /// platform.
647 /// Determine if the described cast is a no-op cast.
648 static bool isNoopCast(
649 Instruction::CastOps Opcode, ///< Opcode of cast
650 Type *SrcTy, ///< SrcTy of cast
651 Type *DstTy, ///< DstTy of cast
652 const DataLayout &DL ///< DataLayout to get the Int Ptr type from.
653 );
654
655 /// Determine if this cast is a no-op cast.
656 ///
657 /// \param DL is the DataLayout to determine pointer size.
658 bool isNoopCast(const DataLayout &DL) const;
659
660 /// Determine how a pair of casts can be eliminated, if they can be at all.
661 /// This is a helper function for both CastInst and ConstantExpr.
662 /// @returns 0 if the CastInst pair can't be eliminated, otherwise
663 /// returns Instruction::CastOps value for a cast that can replace
664 /// the pair, casting SrcTy to DstTy.
665 /// Determine if a cast pair is eliminable
666 static unsigned isEliminableCastPair(
667 Instruction::CastOps firstOpcode, ///< Opcode of first cast
668 Instruction::CastOps secondOpcode, ///< Opcode of second cast
669 Type *SrcTy, ///< SrcTy of 1st cast
670 Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
671 Type *DstTy, ///< DstTy of 2nd cast
672 Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
673 Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
674 Type *DstIntPtrTy ///< Integer type corresponding to Ptr DstTy, or null
675 );
676
677 /// Return the opcode of this CastInst
678 Instruction::CastOps getOpcode() const {
679 return Instruction::CastOps(Instruction::getOpcode());
680 }
681
682 /// Return the source type, as a convenience
683 Type* getSrcTy() const { return getOperand(0)->getType(); }
684 /// Return the destination type, as a convenience
685 Type* getDestTy() const { return getType(); }
686
687 /// This method can be used to determine if a cast from S to DstTy using
688 /// Opcode op is valid or not.
689 /// @returns true iff the proposed cast is valid.
690 /// Determine if a cast is valid without creating one.
691 static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);
692
693 /// Methods for support type inquiry through isa, cast, and dyn_cast:
694 static bool classof(const Instruction *I) {
695 return I->isCast();
696 }
697 static bool classof(const Value *V) {
698 return isa<Instruction>(V) && classof(cast<Instruction>(V));
699 }
700};
701
702//===----------------------------------------------------------------------===//
703// CmpInst Class
704//===----------------------------------------------------------------------===//
705
706/// This class is the base class for the comparison instructions.
707/// Abstract base class of comparison instructions.
708class CmpInst : public Instruction {
709public:
710 /// This enumeration lists the possible predicates for CmpInst subclasses.
711 /// Values in the range 0-31 are reserved for FCmpInst, while values in the
712 /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
713 /// predicate values are not overlapping between the classes.
714 ///
715 /// Some passes (e.g. InstCombine) depend on the bit-wise characteristics of
716 /// FCMP_* values. Changing the bit patterns requires a potential change to
717 /// those passes.
718 enum Predicate {
719 // Opcode U L G E Intuitive operation
720 FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded)
721 FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal
722 FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than
723 FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal
724 FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than
725 FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal
726 FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal
727 FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans)
728 FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
729 FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal
730 FCMP_UGT = 10, ///< 1 0 1 0 True if unordered or greater than
731 FCMP_UGE = 11, ///< 1 0 1 1 True if unordered, greater than, or equal
732 FCMP_ULT = 12, ///< 1 1 0 0 True if unordered or less than
733 FCMP_ULE = 13, ///< 1 1 0 1 True if unordered, less than, or equal
734 FCMP_UNE = 14, ///< 1 1 1 0 True if unordered or not equal
735 FCMP_TRUE = 15, ///< 1 1 1 1 Always true (always folded)
736 FIRST_FCMP_PREDICATE = FCMP_FALSE,
737 LAST_FCMP_PREDICATE = FCMP_TRUE,
738 BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
739 ICMP_EQ = 32, ///< equal
740 ICMP_NE = 33, ///< not equal
741 ICMP_UGT = 34, ///< unsigned greater than
742 ICMP_UGE = 35, ///< unsigned greater or equal
743 ICMP_ULT = 36, ///< unsigned less than
744 ICMP_ULE = 37, ///< unsigned less or equal
745 ICMP_SGT = 38, ///< signed greater than
746 ICMP_SGE = 39, ///< signed greater or equal
747 ICMP_SLT = 40, ///< signed less than
748 ICMP_SLE = 41, ///< signed less or equal
749 FIRST_ICMP_PREDICATE = ICMP_EQ,
750 LAST_ICMP_PREDICATE = ICMP_SLE,
751 BAD_ICMP_PREDICATE = ICMP_SLE + 1
752 };
753
754protected:
755 CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
756 Value *LHS, Value *RHS, const Twine &Name = "",
757 Instruction *InsertBefore = nullptr,
758 Instruction *FlagsSource = nullptr);
759
760 CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
761 Value *LHS, Value *RHS, const Twine &Name,
762 BasicBlock *InsertAtEnd);
763
764public:
765 // allocate space for exactly two operands
766 void *operator new(size_t s) {
767 return User::operator new(s, 2);
768 }
769
770 /// Construct a compare instruction, given the opcode, the predicate and
771 /// the two operands. Optionally (if InstBefore is specified) insert the
772 /// instruction into a BasicBlock right before the specified instruction.
773 /// The specified Instruction is allowed to be a dereferenced end iterator.
774 /// Create a CmpInst
775 static CmpInst *Create(OtherOps Op,
776 Predicate predicate, Value *S1,
777 Value *S2, const Twine &Name = "",
778 Instruction *InsertBefore = nullptr);
779
780 /// Construct a compare instruction, given the opcode, the predicate and the
781 /// two operands. Also automatically insert this instruction to the end of
782 /// the BasicBlock specified.
783 /// Create a CmpInst
784 static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1,
785 Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
786
787 /// Get the opcode casted to the right type
788 OtherOps getOpcode() const {
789 return static_cast<OtherOps>(Instruction::getOpcode());
790 }
791
792 /// Return the predicate for this instruction.
793 Predicate getPredicate() const {
794 return Predicate(getSubclassDataFromInstruction());
795 }
796
797 /// Set the predicate for this instruction to the specified value.
798 void setPredicate(Predicate P) { setInstructionSubclassData(P); }
799
800 static bool isFPPredicate(Predicate P) {
801 return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
802 }
803
804 static bool isIntPredicate(Predicate P) {
805 return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
806 }
807
808 static StringRef getPredicateName(Predicate P);
809
810 bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
811 bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
812
813 /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
814 /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
815 /// @returns the inverse predicate for the instruction's current predicate.
816 /// Return the inverse of the instruction's predicate.
817 Predicate getInversePredicate() const {
818 return getInversePredicate(getPredicate());
819 }
820
821 /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
822 /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
823 /// @returns the inverse predicate for predicate provided in \p pred.
824 /// Return the inverse of a given predicate
825 static Predicate getInversePredicate(Predicate pred);
826
827 /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
828 /// OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
829 /// @returns the predicate that would be the result of exchanging the two
830 /// operands of the CmpInst instruction without changing the result
831 /// produced.
832 /// Return the predicate as if the operands were swapped
833 Predicate getSwappedPredicate() const {
834 return getSwappedPredicate(getPredicate());
835 }
836
837 /// This is a static version that you can use without an instruction
838 /// available.
839 /// Return the predicate as if the operands were swapped.
840 static Predicate getSwappedPredicate(Predicate pred);
841
842 /// For predicate of kind "is X or equal to 0" returns the predicate "is X".
843 /// For predicate of kind "is X" returns the predicate "is X or equal to 0".
844 /// does not support other kind of predicates.
845 /// @returns the predicate that does not contains is equal to zero if
846 /// it had and vice versa.
847 /// Return the flipped strictness of predicate
848 Predicate getFlippedStrictnessPredicate() const {
849 return getFlippedStrictnessPredicate(getPredicate());
850 }
851
852 /// This is a static version that you can use without an instruction
853 /// available.
854 /// Return the flipped strictness of predicate
855 static Predicate getFlippedStrictnessPredicate(Predicate pred);
856
857 /// For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
858 /// Returns the non-strict version of strict comparisons.
859 Predicate getNonStrictPredicate() const {
860 return getNonStrictPredicate(getPredicate());
861 }
862
863 /// This is a static version that you can use without an instruction
864 /// available.
865 /// @returns the non-strict version of comparison provided in \p pred.
866 /// If \p pred is not a strict comparison predicate, returns \p pred.
867 /// Returns the non-strict version of strict comparisons.
868 static Predicate getNonStrictPredicate(Predicate pred);
869
870 /// Provide more efficient getOperand methods.
871 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
872
873 /// This is just a convenience that dispatches to the subclasses.
874 /// Swap the operands and adjust predicate accordingly to retain
875 /// the same comparison.
876 void swapOperands();
877
878 /// This is just a convenience that dispatches to the subclasses.
879 /// Determine if this CmpInst is commutative.
880 bool isCommutative() const;
881
882 /// This is just a convenience that dispatches to the subclasses.
883 /// Determine if this is an equals/not equals predicate.
884 bool isEquality() const;
885
886 /// @returns true if the comparison is signed, false otherwise.
887 /// Determine if this instruction is using a signed comparison.
888 bool isSigned() const {
889 return isSigned(getPredicate());
890 }
891
892 /// @returns true if the comparison is unsigned, false otherwise.
893 /// Determine if this instruction is using an unsigned comparison.
894 bool isUnsigned() const {
895 return isUnsigned(getPredicate());
896 }
897
898 /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
899 /// @returns the signed version of the unsigned predicate pred.
900 /// return the signed version of a predicate
901 static Predicate getSignedPredicate(Predicate pred);
902
903 /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
904 /// @returns the signed version of the predicate for this instruction (which
905 /// has to be an unsigned predicate).
906 /// return the signed version of a predicate
907 Predicate getSignedPredicate() {
908 return getSignedPredicate(getPredicate());
909 }
910
911 /// This is just a convenience.
912 /// Determine if this is true when both operands are the same.
913 bool isTrueWhenEqual() const {
914 return isTrueWhenEqual(getPredicate());
915 }
916
917 /// This is just a convenience.
918 /// Determine if this is false when both operands are the same.
919 bool isFalseWhenEqual() const {
920 return isFalseWhenEqual(getPredicate());
921 }
922
923 /// @returns true if the predicate is unsigned, false otherwise.
924 /// Determine if the predicate is an unsigned operation.
925 static bool isUnsigned(Predicate predicate);
926
927 /// @returns true if the predicate is signed, false otherwise.
928 /// Determine if the predicate is an signed operation.
929 static bool isSigned(Predicate predicate);
930
931 /// Determine if the predicate is an ordered operation.
932 static bool isOrdered(Predicate predicate);
933
934 /// Determine if the predicate is an unordered operation.
935 static bool isUnordered(Predicate predicate);
936
937 /// Determine if the predicate is true when comparing a value with itself.
938 static bool isTrueWhenEqual(Predicate predicate);
939
940 /// Determine if the predicate is false when comparing a value with itself.
941 static bool isFalseWhenEqual(Predicate predicate);
942
943 /// Determine if Pred1 implies Pred2 is true when two compares have matching
944 /// operands.
945 static bool isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2);
946
947 /// Determine if Pred1 implies Pred2 is false when two compares have matching
948 /// operands.
949 static bool isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2);
950
951 /// Methods for support type inquiry through isa, cast, and dyn_cast:
952 static bool classof(const Instruction *I) {
953 return I->getOpcode() == Instruction::ICmp ||
954 I->getOpcode() == Instruction::FCmp;
955 }
956 static bool classof(const Value *V) {
957 return isa<Instruction>(V) && classof(cast<Instruction>(V));
958 }
959
960 /// Create a result type for fcmp/icmp
961 static Type* makeCmpResultType(Type* opnd_type) {
962 if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
963 return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
964 vt->getNumElements());
965 }
966 return Type::getInt1Ty(opnd_type->getContext());
967 }
968
969private:
970 // Shadow Value::setValueSubclassData with a private forwarding method so that
971 // subclasses cannot accidentally use it.
972 void setValueSubclassData(unsigned short D) {
973 Value::setValueSubclassData(D);
974 }
975};
976
977// FIXME: these are redundant if CmpInst < BinaryOperator
978template <>
979struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
980};
981
982DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)CmpInst::op_iterator CmpInst::op_begin() { return OperandTraits
<CmpInst>::op_begin(this); } CmpInst::const_op_iterator
CmpInst::op_begin() const { return OperandTraits<CmpInst>
::op_begin(const_cast<CmpInst*>(this)); } CmpInst::op_iterator
CmpInst::op_end() { return OperandTraits<CmpInst>::op_end
(this); } CmpInst::const_op_iterator CmpInst::op_end() const {
return OperandTraits<CmpInst>::op_end(const_cast<CmpInst
*>(this)); } Value *CmpInst::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<CmpInst>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CmpInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 982, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CmpInst>::op_begin(const_cast<CmpInst
*>(this))[i_nocapture].get()); } void CmpInst::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<CmpInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CmpInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 982, __PRETTY_FUNCTION__)); OperandTraits<CmpInst>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned CmpInst::getNumOperands
() const { return OperandTraits<CmpInst>::operands(this
); } template <int Idx_nocapture> Use &CmpInst::Op(
) { return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &CmpInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
12
'?' condition is true
13
Calling 'cast_or_null<llvm::Value, llvm::Value>'
19
Returning from 'cast_or_null<llvm::Value, llvm::Value>'
20
Returning pointer
983
984/// A lightweight accessor for an operand bundle meant to be passed
985/// around by value.
986struct OperandBundleUse {
987 ArrayRef<Use> Inputs;
988
989 OperandBundleUse() = default;
990 explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs)
991 : Inputs(Inputs), Tag(Tag) {}
992
993 /// Return true if the operand at index \p Idx in this operand bundle
994 /// has the attribute A.
995 bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const {
996 if (isDeoptOperandBundle())
997 if (A == Attribute::ReadOnly || A == Attribute::NoCapture)
998 return Inputs[Idx]->getType()->isPointerTy();
999
1000 // Conservative answer: no operands have any attributes.
1001 return false;
1002 }
1003
1004 /// Return the tag of this operand bundle as a string.
1005 StringRef getTagName() const {
1006 return Tag->getKey();
1007 }
1008
1009 /// Return the tag of this operand bundle as an integer.
1010 ///
1011 /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag,
1012 /// and this function returns the unique integer getOrInsertBundleTag
1013 /// associated the tag of this operand bundle to.
1014 uint32_t getTagID() const {
1015 return Tag->getValue();
1016 }
1017
1018 /// Return true if this is a "deopt" operand bundle.
1019 bool isDeoptOperandBundle() const {
1020 return getTagID() == LLVMContext::OB_deopt;
1021 }
1022
1023 /// Return true if this is a "funclet" operand bundle.
1024 bool isFuncletOperandBundle() const {
1025 return getTagID() == LLVMContext::OB_funclet;
1026 }
1027
1028private:
1029 /// Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag.
1030 StringMapEntry<uint32_t> *Tag;
1031};
1032
1033/// A container for an operand bundle being viewed as a set of values
1034/// rather than a set of uses.
1035///
1036/// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and
1037/// so it is possible to create and pass around "self-contained" instances of
1038/// OperandBundleDef and ConstOperandBundleDef.
1039template <typename InputTy> class OperandBundleDefT {
1040 std::string Tag;
1041 std::vector<InputTy> Inputs;
1042
1043public:
1044 explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs)
1045 : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {}
1046 explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs)
1047 : Tag(std::move(Tag)), Inputs(Inputs) {}
1048
1049 explicit OperandBundleDefT(const OperandBundleUse &OBU) {
1050 Tag = OBU.getTagName();
1051 Inputs.insert(Inputs.end(), OBU.Inputs.begin(), OBU.Inputs.end());
1052 }
1053
1054 ArrayRef<InputTy> inputs() const { return Inputs; }
1055
1056 using input_iterator = typename std::vector<InputTy>::const_iterator;
1057
1058 size_t input_size() const { return Inputs.size(); }
1059 input_iterator input_begin() const { return Inputs.begin(); }
1060 input_iterator input_end() const { return Inputs.end(); }
1061
1062 StringRef getTag() const { return Tag; }
1063};
1064
1065using OperandBundleDef = OperandBundleDefT<Value *>;
1066using ConstOperandBundleDef = OperandBundleDefT<const Value *>;
1067
1068//===----------------------------------------------------------------------===//
1069// CallBase Class
1070//===----------------------------------------------------------------------===//
1071
1072/// Base class for all callable instructions (InvokeInst and CallInst)
1073/// Holds everything related to calling a function.
1074///
1075/// All call-like instructions are required to use a common operand layout:
1076/// - Zero or more arguments to the call,
1077/// - Zero or more operand bundles with zero or more operand inputs each
1078/// bundle,
1079/// - Zero or more subclass controlled operands
1080/// - The called function.
1081///
1082/// This allows this base class to easily access the called function and the
1083/// start of the arguments without knowing how many other operands a particular
1084/// subclass requires. Note that accessing the end of the argument list isn't
1085/// as cheap as most other operations on the base class.
1086class CallBase : public Instruction {
1087protected:
1088 /// The last operand is the called operand.
1089 static constexpr int CalledOperandOpEndIdx = -1;
1090
1091 AttributeList Attrs; ///< parameter attributes for callable
1092 FunctionType *FTy;
1093
1094 template <class... ArgsTy>
1095 CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
1096 : Instruction(std::forward<ArgsTy>(Args)...), Attrs(A), FTy(FT) {}
1097
1098 using Instruction::Instruction;
1099
1100 bool hasDescriptor() const { return Value::HasDescriptor; }
1101
1102 unsigned getNumSubclassExtraOperands() const {
1103 switch (getOpcode()) {
1104 case Instruction::Call:
1105 return 0;
1106 case Instruction::Invoke:
1107 return 2;
1108 case Instruction::CallBr:
1109 return getNumSubclassExtraOperandsDynamic();
1110 }
1111 llvm_unreachable("Invalid opcode!")::llvm::llvm_unreachable_internal("Invalid opcode!", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1111)
;
1112 }
1113
1114 /// Get the number of extra operands for instructions that don't have a fixed
1115 /// number of extra operands.
1116 unsigned getNumSubclassExtraOperandsDynamic() const;
1117
1118public:
1119 using Instruction::getContext;
1120
1121 static bool classof(const Instruction *I) {
1122 return I->getOpcode() == Instruction::Call ||
1123 I->getOpcode() == Instruction::Invoke ||
1124 I->getOpcode() == Instruction::CallBr;
1125 }
1126 static bool classof(const Value *V) {
1127 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1128 }
1129
1130 FunctionType *getFunctionType() const { return FTy; }
1131
1132 void mutateFunctionType(FunctionType *FTy) {
1133 Value::mutateType(FTy->getReturnType());
1134 this->FTy = FTy;
1135 }
1136
1137 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1138
1139 /// data_operands_begin/data_operands_end - Return iterators iterating over
1140 /// the call / invoke argument list and bundle operands. For invokes, this is
1141 /// the set of instruction operands except the invoke target and the two
1142 /// successor blocks; and for calls this is the set of instruction operands
1143 /// except the call target.
1144 User::op_iterator data_operands_begin() { return op_begin(); }
1145 User::const_op_iterator data_operands_begin() const {
1146 return const_cast<CallBase *>(this)->data_operands_begin();
1147 }
1148 User::op_iterator data_operands_end() {
1149 // Walk from the end of the operands over the called operand and any
1150 // subclass operands.
1151 return op_end() - getNumSubclassExtraOperands() - 1;
1152 }
1153 User::const_op_iterator data_operands_end() const {
1154 return const_cast<CallBase *>(this)->data_operands_end();
1155 }
1156 iterator_range<User::op_iterator> data_ops() {
1157 return make_range(data_operands_begin(), data_operands_end());
1158 }
1159 iterator_range<User::const_op_iterator> data_ops() const {
1160 return make_range(data_operands_begin(), data_operands_end());
1161 }
1162 bool data_operands_empty() const {
1163 return data_operands_end() == data_operands_begin();
1164 }
1165 unsigned data_operands_size() const {
1166 return std::distance(data_operands_begin(), data_operands_end());
1167 }
1168
1169 bool isDataOperand(const Use *U) const {
1170 assert(this == U->getUser() &&((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1171, __PRETTY_FUNCTION__))
1171 "Only valid to query with a use of this instruction!")((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1171, __PRETTY_FUNCTION__))
;
1172 return data_operands_begin() <= U && U < data_operands_end();
1173 }
1174 bool isDataOperand(Value::const_user_iterator UI) const {
1175 return isDataOperand(&UI.getUse());
1176 }
1177
1178 /// Given a value use iterator, return the data operand corresponding to it.
1179 /// Iterator must actually correspond to a data operand.
1180 unsigned getDataOperandNo(Value::const_user_iterator UI) const {
1181 return getDataOperandNo(&UI.getUse());
1182 }
1183
1184 /// Given a use for a data operand, get the data operand number that
1185 /// corresponds to it.
1186 unsigned getDataOperandNo(const Use *U) const {
1187 assert(isDataOperand(U) && "Data operand # out of range!")((isDataOperand(U) && "Data operand # out of range!")
? static_cast<void> (0) : __assert_fail ("isDataOperand(U) && \"Data operand # out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1187, __PRETTY_FUNCTION__))
;
1188 return U - data_operands_begin();
1189 }
1190
1191 /// Return the iterator pointing to the beginning of the argument list.
1192 User::op_iterator arg_begin() { return op_begin(); }
1193 User::const_op_iterator arg_begin() const {
1194 return const_cast<CallBase *>(this)->arg_begin();
1195 }
1196
1197 /// Return the iterator pointing to the end of the argument list.
1198 User::op_iterator arg_end() {
1199 // From the end of the data operands, walk backwards past the bundle
1200 // operands.
1201 return data_operands_end() - getNumTotalBundleOperands();
1202 }
1203 User::const_op_iterator arg_end() const {
1204 return const_cast<CallBase *>(this)->arg_end();
1205 }
1206
1207 /// Iteration adapter for range-for loops.
1208 iterator_range<User::op_iterator> args() {
1209 return make_range(arg_begin(), arg_end());
1210 }
1211 iterator_range<User::const_op_iterator> args() const {
1212 return make_range(arg_begin(), arg_end());
1213 }
1214 bool arg_empty() const { return arg_end() == arg_begin(); }
1215 unsigned arg_size() const { return arg_end() - arg_begin(); }
1216
1217 // Legacy API names that duplicate the above and will be removed once users
1218 // are migrated.
1219 iterator_range<User::op_iterator> arg_operands() {
1220 return make_range(arg_begin(), arg_end());
1221 }
1222 iterator_range<User::const_op_iterator> arg_operands() const {
1223 return make_range(arg_begin(), arg_end());
1224 }
1225 unsigned getNumArgOperands() const { return arg_size(); }
1226
1227 Value *getArgOperand(unsigned i) const {
1228 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1228, __PRETTY_FUNCTION__))
;
1229 return getOperand(i);
1230 }
1231
1232 void setArgOperand(unsigned i, Value *v) {
1233 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1233, __PRETTY_FUNCTION__))
;
1234 setOperand(i, v);
1235 }
1236
1237 /// Wrappers for getting the \c Use of a call argument.
1238 const Use &getArgOperandUse(unsigned i) const {
1239 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1239, __PRETTY_FUNCTION__))
;
1240 return User::getOperandUse(i);
1241 }
1242 Use &getArgOperandUse(unsigned i) {
1243 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1243, __PRETTY_FUNCTION__))
;
1244 return User::getOperandUse(i);
1245 }
1246
1247 bool isArgOperand(const Use *U) const {
1248 assert(this == U->getUser() &&((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1249, __PRETTY_FUNCTION__))
1249 "Only valid to query with a use of this instruction!")((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1249, __PRETTY_FUNCTION__))
;
1250 return arg_begin() <= U && U < arg_end();
1251 }
1252 bool isArgOperand(Value::const_user_iterator UI) const {
1253 return isArgOperand(&UI.getUse());
1254 }
1255
1256 /// Returns true if this CallSite passes the given Value* as an argument to
1257 /// the called function.
1258 bool hasArgument(const Value *V) const {
1259 return llvm::any_of(args(), [V](const Value *Arg) { return Arg == V; });
1260 }
1261
1262 Value *getCalledOperand() const { return Op<CalledOperandOpEndIdx>(); }
1263
1264 // DEPRECATED: This routine will be removed in favor of `getCalledOperand` in
1265 // the near future.
1266 Value *getCalledValue() const { return getCalledOperand(); }
1267
1268 const Use &getCalledOperandUse() const { return Op<CalledOperandOpEndIdx>(); }
1269 Use &getCalledOperandUse() { return Op<CalledOperandOpEndIdx>(); }
1270
1271 /// Returns the function called, or null if this is an
1272 /// indirect function invocation.
1273 Function *getCalledFunction() const {
1274 return dyn_cast_or_null<Function>(getCalledOperand());
1275 }
1276
1277 /// Return true if the callsite is an indirect call.
1278 bool isIndirectCall() const;
1279
1280 /// Determine whether the passed iterator points to the callee operand's Use.
1281 bool isCallee(Value::const_user_iterator UI) const {
1282 return isCallee(&UI.getUse());
1283 }
1284
1285 /// Determine whether this Use is the callee operand's Use.
1286 bool isCallee(const Use *U) const { return &getCalledOperandUse() == U; }
1287
1288 /// Helper to get the caller (the parent function).
1289 Function *getCaller();
1290 const Function *getCaller() const {
1291 return const_cast<CallBase *>(this)->getCaller();
1292 }
1293
1294 /// Tests if this call site must be tail call optimized. Only a CallInst can
1295 /// be tail call optimized.
1296 bool isMustTailCall() const;
1297
1298 /// Tests if this call site is marked as a tail call.
1299 bool isTailCall() const;
1300
1301 /// Returns the intrinsic ID of the intrinsic called or
1302 /// Intrinsic::not_intrinsic if the called function is not an intrinsic, or if
1303 /// this is an indirect call.
1304 Intrinsic::ID getIntrinsicID() const;
1305
1306 void setCalledOperand(Value *V) { Op<CalledOperandOpEndIdx>() = V; }
1307
1308 /// Sets the function called, including updating the function type.
1309 void setCalledFunction(Function *Fn) {
1310 setCalledFunction(Fn->getFunctionType(), Fn);
1311 }
1312
1313 /// Sets the function called, including updating the function type.
1314 void setCalledFunction(FunctionCallee Fn) {
1315 setCalledFunction(Fn.getFunctionType(), Fn.getCallee());
1316 }
1317
1318 /// Sets the function called, including updating to the specified function
1319 /// type.
1320 void setCalledFunction(FunctionType *FTy, Value *Fn) {
1321 this->FTy = FTy;
1322 assert(FTy == cast<FunctionType>(((FTy == cast<FunctionType>( cast<PointerType>(Fn
->getType())->getElementType())) ? static_cast<void>
(0) : __assert_fail ("FTy == cast<FunctionType>( cast<PointerType>(Fn->getType())->getElementType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1323, __PRETTY_FUNCTION__))
1323 cast<PointerType>(Fn->getType())->getElementType()))((FTy == cast<FunctionType>( cast<PointerType>(Fn
->getType())->getElementType())) ? static_cast<void>
(0) : __assert_fail ("FTy == cast<FunctionType>( cast<PointerType>(Fn->getType())->getElementType())"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1323, __PRETTY_FUNCTION__))
;
1324 // This function doesn't mutate the return type, only the function
1325 // type. Seems broken, but I'm just gonna stick an assert in for now.
1326 assert(getType() == FTy->getReturnType())((getType() == FTy->getReturnType()) ? static_cast<void
> (0) : __assert_fail ("getType() == FTy->getReturnType()"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1326, __PRETTY_FUNCTION__))
;
1327 setCalledOperand(Fn);
1328 }
1329
1330 CallingConv::ID getCallingConv() const {
1331 return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 2);
1332 }
1333
1334 void setCallingConv(CallingConv::ID CC) {
1335 auto ID = static_cast<unsigned>(CC);
1336 assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention")((!(ID & ~CallingConv::MaxID) && "Unsupported calling convention"
) ? static_cast<void> (0) : __assert_fail ("!(ID & ~CallingConv::MaxID) && \"Unsupported calling convention\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1336, __PRETTY_FUNCTION__))
;
1337 setInstructionSubclassData((getSubclassDataFromInstruction() & 3) |
1338 (ID << 2));
1339 }
1340
1341 /// Check if this call is an inline asm statement.
1342 bool isInlineAsm() const { return isa<InlineAsm>(getCalledOperand()); }
1343
1344 /// \name Attribute API
1345 ///
1346 /// These methods access and modify attributes on this call (including
1347 /// looking through to the attributes on the called function when necessary).
1348 ///@{
1349
1350 /// Return the parameter attributes for this call.
1351 ///
1352 AttributeList getAttributes() const { return Attrs; }
1353
1354 /// Set the parameter attributes for this call.
1355 ///
1356 void setAttributes(AttributeList A) { Attrs = A; }
1357
1358 /// Determine whether this call has the given attribute.
1359 bool hasFnAttr(Attribute::AttrKind Kind) const {
1360 assert(Kind != Attribute::NoBuiltin &&((Kind != Attribute::NoBuiltin && "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin"
) ? static_cast<void> (0) : __assert_fail ("Kind != Attribute::NoBuiltin && \"Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1361, __PRETTY_FUNCTION__))
1361 "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin")((Kind != Attribute::NoBuiltin && "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin"
) ? static_cast<void> (0) : __assert_fail ("Kind != Attribute::NoBuiltin && \"Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1361, __PRETTY_FUNCTION__))
;
1362 return hasFnAttrImpl(Kind);
1363 }
1364
1365 /// Determine whether this call has the given attribute.
1366 bool hasFnAttr(StringRef Kind) const { return hasFnAttrImpl(Kind); }
1367
1368 /// adds the attribute to the list of attributes.
1369 void addAttribute(unsigned i, Attribute::AttrKind Kind) {
1370 AttributeList PAL = getAttributes();
1371 PAL = PAL.addAttribute(getContext(), i, Kind);
1372 setAttributes(PAL);
1373 }
1374
1375 /// adds the attribute to the list of attributes.
1376 void addAttribute(unsigned i, Attribute Attr) {
1377 AttributeList PAL = getAttributes();
1378 PAL = PAL.addAttribute(getContext(), i, Attr);
1379 setAttributes(PAL);
1380 }
1381
1382 /// Adds the attribute to the indicated argument
1383 void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
1384 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1384, __PRETTY_FUNCTION__))
;
1385 AttributeList PAL = getAttributes();
1386 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
1387 setAttributes(PAL);
1388 }
1389
1390 /// Adds the attribute to the indicated argument
1391 void addParamAttr(unsigned ArgNo, Attribute Attr) {
1392 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1392, __PRETTY_FUNCTION__))
;
1393 AttributeList PAL = getAttributes();
1394 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
1395 setAttributes(PAL);
1396 }
1397
1398 /// removes the attribute from the list of attributes.
1399 void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
1400 AttributeList PAL = getAttributes();
1401 PAL = PAL.removeAttribute(getContext(), i, Kind);
1402 setAttributes(PAL);
1403 }
1404
1405 /// removes the attribute from the list of attributes.
1406 void removeAttribute(unsigned i, StringRef Kind) {
1407 AttributeList PAL = getAttributes();
1408 PAL = PAL.removeAttribute(getContext(), i, Kind);
1409 setAttributes(PAL);
1410 }
1411
1412 /// Removes the attribute from the given argument
1413 void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
1414 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1414, __PRETTY_FUNCTION__))
;
1415 AttributeList PAL = getAttributes();
1416 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
1417 setAttributes(PAL);
1418 }
1419
1420 /// Removes the attribute from the given argument
1421 void removeParamAttr(unsigned ArgNo, StringRef Kind) {
1422 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1422, __PRETTY_FUNCTION__))
;
1423 AttributeList PAL = getAttributes();
1424 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
1425 setAttributes(PAL);
1426 }
1427
1428 /// adds the dereferenceable attribute to the list of attributes.
1429 void addDereferenceableAttr(unsigned i, uint64_t Bytes) {
1430 AttributeList PAL = getAttributes();
1431 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
1432 setAttributes(PAL);
1433 }
1434
1435 /// adds the dereferenceable_or_null attribute to the list of
1436 /// attributes.
1437 void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
1438 AttributeList PAL = getAttributes();
1439 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
1440 setAttributes(PAL);
1441 }
1442
1443 /// Determine whether the return value has the given attribute.
1444 bool hasRetAttr(Attribute::AttrKind Kind) const;
1445
1446 /// Determine whether the argument or parameter has the given attribute.
1447 bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const;
1448
1449 /// Get the attribute of a given kind at a position.
1450 Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
1451 return getAttributes().getAttribute(i, Kind);
1452 }
1453
1454 /// Get the attribute of a given kind at a position.
1455 Attribute getAttribute(unsigned i, StringRef Kind) const {
1456 return getAttributes().getAttribute(i, Kind);
1457 }
1458
1459 /// Get the attribute of a given kind from a given arg
1460 Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
1461 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1461, __PRETTY_FUNCTION__))
;
1462 return getAttributes().getParamAttr(ArgNo, Kind);
1463 }
1464
1465 /// Get the attribute of a given kind from a given arg
1466 Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const {
1467 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1467, __PRETTY_FUNCTION__))
;
1468 return getAttributes().getParamAttr(ArgNo, Kind);
1469 }
1470
1471 /// Return true if the data operand at index \p i has the attribute \p
1472 /// A.
1473 ///
1474 /// Data operands include call arguments and values used in operand bundles,
1475 /// but does not include the callee operand. This routine dispatches to the
1476 /// underlying AttributeList or the OperandBundleUser as appropriate.
1477 ///
1478 /// The index \p i is interpreted as
1479 ///
1480 /// \p i == Attribute::ReturnIndex -> the return value
1481 /// \p i in [1, arg_size + 1) -> argument number (\p i - 1)
1482 /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index
1483 /// (\p i - 1) in the operand list.
1484 bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
1485 // Note that we have to add one because `i` isn't zero-indexed.
1486 assert(i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) &&((i < (getNumArgOperands() + getNumTotalBundleOperands() +
1) && "Data operand index out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) && \"Data operand index out of bounds!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1487, __PRETTY_FUNCTION__))
1487 "Data operand index out of bounds!")((i < (getNumArgOperands() + getNumTotalBundleOperands() +
1) && "Data operand index out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) && \"Data operand index out of bounds!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1487, __PRETTY_FUNCTION__))
;
1488
1489 // The attribute A can either be directly specified, if the operand in
1490 // question is a call argument; or be indirectly implied by the kind of its
1491 // containing operand bundle, if the operand is a bundle operand.
1492
1493 if (i == AttributeList::ReturnIndex)
1494 return hasRetAttr(Kind);
1495
1496 // FIXME: Avoid these i - 1 calculations and update the API to use
1497 // zero-based indices.
1498 if (i < (getNumArgOperands() + 1))
1499 return paramHasAttr(i - 1, Kind);
1500
1501 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&((hasOperandBundles() && i >= (getBundleOperandsStartIndex
() + 1) && "Must be either a call argument or an operand bundle!"
) ? static_cast<void> (0) : __assert_fail ("hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && \"Must be either a call argument or an operand bundle!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1502, __PRETTY_FUNCTION__))
1502 "Must be either a call argument or an operand bundle!")((hasOperandBundles() && i >= (getBundleOperandsStartIndex
() + 1) && "Must be either a call argument or an operand bundle!"
) ? static_cast<void> (0) : __assert_fail ("hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && \"Must be either a call argument or an operand bundle!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1502, __PRETTY_FUNCTION__))
;
1503 return bundleOperandHasAttr(i - 1, Kind);
1504 }
1505
1506 /// Determine whether this data operand is not captured.
1507 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1508 // better indicate that this may return a conservative answer.
1509 bool doesNotCapture(unsigned OpNo) const {
1510 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
1511 }
1512
1513 /// Determine whether this argument is passed by value.
1514 bool isByValArgument(unsigned ArgNo) const {
1515 return paramHasAttr(ArgNo, Attribute::ByVal);
1516 }
1517
1518 /// Determine whether this argument is passed in an alloca.
1519 bool isInAllocaArgument(unsigned ArgNo) const {
1520 return paramHasAttr(ArgNo, Attribute::InAlloca);
1521 }
1522
1523 /// Determine whether this argument is passed by value or in an alloca.
1524 bool isByValOrInAllocaArgument(unsigned ArgNo) const {
1525 return paramHasAttr(ArgNo, Attribute::ByVal) ||
1526 paramHasAttr(ArgNo, Attribute::InAlloca);
1527 }
1528
1529 /// Determine if there are is an inalloca argument. Only the last argument can
1530 /// have the inalloca attribute.
1531 bool hasInAllocaArgument() const {
1532 return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
1533 }
1534
1535 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1536 // better indicate that this may return a conservative answer.
1537 bool doesNotAccessMemory(unsigned OpNo) const {
1538 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1539 }
1540
1541 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1542 // better indicate that this may return a conservative answer.
1543 bool onlyReadsMemory(unsigned OpNo) const {
1544 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
1545 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1546 }
1547
1548 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1549 // better indicate that this may return a conservative answer.
1550 bool doesNotReadMemory(unsigned OpNo) const {
1551 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
1552 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1553 }
1554
1555 /// Extract the alignment of the return value.
1556 unsigned getRetAlignment() const { return Attrs.getRetAlignment(); }
1557
1558 /// Extract the alignment for a call or parameter (0=unknown).
1559 unsigned getParamAlignment(unsigned ArgNo) const {
1560 return Attrs.getParamAlignment(ArgNo);
1561 }
1562
1563 /// Extract the byval type for a call or parameter (nullptr=unknown).
1564 Type *getParamByValType(unsigned ArgNo) const {
1565 return Attrs.getParamByValType(ArgNo);
1566 }
1567
1568 /// Extract the number of dereferenceable bytes for a call or
1569 /// parameter (0=unknown).
1570 uint64_t getDereferenceableBytes(unsigned i) const {
1571 return Attrs.getDereferenceableBytes(i);
1572 }
1573
1574 /// Extract the number of dereferenceable_or_null bytes for a call or
1575 /// parameter (0=unknown).
1576 uint64_t getDereferenceableOrNullBytes(unsigned i) const {
1577 return Attrs.getDereferenceableOrNullBytes(i);
1578 }
1579
1580 /// Return true if the return value is known to be not null.
1581 /// This may be because it has the nonnull attribute, or because at least
1582 /// one byte is dereferenceable and the pointer is in addrspace(0).
1583 bool isReturnNonNull() const;
1584
1585 /// Determine if the return value is marked with NoAlias attribute.
1586 bool returnDoesNotAlias() const {
1587 return Attrs.hasAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
1588 }
1589
1590 /// If one of the arguments has the 'returned' attribute, returns its
1591 /// operand value. Otherwise, return nullptr.
1592 Value *getReturnedArgOperand() const;
1593
1594 /// Return true if the call should not be treated as a call to a
1595 /// builtin.
1596 bool isNoBuiltin() const {
1597 return hasFnAttrImpl(Attribute::NoBuiltin) &&
1598 !hasFnAttrImpl(Attribute::Builtin);
1599 }
1600
1601 /// Determine if the call requires strict floating point semantics.
1602 bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); }
1603
1604 /// Return true if the call should not be inlined.
1605 bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
1606 void setIsNoInline() {
1607 addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1608 }
1609 /// Determine if the call does not access memory.
1610 bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); }
1611 void setDoesNotAccessMemory() {
1612 addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
1613 }
1614
1615 /// Determine if the call does not access or only reads memory.
1616 bool onlyReadsMemory() const {
1617 return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
1618 }
1619 void setOnlyReadsMemory() {
1620 addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
1621 }
1622
1623 /// Determine if the call does not access or only writes memory.
1624 bool doesNotReadMemory() const {
1625 return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly);
1626 }
1627 void setDoesNotReadMemory() {
1628 addAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly);
1629 }
1630
1631 /// Determine if the call can access memmory only using pointers based
1632 /// on its arguments.
1633 bool onlyAccessesArgMemory() const {
1634 return hasFnAttr(Attribute::ArgMemOnly);
1635 }
1636 void setOnlyAccessesArgMemory() {
1637 addAttribute(AttributeList::FunctionIndex, Attribute::ArgMemOnly);
1638 }
1639
1640 /// Determine if the function may only access memory that is
1641 /// inaccessible from the IR.
1642 bool onlyAccessesInaccessibleMemory() const {
1643 return hasFnAttr(Attribute::InaccessibleMemOnly);
1644 }
1645 void setOnlyAccessesInaccessibleMemory() {
1646 addAttribute(AttributeList::FunctionIndex, Attribute::InaccessibleMemOnly);
1647 }
1648
1649 /// Determine if the function may only access memory that is
1650 /// either inaccessible from the IR or pointed to by its arguments.
1651 bool onlyAccessesInaccessibleMemOrArgMem() const {
1652 return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
1653 }
1654 void setOnlyAccessesInaccessibleMemOrArgMem() {
1655 addAttribute(AttributeList::FunctionIndex,
1656 Attribute::InaccessibleMemOrArgMemOnly);
1657 }
1658 /// Determine if the call cannot return.
1659 bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
1660 void setDoesNotReturn() {
1661 addAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
1662 }
1663
1664 /// Determine if the call should not perform indirect branch tracking.
1665 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
1666
1667 /// Determine if the call cannot unwind.
1668 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
1669 void setDoesNotThrow() {
1670 addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
1671 }
1672
1673 /// Determine if the invoke cannot be duplicated.
1674 bool cannotDuplicate() const { return hasFnAttr(Attribute::NoDuplicate); }
1675 void setCannotDuplicate() {
1676 addAttribute(AttributeList::FunctionIndex, Attribute::NoDuplicate);
1677 }
1678
1679 /// Determine if the invoke is convergent
1680 bool isConvergent() const { return hasFnAttr(Attribute::Convergent); }
1681 void setConvergent() {
1682 addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
1683 }
1684 void setNotConvergent() {
1685 removeAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
1686 }
1687
1688 /// Determine if the call returns a structure through first
1689 /// pointer argument.
1690 bool hasStructRetAttr() const {
1691 if (getNumArgOperands() == 0)
1692 return false;
1693
1694 // Be friendly and also check the callee.
1695 return paramHasAttr(0, Attribute::StructRet);
1696 }
1697
1698 /// Determine if any call argument is an aggregate passed by value.
1699 bool hasByValArgument() const {
1700 return Attrs.hasAttrSomewhere(Attribute::ByVal);
1701 }
1702
1703 ///@{
1704 // End of attribute API.
1705
1706 /// \name Operand Bundle API
1707 ///
1708 /// This group of methods provides the API to access and manipulate operand
1709 /// bundles on this call.
1710 /// @{
1711
1712 /// Return the number of operand bundles associated with this User.
1713 unsigned getNumOperandBundles() const {
1714 return std::distance(bundle_op_info_begin(), bundle_op_info_end());
1715 }
1716
1717 /// Return true if this User has any operand bundles.
1718 bool hasOperandBundles() const { return getNumOperandBundles() != 0; }
1719
1720 /// Return the index of the first bundle operand in the Use array.
1721 unsigned getBundleOperandsStartIndex() const {
1722 assert(hasOperandBundles() && "Don't call otherwise!")((hasOperandBundles() && "Don't call otherwise!") ? static_cast
<void> (0) : __assert_fail ("hasOperandBundles() && \"Don't call otherwise!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1722, __PRETTY_FUNCTION__))
;
1723 return bundle_op_info_begin()->Begin;
1724 }
1725
1726 /// Return the index of the last bundle operand in the Use array.
1727 unsigned getBundleOperandsEndIndex() const {
1728 assert(hasOperandBundles() && "Don't call otherwise!")((hasOperandBundles() && "Don't call otherwise!") ? static_cast
<void> (0) : __assert_fail ("hasOperandBundles() && \"Don't call otherwise!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1728, __PRETTY_FUNCTION__))
;
1729 return bundle_op_info_end()[-1].End;
1730 }
1731
1732 /// Return true if the operand at index \p Idx is a bundle operand.
1733 bool isBundleOperand(unsigned Idx) const {
1734 return hasOperandBundles() && Idx >= getBundleOperandsStartIndex() &&
1735 Idx < getBundleOperandsEndIndex();
1736 }
1737
1738 /// Returns true if the use is a bundle operand.
1739 bool isBundleOperand(const Use *U) const {
1740 assert(this == U->getUser() &&((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1741, __PRETTY_FUNCTION__))
1741 "Only valid to query with a use of this instruction!")((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1741, __PRETTY_FUNCTION__))
;
1742 return hasOperandBundles() && isBundleOperand(U - op_begin());
1743 }
1744 bool isBundleOperand(Value::const_user_iterator UI) const {
1745 return isBundleOperand(&UI.getUse());
1746 }
1747
1748 /// Return the total number operands (not operand bundles) used by
1749 /// every operand bundle in this OperandBundleUser.
1750 unsigned getNumTotalBundleOperands() const {
1751 if (!hasOperandBundles())
1752 return 0;
1753
1754 unsigned Begin = getBundleOperandsStartIndex();
1755 unsigned End = getBundleOperandsEndIndex();
1756
1757 assert(Begin <= End && "Should be!")((Begin <= End && "Should be!") ? static_cast<void
> (0) : __assert_fail ("Begin <= End && \"Should be!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1757, __PRETTY_FUNCTION__))
;
1758 return End - Begin;
1759 }
1760
1761 /// Return the operand bundle at a specific index.
1762 OperandBundleUse getOperandBundleAt(unsigned Index) const {
1763 assert(Index < getNumOperandBundles() && "Index out of bounds!")((Index < getNumOperandBundles() && "Index out of bounds!"
) ? static_cast<void> (0) : __assert_fail ("Index < getNumOperandBundles() && \"Index out of bounds!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1763, __PRETTY_FUNCTION__))
;
1764 return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index));
1765 }
1766
1767 /// Return the number of operand bundles with the tag Name attached to
1768 /// this instruction.
1769 unsigned countOperandBundlesOfType(StringRef Name) const {
1770 unsigned Count = 0;
1771 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
1772 if (getOperandBundleAt(i).getTagName() == Name)
1773 Count++;
1774
1775 return Count;
1776 }
1777
1778 /// Return the number of operand bundles with the tag ID attached to
1779 /// this instruction.
1780 unsigned countOperandBundlesOfType(uint32_t ID) const {
1781 unsigned Count = 0;
1782 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
1783 if (getOperandBundleAt(i).getTagID() == ID)
1784 Count++;
1785
1786 return Count;
1787 }
1788
1789 /// Return an operand bundle by name, if present.
1790 ///
1791 /// It is an error to call this for operand bundle types that may have
1792 /// multiple instances of them on the same instruction.
1793 Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
1794 assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!")((countOperandBundlesOfType(Name) < 2 && "Precondition violated!"
) ? static_cast<void> (0) : __assert_fail ("countOperandBundlesOfType(Name) < 2 && \"Precondition violated!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1794, __PRETTY_FUNCTION__))
;
1795
1796 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
1797 OperandBundleUse U = getOperandBundleAt(i);
1798 if (U.getTagName() == Name)
1799 return U;
1800 }
1801
1802 return None;
1803 }
1804
1805 /// Return an operand bundle by tag ID, if present.
1806 ///
1807 /// It is an error to call this for operand bundle types that may have
1808 /// multiple instances of them on the same instruction.
1809 Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
1810 assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!")((countOperandBundlesOfType(ID) < 2 && "Precondition violated!"
) ? static_cast<void> (0) : __assert_fail ("countOperandBundlesOfType(ID) < 2 && \"Precondition violated!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1810, __PRETTY_FUNCTION__))
;
1811
1812 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
1813 OperandBundleUse U = getOperandBundleAt(i);
1814 if (U.getTagID() == ID)
1815 return U;
1816 }
1817
1818 return None;
1819 }
1820
1821 /// Return the list of operand bundles attached to this instruction as
1822 /// a vector of OperandBundleDefs.
1823 ///
1824 /// This function copies the OperandBundeUse instances associated with this
1825 /// OperandBundleUser to a vector of OperandBundleDefs. Note:
1826 /// OperandBundeUses and OperandBundleDefs are non-trivially *different*
1827 /// representations of operand bundles (see documentation above).
1828 void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
1829 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
1830 Defs.emplace_back(getOperandBundleAt(i));
1831 }
1832
1833 /// Return the operand bundle for the operand at index OpIdx.
1834 ///
1835 /// It is an error to call this with an OpIdx that does not correspond to an
1836 /// bundle operand.
1837 OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const {
1838 return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx));
1839 }
1840
1841 /// Return true if this operand bundle user has operand bundles that
1842 /// may read from the heap.
1843 bool hasReadingOperandBundles() const {
1844 // Implementation note: this is a conservative implementation of operand
1845 // bundle semantics, where *any* operand bundle forces a callsite to be at
1846 // least readonly.
1847 return hasOperandBundles();
1848 }
1849
1850 /// Return true if this operand bundle user has operand bundles that
1851 /// may write to the heap.
1852 bool hasClobberingOperandBundles() const {
1853 for (auto &BOI : bundle_op_infos()) {
1854 if (BOI.Tag->second == LLVMContext::OB_deopt ||
1855 BOI.Tag->second == LLVMContext::OB_funclet)
1856 continue;
1857
1858 // This instruction has an operand bundle that is not known to us.
1859 // Assume the worst.
1860 return true;
1861 }
1862
1863 return false;
1864 }
1865
1866 /// Return true if the bundle operand at index \p OpIdx has the
1867 /// attribute \p A.
1868 bool bundleOperandHasAttr(unsigned OpIdx, Attribute::AttrKind A) const {
1869 auto &BOI = getBundleOpInfoForOperand(OpIdx);
1870 auto OBU = operandBundleFromBundleOpInfo(BOI);
1871 return OBU.operandHasAttr(OpIdx - BOI.Begin, A);
1872 }
1873
1874 /// Return true if \p Other has the same sequence of operand bundle
1875 /// tags with the same number of operands on each one of them as this
1876 /// OperandBundleUser.
1877 bool hasIdenticalOperandBundleSchema(const CallBase &Other) const {
1878 if (getNumOperandBundles() != Other.getNumOperandBundles())
1879 return false;
1880
1881 return std::equal(bundle_op_info_begin(), bundle_op_info_end(),
1882 Other.bundle_op_info_begin());
1883 }
1884
1885 /// Return true if this operand bundle user contains operand bundles
1886 /// with tags other than those specified in \p IDs.
1887 bool hasOperandBundlesOtherThan(ArrayRef<uint32_t> IDs) const {
1888 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
1889 uint32_t ID = getOperandBundleAt(i).getTagID();
1890 if (!is_contained(IDs, ID))
1891 return true;
1892 }
1893 return false;
1894 }
1895
1896 /// Is the function attribute S disallowed by some operand bundle on
1897 /// this operand bundle user?
1898 bool isFnAttrDisallowedByOpBundle(StringRef S) const {
1899 // Operand bundles only possibly disallow readnone, readonly and argmenonly
1900 // attributes. All String attributes are fine.
1901 return false;
1902 }
1903
1904 /// Is the function attribute A disallowed by some operand bundle on
1905 /// this operand bundle user?
1906 bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const {
1907 switch (A) {
1908 default:
1909 return false;
1910
1911 case Attribute::InaccessibleMemOrArgMemOnly:
1912 return hasReadingOperandBundles();
1913
1914 case Attribute::InaccessibleMemOnly:
1915 return hasReadingOperandBundles();
1916
1917 case Attribute::ArgMemOnly:
1918 return hasReadingOperandBundles();
1919
1920 case Attribute::ReadNone:
1921 return hasReadingOperandBundles();
1922
1923 case Attribute::ReadOnly:
1924 return hasClobberingOperandBundles();
1925 }
1926
1927 llvm_unreachable("switch has a default case!")::llvm::llvm_unreachable_internal("switch has a default case!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 1927)
;
1928 }
1929
1930 /// Used to keep track of an operand bundle. See the main comment on
1931 /// OperandBundleUser above.
1932 struct BundleOpInfo {
1933 /// The operand bundle tag, interned by
1934 /// LLVMContextImpl::getOrInsertBundleTag.
1935 StringMapEntry<uint32_t> *Tag;
1936
1937 /// The index in the Use& vector where operands for this operand
1938 /// bundle starts.
1939 uint32_t Begin;
1940
1941 /// The index in the Use& vector where operands for this operand
1942 /// bundle ends.
1943 uint32_t End;
1944
1945 bool operator==(const BundleOpInfo &Other) const {
1946 return Tag == Other.Tag && Begin == Other.Begin && End == Other.End;
1947 }
1948 };
1949
1950 /// Simple helper function to map a BundleOpInfo to an
1951 /// OperandBundleUse.
1952 OperandBundleUse
1953 operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const {
1954 auto begin = op_begin();
1955 ArrayRef<Use> Inputs(begin + BOI.Begin, begin + BOI.End);
1956 return OperandBundleUse(BOI.Tag, Inputs);
1957 }
1958
1959 using bundle_op_iterator = BundleOpInfo *;
1960 using const_bundle_op_iterator = const BundleOpInfo *;
1961
1962 /// Return the start of the list of BundleOpInfo instances associated
1963 /// with this OperandBundleUser.
1964 ///
1965 /// OperandBundleUser uses the descriptor area co-allocated with the host User
1966 /// to store some meta information about which operands are "normal" operands,
1967 /// and which ones belong to some operand bundle.
1968 ///
1969 /// The layout of an operand bundle user is
1970 ///
1971 /// +-----------uint32_t End-------------------------------------+
1972 /// | |
1973 /// | +--------uint32_t Begin--------------------+ |
1974 /// | | | |
1975 /// ^ ^ v v
1976 /// |------|------|----|----|----|----|----|---------|----|---------|----|-----
1977 /// | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un
1978 /// |------|------|----|----|----|----|----|---------|----|---------|----|-----
1979 /// v v ^ ^
1980 /// | | | |
1981 /// | +--------uint32_t Begin------------+ |
1982 /// | |
1983 /// +-----------uint32_t End-----------------------------+
1984 ///
1985 ///
1986 /// BOI0, BOI1 ... are descriptions of operand bundles in this User's use
1987 /// list. These descriptions are installed and managed by this class, and
1988 /// they're all instances of OperandBundleUser<T>::BundleOpInfo.
1989 ///
1990 /// DU is an additional descriptor installed by User's 'operator new' to keep
1991 /// track of the 'BOI0 ... BOIN' co-allocation. OperandBundleUser does not
1992 /// access or modify DU in any way, it's an implementation detail private to
1993 /// User.
1994 ///
1995 /// The regular Use& vector for the User starts at U0. The operand bundle
1996 /// uses are part of the Use& vector, just like normal uses. In the diagram
1997 /// above, the operand bundle uses start at BOI0_U0. Each instance of
1998 /// BundleOpInfo has information about a contiguous set of uses constituting
1999 /// an operand bundle, and the total set of operand bundle uses themselves
2000 /// form a contiguous set of uses (i.e. there are no gaps between uses
2001 /// corresponding to individual operand bundles).
2002 ///
2003 /// This class does not know the location of the set of operand bundle uses
2004 /// within the use list -- that is decided by the User using this class via
2005 /// the BeginIdx argument in populateBundleOperandInfos.
2006 ///
2007 /// Currently operand bundle users with hung-off operands are not supported.
2008 bundle_op_iterator bundle_op_info_begin() {
2009 if (!hasDescriptor())
2010 return nullptr;
2011
2012 uint8_t *BytesBegin = getDescriptor().begin();
2013 return reinterpret_cast<bundle_op_iterator>(BytesBegin);
2014 }
2015
2016 /// Return the start of the list of BundleOpInfo instances associated
2017 /// with this OperandBundleUser.
2018 const_bundle_op_iterator bundle_op_info_begin() const {
2019 auto *NonConstThis = const_cast<CallBase *>(this);
2020 return NonConstThis->bundle_op_info_begin();
2021 }
2022
2023 /// Return the end of the list of BundleOpInfo instances associated
2024 /// with this OperandBundleUser.
2025 bundle_op_iterator bundle_op_info_end() {
2026 if (!hasDescriptor())
2027 return nullptr;
2028
2029 uint8_t *BytesEnd = getDescriptor().end();
2030 return reinterpret_cast<bundle_op_iterator>(BytesEnd);
2031 }
2032
2033 /// Return the end of the list of BundleOpInfo instances associated
2034 /// with this OperandBundleUser.
2035 const_bundle_op_iterator bundle_op_info_end() const {
2036 auto *NonConstThis = const_cast<CallBase *>(this);
2037 return NonConstThis->bundle_op_info_end();
2038 }
2039
2040 /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
2041 iterator_range<bundle_op_iterator> bundle_op_infos() {
2042 return make_range(bundle_op_info_begin(), bundle_op_info_end());
2043 }
2044
2045 /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
2046 iterator_range<const_bundle_op_iterator> bundle_op_infos() const {
2047 return make_range(bundle_op_info_begin(), bundle_op_info_end());
2048 }
2049
2050 /// Populate the BundleOpInfo instances and the Use& vector from \p
2051 /// Bundles. Return the op_iterator pointing to the Use& one past the last
2052 /// last bundle operand use.
2053 ///
2054 /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo
2055 /// instance allocated in this User's descriptor.
2056 op_iterator populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
2057 const unsigned BeginIndex);
2058
2059 /// Return the BundleOpInfo for the operand at index OpIdx.
2060 ///
2061 /// It is an error to call this with an OpIdx that does not correspond to an
2062 /// bundle operand.
2063 const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const {
2064 for (auto &BOI : bundle_op_infos())
2065 if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
2066 return BOI;
2067
2068 llvm_unreachable("Did not find operand bundle for operand!")::llvm::llvm_unreachable_internal("Did not find operand bundle for operand!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 2068)
;
2069 }
2070
2071protected:
2072 /// Return the total number of values used in \p Bundles.
2073 static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) {
2074 unsigned Total = 0;
2075 for (auto &B : Bundles)
2076 Total += B.input_size();
2077 return Total;
2078 }
2079
2080 /// @}
2081 // End of operand bundle API.
2082
2083private:
2084 bool hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
2085 bool hasFnAttrOnCalledFunction(StringRef Kind) const;
2086
2087 template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const {
2088 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Kind))
2089 return true;
2090
2091 // Operand bundles override attributes on the called function, but don't
2092 // override attributes directly present on the call instruction.
2093 if (isFnAttrDisallowedByOpBundle(Kind))
2094 return false;
2095
2096 return hasFnAttrOnCalledFunction(Kind);
2097 }
2098};
2099
2100template <>
2101struct OperandTraits<CallBase> : public VariadicOperandTraits<CallBase, 1> {};
2102
2103DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallBase, Value)CallBase::op_iterator CallBase::op_begin() { return OperandTraits
<CallBase>::op_begin(this); } CallBase::const_op_iterator
CallBase::op_begin() const { return OperandTraits<CallBase
>::op_begin(const_cast<CallBase*>(this)); } CallBase
::op_iterator CallBase::op_end() { return OperandTraits<CallBase
>::op_end(this); } CallBase::const_op_iterator CallBase::op_end
() const { return OperandTraits<CallBase>::op_end(const_cast
<CallBase*>(this)); } Value *CallBase::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<CallBase
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CallBase>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 2103, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CallBase>::op_begin(const_cast<CallBase
*>(this))[i_nocapture].get()); } void CallBase::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<CallBase>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CallBase>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 2103, __PRETTY_FUNCTION__)); OperandTraits<CallBase>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CallBase
::getNumOperands() const { return OperandTraits<CallBase>
::operands(this); } template <int Idx_nocapture> Use &
CallBase::Op() { return this->OpFrom<Idx_nocapture>(
this); } template <int Idx_nocapture> const Use &CallBase
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2104
2105//===----------------------------------------------------------------------===//
2106// FuncletPadInst Class
2107//===----------------------------------------------------------------------===//
2108class FuncletPadInst : public Instruction {
2109private:
2110 FuncletPadInst(const FuncletPadInst &CPI);
2111
2112 explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
2113 ArrayRef<Value *> Args, unsigned Values,
2114 const Twine &NameStr, Instruction *InsertBefore);
2115 explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
2116 ArrayRef<Value *> Args, unsigned Values,
2117 const Twine &NameStr, BasicBlock *InsertAtEnd);
2118
2119 void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr);
2120
2121protected:
2122 // Note: Instruction needs to be a friend here to call cloneImpl.
2123 friend class Instruction;
2124 friend class CatchPadInst;
2125 friend class CleanupPadInst;
2126
2127 FuncletPadInst *cloneImpl() const;
2128
2129public:
2130 /// Provide fast operand accessors
2131 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2132
2133 /// getNumArgOperands - Return the number of funcletpad arguments.
2134 ///
2135 unsigned getNumArgOperands() const { return getNumOperands() - 1; }
2136
2137 /// Convenience accessors
2138
2139 /// Return the outer EH-pad this funclet is nested within.
2140 ///
2141 /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst
2142 /// is a CatchPadInst.
2143 Value *getParentPad() const { return Op<-1>(); }
2144 void setParentPad(Value *ParentPad) {
2145 assert(ParentPad)((ParentPad) ? static_cast<void> (0) : __assert_fail ("ParentPad"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 2145, __PRETTY_FUNCTION__))
;
2146 Op<-1>() = ParentPad;
2147 }
2148
2149 /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
2150 ///
2151 Value *getArgOperand(unsigned i) const { return getOperand(i); }
2152 void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
2153
2154 /// arg_operands - iteration adapter for range-for loops.
2155 op_range arg_operands() { return op_range(op_begin(), op_end() - 1); }
2156
2157 /// arg_operands - iteration adapter for range-for loops.
2158 const_op_range arg_operands() const {
2159 return const_op_range(op_begin(), op_end() - 1);
2160 }
2161
2162 // Methods for support type inquiry through isa, cast, and dyn_cast:
2163 static bool classof(const Instruction *I) { return I->isFuncletPad(); }
2164 static bool classof(const Value *V) {
2165 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2166 }
2167};
2168
2169template <>
2170struct OperandTraits<FuncletPadInst>
2171 : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {};
2172
2173DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value)FuncletPadInst::op_iterator FuncletPadInst::op_begin() { return
OperandTraits<FuncletPadInst>::op_begin(this); } FuncletPadInst
::const_op_iterator FuncletPadInst::op_begin() const { return
OperandTraits<FuncletPadInst>::op_begin(const_cast<
FuncletPadInst*>(this)); } FuncletPadInst::op_iterator FuncletPadInst
::op_end() { return OperandTraits<FuncletPadInst>::op_end
(this); } FuncletPadInst::const_op_iterator FuncletPadInst::op_end
() const { return OperandTraits<FuncletPadInst>::op_end
(const_cast<FuncletPadInst*>(this)); } Value *FuncletPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<FuncletPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<FuncletPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 2173, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<FuncletPadInst>::op_begin(const_cast<
FuncletPadInst*>(this))[i_nocapture].get()); } void FuncletPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<FuncletPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<FuncletPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/IR/InstrTypes.h"
, 2173, __PRETTY_FUNCTION__)); OperandTraits<FuncletPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
FuncletPadInst::getNumOperands() const { return OperandTraits
<FuncletPadInst>::operands(this); } template <int Idx_nocapture
> Use &FuncletPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &FuncletPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2174
2175} // end namespace llvm
2176
2177#endif // LLVM_IR_INSTRTYPES_H

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
10// and dyn_cast_or_null<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <type_traits>
22
23namespace llvm {
24
25//===----------------------------------------------------------------------===//
26// isa<x> Support Templates
27//===----------------------------------------------------------------------===//
28
29// Define a template that can be specialized by smart pointers to reflect the
30// fact that they are automatically dereferenced, and are not involved with the
31// template selection process... the default implementation is a noop.
32//
33template<typename From> struct simplify_type {
34 using SimpleType = From; // The real type this represents...
35
36 // An accessor to get the real value...
37 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
38};
39
40template<typename From> struct simplify_type<const From> {
41 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
42 using SimpleType =
43 typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From& Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
49 }
50};
51
52// The core of the implementation of isa<X> is here; To and From should be
53// the names of classes. This template can be specialized to customize the
54// implementation of isa<> without rewriting it from scratch.
55template <typename To, typename From, typename Enabler = void>
56struct isa_impl {
57 static inline bool doit(const From &Val) {
58 return To::classof(&Val);
59 }
60};
61
62/// Always allow upcasts, and perform no dynamic check for them.
63template <typename To, typename From>
64struct isa_impl<
65 To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
66 static inline bool doit(const From &) { return true; }
67};
68
69template <typename To, typename From> struct isa_impl_cl {
70 static inline bool doit(const From &Val) {
71 return isa_impl<To, From>::doit(Val);
72 }
73};
74
75template <typename To, typename From> struct isa_impl_cl<To, const From> {
76 static inline bool doit(const From &Val) {
77 return isa_impl<To, From>::doit(Val);
78 }
79};
80
81template <typename To, typename From>
82struct isa_impl_cl<To, const std::unique_ptr<From>> {
83 static inline bool doit(const std::unique_ptr<From> &Val) {
84 assert(Val && "isa<> used on a null pointer")((Val && "isa<> used on a null pointer") ? static_cast
<void> (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 84, __PRETTY_FUNCTION__))
;
85 return isa_impl_cl<To, From>::doit(*Val);
86 }
87};
88
89template <typename To, typename From> struct isa_impl_cl<To, From*> {
90 static inline bool doit(const From *Val) {
91 assert(Val && "isa<> used on a null pointer")((Val && "isa<> used on a null pointer") ? static_cast
<void> (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 91, __PRETTY_FUNCTION__))
;
92 return isa_impl<To, From>::doit(*Val);
93 }
94};
95
96template <typename To, typename From> struct isa_impl_cl<To, From*const> {
97 static inline bool doit(const From *Val) {
98 assert(Val && "isa<> used on a null pointer")((Val && "isa<> used on a null pointer") ? static_cast
<void> (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 98, __PRETTY_FUNCTION__))
;
99 return isa_impl<To, From>::doit(*Val);
100 }
101};
102
103template <typename To, typename From> struct isa_impl_cl<To, const From*> {
104 static inline bool doit(const From *Val) {
105 assert(Val && "isa<> used on a null pointer")((Val && "isa<> used on a null pointer") ? static_cast
<void> (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 105, __PRETTY_FUNCTION__))
;
106 return isa_impl<To, From>::doit(*Val);
107 }
108};
109
110template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
111 static inline bool doit(const From *Val) {
112 assert(Val && "isa<> used on a null pointer")((Val && "isa<> used on a null pointer") ? static_cast
<void> (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 112, __PRETTY_FUNCTION__))
;
113 return isa_impl<To, From>::doit(*Val);
114 }
115};
116
117template<typename To, typename From, typename SimpleFrom>
118struct isa_impl_wrap {
119 // When From != SimplifiedType, we can simplify the type some more by using
120 // the simplify_type template.
121 static bool doit(const From &Val) {
122 return isa_impl_wrap<To, SimpleFrom,
123 typename simplify_type<SimpleFrom>::SimpleType>::doit(
124 simplify_type<const From>::getSimplifiedValue(Val));
125 }
126};
127
128template<typename To, typename FromTy>
129struct isa_impl_wrap<To, FromTy, FromTy> {
130 // When From == SimpleType, we are as simple as we are going to get.
131 static bool doit(const FromTy &Val) {
132 return isa_impl_cl<To,FromTy>::doit(Val);
133 }
134};
135
136// isa<X> - Return true if the parameter to the template is an instance of the
137// template type argument. Used like this:
138//
139// if (isa<Type>(myVal)) { ... }
140//
141template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
142 return isa_impl_wrap<X, const Y,
143 typename simplify_type<const Y>::SimpleType>::doit(Val);
144}
145
146// isa_and_nonnull<X> - Functionally identical to isa, except that a null value
147// is accepted.
148//
149template <class X, class Y>
150LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa_and_nonnull(const Y &Val) {
151 if (!Val)
152 return false;
153 return isa<X>(Val);
154}
155
156//===----------------------------------------------------------------------===//
157// cast<x> Support Templates
158//===----------------------------------------------------------------------===//
159
160template<class To, class From> struct cast_retty;
161
162// Calculate what type the 'cast' function should return, based on a requested
163// type of To and a source type of From.
164template<class To, class From> struct cast_retty_impl {
165 using ret_type = To &; // Normal case, return Ty&
166};
167template<class To, class From> struct cast_retty_impl<To, const From> {
168 using ret_type = const To &; // Normal case, return Ty&
169};
170
171template<class To, class From> struct cast_retty_impl<To, From*> {
172 using ret_type = To *; // Pointer arg case, return Ty*
173};
174
175template<class To, class From> struct cast_retty_impl<To, const From*> {
176 using ret_type = const To *; // Constant pointer arg case, return const Ty*
177};
178
179template<class To, class From> struct cast_retty_impl<To, const From*const> {
180 using ret_type = const To *; // Constant pointer arg case, return const Ty*
181};
182
183template <class To, class From>
184struct cast_retty_impl<To, std::unique_ptr<From>> {
185private:
186 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
187 using ResultType = typename std::remove_pointer<PointerType>::type;
188
189public:
190 using ret_type = std::unique_ptr<ResultType>;
191};
192
193template<class To, class From, class SimpleFrom>
194struct cast_retty_wrap {
195 // When the simplified type and the from type are not the same, use the type
196 // simplifier to reduce the type, then reuse cast_retty_impl to get the
197 // resultant type.
198 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
199};
200
201template<class To, class FromTy>
202struct cast_retty_wrap<To, FromTy, FromTy> {
203 // When the simplified type is equal to the from type, use it directly.
204 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
205};
206
207template<class To, class From>
208struct cast_retty {
209 using ret_type = typename cast_retty_wrap<
210 To, From, typename simplify_type<From>::SimpleType>::ret_type;
211};
212
213// Ensure the non-simple values are converted using the simplify_type template
214// that may be specialized by smart pointers...
215//
216template<class To, class From, class SimpleFrom> struct cast_convert_val {
217 // This is not a simple type, use the template to simplify it...
218 static typename cast_retty<To, From>::ret_type doit(From &Val) {
219 return cast_convert_val<To, SimpleFrom,
220 typename simplify_type<SimpleFrom>::SimpleType>::doit(
221 simplify_type<From>::getSimplifiedValue(Val));
222 }
223};
224
225template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
226 // This _is_ a simple type, just cast it.
227 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
228 typename cast_retty<To, FromTy>::ret_type Res2
229 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
230 return Res2;
231 }
232};
233
234template <class X> struct is_simple_type {
235 static const bool value =
236 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
237};
238
239// cast<X> - Return the argument parameter cast to the specified type. This
240// casting operator asserts that the type is correct, so it does not return null
241// on failure. It does not allow a null argument (use cast_or_null for that).
242// It is typically used like this:
243//
244// cast<Instruction>(myVal)->getParent()
245//
246template <class X, class Y>
247inline typename std::enable_if<!is_simple_type<Y>::value,
248 typename cast_retty<X, const Y>::ret_type>::type
249cast(const Y &Val) {
250 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 250, __PRETTY_FUNCTION__))
;
251 return cast_convert_val<
252 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
253}
254
255template <class X, class Y>
256inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
257 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 257, __PRETTY_FUNCTION__))
;
258 return cast_convert_val<X, Y,
259 typename simplify_type<Y>::SimpleType>::doit(Val);
260}
261
262template <class X, class Y>
263inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
264 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 264, __PRETTY_FUNCTION__))
;
265 return cast_convert_val<X, Y*,
266 typename simplify_type<Y*>::SimpleType>::doit(Val);
267}
268
269template <class X, class Y>
270inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
271cast(std::unique_ptr<Y> &&Val) {
272 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")((isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 272, __PRETTY_FUNCTION__))
;
273 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
274 return ret_type(
275 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
276 Val.release()));
277}
278
279// cast_or_null<X> - Functionally identical to cast, except that a null value is
280// accepted.
281//
282template <class X, class Y>
283LLVM_NODISCARD[[clang::warn_unused_result]] inline
284 typename std::enable_if<!is_simple_type<Y>::value,
285 typename cast_retty<X, const Y>::ret_type>::type
286 cast_or_null(const Y &Val) {
287 if (!Val)
288 return nullptr;
289 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 289, __PRETTY_FUNCTION__))
;
290 return cast<X>(Val);
291}
292
293template <class X, class Y>
294LLVM_NODISCARD[[clang::warn_unused_result]] inline
295 typename std::enable_if<!is_simple_type<Y>::value,
296 typename cast_retty<X, Y>::ret_type>::type
297 cast_or_null(Y &Val) {
298 if (!Val)
299 return nullptr;
300 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 300, __PRETTY_FUNCTION__))
;
301 return cast<X>(Val);
302}
303
304template <class X, class Y>
305LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
306cast_or_null(Y *Val) {
307 if (!Val) return nullptr;
14
Assuming 'Val' is non-null
15
Taking false branch
308 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? static_cast<void> (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Casting.h"
, 308, __PRETTY_FUNCTION__))
;
16
Assuming the condition is true
17
'?' condition is true
309 return cast<X>(Val);
18
Returning pointer
310}
311
312template <class X, class Y>
313inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
314cast_or_null(std::unique_ptr<Y> &&Val) {
315 if (!Val)
316 return nullptr;
317 return cast<X>(std::move(Val));
318}
319
320// dyn_cast<X> - Return the argument parameter cast to the specified type. This
321// casting operator returns null if the argument is of the wrong type, so it can
322// be used to test for a type as well as cast if successful. This should be
323// used in the context of an if statement like this:
324//
325// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
326//
327
328template <class X, class Y>
329LLVM_NODISCARD[[clang::warn_unused_result]] inline
330 typename std::enable_if<!is_simple_type<Y>::value,
331 typename cast_retty<X, const Y>::ret_type>::type
332 dyn_cast(const Y &Val) {
333 return isa<X>(Val) ? cast<X>(Val) : nullptr;
334}
335
336template <class X, class Y>
337LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
338 return isa<X>(Val) ? cast<X>(Val) : nullptr;
339}
340
341template <class X, class Y>
342LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
343 return isa<X>(Val) ? cast<X>(Val) : nullptr;
344}
345
346// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
347// value is accepted.
348//
349template <class X, class Y>
350LLVM_NODISCARD[[clang::warn_unused_result]] inline
351 typename std::enable_if<!is_simple_type<Y>::value,
352 typename cast_retty<X, const Y>::ret_type>::type
353 dyn_cast_or_null(const Y &Val) {
354 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
355}
356
357template <class X, class Y>
358LLVM_NODISCARD[[clang::warn_unused_result]] inline
359 typename std::enable_if<!is_simple_type<Y>::value,
360 typename cast_retty<X, Y>::ret_type>::type
361 dyn_cast_or_null(Y &Val) {
362 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
363}
364
365template <class X, class Y>
366LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
367dyn_cast_or_null(Y *Val) {
368 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
369}
370
371// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
372// taking ownership of the input pointer iff isa<X>(Val) is true. If the
373// cast is successful, From refers to nullptr on exit and the casted value
374// is returned. If the cast is unsuccessful, the function returns nullptr
375// and From is unchanged.
376template <class X, class Y>
377LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
378 -> decltype(cast<X>(Val)) {
379 if (!isa<X>(Val))
380 return nullptr;
381 return cast<X>(std::move(Val));
382}
383
384template <class X, class Y>
385LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
386 -> decltype(cast<X>(Val)) {
387 return unique_dyn_cast<X, Y>(Val);
388}
389
390// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
391// a null value is accepted.
392template <class X, class Y>
393LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
394 -> decltype(cast<X>(Val)) {
395 if (!Val)
396 return nullptr;
397 return unique_dyn_cast<X, Y>(Val);
398}
399
400template <class X, class Y>
401LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
402 -> decltype(cast<X>(Val)) {
403 return unique_dyn_cast_or_null<X, Y>(Val);
404}
405
406} // end namespace llvm
407
408#endif // LLVM_SUPPORT_CASTING_H