Bug Summary

File:lib/IR/Verifier.cpp
Location:line 989, column 7
Description:Called C++ object pointer is null

Annotated Source Code

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * All landingpad instructions must use the same personality function with
43// the same function.
44// * All other things that are tested by asserts spread about the code...
45//
46//===----------------------------------------------------------------------===//
47
48#include "llvm/IR/Verifier.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/CallSite.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/ConstantRange.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugInfo.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/Dominators.h"
63#include "llvm/IR/InlineAsm.h"
64#include "llvm/IR/InstIterator.h"
65#include "llvm/IR/InstVisitor.h"
66#include "llvm/IR/IntrinsicInst.h"
67#include "llvm/IR/LLVMContext.h"
68#include "llvm/IR/Metadata.h"
69#include "llvm/IR/Module.h"
70#include "llvm/IR/PassManager.h"
71#include "llvm/IR/Statepoint.h"
72#include "llvm/Pass.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Debug.h"
75#include "llvm/Support/ErrorHandling.h"
76#include "llvm/Support/raw_ostream.h"
77#include <algorithm>
78#include <cstdarg>
79using namespace llvm;
80
81static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
82
83namespace {
84struct VerifierSupport {
85 raw_ostream &OS;
86 const Module *M;
87
88 /// \brief Track the brokenness of the module while recursively visiting.
89 bool Broken;
90
91 explicit VerifierSupport(raw_ostream &OS)
92 : OS(OS), M(nullptr), Broken(false) {}
93
94private:
95 void Write(const Value *V) {
96 if (!V)
97 return;
98 if (isa<Instruction>(V)) {
99 OS << *V << '\n';
100 } else {
101 V->printAsOperand(OS, true, M);
102 OS << '\n';
103 }
104 }
105 void Write(ImmutableCallSite CS) {
106 Write(CS.getInstruction());
107 }
108
109 void Write(const Metadata *MD) {
110 if (!MD)
111 return;
112 MD->print(OS, M);
113 OS << '\n';
114 }
115
116 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
117 Write(MD.get());
118 }
119
120 void Write(const NamedMDNode *NMD) {
121 if (!NMD)
122 return;
123 NMD->print(OS);
124 OS << '\n';
125 }
126
127 void Write(Type *T) {
128 if (!T)
129 return;
130 OS << ' ' << *T;
131 }
132
133 void Write(const Comdat *C) {
134 if (!C)
135 return;
136 OS << *C;
137 }
138
139 template <typename T1, typename... Ts>
140 void WriteTs(const T1 &V1, const Ts &... Vs) {
141 Write(V1);
142 WriteTs(Vs...);
143 }
144
145 template <typename... Ts> void WriteTs() {}
146
147public:
148 /// \brief A check failed, so printout out the condition and the message.
149 ///
150 /// This provides a nice place to put a breakpoint if you want to see why
151 /// something is not correct.
152 void CheckFailed(const Twine &Message) {
153 OS << Message << '\n';
154 Broken = true;
155 }
156
157 /// \brief A check failed (with values to print).
158 ///
159 /// This calls the Message-only version so that the above is easier to set a
160 /// breakpoint on.
161 template <typename T1, typename... Ts>
162 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
163 CheckFailed(Message);
164 WriteTs(V1, Vs...);
165 }
166};
167
168class Verifier : public InstVisitor<Verifier>, VerifierSupport {
169 friend class InstVisitor<Verifier>;
170
171 LLVMContext *Context;
172 DominatorTree DT;
173
174 /// \brief When verifying a basic block, keep track of all of the
175 /// instructions we have seen so far.
176 ///
177 /// This allows us to do efficient dominance checks for the case when an
178 /// instruction has an operand that is an instruction in the same block.
179 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
180
181 /// \brief Keep track of the metadata nodes that have been checked already.
182 SmallPtrSet<const Metadata *, 32> MDNodes;
183
184 /// \brief Track unresolved string-based type references.
185 SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
186
187 /// \brief The result type for a landingpad.
188 Type *LandingPadResultTy;
189
190 /// \brief Whether we've seen a call to @llvm.localescape in this function
191 /// already.
192 bool SawFrameEscape;
193
194 /// Stores the count of how many objects were passed to llvm.localescape for a
195 /// given function and the largest index passed to llvm.localrecover.
196 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
197
198public:
199 explicit Verifier(raw_ostream &OS)
200 : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
201 SawFrameEscape(false) {}
202
203 bool verify(const Function &F) {
204 M = F.getParent();
205 Context = &M->getContext();
206
207 // First ensure the function is well-enough formed to compute dominance
208 // information.
209 if (F.empty()) {
210 OS << "Function '" << F.getName()
211 << "' does not contain an entry block!\n";
212 return false;
213 }
214 for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
215 if (I->empty() || !I->back().isTerminator()) {
216 OS << "Basic Block in function '" << F.getName()
217 << "' does not have terminator!\n";
218 I->printAsOperand(OS, true);
219 OS << "\n";
220 return false;
221 }
222 }
223
224 // Now directly compute a dominance tree. We don't rely on the pass
225 // manager to provide this as it isolates us from a potentially
226 // out-of-date dominator tree and makes it significantly more complex to
227 // run this code outside of a pass manager.
228 // FIXME: It's really gross that we have to cast away constness here.
229 DT.recalculate(const_cast<Function &>(F));
230
231 Broken = false;
232 // FIXME: We strip const here because the inst visitor strips const.
233 visit(const_cast<Function &>(F));
234 InstsInThisBlock.clear();
235 LandingPadResultTy = nullptr;
236 SawFrameEscape = false;
237
238 return !Broken;
239 }
240
241 bool verify(const Module &M) {
242 this->M = &M;
243 Context = &M.getContext();
244 Broken = false;
245
246 // Scan through, checking all of the external function's linkage now...
247 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
248 visitGlobalValue(*I);
249
250 // Check to make sure function prototypes are okay.
251 if (I->isDeclaration())
252 visitFunction(*I);
253 }
254
255 // Now that we've visited every function, verify that we never asked to
256 // recover a frame index that wasn't escaped.
257 verifyFrameRecoverIndices();
258
259 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
260 I != E; ++I)
261 visitGlobalVariable(*I);
262
263 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
264 I != E; ++I)
265 visitGlobalAlias(*I);
266
267 for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
268 E = M.named_metadata_end();
269 I != E; ++I)
270 visitNamedMDNode(*I);
271
272 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
273 visitComdat(SMEC.getValue());
274
275 visitModuleFlags(M);
276 visitModuleIdents(M);
277
278 // Verify type referneces last.
279 verifyTypeRefs();
280
281 return !Broken;
282 }
283
284private:
285 // Verification methods...
286 void visitGlobalValue(const GlobalValue &GV);
287 void visitGlobalVariable(const GlobalVariable &GV);
288 void visitGlobalAlias(const GlobalAlias &GA);
289 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
290 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
291 const GlobalAlias &A, const Constant &C);
292 void visitNamedMDNode(const NamedMDNode &NMD);
293 void visitMDNode(const MDNode &MD);
294 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
295 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
296 void visitComdat(const Comdat &C);
297 void visitModuleIdents(const Module &M);
298 void visitModuleFlags(const Module &M);
299 void visitModuleFlag(const MDNode *Op,
300 DenseMap<const MDString *, const MDNode *> &SeenIDs,
301 SmallVectorImpl<const MDNode *> &Requirements);
302 void visitFunction(const Function &F);
303 void visitBasicBlock(BasicBlock &BB);
304 void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
305
306 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
307#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
308#include "llvm/IR/Metadata.def"
309 void visitDIScope(const DIScope &N);
310 void visitDIVariable(const DIVariable &N);
311 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
312 void visitDITemplateParameter(const DITemplateParameter &N);
313
314 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
315
316 /// \brief Check for a valid string-based type reference.
317 ///
318 /// Checks if \c MD is a string-based type reference. If it is, keeps track
319 /// of it (and its user, \c N) for error messages later.
320 bool isValidUUID(const MDNode &N, const Metadata *MD);
321
322 /// \brief Check for a valid type reference.
323 ///
324 /// Checks for subclasses of \a DIType, or \a isValidUUID().
325 bool isTypeRef(const MDNode &N, const Metadata *MD);
326
327 /// \brief Check for a valid scope reference.
328 ///
329 /// Checks for subclasses of \a DIScope, or \a isValidUUID().
330 bool isScopeRef(const MDNode &N, const Metadata *MD);
331
332 /// \brief Check for a valid debug info reference.
333 ///
334 /// Checks for subclasses of \a DINode, or \a isValidUUID().
335 bool isDIRef(const MDNode &N, const Metadata *MD);
336
337 // InstVisitor overrides...
338 using InstVisitor<Verifier>::visit;
339 void visit(Instruction &I);
340
341 void visitTruncInst(TruncInst &I);
342 void visitZExtInst(ZExtInst &I);
343 void visitSExtInst(SExtInst &I);
344 void visitFPTruncInst(FPTruncInst &I);
345 void visitFPExtInst(FPExtInst &I);
346 void visitFPToUIInst(FPToUIInst &I);
347 void visitFPToSIInst(FPToSIInst &I);
348 void visitUIToFPInst(UIToFPInst &I);
349 void visitSIToFPInst(SIToFPInst &I);
350 void visitIntToPtrInst(IntToPtrInst &I);
351 void visitPtrToIntInst(PtrToIntInst &I);
352 void visitBitCastInst(BitCastInst &I);
353 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
354 void visitPHINode(PHINode &PN);
355 void visitBinaryOperator(BinaryOperator &B);
356 void visitICmpInst(ICmpInst &IC);
357 void visitFCmpInst(FCmpInst &FC);
358 void visitExtractElementInst(ExtractElementInst &EI);
359 void visitInsertElementInst(InsertElementInst &EI);
360 void visitShuffleVectorInst(ShuffleVectorInst &EI);
361 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
362 void visitCallInst(CallInst &CI);
363 void visitInvokeInst(InvokeInst &II);
364 void visitGetElementPtrInst(GetElementPtrInst &GEP);
365 void visitLoadInst(LoadInst &LI);
366 void visitStoreInst(StoreInst &SI);
367 void verifyDominatesUse(Instruction &I, unsigned i);
368 void visitInstruction(Instruction &I);
369 void visitTerminatorInst(TerminatorInst &I);
370 void visitBranchInst(BranchInst &BI);
371 void visitReturnInst(ReturnInst &RI);
372 void visitSwitchInst(SwitchInst &SI);
373 void visitIndirectBrInst(IndirectBrInst &BI);
374 void visitSelectInst(SelectInst &SI);
375 void visitUserOp1(Instruction &I);
376 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
377 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
378 template <class DbgIntrinsicTy>
379 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
380 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
381 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
382 void visitFenceInst(FenceInst &FI);
383 void visitAllocaInst(AllocaInst &AI);
384 void visitExtractValueInst(ExtractValueInst &EVI);
385 void visitInsertValueInst(InsertValueInst &IVI);
386 void visitEHPadPredecessors(Instruction &I);
387 void visitLandingPadInst(LandingPadInst &LPI);
388 void visitCatchPadInst(CatchPadInst &CPI);
389 void visitCatchEndPadInst(CatchEndPadInst &CEPI);
390 void visitCleanupPadInst(CleanupPadInst &CPI);
391 void visitCleanupReturnInst(CleanupReturnInst &CRI);
392 void visitTerminatePadInst(TerminatePadInst &TPI);
393
394 void VerifyCallSite(CallSite CS);
395 void verifyMustTailCall(CallInst &CI);
396 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
397 unsigned ArgNo, std::string &Suffix);
398 bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
399 SmallVectorImpl<Type *> &ArgTys);
400 bool VerifyIntrinsicIsVarArg(bool isVarArg,
401 ArrayRef<Intrinsic::IITDescriptor> &Infos);
402 bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
403 void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
404 const Value *V);
405 void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
406 bool isReturnValue, const Value *V);
407 void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
408 const Value *V);
409 void VerifyFunctionMetadata(
410 const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
411
412 void VerifyConstantExprBitcastType(const ConstantExpr *CE);
413 void VerifyStatepoint(ImmutableCallSite CS);
414 void verifyFrameRecoverIndices();
415
416 // Module-level debug info verification...
417 void verifyTypeRefs();
418 template <class MapTy>
419 void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
420 const MapTy &TypeRefs);
421 void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
422};
423} // End anonymous namespace
424
425// Assert - We know that cond should be true, if not print an error message.
426#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (0) \
427 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
428
429void Verifier::visit(Instruction &I) {
430 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
431 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (0)
;
432 InstVisitor<Verifier>::visit(I);
433}
434
435
436void Verifier::visitGlobalValue(const GlobalValue &GV) {
437 Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||do { if (!(!GV.isDeclaration() || GV.hasExternalLinkage() || GV
.hasExternalWeakLinkage())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (0)
438 GV.hasExternalWeakLinkage(),do { if (!(!GV.isDeclaration() || GV.hasExternalLinkage() || GV
.hasExternalWeakLinkage())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (0)
439 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasExternalLinkage() || GV
.hasExternalWeakLinkage())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (0)
;
440
441 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (0)
442 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (0)
;
443 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (0)
444 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (0)
;
445
446 if (GV.hasAppendingLinkage()) {
447 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
448 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (0)
449 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (0)
;
450 }
451
452 if (GV.isDeclarationForLinker())
453 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (0)
;
454}
455
456void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
457 if (GV.hasInitializer()) {
458 Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),do { if (!(GV.getInitializer()->getType() == GV.getType()->
getElementType())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (0)
459 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getType()->
getElementType())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (0)
460 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getType()->
getElementType())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (0)
461 &GV)do { if (!(GV.getInitializer()->getType() == GV.getType()->
getElementType())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (0)
;
462
463 // If the global has common linkage, it must have a zero initializer and
464 // cannot be constant.
465 if (GV.hasCommonLinkage()) {
466 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (0)
467 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (0)
;
468 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (0)
469 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (0)
;
470 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (0)
;
471 }
472 } else {
473 Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),do { if (!(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage
())) { CheckFailed("invalid linkage type for global declaration"
, &GV); return; } } while (0)
474 "invalid linkage type for global declaration", &GV)do { if (!(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage
())) { CheckFailed("invalid linkage type for global declaration"
, &GV); return; } } while (0)
;
475 }
476
477 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
478 GV.getName() == "llvm.global_dtors")) {
479 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (0)
480 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (0)
;
481 // Don't worry about emitting an error for it not being an array,
482 // visitGlobalValue will complain on appending non-array.
483 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
484 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
485 PointerType *FuncPtrTy =
486 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
487 // FIXME: Reject the 2-field form in LLVM 4.0.
488 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
489 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
490 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
491 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
492 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
;
493 if (STy->getNumElements() == 3) {
494 Type *ETy = STy->getTypeAtIndex(2);
495 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (0)
496 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (0)
497 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (0)
;
498 }
499 }
500 }
501
502 if (GV.hasName() && (GV.getName() == "llvm.used" ||
503 GV.getName() == "llvm.compiler.used")) {
504 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (0)
505 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (0)
;
506 Type *GVType = GV.getValueType();
507 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
508 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
509 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
;
510 if (GV.hasInitializer()) {
511 const Constant *Init = GV.getInitializer();
512 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
513 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (0)
514 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (0)
;
515 for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
516 Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
517 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (0)
518 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (0)
519 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (0)
;
520 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (0)
;
521 }
522 }
523 }
524 }
525
526 Assert(!GV.hasDLLImportStorageClass() ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (0)
527 (GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (0)
528 GV.hasAvailableExternallyLinkage(),do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (0)
529 "Global is marked as dllimport, but not external", &GV)do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (0)
;
530
531 if (!GV.hasInitializer()) {
532 visitGlobalValue(GV);
533 return;
534 }
535
536 // Walk any aggregate initializers looking for bitcasts between address spaces
537 SmallPtrSet<const Value *, 4> Visited;
538 SmallVector<const Value *, 4> WorkStack;
539 WorkStack.push_back(cast<Value>(GV.getInitializer()));
540
541 while (!WorkStack.empty()) {
542 const Value *V = WorkStack.pop_back_val();
543 if (!Visited.insert(V).second)
544 continue;
545
546 if (const User *U = dyn_cast<User>(V)) {
547 WorkStack.append(U->op_begin(), U->op_end());
548 }
549
550 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
551 VerifyConstantExprBitcastType(CE);
552 if (Broken)
553 return;
554 }
555 }
556
557 visitGlobalValue(GV);
558}
559
560void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
561 SmallPtrSet<const GlobalAlias*, 4> Visited;
562 Visited.insert(&GA);
563 visitAliaseeSubExpr(Visited, GA, C);
564}
565
566void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
567 const GlobalAlias &GA, const Constant &C) {
568 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
569 Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA)do { if (!(!GV->isDeclaration())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (0)
;
570
571 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
572 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (0)
;
573
574 Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",do { if (!(!GA2->mayBeOverridden())) { CheckFailed("Alias cannot point to a weak alias"
, &GA); return; } } while (0)
575 &GA)do { if (!(!GA2->mayBeOverridden())) { CheckFailed("Alias cannot point to a weak alias"
, &GA); return; } } while (0)
;
576 } else {
577 // Only continue verifying subexpressions of GlobalAliases.
578 // Do not recurse into global initializers.
579 return;
580 }
581 }
582
583 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
584 VerifyConstantExprBitcastType(CE);
585
586 for (const Use &U : C.operands()) {
587 Value *V = &*U;
588 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
589 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
590 else if (const auto *C2 = dyn_cast<Constant>(V))
591 visitAliaseeSubExpr(Visited, GA, *C2);
592 }
593}
594
595void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
596 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(0)
597 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(0)
598 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(0)
599 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(0)
;
600 const Constant *Aliasee = GA.getAliasee();
601 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (0)
;
602 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (0)
603 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (0)
;
604
605 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (0)
606 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (0)
;
607
608 visitAliaseeSubExpr(GA, *Aliasee);
609
610 visitGlobalValue(GA);
611}
612
613void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
614 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
615 MDNode *MD = NMD.getOperand(i);
616
617 if (NMD.getName() == "llvm.dbg.cu") {
618 Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { CheckFailed
("invalid compile unit", &NMD, MD); return; } } while (0)
;
619 }
620
621 if (!MD)
622 continue;
623
624 visitMDNode(*MD);
625 }
626}
627
628void Verifier::visitMDNode(const MDNode &MD) {
629 // Only visit each node once. Metadata can be mutually recursive, so this
630 // avoids infinite recursion here, as well as being an optimization.
631 if (!MDNodes.insert(&MD).second)
632 return;
633
634 switch (MD.getMetadataID()) {
635 default:
636 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 636)
;
637 case Metadata::MDTupleKind:
638 break;
639#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
640 case Metadata::CLASS##Kind: \
641 visit##CLASS(cast<CLASS>(MD)); \
642 break;
643#include "llvm/IR/Metadata.def"
644 }
645
646 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
647 Metadata *Op = MD.getOperand(i);
648 if (!Op)
649 continue;
650 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (0)
651 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (0)
;
652 if (auto *N = dyn_cast<MDNode>(Op)) {
653 visitMDNode(*N);
654 continue;
655 }
656 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
657 visitValueAsMetadata(*V, nullptr);
658 continue;
659 }
660 }
661
662 // Check these last, so we diagnose problems in operands first.
663 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (0)
;
664 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (0)
;
665}
666
667void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
668 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (0)
;
669 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (0)
670 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (0)
;
671
672 auto *L = dyn_cast<LocalAsMetadata>(&MD);
673 if (!L)
674 return;
675
676 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (0)
;
677
678 // If this was an instruction, bb, or argument, verify that it is in the
679 // function that we expect.
680 Function *ActualF = nullptr;
681 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
682 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (0)
;
683 ActualF = I->getParent()->getParent();
684 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
685 ActualF = BB->getParent();
686 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
687 ActualF = A->getParent();
688 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 688, __PRETTY_FUNCTION__))
;
689
690 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (0)
;
691}
692
693void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
694 Metadata *MD = MDV.getMetadata();
695 if (auto *N = dyn_cast<MDNode>(MD)) {
696 visitMDNode(*N);
697 return;
698 }
699
700 // Only visit each node once. Metadata can be mutually recursive, so this
701 // avoids infinite recursion here, as well as being an optimization.
702 if (!MDNodes.insert(MD).second)
703 return;
704
705 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
706 visitValueAsMetadata(*V, F);
707}
708
709bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
710 auto *S = dyn_cast<MDString>(MD);
711 if (!S)
712 return false;
713 if (S->getString().empty())
714 return false;
715
716 // Keep track of names of types referenced via UUID so we can check that they
717 // actually exist.
718 UnresolvedTypeRefs.insert(std::make_pair(S, &N));
719 return true;
720}
721
722/// \brief Check if a value can be a reference to a type.
723bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
724 return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
725}
726
727/// \brief Check if a value can be a ScopeRef.
728bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
729 return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
730}
731
732/// \brief Check if a value can be a debug info ref.
733bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
734 return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
735}
736
737template <class Ty>
738bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
739 for (Metadata *MD : N.operands()) {
740 if (MD) {
741 if (!isa<Ty>(MD))
742 return false;
743 } else {
744 if (!AllowNull)
745 return false;
746 }
747 }
748 return true;
749}
750
751template <class Ty>
752bool isValidMetadataArray(const MDTuple &N) {
753 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
754}
755
756template <class Ty>
757bool isValidMetadataNullArray(const MDTuple &N) {
758 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
759}
760
761void Verifier::visitDILocation(const DILocation &N) {
762 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (0)
763 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (0)
;
764 if (auto *IA = N.getRawInlinedAt())
765 Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { CheckFailed("inlined-at should be a location"
, &N, IA); return; } } while (0)
;
766}
767
768void Verifier::visitGenericDINode(const GenericDINode &N) {
769 Assert(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { CheckFailed("invalid tag", &N);
return; } } while (0)
;
770}
771
772void Verifier::visitDIScope(const DIScope &N) {
773 if (auto *F = N.getRawFile())
774 Assert(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { CheckFailed("invalid file"
, &N, F); return; } } while (0)
;
775}
776
777void Verifier::visitDISubrange(const DISubrange &N) {
778 Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
779 Assert(N.getCount() >= -1, "invalid subrange count", &N)do { if (!(N.getCount() >= -1)) { CheckFailed("invalid subrange count"
, &N); return; } } while (0)
;
780}
781
782void Verifier::visitDIEnumerator(const DIEnumerator &N) {
783 Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
784}
785
786void Verifier::visitDIBasicType(const DIBasicType &N) {
787 Assert(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
788 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
789 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
;
790}
791
792void Verifier::visitDIDerivedType(const DIDerivedType &N) {
793 // Common scope checks.
794 visitDIScope(N);
795
796 Assert(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
797 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
798 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
799 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
800 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
801 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
802 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
803 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
804 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
805 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
806 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
807 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
;
808 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
809 Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,do { if (!(isTypeRef(N, N.getExtraData()))) { CheckFailed("invalid pointer to member type"
, &N, N.getExtraData()); return; } } while (0)
810 N.getExtraData())do { if (!(isTypeRef(N, N.getExtraData()))) { CheckFailed("invalid pointer to member type"
, &N, N.getExtraData()); return; } } while (0)
;
811 }
812
813 Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope())do { if (!(isScopeRef(N, N.getScope()))) { CheckFailed("invalid scope"
, &N, N.getScope()); return; } } while (0)
;
814 Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,do { if (!(isTypeRef(N, N.getBaseType()))) { CheckFailed("invalid base type"
, &N, N.getBaseType()); return; } } while (0)
815 N.getBaseType())do { if (!(isTypeRef(N, N.getBaseType()))) { CheckFailed("invalid base type"
, &N, N.getBaseType()); return; } } while (0)
;
816}
817
818static bool hasConflictingReferenceFlags(unsigned Flags) {
819 return (Flags & DINode::FlagLValueReference) &&
820 (Flags & DINode::FlagRValueReference);
821}
822
823void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
824 auto *Params = dyn_cast<MDTuple>(&RawParams);
825 Assert(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { CheckFailed("invalid template params", &
N, &RawParams); return; } } while (0)
;
826 for (Metadata *Op : Params->operands()) {
827 Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,do { if (!(Op && isa<DITemplateParameter>(Op)))
{ CheckFailed("invalid template parameter", &N, Params, Op
); return; } } while (0)
828 Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ CheckFailed("invalid template parameter", &N, Params, Op
); return; } } while (0)
;
829 }
830}
831
832void Verifier::visitDICompositeType(const DICompositeType &N) {
833 // Common scope checks.
834 visitDIScope(N);
835
836 Assert(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
837 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
838 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
839 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
840 N.getTag() == dwarf::DW_TAG_class_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
841 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
;
842
843 Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope())do { if (!(isScopeRef(N, N.getScope()))) { CheckFailed("invalid scope"
, &N, N.getScope()); return; } } while (0)
;
844 Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,do { if (!(isTypeRef(N, N.getBaseType()))) { CheckFailed("invalid base type"
, &N, N.getBaseType()); return; } } while (0)
845 N.getBaseType())do { if (!(isTypeRef(N, N.getBaseType()))) { CheckFailed("invalid base type"
, &N, N.getBaseType()); return; } } while (0)
;
846
847 Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { CheckFailed("invalid composite elements", &N, N.getRawElements
()); return; } } while (0)
848 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { CheckFailed("invalid composite elements", &N, N.getRawElements
()); return; } } while (0)
;
849 Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isTypeRef(N, N.getRawVTableHolder()))) { CheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (0)
850 N.getRawVTableHolder())do { if (!(isTypeRef(N, N.getRawVTableHolder()))) { CheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (0)
;
851 Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { CheckFailed("invalid composite elements", &N, N.getRawElements
()); return; } } while (0)
852 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { CheckFailed("invalid composite elements", &N, N.getRawElements
()); return; } } while (0)
;
853 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
854 &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
;
855 if (auto *Params = N.getRawTemplateParams())
856 visitTemplateParams(N, *Params);
857
858 if (N.getTag() == dwarf::DW_TAG_class_type ||
859 N.getTag() == dwarf::DW_TAG_union_type) {
860 Assert(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { CheckFailed("class/union requires a filename",
&N, N.getFile()); return; } } while (0)
861 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { CheckFailed("class/union requires a filename",
&N, N.getFile()); return; } } while (0)
;
862 }
863}
864
865void Verifier::visitDISubroutineType(const DISubroutineType &N) {
866 Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
867 if (auto *Types = N.getRawTypeArray()) {
868 Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { CheckFailed("invalid composite elements"
, &N, Types); return; } } while (0)
;
869 for (Metadata *Ty : N.getTypeArray()->operands()) {
870 Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isTypeRef(N, Ty))) { CheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (0)
;
871 }
872 }
873 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
874 &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
;
875}
876
877void Verifier::visitDIFile(const DIFile &N) {
878 Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
879}
880
881void Verifier::visitDICompileUnit(const DICompileUnit &N) {
882 Assert(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { CheckFailed("compile units must be distinct"
, &N); return; } } while (0)
;
883 Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
884
885 // Don't bother verifying the compilation directory or producer string
886 // as those could be empty.
887 Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { CheckFailed("invalid file", &N, N.getRawFile()); return
; } } while (0)
888 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { CheckFailed("invalid file", &N, N.getRawFile()); return
; } } while (0)
;
889 Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { CheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
0)
890 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { CheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
0)
;
891
892 if (auto *Array = N.getRawEnumTypes()) {
893 Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid enum list"
, &N, Array); return; } } while (0)
;
894 for (Metadata *Op : N.getEnumTypes()->operands()) {
895 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
896 Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { CheckFailed("invalid enum type", &N, N.getEnumTypes(
), Op); return; } } while (0)
897 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { CheckFailed("invalid enum type", &N, N.getEnumTypes(
), Op); return; } } while (0)
;
898 }
899 }
900 if (auto *Array = N.getRawRetainedTypes()) {
901 Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid retained type list"
, &N, Array); return; } } while (0)
;
902 for (Metadata *Op : N.getRetainedTypes()->operands()) {
903 Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op)do { if (!(Op && isa<DIType>(Op))) { CheckFailed
("invalid retained type", &N, Op); return; } } while (0)
;
904 }
905 }
906 if (auto *Array = N.getRawSubprograms()) {
907 Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid subprogram list"
, &N, Array); return; } } while (0)
;
908 for (Metadata *Op : N.getSubprograms()->operands()) {
909 Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op)do { if (!(Op && isa<DISubprogram>(Op))) { CheckFailed
("invalid subprogram ref", &N, Op); return; } } while (0)
;
910 }
911 }
912 if (auto *Array = N.getRawGlobalVariables()) {
913 Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid global variable list"
, &N, Array); return; } } while (0)
;
914 for (Metadata *Op : N.getGlobalVariables()->operands()) {
915 Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,do { if (!(Op && isa<DIGlobalVariable>(Op))) { CheckFailed
("invalid global variable ref", &N, Op); return; } } while
(0)
916 Op)do { if (!(Op && isa<DIGlobalVariable>(Op))) { CheckFailed
("invalid global variable ref", &N, Op); return; } } while
(0)
;
917 }
918 }
919 if (auto *Array = N.getRawImportedEntities()) {
920 Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid imported entity list"
, &N, Array); return; } } while (0)
;
921 for (Metadata *Op : N.getImportedEntities()->operands()) {
922 Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,do { if (!(Op && isa<DIImportedEntity>(Op))) { CheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(0)
923 Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { CheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(0)
;
924 }
925 }
926}
927
928void Verifier::visitDISubprogram(const DISubprogram &N) {
929 Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
930 Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScopeRef(N, N.getRawScope()))) { CheckFailed("invalid scope"
, &N, N.getRawScope()); return; } } while (0)
;
931 if (auto *T = N.getRawType())
1
Assuming 'T' is null
2
Taking false branch
932 Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { CheckFailed("invalid subroutine type"
, &N, T); return; } } while (0)
;
933 Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,do { if (!(isTypeRef(N, N.getRawContainingType()))) { CheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (0)
934 N.getRawContainingType())do { if (!(isTypeRef(N, N.getRawContainingType()))) { CheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (0)
;
935 if (auto *RawF = N.getRawFunction()) {
3
Assuming 'RawF' is null
4
Taking false branch
936 auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
937 auto *F = FMD ? FMD->getValue() : nullptr;
938 auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
939 Assert(F && FT && isa<FunctionType>(FT->getElementType()),do { if (!(F && FT && isa<FunctionType>
(FT->getElementType()))) { CheckFailed("invalid function",
&N, F, FT); return; } } while (0)
940 "invalid function", &N, F, FT)do { if (!(F && FT && isa<FunctionType>
(FT->getElementType()))) { CheckFailed("invalid function",
&N, F, FT); return; } } while (0)
;
941 }
942 if (auto *Params = N.getRawTemplateParams())
5
Assuming 'Params' is null
6
Taking false branch
943 visitTemplateParams(N, *Params);
944 if (auto *S = N.getRawDeclaration()) {
7
Assuming 'S' is null
8
Taking false branch
945 Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { CheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (0)
946 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { CheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (0)
;
947 }
948 if (auto *RawVars = N.getRawVariables()) {
9
Assuming 'RawVars' is null
10
Taking false branch
949 auto *Vars = dyn_cast<MDTuple>(RawVars);
950 Assert(Vars, "invalid variable list", &N, RawVars)do { if (!(Vars)) { CheckFailed("invalid variable list", &
N, RawVars); return; } } while (0)
;
951 for (Metadata *Op : Vars->operands()) {
952 Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,do { if (!(Op && isa<DILocalVariable>(Op))) { CheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(0)
953 Op)do { if (!(Op && isa<DILocalVariable>(Op))) { CheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(0)
;
954 }
955 }
956 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
957 &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
;
958
959 auto *F = N.getFunction();
960 if (!F)
11
Assuming 'F' is non-null
12
Taking false branch
961 return;
962
963 // Check that all !dbg attachments lead to back to N (or, at least, another
964 // subprogram that describes the same function).
965 //
966 // FIXME: Check this incrementally while visiting !dbg attachments.
967 // FIXME: Only check when N is the canonical subprogram for F.
968 SmallPtrSet<const MDNode *, 32> Seen;
969 for (auto &BB : *F)
970 for (auto &I : BB) {
971 // Be careful about using DILocation here since we might be dealing with
972 // broken code (this is the Verifier after all).
973 DILocation *DL =
974 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
975 if (!DL)
13
Assuming 'DL' is non-null
14
Taking false branch
976 continue;
977 if (!Seen.insert(DL).second)
15
Taking false branch
978 continue;
979
980 DILocalScope *Scope = DL->getInlinedAtScope();
981 if (Scope && !Seen.insert(Scope).second)
982 continue;
983
984 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
16
'?' condition is false
17
'SP' initialized to a null pointer value
985 if (SP && !Seen.insert(SP).second)
986 continue;
987
988 // FIXME: Once N is canonical, check "SP == &N".
989 Assert(SP->describes(F),do { if (!(SP->describes(F))) { CheckFailed("!dbg attachment points at wrong subprogram for function"
, &N, F, &I, DL, Scope, SP); return; } } while (0)
18
Within the expansion of the macro 'Assert':
a
Called C++ object pointer is null
990 "!dbg attachment points at wrong subprogram for function", &N, F,do { if (!(SP->describes(F))) { CheckFailed("!dbg attachment points at wrong subprogram for function"
, &N, F, &I, DL, Scope, SP); return; } } while (0)
991 &I, DL, Scope, SP)do { if (!(SP->describes(F))) { CheckFailed("!dbg attachment points at wrong subprogram for function"
, &N, F, &I, DL, Scope, SP); return; } } while (0)
;
992 }
993}
994
995void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
996 Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
997 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("invalid local scope", &
N, N.getRawScope()); return; } } while (0)
998 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("invalid local scope", &
N, N.getRawScope()); return; } } while (0)
;
999}
1000
1001void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1002 visitDILexicalBlockBase(N);
1003
1004 Assert(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { CheckFailed("cannot have column info without line info"
, &N); return; } } while (0)
1005 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { CheckFailed("cannot have column info without line info"
, &N); return; } } while (0)
;
1006}
1007
1008void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1009 visitDILexicalBlockBase(N);
1010}
1011
1012void Verifier::visitDINamespace(const DINamespace &N) {
1013 Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1014 if (auto *S = N.getRawScope())
1015 Assert(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { CheckFailed("invalid scope ref"
, &N, S); return; } } while (0)
;
1016}
1017
1018void Verifier::visitDIModule(const DIModule &N) {
1019 Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1020 Assert(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { CheckFailed("anonymous module"
, &N); return; } } while (0)
;
1021}
1022
1023void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1024 Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType())do { if (!(isTypeRef(N, N.getType()))) { CheckFailed("invalid type ref"
, &N, N.getType()); return; } } while (0)
;
1025}
1026
1027void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1028 visitDITemplateParameter(N);
1029
1030 Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { CheckFailed("invalid tag", &N); return; } } while (0
)
1031 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { CheckFailed("invalid tag", &N); return; } } while (0
)
;
1032}
1033
1034void Verifier::visitDITemplateValueParameter(
1035 const DITemplateValueParameter &N) {
1036 visitDITemplateParameter(N);
1037
1038 Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { CheckFailed
("invalid tag", &N); return; } } while (0)
1039 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { CheckFailed
("invalid tag", &N); return; } } while (0)
1040 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { CheckFailed
("invalid tag", &N); return; } } while (0)
1041 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1042}
1043
1044void Verifier::visitDIVariable(const DIVariable &N) {
1045 if (auto *S = N.getRawScope())
1046 Assert(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { CheckFailed("invalid scope"
, &N, S); return; } } while (0)
;
1047 Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isTypeRef(N, N.getRawType()))) { CheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (0)
;
1048 if (auto *F = N.getRawFile())
1049 Assert(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { CheckFailed("invalid file"
, &N, F); return; } } while (0)
;
1050}
1051
1052void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1053 // Checks common to all variables.
1054 visitDIVariable(N);
1055
1056 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1057 Assert(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { CheckFailed("missing global variable name"
, &N); return; } } while (0)
;
1058 if (auto *V = N.getRawVariable()) {
1059 Assert(isa<ConstantAsMetadata>(V) &&do { if (!(isa<ConstantAsMetadata>(V) && !isa<
Function>(cast<ConstantAsMetadata>(V)->getValue()
))) { CheckFailed("invalid global varaible ref", &N, V); return
; } } while (0)
1060 !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),do { if (!(isa<ConstantAsMetadata>(V) && !isa<
Function>(cast<ConstantAsMetadata>(V)->getValue()
))) { CheckFailed("invalid global varaible ref", &N, V); return
; } } while (0)
1061 "invalid global varaible ref", &N, V)do { if (!(isa<ConstantAsMetadata>(V) && !isa<
Function>(cast<ConstantAsMetadata>(V)->getValue()
))) { CheckFailed("invalid global varaible ref", &N, V); return
; } } while (0)
;
1062 }
1063 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1064 Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",do { if (!(isa<DIDerivedType>(Member))) { CheckFailed("invalid static data member declaration"
, &N, Member); return; } } while (0)
1065 &N, Member)do { if (!(isa<DIDerivedType>(Member))) { CheckFailed("invalid static data member declaration"
, &N, Member); return; } } while (0)
;
1066 }
1067}
1068
1069void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1070 // Checks common to all variables.
1071 visitDIVariable(N);
1072
1073 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1074 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (0)
1075 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (0)
;
1076}
1077
1078void Verifier::visitDIExpression(const DIExpression &N) {
1079 Assert(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { CheckFailed("invalid expression", &
N); return; } } while (0)
;
1080}
1081
1082void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1083 Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1084 if (auto *T = N.getRawType())
1085 Assert(isTypeRef(N, T), "invalid type ref", &N, T)do { if (!(isTypeRef(N, T))) { CheckFailed("invalid type ref"
, &N, T); return; } } while (0)
;
1086 if (auto *F = N.getRawFile())
1087 Assert(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { CheckFailed("invalid file"
, &N, F); return; } } while (0)
;
1088}
1089
1090void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1091 Assert(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
1092 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
1093 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
;
1094 if (auto *S = N.getRawScope())
1095 Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { CheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (0)
;
1096 Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,do { if (!(isDIRef(N, N.getEntity()))) { CheckFailed("invalid imported entity"
, &N, N.getEntity()); return; } } while (0)
1097 N.getEntity())do { if (!(isDIRef(N, N.getEntity()))) { CheckFailed("invalid imported entity"
, &N, N.getEntity()); return; } } while (0)
;
1098}
1099
1100void Verifier::visitComdat(const Comdat &C) {
1101 // The Module is invalid if the GlobalValue has private linkage. Entities
1102 // with private linkage don't have entries in the symbol table.
1103 if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1104 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (0)
1105 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (0)
;
1106}
1107
1108void Verifier::visitModuleIdents(const Module &M) {
1109 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1110 if (!Idents)
1111 return;
1112
1113 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1114 // Scan each llvm.ident entry and make sure that this requirement is met.
1115 for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
1116 const MDNode *N = Idents->getOperand(i);
1117 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (0)
1118 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (0)
;
1119 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (0)
1120 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (0)
1121 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (0)
1122 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (0)
;
1123 }
1124}
1125
1126void Verifier::visitModuleFlags(const Module &M) {
1127 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1128 if (!Flags) return;
1129
1130 // Scan each flag, and track the flags and requirements.
1131 DenseMap<const MDString*, const MDNode*> SeenIDs;
1132 SmallVector<const MDNode*, 16> Requirements;
1133 for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
1134 visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
1135 }
1136
1137 // Validate that the requirements in the module are valid.
1138 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1139 const MDNode *Requirement = Requirements[I];
1140 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1141 const Metadata *ReqValue = Requirement->getOperand(1);
1142
1143 const MDNode *Op = SeenIDs.lookup(Flag);
1144 if (!Op) {
1145 CheckFailed("invalid requirement on flag, flag is not present in module",
1146 Flag);
1147 continue;
1148 }
1149
1150 if (Op->getOperand(2) != ReqValue) {
1151 CheckFailed(("invalid requirement on flag, "
1152 "flag does not have the required value"),
1153 Flag);
1154 continue;
1155 }
1156 }
1157}
1158
1159void
1160Verifier::visitModuleFlag(const MDNode *Op,
1161 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1162 SmallVectorImpl<const MDNode *> &Requirements) {
1163 // Each module flag should have three arguments, the merge behavior (a
1164 // constant int), the flag ID (an MDString), and the value.
1165 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (0)
1166 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (0)
;
1167 Module::ModFlagBehavior MFB;
1168 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1169 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (0)
1170 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (0)
1171 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (0)
1172 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (0)
;
1173 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (0)
1174 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (0)
1175 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (0)
;
1176 }
1177 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1178 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (0)
1179 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (0)
;
1180
1181 // Sanity check the values for behaviors with additional requirements.
1182 switch (MFB) {
1183 case Module::Error:
1184 case Module::Warning:
1185 case Module::Override:
1186 // These behavior types accept any value.
1187 break;
1188
1189 case Module::Require: {
1190 // The value should itself be an MDNode with two operands, a flag ID (an
1191 // MDString), and a value.
1192 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1193 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (0)
1194 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (0)
1195 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (0)
;
1196 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (0)
1197 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (0)
1198 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (0)
1199 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (0)
;
1200
1201 // Append it to the list of requirements, to check once all module flags are
1202 // scanned.
1203 Requirements.push_back(Value);
1204 break;
1205 }
1206
1207 case Module::Append:
1208 case Module::AppendUnique: {
1209 // These behavior types require the operand be an MDNode.
1210 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (0)
1211 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (0)
1212 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (0)
1213 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (0)
;
1214 break;
1215 }
1216 }
1217
1218 // Unless this is a "requires" flag, check the ID is unique.
1219 if (MFB != Module::Require) {
1220 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1221 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (0)
1222 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (0)
;
1223 }
1224}
1225
1226void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1227 bool isFunction, const Value *V) {
1228 unsigned Slot = ~0U;
1229 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1230 if (Attrs.getSlotIndex(I) == Idx) {
1231 Slot = I;
1232 break;
1233 }
1234
1235 assert(Slot != ~0U && "Attribute set inconsistency!")((Slot != ~0U && "Attribute set inconsistency!") ? static_cast
<void> (0) : __assert_fail ("Slot != ~0U && \"Attribute set inconsistency!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 1235, __PRETTY_FUNCTION__))
;
1236
1237 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1238 I != E; ++I) {
1239 if (I->isStringAttribute())
1240 continue;
1241
1242 if (I->getKindAsEnum() == Attribute::NoReturn ||
1243 I->getKindAsEnum() == Attribute::NoUnwind ||
1244 I->getKindAsEnum() == Attribute::NoInline ||
1245 I->getKindAsEnum() == Attribute::AlwaysInline ||
1246 I->getKindAsEnum() == Attribute::OptimizeForSize ||
1247 I->getKindAsEnum() == Attribute::StackProtect ||
1248 I->getKindAsEnum() == Attribute::StackProtectReq ||
1249 I->getKindAsEnum() == Attribute::StackProtectStrong ||
1250 I->getKindAsEnum() == Attribute::SafeStack ||
1251 I->getKindAsEnum() == Attribute::NoRedZone ||
1252 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1253 I->getKindAsEnum() == Attribute::Naked ||
1254 I->getKindAsEnum() == Attribute::InlineHint ||
1255 I->getKindAsEnum() == Attribute::StackAlignment ||
1256 I->getKindAsEnum() == Attribute::UWTable ||
1257 I->getKindAsEnum() == Attribute::NonLazyBind ||
1258 I->getKindAsEnum() == Attribute::ReturnsTwice ||
1259 I->getKindAsEnum() == Attribute::SanitizeAddress ||
1260 I->getKindAsEnum() == Attribute::SanitizeThread ||
1261 I->getKindAsEnum() == Attribute::SanitizeMemory ||
1262 I->getKindAsEnum() == Attribute::MinSize ||
1263 I->getKindAsEnum() == Attribute::NoDuplicate ||
1264 I->getKindAsEnum() == Attribute::Builtin ||
1265 I->getKindAsEnum() == Attribute::NoBuiltin ||
1266 I->getKindAsEnum() == Attribute::Cold ||
1267 I->getKindAsEnum() == Attribute::OptimizeNone ||
1268 I->getKindAsEnum() == Attribute::JumpTable ||
1269 I->getKindAsEnum() == Attribute::Convergent ||
1270 I->getKindAsEnum() == Attribute::ArgMemOnly) {
1271 if (!isFunction) {
1272 CheckFailed("Attribute '" + I->getAsString() +
1273 "' only applies to functions!", V);
1274 return;
1275 }
1276 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1277 I->getKindAsEnum() == Attribute::ReadNone) {
1278 if (Idx == 0) {
1279 CheckFailed("Attribute '" + I->getAsString() +
1280 "' does not apply to function returns");
1281 return;
1282 }
1283 } else if (isFunction) {
1284 CheckFailed("Attribute '" + I->getAsString() +
1285 "' does not apply to functions!", V);
1286 return;
1287 }
1288 }
1289}
1290
1291// VerifyParameterAttrs - Check the given attributes for an argument or return
1292// value of the specified type. The value V is printed in error messages.
1293void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1294 bool isReturnValue, const Value *V) {
1295 if (!Attrs.hasAttributes(Idx))
1296 return;
1297
1298 VerifyAttributeTypes(Attrs, Idx, false, V);
1299
1300 if (isReturnValue)
1301 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
"'returned' do not apply to return values!", V); return; } }
while (0)
1302 !Attrs.hasAttribute(Idx, Attribute::Nest) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
"'returned' do not apply to return values!", V); return; } }
while (0)
1303 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
"'returned' do not apply to return values!", V); return; } }
while (0)
1304 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
"'returned' do not apply to return values!", V); return; } }
while (0)
1305 !Attrs.hasAttribute(Idx, Attribute::Returned) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
"'returned' do not apply to return values!", V); return; } }
while (0)
1306 !Attrs.hasAttribute(Idx, Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
"'returned' do not apply to return values!", V); return; } }
while (0)
1307 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
"'returned' do not apply to return values!", V); return; } }
while (0)
1308 "'returned' do not apply to return values!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
"'returned' do not apply to return values!", V); return; } }
while (0)
1309 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca))) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
"'returned' do not apply to return values!", V); return; } }
while (0)
;
1310
1311 // Check for mutually incompatible attributes. Only inreg is compatible with
1312 // sret.
1313 unsigned AttrCount = 0;
1314 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1315 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1316 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1317 Attrs.hasAttribute(Idx, Attribute::InReg);
1318 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1319 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (0)
1320 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (0)
1321 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (0)
;
1322
1323 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (0)
1324 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (0)
1325 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (0)
1326 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (0)
1327 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (0)
;
1328
1329 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (0)
1330 Attrs.hasAttribute(Idx, Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (0)
1331 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (0)
1332 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (0)
1333 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (0)
;
1334
1335 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(0)
1336 Attrs.hasAttribute(Idx, Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(0)
1337 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(0)
1338 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(0)
1339 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(0)
;
1340
1341 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (0)
1342 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (0)
1343 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (0)
1344 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (0)
1345 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (0)
;
1346
1347 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1348 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1349 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1350 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1351 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
;
1352
1353 Assert(!AttrBuilder(Attrs, Idx)do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
1354 .overlaps(AttributeFuncs::typeIncompatible(Ty)),do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
1355 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
1356 AttributeSet::get(*Context, Idx,do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
1357 AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
1358 V)do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
;
1359
1360 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1361 SmallPtrSet<Type*, 4> Visited;
1362 if (!PTy->getElementType()->isSized(&Visited)) {
1363 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (0)
1364 !Attrs.hasAttribute(Idx, Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (0)
1365 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (0)
1366 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (0)
;
1367 }
1368 } else {
1369 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (0)
1370 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (0)
1371 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (0)
;
1372 }
1373}
1374
1375// VerifyFunctionAttrs - Check parameter attributes against a function type.
1376// The value V is printed in error messages.
1377void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1378 const Value *V) {
1379 if (Attrs.isEmpty())
1380 return;
1381
1382 bool SawNest = false;
1383 bool SawReturned = false;
1384 bool SawSRet = false;
1385
1386 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1387 unsigned Idx = Attrs.getSlotIndex(i);
1388
1389 Type *Ty;
1390 if (Idx == 0)
1391 Ty = FT->getReturnType();
1392 else if (Idx-1 < FT->getNumParams())
1393 Ty = FT->getParamType(Idx-1);
1394 else
1395 break; // VarArgs attributes, verified elsewhere.
1396
1397 VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1398
1399 if (Idx == 0)
1400 continue;
1401
1402 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1403 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (0)
;
1404 SawNest = true;
1405 }
1406
1407 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1408 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (0)
1409 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (0)
;
1410 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (0)
1411 "Incompatible "do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (0)
1412 "argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (0)
1413 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (0)
;
1414 SawReturned = true;
1415 }
1416
1417 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1418 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (0)
;
1419 Assert(Idx == 1 || Idx == 2,do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (0)
1420 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (0)
;
1421 SawSRet = true;
1422 }
1423
1424 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1425 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (0)
1426 V)do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (0)
;
1427 }
1428 }
1429
1430 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1431 return;
1432
1433 VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1434
1435 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (0)
1436 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (0)
1437 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (0)
1438 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (0)
;
1439
1440 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1441 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1442 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1443 Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1444 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
;
1445
1446 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1447 Attribute::OptimizeNone)) {
1448 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),do { if (!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (0)
1449 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (0)
;
1450
1451 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (0)
1452 Attribute::OptimizeForSize),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (0)
1453 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (0)
;
1454
1455 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (0)
1456 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (0)
;
1457 }
1458
1459 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1460 Attribute::JumpTable)) {
1461 const GlobalValue *GV = cast<GlobalValue>(V);
1462 Assert(GV->hasUnnamedAddr(),do { if (!(GV->hasUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (0)
1463 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (0)
;
1464 }
1465}
1466
1467void Verifier::VerifyFunctionMetadata(
1468 const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
1469 if (MDs.empty())
1470 return;
1471
1472 for (unsigned i = 0; i < MDs.size(); i++) {
1473 if (MDs[i].first == LLVMContext::MD_prof) {
1474 MDNode *MD = MDs[i].second;
1475 Assert(MD->getNumOperands() == 2,do { if (!(MD->getNumOperands() == 2)) { CheckFailed("!prof annotations should have exactly 2 operands"
, MD); return; } } while (0)
1476 "!prof annotations should have exactly 2 operands", MD)do { if (!(MD->getNumOperands() == 2)) { CheckFailed("!prof annotations should have exactly 2 operands"
, MD); return; } } while (0)
;
1477
1478 // Check first operand.
1479 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (0)
1480 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (0)
;
1481 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (0)
1482 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (0)
;
1483 MDString *MDS = cast<MDString>(MD->getOperand(0));
1484 StringRef ProfName = MDS->getString();
1485 Assert(ProfName.equals("function_entry_count"),do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (0)
1486 "first operand should be 'function_entry_count'", MD)do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (0)
;
1487
1488 // Check second operand.
1489 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (0)
1490 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (0)
;
1491 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (0)
1492 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (0)
;
1493 }
1494 }
1495}
1496
1497void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
1498 if (CE->getOpcode() != Instruction::BitCast)
1499 return;
1500
1501 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (0)
1502 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (0)
1503 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (0)
;
1504}
1505
1506bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1507 if (Attrs.getNumSlots() == 0)
1508 return true;
1509
1510 unsigned LastSlot = Attrs.getNumSlots() - 1;
1511 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1512 if (LastIndex <= Params
1513 || (LastIndex == AttributeSet::FunctionIndex
1514 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1515 return true;
1516
1517 return false;
1518}
1519
1520/// \brief Verify that statepoint intrinsic is well formed.
1521void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
1522 assert(CS.getCalledFunction() &&((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 1524, __PRETTY_FUNCTION__))
1523 CS.getCalledFunction()->getIntrinsicID() ==((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 1524, __PRETTY_FUNCTION__))
1524 Intrinsic::experimental_gc_statepoint)((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 1524, __PRETTY_FUNCTION__))
;
1525
1526 const Instruction &CI = *CS.getInstruction();
1527
1528 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (0)
1529 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (0)
1530 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (0)
1531 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (0)
1532 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (0)
;
1533
1534 const Value *IDV = CS.getArgument(0);
1535 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (0)
1536 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (0)
;
1537
1538 const Value *NumPatchBytesV = CS.getArgument(1);
1539 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (0)
1540 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (0)
1541 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (0)
;
1542 const int64_t NumPatchBytes =
1543 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1544 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 1544, __PRETTY_FUNCTION__))
;
1545 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (0)
1546 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (0)
1547 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (0)
;
1548
1549 const Value *Target = CS.getArgument(2);
1550 auto *PT = dyn_cast<PointerType>(Target->getType());
1551 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (0)
1552 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (0)
;
1553 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1554
1555 const Value *NumCallArgsV = CS.getArgument(3);
1556 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (0)
1557 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (0)
1558 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (0)
1559 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (0)
;
1560 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1561 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (0)
1562 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (0)
1563 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (0)
1564 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (0)
;
1565 const int NumParams = (int)TargetFuncType->getNumParams();
1566 if (TargetFuncType->isVarArg()) {
1567 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (0)
1568 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (0)
;
1569
1570 // TODO: Remove this limitation
1571 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (0)
1572 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (0)
1573 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (0)
1574 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (0)
;
1575 } else
1576 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (0)
1577 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (0)
;
1578
1579 const Value *FlagsV = CS.getArgument(4);
1580 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (0)
1581 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (0)
;
1582 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1583 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (0)
1584 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (0)
;
1585
1586 // Verify that the types of the call parameter arguments match
1587 // the type of the wrapped callee.
1588 for (int i = 0; i < NumParams; i++) {
1589 Type *ParamType = TargetFuncType->getParamType(i);
1590 Type *ArgType = CS.getArgument(5 + i)->getType();
1591 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (0)
1592 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (0)
1593 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (0)
1594 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (0)
;
1595 }
1596
1597 const int EndCallArgsInx = 4 + NumCallArgs;
1598
1599 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1600 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (0)
1601 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (0)
1602 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (0)
1603 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (0)
;
1604 const int NumTransitionArgs =
1605 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1606 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (0)
1607 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (0)
;
1608 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1609
1610 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1611 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (0)
1612 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (0)
1613 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (0)
1614 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (0)
;
1615 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1616 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (0)
1617 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (0)
1618 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (0)
;
1619
1620 const int ExpectedNumArgs =
1621 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1622 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (0)
1623 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (0)
;
1624
1625 // Check that the only uses of this gc.statepoint are gc.result or
1626 // gc.relocate calls which are tied to this statepoint and thus part
1627 // of the same statepoint sequence
1628 for (const User *U : CI.users()) {
1629 const CallInst *Call = dyn_cast<const CallInst>(U);
1630 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (0)
;
1631 if (!Call) continue;
1632 Assert(isGCRelocate(Call) || isGCResult(Call),do { if (!(isGCRelocate(Call) || isGCResult(Call))) { CheckFailed
("gc.result or gc.relocate are the only value uses" "of a gc.statepoint"
, &CI, U); return; } } while (0)
1633 "gc.result or gc.relocate are the only value uses"do { if (!(isGCRelocate(Call) || isGCResult(Call))) { CheckFailed
("gc.result or gc.relocate are the only value uses" "of a gc.statepoint"
, &CI, U); return; } } while (0)
1634 "of a gc.statepoint",do { if (!(isGCRelocate(Call) || isGCResult(Call))) { CheckFailed
("gc.result or gc.relocate are the only value uses" "of a gc.statepoint"
, &CI, U); return; } } while (0)
1635 &CI, U)do { if (!(isGCRelocate(Call) || isGCResult(Call))) { CheckFailed
("gc.result or gc.relocate are the only value uses" "of a gc.statepoint"
, &CI, U); return; } } while (0)
;
1636 if (isGCResult(Call)) {
1637 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (0)
1638 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (0)
;
1639 } else if (isGCRelocate(Call)) {
1640 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (0)
1641 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (0)
;
1642 }
1643 }
1644
1645 // Note: It is legal for a single derived pointer to be listed multiple
1646 // times. It's non-optimal, but it is legal. It can also happen after
1647 // insertion if we strip a bitcast away.
1648 // Note: It is really tempting to check that each base is relocated and
1649 // that a derived pointer is never reused as a base pointer. This turns
1650 // out to be problematic since optimizations run after safepoint insertion
1651 // can recognize equality properties that the insertion logic doesn't know
1652 // about. See example statepoint.ll in the verifier subdirectory
1653}
1654
1655void Verifier::verifyFrameRecoverIndices() {
1656 for (auto &Counts : FrameEscapeInfo) {
1657 Function *F = Counts.first;
1658 unsigned EscapedObjectCount = Counts.second.first;
1659 unsigned MaxRecoveredIndex = Counts.second.second;
1660 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (0)
1661 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (0)
1662 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (0)
1663 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (0)
1664 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (0)
;
1665 }
1666}
1667
1668// visitFunction - Verify that a function is ok.
1669//
1670void Verifier::visitFunction(const Function &F) {
1671 // Check function arguments.
1672 FunctionType *FT = F.getFunctionType();
1673 unsigned NumArgs = F.arg_size();
1674
1675 Assert(Context == &F.getContext(),do { if (!(Context == &F.getContext())) { CheckFailed("Function context does not match Module context!"
, &F); return; } } while (0)
1676 "Function context does not match Module context!", &F)do { if (!(Context == &F.getContext())) { CheckFailed("Function context does not match Module context!"
, &F); return; } } while (0)
;
1677
1678 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (0)
;
1679 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (0)
1680 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (0)
1681 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (0)
;
1682 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (0)
1683 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (0)
1684 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (0)
;
1685
1686 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (0)
1687 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (0)
;
1688
1689 AttributeSet Attrs = F.getAttributes();
1690
1691 Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(VerifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (0)
1692 "Attribute after last parameter!", &F)do { if (!(VerifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (0)
;
1693
1694 // Check function attributes.
1695 VerifyFunctionAttrs(FT, Attrs, &F);
1696
1697 // On function declarations/definitions, we do not support the builtin
1698 // attribute. We do not check this in VerifyFunctionAttrs since that is
1699 // checking for Attributes that can/can not ever be on functions.
1700 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (0)
1701 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (0)
;
1702
1703 // Check that this function meets the restrictions on this calling convention.
1704 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1705 // restrictions can be lifted.
1706 switch (F.getCallingConv()) {
1707 default:
1708 case CallingConv::C:
1709 break;
1710 case CallingConv::Fast:
1711 case CallingConv::Cold:
1712 case CallingConv::Intel_OCL_BI:
1713 case CallingConv::PTX_Kernel:
1714 case CallingConv::PTX_Device:
1715 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (0)
1716 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (0)
1717 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (0)
;
1718 break;
1719 }
1720
1721 bool isLLVMdotName = F.getName().size() >= 5 &&
1722 F.getName().substr(0, 5) == "llvm.";
1723
1724 // Check that the argument values match the function type for this function...
1725 unsigned i = 0;
1726 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1727 ++I, ++i) {
1728 Assert(I->getType() == FT->getParamType(i),do { if (!(I->getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", I, FT
->getParamType(i)); return; } } while (0)
1729 "Argument value does not match function argument type!", I,do { if (!(I->getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", I, FT
->getParamType(i)); return; } } while (0)
1730 FT->getParamType(i))do { if (!(I->getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", I, FT
->getParamType(i)); return; } } while (0)
;
1731 Assert(I->getType()->isFirstClassType(),do { if (!(I->getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", I); return
; } } while (0)
1732 "Function arguments must have first-class types!", I)do { if (!(I->getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", I); return
; } } while (0)
;
1733 if (!isLLVMdotName) {
1734 Assert(!I->getType()->isMetadataTy(),do { if (!(!I->getType()->isMetadataTy())) { CheckFailed
("Function takes metadata but isn't an intrinsic", I, &F)
; return; } } while (0)
1735 "Function takes metadata but isn't an intrinsic", I, &F)do { if (!(!I->getType()->isMetadataTy())) { CheckFailed
("Function takes metadata but isn't an intrinsic", I, &F)
; return; } } while (0)
;
1736 Assert(!I->getType()->isTokenTy(),do { if (!(!I->getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, I, &F); return; } } while (0)
1737 "Function takes token but isn't an intrinsic", I, &F)do { if (!(!I->getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, I, &F); return; } } while (0)
;
1738 }
1739 }
1740
1741 if (!isLLVMdotName)
1742 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (0)
1743 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (0)
;
1744
1745 // Get the function metadata attachments.
1746 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1747 F.getAllMetadata(MDs);
1748 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 1748, __PRETTY_FUNCTION__))
;
1749 VerifyFunctionMetadata(MDs);
1750
1751 if (F.isMaterializable()) {
1752 // Function has a body somewhere we can't see.
1753 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (0)
1754 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (0)
;
1755 } else if (F.isDeclaration()) {
1756 Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),do { if (!(F.hasExternalLinkage() || F.hasExternalWeakLinkage
())) { CheckFailed("invalid linkage type for function declaration"
, &F); return; } } while (0)
1757 "invalid linkage type for function declaration", &F)do { if (!(F.hasExternalLinkage() || F.hasExternalWeakLinkage
())) { CheckFailed("invalid linkage type for function declaration"
, &F); return; } } while (0)
;
1758 Assert(MDs.empty(), "function without a body cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("function without a body cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (0)
1759 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("function without a body cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (0)
;
1760 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (0)
1761 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (0)
;
1762 } else {
1763 // Verify that this function (which has a body) is not named "llvm.*". It
1764 // is not legal to define intrinsics.
1765 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (0)
;
1766
1767 // Check the entry node
1768 const BasicBlock *Entry = &F.getEntryBlock();
1769 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (0)
1770 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (0)
;
1771
1772 // The address of the entry block cannot be taken, unless it is dead.
1773 if (Entry->hasAddressTaken()) {
1774 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (0)
1775 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (0)
;
1776 }
1777
1778 // Visit metadata attachments.
1779 for (const auto &I : MDs)
1780 visitMDNode(*I.second);
1781 }
1782
1783 // If this function is actually an intrinsic, verify that it is only used in
1784 // direct call/invokes, never having its "address taken".
1785 if (F.getIntrinsicID()) {
1786 const User *U;
1787 if (F.hasAddressTaken(&U))
1788 Assert(0, "Invalid user of intrinsic instruction!", U)do { if (!(0)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (0)
;
1789 }
1790
1791 Assert(!F.hasDLLImportStorageClass() ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (0)
1792 (F.isDeclaration() && F.hasExternalLinkage()) ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (0)
1793 F.hasAvailableExternallyLinkage(),do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (0)
1794 "Function is marked as dllimport, but not external.", &F)do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (0)
;
1795}
1796
1797// verifyBasicBlock - Verify that a basic block is well formed...
1798//
1799void Verifier::visitBasicBlock(BasicBlock &BB) {
1800 InstsInThisBlock.clear();
1801
1802 // Ensure that basic blocks have terminators!
1803 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (0)
;
1804
1805 // Check constraints that this basic block imposes on all of the PHI nodes in
1806 // it.
1807 if (isa<PHINode>(BB.front())) {
1808 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1809 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1810 std::sort(Preds.begin(), Preds.end());
1811 PHINode *PN;
1812 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1813 // Ensure that PHI nodes have at least one entry!
1814 Assert(PN->getNumIncomingValues() != 0,do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (0)
1815 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (0)
1816 "the PHI should be removed!",do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (0)
1817 PN)do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (0)
;
1818 Assert(PN->getNumIncomingValues() == Preds.size(),do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (0)
1819 "PHINode should have one entry for each predecessor of its "do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (0)
1820 "parent basic block!",do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (0)
1821 PN)do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (0)
;
1822
1823 // Get and sort all incoming values in the PHI node...
1824 Values.clear();
1825 Values.reserve(PN->getNumIncomingValues());
1826 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1827 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1828 PN->getIncomingValue(i)));
1829 std::sort(Values.begin(), Values.end());
1830
1831 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1832 // Check to make sure that if there is more than one entry for a
1833 // particular basic block in this PHI node, that the incoming values are
1834 // all identical.
1835 //
1836 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (0)
1837 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (0)
1838 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (0)
1839 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (0)
1840 PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (0)
;
1841
1842 // Check to make sure that the predecessors and PHI node entries are
1843 // matched up.
1844 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (0)
1845 "PHI node entries do not match predecessors!", PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (0)
1846 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (0)
;
1847 }
1848 }
1849 }
1850
1851 // Check that all instructions have their parent pointers set up correctly.
1852 for (auto &I : BB)
1853 {
1854 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (0)
;
1855 }
1856}
1857
1858void Verifier::visitTerminatorInst(TerminatorInst &I) {
1859 // Ensure that terminators only exist at the end of the basic block.
1860 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (0)
1861 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (0)
;
1862 visitInstruction(I);
1863}
1864
1865void Verifier::visitBranchInst(BranchInst &BI) {
1866 if (BI.isConditional()) {
1867 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (0)
1868 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (0)
;
1869 }
1870 visitTerminatorInst(BI);
1871}
1872
1873void Verifier::visitReturnInst(ReturnInst &RI) {
1874 Function *F = RI.getParent()->getParent();
1875 unsigned N = RI.getNumOperands();
1876 if (F->getReturnType()->isVoidTy())
1877 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (0)
1878 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (0)
1879 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (0)
1880 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (0)
;
1881 else
1882 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (0)
1883 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (0)
1884 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (0)
1885 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (0)
;
1886
1887 // Check to make sure that the return value has necessary properties for
1888 // terminators...
1889 visitTerminatorInst(RI);
1890}
1891
1892void Verifier::visitSwitchInst(SwitchInst &SI) {
1893 // Check to make sure that all of the constants in the switch instruction
1894 // have the same type as the switched-on value.
1895 Type *SwitchTy = SI.getCondition()->getType();
1896 SmallPtrSet<ConstantInt*, 32> Constants;
1897 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1898 Assert(i.getCaseValue()->getType() == SwitchTy,do { if (!(i.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (0)
1899 "Switch constants must all be same type as switch value!", &SI)do { if (!(i.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (0)
;
1900 Assert(Constants.insert(i.getCaseValue()).second,do { if (!(Constants.insert(i.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, i.getCaseValue(
)); return; } } while (0)
1901 "Duplicate integer as switch case", &SI, i.getCaseValue())do { if (!(Constants.insert(i.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, i.getCaseValue(
)); return; } } while (0)
;
1902 }
1903
1904 visitTerminatorInst(SI);
1905}
1906
1907void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1908 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (0)
1909 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (0)
;
1910 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1911 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (0)
1912 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (0)
;
1913
1914 visitTerminatorInst(BI);
1915}
1916
1917void Verifier::visitSelectInst(SelectInst &SI) {
1918 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (0)
1919 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (0)
1920 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (0)
;
1921
1922 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (0)
1923 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (0)
;
1924 visitInstruction(SI);
1925}
1926
1927/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1928/// a pass, if any exist, it's an error.
1929///
1930void Verifier::visitUserOp1(Instruction &I) {
1931 Assert(0, "User-defined operators should not live outside of a pass!", &I)do { if (!(0)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (0)
;
1932}
1933
1934void Verifier::visitTruncInst(TruncInst &I) {
1935 // Get the source and destination types
1936 Type *SrcTy = I.getOperand(0)->getType();
1937 Type *DestTy = I.getType();
1938
1939 // Get the size of the types in bits, we'll need this later
1940 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1941 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1942
1943 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (0)
;
1944 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (0)
;
1945 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (0)
1946 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (0)
;
1947 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (0)
;
1948
1949 visitInstruction(I);
1950}
1951
1952void Verifier::visitZExtInst(ZExtInst &I) {
1953 // Get the source and destination types
1954 Type *SrcTy = I.getOperand(0)->getType();
1955 Type *DestTy = I.getType();
1956
1957 // Get the size of the types in bits, we'll need this later
1958 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (0)
;
1959 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (0)
;
1960 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (0)
1961 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (0)
;
1962 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1963 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1964
1965 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (0)
;
1966
1967 visitInstruction(I);
1968}
1969
1970void Verifier::visitSExtInst(SExtInst &I) {
1971 // Get the source and destination types
1972 Type *SrcTy = I.getOperand(0)->getType();
1973 Type *DestTy = I.getType();
1974
1975 // Get the size of the types in bits, we'll need this later
1976 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1977 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1978
1979 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (0)
;
1980 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (0)
;
1981 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (0)
1982 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (0)
;
1983 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (0)
;
1984
1985 visitInstruction(I);
1986}
1987
1988void Verifier::visitFPTruncInst(FPTruncInst &I) {
1989 // Get the source and destination types
1990 Type *SrcTy = I.getOperand(0)->getType();
1991 Type *DestTy = I.getType();
1992 // Get the size of the types in bits, we'll need this later
1993 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1994 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1995
1996 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (0)
;
1997 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (0)
;
1998 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (0)
1999 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (0)
;
2000 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (0)
;
2001
2002 visitInstruction(I);
2003}
2004
2005void Verifier::visitFPExtInst(FPExtInst &I) {
2006 // Get the source and destination types
2007 Type *SrcTy = I.getOperand(0)->getType();
2008 Type *DestTy = I.getType();
2009
2010 // Get the size of the types in bits, we'll need this later
2011 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2012 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2013
2014 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (0)
;
2015 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (0)
;
2016 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (0)
2017 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (0)
;
2018 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (0)
;
2019
2020 visitInstruction(I);
2021}
2022
2023void Verifier::visitUIToFPInst(UIToFPInst &I) {
2024 // Get the source and destination types
2025 Type *SrcTy = I.getOperand(0)->getType();
2026 Type *DestTy = I.getType();
2027
2028 bool SrcVec = SrcTy->isVectorTy();
2029 bool DstVec = DestTy->isVectorTy();
2030
2031 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (0)
2032 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (0)
;
2033 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (0)
2034 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (0)
;
2035 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (0)
2036 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (0)
;
2037
2038 if (SrcVec && DstVec)
2039 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (0)
2040 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (0)
2041 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (0)
;
2042
2043 visitInstruction(I);
2044}
2045
2046void Verifier::visitSIToFPInst(SIToFPInst &I) {
2047 // Get the source and destination types
2048 Type *SrcTy = I.getOperand(0)->getType();
2049 Type *DestTy = I.getType();
2050
2051 bool SrcVec = SrcTy->isVectorTy();
2052 bool DstVec = DestTy->isVectorTy();
2053
2054 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (0)
2055 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (0)
;
2056 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (0)
2057 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (0)
;
2058 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (0)
2059 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (0)
;
2060
2061 if (SrcVec && DstVec)
2062 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (0)
2063 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (0)
2064 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (0)
;
2065
2066 visitInstruction(I);
2067}
2068
2069void Verifier::visitFPToUIInst(FPToUIInst &I) {
2070 // Get the source and destination types
2071 Type *SrcTy = I.getOperand(0)->getType();
2072 Type *DestTy = I.getType();
2073
2074 bool SrcVec = SrcTy->isVectorTy();
2075 bool DstVec = DestTy->isVectorTy();
2076
2077 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (0)
2078 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (0)
;
2079 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (0)
2080 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (0)
;
2081 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (0)
2082 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (0)
;
2083
2084 if (SrcVec && DstVec)
2085 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (0)
2086 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (0)
2087 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (0)
;
2088
2089 visitInstruction(I);
2090}
2091
2092void Verifier::visitFPToSIInst(FPToSIInst &I) {
2093 // Get the source and destination types
2094 Type *SrcTy = I.getOperand(0)->getType();
2095 Type *DestTy = I.getType();
2096
2097 bool SrcVec = SrcTy->isVectorTy();
2098 bool DstVec = DestTy->isVectorTy();
2099
2100 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (0)
2101 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (0)
;
2102 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (0)
2103 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (0)
;
2104 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (0)
2105 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (0)
;
2106
2107 if (SrcVec && DstVec)
2108 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (0)
2109 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (0)
2110 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (0)
;
2111
2112 visitInstruction(I);
2113}
2114
2115void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2116 // Get the source and destination types
2117 Type *SrcTy = I.getOperand(0)->getType();
2118 Type *DestTy = I.getType();
2119
2120 Assert(SrcTy->getScalarType()->isPointerTy(),do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(0)
2121 "PtrToInt source must be pointer", &I)do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(0)
;
2122 Assert(DestTy->getScalarType()->isIntegerTy(),do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(0)
2123 "PtrToInt result must be integral", &I)do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(0)
;
2124 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (0)
2125 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (0)
;
2126
2127 if (SrcTy->isVectorTy()) {
2128 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2129 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2130 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (0)
2131 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (0)
;
2132 }
2133
2134 visitInstruction(I);
2135}
2136
2137void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2138 // Get the source and destination types
2139 Type *SrcTy = I.getOperand(0)->getType();
2140 Type *DestTy = I.getType();
2141
2142 Assert(SrcTy->getScalarType()->isIntegerTy(),do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(0)
2143 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(0)
;
2144 Assert(DestTy->getScalarType()->isPointerTy(),do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(0)
2145 "IntToPtr result must be a pointer", &I)do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(0)
;
2146 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (0)
2147 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (0)
;
2148 if (SrcTy->isVectorTy()) {
2149 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2150 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2151 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (0)
2152 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (0)
;
2153 }
2154 visitInstruction(I);
2155}
2156
2157void Verifier::visitBitCastInst(BitCastInst &I) {
2158 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (0)
2159 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (0)
2160 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (0)
;
2161 visitInstruction(I);
2162}
2163
2164void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2165 Type *SrcTy = I.getOperand(0)->getType();
2166 Type *DestTy = I.getType();
2167
2168 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (0)
2169 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (0)
;
2170 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (0)
2171 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (0)
;
2172 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (0)
2173 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (0)
;
2174 if (SrcTy->isVectorTy())
2175 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (0)
2176 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (0)
;
2177 visitInstruction(I);
2178}
2179
2180/// visitPHINode - Ensure that a PHI node is well formed.
2181///
2182void Verifier::visitPHINode(PHINode &PN) {
2183 // Ensure that the PHI nodes are all grouped together at the top of the block.
2184 // This can be tested by checking whether the instruction before this is
2185 // either nonexistent (because this is begin()) or is a PHI node. If not,
2186 // then there is some other instruction before a PHI.
2187 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (0)
2188 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (0)
2189 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (0)
;
2190
2191 // Check that a PHI doesn't yield a Token.
2192 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (0)
;
2193
2194 // Check that all of the values of the PHI node have the same type as the
2195 // result, and that the incoming blocks are really basic blocks.
2196 for (Value *IncValue : PN.incoming_values()) {
2197 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (0)
2198 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (0)
;
2199 }
2200
2201 // All other PHI node constraints are checked in the visitBasicBlock method.
2202
2203 visitInstruction(PN);
2204}
2205
2206void Verifier::VerifyCallSite(CallSite CS) {
2207 Instruction *I = CS.getInstruction();
2208
2209 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (0)
2210 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (0)
;
2211 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2212
2213 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (0)
2214 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (0)
;
2215
2216 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (0)
2217 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (0)
;
2218
2219 FunctionType *FTy = CS.getFunctionType();
2220
2221 // Verify that the correct number of arguments are being passed
2222 if (FTy->isVarArg())
2223 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (0)
2224 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (0)
;
2225 else
2226 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (0)
2227 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (0)
;
2228
2229 // Verify that all arguments to the call match the function type.
2230 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2231 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (0)
2232 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (0)
2233 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (0)
;
2234
2235 AttributeSet Attrs = CS.getAttributes();
2236
2237 Assert(VerifyAttributeCount(Attrs, CS.arg_size()),do { if (!(VerifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (0)
2238 "Attribute after last parameter!", I)do { if (!(VerifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (0)
;
2239
2240 // Verify call attributes.
2241 VerifyFunctionAttrs(FTy, Attrs, I);
2242
2243 // Conservatively check the inalloca argument.
2244 // We have a bug if we can find that there is an underlying alloca without
2245 // inalloca.
2246 if (CS.hasInAllocaArgument()) {
2247 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2248 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2249 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (0)
2250 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (0)
;
2251 }
2252
2253 if (FTy->isVarArg()) {
2254 // FIXME? is 'nest' even legal here?
2255 bool SawNest = false;
2256 bool SawReturned = false;
2257
2258 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2259 if (Attrs.hasAttribute(Idx, Attribute::Nest))
2260 SawNest = true;
2261 if (Attrs.hasAttribute(Idx, Attribute::Returned))
2262 SawReturned = true;
2263 }
2264
2265 // Check attributes on the varargs part.
2266 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2267 Type *Ty = CS.getArgument(Idx-1)->getType();
2268 VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
2269
2270 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2271 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (0)
;
2272 SawNest = true;
2273 }
2274
2275 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2276 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (0)
2277 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (0)
;
2278 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (0)
2279 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (0)
2280 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (0)
2281 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (0)
;
2282 SawReturned = true;
2283 }
2284
2285 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (0)
2286 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (0)
;
2287
2288 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2289 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I)do { if (!(Idx == CS.arg_size())) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (0)
;
2290 }
2291 }
2292
2293 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2294 if (CS.getCalledFunction() == nullptr ||
2295 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2296 for (Type *ParamTy : FTy->params()) {
2297 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (0)
2298 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (0)
;
2299 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (0)
2300 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (0)
;
2301 }
2302 }
2303
2304 // Verify that indirect calls don't return tokens.
2305 if (CS.getCalledFunction() == nullptr)
2306 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (0)
2307 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (0)
;
2308
2309 if (Function *F = CS.getCalledFunction())
2310 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2311 visitIntrinsicCallSite(ID, CS);
2312
2313 visitInstruction(*I);
2314}
2315
2316/// Two types are "congruent" if they are identical, or if they are both pointer
2317/// types with different pointee types and the same address space.
2318static bool isTypeCongruent(Type *L, Type *R) {
2319 if (L == R)
2320 return true;
2321 PointerType *PL = dyn_cast<PointerType>(L);
2322 PointerType *PR = dyn_cast<PointerType>(R);
2323 if (!PL || !PR)
2324 return false;
2325 return PL->getAddressSpace() == PR->getAddressSpace();
2326}
2327
2328static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2329 static const Attribute::AttrKind ABIAttrs[] = {
2330 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2331 Attribute::InReg, Attribute::Returned};
2332 AttrBuilder Copy;
2333 for (auto AK : ABIAttrs) {
2334 if (Attrs.hasAttribute(I + 1, AK))
2335 Copy.addAttribute(AK);
2336 }
2337 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2338 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2339 return Copy;
2340}
2341
2342void Verifier::verifyMustTailCall(CallInst &CI) {
2343 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (0)
;
2344
2345 // - The caller and callee prototypes must match. Pointer types of
2346 // parameters or return types may differ in pointee type, but not
2347 // address space.
2348 Function *F = CI.getParent()->getParent();
2349 FunctionType *CallerTy = F->getFunctionType();
2350 FunctionType *CalleeTy = CI.getFunctionType();
2351 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (0)
2352 "cannot guarantee tail call due to mismatched parameter counts", &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (0)
;
2353 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (0)
2354 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (0)
;
2355 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (0)
2356 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (0)
;
2357 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2358 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (0)
2359 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (0)
2360 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (0)
;
2361 }
2362
2363 // - The calling conventions of the caller and callee must match.
2364 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (0)
2365 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (0)
;
2366
2367 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2368 // returned, and inalloca, must match.
2369 AttributeSet CallerAttrs = F->getAttributes();
2370 AttributeSet CalleeAttrs = CI.getAttributes();
2371 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2372 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2373 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2374 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (0)
2375 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (0)
2376 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (0)
2377 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (0)
;
2378 }
2379
2380 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2381 // or a pointer bitcast followed by a ret instruction.
2382 // - The ret instruction must return the (possibly bitcasted) value
2383 // produced by the call or void.
2384 Value *RetVal = &CI;
2385 Instruction *Next = CI.getNextNode();
2386
2387 // Handle the optional bitcast.
2388 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2389 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (0)
2390 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (0)
;
2391 RetVal = BI;
2392 Next = BI->getNextNode();
2393 }
2394
2395 // Check the return.
2396 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2397 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (0)
2398 &CI)do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (0)
;
2399 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (0)
2400 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (0)
;
2401}
2402
2403void Verifier::visitCallInst(CallInst &CI) {
2404 VerifyCallSite(&CI);
2405
2406 if (CI.isMustTailCall())
2407 verifyMustTailCall(CI);
2408}
2409
2410void Verifier::visitInvokeInst(InvokeInst &II) {
2411 VerifyCallSite(&II);
2412
2413 // Verify that the first non-PHI instruction of the unwind destination is an
2414 // exception handling instruction.
2415 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (0)
2416 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (0)
2417 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (0)
2418 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (0)
;
2419
2420 visitTerminatorInst(II);
2421}
2422
2423/// visitBinaryOperator - Check that both arguments to the binary operator are
2424/// of the same type!
2425///
2426void Verifier::visitBinaryOperator(BinaryOperator &B) {
2427 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (0)
2428 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (0)
;
2429
2430 switch (B.getOpcode()) {
2431 // Check that integer arithmetic operators are only used with
2432 // integral operands.
2433 case Instruction::Add:
2434 case Instruction::Sub:
2435 case Instruction::Mul:
2436 case Instruction::SDiv:
2437 case Instruction::UDiv:
2438 case Instruction::SRem:
2439 case Instruction::URem:
2440 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (0)
2441 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (0)
;
2442 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2443 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2444 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2445 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
;
2446 break;
2447 // Check that floating-point arithmetic operators are only used with
2448 // floating-point operands.
2449 case Instruction::FAdd:
2450 case Instruction::FSub:
2451 case Instruction::FMul:
2452 case Instruction::FDiv:
2453 case Instruction::FRem:
2454 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (0)
2455 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (0)
2456 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (0)
2457 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (0)
;
2458 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2459 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2460 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2461 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
;
2462 break;
2463 // Check that logical operators are only used with integral operands.
2464 case Instruction::And:
2465 case Instruction::Or:
2466 case Instruction::Xor:
2467 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (0)
2468 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (0)
;
2469 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (0)
2470 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (0)
2471 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (0)
;
2472 break;
2473 case Instruction::Shl:
2474 case Instruction::LShr:
2475 case Instruction::AShr:
2476 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (0)
2477 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (0)
;
2478 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (0)
2479 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (0)
;
2480 break;
2481 default:
2482 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 2482)
;
2483 }
2484
2485 visitInstruction(B);
2486}
2487
2488void Verifier::visitICmpInst(ICmpInst &IC) {
2489 // Check that the operands are the same type
2490 Type *Op0Ty = IC.getOperand(0)->getType();
2491 Type *Op1Ty = IC.getOperand(1)->getType();
2492 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (0)
2493 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (0)
;
2494 // Check that the operands are the right type
2495 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (0)
2496 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (0)
;
2497 // Check that the predicate is valid.
2498 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (0)
2499 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (0)
2500 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (0)
;
2501
2502 visitInstruction(IC);
2503}
2504
2505void Verifier::visitFCmpInst(FCmpInst &FC) {
2506 // Check that the operands are the same type
2507 Type *Op0Ty = FC.getOperand(0)->getType();
2508 Type *Op1Ty = FC.getOperand(1)->getType();
2509 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (0)
2510 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (0)
;
2511 // Check that the operands are the right type
2512 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (0)
2513 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (0)
;
2514 // Check that the predicate is valid.
2515 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (0)
2516 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (0)
2517 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (0)
;
2518
2519 visitInstruction(FC);
2520}
2521
2522void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2523 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (0)
2524 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (0)
2525 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (0)
;
2526 visitInstruction(EI);
2527}
2528
2529void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2530 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (0)
2531 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (0)
2532 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (0)
;
2533 visitInstruction(IE);
2534}
2535
2536void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2537 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (0)
2538 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (0)
2539 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (0)
;
2540 visitInstruction(SV);
2541}
2542
2543void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2544 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2545
2546 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (0)
2547 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (0)
;
2548 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (0)
;
2549 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2550 Type *ElTy =
2551 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2552 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (0)
;
2553
2554 Assert(GEP.getType()->getScalarType()->isPointerTy() &&do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (0)
2555 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (0)
2556 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (0)
;
2557
2558 if (GEP.getType()->isVectorTy()) {
2559 // Additional checks for vector GEPs.
2560 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2561 if (GEP.getPointerOperandType()->isVectorTy())
2562 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (0)
2563 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (0)
;
2564 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2565 Type *IndexTy = Idxs[i]->getType();
2566 if (IndexTy->isVectorTy()) {
2567 unsigned IndexWidth = IndexTy->getVectorNumElements();
2568 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (0)
;
2569 }
2570 Assert(IndexTy->getScalarType()->isIntegerTy(),do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(0)
2571 "All GEP indices should be of integer type")do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(0)
;
2572 }
2573 }
2574 visitInstruction(GEP);
2575}
2576
2577static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2578 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2579}
2580
2581void Verifier::visitRangeMetadata(Instruction& I,
2582 MDNode* Range, Type* Ty) {
2583 assert(Range &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 2585, __PRETTY_FUNCTION__))
2584 Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 2585, __PRETTY_FUNCTION__))
2585 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 2585, __PRETTY_FUNCTION__))
;
2586
2587 unsigned NumOperands = Range->getNumOperands();
2588 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (0)
;
2589 unsigned NumRanges = NumOperands / 2;
2590 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (0)
;
2591
2592 ConstantRange LastRange(1); // Dummy initial value
2593 for (unsigned i = 0; i < NumRanges; ++i) {
2594 ConstantInt *Low =
2595 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2596 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (0)
;
2597 ConstantInt *High =
2598 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2599 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (0)
;
2600 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (0)
2601 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (0)
;
2602
2603 APInt HighV = High->getValue();
2604 APInt LowV = Low->getValue();
2605 ConstantRange CurRange(LowV, HighV);
2606 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (0)
2607 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (0)
;
2608 if (i != 0) {
2609 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (0)
2610 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (0)
;
2611 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (0)
2612 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (0)
;
2613 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (0)
2614 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (0)
;
2615 }
2616 LastRange = ConstantRange(LowV, HighV);
2617 }
2618 if (NumRanges > 2) {
2619 APInt FirstLow =
2620 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2621 APInt FirstHigh =
2622 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2623 ConstantRange FirstRange(FirstLow, FirstHigh);
2624 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (0)
2625 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (0)
;
2626 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (0)
2627 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (0)
;
2628 }
2629}
2630
2631void Verifier::visitLoadInst(LoadInst &LI) {
2632 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2633 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (0)
;
2634 Type *ElTy = LI.getType();
2635 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (0)
2636 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (0)
;
2637 if (LI.isAtomic()) {
2638 Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,do { if (!(LI.getOrdering() != Release && LI.getOrdering
() != AcquireRelease)) { CheckFailed("Load cannot have Release ordering"
, &LI); return; } } while (0)
2639 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != Release && LI.getOrdering
() != AcquireRelease)) { CheckFailed("Load cannot have Release ordering"
, &LI); return; } } while (0)
;
2640 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (0)
2641 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (0)
;
2642 if (!ElTy->isPointerTy()) {
2643 Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomic load operand must have integer type!"
, &LI, ElTy); return; } } while (0)
2644 &LI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomic load operand must have integer type!"
, &LI, ElTy); return; } } while (0)
;
2645 unsigned Size = ElTy->getPrimitiveSizeInBits();
2646 Assert(Size >= 8 && !(Size & (Size - 1)),do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("atomic load operand must be power-of-two byte-sized integer"
, &LI, ElTy); return; } } while (0)
2647 "atomic load operand must be power-of-two byte-sized integer", &LI,do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("atomic load operand must be power-of-two byte-sized integer"
, &LI, ElTy); return; } } while (0)
2648 ElTy)do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("atomic load operand must be power-of-two byte-sized integer"
, &LI, ElTy); return; } } while (0)
;
2649 }
2650 } else {
2651 Assert(LI.getSynchScope() == CrossThread,do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (0)
2652 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (0)
;
2653 }
2654
2655 visitInstruction(LI);
2656}
2657
2658void Verifier::visitStoreInst(StoreInst &SI) {
2659 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
2660 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (0)
;
2661 Type *ElTy = PTy->getElementType();
2662 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (0)
2663 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (0)
;
2664 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (0)
2665 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (0)
;
2666 if (SI.isAtomic()) {
2667 Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,do { if (!(SI.getOrdering() != Acquire && SI.getOrdering
() != AcquireRelease)) { CheckFailed("Store cannot have Acquire ordering"
, &SI); return; } } while (0)
2668 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != Acquire && SI.getOrdering
() != AcquireRelease)) { CheckFailed("Store cannot have Acquire ordering"
, &SI); return; } } while (0)
;
2669 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (0)
2670 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (0)
;
2671 if (!ElTy->isPointerTy()) {
2672 Assert(ElTy->isIntegerTy(),do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomic store operand must have integer type!"
, &SI, ElTy); return; } } while (0)
2673 "atomic store operand must have integer type!", &SI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomic store operand must have integer type!"
, &SI, ElTy); return; } } while (0)
;
2674 unsigned Size = ElTy->getPrimitiveSizeInBits();
2675 Assert(Size >= 8 && !(Size & (Size - 1)),do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("atomic store operand must be power-of-two byte-sized integer"
, &SI, ElTy); return; } } while (0)
2676 "atomic store operand must be power-of-two byte-sized integer",do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("atomic store operand must be power-of-two byte-sized integer"
, &SI, ElTy); return; } } while (0)
2677 &SI, ElTy)do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("atomic store operand must be power-of-two byte-sized integer"
, &SI, ElTy); return; } } while (0)
;
2678 }
2679 } else {
2680 Assert(SI.getSynchScope() == CrossThread,do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (0)
2681 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (0)
;
2682 }
2683 visitInstruction(SI);
2684}
2685
2686void Verifier::visitAllocaInst(AllocaInst &AI) {
2687 SmallPtrSet<Type*, 4> Visited;
2688 PointerType *PTy = AI.getType();
2689 Assert(PTy->getAddressSpace() == 0,do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (0)
2690 "Allocation instruction pointer not in the generic address space!",do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (0)
2691 &AI)do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (0)
;
2692 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (0)
2693 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (0)
;
2694 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (0)
2695 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (0)
;
2696 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (0)
2697 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (0)
;
2698
2699 visitInstruction(AI);
2700}
2701
2702void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2703
2704 // FIXME: more conditions???
2705 Assert(CXI.getSuccessOrdering() != NotAtomic,do { if (!(CXI.getSuccessOrdering() != NotAtomic)) { CheckFailed
("cmpxchg instructions must be atomic.", &CXI); return; }
} while (0)
2706 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != NotAtomic)) { CheckFailed
("cmpxchg instructions must be atomic.", &CXI); return; }
} while (0)
;
2707 Assert(CXI.getFailureOrdering() != NotAtomic,do { if (!(CXI.getFailureOrdering() != NotAtomic)) { CheckFailed
("cmpxchg instructions must be atomic.", &CXI); return; }
} while (0)
2708 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != NotAtomic)) { CheckFailed
("cmpxchg instructions must be atomic.", &CXI); return; }
} while (0)
;
2709 Assert(CXI.getSuccessOrdering() != Unordered,do { if (!(CXI.getSuccessOrdering() != Unordered)) { CheckFailed
("cmpxchg instructions cannot be unordered.", &CXI); return
; } } while (0)
2710 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != Unordered)) { CheckFailed
("cmpxchg instructions cannot be unordered.", &CXI); return
; } } while (0)
;
2711 Assert(CXI.getFailureOrdering() != Unordered,do { if (!(CXI.getFailureOrdering() != Unordered)) { CheckFailed
("cmpxchg instructions cannot be unordered.", &CXI); return
; } } while (0)
2712 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != Unordered)) { CheckFailed
("cmpxchg instructions cannot be unordered.", &CXI); return
; } } while (0)
;
2713 Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),do { if (!(CXI.getSuccessOrdering() >= CXI.getFailureOrdering
())) { CheckFailed("cmpxchg instructions be at least as constrained on success as fail"
, &CXI); return; } } while (0)
2714 "cmpxchg instructions be at least as constrained on success as fail",do { if (!(CXI.getSuccessOrdering() >= CXI.getFailureOrdering
())) { CheckFailed("cmpxchg instructions be at least as constrained on success as fail"
, &CXI); return; } } while (0)
2715 &CXI)do { if (!(CXI.getSuccessOrdering() >= CXI.getFailureOrdering
())) { CheckFailed("cmpxchg instructions be at least as constrained on success as fail"
, &CXI); return; } } while (0)
;
2716 Assert(CXI.getFailureOrdering() != Release &&do { if (!(CXI.getFailureOrdering() != Release && CXI
.getFailureOrdering() != AcquireRelease)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (0)
2717 CXI.getFailureOrdering() != AcquireRelease,do { if (!(CXI.getFailureOrdering() != Release && CXI
.getFailureOrdering() != AcquireRelease)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (0)
2718 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != Release && CXI
.getFailureOrdering() != AcquireRelease)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (0)
;
2719
2720 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2721 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (0)
;
2722 Type *ElTy = PTy->getElementType();
2723 Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,do { if (!(ElTy->isIntegerTy())) { CheckFailed("cmpxchg operand must have integer type!"
, &CXI, ElTy); return; } } while (0)
2724 ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("cmpxchg operand must have integer type!"
, &CXI, ElTy); return; } } while (0)
;
2725 unsigned Size = ElTy->getPrimitiveSizeInBits();
2726 Assert(Size >= 8 && !(Size & (Size - 1)),do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("cmpxchg operand must be power-of-two byte-sized integer"
, &CXI, ElTy); return; } } while (0)
2727 "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy)do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("cmpxchg operand must be power-of-two byte-sized integer"
, &CXI, ElTy); return; } } while (0)
;
2728 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (0)
2729 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (0)
2730 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (0)
;
2731 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (0)
2732 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (0)
;
2733 visitInstruction(CXI);
2734}
2735
2736void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2737 Assert(RMWI.getOrdering() != NotAtomic,do { if (!(RMWI.getOrdering() != NotAtomic)) { CheckFailed("atomicrmw instructions must be atomic."
, &RMWI); return; } } while (0)
2738 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != NotAtomic)) { CheckFailed("atomicrmw instructions must be atomic."
, &RMWI); return; } } while (0)
;
2739 Assert(RMWI.getOrdering() != Unordered,do { if (!(RMWI.getOrdering() != Unordered)) { CheckFailed("atomicrmw instructions cannot be unordered."
, &RMWI); return; } } while (0)
2740 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != Unordered)) { CheckFailed("atomicrmw instructions cannot be unordered."
, &RMWI); return; } } while (0)
;
2741 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2742 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (0)
;
2743 Type *ElTy = PTy->getElementType();
2744 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (0)
2745 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (0)
;
2746 unsigned Size = ElTy->getPrimitiveSizeInBits();
2747 Assert(Size >= 8 && !(Size & (Size - 1)),do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("atomicrmw operand must be power-of-two byte-sized integer"
, &RMWI, ElTy); return; } } while (0)
2748 "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("atomicrmw operand must be power-of-two byte-sized integer"
, &RMWI, ElTy); return; } } while (0)
2749 ElTy)do { if (!(Size >= 8 && !(Size & (Size - 1))))
{ CheckFailed("atomicrmw operand must be power-of-two byte-sized integer"
, &RMWI, ElTy); return; } } while (0)
;
2750 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (0)
2751 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (0)
2752 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (0)
;
2753 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (0)
2754 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (0)
2755 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (0)
;
2756 visitInstruction(RMWI);
2757}
2758
2759void Verifier::visitFenceInst(FenceInst &FI) {
2760 const AtomicOrdering Ordering = FI.getOrdering();
2761 Assert(Ordering == Acquire || Ordering == Release ||do { if (!(Ordering == Acquire || Ordering == Release || Ordering
== AcquireRelease || Ordering == SequentiallyConsistent)) { CheckFailed
("fence instructions may only have " "acquire, release, acq_rel, or seq_cst ordering."
, &FI); return; } } while (0)
2762 Ordering == AcquireRelease || Ordering == SequentiallyConsistent,do { if (!(Ordering == Acquire || Ordering == Release || Ordering
== AcquireRelease || Ordering == SequentiallyConsistent)) { CheckFailed
("fence instructions may only have " "acquire, release, acq_rel, or seq_cst ordering."
, &FI); return; } } while (0)
2763 "fence instructions may only have "do { if (!(Ordering == Acquire || Ordering == Release || Ordering
== AcquireRelease || Ordering == SequentiallyConsistent)) { CheckFailed
("fence instructions may only have " "acquire, release, acq_rel, or seq_cst ordering."
, &FI); return; } } while (0)
2764 "acquire, release, acq_rel, or seq_cst ordering.",do { if (!(Ordering == Acquire || Ordering == Release || Ordering
== AcquireRelease || Ordering == SequentiallyConsistent)) { CheckFailed
("fence instructions may only have " "acquire, release, acq_rel, or seq_cst ordering."
, &FI); return; } } while (0)
2765 &FI)do { if (!(Ordering == Acquire || Ordering == Release || Ordering
== AcquireRelease || Ordering == SequentiallyConsistent)) { CheckFailed
("fence instructions may only have " "acquire, release, acq_rel, or seq_cst ordering."
, &FI); return; } } while (0)
;
2766 visitInstruction(FI);
2767}
2768
2769void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2770 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (0)
2771 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (0)
2772 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (0)
;
2773
2774 visitInstruction(EVI);
2775}
2776
2777void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2778 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (0)
2779 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (0)
2780 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (0)
2781 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (0)
;
2782
2783 visitInstruction(IVI);
2784}
2785
2786void Verifier::visitEHPadPredecessors(Instruction &I) {
2787 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 2787, __PRETTY_FUNCTION__))
;
2788
2789 BasicBlock *BB = I.getParent();
2790 Function *F = BB->getParent();
2791
2792 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (0)
;
2793
2794 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
2795 // The landingpad instruction defines its parent as a landing pad block. The
2796 // landing pad block may be branched to only by the unwind edge of an
2797 // invoke.
2798 for (BasicBlock *PredBB : predecessors(BB)) {
2799 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
2800 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(0)
2801 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(0)
2802 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(0)
2803 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(0)
;
2804 }
2805 return;
2806 }
2807
2808 for (BasicBlock *PredBB : predecessors(BB)) {
2809 TerminatorInst *TI = PredBB->getTerminator();
2810 if (auto *II = dyn_cast<InvokeInst>(TI))
2811 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, &I, II); return; } } while (0)
2812 "EH pad must be jumped to via an unwind edge", &I, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, &I, II); return; } } while (0)
;
2813 else if (auto *CPI = dyn_cast<CatchPadInst>(TI))
2814 Assert(CPI->getUnwindDest() == BB && CPI->getNormalDest() != BB,do { if (!(CPI->getUnwindDest() == BB && CPI->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, &I, CPI); return; } } while (0)
2815 "EH pad must be jumped to via an unwind edge", &I, CPI)do { if (!(CPI->getUnwindDest() == BB && CPI->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, &I, CPI); return; } } while (0)
;
2816 else if (isa<CatchEndPadInst>(TI))
2817 ;
2818 else if (isa<CleanupReturnInst>(TI))
2819 ;
2820 else if (isa<TerminatePadInst>(TI))
2821 ;
2822 else
2823 Assert(false, "EH pad must be jumped to via an unwind edge", &I, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, &I, TI); return; } } while (0)
;
2824 }
2825}
2826
2827void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
2828 // The landingpad instruction is ill-formed if it doesn't have any clauses and
2829 // isn't a cleanup.
2830 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (0)
2831 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (0)
;
2832
2833 visitEHPadPredecessors(LPI);
2834
2835 if (!LandingPadResultTy)
2836 LandingPadResultTy = LPI.getType();
2837 else
2838 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (0)
2839 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (0)
2840 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (0)
2841 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (0)
;
2842
2843 Function *F = LPI.getParent()->getParent();
2844 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (0)
2845 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (0)
;
2846
2847 // The landingpad instruction must be the first non-PHI instruction in the
2848 // block.
2849 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (0)
2850 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (0)
2851 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (0)
;
2852
2853 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2854 Constant *Clause = LPI.getClause(i);
2855 if (LPI.isCatch(i)) {
2856 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (0)
2857 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (0)
;
2858 } else {
2859 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (0)
;
2860 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (0)
2861 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (0)
;
2862 }
2863 }
2864
2865 visitInstruction(LPI);
2866}
2867
2868void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
2869 visitEHPadPredecessors(CPI);
2870
2871 BasicBlock *BB = CPI.getParent();
2872 Function *F = BB->getParent();
2873 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (0)
2874 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (0)
;
2875
2876 // The catchpad instruction must be the first non-PHI instruction in the
2877 // block.
2878 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
2879 "CatchPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
2880 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
;
2881
2882 if (!BB->getSinglePredecessor())
2883 for (BasicBlock *PredBB : predecessors(BB)) {
2884 Assert(!isa<CatchPadInst>(PredBB->getTerminator()),do { if (!(!isa<CatchPadInst>(PredBB->getTerminator(
)))) { CheckFailed("CatchPadInst with CatchPadInst predecessor cannot have any other "
"predecessors.", &CPI); return; } } while (0)
2885 "CatchPadInst with CatchPadInst predecessor cannot have any other "do { if (!(!isa<CatchPadInst>(PredBB->getTerminator(
)))) { CheckFailed("CatchPadInst with CatchPadInst predecessor cannot have any other "
"predecessors.", &CPI); return; } } while (0)
2886 "predecessors.",do { if (!(!isa<CatchPadInst>(PredBB->getTerminator(
)))) { CheckFailed("CatchPadInst with CatchPadInst predecessor cannot have any other "
"predecessors.", &CPI); return; } } while (0)
2887 &CPI)do { if (!(!isa<CatchPadInst>(PredBB->getTerminator(
)))) { CheckFailed("CatchPadInst with CatchPadInst predecessor cannot have any other "
"predecessors.", &CPI); return; } } while (0)
;
2888 }
2889
2890 BasicBlock *UnwindDest = CPI.getUnwindDest();
2891 Instruction *I = UnwindDest->getFirstNonPHI();
2892 Assert(do { if (!(isa<CatchPadInst>(I) || isa<CatchEndPadInst
>(I))) { CheckFailed("CatchPadInst must unwind to a CatchPadInst or a CatchEndPadInst."
, &CPI); return; } } while (0)
2893 isa<CatchPadInst>(I) || isa<CatchEndPadInst>(I),do { if (!(isa<CatchPadInst>(I) || isa<CatchEndPadInst
>(I))) { CheckFailed("CatchPadInst must unwind to a CatchPadInst or a CatchEndPadInst."
, &CPI); return; } } while (0)
2894 "CatchPadInst must unwind to a CatchPadInst or a CatchEndPadInst.",do { if (!(isa<CatchPadInst>(I) || isa<CatchEndPadInst
>(I))) { CheckFailed("CatchPadInst must unwind to a CatchPadInst or a CatchEndPadInst."
, &CPI); return; } } while (0)
2895 &CPI)do { if (!(isa<CatchPadInst>(I) || isa<CatchEndPadInst
>(I))) { CheckFailed("CatchPadInst must unwind to a CatchPadInst or a CatchEndPadInst."
, &CPI); return; } } while (0)
;
2896
2897 visitTerminatorInst(CPI);
2898}
2899
2900void Verifier::visitCatchEndPadInst(CatchEndPadInst &CEPI) {
2901 visitEHPadPredecessors(CEPI);
2902
2903 BasicBlock *BB = CEPI.getParent();
2904 Function *F = BB->getParent();
2905 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchEndPadInst needs to be in a function with a personality."
, &CEPI); return; } } while (0)
2906 "CatchEndPadInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchEndPadInst needs to be in a function with a personality."
, &CEPI); return; } } while (0)
2907 &CEPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchEndPadInst needs to be in a function with a personality."
, &CEPI); return; } } while (0)
;
2908
2909 // The catchendpad instruction must be the first non-PHI instruction in the
2910 // block.
2911 Assert(BB->getFirstNonPHI() == &CEPI,do { if (!(BB->getFirstNonPHI() == &CEPI)) { CheckFailed
("CatchEndPadInst not the first non-PHI instruction in the block."
, &CEPI); return; } } while (0)
2912 "CatchEndPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CEPI)) { CheckFailed
("CatchEndPadInst not the first non-PHI instruction in the block."
, &CEPI); return; } } while (0)
2913 &CEPI)do { if (!(BB->getFirstNonPHI() == &CEPI)) { CheckFailed
("CatchEndPadInst not the first non-PHI instruction in the block."
, &CEPI); return; } } while (0)
;
2914
2915 unsigned CatchPadsSeen = 0;
2916 for (BasicBlock *PredBB : predecessors(BB))
2917 if (isa<CatchPadInst>(PredBB->getTerminator()))
2918 ++CatchPadsSeen;
2919
2920 Assert(CatchPadsSeen <= 1, "CatchEndPadInst must have no more than one "do { if (!(CatchPadsSeen <= 1)) { CheckFailed("CatchEndPadInst must have no more than one "
"CatchPadInst predecessor.", &CEPI); return; } } while (
0)
2921 "CatchPadInst predecessor.",do { if (!(CatchPadsSeen <= 1)) { CheckFailed("CatchEndPadInst must have no more than one "
"CatchPadInst predecessor.", &CEPI); return; } } while (
0)
2922 &CEPI)do { if (!(CatchPadsSeen <= 1)) { CheckFailed("CatchEndPadInst must have no more than one "
"CatchPadInst predecessor.", &CEPI); return; } } while (
0)
;
2923
2924 if (BasicBlock *UnwindDest = CEPI.getUnwindDest()) {
2925 Instruction *I = UnwindDest->getFirstNonPHI();
2926 Assert(do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchEndPad must unwind to an EH block which is not a landingpad."
, &CEPI); return; } } while (0)
2927 I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchEndPad must unwind to an EH block which is not a landingpad."
, &CEPI); return; } } while (0)
2928 "CatchEndPad must unwind to an EH block which is not a landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchEndPad must unwind to an EH block which is not a landingpad."
, &CEPI); return; } } while (0)
2929 &CEPI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchEndPad must unwind to an EH block which is not a landingpad."
, &CEPI); return; } } while (0)
;
2930 }
2931
2932 visitTerminatorInst(CEPI);
2933}
2934
2935void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
2936 visitEHPadPredecessors(CPI);
2937
2938 BasicBlock *BB = CPI.getParent();
2939
2940 Function *F = BB->getParent();
2941 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (0)
2942 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (0)
;
2943
2944 // The cleanuppad instruction must be the first non-PHI instruction in the
2945 // block.
2946 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
2947 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
2948 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
;
2949
2950 CleanupReturnInst *FirstCRI = nullptr;
2951 for (User *U : CPI.users())
2952 if (CleanupReturnInst *CRI = dyn_cast<CleanupReturnInst>(U)) {
2953 if (!FirstCRI)
2954 FirstCRI = CRI;
2955 else
2956 Assert(CRI->getUnwindDest() == FirstCRI->getUnwindDest(),do { if (!(CRI->getUnwindDest() == FirstCRI->getUnwindDest
())) { CheckFailed("Cleanuprets from same cleanuppad have different exceptional "
"successors.", FirstCRI, CRI); return; } } while (0)
2957 "Cleanuprets from same cleanuppad have different exceptional "do { if (!(CRI->getUnwindDest() == FirstCRI->getUnwindDest
())) { CheckFailed("Cleanuprets from same cleanuppad have different exceptional "
"successors.", FirstCRI, CRI); return; } } while (0)
2958 "successors.",do { if (!(CRI->getUnwindDest() == FirstCRI->getUnwindDest
())) { CheckFailed("Cleanuprets from same cleanuppad have different exceptional "
"successors.", FirstCRI, CRI); return; } } while (0)
2959 FirstCRI, CRI)do { if (!(CRI->getUnwindDest() == FirstCRI->getUnwindDest
())) { CheckFailed("Cleanuprets from same cleanuppad have different exceptional "
"successors.", FirstCRI, CRI); return; } } while (0)
;
2960 }
2961
2962 visitInstruction(CPI);
2963}
2964
2965void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
2966 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
2967 Instruction *I = UnwindDest->getFirstNonPHI();
2968 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (0)
2969 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (0)
2970 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (0)
2971 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (0)
;
2972 }
2973
2974 visitTerminatorInst(CRI);
2975}
2976
2977void Verifier::visitTerminatePadInst(TerminatePadInst &TPI) {
2978 visitEHPadPredecessors(TPI);
2979
2980 BasicBlock *BB = TPI.getParent();
2981 Function *F = BB->getParent();
2982 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("TerminatePadInst needs to be in a function with a personality."
, &TPI); return; } } while (0)
2983 "TerminatePadInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("TerminatePadInst needs to be in a function with a personality."
, &TPI); return; } } while (0)
2984 &TPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("TerminatePadInst needs to be in a function with a personality."
, &TPI); return; } } while (0)
;
2985
2986 // The terminatepad instruction must be the first non-PHI instruction in the
2987 // block.
2988 Assert(BB->getFirstNonPHI() == &TPI,do { if (!(BB->getFirstNonPHI() == &TPI)) { CheckFailed
("TerminatePadInst not the first non-PHI instruction in the block."
, &TPI); return; } } while (0)
2989 "TerminatePadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &TPI)) { CheckFailed
("TerminatePadInst not the first non-PHI instruction in the block."
, &TPI); return; } } while (0)
2990 &TPI)do { if (!(BB->getFirstNonPHI() == &TPI)) { CheckFailed
("TerminatePadInst not the first non-PHI instruction in the block."
, &TPI); return; } } while (0)
;
2991
2992 if (BasicBlock *UnwindDest = TPI.getUnwindDest()) {
2993 Instruction *I = UnwindDest->getFirstNonPHI();
2994 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("TerminatePadInst must unwind to an EH block which is not a "
"landingpad.", &TPI); return; } } while (0)
2995 "TerminatePadInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("TerminatePadInst must unwind to an EH block which is not a "
"landingpad.", &TPI); return; } } while (0)
2996 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("TerminatePadInst must unwind to an EH block which is not a "
"landingpad.", &TPI); return; } } while (0)
2997 &TPI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("TerminatePadInst must unwind to an EH block which is not a "
"landingpad.", &TPI); return; } } while (0)
;
2998 }
2999
3000 visitTerminatorInst(TPI);
3001}
3002
3003void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3004 Instruction *Op = cast<Instruction>(I.getOperand(i));
3005 // If the we have an invalid invoke, don't try to compute the dominance.
3006 // We already reject it in the invoke specific checks and the dominance
3007 // computation doesn't handle multiple edges.
3008 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3009 if (II->getNormalDest() == II->getUnwindDest())
3010 return;
3011 }
3012
3013 const Use &U = I.getOperandUse(i);
3014 Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),do { if (!(InstsInThisBlock.count(Op) || DT.dominates(Op, U))
) { CheckFailed("Instruction does not dominate all uses!", Op
, &I); return; } } while (0)
3015 "Instruction does not dominate all uses!", Op, &I)do { if (!(InstsInThisBlock.count(Op) || DT.dominates(Op, U))
) { CheckFailed("Instruction does not dominate all uses!", Op
, &I); return; } } while (0)
;
3016}
3017
3018/// verifyInstruction - Verify that an instruction is well formed.
3019///
3020void Verifier::visitInstruction(Instruction &I) {
3021 BasicBlock *BB = I.getParent();
3022 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (0)
;
3023
3024 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3025 for (User *U : I.users()) {
3026 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (0)
3027 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (0)
;
3028 }
3029 }
3030
3031 // Check that void typed values don't have names
3032 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (0)
3033 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (0)
;
3034
3035 // Check that the return value of the instruction is either void or a legal
3036 // value type.
3037 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (0)
3038 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (0)
;
3039
3040 // Check that the instruction doesn't produce metadata. Calls are already
3041 // checked against the callee type.
3042 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (0)
3043 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (0)
;
3044
3045 // Check that all uses of the instruction, if they are instructions
3046 // themselves, actually have parent basic blocks. If the use is not an
3047 // instruction, it is an error!
3048 for (Use &U : I.uses()) {
3049 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3050 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (0)
3051 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (0)
3052 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (0)
3053 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (0)
;
3054 else {
3055 CheckFailed("Use of instruction is not an instruction!", U);
3056 return;
3057 }
3058 }
3059
3060 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3061 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (0)
;
3062
3063 // Check to make sure that only first-class-values are operands to
3064 // instructions.
3065 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3066 Assert(0, "Instruction operands must be first-class values!", &I)do { if (!(0)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (0)
;
3067 }
3068
3069 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3070 // Check to make sure that the "address of" an intrinsic function is never
3071 // taken.
3072 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (0)
3073 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (0)
3074 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (0)
3075 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (0)
;
3076 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsinc other than"
" donothing or patchpoint", &I); return; } } while (0)
3077 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsinc other than"
" donothing or patchpoint", &I); return; } } while (0)
3078 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsinc other than"
" donothing or patchpoint", &I); return; } } while (0)
3079 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsinc other than"
" donothing or patchpoint", &I); return; } } while (0)
3080 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsinc other than"
" donothing or patchpoint", &I); return; } } while (0)
3081 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsinc other than"
" donothing or patchpoint", &I); return; } } while (0)
3082 "Cannot invoke an intrinsinc other than"do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsinc other than"
" donothing or patchpoint", &I); return; } } while (0)
3083 " donothing or patchpoint",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsinc other than"
" donothing or patchpoint", &I); return; } } while (0)
3084 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsinc other than"
" donothing or patchpoint", &I); return; } } while (0)
;
3085 Assert(F->getParent() == M, "Referencing function in another module!",do { if (!(F->getParent() == M)) { CheckFailed("Referencing function in another module!"
, &I); return; } } while (0)
3086 &I)do { if (!(F->getParent() == M)) { CheckFailed("Referencing function in another module!"
, &I); return; } } while (0)
;
3087 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3088 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (0)
3089 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (0)
;
3090 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3091 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (0)
3092 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (0)
;
3093 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3094 Assert(GV->getParent() == M, "Referencing global in another module!", &I)do { if (!(GV->getParent() == M)) { CheckFailed("Referencing global in another module!"
, &I); return; } } while (0)
;
3095 } else if (isa<Instruction>(I.getOperand(i))) {
3096 verifyDominatesUse(I, i);
3097 } else if (isa<InlineAsm>(I.getOperand(i))) {
3098 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (0)
3099 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (0)
3100 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (0)
;
3101 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3102 if (CE->getType()->isPtrOrPtrVectorTy()) {
3103 // If we have a ConstantExpr pointer, we need to see if it came from an
3104 // illegal bitcast (inttoptr <constant int> )
3105 SmallVector<const ConstantExpr *, 4> Stack;
3106 SmallPtrSet<const ConstantExpr *, 4> Visited;
3107 Stack.push_back(CE);
3108
3109 while (!Stack.empty()) {
3110 const ConstantExpr *V = Stack.pop_back_val();
3111 if (!Visited.insert(V).second)
3112 continue;
3113
3114 VerifyConstantExprBitcastType(V);
3115
3116 for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
3117 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
3118 Stack.push_back(Op);
3119 }
3120 }
3121 }
3122 }
3123 }
3124
3125 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3126 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (0)
3127 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (0)
;
3128 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (0)
;
3129 if (ConstantFP *CFP0 =
3130 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3131 APFloat Accuracy = CFP0->getValueAPF();
3132 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (0)
3133 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (0)
;
3134 } else {
3135 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (0)
;
3136 }
3137 }
3138
3139 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3140 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (0)
3141 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (0)
;
3142 visitRangeMetadata(I, Range, I.getType());
3143 }
3144
3145 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3146 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (0)
3147 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (0)
;
3148 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (0)
3149 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (0)
3150 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (0)
3151 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (0)
;
3152 }
3153
3154 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3155 Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { CheckFailed("invalid !dbg metadata attachment"
, &I, N); return; } } while (0)
;
3156 visitMDNode(*N);
3157 }
3158
3159 InstsInThisBlock.insert(&I);
3160}
3161
3162/// VerifyIntrinsicType - Verify that the specified type (which comes from an
3163/// intrinsic argument or return value) matches the type constraints specified
3164/// by the .td file (e.g. an "any integer" argument really is an integer).
3165///
3166/// This return true on error but does not print a message.
3167bool Verifier::VerifyIntrinsicType(Type *Ty,
3168 ArrayRef<Intrinsic::IITDescriptor> &Infos,
3169 SmallVectorImpl<Type*> &ArgTys) {
3170 using namespace Intrinsic;
3171
3172 // If we ran out of descriptors, there are too many arguments.
3173 if (Infos.empty()) return true;
3174 IITDescriptor D = Infos.front();
3175 Infos = Infos.slice(1);
3176
3177 switch (D.Kind) {
3178 case IITDescriptor::Void: return !Ty->isVoidTy();
3179 case IITDescriptor::VarArg: return true;
3180 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
3181 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
3182 case IITDescriptor::Half: return !Ty->isHalfTy();
3183 case IITDescriptor::Float: return !Ty->isFloatTy();
3184 case IITDescriptor::Double: return !Ty->isDoubleTy();
3185 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
3186 case IITDescriptor::Vector: {
3187 VectorType *VT = dyn_cast<VectorType>(Ty);
3188 return !VT || VT->getNumElements() != D.Vector_Width ||
3189 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
3190 }
3191 case IITDescriptor::Pointer: {
3192 PointerType *PT = dyn_cast<PointerType>(Ty);
3193 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
3194 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
3195 }
3196
3197 case IITDescriptor::Struct: {
3198 StructType *ST = dyn_cast<StructType>(Ty);
3199 if (!ST || ST->getNumElements() != D.Struct_NumElements)
3200 return true;
3201
3202 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
3203 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
3204 return true;
3205 return false;
3206 }
3207
3208 case IITDescriptor::Argument:
3209 // Two cases here - If this is the second occurrence of an argument, verify
3210 // that the later instance matches the previous instance.
3211 if (D.getArgumentNumber() < ArgTys.size())
3212 return Ty != ArgTys[D.getArgumentNumber()];
3213
3214 // Otherwise, if this is the first instance of an argument, record it and
3215 // verify the "Any" kind.
3216 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error")((D.getArgumentNumber() == ArgTys.size() && "Table consistency error"
) ? static_cast<void> (0) : __assert_fail ("D.getArgumentNumber() == ArgTys.size() && \"Table consistency error\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 3216, __PRETTY_FUNCTION__))
;
3217 ArgTys.push_back(Ty);
3218
3219 switch (D.getArgumentKind()) {
3220 case IITDescriptor::AK_Any: return false; // Success
3221 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
3222 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
3223 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
3224 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
3225 }
3226 llvm_unreachable("all argument kinds not covered")::llvm::llvm_unreachable_internal("all argument kinds not covered"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 3226)
;
3227
3228 case IITDescriptor::ExtendArgument: {
3229 // This may only be used when referring to a previous vector argument.
3230 if (D.getArgumentNumber() >= ArgTys.size())
3231 return true;
3232
3233 Type *NewTy = ArgTys[D.getArgumentNumber()];
3234 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3235 NewTy = VectorType::getExtendedElementVectorType(VTy);
3236 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3237 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
3238 else
3239 return true;
3240
3241 return Ty != NewTy;
3242 }
3243 case IITDescriptor::TruncArgument: {
3244 // This may only be used when referring to a previous vector argument.
3245 if (D.getArgumentNumber() >= ArgTys.size())
3246 return true;
3247
3248 Type *NewTy = ArgTys[D.getArgumentNumber()];
3249 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3250 NewTy = VectorType::getTruncatedElementVectorType(VTy);
3251 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3252 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
3253 else
3254 return true;
3255
3256 return Ty != NewTy;
3257 }
3258 case IITDescriptor::HalfVecArgument:
3259 // This may only be used when referring to a previous vector argument.
3260 return D.getArgumentNumber() >= ArgTys.size() ||
3261 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
3262 VectorType::getHalfElementsVectorType(
3263 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
3264 case IITDescriptor::SameVecWidthArgument: {
3265 if (D.getArgumentNumber() >= ArgTys.size())
3266 return true;
3267 VectorType * ReferenceType =
3268 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
3269 VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
3270 if (!ThisArgType || !ReferenceType ||
3271 (ReferenceType->getVectorNumElements() !=
3272 ThisArgType->getVectorNumElements()))
3273 return true;
3274 return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
3275 Infos, ArgTys);
3276 }
3277 case IITDescriptor::PtrToArgument: {
3278 if (D.getArgumentNumber() >= ArgTys.size())
3279 return true;
3280 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
3281 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
3282 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
3283 }
3284 case IITDescriptor::VecOfPtrsToElt: {
3285 if (D.getArgumentNumber() >= ArgTys.size())
3286 return true;
3287 VectorType * ReferenceType =
3288 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
3289 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
3290 if (!ThisArgVecTy || !ReferenceType ||
3291 (ReferenceType->getVectorNumElements() !=
3292 ThisArgVecTy->getVectorNumElements()))
3293 return true;
3294 PointerType *ThisArgEltTy =
3295 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
3296 if (!ThisArgEltTy)
3297 return true;
3298 return ThisArgEltTy->getElementType() !=
3299 ReferenceType->getVectorElementType();
3300 }
3301 }
3302 llvm_unreachable("unhandled")::llvm::llvm_unreachable_internal("unhandled", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 3302)
;
3303}
3304
3305/// \brief Verify if the intrinsic has variable arguments.
3306/// This method is intended to be called after all the fixed arguments have been
3307/// verified first.
3308///
3309/// This method returns true on error and does not print an error message.
3310bool
3311Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
3312 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
3313 using namespace Intrinsic;
3314
3315 // If there are no descriptors left, then it can't be a vararg.
3316 if (Infos.empty())
3317 return isVarArg;
3318
3319 // There should be only one descriptor remaining at this point.
3320 if (Infos.size() != 1)
3321 return true;
3322
3323 // Check and verify the descriptor.
3324 IITDescriptor D = Infos.front();
3325 Infos = Infos.slice(1);
3326 if (D.Kind == IITDescriptor::VarArg)
3327 return !isVarArg;
3328
3329 return true;
3330}
3331
3332/// Allow intrinsics to be verified in different ways.
3333void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3334 Function *IF = CS.getCalledFunction();
3335 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (0)
3336 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (0)
;
3337
3338 // Verify that the intrinsic prototype lines up with what the .td files
3339 // describe.
3340 FunctionType *IFTy = IF->getFunctionType();
3341 bool IsVarArg = IFTy->isVarArg();
3342
3343 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3344 getIntrinsicInfoTableEntries(ID, Table);
3345 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3346
3347 SmallVector<Type *, 4> ArgTys;
3348 Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),do { if (!(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef
, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (0)
3349 "Intrinsic has incorrect return type!", IF)do { if (!(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef
, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (0)
;
3350 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3351 Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),do { if (!(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef
, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (0)
3352 "Intrinsic has incorrect argument type!", IF)do { if (!(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef
, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (0)
;
3353
3354 // Verify if the intrinsic call matches the vararg property.
3355 if (IsVarArg)
3356 Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),do { if (!(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef))) { CheckFailed
("Intrinsic was not defined with variable arguments!", IF); return
; } } while (0)
3357 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef))) { CheckFailed
("Intrinsic was not defined with variable arguments!", IF); return
; } } while (0)
;
3358 else
3359 Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),do { if (!(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef))) { CheckFailed
("Callsite was not defined with variable arguments!", IF); return
; } } while (0)
3360 "Callsite was not defined with variable arguments!", IF)do { if (!(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef))) { CheckFailed
("Callsite was not defined with variable arguments!", IF); return
; } } while (0)
;
3361
3362 // All descriptors should be absorbed by now.
3363 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (0)
;
3364
3365 // Now that we have the intrinsic ID and the actual argument types (and we
3366 // know they are legal for the intrinsic!) get the intrinsic name through the
3367 // usual means. This allows us to verify the mangling of argument types into
3368 // the name.
3369 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3370 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (0)
3371 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (0)
3372 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (0)
3373 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (0)
3374 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (0)
;
3375
3376 // If the intrinsic takes MDNode arguments, verify that they are either global
3377 // or are local to *this* function.
3378 for (Value *V : CS.args())
3379 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3380 visitMetadataAsValue(*MD, CS.getCaller());
3381
3382 switch (ID) {
3383 default:
3384 break;
3385 case Intrinsic::ctlz: // llvm.ctlz
3386 case Intrinsic::cttz: // llvm.cttz
3387 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (0)
3388 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (0)
3389 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (0)
3390 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (0)
;
3391 break;
3392 case Intrinsic::dbg_declare: // llvm.dbg.declare
3393 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (0)
3394 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (0)
;
3395 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3396 break;
3397 case Intrinsic::dbg_value: // llvm.dbg.value
3398 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3399 break;
3400 case Intrinsic::memcpy:
3401 case Intrinsic::memmove:
3402 case Intrinsic::memset: {
3403 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3404 Assert(AlignCI,do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
3405 "alignment argument of memory intrinsics must be a constant int",do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
3406 CS)do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
;
3407 const APInt &AlignVal = AlignCI->getValue();
3408 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (0)
3409 "alignment argument of memory intrinsics must be a power of 2", CS)do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (0)
;
3410 Assert(isa<ConstantInt>(CS.getArgOperand(4)),do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
3411 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
3412 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
;
3413 break;
3414 }
3415 case Intrinsic::gcroot:
3416 case Intrinsic::gcwrite:
3417 case Intrinsic::gcread:
3418 if (ID == Intrinsic::gcroot) {
3419 AllocaInst *AI =
3420 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3421 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (0)
;
3422 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (0)
3423 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (0)
;
3424 if (!AI->getAllocatedType()->isPointerTy()) {
3425 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (0)
3426 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (0)
3427 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (0)
3428 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (0)
;
3429 }
3430 }
3431
3432 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
3433 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
;
3434 break;
3435 case Intrinsic::init_trampoline:
3436 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (0)
3437 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (0)
3438 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (0)
;
3439 break;
3440 case Intrinsic::prefetch:
3441 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (0)
3442 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (0)
3443 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (0)
3444 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (0)
3445 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (0)
;
3446 break;
3447 case Intrinsic::stackprotector:
3448 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (0)
3449 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (0)
;
3450 break;
3451 case Intrinsic::lifetime_start:
3452 case Intrinsic::lifetime_end:
3453 case Intrinsic::invariant_start:
3454 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (0)
3455 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (0)
3456 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (0)
;
3457 break;
3458 case Intrinsic::invariant_end:
3459 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (0)
3460 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (0)
;
3461 break;
3462
3463 case Intrinsic::localescape: {
3464 BasicBlock *BB = CS.getParent();
3465 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (0)
3466 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (0)
;
3467 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (0)
3468 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (0)
;
3469 for (Value *Arg : CS.args()) {
3470 if (isa<ConstantPointerNull>(Arg))
3471 continue; // Null values are allowed as placeholders.
3472 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3473 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (0)
3474 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (0)
;
3475 }
3476 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
3477 SawFrameEscape = true;
3478 break;
3479 }
3480 case Intrinsic::localrecover: {
3481 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
3482 Function *Fn = dyn_cast<Function>(FnArg);
3483 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (0)
3484 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (0)
3485 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (0)
3486 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (0)
;
3487 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
3488 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (0)
3489 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (0)
;
3490 auto &Entry = FrameEscapeInfo[Fn];
3491 Entry.second = unsigned(
3492 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3493 break;
3494 }
3495
3496 case Intrinsic::experimental_gc_statepoint:
3497 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (0)
3498 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (0)
;
3499 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
3500 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
;
3501
3502 VerifyStatepoint(CS);
3503 break;
3504 case Intrinsic::experimental_gc_result_int:
3505 case Intrinsic::experimental_gc_result_float:
3506 case Intrinsic::experimental_gc_result_ptr:
3507 case Intrinsic::experimental_gc_result: {
3508 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
3509 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
;
3510 // Are we tied to a statepoint properly?
3511 CallSite StatepointCS(CS.getArgOperand(0));
3512 const Function *StatepointFn =
3513 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
3514 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (0)
3515 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (0)
3516 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (0)
3517 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (0)
3518 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (0)
;
3519
3520 // Assert that result type matches wrapped callee.
3521 const Value *Target = StatepointCS.getArgument(2);
3522 auto *PT = cast<PointerType>(Target->getType());
3523 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
3524 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (0)
3525 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (0)
;
3526 break;
3527 }
3528 case Intrinsic::experimental_gc_relocate: {
3529 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (0)
;
3530
3531 // Check that this relocate is correctly tied to the statepoint
3532
3533 // This is case for relocate on the unwinding path of an invoke statepoint
3534 if (ExtractValueInst *ExtractValue =
3535 dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) {
3536 Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),do { if (!(isa<LandingPadInst>(ExtractValue->getAggregateOperand
()))) { CheckFailed("gc relocate on unwind path incorrectly linked to the statepoint"
, CS); return; } } while (0)
3537 "gc relocate on unwind path incorrectly linked to the statepoint",do { if (!(isa<LandingPadInst>(ExtractValue->getAggregateOperand
()))) { CheckFailed("gc relocate on unwind path incorrectly linked to the statepoint"
, CS); return; } } while (0)
3538 CS)do { if (!(isa<LandingPadInst>(ExtractValue->getAggregateOperand
()))) { CheckFailed("gc relocate on unwind path incorrectly linked to the statepoint"
, CS); return; } } while (0)
;
3539
3540 const BasicBlock *InvokeBB =
3541 ExtractValue->getParent()->getUniquePredecessor();
3542
3543 // Landingpad relocates should have only one predecessor with invoke
3544 // statepoint terminator
3545 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, ExtractValue->getParent()); return; } } while (0)
3546 ExtractValue->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, ExtractValue->getParent()); return; } } while (0)
;
3547 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (0)
3548 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (0)
;
3549 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (0)
3550 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (0)
;
3551 }
3552 else {
3553 // In all other cases relocate should be tied to the statepoint directly.
3554 // This covers relocates on a normal return path of invoke statepoint and
3555 // relocates of a call statepoint
3556 auto Token = CS.getArgOperand(0);
3557 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (0)
3558 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (0)
;
3559 }
3560
3561 // Verify rest of the relocate arguments
3562
3563 GCRelocateOperands Ops(CS);
3564 ImmutableCallSite StatepointCS(Ops.getStatepoint());
3565
3566 // Both the base and derived must be piped through the safepoint
3567 Value* Base = CS.getArgOperand(1);
3568 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (0)
3569 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (0)
;
3570
3571 Value* Derived = CS.getArgOperand(2);
3572 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (0)
3573 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (0)
;
3574
3575 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
3576 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
3577 // Check the bounds
3578 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (0)
3579 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (0)
;
3580 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (0)
3581 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (0)
;
3582
3583 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
3584 // section of the statepoint's argument
3585 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (0)
3586 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (0)
;
3587 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (0)
3588 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (0)
;
3589 const unsigned NumCallArgs =
3590 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
3591 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (0)
3592 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (0)
;
3593 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (0)
3594 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (0)
3595 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (0)
;
3596 const int NumTransitionArgs =
3597 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
3598 ->getZExtValue();
3599 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
3600 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (0)
3601 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (0)
3602 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (0)
;
3603 const int NumDeoptArgs =
3604 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
3605 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
3606 const int GCParamArgsEnd = StatepointCS.arg_size();
3607 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
3608 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
3609 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
3610 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
;
3611 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
3612 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
3613 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
3614 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
;
3615
3616 // Relocated value must be a pointer type, but gc_relocate does not need to return the
3617 // same pointer type as the relocated pointer. It can be casted to the correct type later
3618 // if it's desired. However, they must have the same address space.
3619 GCRelocateOperands Operands(CS);
3620 Assert(Operands.getDerivedPtr()->getType()->isPointerTy(),do { if (!(Operands.getDerivedPtr()->getType()->isPointerTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (0)
3621 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Operands.getDerivedPtr()->getType()->isPointerTy
())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (0)
;
3622
3623 // gc_relocate return type must be a pointer type, and is verified earlier in
3624 // VerifyIntrinsicType().
3625 Assert(cast<PointerType>(CS.getType())->getAddressSpace() ==do { if (!(cast<PointerType>(CS.getType())->getAddressSpace
() == cast<PointerType>(Operands.getDerivedPtr()->getType
())->getAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (0)
3626 cast<PointerType>(Operands.getDerivedPtr()->getType())->getAddressSpace(),do { if (!(cast<PointerType>(CS.getType())->getAddressSpace
() == cast<PointerType>(Operands.getDerivedPtr()->getType
())->getAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (0)
3627 "gc.relocate: relocating a pointer shouldn't change its address space", CS)do { if (!(cast<PointerType>(CS.getType())->getAddressSpace
() == cast<PointerType>(Operands.getDerivedPtr()->getType
())->getAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (0)
;
3628 break;
3629 }
3630 };
3631}
3632
3633/// \brief Carefully grab the subprogram from a local scope.
3634///
3635/// This carefully grabs the subprogram from a local scope, avoiding the
3636/// built-in assertions that would typically fire.
3637static DISubprogram *getSubprogram(Metadata *LocalScope) {
3638 if (!LocalScope)
3639 return nullptr;
3640
3641 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
3642 return SP;
3643
3644 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
3645 return getSubprogram(LB->getRawScope());
3646
3647 // Just return null; broken scope chains are checked elsewhere.
3648 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"
) ? static_cast<void> (0) : __assert_fail ("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 3648, __PRETTY_FUNCTION__))
;
3649 return nullptr;
3650}
3651
3652template <class DbgIntrinsicTy>
3653void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
3654 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
3655 Assert(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { CheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (0)
3656 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { CheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (0)
3657 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { CheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (0)
;
3658 Assert(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ CheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (0)
3659 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ CheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (0)
3660 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ CheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (0)
;
3661 Assert(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
CheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (0)
3662 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
CheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (0)
3663 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
CheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (0)
;
3664
3665 // Ignore broken !dbg attachments; they're checked elsewhere.
3666 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
3667 if (!isa<DILocation>(N))
3668 return;
3669
3670 BasicBlock *BB = DII.getParent();
3671 Function *F = BB ? BB->getParent() : nullptr;
3672
3673 // The scopes for variables and !dbg attachments must agree.
3674 DILocalVariable *Var = DII.getVariable();
3675 DILocation *Loc = DII.getDebugLoc();
3676 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (0)
3677 &DII, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (0)
;
3678
3679 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
3680 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
3681 if (!VarSP || !LocSP)
3682 return; // Broken scope chains are checked elsewhere.
3683
3684 Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { CheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (0)
3685 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { CheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (0)
3686 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { CheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (0)
3687 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { CheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (0)
;
3688}
3689
3690template <class MapTy>
3691static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
3692 // Be careful of broken types (checked elsewhere).
3693 const Metadata *RawType = V.getRawType();
3694 while (RawType) {
3695 // Try to get the size directly.
3696 if (auto *T = dyn_cast<DIType>(RawType))
3697 if (uint64_t Size = T->getSizeInBits())
3698 return Size;
3699
3700 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
3701 // Look at the base type.
3702 RawType = DT->getRawBaseType();
3703 continue;
3704 }
3705
3706 if (auto *S = dyn_cast<MDString>(RawType)) {
3707 // Don't error on missing types (checked elsewhere).
3708 RawType = Map.lookup(S);
3709 continue;
3710 }
3711
3712 // Missing type or size.
3713 break;
3714 }
3715
3716 // Fail gracefully.
3717 return 0;
3718}
3719
3720template <class MapTy>
3721void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
3722 const MapTy &TypeRefs) {
3723 DILocalVariable *V;
3724 DIExpression *E;
3725 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
3726 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
3727 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
3728 } else {
3729 auto *DDI = cast<DbgDeclareInst>(&I);
3730 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
3731 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
3732 }
3733
3734 // We don't know whether this intrinsic verified correctly.
3735 if (!V || !E || !E->isValid())
3736 return;
3737
3738 // Nothing to do if this isn't a bit piece expression.
3739 if (!E->isBitPiece())
3740 return;
3741
3742 // The frontend helps out GDB by emitting the members of local anonymous
3743 // unions as artificial local variables with shared storage. When SROA splits
3744 // the storage for artificial local variables that are smaller than the entire
3745 // union, the overhang piece will be outside of the allotted space for the
3746 // variable and this check fails.
3747 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
3748 if (V->isArtificial())
3749 return;
3750
3751 // If there's no size, the type is broken, but that should be checked
3752 // elsewhere.
3753 uint64_t VarSize = getVariableSize(*V, TypeRefs);
3754 if (!VarSize)
3755 return;
3756
3757 unsigned PieceSize = E->getBitPieceSize();
3758 unsigned PieceOffset = E->getBitPieceOffset();
3759 Assert(PieceSize + PieceOffset <= VarSize,do { if (!(PieceSize + PieceOffset <= VarSize)) { CheckFailed
("piece is larger than or outside of variable", &I, V, E)
; return; } } while (0)
3760 "piece is larger than or outside of variable", &I, V, E)do { if (!(PieceSize + PieceOffset <= VarSize)) { CheckFailed
("piece is larger than or outside of variable", &I, V, E)
; return; } } while (0)
;
3761 Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E)do { if (!(PieceSize != VarSize)) { CheckFailed("piece covers entire variable"
, &I, V, E); return; } } while (0)
;
3762}
3763
3764void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
3765 // This is in its own function so we get an error for each bad type ref (not
3766 // just the first).
3767 Assert(false, "unresolved type ref", S, N)do { if (!(false)) { CheckFailed("unresolved type ref", S, N)
; return; } } while (0)
;
3768}
3769
3770void Verifier::verifyTypeRefs() {
3771 auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
3772 if (!CUs)
3773 return;
3774
3775 // Visit all the compile units again to map the type references.
3776 SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
3777 for (auto *CU : CUs->operands())
3778 if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
3779 for (DIType *Op : Ts)
3780 if (auto *T = dyn_cast_or_null<DICompositeType>(Op))
3781 if (auto *S = T->getRawIdentifier()) {
3782 UnresolvedTypeRefs.erase(S);
3783 TypeRefs.insert(std::make_pair(S, T));
3784 }
3785
3786 // Verify debug info intrinsic bit piece expressions. This needs a second
3787 // pass through the intructions, since we haven't built TypeRefs yet when
3788 // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
3789 // later/now would queue up some that could be later deleted.
3790 for (const Function &F : *M)
3791 for (const BasicBlock &BB : F)
3792 for (const Instruction &I : BB)
3793 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3794 verifyBitPieceExpression(*DII, TypeRefs);
3795
3796 // Return early if all typerefs were resolved.
3797 if (UnresolvedTypeRefs.empty())
3798 return;
3799
3800 // Sort the unresolved references by name so the output is deterministic.
3801 typedef std::pair<const MDString *, const MDNode *> TypeRef;
3802 SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
3803 UnresolvedTypeRefs.end());
3804 std::sort(Unresolved.begin(), Unresolved.end(),
3805 [](const TypeRef &LHS, const TypeRef &RHS) {
3806 return LHS.first->getString() < RHS.first->getString();
3807 });
3808
3809 // Visit the unresolved refs (printing out the errors).
3810 for (const TypeRef &TR : Unresolved)
3811 visitUnresolvedTypeRef(TR.first, TR.second);
3812}
3813
3814//===----------------------------------------------------------------------===//
3815// Implement the public interfaces to this file...
3816//===----------------------------------------------------------------------===//
3817
3818bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
3819 Function &F = const_cast<Function &>(f);
3820 assert(!F.isDeclaration() && "Cannot verify external functions")((!F.isDeclaration() && "Cannot verify external functions"
) ? static_cast<void> (0) : __assert_fail ("!F.isDeclaration() && \"Cannot verify external functions\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246288/lib/IR/Verifier.cpp"
, 3820, __PRETTY_FUNCTION__))
;
3821
3822 raw_null_ostream NullStr;
3823 Verifier V(OS ? *OS : NullStr);
3824
3825 // Note that this function's return value is inverted from what you would
3826 // expect of a function called "verify".
3827 return !V.verify(F);
3828}
3829
3830bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
3831 raw_null_ostream NullStr;
3832 Verifier V(OS ? *OS : NullStr);
3833
3834 bool Broken = false;
3835 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
3836 if (!I->isDeclaration() && !I->isMaterializable())
3837 Broken |= !V.verify(*I);
3838
3839 // Note that this function's return value is inverted from what you would
3840 // expect of a function called "verify".
3841 return !V.verify(M) || Broken;
3842}
3843
3844namespace {
3845struct VerifierLegacyPass : public FunctionPass {
3846 static char ID;
3847
3848 Verifier V;
3849 bool FatalErrors;
3850
3851 VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
3852 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
3853 }
3854 explicit VerifierLegacyPass(bool FatalErrors)
3855 : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
3856 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
3857 }
3858
3859 bool runOnFunction(Function &F) override {
3860 if (!V.verify(F) && FatalErrors)
3861 report_fatal_error("Broken function found, compilation aborted!");
3862
3863 return false;
3864 }
3865
3866 bool doFinalization(Module &M) override {
3867 if (!V.verify(M) && FatalErrors)
3868 report_fatal_error("Broken module found, compilation aborted!");
3869
3870 return false;
3871 }
3872
3873 void getAnalysisUsage(AnalysisUsage &AU) const override {
3874 AU.setPreservesAll();
3875 }
3876};
3877}
3878
3879char VerifierLegacyPass::ID = 0;
3880INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void* initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo("Module Verifier"
, "verify", & VerifierLegacyPass ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< VerifierLegacyPass >), false, false);
Registry.registerPass(*PI, true); return PI; } void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { static volatile sys::cas_flag initialized
= 0; sys::cas_flag old_val = sys::CompareAndSwap(&initialized
, 1, 0); if (old_val == 0) { initializeVerifierLegacyPassPassOnce
(Registry); sys::MemoryFence(); ; ; initialized = 2; ; } else
{ sys::cas_flag tmp = initialized; sys::MemoryFence(); while
(tmp != 2) { tmp = initialized; sys::MemoryFence(); } } ; }
3881
3882FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
3883 return new VerifierLegacyPass(FatalErrors);
3884}
3885
3886PreservedAnalyses VerifierPass::run(Module &M) {
3887 if (verifyModule(M, &dbgs()) && FatalErrors)
3888 report_fatal_error("Broken module found, compilation aborted!");
3889
3890 return PreservedAnalyses::all();
3891}
3892
3893PreservedAnalyses VerifierPass::run(Function &F) {
3894 if (verifyFunction(F, &dbgs()) && FatalErrors)
3895 report_fatal_error("Broken function found, compilation aborted!");
3896
3897 return PreservedAnalyses::all();
3898}