Bug Summary

File:lib/IR/Verifier.cpp
Location:line 2023, column 7
Description:Called C++ object pointer is null

Annotated Source Code

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * Landingpad instructions must be in a function with a personality function.
43// * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/MapVector.h"
49#include "llvm/ADT/STLExtras.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallVector.h"
53#include "llvm/ADT/StringExtras.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/CallSite.h"
56#include "llvm/IR/CallingConv.h"
57#include "llvm/IR/ConstantRange.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugInfo.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/Dominators.h"
63#include "llvm/IR/InlineAsm.h"
64#include "llvm/IR/InstIterator.h"
65#include "llvm/IR/InstVisitor.h"
66#include "llvm/IR/IntrinsicInst.h"
67#include "llvm/IR/LLVMContext.h"
68#include "llvm/IR/Metadata.h"
69#include "llvm/IR/Module.h"
70#include "llvm/IR/ModuleSlotTracker.h"
71#include "llvm/IR/PassManager.h"
72#include "llvm/IR/Statepoint.h"
73#include "llvm/Pass.h"
74#include "llvm/Support/CommandLine.h"
75#include "llvm/Support/Debug.h"
76#include "llvm/Support/ErrorHandling.h"
77#include "llvm/Support/raw_ostream.h"
78#include <algorithm>
79#include <cstdarg>
80using namespace llvm;
81
82static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
83
84namespace {
85struct VerifierSupport {
86 raw_ostream *OS;
87 const Module *M = nullptr;
88 Optional<ModuleSlotTracker> MST;
89
90 /// Track the brokenness of the module while recursively visiting.
91 bool Broken = false;
92
93 explicit VerifierSupport(raw_ostream *OS) : OS(OS) {}
94
95private:
96 template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
97 Write(&*I);
98 }
99
100 void Write(const Module *M) {
101 if (!M)
102 return;
103 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
104 }
105
106 void Write(const Value *V) {
107 if (!V)
108 return;
109 if (isa<Instruction>(V)) {
110 V->print(*OS, *MST);
111 *OS << '\n';
112 } else {
113 V->printAsOperand(*OS, true, *MST);
114 *OS << '\n';
115 }
116 }
117 void Write(ImmutableCallSite CS) {
118 Write(CS.getInstruction());
119 }
120
121 void Write(const Metadata *MD) {
122 if (!MD)
123 return;
124 MD->print(*OS, *MST, M);
125 *OS << '\n';
126 }
127
128 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
129 Write(MD.get());
130 }
131
132 void Write(const NamedMDNode *NMD) {
133 if (!NMD)
134 return;
135 NMD->print(*OS, *MST);
136 *OS << '\n';
137 }
138
139 void Write(Type *T) {
140 if (!T)
141 return;
142 *OS << ' ' << *T;
143 }
144
145 void Write(const Comdat *C) {
146 if (!C)
147 return;
148 *OS << *C;
149 }
150
151 template <typename T> void Write(ArrayRef<T> Vs) {
152 for (const T &V : Vs)
153 Write(V);
154 }
155
156 template <typename T1, typename... Ts>
157 void WriteTs(const T1 &V1, const Ts &... Vs) {
158 Write(V1);
159 WriteTs(Vs...);
160 }
161
162 template <typename... Ts> void WriteTs() {}
163
164public:
165 /// \brief A check failed, so printout out the condition and the message.
166 ///
167 /// This provides a nice place to put a breakpoint if you want to see why
168 /// something is not correct.
169 void CheckFailed(const Twine &Message) {
170 if (OS)
171 *OS << Message << '\n';
172 Broken = true;
173 }
174
175 /// \brief A check failed (with values to print).
176 ///
177 /// This calls the Message-only version so that the above is easier to set a
178 /// breakpoint on.
179 template <typename T1, typename... Ts>
180 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
181 CheckFailed(Message);
182 if (OS)
183 WriteTs(V1, Vs...);
184 }
185};
186
187class Verifier : public InstVisitor<Verifier>, VerifierSupport {
188 friend class InstVisitor<Verifier>;
189
190 LLVMContext *Context;
191 DominatorTree DT;
192
193 /// \brief When verifying a basic block, keep track of all of the
194 /// instructions we have seen so far.
195 ///
196 /// This allows us to do efficient dominance checks for the case when an
197 /// instruction has an operand that is an instruction in the same block.
198 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
199
200 /// \brief Keep track of the metadata nodes that have been checked already.
201 SmallPtrSet<const Metadata *, 32> MDNodes;
202
203 /// Track all DICompileUnits visited.
204 SmallPtrSet<const Metadata *, 2> CUVisited;
205
206 /// \brief The result type for a landingpad.
207 Type *LandingPadResultTy;
208
209 /// \brief Whether we've seen a call to @llvm.localescape in this function
210 /// already.
211 bool SawFrameEscape;
212
213 /// Stores the count of how many objects were passed to llvm.localescape for a
214 /// given function and the largest index passed to llvm.localrecover.
215 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
216
217 // Maps catchswitches and cleanuppads that unwind to siblings to the
218 // terminators that indicate the unwind, used to detect cycles therein.
219 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
220
221 /// Cache of constants visited in search of ConstantExprs.
222 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
223
224 // Verify that this GlobalValue is only used in this module.
225 // This map is used to avoid visiting uses twice. We can arrive at a user
226 // twice, if they have multiple operands. In particular for very large
227 // constant expressions, we can arrive at a particular user many times.
228 SmallPtrSet<const Value *, 32> GlobalValueVisited;
229
230 void checkAtomicMemAccessSize(const Module *M, Type *Ty,
231 const Instruction *I);
232
233 void updateModule(const Module *NewM) {
234 if (M == NewM)
235 return;
236 MST.emplace(NewM);
237 M = NewM;
238 }
239
240public:
241 explicit Verifier(raw_ostream *OS)
242 : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
243 SawFrameEscape(false) {}
244
245 bool verify(const Function &F) {
246 updateModule(F.getParent());
247 Context = &M->getContext();
248
249 // First ensure the function is well-enough formed to compute dominance
250 // information.
251 if (F.empty()) {
252 if (OS)
253 *OS << "Function '" << F.getName()
254 << "' does not contain an entry block!\n";
255 return false;
256 }
257 for (const BasicBlock &BB : F) {
258 if (!BB.empty() && BB.back().isTerminator())
259 continue;
260
261 if (OS) {
262 *OS << "Basic Block in function '" << F.getName()
263 << "' does not have terminator!\n";
264 BB.printAsOperand(*OS, true, *MST);
265 *OS << "\n";
266 }
267 return false;
268 }
269
270 // Now directly compute a dominance tree. We don't rely on the pass
271 // manager to provide this as it isolates us from a potentially
272 // out-of-date dominator tree and makes it significantly more complex to
273 // run this code outside of a pass manager.
274 // FIXME: It's really gross that we have to cast away constness here.
275 DT.recalculate(const_cast<Function &>(F));
276
277 Broken = false;
278 // FIXME: We strip const here because the inst visitor strips const.
279 visit(const_cast<Function &>(F));
280 verifySiblingFuncletUnwinds();
281 InstsInThisBlock.clear();
282 LandingPadResultTy = nullptr;
283 SawFrameEscape = false;
284 SiblingFuncletInfo.clear();
285
286 return !Broken;
287 }
288
289 bool verify(const Module &M) {
290 updateModule(&M);
291 Context = &M.getContext();
292 Broken = false;
293
294 // Scan through, checking all of the external function's linkage now...
295 for (const Function &F : M) {
296 visitGlobalValue(F);
297
298 // Check to make sure function prototypes are okay.
299 if (F.isDeclaration())
300 visitFunction(F);
301 }
302
303 // Now that we've visited every function, verify that we never asked to
304 // recover a frame index that wasn't escaped.
305 verifyFrameRecoverIndices();
306 for (const GlobalVariable &GV : M.globals())
307 visitGlobalVariable(GV);
308
309 for (const GlobalAlias &GA : M.aliases())
310 visitGlobalAlias(GA);
311
312 for (const NamedMDNode &NMD : M.named_metadata())
313 visitNamedMDNode(NMD);
314
315 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
316 visitComdat(SMEC.getValue());
317
318 visitModuleFlags(M);
319 visitModuleIdents(M);
320
321 verifyCompileUnits();
322
323 return !Broken;
324 }
325
326private:
327 // Verification methods...
328 void visitGlobalValue(const GlobalValue &GV);
329 void visitGlobalVariable(const GlobalVariable &GV);
330 void visitGlobalAlias(const GlobalAlias &GA);
331 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
332 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
333 const GlobalAlias &A, const Constant &C);
334 void visitNamedMDNode(const NamedMDNode &NMD);
335 void visitMDNode(const MDNode &MD);
336 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
337 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
338 void visitComdat(const Comdat &C);
339 void visitModuleIdents(const Module &M);
340 void visitModuleFlags(const Module &M);
341 void visitModuleFlag(const MDNode *Op,
342 DenseMap<const MDString *, const MDNode *> &SeenIDs,
343 SmallVectorImpl<const MDNode *> &Requirements);
344 void visitFunction(const Function &F);
345 void visitBasicBlock(BasicBlock &BB);
346 void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
347 void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
348
349 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
350#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
351#include "llvm/IR/Metadata.def"
352 void visitDIScope(const DIScope &N);
353 void visitDIVariable(const DIVariable &N);
354 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
355 void visitDITemplateParameter(const DITemplateParameter &N);
356
357 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
358
359 // InstVisitor overrides...
360 using InstVisitor<Verifier>::visit;
361 void visit(Instruction &I);
362
363 void visitTruncInst(TruncInst &I);
364 void visitZExtInst(ZExtInst &I);
365 void visitSExtInst(SExtInst &I);
366 void visitFPTruncInst(FPTruncInst &I);
367 void visitFPExtInst(FPExtInst &I);
368 void visitFPToUIInst(FPToUIInst &I);
369 void visitFPToSIInst(FPToSIInst &I);
370 void visitUIToFPInst(UIToFPInst &I);
371 void visitSIToFPInst(SIToFPInst &I);
372 void visitIntToPtrInst(IntToPtrInst &I);
373 void visitPtrToIntInst(PtrToIntInst &I);
374 void visitBitCastInst(BitCastInst &I);
375 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
376 void visitPHINode(PHINode &PN);
377 void visitBinaryOperator(BinaryOperator &B);
378 void visitICmpInst(ICmpInst &IC);
379 void visitFCmpInst(FCmpInst &FC);
380 void visitExtractElementInst(ExtractElementInst &EI);
381 void visitInsertElementInst(InsertElementInst &EI);
382 void visitShuffleVectorInst(ShuffleVectorInst &EI);
383 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
384 void visitCallInst(CallInst &CI);
385 void visitInvokeInst(InvokeInst &II);
386 void visitGetElementPtrInst(GetElementPtrInst &GEP);
387 void visitLoadInst(LoadInst &LI);
388 void visitStoreInst(StoreInst &SI);
389 void verifyDominatesUse(Instruction &I, unsigned i);
390 void visitInstruction(Instruction &I);
391 void visitTerminatorInst(TerminatorInst &I);
392 void visitBranchInst(BranchInst &BI);
393 void visitReturnInst(ReturnInst &RI);
394 void visitSwitchInst(SwitchInst &SI);
395 void visitIndirectBrInst(IndirectBrInst &BI);
396 void visitSelectInst(SelectInst &SI);
397 void visitUserOp1(Instruction &I);
398 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
399 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
400 template <class DbgIntrinsicTy>
401 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
402 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
403 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
404 void visitFenceInst(FenceInst &FI);
405 void visitAllocaInst(AllocaInst &AI);
406 void visitExtractValueInst(ExtractValueInst &EVI);
407 void visitInsertValueInst(InsertValueInst &IVI);
408 void visitEHPadPredecessors(Instruction &I);
409 void visitLandingPadInst(LandingPadInst &LPI);
410 void visitCatchPadInst(CatchPadInst &CPI);
411 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
412 void visitCleanupPadInst(CleanupPadInst &CPI);
413 void visitFuncletPadInst(FuncletPadInst &FPI);
414 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
415 void visitCleanupReturnInst(CleanupReturnInst &CRI);
416
417 void verifyCallSite(CallSite CS);
418 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
419 void verifySwiftErrorValue(const Value *SwiftErrorVal);
420 void verifyMustTailCall(CallInst &CI);
421 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
422 unsigned ArgNo, std::string &Suffix);
423 bool verifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
424 SmallVectorImpl<Type *> &ArgTys);
425 bool verifyIntrinsicIsVarArg(bool isVarArg,
426 ArrayRef<Intrinsic::IITDescriptor> &Infos);
427 bool verifyAttributeCount(AttributeSet Attrs, unsigned Params);
428 void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
429 const Value *V);
430 void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
431 bool isReturnValue, const Value *V);
432 void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
433 const Value *V);
434 void verifyFunctionMetadata(
435 const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
436
437 void visitConstantExprsRecursively(const Constant *EntryC);
438 void visitConstantExpr(const ConstantExpr *CE);
439 void verifyStatepoint(ImmutableCallSite CS);
440 void verifyFrameRecoverIndices();
441 void verifySiblingFuncletUnwinds();
442
443 void verifyBitPieceExpression(const DbgInfoIntrinsic &I);
444
445 /// Module-level debug info verification...
446 void verifyCompileUnits();
447};
448} // End anonymous namespace
449
450// Assert - We know that cond should be true, if not print an error message.
451#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (0) \
452 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
453
454void Verifier::visit(Instruction &I) {
455 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
456 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (0)
;
457 InstVisitor<Verifier>::visit(I);
458}
459
460// Helper to recursively iterate over indirect users. By
461// returning false, the callback can ask to stop recursing
462// further.
463static void forEachUser(const Value *User,
464 SmallPtrSet<const Value *, 32> &Visited,
465 llvm::function_ref<bool(const Value *)> Callback) {
466 if (!Visited.insert(User).second)
467 return;
468 for (const Value *TheNextUser : User->materialized_users())
469 if (Callback(TheNextUser))
470 forEachUser(TheNextUser, Visited, Callback);
471}
472
473void Verifier::visitGlobalValue(const GlobalValue &GV) {
474 Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||do { if (!(!GV.isDeclaration() || GV.hasExternalLinkage() || GV
.hasExternalWeakLinkage())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (0)
475 GV.hasExternalWeakLinkage(),do { if (!(!GV.isDeclaration() || GV.hasExternalLinkage() || GV
.hasExternalWeakLinkage())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (0)
476 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasExternalLinkage() || GV
.hasExternalWeakLinkage())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (0)
;
477
478 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (0)
479 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (0)
;
480 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (0)
481 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (0)
;
482
483 if (GV.hasAppendingLinkage()) {
484 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
485 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (0)
486 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (0)
;
487 }
488
489 if (GV.isDeclarationForLinker())
490 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (0)
;
491
492 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
493 if (const Instruction *I = dyn_cast<Instruction>(V)) {
494 if (!I->getParent() || !I->getParent()->getParent())
495 CheckFailed("Global is referenced by parentless instruction!", &GV,
496 M, I);
497 else if (I->getParent()->getParent()->getParent() != M)
498 CheckFailed("Global is referenced in a different module!", &GV,
499 M, I, I->getParent()->getParent(),
500 I->getParent()->getParent()->getParent());
501 return false;
502 } else if (const Function *F = dyn_cast<Function>(V)) {
503 if (F->getParent() != M)
504 CheckFailed("Global is used by function in a different module", &GV,
505 M, F, F->getParent());
506 return false;
507 }
508 return true;
509 });
510}
511
512void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
513 if (GV.hasInitializer()) {
514 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (0)
515 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (0)
516 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (0)
517 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (0)
;
518
519 // If the global has common linkage, it must have a zero initializer and
520 // cannot be constant.
521 if (GV.hasCommonLinkage()) {
522 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (0)
523 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (0)
;
524 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (0)
525 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (0)
;
526 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (0)
;
527 }
528 } else {
529 Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),do { if (!(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage
())) { CheckFailed("invalid linkage type for global declaration"
, &GV); return; } } while (0)
530 "invalid linkage type for global declaration", &GV)do { if (!(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage
())) { CheckFailed("invalid linkage type for global declaration"
, &GV); return; } } while (0)
;
531 }
532
533 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
534 GV.getName() == "llvm.global_dtors")) {
535 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (0)
536 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (0)
;
537 // Don't worry about emitting an error for it not being an array,
538 // visitGlobalValue will complain on appending non-array.
539 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
540 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
541 PointerType *FuncPtrTy =
542 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
543 // FIXME: Reject the 2-field form in LLVM 4.0.
544 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
545 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
546 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
547 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
548 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
;
549 if (STy->getNumElements() == 3) {
550 Type *ETy = STy->getTypeAtIndex(2);
551 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (0)
552 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (0)
553 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (0)
;
554 }
555 }
556 }
557
558 if (GV.hasName() && (GV.getName() == "llvm.used" ||
559 GV.getName() == "llvm.compiler.used")) {
560 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (0)
561 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (0)
;
562 Type *GVType = GV.getValueType();
563 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
564 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
565 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (0)
;
566 if (GV.hasInitializer()) {
567 const Constant *Init = GV.getInitializer();
568 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
569 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (0)
570 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (0)
;
571 for (Value *Op : InitArray->operands()) {
572 Value *V = Op->stripPointerCastsNoFollowAliases();
573 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (0)
574 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (0)
575 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (0)
;
576 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (0)
;
577 }
578 }
579 }
580 }
581
582 Assert(!GV.hasDLLImportStorageClass() ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (0)
583 (GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (0)
584 GV.hasAvailableExternallyLinkage(),do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (0)
585 "Global is marked as dllimport, but not external", &GV)do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (0)
;
586
587 if (!GV.hasInitializer()) {
588 visitGlobalValue(GV);
589 return;
590 }
591
592 // Walk any aggregate initializers looking for bitcasts between address spaces
593 visitConstantExprsRecursively(GV.getInitializer());
594
595 visitGlobalValue(GV);
596}
597
598void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
599 SmallPtrSet<const GlobalAlias*, 4> Visited;
600 Visited.insert(&GA);
601 visitAliaseeSubExpr(Visited, GA, C);
602}
603
604void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
605 const GlobalAlias &GA, const Constant &C) {
606 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
607 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (0)
608 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (0)
;
609
610 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
611 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (0)
;
612
613 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (0)
614 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (0)
;
615 } else {
616 // Only continue verifying subexpressions of GlobalAliases.
617 // Do not recurse into global initializers.
618 return;
619 }
620 }
621
622 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
623 visitConstantExprsRecursively(CE);
624
625 for (const Use &U : C.operands()) {
626 Value *V = &*U;
627 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
628 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
629 else if (const auto *C2 = dyn_cast<Constant>(V))
630 visitAliaseeSubExpr(Visited, GA, *C2);
631 }
632}
633
634void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
635 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(0)
636 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(0)
637 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(0)
638 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(0)
;
639 const Constant *Aliasee = GA.getAliasee();
640 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (0)
;
641 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (0)
642 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (0)
;
643
644 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (0)
645 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (0)
;
646
647 visitAliaseeSubExpr(GA, *Aliasee);
648
649 visitGlobalValue(GA);
650}
651
652void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
653 for (const MDNode *MD : NMD.operands()) {
654 if (NMD.getName() == "llvm.dbg.cu") {
655 Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { CheckFailed
("invalid compile unit", &NMD, MD); return; } } while (0)
;
656 }
657
658 if (!MD)
659 continue;
660
661 visitMDNode(*MD);
662 }
663}
664
665void Verifier::visitMDNode(const MDNode &MD) {
666 // Only visit each node once. Metadata can be mutually recursive, so this
667 // avoids infinite recursion here, as well as being an optimization.
668 if (!MDNodes.insert(&MD).second)
669 return;
670
671 switch (MD.getMetadataID()) {
672 default:
673 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 673)
;
674 case Metadata::MDTupleKind:
675 break;
676#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
677 case Metadata::CLASS##Kind: \
678 visit##CLASS(cast<CLASS>(MD)); \
679 break;
680#include "llvm/IR/Metadata.def"
681 }
682
683 for (const Metadata *Op : MD.operands()) {
684 if (!Op)
685 continue;
686 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (0)
687 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (0)
;
688 if (auto *N = dyn_cast<MDNode>(Op)) {
689 visitMDNode(*N);
690 continue;
691 }
692 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
693 visitValueAsMetadata(*V, nullptr);
694 continue;
695 }
696 }
697
698 // Check these last, so we diagnose problems in operands first.
699 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (0)
;
700 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (0)
;
701}
702
703void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
704 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (0)
;
705 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (0)
706 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (0)
;
707
708 auto *L = dyn_cast<LocalAsMetadata>(&MD);
709 if (!L)
710 return;
711
712 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (0)
;
713
714 // If this was an instruction, bb, or argument, verify that it is in the
715 // function that we expect.
716 Function *ActualF = nullptr;
717 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
718 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (0)
;
719 ActualF = I->getParent()->getParent();
720 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
721 ActualF = BB->getParent();
722 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
723 ActualF = A->getParent();
724 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 724, __PRETTY_FUNCTION__))
;
725
726 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (0)
;
727}
728
729void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
730 Metadata *MD = MDV.getMetadata();
731 if (auto *N = dyn_cast<MDNode>(MD)) {
732 visitMDNode(*N);
733 return;
734 }
735
736 // Only visit each node once. Metadata can be mutually recursive, so this
737 // avoids infinite recursion here, as well as being an optimization.
738 if (!MDNodes.insert(MD).second)
739 return;
740
741 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
742 visitValueAsMetadata(*V, F);
743}
744
745static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
746static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
747static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
748
749template <class Ty>
750bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
751 for (Metadata *MD : N.operands()) {
752 if (MD) {
753 if (!isa<Ty>(MD))
754 return false;
755 } else {
756 if (!AllowNull)
757 return false;
758 }
759 }
760 return true;
761}
762
763template <class Ty>
764bool isValidMetadataArray(const MDTuple &N) {
765 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
766}
767
768template <class Ty>
769bool isValidMetadataNullArray(const MDTuple &N) {
770 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
771}
772
773void Verifier::visitDILocation(const DILocation &N) {
774 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (0)
775 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (0)
;
776 if (auto *IA = N.getRawInlinedAt())
777 Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { CheckFailed("inlined-at should be a location"
, &N, IA); return; } } while (0)
;
778}
779
780void Verifier::visitGenericDINode(const GenericDINode &N) {
781 Assert(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { CheckFailed("invalid tag", &N);
return; } } while (0)
;
782}
783
784void Verifier::visitDIScope(const DIScope &N) {
785 if (auto *F = N.getRawFile())
786 Assert(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { CheckFailed("invalid file"
, &N, F); return; } } while (0)
;
787}
788
789void Verifier::visitDISubrange(const DISubrange &N) {
790 Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
791 Assert(N.getCount() >= -1, "invalid subrange count", &N)do { if (!(N.getCount() >= -1)) { CheckFailed("invalid subrange count"
, &N); return; } } while (0)
;
792}
793
794void Verifier::visitDIEnumerator(const DIEnumerator &N) {
795 Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
796}
797
798void Verifier::visitDIBasicType(const DIBasicType &N) {
799 Assert(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
800 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
801 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
;
802}
803
804void Verifier::visitDIDerivedType(const DIDerivedType &N) {
805 // Common scope checks.
806 visitDIScope(N);
807
808 Assert(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
809 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
810 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
811 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
812 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
813 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
814 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
815 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
816 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
817 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
818 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
819 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_member || N.getTag() == dwarf::DW_TAG_inheritance
|| N.getTag() == dwarf::DW_TAG_friend)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
;
820 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
821 Assert(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { CheckFailed("invalid pointer to member type"
, &N, N.getRawExtraData()); return; } } while (0)
822 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { CheckFailed("invalid pointer to member type"
, &N, N.getRawExtraData()); return; } } while (0)
;
823 }
824
825 Assert(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { CheckFailed("invalid scope"
, &N, N.getRawScope()); return; } } while (0)
;
826 Assert(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { CheckFailed("invalid base type"
, &N, N.getRawBaseType()); return; } } while (0)
827 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { CheckFailed("invalid base type"
, &N, N.getRawBaseType()); return; } } while (0)
;
828}
829
830static bool hasConflictingReferenceFlags(unsigned Flags) {
831 return (Flags & DINode::FlagLValueReference) &&
832 (Flags & DINode::FlagRValueReference);
833}
834
835void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
836 auto *Params = dyn_cast<MDTuple>(&RawParams);
837 Assert(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { CheckFailed("invalid template params", &
N, &RawParams); return; } } while (0)
;
838 for (Metadata *Op : Params->operands()) {
839 Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,do { if (!(Op && isa<DITemplateParameter>(Op)))
{ CheckFailed("invalid template parameter", &N, Params, Op
); return; } } while (0)
840 Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ CheckFailed("invalid template parameter", &N, Params, Op
); return; } } while (0)
;
841 }
842}
843
844void Verifier::visitDICompositeType(const DICompositeType &N) {
845 // Common scope checks.
846 visitDIScope(N);
847
848 Assert(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
849 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
850 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
851 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
852 N.getTag() == dwarf::DW_TAG_class_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
853 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { CheckFailed("invalid tag", &
N); return; } } while (0)
;
854
855 Assert(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { CheckFailed("invalid scope"
, &N, N.getRawScope()); return; } } while (0)
;
856 Assert(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { CheckFailed("invalid base type"
, &N, N.getRawBaseType()); return; } } while (0)
857 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { CheckFailed("invalid base type"
, &N, N.getRawBaseType()); return; } } while (0)
;
858
859 Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { CheckFailed("invalid composite elements", &N, N.getRawElements
()); return; } } while (0)
860 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { CheckFailed("invalid composite elements", &N, N.getRawElements
()); return; } } while (0)
;
861 Assert(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { CheckFailed("invalid vtable holder"
, &N, N.getRawVTableHolder()); return; } } while (0)
862 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { CheckFailed("invalid vtable holder"
, &N, N.getRawVTableHolder()); return; } } while (0)
;
863 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
864 &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
;
865 if (auto *Params = N.getRawTemplateParams())
866 visitTemplateParams(N, *Params);
867
868 if (N.getTag() == dwarf::DW_TAG_class_type ||
869 N.getTag() == dwarf::DW_TAG_union_type) {
870 Assert(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { CheckFailed("class/union requires a filename",
&N, N.getFile()); return; } } while (0)
871 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { CheckFailed("class/union requires a filename",
&N, N.getFile()); return; } } while (0)
;
872 }
873}
874
875void Verifier::visitDISubroutineType(const DISubroutineType &N) {
876 Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
877 if (auto *Types = N.getRawTypeArray()) {
878 Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { CheckFailed("invalid composite elements"
, &N, Types); return; } } while (0)
;
879 for (Metadata *Ty : N.getTypeArray()->operands()) {
880 Assert(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { CheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (0)
;
881 }
882 }
883 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
884 &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
;
885}
886
887void Verifier::visitDIFile(const DIFile &N) {
888 Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
889}
890
891void Verifier::visitDICompileUnit(const DICompileUnit &N) {
892 Assert(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { CheckFailed("compile units must be distinct"
, &N); return; } } while (0)
;
893 Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
894
895 // Don't bother verifying the compilation directory or producer string
896 // as those could be empty.
897 Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { CheckFailed("invalid file", &N, N.getRawFile()); return
; } } while (0)
898 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { CheckFailed("invalid file", &N, N.getRawFile()); return
; } } while (0)
;
899 Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { CheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
0)
900 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { CheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
0)
;
901
902 Assert((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { CheckFailed("invalid emission kind", &N); return; }
} while (0)
903 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { CheckFailed("invalid emission kind", &N); return; }
} while (0)
;
904
905 if (auto *Array = N.getRawEnumTypes()) {
906 Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid enum list"
, &N, Array); return; } } while (0)
;
907 for (Metadata *Op : N.getEnumTypes()->operands()) {
908 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
909 Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { CheckFailed("invalid enum type", &N, N.getEnumTypes(
), Op); return; } } while (0)
910 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { CheckFailed("invalid enum type", &N, N.getEnumTypes(
), Op); return; } } while (0)
;
911 }
912 }
913 if (auto *Array = N.getRawRetainedTypes()) {
914 Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid retained type list"
, &N, Array); return; } } while (0)
;
915 for (Metadata *Op : N.getRetainedTypes()->operands()) {
916 Assert(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && cast<DISubprogram>(Op)->isDefinition
() == false)))) { CheckFailed("invalid retained type", &N
, Op); return; } } while (0)
917 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && cast<DISubprogram>(Op)->isDefinition
() == false)))) { CheckFailed("invalid retained type", &N
, Op); return; } } while (0)
918 cast<DISubprogram>(Op)->isDefinition() == false)),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && cast<DISubprogram>(Op)->isDefinition
() == false)))) { CheckFailed("invalid retained type", &N
, Op); return; } } while (0)
919 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && cast<DISubprogram>(Op)->isDefinition
() == false)))) { CheckFailed("invalid retained type", &N
, Op); return; } } while (0)
;
920 }
921 }
922 if (auto *Array = N.getRawGlobalVariables()) {
923 Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid global variable list"
, &N, Array); return; } } while (0)
;
924 for (Metadata *Op : N.getGlobalVariables()->operands()) {
925 Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,do { if (!(Op && isa<DIGlobalVariable>(Op))) { CheckFailed
("invalid global variable ref", &N, Op); return; } } while
(0)
926 Op)do { if (!(Op && isa<DIGlobalVariable>(Op))) { CheckFailed
("invalid global variable ref", &N, Op); return; } } while
(0)
;
927 }
928 }
929 if (auto *Array = N.getRawImportedEntities()) {
930 Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid imported entity list"
, &N, Array); return; } } while (0)
;
931 for (Metadata *Op : N.getImportedEntities()->operands()) {
932 Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,do { if (!(Op && isa<DIImportedEntity>(Op))) { CheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(0)
933 Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { CheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(0)
;
934 }
935 }
936 if (auto *Array = N.getRawMacros()) {
937 Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid macro list"
, &N, Array); return; } } while (0)
;
938 for (Metadata *Op : N.getMacros()->operands()) {
939 Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { CheckFailed
("invalid macro ref", &N, Op); return; } } while (0)
;
940 }
941 }
942 CUVisited.insert(&N);
943}
944
945void Verifier::visitDISubprogram(const DISubprogram &N) {
946 Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
947 Assert(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { CheckFailed("invalid scope"
, &N, N.getRawScope()); return; } } while (0)
;
948 if (auto *F = N.getRawFile())
949 Assert(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { CheckFailed("invalid file"
, &N, F); return; } } while (0)
;
950 if (auto *T = N.getRawType())
951 Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { CheckFailed("invalid subroutine type"
, &N, T); return; } } while (0)
;
952 Assert(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { CheckFailed("invalid containing type"
, &N, N.getRawContainingType()); return; } } while (0)
953 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { CheckFailed("invalid containing type"
, &N, N.getRawContainingType()); return; } } while (0)
;
954 if (auto *Params = N.getRawTemplateParams())
955 visitTemplateParams(N, *Params);
956 if (auto *S = N.getRawDeclaration())
957 Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { CheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (0)
958 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { CheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (0)
;
959 if (auto *RawVars = N.getRawVariables()) {
960 auto *Vars = dyn_cast<MDTuple>(RawVars);
961 Assert(Vars, "invalid variable list", &N, RawVars)do { if (!(Vars)) { CheckFailed("invalid variable list", &
N, RawVars); return; } } while (0)
;
962 for (Metadata *Op : Vars->operands()) {
963 Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,do { if (!(Op && isa<DILocalVariable>(Op))) { CheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(0)
964 Op)do { if (!(Op && isa<DILocalVariable>(Op))) { CheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(0)
;
965 }
966 }
967 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
968 &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { CheckFailed
("invalid reference flags", &N); return; } } while (0)
;
969
970 auto *Unit = N.getRawUnit();
971 if (N.isDefinition()) {
972 // Subprogram definitions (not part of the type hierarchy).
973 Assert(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { CheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (0)
;
974 Assert(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { CheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (0)
;
975 Assert(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { CheckFailed("invalid unit type"
, &N, Unit); return; } } while (0)
;
976 } else {
977 // Subprogram declarations (part of the type hierarchy).
978 Assert(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { CheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (0)
;
979 }
980}
981
982void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
983 Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
984 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("invalid local scope", &
N, N.getRawScope()); return; } } while (0)
985 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("invalid local scope", &
N, N.getRawScope()); return; } } while (0)
;
986}
987
988void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
989 visitDILexicalBlockBase(N);
990
991 Assert(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { CheckFailed("cannot have column info without line info"
, &N); return; } } while (0)
992 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { CheckFailed("cannot have column info without line info"
, &N); return; } } while (0)
;
993}
994
995void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
996 visitDILexicalBlockBase(N);
997}
998
999void Verifier::visitDINamespace(const DINamespace &N) {
1000 Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1001 if (auto *S = N.getRawScope())
1002 Assert(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { CheckFailed("invalid scope ref"
, &N, S); return; } } while (0)
;
1003}
1004
1005void Verifier::visitDIMacro(const DIMacro &N) {
1006 Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { CheckFailed(
"invalid macinfo type", &N); return; } } while (0)
1007 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { CheckFailed(
"invalid macinfo type", &N); return; } } while (0)
1008 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { CheckFailed(
"invalid macinfo type", &N); return; } } while (0)
;
1009 Assert(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { CheckFailed("anonymous macro"
, &N); return; } } while (0)
;
1010 if (!N.getValue().empty()) {
1011 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 1011, __PRETTY_FUNCTION__))
;
1012 }
1013}
1014
1015void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1016 Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { CheckFailed("invalid macinfo type", &N); return; } }
while (0)
1017 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { CheckFailed("invalid macinfo type", &N); return; } }
while (0)
;
1018 if (auto *F = N.getRawFile())
1019 Assert(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { CheckFailed("invalid file"
, &N, F); return; } } while (0)
;
1020
1021 if (auto *Array = N.getRawElements()) {
1022 Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { CheckFailed("invalid macro list"
, &N, Array); return; } } while (0)
;
1023 for (Metadata *Op : N.getElements()->operands()) {
1024 Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { CheckFailed
("invalid macro ref", &N, Op); return; } } while (0)
;
1025 }
1026 }
1027}
1028
1029void Verifier::visitDIModule(const DIModule &N) {
1030 Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1031 Assert(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { CheckFailed("anonymous module"
, &N); return; } } while (0)
;
1032}
1033
1034void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1035 Assert(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { CheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (0)
;
1036}
1037
1038void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1039 visitDITemplateParameter(N);
1040
1041 Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { CheckFailed("invalid tag", &N); return; } } while (0
)
1042 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { CheckFailed("invalid tag", &N); return; } } while (0
)
;
1043}
1044
1045void Verifier::visitDITemplateValueParameter(
1046 const DITemplateValueParameter &N) {
1047 visitDITemplateParameter(N);
1048
1049 Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { CheckFailed
("invalid tag", &N); return; } } while (0)
1050 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { CheckFailed
("invalid tag", &N); return; } } while (0)
1051 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { CheckFailed
("invalid tag", &N); return; } } while (0)
1052 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1053}
1054
1055void Verifier::visitDIVariable(const DIVariable &N) {
1056 if (auto *S = N.getRawScope())
1057 Assert(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { CheckFailed("invalid scope"
, &N, S); return; } } while (0)
;
1058 Assert(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { CheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (0)
;
1059 if (auto *F = N.getRawFile())
1060 Assert(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { CheckFailed("invalid file"
, &N, F); return; } } while (0)
;
1061}
1062
1063void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1064 // Checks common to all variables.
1065 visitDIVariable(N);
1066
1067 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1068 Assert(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { CheckFailed("missing global variable name"
, &N); return; } } while (0)
;
1069 if (auto *V = N.getRawVariable()) {
1070 Assert(isa<ConstantAsMetadata>(V) &&do { if (!(isa<ConstantAsMetadata>(V) && !isa<
Function>(cast<ConstantAsMetadata>(V)->getValue()
))) { CheckFailed("invalid global varaible ref", &N, V); return
; } } while (0)
1071 !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),do { if (!(isa<ConstantAsMetadata>(V) && !isa<
Function>(cast<ConstantAsMetadata>(V)->getValue()
))) { CheckFailed("invalid global varaible ref", &N, V); return
; } } while (0)
1072 "invalid global varaible ref", &N, V)do { if (!(isa<ConstantAsMetadata>(V) && !isa<
Function>(cast<ConstantAsMetadata>(V)->getValue()
))) { CheckFailed("invalid global varaible ref", &N, V); return
; } } while (0)
;
1073 visitConstantExprsRecursively(cast<ConstantAsMetadata>(V)->getValue());
1074 }
1075 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1076 Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",do { if (!(isa<DIDerivedType>(Member))) { CheckFailed("invalid static data member declaration"
, &N, Member); return; } } while (0)
1077 &N, Member)do { if (!(isa<DIDerivedType>(Member))) { CheckFailed("invalid static data member declaration"
, &N, Member); return; } } while (0)
;
1078 }
1079}
1080
1081void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1082 // Checks common to all variables.
1083 visitDIVariable(N);
1084
1085 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1086 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (0)
1087 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { CheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (0)
;
1088}
1089
1090void Verifier::visitDIExpression(const DIExpression &N) {
1091 Assert(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { CheckFailed("invalid expression", &
N); return; } } while (0)
;
1092}
1093
1094void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1095 Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { CheckFailed
("invalid tag", &N); return; } } while (0)
;
1096 if (auto *T = N.getRawType())
1097 Assert(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { CheckFailed("invalid type ref", &
N, T); return; } } while (0)
;
1098 if (auto *F = N.getRawFile())
1099 Assert(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { CheckFailed("invalid file"
, &N, F); return; } } while (0)
;
1100}
1101
1102void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1103 Assert(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
1104 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
1105 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { CheckFailed("invalid tag"
, &N); return; } } while (0)
;
1106 if (auto *S = N.getRawScope())
1107 Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { CheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (0)
;
1108 Assert(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { CheckFailed("invalid imported entity"
, &N, N.getRawEntity()); return; } } while (0)
1109 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { CheckFailed("invalid imported entity"
, &N, N.getRawEntity()); return; } } while (0)
;
1110}
1111
1112void Verifier::visitComdat(const Comdat &C) {
1113 // The Module is invalid if the GlobalValue has private linkage. Entities
1114 // with private linkage don't have entries in the symbol table.
1115 if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1116 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (0)
1117 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (0)
;
1118}
1119
1120void Verifier::visitModuleIdents(const Module &M) {
1121 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1122 if (!Idents)
1123 return;
1124
1125 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1126 // Scan each llvm.ident entry and make sure that this requirement is met.
1127 for (const MDNode *N : Idents->operands()) {
1128 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (0)
1129 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (0)
;
1130 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (0)
1131 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (0)
1132 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (0)
1133 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (0)
;
1134 }
1135}
1136
1137void Verifier::visitModuleFlags(const Module &M) {
1138 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1139 if (!Flags) return;
1140
1141 // Scan each flag, and track the flags and requirements.
1142 DenseMap<const MDString*, const MDNode*> SeenIDs;
1143 SmallVector<const MDNode*, 16> Requirements;
1144 for (const MDNode *MDN : Flags->operands())
1145 visitModuleFlag(MDN, SeenIDs, Requirements);
1146
1147 // Validate that the requirements in the module are valid.
1148 for (const MDNode *Requirement : Requirements) {
1149 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1150 const Metadata *ReqValue = Requirement->getOperand(1);
1151
1152 const MDNode *Op = SeenIDs.lookup(Flag);
1153 if (!Op) {
1154 CheckFailed("invalid requirement on flag, flag is not present in module",
1155 Flag);
1156 continue;
1157 }
1158
1159 if (Op->getOperand(2) != ReqValue) {
1160 CheckFailed(("invalid requirement on flag, "
1161 "flag does not have the required value"),
1162 Flag);
1163 continue;
1164 }
1165 }
1166}
1167
1168void
1169Verifier::visitModuleFlag(const MDNode *Op,
1170 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1171 SmallVectorImpl<const MDNode *> &Requirements) {
1172 // Each module flag should have three arguments, the merge behavior (a
1173 // constant int), the flag ID (an MDString), and the value.
1174 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (0)
1175 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (0)
;
1176 Module::ModFlagBehavior MFB;
1177 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1178 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (0)
1179 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (0)
1180 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (0)
1181 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (0)
;
1182 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (0)
1183 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (0)
1184 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (0)
;
1185 }
1186 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1187 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (0)
1188 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (0)
;
1189
1190 // Sanity check the values for behaviors with additional requirements.
1191 switch (MFB) {
1192 case Module::Error:
1193 case Module::Warning:
1194 case Module::Override:
1195 // These behavior types accept any value.
1196 break;
1197
1198 case Module::Require: {
1199 // The value should itself be an MDNode with two operands, a flag ID (an
1200 // MDString), and a value.
1201 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1202 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (0)
1203 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (0)
1204 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (0)
;
1205 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (0)
1206 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (0)
1207 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (0)
1208 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (0)
;
1209
1210 // Append it to the list of requirements, to check once all module flags are
1211 // scanned.
1212 Requirements.push_back(Value);
1213 break;
1214 }
1215
1216 case Module::Append:
1217 case Module::AppendUnique: {
1218 // These behavior types require the operand be an MDNode.
1219 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (0)
1220 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (0)
1221 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (0)
1222 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (0)
;
1223 break;
1224 }
1225 }
1226
1227 // Unless this is a "requires" flag, check the ID is unique.
1228 if (MFB != Module::Require) {
1229 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1230 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (0)
1231 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (0)
;
1232 }
1233}
1234
1235void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1236 bool isFunction, const Value *V) {
1237 unsigned Slot = ~0U;
1238 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1239 if (Attrs.getSlotIndex(I) == Idx) {
1240 Slot = I;
1241 break;
1242 }
1243
1244 assert(Slot != ~0U && "Attribute set inconsistency!")((Slot != ~0U && "Attribute set inconsistency!") ? static_cast
<void> (0) : __assert_fail ("Slot != ~0U && \"Attribute set inconsistency!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 1244, __PRETTY_FUNCTION__))
;
1245
1246 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1247 I != E; ++I) {
1248 if (I->isStringAttribute())
1249 continue;
1250
1251 if (I->getKindAsEnum() == Attribute::NoReturn ||
1252 I->getKindAsEnum() == Attribute::NoUnwind ||
1253 I->getKindAsEnum() == Attribute::NoInline ||
1254 I->getKindAsEnum() == Attribute::AlwaysInline ||
1255 I->getKindAsEnum() == Attribute::OptimizeForSize ||
1256 I->getKindAsEnum() == Attribute::StackProtect ||
1257 I->getKindAsEnum() == Attribute::StackProtectReq ||
1258 I->getKindAsEnum() == Attribute::StackProtectStrong ||
1259 I->getKindAsEnum() == Attribute::SafeStack ||
1260 I->getKindAsEnum() == Attribute::NoRedZone ||
1261 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1262 I->getKindAsEnum() == Attribute::Naked ||
1263 I->getKindAsEnum() == Attribute::InlineHint ||
1264 I->getKindAsEnum() == Attribute::StackAlignment ||
1265 I->getKindAsEnum() == Attribute::UWTable ||
1266 I->getKindAsEnum() == Attribute::NonLazyBind ||
1267 I->getKindAsEnum() == Attribute::ReturnsTwice ||
1268 I->getKindAsEnum() == Attribute::SanitizeAddress ||
1269 I->getKindAsEnum() == Attribute::SanitizeThread ||
1270 I->getKindAsEnum() == Attribute::SanitizeMemory ||
1271 I->getKindAsEnum() == Attribute::MinSize ||
1272 I->getKindAsEnum() == Attribute::NoDuplicate ||
1273 I->getKindAsEnum() == Attribute::Builtin ||
1274 I->getKindAsEnum() == Attribute::NoBuiltin ||
1275 I->getKindAsEnum() == Attribute::Cold ||
1276 I->getKindAsEnum() == Attribute::OptimizeNone ||
1277 I->getKindAsEnum() == Attribute::JumpTable ||
1278 I->getKindAsEnum() == Attribute::Convergent ||
1279 I->getKindAsEnum() == Attribute::ArgMemOnly ||
1280 I->getKindAsEnum() == Attribute::NoRecurse ||
1281 I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1282 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly ||
1283 I->getKindAsEnum() == Attribute::AllocSize) {
1284 if (!isFunction) {
1285 CheckFailed("Attribute '" + I->getAsString() +
1286 "' only applies to functions!", V);
1287 return;
1288 }
1289 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1290 I->getKindAsEnum() == Attribute::ReadNone) {
1291 if (Idx == 0) {
1292 CheckFailed("Attribute '" + I->getAsString() +
1293 "' does not apply to function returns");
1294 return;
1295 }
1296 } else if (isFunction) {
1297 CheckFailed("Attribute '" + I->getAsString() +
1298 "' does not apply to functions!", V);
1299 return;
1300 }
1301 }
1302}
1303
1304// VerifyParameterAttrs - Check the given attributes for an argument or return
1305// value of the specified type. The value V is printed in error messages.
1306void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1307 bool isReturnValue, const Value *V) {
1308 if (!Attrs.hasAttributes(Idx))
1309 return;
1310
1311 verifyAttributeTypes(Attrs, Idx, false, V);
1312
1313 if (isReturnValue)
1314 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1315 !Attrs.hasAttribute(Idx, Attribute::Nest) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1316 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1317 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1318 !Attrs.hasAttribute(Idx, Attribute::Returned) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1319 !Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1320 !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1321 !Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1322 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1323 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1324 "values!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
1325 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (0)
;
1326
1327 // Check for mutually incompatible attributes. Only inreg is compatible with
1328 // sret.
1329 unsigned AttrCount = 0;
1330 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1331 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1332 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1333 Attrs.hasAttribute(Idx, Attribute::InReg);
1334 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1335 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (0)
1336 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (0)
1337 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (0)
;
1338
1339 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (0)
1340 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (0)
1341 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (0)
1342 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (0)
1343 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (0)
;
1344
1345 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (0)
1346 Attrs.hasAttribute(Idx, Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (0)
1347 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (0)
1348 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (0)
1349 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (0)
;
1350
1351 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(0)
1352 Attrs.hasAttribute(Idx, Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(0)
1353 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(0)
1354 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(0)
1355 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(0)
;
1356
1357 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (0)
1358 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (0)
1359 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (0)
1360 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (0)
1361 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (0)
;
1362
1363 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1364 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1365 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1366 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1367 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
;
1368
1369 Assert(!AttrBuilder(Attrs, Idx)do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
1370 .overlaps(AttributeFuncs::typeIncompatible(Ty)),do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
1371 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
1372 AttributeSet::get(*Context, Idx,do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
1373 AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
1374 V)do { if (!(!AttrBuilder(Attrs, Idx) .overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(*Context, Idx, AttributeFuncs::typeIncompatible
(Ty)).getAsString(Idx), V); return; } } while (0)
;
1375
1376 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1377 SmallPtrSet<Type*, 4> Visited;
1378 if (!PTy->getElementType()->isSized(&Visited)) {
1379 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (0)
1380 !Attrs.hasAttribute(Idx, Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (0)
1381 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (0)
1382 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (0)
;
1383 }
1384 if (!isa<PointerType>(PTy->getElementType()))
1385 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (0)
1386 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (0)
1387 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (0)
1388 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (0)
;
1389 } else {
1390 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (0)
1391 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (0)
1392 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (0)
;
1393 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (0)
1394 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (0)
1395 "with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (0)
1396 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (0)
;
1397 }
1398}
1399
1400// Check parameter attributes against a function type.
1401// The value V is printed in error messages.
1402void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1403 const Value *V) {
1404 if (Attrs.isEmpty())
1405 return;
1406
1407 bool SawNest = false;
1408 bool SawReturned = false;
1409 bool SawSRet = false;
1410 bool SawSwiftSelf = false;
1411 bool SawSwiftError = false;
1412
1413 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1414 unsigned Idx = Attrs.getSlotIndex(i);
1415
1416 Type *Ty;
1417 if (Idx == 0)
1418 Ty = FT->getReturnType();
1419 else if (Idx-1 < FT->getNumParams())
1420 Ty = FT->getParamType(Idx-1);
1421 else
1422 break; // VarArgs attributes, verified elsewhere.
1423
1424 verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1425
1426 if (Idx == 0)
1427 continue;
1428
1429 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1430 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (0)
;
1431 SawNest = true;
1432 }
1433
1434 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1435 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (0)
1436 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (0)
;
1437 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (0)
1438 "Incompatible "do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (0)
1439 "argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (0)
1440 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (0)
;
1441 SawReturned = true;
1442 }
1443
1444 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1445 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (0)
;
1446 Assert(Idx == 1 || Idx == 2,do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (0)
1447 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (0)
;
1448 SawSRet = true;
1449 }
1450
1451 if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
1452 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (0)
;
1453 SawSwiftSelf = true;
1454 }
1455
1456 if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
1457 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (0)
1458 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (0)
;
1459 SawSwiftError = true;
1460 }
1461
1462 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1463 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (0)
1464 V)do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (0)
;
1465 }
1466 }
1467
1468 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1469 return;
1470
1471 verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1472
1473 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (0)
1474 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (0)
1475 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (0)
1476 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (0)
;
1477
1478 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (0)
1479 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (0)
1480 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (0)
1481 Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (0)
1482 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (0)
;
1483
1484 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (0)
1485 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (0)
1486 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (0)
1487 Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (0)
1488 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (0)
;
1489
1490 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1491 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1492 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1493 Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
1494 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (0)
;
1495
1496 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1497 Attribute::OptimizeNone)) {
1498 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),do { if (!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (0)
1499 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (0)
;
1500
1501 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (0)
1502 Attribute::OptimizeForSize),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (0)
1503 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (0)
;
1504
1505 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (0)
1506 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (0)
;
1507 }
1508
1509 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1510 Attribute::JumpTable)) {
1511 const GlobalValue *GV = cast<GlobalValue>(V);
1512 Assert(GV->hasUnnamedAddr(),do { if (!(GV->hasUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (0)
1513 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (0)
;
1514 }
1515
1516 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) {
1517 std::pair<unsigned, Optional<unsigned>> Args =
1518 Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex);
1519
1520 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1521 if (ParamNo >= FT->getNumParams()) {
1522 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1523 return false;
1524 }
1525
1526 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1527 CheckFailed("'allocsize' " + Name +
1528 " argument must refer to an integer parameter",
1529 V);
1530 return false;
1531 }
1532
1533 return true;
1534 };
1535
1536 if (!CheckParam("element size", Args.first))
1537 return;
1538
1539 if (Args.second && !CheckParam("number of elements", *Args.second))
1540 return;
1541 }
1542}
1543
1544void Verifier::verifyFunctionMetadata(
1545 const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
1546 if (MDs.empty())
1547 return;
1548
1549 for (const auto &Pair : MDs) {
1550 if (Pair.first == LLVMContext::MD_prof) {
1551 MDNode *MD = Pair.second;
1552 Assert(MD->getNumOperands() == 2,do { if (!(MD->getNumOperands() == 2)) { CheckFailed("!prof annotations should have exactly 2 operands"
, MD); return; } } while (0)
1553 "!prof annotations should have exactly 2 operands", MD)do { if (!(MD->getNumOperands() == 2)) { CheckFailed("!prof annotations should have exactly 2 operands"
, MD); return; } } while (0)
;
1554
1555 // Check first operand.
1556 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (0)
1557 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (0)
;
1558 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (0)
1559 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (0)
;
1560 MDString *MDS = cast<MDString>(MD->getOperand(0));
1561 StringRef ProfName = MDS->getString();
1562 Assert(ProfName.equals("function_entry_count"),do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (0)
1563 "first operand should be 'function_entry_count'", MD)do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (0)
;
1564
1565 // Check second operand.
1566 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (0)
1567 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (0)
;
1568 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (0)
1569 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (0)
;
1570 }
1571 }
1572}
1573
1574void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1575 if (!ConstantExprVisited.insert(EntryC).second)
1576 return;
1577
1578 SmallVector<const Constant *, 16> Stack;
1579 Stack.push_back(EntryC);
1580
1581 while (!Stack.empty()) {
1582 const Constant *C = Stack.pop_back_val();
1583
1584 // Check this constant expression.
1585 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1586 visitConstantExpr(CE);
1587
1588 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1589 // Global Values get visited separately, but we do need to make sure
1590 // that the global value is in the correct module
1591 Assert(GV->getParent() == M, "Referencing global in another module!",do { if (!(GV->getParent() == M)) { CheckFailed("Referencing global in another module!"
, EntryC, M, GV, GV->getParent()); return; } } while (0)
1592 EntryC, M, GV, GV->getParent())do { if (!(GV->getParent() == M)) { CheckFailed("Referencing global in another module!"
, EntryC, M, GV, GV->getParent()); return; } } while (0)
;
1593 continue;
1594 }
1595
1596 // Visit all sub-expressions.
1597 for (const Use &U : C->operands()) {
1598 const auto *OpC = dyn_cast<Constant>(U);
1599 if (!OpC)
1600 continue;
1601 if (!ConstantExprVisited.insert(OpC).second)
1602 continue;
1603 Stack.push_back(OpC);
1604 }
1605 }
1606}
1607
1608void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1609 if (CE->getOpcode() != Instruction::BitCast)
1610 return;
1611
1612 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (0)
1613 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (0)
1614 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (0)
;
1615}
1616
1617bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1618 if (Attrs.getNumSlots() == 0)
1619 return true;
1620
1621 unsigned LastSlot = Attrs.getNumSlots() - 1;
1622 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1623 if (LastIndex <= Params
1624 || (LastIndex == AttributeSet::FunctionIndex
1625 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1626 return true;
1627
1628 return false;
1629}
1630
1631/// Verify that statepoint intrinsic is well formed.
1632void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1633 assert(CS.getCalledFunction() &&((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 1635, __PRETTY_FUNCTION__))
1634 CS.getCalledFunction()->getIntrinsicID() ==((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 1635, __PRETTY_FUNCTION__))
1635 Intrinsic::experimental_gc_statepoint)((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 1635, __PRETTY_FUNCTION__))
;
1636
1637 const Instruction &CI = *CS.getInstruction();
1638
1639 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (0)
1640 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (0)
1641 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (0)
1642 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (0)
1643 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (0)
;
1644
1645 const Value *IDV = CS.getArgument(0);
1646 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (0)
1647 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (0)
;
1648
1649 const Value *NumPatchBytesV = CS.getArgument(1);
1650 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (0)
1651 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (0)
1652 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (0)
;
1653 const int64_t NumPatchBytes =
1654 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1655 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 1655, __PRETTY_FUNCTION__))
;
1656 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (0)
1657 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (0)
1658 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (0)
;
1659
1660 const Value *Target = CS.getArgument(2);
1661 auto *PT = dyn_cast<PointerType>(Target->getType());
1662 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (0)
1663 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (0)
;
1664 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1665
1666 const Value *NumCallArgsV = CS.getArgument(3);
1667 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (0)
1668 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (0)
1669 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (0)
1670 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (0)
;
1671 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1672 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (0)
1673 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (0)
1674 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (0)
1675 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (0)
;
1676 const int NumParams = (int)TargetFuncType->getNumParams();
1677 if (TargetFuncType->isVarArg()) {
1678 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (0)
1679 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (0)
;
1680
1681 // TODO: Remove this limitation
1682 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (0)
1683 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (0)
1684 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (0)
1685 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (0)
;
1686 } else
1687 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (0)
1688 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (0)
;
1689
1690 const Value *FlagsV = CS.getArgument(4);
1691 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (0)
1692 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (0)
;
1693 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1694 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (0)
1695 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (0)
;
1696
1697 // Verify that the types of the call parameter arguments match
1698 // the type of the wrapped callee.
1699 for (int i = 0; i < NumParams; i++) {
1700 Type *ParamType = TargetFuncType->getParamType(i);
1701 Type *ArgType = CS.getArgument(5 + i)->getType();
1702 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (0)
1703 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (0)
1704 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (0)
1705 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (0)
;
1706 }
1707
1708 const int EndCallArgsInx = 4 + NumCallArgs;
1709
1710 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1711 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (0)
1712 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (0)
1713 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (0)
1714 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (0)
;
1715 const int NumTransitionArgs =
1716 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1717 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (0)
1718 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (0)
;
1719 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1720
1721 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1722 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (0)
1723 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (0)
1724 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (0)
1725 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (0)
;
1726 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1727 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (0)
1728 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (0)
1729 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (0)
;
1730
1731 const int ExpectedNumArgs =
1732 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1733 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (0)
1734 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (0)
;
1735
1736 // Check that the only uses of this gc.statepoint are gc.result or
1737 // gc.relocate calls which are tied to this statepoint and thus part
1738 // of the same statepoint sequence
1739 for (const User *U : CI.users()) {
1740 const CallInst *Call = dyn_cast<const CallInst>(U);
1741 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (0)
;
1742 if (!Call) continue;
1743 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses"
"of a gc.statepoint", &CI, U); return; } } while (0)
1744 "gc.result or gc.relocate are the only value uses"do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses"
"of a gc.statepoint", &CI, U); return; } } while (0)
1745 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses"
"of a gc.statepoint", &CI, U); return; } } while (0)
1746 &CI, U)do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses"
"of a gc.statepoint", &CI, U); return; } } while (0)
;
1747 if (isa<GCResultInst>(Call)) {
1748 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (0)
1749 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (0)
;
1750 } else if (isa<GCRelocateInst>(Call)) {
1751 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (0)
1752 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (0)
;
1753 }
1754 }
1755
1756 // Note: It is legal for a single derived pointer to be listed multiple
1757 // times. It's non-optimal, but it is legal. It can also happen after
1758 // insertion if we strip a bitcast away.
1759 // Note: It is really tempting to check that each base is relocated and
1760 // that a derived pointer is never reused as a base pointer. This turns
1761 // out to be problematic since optimizations run after safepoint insertion
1762 // can recognize equality properties that the insertion logic doesn't know
1763 // about. See example statepoint.ll in the verifier subdirectory
1764}
1765
1766void Verifier::verifyFrameRecoverIndices() {
1767 for (auto &Counts : FrameEscapeInfo) {
1768 Function *F = Counts.first;
1769 unsigned EscapedObjectCount = Counts.second.first;
1770 unsigned MaxRecoveredIndex = Counts.second.second;
1771 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (0)
1772 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (0)
1773 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (0)
1774 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (0)
1775 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (0)
;
1776 }
1777}
1778
1779static Instruction *getSuccPad(TerminatorInst *Terminator) {
1780 BasicBlock *UnwindDest;
1781 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1782 UnwindDest = II->getUnwindDest();
1783 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1784 UnwindDest = CSI->getUnwindDest();
1785 else
1786 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1787 return UnwindDest->getFirstNonPHI();
1788}
1789
1790void Verifier::verifySiblingFuncletUnwinds() {
1791 SmallPtrSet<Instruction *, 8> Visited;
1792 SmallPtrSet<Instruction *, 8> Active;
1793 for (const auto &Pair : SiblingFuncletInfo) {
1794 Instruction *PredPad = Pair.first;
1795 if (Visited.count(PredPad))
1796 continue;
1797 Active.insert(PredPad);
1798 TerminatorInst *Terminator = Pair.second;
1799 do {
1800 Instruction *SuccPad = getSuccPad(Terminator);
1801 if (Active.count(SuccPad)) {
1802 // Found a cycle; report error
1803 Instruction *CyclePad = SuccPad;
1804 SmallVector<Instruction *, 8> CycleNodes;
1805 do {
1806 CycleNodes.push_back(CyclePad);
1807 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1808 if (CycleTerminator != CyclePad)
1809 CycleNodes.push_back(CycleTerminator);
1810 CyclePad = getSuccPad(CycleTerminator);
1811 } while (CyclePad != SuccPad);
1812 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(0)
1813 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(0)
;
1814 }
1815 // Don't re-walk a node we've already checked
1816 if (!Visited.insert(SuccPad).second)
1817 break;
1818 // Walk to this successor if it has a map entry.
1819 PredPad = SuccPad;
1820 auto TermI = SiblingFuncletInfo.find(PredPad);
1821 if (TermI == SiblingFuncletInfo.end())
1822 break;
1823 Terminator = TermI->second;
1824 Active.insert(PredPad);
1825 } while (true);
1826 // Each node only has one successor, so we've walked all the active
1827 // nodes' successors.
1828 Active.clear();
1829 }
1830}
1831
1832// visitFunction - Verify that a function is ok.
1833//
1834void Verifier::visitFunction(const Function &F) {
1835 // Check function arguments.
1836 FunctionType *FT = F.getFunctionType();
1837 unsigned NumArgs = F.arg_size();
1838
1839 Assert(Context == &F.getContext(),do { if (!(Context == &F.getContext())) { CheckFailed("Function context does not match Module context!"
, &F); return; } } while (0)
1840 "Function context does not match Module context!", &F)do { if (!(Context == &F.getContext())) { CheckFailed("Function context does not match Module context!"
, &F); return; } } while (0)
;
1841
1842 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (0)
;
1843 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (0)
1844 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (0)
1845 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (0)
;
1846 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (0)
1847 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (0)
1848 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (0)
;
1849
1850 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (0)
1851 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (0)
;
1852
1853 AttributeSet Attrs = F.getAttributes();
1854
1855 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (0)
1856 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (0)
;
1857
1858 // Check function attributes.
1859 verifyFunctionAttrs(FT, Attrs, &F);
1860
1861 // On function declarations/definitions, we do not support the builtin
1862 // attribute. We do not check this in VerifyFunctionAttrs since that is
1863 // checking for Attributes that can/can not ever be on functions.
1864 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (0)
1865 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (0)
;
1866
1867 // Check that this function meets the restrictions on this calling convention.
1868 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1869 // restrictions can be lifted.
1870 switch (F.getCallingConv()) {
1
Control jumps to the 'default' case at line 1871
1871 default:
1872 case CallingConv::C:
1873 break;
2
Execution continues on line 1885
1874 case CallingConv::Fast:
1875 case CallingConv::Cold:
1876 case CallingConv::Intel_OCL_BI:
1877 case CallingConv::PTX_Kernel:
1878 case CallingConv::PTX_Device:
1879 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (0)
1880 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (0)
1881 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (0)
;
1882 break;
1883 }
1884
1885 bool isLLVMdotName = F.getName().size() >= 5 &&
1886 F.getName().substr(0, 5) == "llvm.";
1887
1888 // Check that the argument values match the function type for this function...
1889 unsigned i = 0;
1890 for (const Argument &Arg : F.args()) {
1891 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (0)
1892 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (0)
1893 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (0)
;
1894 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (0)
1895 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (0)
;
1896 if (!isLLVMdotName) {
1897 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (0)
1898 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (0)
;
1899 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (0)
1900 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (0)
;
1901 }
1902
1903 // Check that swifterror argument is only used by loads and stores.
1904 if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
1905 verifySwiftErrorValue(&Arg);
1906 }
1907 ++i;
1908 }
1909
1910 if (!isLLVMdotName)
3
Taking true branch
1911 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (0)
1912 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (0)
;
1913
1914 // Get the function metadata attachments.
1915 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1916 F.getAllMetadata(MDs);
1917 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 1917, __PRETTY_FUNCTION__))
;
1918 verifyFunctionMetadata(MDs);
1919
1920 // Check validity of the personality function
1921 if (F.hasPersonalityFn()) {
4
Taking false branch
1922 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
1923 if (Per)
1924 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(0)
1925 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(0)
1926 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(0)
;
1927 }
1928
1929 if (F.isMaterializable()) {
5
Taking false branch
1930 // Function has a body somewhere we can't see.
1931 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (0)
1932 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (0)
;
1933 } else if (F.isDeclaration()) {
6
Taking false branch
1934 Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),do { if (!(F.hasExternalLinkage() || F.hasExternalWeakLinkage
())) { CheckFailed("invalid linkage type for function declaration"
, &F); return; } } while (0)
1935 "invalid linkage type for function declaration", &F)do { if (!(F.hasExternalLinkage() || F.hasExternalWeakLinkage
())) { CheckFailed("invalid linkage type for function declaration"
, &F); return; } } while (0)
;
1936 Assert(MDs.empty(), "function without a body cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("function without a body cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (0)
1937 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("function without a body cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (0)
;
1938 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (0)
1939 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (0)
;
1940 } else {
1941 // Verify that this function (which has a body) is not named "llvm.*". It
1942 // is not legal to define intrinsics.
1943 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (0)
;
1944
1945 // Check the entry node
1946 const BasicBlock *Entry = &F.getEntryBlock();
1947 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (0)
1948 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (0)
;
1949
1950 // The address of the entry block cannot be taken, unless it is dead.
1951 if (Entry->hasAddressTaken()) {
7
Taking false branch
1952 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (0)
1953 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (0)
;
1954 }
1955
1956 // Visit metadata attachments.
1957 for (const auto &I : MDs) {
8
Assuming '__begin' is equal to '__end'
1958 // Verify that the attachment is legal.
1959 switch (I.first) {
1960 default:
1961 break;
1962 case LLVMContext::MD_dbg:
1963 Assert(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { CheckFailed(
"function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (0)
1964 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { CheckFailed(
"function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (0)
;
1965 break;
1966 }
1967
1968 // Verify the metadata itself.
1969 visitMDNode(*I.second);
1970 }
1971 }
1972
1973 // If this function is actually an intrinsic, verify that it is only used in
1974 // direct call/invokes, never having its "address taken".
1975 // Only do this if the module is materialized, otherwise we don't have all the
1976 // uses.
1977 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
1978 const User *U;
1979 if (F.hasAddressTaken(&U))
1980 Assert(0, "Invalid user of intrinsic instruction!", U)do { if (!(0)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (0)
;
1981 }
1982
1983 Assert(!F.hasDLLImportStorageClass() ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (0)
1984 (F.isDeclaration() && F.hasExternalLinkage()) ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (0)
1985 F.hasAvailableExternallyLinkage(),do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (0)
1986 "Function is marked as dllimport, but not external.", &F)do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (0)
;
1987
1988 auto *N = F.getSubprogram();
1989 if (!N)
9
Assuming 'N' is non-null
10
Taking false branch
1990 return;
1991
1992 visitDISubprogram(*N);
1993
1994 // Check that all !dbg attachments lead to back to N (or, at least, another
1995 // subprogram that describes the same function).
1996 //
1997 // FIXME: Check this incrementally while visiting !dbg attachments.
1998 // FIXME: Only check when N is the canonical subprogram for F.
1999 SmallPtrSet<const MDNode *, 32> Seen;
2000 for (auto &BB : F)
2001 for (auto &I : BB) {
2002 // Be careful about using DILocation here since we might be dealing with
2003 // broken code (this is the Verifier after all).
2004 DILocation *DL =
2005 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2006 if (!DL)
11
Assuming 'DL' is non-null
12
Taking false branch
2007 continue;
2008 if (!Seen.insert(DL).second)
13
Taking false branch
2009 continue;
2010
2011 DILocalScope *Scope = DL->getInlinedAtScope();
2012 if (Scope && !Seen.insert(Scope).second)
2013 continue;
2014
2015 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
14
'?' condition is false
15
'SP' initialized to a null pointer value
2016
2017 // Scope and SP could be the same MDNode and we don't want to skip
2018 // validation in that case
2019 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2020 continue;
2021
2022 // FIXME: Once N is canonical, check "SP == &N".
2023 Assert(SP->describes(&F),do { if (!(SP->describes(&F))) { CheckFailed("!dbg attachment points at wrong subprogram for function"
, N, &F, &I, DL, Scope, SP); return; } } while (0)
16
Within the expansion of the macro 'Assert':
a
Called C++ object pointer is null
2024 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { CheckFailed("!dbg attachment points at wrong subprogram for function"
, N, &F, &I, DL, Scope, SP); return; } } while (0)
2025 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { CheckFailed("!dbg attachment points at wrong subprogram for function"
, N, &F, &I, DL, Scope, SP); return; } } while (0)
;
2026 }
2027}
2028
2029// verifyBasicBlock - Verify that a basic block is well formed...
2030//
2031void Verifier::visitBasicBlock(BasicBlock &BB) {
2032 InstsInThisBlock.clear();
2033
2034 // Ensure that basic blocks have terminators!
2035 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (0)
;
2036
2037 // Check constraints that this basic block imposes on all of the PHI nodes in
2038 // it.
2039 if (isa<PHINode>(BB.front())) {
2040 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2041 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2042 std::sort(Preds.begin(), Preds.end());
2043 PHINode *PN;
2044 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2045 // Ensure that PHI nodes have at least one entry!
2046 Assert(PN->getNumIncomingValues() != 0,do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (0)
2047 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (0)
2048 "the PHI should be removed!",do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (0)
2049 PN)do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (0)
;
2050 Assert(PN->getNumIncomingValues() == Preds.size(),do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (0)
2051 "PHINode should have one entry for each predecessor of its "do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (0)
2052 "parent basic block!",do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (0)
2053 PN)do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (0)
;
2054
2055 // Get and sort all incoming values in the PHI node...
2056 Values.clear();
2057 Values.reserve(PN->getNumIncomingValues());
2058 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2059 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2060 PN->getIncomingValue(i)));
2061 std::sort(Values.begin(), Values.end());
2062
2063 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2064 // Check to make sure that if there is more than one entry for a
2065 // particular basic block in this PHI node, that the incoming values are
2066 // all identical.
2067 //
2068 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (0)
2069 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (0)
2070 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (0)
2071 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (0)
2072 PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (0)
;
2073
2074 // Check to make sure that the predecessors and PHI node entries are
2075 // matched up.
2076 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (0)
2077 "PHI node entries do not match predecessors!", PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (0)
2078 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (0)
;
2079 }
2080 }
2081 }
2082
2083 // Check that all instructions have their parent pointers set up correctly.
2084 for (auto &I : BB)
2085 {
2086 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (0)
;
2087 }
2088}
2089
2090void Verifier::visitTerminatorInst(TerminatorInst &I) {
2091 // Ensure that terminators only exist at the end of the basic block.
2092 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (0)
2093 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (0)
;
2094 visitInstruction(I);
2095}
2096
2097void Verifier::visitBranchInst(BranchInst &BI) {
2098 if (BI.isConditional()) {
2099 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (0)
2100 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (0)
;
2101 }
2102 visitTerminatorInst(BI);
2103}
2104
2105void Verifier::visitReturnInst(ReturnInst &RI) {
2106 Function *F = RI.getParent()->getParent();
2107 unsigned N = RI.getNumOperands();
2108 if (F->getReturnType()->isVoidTy())
2109 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (0)
2110 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (0)
2111 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (0)
2112 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (0)
;
2113 else
2114 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (0)
2115 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (0)
2116 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (0)
2117 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (0)
;
2118
2119 // Check to make sure that the return value has necessary properties for
2120 // terminators...
2121 visitTerminatorInst(RI);
2122}
2123
2124void Verifier::visitSwitchInst(SwitchInst &SI) {
2125 // Check to make sure that all of the constants in the switch instruction
2126 // have the same type as the switched-on value.
2127 Type *SwitchTy = SI.getCondition()->getType();
2128 SmallPtrSet<ConstantInt*, 32> Constants;
2129 for (auto &Case : SI.cases()) {
2130 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (0)
2131 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (0)
;
2132 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (0)
2133 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (0)
;
2134 }
2135
2136 visitTerminatorInst(SI);
2137}
2138
2139void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2140 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (0)
2141 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (0)
;
2142 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2143 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (0)
2144 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (0)
;
2145
2146 visitTerminatorInst(BI);
2147}
2148
2149void Verifier::visitSelectInst(SelectInst &SI) {
2150 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (0)
2151 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (0)
2152 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (0)
;
2153
2154 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (0)
2155 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (0)
;
2156 visitInstruction(SI);
2157}
2158
2159/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2160/// a pass, if any exist, it's an error.
2161///
2162void Verifier::visitUserOp1(Instruction &I) {
2163 Assert(0, "User-defined operators should not live outside of a pass!", &I)do { if (!(0)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (0)
;
2164}
2165
2166void Verifier::visitTruncInst(TruncInst &I) {
2167 // Get the source and destination types
2168 Type *SrcTy = I.getOperand(0)->getType();
2169 Type *DestTy = I.getType();
2170
2171 // Get the size of the types in bits, we'll need this later
2172 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2173 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2174
2175 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (0)
;
2176 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (0)
;
2177 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (0)
2178 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (0)
;
2179 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (0)
;
2180
2181 visitInstruction(I);
2182}
2183
2184void Verifier::visitZExtInst(ZExtInst &I) {
2185 // Get the source and destination types
2186 Type *SrcTy = I.getOperand(0)->getType();
2187 Type *DestTy = I.getType();
2188
2189 // Get the size of the types in bits, we'll need this later
2190 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (0)
;
2191 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (0)
;
2192 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (0)
2193 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (0)
;
2194 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2195 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2196
2197 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (0)
;
2198
2199 visitInstruction(I);
2200}
2201
2202void Verifier::visitSExtInst(SExtInst &I) {
2203 // Get the source and destination types
2204 Type *SrcTy = I.getOperand(0)->getType();
2205 Type *DestTy = I.getType();
2206
2207 // Get the size of the types in bits, we'll need this later
2208 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2209 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2210
2211 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (0)
;
2212 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (0)
;
2213 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (0)
2214 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (0)
;
2215 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (0)
;
2216
2217 visitInstruction(I);
2218}
2219
2220void Verifier::visitFPTruncInst(FPTruncInst &I) {
2221 // Get the source and destination types
2222 Type *SrcTy = I.getOperand(0)->getType();
2223 Type *DestTy = I.getType();
2224 // Get the size of the types in bits, we'll need this later
2225 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2226 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2227
2228 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (0)
;
2229 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (0)
;
2230 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (0)
2231 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (0)
;
2232 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (0)
;
2233
2234 visitInstruction(I);
2235}
2236
2237void Verifier::visitFPExtInst(FPExtInst &I) {
2238 // Get the source and destination types
2239 Type *SrcTy = I.getOperand(0)->getType();
2240 Type *DestTy = I.getType();
2241
2242 // Get the size of the types in bits, we'll need this later
2243 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2244 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2245
2246 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (0)
;
2247 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (0)
;
2248 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (0)
2249 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (0)
;
2250 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (0)
;
2251
2252 visitInstruction(I);
2253}
2254
2255void Verifier::visitUIToFPInst(UIToFPInst &I) {
2256 // Get the source and destination types
2257 Type *SrcTy = I.getOperand(0)->getType();
2258 Type *DestTy = I.getType();
2259
2260 bool SrcVec = SrcTy->isVectorTy();
2261 bool DstVec = DestTy->isVectorTy();
2262
2263 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (0)
2264 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (0)
;
2265 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (0)
2266 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (0)
;
2267 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (0)
2268 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (0)
;
2269
2270 if (SrcVec && DstVec)
2271 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (0)
2272 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (0)
2273 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (0)
;
2274
2275 visitInstruction(I);
2276}
2277
2278void Verifier::visitSIToFPInst(SIToFPInst &I) {
2279 // Get the source and destination types
2280 Type *SrcTy = I.getOperand(0)->getType();
2281 Type *DestTy = I.getType();
2282
2283 bool SrcVec = SrcTy->isVectorTy();
2284 bool DstVec = DestTy->isVectorTy();
2285
2286 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (0)
2287 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (0)
;
2288 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (0)
2289 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (0)
;
2290 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (0)
2291 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (0)
;
2292
2293 if (SrcVec && DstVec)
2294 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (0)
2295 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (0)
2296 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (0)
;
2297
2298 visitInstruction(I);
2299}
2300
2301void Verifier::visitFPToUIInst(FPToUIInst &I) {
2302 // Get the source and destination types
2303 Type *SrcTy = I.getOperand(0)->getType();
2304 Type *DestTy = I.getType();
2305
2306 bool SrcVec = SrcTy->isVectorTy();
2307 bool DstVec = DestTy->isVectorTy();
2308
2309 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (0)
2310 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (0)
;
2311 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (0)
2312 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (0)
;
2313 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (0)
2314 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (0)
;
2315
2316 if (SrcVec && DstVec)
2317 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (0)
2318 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (0)
2319 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (0)
;
2320
2321 visitInstruction(I);
2322}
2323
2324void Verifier::visitFPToSIInst(FPToSIInst &I) {
2325 // Get the source and destination types
2326 Type *SrcTy = I.getOperand(0)->getType();
2327 Type *DestTy = I.getType();
2328
2329 bool SrcVec = SrcTy->isVectorTy();
2330 bool DstVec = DestTy->isVectorTy();
2331
2332 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (0)
2333 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (0)
;
2334 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (0)
2335 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (0)
;
2336 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (0)
2337 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (0)
;
2338
2339 if (SrcVec && DstVec)
2340 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (0)
2341 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (0)
2342 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (0)
;
2343
2344 visitInstruction(I);
2345}
2346
2347void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2348 // Get the source and destination types
2349 Type *SrcTy = I.getOperand(0)->getType();
2350 Type *DestTy = I.getType();
2351
2352 Assert(SrcTy->getScalarType()->isPointerTy(),do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(0)
2353 "PtrToInt source must be pointer", &I)do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(0)
;
2354 Assert(DestTy->getScalarType()->isIntegerTy(),do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(0)
2355 "PtrToInt result must be integral", &I)do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(0)
;
2356 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (0)
2357 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (0)
;
2358
2359 if (SrcTy->isVectorTy()) {
2360 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2361 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2362 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (0)
2363 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (0)
;
2364 }
2365
2366 visitInstruction(I);
2367}
2368
2369void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2370 // Get the source and destination types
2371 Type *SrcTy = I.getOperand(0)->getType();
2372 Type *DestTy = I.getType();
2373
2374 Assert(SrcTy->getScalarType()->isIntegerTy(),do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(0)
2375 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(0)
;
2376 Assert(DestTy->getScalarType()->isPointerTy(),do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(0)
2377 "IntToPtr result must be a pointer", &I)do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(0)
;
2378 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (0)
2379 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (0)
;
2380 if (SrcTy->isVectorTy()) {
2381 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2382 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2383 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (0)
2384 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (0)
;
2385 }
2386 visitInstruction(I);
2387}
2388
2389void Verifier::visitBitCastInst(BitCastInst &I) {
2390 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (0)
2391 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (0)
2392 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (0)
;
2393 visitInstruction(I);
2394}
2395
2396void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2397 Type *SrcTy = I.getOperand(0)->getType();
2398 Type *DestTy = I.getType();
2399
2400 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (0)
2401 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (0)
;
2402 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (0)
2403 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (0)
;
2404 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (0)
2405 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (0)
;
2406 if (SrcTy->isVectorTy())
2407 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (0)
2408 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (0)
;
2409 visitInstruction(I);
2410}
2411
2412/// visitPHINode - Ensure that a PHI node is well formed.
2413///
2414void Verifier::visitPHINode(PHINode &PN) {
2415 // Ensure that the PHI nodes are all grouped together at the top of the block.
2416 // This can be tested by checking whether the instruction before this is
2417 // either nonexistent (because this is begin()) or is a PHI node. If not,
2418 // then there is some other instruction before a PHI.
2419 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (0)
2420 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (0)
2421 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (0)
;
2422
2423 // Check that a PHI doesn't yield a Token.
2424 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (0)
;
2425
2426 // Check that all of the values of the PHI node have the same type as the
2427 // result, and that the incoming blocks are really basic blocks.
2428 for (Value *IncValue : PN.incoming_values()) {
2429 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (0)
2430 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (0)
;
2431 }
2432
2433 // All other PHI node constraints are checked in the visitBasicBlock method.
2434
2435 visitInstruction(PN);
2436}
2437
2438void Verifier::verifyCallSite(CallSite CS) {
2439 Instruction *I = CS.getInstruction();
2440
2441 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (0)
2442 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (0)
;
2443 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2444
2445 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (0)
2446 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (0)
;
2447
2448 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (0)
2449 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (0)
;
2450
2451 FunctionType *FTy = CS.getFunctionType();
2452
2453 // Verify that the correct number of arguments are being passed
2454 if (FTy->isVarArg())
2455 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (0)
2456 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (0)
;
2457 else
2458 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (0)
2459 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (0)
;
2460
2461 // Verify that all arguments to the call match the function type.
2462 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2463 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (0)
2464 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (0)
2465 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (0)
;
2466
2467 AttributeSet Attrs = CS.getAttributes();
2468
2469 Assert(verifyAttributeCount(Attrs, CS.arg_size()),do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (0)
2470 "Attribute after last parameter!", I)do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (0)
;
2471
2472 // Verify call attributes.
2473 verifyFunctionAttrs(FTy, Attrs, I);
2474
2475 // Conservatively check the inalloca argument.
2476 // We have a bug if we can find that there is an underlying alloca without
2477 // inalloca.
2478 if (CS.hasInAllocaArgument()) {
2479 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2480 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2481 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (0)
2482 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (0)
;
2483 }
2484
2485 // For each argument of the callsite, if it has the swifterror argument,
2486 // make sure the underlying alloca has swifterror as well.
2487 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2488 if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
2489 Value *SwiftErrorArg = CS.getArgument(i);
2490 auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets());
2491 Assert(AI, "swifterror argument should come from alloca", AI, I)do { if (!(AI)) { CheckFailed("swifterror argument should come from alloca"
, AI, I); return; } } while (0)
;
2492 if (AI)
2493 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (0)
2494 "swifterror argument for call has mismatched alloca", AI, I)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (0)
;
2495 }
2496
2497 if (FTy->isVarArg()) {
2498 // FIXME? is 'nest' even legal here?
2499 bool SawNest = false;
2500 bool SawReturned = false;
2501
2502 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2503 if (Attrs.hasAttribute(Idx, Attribute::Nest))
2504 SawNest = true;
2505 if (Attrs.hasAttribute(Idx, Attribute::Returned))
2506 SawReturned = true;
2507 }
2508
2509 // Check attributes on the varargs part.
2510 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2511 Type *Ty = CS.getArgument(Idx-1)->getType();
2512 verifyParameterAttrs(Attrs, Idx, Ty, false, I);
2513
2514 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2515 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (0)
;
2516 SawNest = true;
2517 }
2518
2519 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2520 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (0)
2521 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (0)
;
2522 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (0)
2523 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (0)
2524 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (0)
2525 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (0)
;
2526 SawReturned = true;
2527 }
2528
2529 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (0)
2530 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (0)
;
2531
2532 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2533 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I)do { if (!(Idx == CS.arg_size())) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (0)
;
2534 }
2535 }
2536
2537 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2538 if (CS.getCalledFunction() == nullptr ||
2539 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2540 for (Type *ParamTy : FTy->params()) {
2541 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (0)
2542 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (0)
;
2543 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (0)
2544 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (0)
;
2545 }
2546 }
2547
2548 // Verify that indirect calls don't return tokens.
2549 if (CS.getCalledFunction() == nullptr)
2550 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (0)
2551 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (0)
;
2552
2553 if (Function *F = CS.getCalledFunction())
2554 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2555 visitIntrinsicCallSite(ID, CS);
2556
2557 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2558 // at most one "gc-transition" operand bundle.
2559 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2560 FoundGCTransitionBundle = false;
2561 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2562 OperandBundleUse BU = CS.getOperandBundleAt(i);
2563 uint32_t Tag = BU.getTagID();
2564 if (Tag == LLVMContext::OB_deopt) {
2565 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, I); return; } } while (0)
;
2566 FoundDeoptBundle = true;
2567 } else if (Tag == LLVMContext::OB_gc_transition) {
2568 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (0)
2569 I)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (0)
;
2570 FoundGCTransitionBundle = true;
2571 } else if (Tag == LLVMContext::OB_funclet) {
2572 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, I); return; } } while (0)
;
2573 FoundFuncletBundle = true;
2574 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (0)
2575 "Expected exactly one funclet bundle operand", I)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (0)
;
2576 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (0)
2577 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (0)
2578 I)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (0)
;
2579 }
2580 }
2581
2582 // Verify that each inlinable callsite of a debug-info-bearing function in a
2583 // debug-info-bearing function has a debug location attached to it. Failure to
2584 // do so causes assertion failures when the inliner sets up inline scope info.
2585 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2586 CS.getCalledFunction()->getSubprogram())
2587 Assert(I->getDebugLoc(), "inlinable function call in a function with debug "do { if (!(I->getDebugLoc())) { CheckFailed("inlinable function call in a function with debug "
"info must have a !dbg location", I); return; } } while (0)
2588 "info must have a !dbg location",do { if (!(I->getDebugLoc())) { CheckFailed("inlinable function call in a function with debug "
"info must have a !dbg location", I); return; } } while (0)
2589 I)do { if (!(I->getDebugLoc())) { CheckFailed("inlinable function call in a function with debug "
"info must have a !dbg location", I); return; } } while (0)
;
2590
2591 visitInstruction(*I);
2592}
2593
2594/// Two types are "congruent" if they are identical, or if they are both pointer
2595/// types with different pointee types and the same address space.
2596static bool isTypeCongruent(Type *L, Type *R) {
2597 if (L == R)
2598 return true;
2599 PointerType *PL = dyn_cast<PointerType>(L);
2600 PointerType *PR = dyn_cast<PointerType>(R);
2601 if (!PL || !PR)
2602 return false;
2603 return PL->getAddressSpace() == PR->getAddressSpace();
2604}
2605
2606static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2607 static const Attribute::AttrKind ABIAttrs[] = {
2608 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2609 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2610 Attribute::SwiftError};
2611 AttrBuilder Copy;
2612 for (auto AK : ABIAttrs) {
2613 if (Attrs.hasAttribute(I + 1, AK))
2614 Copy.addAttribute(AK);
2615 }
2616 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2617 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2618 return Copy;
2619}
2620
2621void Verifier::verifyMustTailCall(CallInst &CI) {
2622 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (0)
;
2623
2624 // - The caller and callee prototypes must match. Pointer types of
2625 // parameters or return types may differ in pointee type, but not
2626 // address space.
2627 Function *F = CI.getParent()->getParent();
2628 FunctionType *CallerTy = F->getFunctionType();
2629 FunctionType *CalleeTy = CI.getFunctionType();
2630 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (0)
2631 "cannot guarantee tail call due to mismatched parameter counts", &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (0)
;
2632 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (0)
2633 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (0)
;
2634 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (0)
2635 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (0)
;
2636 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2637 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (0)
2638 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (0)
2639 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (0)
;
2640 }
2641
2642 // - The calling conventions of the caller and callee must match.
2643 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (0)
2644 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (0)
;
2645
2646 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2647 // returned, and inalloca, must match.
2648 AttributeSet CallerAttrs = F->getAttributes();
2649 AttributeSet CalleeAttrs = CI.getAttributes();
2650 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2651 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2652 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2653 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (0)
2654 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (0)
2655 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (0)
2656 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (0)
;
2657 }
2658
2659 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2660 // or a pointer bitcast followed by a ret instruction.
2661 // - The ret instruction must return the (possibly bitcasted) value
2662 // produced by the call or void.
2663 Value *RetVal = &CI;
2664 Instruction *Next = CI.getNextNode();
2665
2666 // Handle the optional bitcast.
2667 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2668 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (0)
2669 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (0)
;
2670 RetVal = BI;
2671 Next = BI->getNextNode();
2672 }
2673
2674 // Check the return.
2675 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2676 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (0)
2677 &CI)do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (0)
;
2678 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (0)
2679 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (0)
;
2680}
2681
2682void Verifier::visitCallInst(CallInst &CI) {
2683 verifyCallSite(&CI);
2684
2685 if (CI.isMustTailCall())
2686 verifyMustTailCall(CI);
2687}
2688
2689void Verifier::visitInvokeInst(InvokeInst &II) {
2690 verifyCallSite(&II);
2691
2692 // Verify that the first non-PHI instruction of the unwind destination is an
2693 // exception handling instruction.
2694 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (0)
2695 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (0)
2696 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (0)
2697 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (0)
;
2698
2699 visitTerminatorInst(II);
2700}
2701
2702/// visitBinaryOperator - Check that both arguments to the binary operator are
2703/// of the same type!
2704///
2705void Verifier::visitBinaryOperator(BinaryOperator &B) {
2706 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (0)
2707 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (0)
;
2708
2709 switch (B.getOpcode()) {
2710 // Check that integer arithmetic operators are only used with
2711 // integral operands.
2712 case Instruction::Add:
2713 case Instruction::Sub:
2714 case Instruction::Mul:
2715 case Instruction::SDiv:
2716 case Instruction::UDiv:
2717 case Instruction::SRem:
2718 case Instruction::URem:
2719 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (0)
2720 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (0)
;
2721 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2722 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2723 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2724 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
;
2725 break;
2726 // Check that floating-point arithmetic operators are only used with
2727 // floating-point operands.
2728 case Instruction::FAdd:
2729 case Instruction::FSub:
2730 case Instruction::FMul:
2731 case Instruction::FDiv:
2732 case Instruction::FRem:
2733 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (0)
2734 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (0)
2735 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (0)
2736 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (0)
;
2737 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2738 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2739 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
2740 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (0)
;
2741 break;
2742 // Check that logical operators are only used with integral operands.
2743 case Instruction::And:
2744 case Instruction::Or:
2745 case Instruction::Xor:
2746 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (0)
2747 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (0)
;
2748 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (0)
2749 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (0)
2750 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (0)
;
2751 break;
2752 case Instruction::Shl:
2753 case Instruction::LShr:
2754 case Instruction::AShr:
2755 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (0)
2756 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (0)
;
2757 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (0)
2758 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (0)
;
2759 break;
2760 default:
2761 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 2761)
;
2762 }
2763
2764 visitInstruction(B);
2765}
2766
2767void Verifier::visitICmpInst(ICmpInst &IC) {
2768 // Check that the operands are the same type
2769 Type *Op0Ty = IC.getOperand(0)->getType();
2770 Type *Op1Ty = IC.getOperand(1)->getType();
2771 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (0)
2772 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (0)
;
2773 // Check that the operands are the right type
2774 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (0)
2775 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (0)
;
2776 // Check that the predicate is valid.
2777 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (0)
2778 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (0)
2779 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (0)
;
2780
2781 visitInstruction(IC);
2782}
2783
2784void Verifier::visitFCmpInst(FCmpInst &FC) {
2785 // Check that the operands are the same type
2786 Type *Op0Ty = FC.getOperand(0)->getType();
2787 Type *Op1Ty = FC.getOperand(1)->getType();
2788 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (0)
2789 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (0)
;
2790 // Check that the operands are the right type
2791 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (0)
2792 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (0)
;
2793 // Check that the predicate is valid.
2794 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (0)
2795 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (0)
2796 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (0)
;
2797
2798 visitInstruction(FC);
2799}
2800
2801void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2802 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (0)
2803 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (0)
2804 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (0)
;
2805 visitInstruction(EI);
2806}
2807
2808void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2809 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (0)
2810 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (0)
2811 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (0)
;
2812 visitInstruction(IE);
2813}
2814
2815void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2816 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (0)
2817 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (0)
2818 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (0)
;
2819 visitInstruction(SV);
2820}
2821
2822void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2823 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2824
2825 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (0)
2826 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (0)
;
2827 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (0)
;
2828 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2829 Type *ElTy =
2830 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2831 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (0)
;
2832
2833 Assert(GEP.getType()->getScalarType()->isPointerTy() &&do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (0)
2834 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (0)
2835 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (0)
;
2836
2837 if (GEP.getType()->isVectorTy()) {
2838 // Additional checks for vector GEPs.
2839 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2840 if (GEP.getPointerOperandType()->isVectorTy())
2841 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (0)
2842 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (0)
;
2843 for (Value *Idx : Idxs) {
2844 Type *IndexTy = Idx->getType();
2845 if (IndexTy->isVectorTy()) {
2846 unsigned IndexWidth = IndexTy->getVectorNumElements();
2847 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (0)
;
2848 }
2849 Assert(IndexTy->getScalarType()->isIntegerTy(),do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(0)
2850 "All GEP indices should be of integer type")do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(0)
;
2851 }
2852 }
2853 visitInstruction(GEP);
2854}
2855
2856static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2857 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2858}
2859
2860void Verifier::visitRangeMetadata(Instruction& I,
2861 MDNode* Range, Type* Ty) {
2862 assert(Range &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 2864, __PRETTY_FUNCTION__))
2863 Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 2864, __PRETTY_FUNCTION__))
2864 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 2864, __PRETTY_FUNCTION__))
;
2865
2866 unsigned NumOperands = Range->getNumOperands();
2867 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (0)
;
2868 unsigned NumRanges = NumOperands / 2;
2869 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (0)
;
2870
2871 ConstantRange LastRange(1); // Dummy initial value
2872 for (unsigned i = 0; i < NumRanges; ++i) {
2873 ConstantInt *Low =
2874 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2875 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (0)
;
2876 ConstantInt *High =
2877 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2878 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (0)
;
2879 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (0)
2880 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (0)
;
2881
2882 APInt HighV = High->getValue();
2883 APInt LowV = Low->getValue();
2884 ConstantRange CurRange(LowV, HighV);
2885 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (0)
2886 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (0)
;
2887 if (i != 0) {
2888 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (0)
2889 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (0)
;
2890 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (0)
2891 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (0)
;
2892 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (0)
2893 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (0)
;
2894 }
2895 LastRange = ConstantRange(LowV, HighV);
2896 }
2897 if (NumRanges > 2) {
2898 APInt FirstLow =
2899 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2900 APInt FirstHigh =
2901 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2902 ConstantRange FirstRange(FirstLow, FirstHigh);
2903 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (0)
2904 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (0)
;
2905 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (0)
2906 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (0)
;
2907 }
2908}
2909
2910void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
2911 const Instruction *I) {
2912 unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
2913 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (0)
;
2914 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (0)
2915 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (0)
;
2916}
2917
2918void Verifier::visitLoadInst(LoadInst &LI) {
2919 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2920 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (0)
;
2921 Type *ElTy = LI.getType();
2922 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (0)
2923 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (0)
;
2924 if (LI.isAtomic()) {
2925 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(0)
2926 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(0)
2927 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(0)
;
2928 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (0)
2929 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (0)
;
2930 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (0)
2931 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (0)
2932 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (0)
2933 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (0)
2934 ElTy, &LI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (0)
;
2935 checkAtomicMemAccessSize(M, ElTy, &LI);
2936 } else {
2937 Assert(LI.getSynchScope() == CrossThread,do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (0)
2938 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (0)
;
2939 }
2940
2941 visitInstruction(LI);
2942}
2943
2944void Verifier::visitStoreInst(StoreInst &SI) {
2945 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
2946 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (0)
;
2947 Type *ElTy = PTy->getElementType();
2948 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (0)
2949 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (0)
;
2950 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (0)
2951 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (0)
;
2952 if (SI.isAtomic()) {
2953 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(0)
2954 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(0)
2955 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(0)
;
2956 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (0)
2957 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (0)
;
2958 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (0)
2959 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (0)
2960 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (0)
2961 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (0)
2962 ElTy, &SI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (0)
;
2963 checkAtomicMemAccessSize(M, ElTy, &SI);
2964 } else {
2965 Assert(SI.getSynchScope() == CrossThread,do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (0)
2966 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (0)
;
2967 }
2968 visitInstruction(SI);
2969}
2970
2971/// Check that SwiftErrorVal is used as a swifterror argument in CS.
2972void Verifier::verifySwiftErrorCallSite(CallSite CS,
2973 const Value *SwiftErrorVal) {
2974 unsigned Idx = 0;
2975 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
2976 I != E; ++I, ++Idx) {
2977 if (*I == SwiftErrorVal) {
2978 Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (0)
2979 "swifterror value when used in a callsite should be marked "do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (0)
2980 "with swifterror attribute",do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (0)
2981 SwiftErrorVal, CS)do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (0)
;
2982 }
2983 }
2984}
2985
2986void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
2987 // Check that swifterror value is only used by loads, stores, or as
2988 // a swifterror argument.
2989 for (const User *U : SwiftErrorVal->users()) {
2990 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (0)
2991 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (0)
2992 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (0)
2993 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (0)
2994 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (0)
;
2995 // If it is used by a store, check it is the second operand.
2996 if (auto StoreI = dyn_cast<StoreInst>(U))
2997 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (0)
2998 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (0)
2999 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (0)
;
3000 if (auto CallI = dyn_cast<CallInst>(U))
3001 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3002 if (auto II = dyn_cast<InvokeInst>(U))
3003 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3004 }
3005}
3006
3007void Verifier::visitAllocaInst(AllocaInst &AI) {
3008 SmallPtrSet<Type*, 4> Visited;
3009 PointerType *PTy = AI.getType();
3010 Assert(PTy->getAddressSpace() == 0,do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (0)
3011 "Allocation instruction pointer not in the generic address space!",do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (0)
3012 &AI)do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (0)
;
3013 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (0)
3014 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (0)
;
3015 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (0)
3016 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (0)
;
3017 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (0)
3018 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (0)
;
3019
3020 if (AI.isSwiftError()) {
3021 verifySwiftErrorValue(&AI);
3022 }
3023
3024 visitInstruction(AI);
3025}
3026
3027void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3028
3029 // FIXME: more conditions???
3030 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (0)
3031 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (0)
;
3032 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (0)
3033 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (0)
;
3034 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (0)
3035 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (0)
;
3036 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (0)
3037 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (0)
;
3038 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (0)
3039 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (0)
3040 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (0)
3041 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (0)
;
3042 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (0)
3043 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (0)
3044 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (0)
;
3045
3046 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3047 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (0)
;
3048 Type *ElTy = PTy->getElementType();
3049 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (0)
3050 "cmpxchg operand must have integer or pointer type",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (0)
3051 ElTy, &CXI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (0)
;
3052 checkAtomicMemAccessSize(M, ElTy, &CXI);
3053 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (0)
3054 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (0)
3055 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (0)
;
3056 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (0)
3057 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (0)
;
3058 visitInstruction(CXI);
3059}
3060
3061void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3062 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (0)
3063 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (0)
;
3064 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (0)
3065 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (0)
;
3066 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3067 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (0)
;
3068 Type *ElTy = PTy->getElementType();
3069 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (0)
3070 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (0)
;
3071 checkAtomicMemAccessSize(M, ElTy, &RMWI);
3072 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (0)
3073 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (0)
3074 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (0)
;
3075 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (0)
3076 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (0)
3077 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (0)
;
3078 visitInstruction(RMWI);
3079}
3080
3081void Verifier::visitFenceInst(FenceInst &FI) {
3082 const AtomicOrdering Ordering = FI.getOrdering();
3083 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (0)
3084 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (0)
3085 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (0)
3086 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (0)
3087 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (0)
3088 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (0)
3089 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (0)
;
3090 visitInstruction(FI);
3091}
3092
3093void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3094 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (0)
3095 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (0)
3096 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (0)
;
3097
3098 visitInstruction(EVI);
3099}
3100
3101void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3102 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (0)
3103 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (0)
3104 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (0)
3105 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (0)
;
3106
3107 visitInstruction(IVI);
3108}
3109
3110static Value *getParentPad(Value *EHPad) {
3111 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3112 return FPI->getParentPad();
3113
3114 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3115}
3116
3117void Verifier::visitEHPadPredecessors(Instruction &I) {
3118 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 3118, __PRETTY_FUNCTION__))
;
3119
3120 BasicBlock *BB = I.getParent();
3121 Function *F = BB->getParent();
3122
3123 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (0)
;
3124
3125 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3126 // The landingpad instruction defines its parent as a landing pad block. The
3127 // landing pad block may be branched to only by the unwind edge of an
3128 // invoke.
3129 for (BasicBlock *PredBB : predecessors(BB)) {
3130 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3131 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(0)
3132 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(0)
3133 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(0)
3134 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(0)
;
3135 }
3136 return;
3137 }
3138 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3139 if (!pred_empty(BB))
3140 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (0)
3141 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (0)
3142 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (0)
3143 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (0)
;
3144 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (0)
3145 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (0)
3146 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (0)
;
3147 return;
3148 }
3149
3150 // Verify that each pred has a legal terminator with a legal to/from EH
3151 // pad relationship.
3152 Instruction *ToPad = &I;
3153 Value *ToPadParent = getParentPad(ToPad);
3154 for (BasicBlock *PredBB : predecessors(BB)) {
3155 TerminatorInst *TI = PredBB->getTerminator();
3156 Value *FromPad;
3157 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3158 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (0)
3159 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (0)
;
3160 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3161 FromPad = Bundle->Inputs[0];
3162 else
3163 FromPad = ConstantTokenNone::get(II->getContext());
3164 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3165 FromPad = CRI->getOperand(0);
3166 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (0)
;
3167 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3168 FromPad = CSI;
3169 } else {
3170 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (0)
;
3171 }
3172
3173 // The edge may exit from zero or more nested pads.
3174 SmallSet<Value *, 8> Seen;
3175 for (;; FromPad = getParentPad(FromPad)) {
3176 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (0)
3177 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (0)
;
3178 if (FromPad == ToPadParent) {
3179 // This is a legal unwind edge.
3180 break;
3181 }
3182 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (0)
3183 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (0)
;
3184 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (0)
3185 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (0)
;
3186 }
3187 }
3188}
3189
3190void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3191 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3192 // isn't a cleanup.
3193 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (0)
3194 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (0)
;
3195
3196 visitEHPadPredecessors(LPI);
3197
3198 if (!LandingPadResultTy)
3199 LandingPadResultTy = LPI.getType();
3200 else
3201 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (0)
3202 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (0)
3203 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (0)
3204 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (0)
;
3205
3206 Function *F = LPI.getParent()->getParent();
3207 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (0)
3208 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (0)
;
3209
3210 // The landingpad instruction must be the first non-PHI instruction in the
3211 // block.
3212 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (0)
3213 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (0)
3214 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (0)
;
3215
3216 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3217 Constant *Clause = LPI.getClause(i);
3218 if (LPI.isCatch(i)) {
3219 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (0)
3220 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (0)
;
3221 } else {
3222 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (0)
;
3223 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (0)
3224 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (0)
;
3225 }
3226 }
3227
3228 visitInstruction(LPI);
3229}
3230
3231void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3232 BasicBlock *BB = CPI.getParent();
3233
3234 Function *F = BB->getParent();
3235 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (0)
3236 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (0)
;
3237
3238 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (0)
3239 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (0)
3240 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (0)
;
3241
3242 // The catchpad instruction must be the first non-PHI instruction in the
3243 // block.
3244 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
3245 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
;
3246
3247 visitEHPadPredecessors(CPI);
3248 visitFuncletPadInst(CPI);
3249}
3250
3251void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3252 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(0)
3253 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(0)
3254 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(0)
;
3255
3256 visitTerminatorInst(CatchReturn);
3257}
3258
3259void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3260 BasicBlock *BB = CPI.getParent();
3261
3262 Function *F = BB->getParent();
3263 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (0)
3264 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (0)
;
3265
3266 // The cleanuppad instruction must be the first non-PHI instruction in the
3267 // block.
3268 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
3269 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
3270 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (0)
;
3271
3272 auto *ParentPad = CPI.getParentPad();
3273 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (0)
3274 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (0)
;
3275
3276 visitEHPadPredecessors(CPI);
3277 visitFuncletPadInst(CPI);
3278}
3279
3280void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3281 User *FirstUser = nullptr;
3282 Value *FirstUnwindPad = nullptr;
3283 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3284 SmallSet<FuncletPadInst *, 8> Seen;
3285
3286 while (!Worklist.empty()) {
3287 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3288 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (0)
3289 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (0)
;
3290 Value *UnresolvedAncestorPad = nullptr;
3291 for (User *U : CurrentPad->users()) {
3292 BasicBlock *UnwindDest;
3293 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3294 UnwindDest = CRI->getUnwindDest();
3295 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3296 // We allow catchswitch unwind to caller to nest
3297 // within an outer pad that unwinds somewhere else,
3298 // because catchswitch doesn't have a nounwind variant.
3299 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3300 if (CSI->unwindsToCaller())
3301 continue;
3302 UnwindDest = CSI->getUnwindDest();
3303 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3304 UnwindDest = II->getUnwindDest();
3305 } else if (isa<CallInst>(U)) {
3306 // Calls which don't unwind may be found inside funclet
3307 // pads that unwind somewhere else. We don't *require*
3308 // such calls to be annotated nounwind.
3309 continue;
3310 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3311 // The unwind dest for a cleanup can only be found by
3312 // recursive search. Add it to the worklist, and we'll
3313 // search for its first use that determines where it unwinds.
3314 Worklist.push_back(CPI);
3315 continue;
3316 } else {
3317 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (0)
;
3318 continue;
3319 }
3320
3321 Value *UnwindPad;
3322 bool ExitsFPI;
3323 if (UnwindDest) {
3324 UnwindPad = UnwindDest->getFirstNonPHI();
3325 if (!cast<Instruction>(UnwindPad)->isEHPad())
3326 continue;
3327 Value *UnwindParent = getParentPad(UnwindPad);
3328 // Ignore unwind edges that don't exit CurrentPad.
3329 if (UnwindParent == CurrentPad)
3330 continue;
3331 // Determine whether the original funclet pad is exited,
3332 // and if we are scanning nested pads determine how many
3333 // of them are exited so we can stop searching their
3334 // children.
3335 Value *ExitedPad = CurrentPad;
3336 ExitsFPI = false;
3337 do {
3338 if (ExitedPad == &FPI) {
3339 ExitsFPI = true;
3340 // Now we can resolve any ancestors of CurrentPad up to
3341 // FPI, but not including FPI since we need to make sure
3342 // to check all direct users of FPI for consistency.
3343 UnresolvedAncestorPad = &FPI;
3344 break;
3345 }
3346 Value *ExitedParent = getParentPad(ExitedPad);
3347 if (ExitedParent == UnwindParent) {
3348 // ExitedPad is the ancestor-most pad which this unwind
3349 // edge exits, so we can resolve up to it, meaning that
3350 // ExitedParent is the first ancestor still unresolved.
3351 UnresolvedAncestorPad = ExitedParent;
3352 break;
3353 }
3354 ExitedPad = ExitedParent;
3355 } while (!isa<ConstantTokenNone>(ExitedPad));
3356 } else {
3357 // Unwinding to caller exits all pads.
3358 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3359 ExitsFPI = true;
3360 UnresolvedAncestorPad = &FPI;
3361 }
3362
3363 if (ExitsFPI) {
3364 // This unwind edge exits FPI. Make sure it agrees with other
3365 // such edges.
3366 if (FirstUser) {
3367 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (0)
3368 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (0)
3369 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (0)
3370 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (0)
;
3371 } else {
3372 FirstUser = U;
3373 FirstUnwindPad = UnwindPad;
3374 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3375 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3376 getParentPad(UnwindPad) == getParentPad(&FPI))
3377 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3378 }
3379 }
3380 // Make sure we visit all uses of FPI, but for nested pads stop as
3381 // soon as we know where they unwind to.
3382 if (CurrentPad != &FPI)
3383 break;
3384 }
3385 if (UnresolvedAncestorPad) {
3386 if (CurrentPad == UnresolvedAncestorPad) {
3387 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3388 // we've found an unwind edge that exits it, because we need to verify
3389 // all direct uses of FPI.
3390 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 3390, __PRETTY_FUNCTION__))
;
3391 continue;
3392 }
3393 // Pop off the worklist any nested pads that we've found an unwind
3394 // destination for. The pads on the worklist are the uncles,
3395 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3396 // for all ancestors of CurrentPad up to but not including
3397 // UnresolvedAncestorPad.
3398 Value *ResolvedPad = CurrentPad;
3399 while (!Worklist.empty()) {
3400 Value *UnclePad = Worklist.back();
3401 Value *AncestorPad = getParentPad(UnclePad);
3402 // Walk ResolvedPad up the ancestor list until we either find the
3403 // uncle's parent or the last resolved ancestor.
3404 while (ResolvedPad != AncestorPad) {
3405 Value *ResolvedParent = getParentPad(ResolvedPad);
3406 if (ResolvedParent == UnresolvedAncestorPad) {
3407 break;
3408 }
3409 ResolvedPad = ResolvedParent;
3410 }
3411 // If the resolved ancestor search didn't find the uncle's parent,
3412 // then the uncle is not yet resolved.
3413 if (ResolvedPad != AncestorPad)
3414 break;
3415 // This uncle is resolved, so pop it from the worklist.
3416 Worklist.pop_back();
3417 }
3418 }
3419 }
3420
3421 if (FirstUnwindPad) {
3422 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3423 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3424 Value *SwitchUnwindPad;
3425 if (SwitchUnwindDest)
3426 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3427 else
3428 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3429 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (0)
3430 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (0)
3431 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (0)
3432 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (0)
;
3433 }
3434 }
3435
3436 visitInstruction(FPI);
3437}
3438
3439void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3440 BasicBlock *BB = CatchSwitch.getParent();
3441
3442 Function *F = BB->getParent();
3443 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (0)
3444 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (0)
3445 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (0)
;
3446
3447 // The catchswitch instruction must be the first non-PHI instruction in the
3448 // block.
3449 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (0)
3450 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (0)
3451 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (0)
;
3452
3453 auto *ParentPad = CatchSwitch.getParentPad();
3454 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (0)
3455 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (0)
;
3456
3457 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3458 Instruction *I = UnwindDest->getFirstNonPHI();
3459 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (0)
3460 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (0)
3461 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (0)
3462 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (0)
;
3463
3464 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3465 if (getParentPad(I) == ParentPad)
3466 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3467 }
3468
3469 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (0)
3470 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (0)
;
3471
3472 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3473 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (0)
3474 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (0)
;
3475 }
3476
3477 visitEHPadPredecessors(CatchSwitch);
3478 visitTerminatorInst(CatchSwitch);
3479}
3480
3481void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3482 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (0)
3483 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (0)
3484 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (0)
;
3485
3486 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3487 Instruction *I = UnwindDest->getFirstNonPHI();
3488 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (0)
3489 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (0)
3490 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (0)
3491 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (0)
;
3492 }
3493
3494 visitTerminatorInst(CRI);
3495}
3496
3497void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3498 Instruction *Op = cast<Instruction>(I.getOperand(i));
3499 // If the we have an invalid invoke, don't try to compute the dominance.
3500 // We already reject it in the invoke specific checks and the dominance
3501 // computation doesn't handle multiple edges.
3502 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3503 if (II->getNormalDest() == II->getUnwindDest())
3504 return;
3505 }
3506
3507 // Quick check whether the def has already been encountered in the same block.
3508 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3509 // uses are defined to happen on the incoming edge, not at the instruction.
3510 //
3511 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3512 // wrapping an SSA value, assert that we've already encountered it. See
3513 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3514 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3515 return;
3516
3517 const Use &U = I.getOperandUse(i);
3518 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (0)
3519 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (0)
;
3520}
3521
3522void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3523 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (0
)
3524 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (0
)
;
3525 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (0)
3526 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (0)
3527 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (0)
;
3528 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (0)
3529 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (0)
;
3530 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3531 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (0)
3532 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (0)
;
3533}
3534
3535/// verifyInstruction - Verify that an instruction is well formed.
3536///
3537void Verifier::visitInstruction(Instruction &I) {
3538 BasicBlock *BB = I.getParent();
3539 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (0)
;
3540
3541 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3542 for (User *U : I.users()) {
3543 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (0)
3544 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (0)
;
3545 }
3546 }
3547
3548 // Check that void typed values don't have names
3549 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (0)
3550 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (0)
;
3551
3552 // Check that the return value of the instruction is either void or a legal
3553 // value type.
3554 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (0)
3555 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (0)
;
3556
3557 // Check that the instruction doesn't produce metadata. Calls are already
3558 // checked against the callee type.
3559 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (0)
3560 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (0)
;
3561
3562 // Check that all uses of the instruction, if they are instructions
3563 // themselves, actually have parent basic blocks. If the use is not an
3564 // instruction, it is an error!
3565 for (Use &U : I.uses()) {
3566 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3567 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (0)
3568 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (0)
3569 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (0)
3570 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (0)
;
3571 else {
3572 CheckFailed("Use of instruction is not an instruction!", U);
3573 return;
3574 }
3575 }
3576
3577 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3578 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (0)
;
3579
3580 // Check to make sure that only first-class-values are operands to
3581 // instructions.
3582 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3583 Assert(0, "Instruction operands must be first-class values!", &I)do { if (!(0)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (0)
;
3584 }
3585
3586 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3587 // Check to make sure that the "address of" an intrinsic function is never
3588 // taken.
3589 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (0)
3590 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (0)
3591 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (0)
3592 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (0)
;
3593 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint or "
"statepoint", &I); return; } } while (0)
3594 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint or "
"statepoint", &I); return; } } while (0)
3595 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint or "
"statepoint", &I); return; } } while (0)
3596 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint or "
"statepoint", &I); return; } } while (0)
3597 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint or "
"statepoint", &I); return; } } while (0)
3598 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint or "
"statepoint", &I); return; } } while (0)
3599 "Cannot invoke an intrinsic other than donothing, patchpoint or "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint or "
"statepoint", &I); return; } } while (0)
3600 "statepoint",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint or "
"statepoint", &I); return; } } while (0)
3601 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_void || F->getIntrinsicID
() == Intrinsic::experimental_patchpoint_i64 || F->getIntrinsicID
() == Intrinsic::experimental_gc_statepoint)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint or "
"statepoint", &I); return; } } while (0)
;
3602 Assert(F->getParent() == M, "Referencing function in another module!",do { if (!(F->getParent() == M)) { CheckFailed("Referencing function in another module!"
, &I, M, F, F->getParent()); return; } } while (0)
3603 &I, M, F, F->getParent())do { if (!(F->getParent() == M)) { CheckFailed("Referencing function in another module!"
, &I, M, F, F->getParent()); return; } } while (0)
;
3604 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3605 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (0)
3606 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (0)
;
3607 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3608 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (0)
3609 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (0)
;
3610 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3611 Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent())do { if (!(GV->getParent() == M)) { CheckFailed("Referencing global in another module!"
, &I, M, GV, GV->getParent()); return; } } while (0)
;
3612 } else if (isa<Instruction>(I.getOperand(i))) {
3613 verifyDominatesUse(I, i);
3614 } else if (isa<InlineAsm>(I.getOperand(i))) {
3615 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (0)
3616 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (0)
3617 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (0)
;
3618 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3619 if (CE->getType()->isPtrOrPtrVectorTy()) {
3620 // If we have a ConstantExpr pointer, we need to see if it came from an
3621 // illegal bitcast (inttoptr <constant int> )
3622 visitConstantExprsRecursively(CE);
3623 }
3624 }
3625 }
3626
3627 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3628 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (0)
3629 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (0)
;
3630 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (0)
;
3631 if (ConstantFP *CFP0 =
3632 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3633 APFloat Accuracy = CFP0->getValueAPF();
3634 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (0)
3635 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (0)
;
3636 } else {
3637 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (0)
;
3638 }
3639 }
3640
3641 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3642 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (0)
3643 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (0)
;
3644 visitRangeMetadata(I, Range, I.getType());
3645 }
3646
3647 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3648 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (0)
3649 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (0)
;
3650 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (0)
3651 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (0)
3652 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (0)
3653 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (0)
;
3654 }
3655
3656 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3657 visitDereferenceableMetadata(I, MD);
3658
3659 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3660 visitDereferenceableMetadata(I, MD);
3661
3662 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3663 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (0)
3664 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (0)
;
3665 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(0)
3666 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(0)
;
3667 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (0)
;
3668 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3669 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (0)
3670 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (0)
;
3671 uint64_t Align = CI->getZExtValue();
3672 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (0)
3673 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (0)
;
3674 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (0)
3675 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (0)
;
3676 }
3677
3678 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3679 Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { CheckFailed("invalid !dbg metadata attachment"
, &I, N); return; } } while (0)
;
3680 visitMDNode(*N);
3681 }
3682
3683 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3684 verifyBitPieceExpression(*DII);
3685
3686 InstsInThisBlock.insert(&I);
3687}
3688
3689/// Verify that the specified type (which comes from an intrinsic argument or
3690/// return value) matches the type constraints specified by the .td file (e.g.
3691/// an "any integer" argument really is an integer).
3692///
3693/// This returns true on error but does not print a message.
3694bool Verifier::verifyIntrinsicType(Type *Ty,
3695 ArrayRef<Intrinsic::IITDescriptor> &Infos,
3696 SmallVectorImpl<Type*> &ArgTys) {
3697 using namespace Intrinsic;
3698
3699 // If we ran out of descriptors, there are too many arguments.
3700 if (Infos.empty()) return true;
3701 IITDescriptor D = Infos.front();
3702 Infos = Infos.slice(1);
3703
3704 switch (D.Kind) {
3705 case IITDescriptor::Void: return !Ty->isVoidTy();
3706 case IITDescriptor::VarArg: return true;
3707 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
3708 case IITDescriptor::Token: return !Ty->isTokenTy();
3709 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
3710 case IITDescriptor::Half: return !Ty->isHalfTy();
3711 case IITDescriptor::Float: return !Ty->isFloatTy();
3712 case IITDescriptor::Double: return !Ty->isDoubleTy();
3713 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
3714 case IITDescriptor::Vector: {
3715 VectorType *VT = dyn_cast<VectorType>(Ty);
3716 return !VT || VT->getNumElements() != D.Vector_Width ||
3717 verifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
3718 }
3719 case IITDescriptor::Pointer: {
3720 PointerType *PT = dyn_cast<PointerType>(Ty);
3721 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
3722 verifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
3723 }
3724
3725 case IITDescriptor::Struct: {
3726 StructType *ST = dyn_cast<StructType>(Ty);
3727 if (!ST || ST->getNumElements() != D.Struct_NumElements)
3728 return true;
3729
3730 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
3731 if (verifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
3732 return true;
3733 return false;
3734 }
3735
3736 case IITDescriptor::Argument:
3737 // Two cases here - If this is the second occurrence of an argument, verify
3738 // that the later instance matches the previous instance.
3739 if (D.getArgumentNumber() < ArgTys.size())
3740 return Ty != ArgTys[D.getArgumentNumber()];
3741
3742 // Otherwise, if this is the first instance of an argument, record it and
3743 // verify the "Any" kind.
3744 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error")((D.getArgumentNumber() == ArgTys.size() && "Table consistency error"
) ? static_cast<void> (0) : __assert_fail ("D.getArgumentNumber() == ArgTys.size() && \"Table consistency error\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 3744, __PRETTY_FUNCTION__))
;
3745 ArgTys.push_back(Ty);
3746
3747 switch (D.getArgumentKind()) {
3748 case IITDescriptor::AK_Any: return false; // Success
3749 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
3750 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
3751 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
3752 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
3753 }
3754 llvm_unreachable("all argument kinds not covered")::llvm::llvm_unreachable_internal("all argument kinds not covered"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 3754)
;
3755
3756 case IITDescriptor::ExtendArgument: {
3757 // This may only be used when referring to a previous vector argument.
3758 if (D.getArgumentNumber() >= ArgTys.size())
3759 return true;
3760
3761 Type *NewTy = ArgTys[D.getArgumentNumber()];
3762 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3763 NewTy = VectorType::getExtendedElementVectorType(VTy);
3764 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3765 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
3766 else
3767 return true;
3768
3769 return Ty != NewTy;
3770 }
3771 case IITDescriptor::TruncArgument: {
3772 // This may only be used when referring to a previous vector argument.
3773 if (D.getArgumentNumber() >= ArgTys.size())
3774 return true;
3775
3776 Type *NewTy = ArgTys[D.getArgumentNumber()];
3777 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3778 NewTy = VectorType::getTruncatedElementVectorType(VTy);
3779 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3780 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
3781 else
3782 return true;
3783
3784 return Ty != NewTy;
3785 }
3786 case IITDescriptor::HalfVecArgument:
3787 // This may only be used when referring to a previous vector argument.
3788 return D.getArgumentNumber() >= ArgTys.size() ||
3789 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
3790 VectorType::getHalfElementsVectorType(
3791 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
3792 case IITDescriptor::SameVecWidthArgument: {
3793 if (D.getArgumentNumber() >= ArgTys.size())
3794 return true;
3795 VectorType * ReferenceType =
3796 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
3797 VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
3798 if (!ThisArgType || !ReferenceType ||
3799 (ReferenceType->getVectorNumElements() !=
3800 ThisArgType->getVectorNumElements()))
3801 return true;
3802 return verifyIntrinsicType(ThisArgType->getVectorElementType(),
3803 Infos, ArgTys);
3804 }
3805 case IITDescriptor::PtrToArgument: {
3806 if (D.getArgumentNumber() >= ArgTys.size())
3807 return true;
3808 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
3809 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
3810 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
3811 }
3812 case IITDescriptor::VecOfPtrsToElt: {
3813 if (D.getArgumentNumber() >= ArgTys.size())
3814 return true;
3815 VectorType * ReferenceType =
3816 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
3817 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
3818 if (!ThisArgVecTy || !ReferenceType ||
3819 (ReferenceType->getVectorNumElements() !=
3820 ThisArgVecTy->getVectorNumElements()))
3821 return true;
3822 PointerType *ThisArgEltTy =
3823 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
3824 if (!ThisArgEltTy)
3825 return true;
3826 return ThisArgEltTy->getElementType() !=
3827 ReferenceType->getVectorElementType();
3828 }
3829 }
3830 llvm_unreachable("unhandled")::llvm::llvm_unreachable_internal("unhandled", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 3830)
;
3831}
3832
3833/// Verify if the intrinsic has variable arguments. This method is intended to
3834/// be called after all the fixed arguments have been verified first.
3835///
3836/// This method returns true on error and does not print an error message.
3837bool
3838Verifier::verifyIntrinsicIsVarArg(bool isVarArg,
3839 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
3840 using namespace Intrinsic;
3841
3842 // If there are no descriptors left, then it can't be a vararg.
3843 if (Infos.empty())
3844 return isVarArg;
3845
3846 // There should be only one descriptor remaining at this point.
3847 if (Infos.size() != 1)
3848 return true;
3849
3850 // Check and verify the descriptor.
3851 IITDescriptor D = Infos.front();
3852 Infos = Infos.slice(1);
3853 if (D.Kind == IITDescriptor::VarArg)
3854 return !isVarArg;
3855
3856 return true;
3857}
3858
3859/// Allow intrinsics to be verified in different ways.
3860void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3861 Function *IF = CS.getCalledFunction();
3862 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (0)
3863 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (0)
;
3864
3865 // Verify that the intrinsic prototype lines up with what the .td files
3866 // describe.
3867 FunctionType *IFTy = IF->getFunctionType();
3868 bool IsVarArg = IFTy->isVarArg();
3869
3870 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3871 getIntrinsicInfoTableEntries(ID, Table);
3872 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3873
3874 SmallVector<Type *, 4> ArgTys;
3875 Assert(!verifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),do { if (!(!verifyIntrinsicType(IFTy->getReturnType(), TableRef
, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (0)
3876 "Intrinsic has incorrect return type!", IF)do { if (!(!verifyIntrinsicType(IFTy->getReturnType(), TableRef
, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (0)
;
3877 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3878 Assert(!verifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),do { if (!(!verifyIntrinsicType(IFTy->getParamType(i), TableRef
, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (0)
3879 "Intrinsic has incorrect argument type!", IF)do { if (!(!verifyIntrinsicType(IFTy->getParamType(i), TableRef
, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (0)
;
3880
3881 // Verify if the intrinsic call matches the vararg property.
3882 if (IsVarArg)
3883 Assert(!verifyIntrinsicIsVarArg(IsVarArg, TableRef),do { if (!(!verifyIntrinsicIsVarArg(IsVarArg, TableRef))) { CheckFailed
("Intrinsic was not defined with variable arguments!", IF); return
; } } while (0)
3884 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!verifyIntrinsicIsVarArg(IsVarArg, TableRef))) { CheckFailed
("Intrinsic was not defined with variable arguments!", IF); return
; } } while (0)
;
3885 else
3886 Assert(!verifyIntrinsicIsVarArg(IsVarArg, TableRef),do { if (!(!verifyIntrinsicIsVarArg(IsVarArg, TableRef))) { CheckFailed
("Callsite was not defined with variable arguments!", IF); return
; } } while (0)
3887 "Callsite was not defined with variable arguments!", IF)do { if (!(!verifyIntrinsicIsVarArg(IsVarArg, TableRef))) { CheckFailed
("Callsite was not defined with variable arguments!", IF); return
; } } while (0)
;
3888
3889 // All descriptors should be absorbed by now.
3890 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (0)
;
3891
3892 // Now that we have the intrinsic ID and the actual argument types (and we
3893 // know they are legal for the intrinsic!) get the intrinsic name through the
3894 // usual means. This allows us to verify the mangling of argument types into
3895 // the name.
3896 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3897 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (0)
3898 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (0)
3899 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (0)
3900 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (0)
3901 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (0)
;
3902
3903 // If the intrinsic takes MDNode arguments, verify that they are either global
3904 // or are local to *this* function.
3905 for (Value *V : CS.args())
3906 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3907 visitMetadataAsValue(*MD, CS.getCaller());
3908
3909 switch (ID) {
3910 default:
3911 break;
3912 case Intrinsic::ctlz: // llvm.ctlz
3913 case Intrinsic::cttz: // llvm.cttz
3914 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (0)
3915 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (0)
3916 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (0)
3917 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (0)
;
3918 break;
3919 case Intrinsic::dbg_declare: // llvm.dbg.declare
3920 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (0)
3921 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (0)
;
3922 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3923 break;
3924 case Intrinsic::dbg_value: // llvm.dbg.value
3925 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3926 break;
3927 case Intrinsic::memcpy:
3928 case Intrinsic::memmove:
3929 case Intrinsic::memset: {
3930 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3931 Assert(AlignCI,do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
3932 "alignment argument of memory intrinsics must be a constant int",do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
3933 CS)do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
;
3934 const APInt &AlignVal = AlignCI->getValue();
3935 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (0)
3936 "alignment argument of memory intrinsics must be a power of 2", CS)do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (0)
;
3937 Assert(isa<ConstantInt>(CS.getArgOperand(4)),do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
3938 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
3939 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (0)
;
3940 break;
3941 }
3942 case Intrinsic::gcroot:
3943 case Intrinsic::gcwrite:
3944 case Intrinsic::gcread:
3945 if (ID == Intrinsic::gcroot) {
3946 AllocaInst *AI =
3947 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3948 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (0)
;
3949 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (0)
3950 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (0)
;
3951 if (!AI->getAllocatedType()->isPointerTy()) {
3952 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (0)
3953 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (0)
3954 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (0)
3955 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (0)
;
3956 }
3957 }
3958
3959 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
3960 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
;
3961 break;
3962 case Intrinsic::init_trampoline:
3963 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (0)
3964 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (0)
3965 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (0)
;
3966 break;
3967 case Intrinsic::prefetch:
3968 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (0)
3969 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (0)
3970 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (0)
3971 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (0)
3972 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (0)
;
3973 break;
3974 case Intrinsic::stackprotector:
3975 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (0)
3976 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (0)
;
3977 break;
3978 case Intrinsic::lifetime_start:
3979 case Intrinsic::lifetime_end:
3980 case Intrinsic::invariant_start:
3981 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (0)
3982 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (0)
3983 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (0)
;
3984 break;
3985 case Intrinsic::invariant_end:
3986 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (0)
3987 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (0)
;
3988 break;
3989
3990 case Intrinsic::localescape: {
3991 BasicBlock *BB = CS.getParent();
3992 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (0)
3993 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (0)
;
3994 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (0)
3995 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (0)
;
3996 for (Value *Arg : CS.args()) {
3997 if (isa<ConstantPointerNull>(Arg))
3998 continue; // Null values are allowed as placeholders.
3999 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4000 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (0)
4001 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (0)
;
4002 }
4003 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4004 SawFrameEscape = true;
4005 break;
4006 }
4007 case Intrinsic::localrecover: {
4008 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4009 Function *Fn = dyn_cast<Function>(FnArg);
4010 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (0)
4011 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (0)
4012 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (0)
4013 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (0)
;
4014 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4015 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (0)
4016 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (0)
;
4017 auto &Entry = FrameEscapeInfo[Fn];
4018 Entry.second = unsigned(
4019 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4020 break;
4021 }
4022
4023 case Intrinsic::experimental_gc_statepoint:
4024 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (0)
4025 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (0)
;
4026 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
4027 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
;
4028
4029 verifyStatepoint(CS);
4030 break;
4031 case Intrinsic::experimental_gc_result: {
4032 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
4033 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(0)
;
4034 // Are we tied to a statepoint properly?
4035 CallSite StatepointCS(CS.getArgOperand(0));
4036 const Function *StatepointFn =
4037 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4038 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (0)
4039 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (0)
4040 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (0)
4041 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (0)
4042 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (0)
;
4043
4044 // Assert that result type matches wrapped callee.
4045 const Value *Target = StatepointCS.getArgument(2);
4046 auto *PT = cast<PointerType>(Target->getType());
4047 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4048 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (0)
4049 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (0)
;
4050 break;
4051 }
4052 case Intrinsic::experimental_gc_relocate: {
4053 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (0)
;
4054
4055 Assert(isa<PointerType>(CS.getType()->getScalarType()),do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (0)
4056 "gc.relocate must return a pointer or a vector of pointers", CS)do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (0)
;
4057
4058 // Check that this relocate is correctly tied to the statepoint
4059
4060 // This is case for relocate on the unwinding path of an invoke statepoint
4061 if (LandingPadInst *LandingPad =
4062 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4063
4064 const BasicBlock *InvokeBB =
4065 LandingPad->getParent()->getUniquePredecessor();
4066
4067 // Landingpad relocates should have only one predecessor with invoke
4068 // statepoint terminator
4069 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (0)
4070 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (0)
;
4071 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (0)
4072 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (0)
;
4073 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (0)
4074 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (0)
;
4075 }
4076 else {
4077 // In all other cases relocate should be tied to the statepoint directly.
4078 // This covers relocates on a normal return path of invoke statepoint and
4079 // relocates of a call statepoint.
4080 auto Token = CS.getArgOperand(0);
4081 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (0)
4082 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (0)
;
4083 }
4084
4085 // Verify rest of the relocate arguments.
4086
4087 ImmutableCallSite StatepointCS(
4088 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4089
4090 // Both the base and derived must be piped through the safepoint.
4091 Value* Base = CS.getArgOperand(1);
4092 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (0)
4093 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (0)
;
4094
4095 Value* Derived = CS.getArgOperand(2);
4096 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (0)
4097 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (0)
;
4098
4099 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4100 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4101 // Check the bounds
4102 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (0)
4103 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (0)
;
4104 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (0)
4105 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (0)
;
4106
4107 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4108 // section of the statepoint's argument.
4109 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (0)
4110 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (0)
;
4111 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (0)
4112 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (0)
;
4113 const unsigned NumCallArgs =
4114 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4115 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (0)
4116 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (0)
;
4117 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (0)
4118 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (0)
4119 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (0)
;
4120 const int NumTransitionArgs =
4121 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4122 ->getZExtValue();
4123 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4124 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (0)
4125 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (0)
4126 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (0)
;
4127 const int NumDeoptArgs =
4128 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4129 ->getZExtValue();
4130 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4131 const int GCParamArgsEnd = StatepointCS.arg_size();
4132 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
4133 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
4134 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
4135 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
;
4136 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
4137 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
4138 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
4139 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (0)
;
4140
4141 // Relocated value must be either a pointer type or vector-of-pointer type,
4142 // but gc_relocate does not need to return the same pointer type as the
4143 // relocated pointer. It can be casted to the correct type later if it's
4144 // desired. However, they must have the same address space and 'vectorness'
4145 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4146 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (0)
4147 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (0)
;
4148
4149 auto ResultType = CS.getType();
4150 auto DerivedType = Relocate.getDerivedPtr()->getType();
4151 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (0)
4152 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (0)
4153 CS)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (0)
;
4154 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (0)
4155 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (0)
4156 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (0)
4157 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (0)
4158 CS)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (0)
;
4159 break;
4160 }
4161 case Intrinsic::eh_exceptioncode:
4162 case Intrinsic::eh_exceptionpointer: {
4163 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (0)
4164 "eh.exceptionpointer argument must be a catchpad", CS)do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (0)
;
4165 break;
4166 }
4167 case Intrinsic::masked_load: {
4168 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS)do { if (!(CS.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, CS); return; } } while (0)
;
4169
4170 Value *Ptr = CS.getArgOperand(0);
4171 //Value *Alignment = CS.getArgOperand(1);
4172 Value *Mask = CS.getArgOperand(2);
4173 Value *PassThru = CS.getArgOperand(3);
4174 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
0)
4175 "masked_load: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
0)
;
4176
4177 // DataTy is the overloaded type
4178 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4179 Assert(DataTy == CS.getType(),do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (0)
4180 "masked_load: return must match pointer type", CS)do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (0)
;
4181 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (0)
4182 "masked_load: pass through and data type must match", CS)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (0)
;
4183 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (0)
4184 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (0)
4185 "masked_load: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (0)
;
4186 break;
4187 }
4188 case Intrinsic::masked_store: {
4189 Value *Val = CS.getArgOperand(0);
4190 Value *Ptr = CS.getArgOperand(1);
4191 //Value *Alignment = CS.getArgOperand(2);
4192 Value *Mask = CS.getArgOperand(3);
4193 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
0)
4194 "masked_store: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
0)
;
4195
4196 // DataTy is the overloaded type
4197 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4198 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (0)
4199 "masked_store: storee must match pointer type", CS)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (0)
;
4200 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (0)
4201 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (0)
4202 "masked_store: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (0)
;
4203 break;
4204 }
4205
4206 case Intrinsic::experimental_guard: {
4207 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_guard cannot be invoked"
, CS); return; } } while (0)
;
4208 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (0)
4209 "experimental_guard must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (0)
4210 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (0)
;
4211 break;
4212 }
4213
4214 case Intrinsic::experimental_deoptimize: {
4215 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_deoptimize cannot be invoked"
, CS); return; } } while (0)
;
4216 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (0)
4217 "experimental_deoptimize must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (0)
4218 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (0)
;
4219 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (0)
4220 "experimental_deoptimize return type must match caller return type")do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (0)
;
4221
4222 if (CS.isCall()) {
4223 auto *DeoptCI = CS.getInstruction();
4224 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4225 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (0)
4226 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (0)
;
4227
4228 if (!CS.getType()->isVoidTy() && RI)
4229 Assert(RI->getReturnValue() == DeoptCI,do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (0)
4230 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (0)
4231 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (0)
;
4232 }
4233
4234 break;
4235 }
4236 };
4237}
4238
4239/// \brief Carefully grab the subprogram from a local scope.
4240///
4241/// This carefully grabs the subprogram from a local scope, avoiding the
4242/// built-in assertions that would typically fire.
4243static DISubprogram *getSubprogram(Metadata *LocalScope) {
4244 if (!LocalScope)
4245 return nullptr;
4246
4247 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4248 return SP;
4249
4250 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4251 return getSubprogram(LB->getRawScope());
4252
4253 // Just return null; broken scope chains are checked elsewhere.
4254 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"
) ? static_cast<void> (0) : __assert_fail ("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 4254, __PRETTY_FUNCTION__))
;
4255 return nullptr;
4256}
4257
4258template <class DbgIntrinsicTy>
4259void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4260 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4261 Assert(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { CheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (0)
4262 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { CheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (0)
4263 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { CheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (0)
;
4264 Assert(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ CheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (0)
4265 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ CheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (0)
4266 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ CheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (0)
;
4267 Assert(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
CheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (0)
4268 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
CheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (0)
4269 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
CheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (0)
;
4270
4271 // Ignore broken !dbg attachments; they're checked elsewhere.
4272 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4273 if (!isa<DILocation>(N))
4274 return;
4275
4276 BasicBlock *BB = DII.getParent();
4277 Function *F = BB ? BB->getParent() : nullptr;
4278
4279 // The scopes for variables and !dbg attachments must agree.
4280 DILocalVariable *Var = DII.getVariable();
4281 DILocation *Loc = DII.getDebugLoc();
4282 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (0)
4283 &DII, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (0)
;
4284
4285 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4286 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4287 if (!VarSP || !LocSP)
4288 return; // Broken scope chains are checked elsewhere.
4289
4290 Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { CheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (0)
4291 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { CheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (0)
4292 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { CheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (0)
4293 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { CheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (0)
;
4294}
4295
4296static uint64_t getVariableSize(const DILocalVariable &V) {
4297 // Be careful of broken types (checked elsewhere).
4298 const Metadata *RawType = V.getRawType();
4299 while (RawType) {
4300 // Try to get the size directly.
4301 if (auto *T = dyn_cast<DIType>(RawType))
4302 if (uint64_t Size = T->getSizeInBits())
4303 return Size;
4304
4305 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4306 // Look at the base type.
4307 RawType = DT->getRawBaseType();
4308 continue;
4309 }
4310
4311 // Missing type or size.
4312 break;
4313 }
4314
4315 // Fail gracefully.
4316 return 0;
4317}
4318
4319void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I) {
4320 DILocalVariable *V;
4321 DIExpression *E;
4322 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4323 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4324 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4325 } else {
4326 auto *DDI = cast<DbgDeclareInst>(&I);
4327 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4328 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4329 }
4330
4331 // We don't know whether this intrinsic verified correctly.
4332 if (!V || !E || !E->isValid())
4333 return;
4334
4335 // Nothing to do if this isn't a bit piece expression.
4336 if (!E->isBitPiece())
4337 return;
4338
4339 // The frontend helps out GDB by emitting the members of local anonymous
4340 // unions as artificial local variables with shared storage. When SROA splits
4341 // the storage for artificial local variables that are smaller than the entire
4342 // union, the overhang piece will be outside of the allotted space for the
4343 // variable and this check fails.
4344 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4345 if (V->isArtificial())
4346 return;
4347
4348 // If there's no size, the type is broken, but that should be checked
4349 // elsewhere.
4350 uint64_t VarSize = getVariableSize(*V);
4351 if (!VarSize)
4352 return;
4353
4354 unsigned PieceSize = E->getBitPieceSize();
4355 unsigned PieceOffset = E->getBitPieceOffset();
4356 Assert(PieceSize + PieceOffset <= VarSize,do { if (!(PieceSize + PieceOffset <= VarSize)) { CheckFailed
("piece is larger than or outside of variable", &I, V, E)
; return; } } while (0)
4357 "piece is larger than or outside of variable", &I, V, E)do { if (!(PieceSize + PieceOffset <= VarSize)) { CheckFailed
("piece is larger than or outside of variable", &I, V, E)
; return; } } while (0)
;
4358 Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E)do { if (!(PieceSize != VarSize)) { CheckFailed("piece covers entire variable"
, &I, V, E); return; } } while (0)
;
4359}
4360
4361void Verifier::verifyCompileUnits() {
4362 auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
4363 SmallPtrSet<const Metadata *, 2> Listed;
4364 if (CUs)
4365 Listed.insert(CUs->op_begin(), CUs->op_end());
4366 Assert(do { if (!(std::all_of(CUVisited.begin(), CUVisited.end(), [&
Listed](const Metadata *CU) { return Listed.count(CU); }))) {
CheckFailed("All DICompileUnits must be listed in llvm.dbg.cu"
); return; } } while (0)
4367 std::all_of(CUVisited.begin(), CUVisited.end(),do { if (!(std::all_of(CUVisited.begin(), CUVisited.end(), [&
Listed](const Metadata *CU) { return Listed.count(CU); }))) {
CheckFailed("All DICompileUnits must be listed in llvm.dbg.cu"
); return; } } while (0)
4368 [&Listed](const Metadata *CU) { return Listed.count(CU); }),do { if (!(std::all_of(CUVisited.begin(), CUVisited.end(), [&
Listed](const Metadata *CU) { return Listed.count(CU); }))) {
CheckFailed("All DICompileUnits must be listed in llvm.dbg.cu"
); return; } } while (0)
4369 "All DICompileUnits must be listed in llvm.dbg.cu")do { if (!(std::all_of(CUVisited.begin(), CUVisited.end(), [&
Listed](const Metadata *CU) { return Listed.count(CU); }))) {
CheckFailed("All DICompileUnits must be listed in llvm.dbg.cu"
); return; } } while (0)
;
4370 CUVisited.clear();
4371}
4372
4373//===----------------------------------------------------------------------===//
4374// Implement the public interfaces to this file...
4375//===----------------------------------------------------------------------===//
4376
4377bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4378 Function &F = const_cast<Function &>(f);
4379 assert(!F.isDeclaration() && "Cannot verify external functions")((!F.isDeclaration() && "Cannot verify external functions"
) ? static_cast<void> (0) : __assert_fail ("!F.isDeclaration() && \"Cannot verify external functions\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/IR/Verifier.cpp"
, 4379, __PRETTY_FUNCTION__))
;
4380
4381 // Don't use a raw_null_ostream. Printing IR is expensive.
4382 Verifier V(OS);
4383
4384 // Note that this function's return value is inverted from what you would
4385 // expect of a function called "verify".
4386 return !V.verify(F);
4387}
4388
4389bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
4390 // Don't use a raw_null_ostream. Printing IR is expensive.
4391 Verifier V(OS);
4392
4393 bool Broken = false;
4394 for (const Function &F : M)
4395 if (!F.isDeclaration() && !F.isMaterializable())
4396 Broken |= !V.verify(F);
4397
4398 // Note that this function's return value is inverted from what you would
4399 // expect of a function called "verify".
4400 return !V.verify(M) || Broken;
4401}
4402
4403namespace {
4404struct VerifierLegacyPass : public FunctionPass {
4405 static char ID;
4406
4407 Verifier V;
4408 bool FatalErrors;
4409
4410 VerifierLegacyPass() : FunctionPass(ID), V(&dbgs()), FatalErrors(true) {
4411 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4412 }
4413 explicit VerifierLegacyPass(bool FatalErrors)
4414 : FunctionPass(ID), V(&dbgs()), FatalErrors(FatalErrors) {
4415 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4416 }
4417
4418 bool runOnFunction(Function &F) override {
4419 if (!V.verify(F) && FatalErrors)
4420 report_fatal_error("Broken function found, compilation aborted!");
4421
4422 return false;
4423 }
4424
4425 bool doFinalization(Module &M) override {
4426 if (!V.verify(M) && FatalErrors)
4427 report_fatal_error("Broken module found, compilation aborted!");
4428
4429 return false;
4430 }
4431
4432 void getAnalysisUsage(AnalysisUsage &AU) const override {
4433 AU.setPreservesAll();
4434 }
4435};
4436}
4437
4438char VerifierLegacyPass::ID = 0;
4439INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void* initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo("Module Verifier"
, "verify", & VerifierLegacyPass ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< VerifierLegacyPass >), false, false);
Registry.registerPass(*PI, true); return PI; } void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { static volatile sys::cas_flag initialized
= 0; sys::cas_flag old_val = sys::CompareAndSwap(&initialized
, 1, 0); if (old_val == 0) { initializeVerifierLegacyPassPassOnce
(Registry); sys::MemoryFence(); ; ; initialized = 2; ; } else
{ sys::cas_flag tmp = initialized; sys::MemoryFence(); while
(tmp != 2) { tmp = initialized; sys::MemoryFence(); } } ; }
4440
4441FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4442 return new VerifierLegacyPass(FatalErrors);
4443}
4444
4445PreservedAnalyses VerifierPass::run(Module &M) {
4446 if (verifyModule(M, &dbgs()) && FatalErrors)
4447 report_fatal_error("Broken module found, compilation aborted!");
4448
4449 return PreservedAnalyses::all();
4450}
4451
4452PreservedAnalyses VerifierPass::run(Function &F) {
4453 if (verifyFunction(F, &dbgs()) && FatalErrors)
4454 report_fatal_error("Broken function found, compilation aborted!");
4455
4456 return PreservedAnalyses::all();
4457}