Bug Summary

File:lib/IR/Verifier.cpp
Warning:line 2171, column 7
Called C++ object pointer is null

Annotated Source Code

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * Landingpad instructions must be in a function with a personality function.
43// * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/APFloat.h"
49#include "llvm/ADT/APInt.h"
50#include "llvm/ADT/ArrayRef.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/ilist.h"
53#include "llvm/ADT/MapVector.h"
54#include "llvm/ADT/Optional.h"
55#include "llvm/ADT/STLExtras.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/SmallSet.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringMap.h"
60#include "llvm/ADT/StringRef.h"
61#include "llvm/ADT/Twine.h"
62#include "llvm/IR/Argument.h"
63#include "llvm/IR/Attributes.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/CFG.h"
66#include "llvm/IR/CallSite.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/DiagnosticInfo.h"
78#include "llvm/IR/Dominators.h"
79#include "llvm/IR/Function.h"
80#include "llvm/IR/GlobalAlias.h"
81#include "llvm/IR/GlobalValue.h"
82#include "llvm/IR/GlobalVariable.h"
83#include "llvm/IR/InlineAsm.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/InstVisitor.h"
88#include "llvm/IR/IntrinsicInst.h"
89#include "llvm/IR/Intrinsics.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/Pass.h"
101#include "llvm/Support/AtomicOrdering.h"
102#include "llvm/Support/Casting.h"
103#include "llvm/Support/CommandLine.h"
104#include "llvm/Support/Debug.h"
105#include "llvm/Support/Dwarf.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
119
120namespace llvm {
121
122struct VerifierSupport {
123 raw_ostream *OS;
124 const Module &M;
125 ModuleSlotTracker MST;
126 const DataLayout &DL;
127 LLVMContext &Context;
128
129 /// Track the brokenness of the module while recursively visiting.
130 bool Broken = false;
131 /// Broken debug info can be "recovered" from by stripping the debug info.
132 bool BrokenDebugInfo = false;
133 /// Whether to treat broken debug info as an error.
134 bool TreatBrokenDebugInfoAsError = true;
135
136 explicit VerifierSupport(raw_ostream *OS, const Module &M)
137 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
138
139private:
140 void Write(const Module *M) {
141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142 }
143
144 void Write(const Value *V) {
145 if (!V)
146 return;
147 if (isa<Instruction>(V)) {
148 V->print(*OS, MST);
149 *OS << '\n';
150 } else {
151 V->printAsOperand(*OS, true, MST);
152 *OS << '\n';
153 }
154 }
155
156 void Write(ImmutableCallSite CS) {
157 Write(CS.getInstruction());
158 }
159
160 void Write(const Metadata *MD) {
161 if (!MD)
162 return;
163 MD->print(*OS, MST, &M);
164 *OS << '\n';
165 }
166
167 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
168 Write(MD.get());
169 }
170
171 void Write(const NamedMDNode *NMD) {
172 if (!NMD)
173 return;
174 NMD->print(*OS, MST);
175 *OS << '\n';
176 }
177
178 void Write(Type *T) {
179 if (!T)
180 return;
181 *OS << ' ' << *T;
182 }
183
184 void Write(const Comdat *C) {
185 if (!C)
186 return;
187 *OS << *C;
188 }
189
190 void Write(const APInt *AI) {
191 if (!AI)
192 return;
193 *OS << *AI << '\n';
194 }
195
196 void Write(const unsigned i) { *OS << i << '\n'; }
197
198 template <typename T> void Write(ArrayRef<T> Vs) {
199 for (const T &V : Vs)
200 Write(V);
201 }
202
203 template <typename T1, typename... Ts>
204 void WriteTs(const T1 &V1, const Ts &... Vs) {
205 Write(V1);
206 WriteTs(Vs...);
207 }
208
209 template <typename... Ts> void WriteTs() {}
210
211public:
212 /// \brief A check failed, so printout out the condition and the message.
213 ///
214 /// This provides a nice place to put a breakpoint if you want to see why
215 /// something is not correct.
216 void CheckFailed(const Twine &Message) {
217 if (OS)
218 *OS << Message << '\n';
219 Broken = true;
220 }
221
222 /// \brief A check failed (with values to print).
223 ///
224 /// This calls the Message-only version so that the above is easier to set a
225 /// breakpoint on.
226 template <typename T1, typename... Ts>
227 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
228 CheckFailed(Message);
229 if (OS)
230 WriteTs(V1, Vs...);
231 }
232
233 /// A debug info check failed.
234 void DebugInfoCheckFailed(const Twine &Message) {
235 if (OS)
236 *OS << Message << '\n';
237 Broken |= TreatBrokenDebugInfoAsError;
238 BrokenDebugInfo = true;
239 }
240
241 /// A debug info check failed (with values to print).
242 template <typename T1, typename... Ts>
243 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
244 const Ts &... Vs) {
245 DebugInfoCheckFailed(Message);
246 if (OS)
247 WriteTs(V1, Vs...);
248 }
249};
250
251} // namespace llvm
252
253namespace {
254
255class Verifier : public InstVisitor<Verifier>, VerifierSupport {
256 friend class InstVisitor<Verifier>;
257
258 DominatorTree DT;
259
260 /// \brief When verifying a basic block, keep track of all of the
261 /// instructions we have seen so far.
262 ///
263 /// This allows us to do efficient dominance checks for the case when an
264 /// instruction has an operand that is an instruction in the same block.
265 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
266
267 /// \brief Keep track of the metadata nodes that have been checked already.
268 SmallPtrSet<const Metadata *, 32> MDNodes;
269
270 /// Track all DICompileUnits visited.
271 SmallPtrSet<const Metadata *, 2> CUVisited;
272
273 /// \brief The result type for a landingpad.
274 Type *LandingPadResultTy;
275
276 /// \brief Whether we've seen a call to @llvm.localescape in this function
277 /// already.
278 bool SawFrameEscape;
279
280 /// Whether the current function has a DISubprogram attached to it.
281 bool HasDebugInfo = false;
282
283 /// Stores the count of how many objects were passed to llvm.localescape for a
284 /// given function and the largest index passed to llvm.localrecover.
285 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
286
287 // Maps catchswitches and cleanuppads that unwind to siblings to the
288 // terminators that indicate the unwind, used to detect cycles therein.
289 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
290
291 /// Cache of constants visited in search of ConstantExprs.
292 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
293
294 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
295 SmallVector<const Function *, 4> DeoptimizeDeclarations;
296
297 // Verify that this GlobalValue is only used in this module.
298 // This map is used to avoid visiting uses twice. We can arrive at a user
299 // twice, if they have multiple operands. In particular for very large
300 // constant expressions, we can arrive at a particular user many times.
301 SmallPtrSet<const Value *, 32> GlobalValueVisited;
302
303 // Keeps track of duplicate function argument debug info.
304 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
305
306 TBAAVerifier TBAAVerifyHelper;
307
308 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
309
310public:
311 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
312 const Module &M)
313 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
314 SawFrameEscape(false), TBAAVerifyHelper(this) {
315 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
316 }
317
318 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
319
320 bool verify(const Function &F) {
321 assert(F.getParent() == &M &&((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 322, __PRETTY_FUNCTION__))
322 "An instance of this class only works with a specific module!")((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 322, __PRETTY_FUNCTION__))
;
323
324 // First ensure the function is well-enough formed to compute dominance
325 // information, and directly compute a dominance tree. We don't rely on the
326 // pass manager to provide this as it isolates us from a potentially
327 // out-of-date dominator tree and makes it significantly more complex to run
328 // this code outside of a pass manager.
329 // FIXME: It's really gross that we have to cast away constness here.
330 if (!F.empty())
331 DT.recalculate(const_cast<Function &>(F));
332
333 for (const BasicBlock &BB : F) {
334 if (!BB.empty() && BB.back().isTerminator())
335 continue;
336
337 if (OS) {
338 *OS << "Basic Block in function '" << F.getName()
339 << "' does not have terminator!\n";
340 BB.printAsOperand(*OS, true, MST);
341 *OS << "\n";
342 }
343 return false;
344 }
345
346 Broken = false;
347 // FIXME: We strip const here because the inst visitor strips const.
348 visit(const_cast<Function &>(F));
349 verifySiblingFuncletUnwinds();
350 InstsInThisBlock.clear();
351 DebugFnArgs.clear();
352 LandingPadResultTy = nullptr;
353 SawFrameEscape = false;
354 SiblingFuncletInfo.clear();
355
356 return !Broken;
357 }
358
359 /// Verify the module that this instance of \c Verifier was initialized with.
360 bool verify() {
361 Broken = false;
362
363 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
364 for (const Function &F : M)
365 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
366 DeoptimizeDeclarations.push_back(&F);
367
368 // Now that we've visited every function, verify that we never asked to
369 // recover a frame index that wasn't escaped.
370 verifyFrameRecoverIndices();
371 for (const GlobalVariable &GV : M.globals())
372 visitGlobalVariable(GV);
373
374 for (const GlobalAlias &GA : M.aliases())
375 visitGlobalAlias(GA);
376
377 for (const NamedMDNode &NMD : M.named_metadata())
378 visitNamedMDNode(NMD);
379
380 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
381 visitComdat(SMEC.getValue());
382
383 visitModuleFlags(M);
384 visitModuleIdents(M);
385
386 verifyCompileUnits();
387
388 verifyDeoptimizeCallingConvs();
389
390 return !Broken;
391 }
392
393private:
394 // Verification methods...
395 void visitGlobalValue(const GlobalValue &GV);
396 void visitGlobalVariable(const GlobalVariable &GV);
397 void visitGlobalAlias(const GlobalAlias &GA);
398 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
399 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
400 const GlobalAlias &A, const Constant &C);
401 void visitNamedMDNode(const NamedMDNode &NMD);
402 void visitMDNode(const MDNode &MD);
403 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
404 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
405 void visitComdat(const Comdat &C);
406 void visitModuleIdents(const Module &M);
407 void visitModuleFlags(const Module &M);
408 void visitModuleFlag(const MDNode *Op,
409 DenseMap<const MDString *, const MDNode *> &SeenIDs,
410 SmallVectorImpl<const MDNode *> &Requirements);
411 void visitFunction(const Function &F);
412 void visitBasicBlock(BasicBlock &BB);
413 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
414 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
415
416 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
417#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
418#include "llvm/IR/Metadata.def"
419 void visitDIScope(const DIScope &N);
420 void visitDIVariable(const DIVariable &N);
421 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
422 void visitDITemplateParameter(const DITemplateParameter &N);
423
424 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
425
426 // InstVisitor overrides...
427 using InstVisitor<Verifier>::visit;
428 void visit(Instruction &I);
429
430 void visitTruncInst(TruncInst &I);
431 void visitZExtInst(ZExtInst &I);
432 void visitSExtInst(SExtInst &I);
433 void visitFPTruncInst(FPTruncInst &I);
434 void visitFPExtInst(FPExtInst &I);
435 void visitFPToUIInst(FPToUIInst &I);
436 void visitFPToSIInst(FPToSIInst &I);
437 void visitUIToFPInst(UIToFPInst &I);
438 void visitSIToFPInst(SIToFPInst &I);
439 void visitIntToPtrInst(IntToPtrInst &I);
440 void visitPtrToIntInst(PtrToIntInst &I);
441 void visitBitCastInst(BitCastInst &I);
442 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
443 void visitPHINode(PHINode &PN);
444 void visitBinaryOperator(BinaryOperator &B);
445 void visitICmpInst(ICmpInst &IC);
446 void visitFCmpInst(FCmpInst &FC);
447 void visitExtractElementInst(ExtractElementInst &EI);
448 void visitInsertElementInst(InsertElementInst &EI);
449 void visitShuffleVectorInst(ShuffleVectorInst &EI);
450 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
451 void visitCallInst(CallInst &CI);
452 void visitInvokeInst(InvokeInst &II);
453 void visitGetElementPtrInst(GetElementPtrInst &GEP);
454 void visitLoadInst(LoadInst &LI);
455 void visitStoreInst(StoreInst &SI);
456 void verifyDominatesUse(Instruction &I, unsigned i);
457 void visitInstruction(Instruction &I);
458 void visitTerminatorInst(TerminatorInst &I);
459 void visitBranchInst(BranchInst &BI);
460 void visitReturnInst(ReturnInst &RI);
461 void visitSwitchInst(SwitchInst &SI);
462 void visitIndirectBrInst(IndirectBrInst &BI);
463 void visitSelectInst(SelectInst &SI);
464 void visitUserOp1(Instruction &I);
465 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
466 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
467 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
468 template <class DbgIntrinsicTy>
469 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
470 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
471 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
472 void visitFenceInst(FenceInst &FI);
473 void visitAllocaInst(AllocaInst &AI);
474 void visitExtractValueInst(ExtractValueInst &EVI);
475 void visitInsertValueInst(InsertValueInst &IVI);
476 void visitEHPadPredecessors(Instruction &I);
477 void visitLandingPadInst(LandingPadInst &LPI);
478 void visitResumeInst(ResumeInst &RI);
479 void visitCatchPadInst(CatchPadInst &CPI);
480 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
481 void visitCleanupPadInst(CleanupPadInst &CPI);
482 void visitFuncletPadInst(FuncletPadInst &FPI);
483 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
484 void visitCleanupReturnInst(CleanupReturnInst &CRI);
485
486 void verifyCallSite(CallSite CS);
487 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
488 void verifySwiftErrorValue(const Value *SwiftErrorVal);
489 void verifyMustTailCall(CallInst &CI);
490 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
491 unsigned ArgNo, std::string &Suffix);
492 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
493 void verifyAttributeTypes(AttributeList Attrs, unsigned Idx, bool isFunction,
494 const Value *V);
495 void verifyParameterAttrs(AttributeList Attrs, unsigned Idx, Type *Ty,
496 bool isReturnValue, const Value *V);
497 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
498 const Value *V);
499 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
500
501 void visitConstantExprsRecursively(const Constant *EntryC);
502 void visitConstantExpr(const ConstantExpr *CE);
503 void verifyStatepoint(ImmutableCallSite CS);
504 void verifyFrameRecoverIndices();
505 void verifySiblingFuncletUnwinds();
506
507 void verifyFragmentExpression(const DbgInfoIntrinsic &I);
508 void verifyFnArgs(const DbgInfoIntrinsic &I);
509
510 /// Module-level debug info verification...
511 void verifyCompileUnits();
512
513 /// Module-level verification that all @llvm.experimental.deoptimize
514 /// declarations share the same calling convention.
515 void verifyDeoptimizeCallingConvs();
516};
517
518} // end anonymous namespace
519
520/// We know that cond should be true, if not print an error message.
521#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
522 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
523
524/// We know that a debug info condition should be true, if not print
525/// an error message.
526#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
527 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
528
529void Verifier::visit(Instruction &I) {
530 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
531 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
532 InstVisitor<Verifier>::visit(I);
533}
534
535// Helper to recursively iterate over indirect users. By
536// returning false, the callback can ask to stop recursing
537// further.
538static void forEachUser(const Value *User,
539 SmallPtrSet<const Value *, 32> &Visited,
540 llvm::function_ref<bool(const Value *)> Callback) {
541 if (!Visited.insert(User).second)
542 return;
543 for (const Value *TheNextUser : User->materialized_users())
544 if (Callback(TheNextUser))
545 forEachUser(TheNextUser, Visited, Callback);
546}
547
548void Verifier::visitGlobalValue(const GlobalValue &GV) {
549 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
550 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
551
552 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
553 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
554 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
555 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
556
557 if (GV.hasAppendingLinkage()) {
558 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
559 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
560 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
561 }
562
563 if (GV.isDeclarationForLinker())
564 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
565
566 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
567 if (const Instruction *I = dyn_cast<Instruction>(V)) {
568 if (!I->getParent() || !I->getParent()->getParent())
569 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
570 I);
571 else if (I->getParent()->getParent()->getParent() != &M)
572 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
573 I->getParent()->getParent(),
574 I->getParent()->getParent()->getParent());
575 return false;
576 } else if (const Function *F = dyn_cast<Function>(V)) {
577 if (F->getParent() != &M)
578 CheckFailed("Global is used by function in a different module", &GV, &M,
579 F, F->getParent());
580 return false;
581 }
582 return true;
583 });
584}
585
586void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
587 if (GV.hasInitializer()) {
588 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
589 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
590 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
591 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
592 // If the global has common linkage, it must have a zero initializer and
593 // cannot be constant.
594 if (GV.hasCommonLinkage()) {
595 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
596 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
597 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
598 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
599 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
600 }
601 }
602
603 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
604 GV.getName() == "llvm.global_dtors")) {
605 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
606 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
607 // Don't worry about emitting an error for it not being an array,
608 // visitGlobalValue will complain on appending non-array.
609 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
610 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
611 PointerType *FuncPtrTy =
612 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
613 // FIXME: Reject the 2-field form in LLVM 4.0.
614 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
615 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
616 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
617 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
618 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
619 if (STy->getNumElements() == 3) {
620 Type *ETy = STy->getTypeAtIndex(2);
621 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
622 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
623 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
624 }
625 }
626 }
627
628 if (GV.hasName() && (GV.getName() == "llvm.used" ||
629 GV.getName() == "llvm.compiler.used")) {
630 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
631 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
632 Type *GVType = GV.getValueType();
633 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
634 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
635 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
636 if (GV.hasInitializer()) {
637 const Constant *Init = GV.getInitializer();
638 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
639 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
640 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
641 for (Value *Op : InitArray->operands()) {
642 Value *V = Op->stripPointerCastsNoFollowAliases();
643 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
644 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
645 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
646 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
647 }
648 }
649 }
650 }
651
652 Assert(!GV.hasDLLImportStorageClass() ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
653 (GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
654 GV.hasAvailableExternallyLinkage(),do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
655 "Global is marked as dllimport, but not external", &GV)do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
656
657 // Visit any debug info attachments.
658 SmallVector<MDNode *, 1> MDs;
659 GV.getMetadata(LLVMContext::MD_dbg, MDs);
660 for (auto *MD : MDs) {
661 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
662 visitDIGlobalVariableExpression(*GVE);
663 else
664 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
665 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
666 }
667
668 if (!GV.hasInitializer()) {
669 visitGlobalValue(GV);
670 return;
671 }
672
673 // Walk any aggregate initializers looking for bitcasts between address spaces
674 visitConstantExprsRecursively(GV.getInitializer());
675
676 visitGlobalValue(GV);
677}
678
679void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
680 SmallPtrSet<const GlobalAlias*, 4> Visited;
681 Visited.insert(&GA);
682 visitAliaseeSubExpr(Visited, GA, C);
683}
684
685void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
686 const GlobalAlias &GA, const Constant &C) {
687 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
688 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
689 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
690
691 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
692 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
693
694 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
695 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
696 } else {
697 // Only continue verifying subexpressions of GlobalAliases.
698 // Do not recurse into global initializers.
699 return;
700 }
701 }
702
703 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
704 visitConstantExprsRecursively(CE);
705
706 for (const Use &U : C.operands()) {
707 Value *V = &*U;
708 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
709 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
710 else if (const auto *C2 = dyn_cast<Constant>(V))
711 visitAliaseeSubExpr(Visited, GA, *C2);
712 }
713}
714
715void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
716 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
717 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
718 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
719 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
720 const Constant *Aliasee = GA.getAliasee();
721 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
722 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
723 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
724
725 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
726 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
727
728 visitAliaseeSubExpr(GA, *Aliasee);
729
730 visitGlobalValue(GA);
731}
732
733void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
734 // There used to be various other llvm.dbg.* nodes, but we don't support
735 // upgrading them and we want to reserve the namespace for future uses.
736 if (NMD.getName().startswith("llvm.dbg."))
737 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
738 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
739 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
740 for (const MDNode *MD : NMD.operands()) {
741 if (NMD.getName() == "llvm.dbg.cu")
742 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
743
744 if (!MD)
745 continue;
746
747 visitMDNode(*MD);
748 }
749}
750
751void Verifier::visitMDNode(const MDNode &MD) {
752 // Only visit each node once. Metadata can be mutually recursive, so this
753 // avoids infinite recursion here, as well as being an optimization.
754 if (!MDNodes.insert(&MD).second)
755 return;
756
757 switch (MD.getMetadataID()) {
758 default:
759 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 759)
;
760 case Metadata::MDTupleKind:
761 break;
762#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
763 case Metadata::CLASS##Kind: \
764 visit##CLASS(cast<CLASS>(MD)); \
765 break;
766#include "llvm/IR/Metadata.def"
767 }
768
769 for (const Metadata *Op : MD.operands()) {
770 if (!Op)
771 continue;
772 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
773 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
774 if (auto *N = dyn_cast<MDNode>(Op)) {
775 visitMDNode(*N);
776 continue;
777 }
778 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
779 visitValueAsMetadata(*V, nullptr);
780 continue;
781 }
782 }
783
784 // Check these last, so we diagnose problems in operands first.
785 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
786 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
787}
788
789void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
790 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
791 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
792 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
793
794 auto *L = dyn_cast<LocalAsMetadata>(&MD);
795 if (!L)
796 return;
797
798 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
799
800 // If this was an instruction, bb, or argument, verify that it is in the
801 // function that we expect.
802 Function *ActualF = nullptr;
803 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
804 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
805 ActualF = I->getParent()->getParent();
806 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
807 ActualF = BB->getParent();
808 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
809 ActualF = A->getParent();
810 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 810, __PRETTY_FUNCTION__))
;
811
812 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
813}
814
815void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
816 Metadata *MD = MDV.getMetadata();
817 if (auto *N = dyn_cast<MDNode>(MD)) {
818 visitMDNode(*N);
819 return;
820 }
821
822 // Only visit each node once. Metadata can be mutually recursive, so this
823 // avoids infinite recursion here, as well as being an optimization.
824 if (!MDNodes.insert(MD).second)
825 return;
826
827 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
828 visitValueAsMetadata(*V, F);
829}
830
831static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
832static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
833static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
834
835template <class Ty>
836static bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
837 for (Metadata *MD : N.operands()) {
838 if (MD) {
839 if (!isa<Ty>(MD))
840 return false;
841 } else {
842 if (!AllowNull)
843 return false;
844 }
845 }
846 return true;
847}
848
849template <class Ty> static bool isValidMetadataArray(const MDTuple &N) {
850 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
851}
852
853template <class Ty> static bool isValidMetadataNullArray(const MDTuple &N) {
854 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
855}
856
857void Verifier::visitDILocation(const DILocation &N) {
858 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
859 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
860 if (auto *IA = N.getRawInlinedAt())
861 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
862}
863
864void Verifier::visitGenericDINode(const GenericDINode &N) {
865 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
866}
867
868void Verifier::visitDIScope(const DIScope &N) {
869 if (auto *F = N.getRawFile())
870 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
871}
872
873void Verifier::visitDISubrange(const DISubrange &N) {
874 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
875 AssertDI(N.getCount() >= -1, "invalid subrange count", &N)do { if (!(N.getCount() >= -1)) { DebugInfoCheckFailed("invalid subrange count"
, &N); return; } } while (false)
;
876}
877
878void Verifier::visitDIEnumerator(const DIEnumerator &N) {
879 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
880}
881
882void Verifier::visitDIBasicType(const DIBasicType &N) {
883 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
884 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
885 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
886}
887
888void Verifier::visitDIDerivedType(const DIDerivedType &N) {
889 // Common scope checks.
890 visitDIScope(N);
891
892 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
893 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
894 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
895 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
896 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
897 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
898 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
899 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
900 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
901 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
902 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
903 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
904 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
905 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
906 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
907 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
908 }
909
910 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
911 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
912 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
913
914 if (N.getDWARFAddressSpace()) {
915 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
916 N.getTag() == dwarf::DW_TAG_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
917 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
918 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
919 }
920}
921
922static bool hasConflictingReferenceFlags(unsigned Flags) {
923 return (Flags & DINode::FlagLValueReference) &&
924 (Flags & DINode::FlagRValueReference);
925}
926
927void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
928 auto *Params = dyn_cast<MDTuple>(&RawParams);
929 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
930 for (Metadata *Op : Params->operands()) {
931 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
932 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
933 }
934}
935
936void Verifier::visitDICompositeType(const DICompositeType &N) {
937 // Common scope checks.
938 visitDIScope(N);
939
940 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
941 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
942 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
943 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
944 N.getTag() == dwarf::DW_TAG_class_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
945 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
;
946
947 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
948 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
949 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
950
951 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
952 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
953 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
954 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
955 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
956 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
957 if (auto *Params = N.getRawTemplateParams())
958 visitTemplateParams(N, *Params);
959
960 if (N.getTag() == dwarf::DW_TAG_class_type ||
961 N.getTag() == dwarf::DW_TAG_union_type) {
962 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
963 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
964 }
965}
966
967void Verifier::visitDISubroutineType(const DISubroutineType &N) {
968 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
969 if (auto *Types = N.getRawTypeArray()) {
970 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
971 for (Metadata *Ty : N.getTypeArray()->operands()) {
972 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
973 }
974 }
975 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
976 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
977}
978
979void Verifier::visitDIFile(const DIFile &N) {
980 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
981 AssertDI((N.getChecksumKind() != DIFile::CSK_None ||do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
982 N.getChecksum().empty()), "invalid checksum kind", &N)do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
;
983}
984
985void Verifier::visitDICompileUnit(const DICompileUnit &N) {
986 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
987 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
988
989 // Don't bother verifying the compilation directory or producer string
990 // as those could be empty.
991 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
992 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
993 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
994 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
995
996 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
997 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
998
999 if (auto *Array = N.getRawEnumTypes()) {
1000 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
1001 for (Metadata *Op : N.getEnumTypes()->operands()) {
1002 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1003 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
1004 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
1005 }
1006 }
1007 if (auto *Array = N.getRawRetainedTypes()) {
1008 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
1009 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1010 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1011 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1012 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1013 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1014 }
1015 }
1016 if (auto *Array = N.getRawGlobalVariables()) {
1017 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1018 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1019 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1020 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1021 }
1022 }
1023 if (auto *Array = N.getRawImportedEntities()) {
1024 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1025 for (Metadata *Op : N.getImportedEntities()->operands()) {
1026 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1027 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1028 }
1029 }
1030 if (auto *Array = N.getRawMacros()) {
1031 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1032 for (Metadata *Op : N.getMacros()->operands()) {
1033 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1034 }
1035 }
1036 CUVisited.insert(&N);
1037}
1038
1039void Verifier::visitDISubprogram(const DISubprogram &N) {
1040 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1041 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1042 if (auto *F = N.getRawFile())
1043 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1044 else
1045 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1046 if (auto *T = N.getRawType())
1047 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1048 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1049 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1050 if (auto *Params = N.getRawTemplateParams())
1051 visitTemplateParams(N, *Params);
1052 if (auto *S = N.getRawDeclaration())
1053 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1054 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1055 if (auto *RawVars = N.getRawVariables()) {
1056 auto *Vars = dyn_cast<MDTuple>(RawVars);
1057 AssertDI(Vars, "invalid variable list", &N, RawVars)do { if (!(Vars)) { DebugInfoCheckFailed("invalid variable list"
, &N, RawVars); return; } } while (false)
;
1058 for (Metadata *Op : Vars->operands()) {
1059 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
1060 Vars, Op)do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
;
1061 }
1062 }
1063 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1064 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1065
1066 auto *Unit = N.getRawUnit();
1067 if (N.isDefinition()) {
1068 // Subprogram definitions (not part of the type hierarchy).
1069 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1070 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1071 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1072 } else {
1073 // Subprogram declarations (part of the type hierarchy).
1074 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1075 }
1076}
1077
1078void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1079 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1080 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1081 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1082}
1083
1084void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1085 visitDILexicalBlockBase(N);
1086
1087 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1088 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1089}
1090
1091void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1092 visitDILexicalBlockBase(N);
1093}
1094
1095void Verifier::visitDINamespace(const DINamespace &N) {
1096 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1097 if (auto *S = N.getRawScope())
1098 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1099}
1100
1101void Verifier::visitDIMacro(const DIMacro &N) {
1102 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1103 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1104 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1105 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1106 if (!N.getValue().empty()) {
1107 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 1107, __PRETTY_FUNCTION__))
;
1108 }
1109}
1110
1111void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1112 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1113 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1114 if (auto *F = N.getRawFile())
1115 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1116
1117 if (auto *Array = N.getRawElements()) {
1118 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1119 for (Metadata *Op : N.getElements()->operands()) {
1120 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1121 }
1122 }
1123}
1124
1125void Verifier::visitDIModule(const DIModule &N) {
1126 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1127 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1128}
1129
1130void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1131 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1132}
1133
1134void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1135 visitDITemplateParameter(N);
1136
1137 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1138 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1139}
1140
1141void Verifier::visitDITemplateValueParameter(
1142 const DITemplateValueParameter &N) {
1143 visitDITemplateParameter(N);
1144
1145 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1146 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1147 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1148 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1149}
1150
1151void Verifier::visitDIVariable(const DIVariable &N) {
1152 if (auto *S = N.getRawScope())
1153 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1154 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1155 if (auto *F = N.getRawFile())
1156 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1157}
1158
1159void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1160 // Checks common to all variables.
1161 visitDIVariable(N);
1162
1163 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1164 AssertDI(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("missing global variable name"
, &N); return; } } while (false)
;
1165 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1166 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1167 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1168 }
1169}
1170
1171void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1172 // Checks common to all variables.
1173 visitDIVariable(N);
1174
1175 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1176 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1177 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1178}
1179
1180void Verifier::visitDIExpression(const DIExpression &N) {
1181 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1182}
1183
1184void Verifier::visitDIGlobalVariableExpression(
1185 const DIGlobalVariableExpression &GVE) {
1186 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1187 if (auto *Var = GVE.getVariable())
1188 visitDIGlobalVariable(*Var);
1189 if (auto *Expr = GVE.getExpression())
1190 visitDIExpression(*Expr);
1191}
1192
1193void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1194 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1195 if (auto *T = N.getRawType())
1196 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1197 if (auto *F = N.getRawFile())
1198 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1199}
1200
1201void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1202 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1203 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1204 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1205 if (auto *S = N.getRawScope())
1206 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1207 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1208 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1209}
1210
1211void Verifier::visitComdat(const Comdat &C) {
1212 // The Module is invalid if the GlobalValue has private linkage. Entities
1213 // with private linkage don't have entries in the symbol table.
1214 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1215 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1216 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1217}
1218
1219void Verifier::visitModuleIdents(const Module &M) {
1220 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1221 if (!Idents)
1222 return;
1223
1224 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1225 // Scan each llvm.ident entry and make sure that this requirement is met.
1226 for (const MDNode *N : Idents->operands()) {
1227 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1228 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1229 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1230 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1231 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1232 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1233 }
1234}
1235
1236void Verifier::visitModuleFlags(const Module &M) {
1237 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1238 if (!Flags) return;
1239
1240 // Scan each flag, and track the flags and requirements.
1241 DenseMap<const MDString*, const MDNode*> SeenIDs;
1242 SmallVector<const MDNode*, 16> Requirements;
1243 for (const MDNode *MDN : Flags->operands())
1244 visitModuleFlag(MDN, SeenIDs, Requirements);
1245
1246 // Validate that the requirements in the module are valid.
1247 for (const MDNode *Requirement : Requirements) {
1248 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1249 const Metadata *ReqValue = Requirement->getOperand(1);
1250
1251 const MDNode *Op = SeenIDs.lookup(Flag);
1252 if (!Op) {
1253 CheckFailed("invalid requirement on flag, flag is not present in module",
1254 Flag);
1255 continue;
1256 }
1257
1258 if (Op->getOperand(2) != ReqValue) {
1259 CheckFailed(("invalid requirement on flag, "
1260 "flag does not have the required value"),
1261 Flag);
1262 continue;
1263 }
1264 }
1265}
1266
1267void
1268Verifier::visitModuleFlag(const MDNode *Op,
1269 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1270 SmallVectorImpl<const MDNode *> &Requirements) {
1271 // Each module flag should have three arguments, the merge behavior (a
1272 // constant int), the flag ID (an MDString), and the value.
1273 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1274 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1275 Module::ModFlagBehavior MFB;
1276 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1277 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1278 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1279 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1280 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1281 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1282 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1283 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1284 }
1285 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1286 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1287 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1288
1289 // Sanity check the values for behaviors with additional requirements.
1290 switch (MFB) {
1291 case Module::Error:
1292 case Module::Warning:
1293 case Module::Override:
1294 // These behavior types accept any value.
1295 break;
1296
1297 case Module::Require: {
1298 // The value should itself be an MDNode with two operands, a flag ID (an
1299 // MDString), and a value.
1300 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1301 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1302 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1303 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1304 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1305 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1306 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1307 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1308
1309 // Append it to the list of requirements, to check once all module flags are
1310 // scanned.
1311 Requirements.push_back(Value);
1312 break;
1313 }
1314
1315 case Module::Append:
1316 case Module::AppendUnique: {
1317 // These behavior types require the operand be an MDNode.
1318 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1319 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1320 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1321 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1322 break;
1323 }
1324 }
1325
1326 // Unless this is a "requires" flag, check the ID is unique.
1327 if (MFB != Module::Require) {
1328 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1329 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1330 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1331 }
1332}
1333
1334void Verifier::verifyAttributeTypes(AttributeList Attrs, unsigned Idx,
1335 bool isFunction, const Value *V) {
1336 unsigned Slot = ~0U;
1337 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1338 if (Attrs.getSlotIndex(I) == Idx) {
1339 Slot = I;
1340 break;
1341 }
1342
1343 assert(Slot != ~0U && "Attribute set inconsistency!")((Slot != ~0U && "Attribute set inconsistency!") ? static_cast
<void> (0) : __assert_fail ("Slot != ~0U && \"Attribute set inconsistency!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 1343, __PRETTY_FUNCTION__))
;
1344
1345 for (AttributeList::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1346 I != E; ++I) {
1347 if (I->isStringAttribute())
1348 continue;
1349
1350 if (I->getKindAsEnum() == Attribute::NoReturn ||
1351 I->getKindAsEnum() == Attribute::NoUnwind ||
1352 I->getKindAsEnum() == Attribute::NoInline ||
1353 I->getKindAsEnum() == Attribute::AlwaysInline ||
1354 I->getKindAsEnum() == Attribute::OptimizeForSize ||
1355 I->getKindAsEnum() == Attribute::StackProtect ||
1356 I->getKindAsEnum() == Attribute::StackProtectReq ||
1357 I->getKindAsEnum() == Attribute::StackProtectStrong ||
1358 I->getKindAsEnum() == Attribute::SafeStack ||
1359 I->getKindAsEnum() == Attribute::NoRedZone ||
1360 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1361 I->getKindAsEnum() == Attribute::Naked ||
1362 I->getKindAsEnum() == Attribute::InlineHint ||
1363 I->getKindAsEnum() == Attribute::StackAlignment ||
1364 I->getKindAsEnum() == Attribute::UWTable ||
1365 I->getKindAsEnum() == Attribute::NonLazyBind ||
1366 I->getKindAsEnum() == Attribute::ReturnsTwice ||
1367 I->getKindAsEnum() == Attribute::SanitizeAddress ||
1368 I->getKindAsEnum() == Attribute::SanitizeThread ||
1369 I->getKindAsEnum() == Attribute::SanitizeMemory ||
1370 I->getKindAsEnum() == Attribute::MinSize ||
1371 I->getKindAsEnum() == Attribute::NoDuplicate ||
1372 I->getKindAsEnum() == Attribute::Builtin ||
1373 I->getKindAsEnum() == Attribute::NoBuiltin ||
1374 I->getKindAsEnum() == Attribute::Cold ||
1375 I->getKindAsEnum() == Attribute::OptimizeNone ||
1376 I->getKindAsEnum() == Attribute::JumpTable ||
1377 I->getKindAsEnum() == Attribute::Convergent ||
1378 I->getKindAsEnum() == Attribute::ArgMemOnly ||
1379 I->getKindAsEnum() == Attribute::NoRecurse ||
1380 I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1381 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly ||
1382 I->getKindAsEnum() == Attribute::AllocSize) {
1383 if (!isFunction) {
1384 CheckFailed("Attribute '" + I->getAsString() +
1385 "' only applies to functions!", V);
1386 return;
1387 }
1388 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1389 I->getKindAsEnum() == Attribute::WriteOnly ||
1390 I->getKindAsEnum() == Attribute::ReadNone) {
1391 if (Idx == 0) {
1392 CheckFailed("Attribute '" + I->getAsString() +
1393 "' does not apply to function returns");
1394 return;
1395 }
1396 } else if (isFunction) {
1397 CheckFailed("Attribute '" + I->getAsString() +
1398 "' does not apply to functions!", V);
1399 return;
1400 }
1401 }
1402}
1403
1404// VerifyParameterAttrs - Check the given attributes for an argument or return
1405// value of the specified type. The value V is printed in error messages.
1406void Verifier::verifyParameterAttrs(AttributeList Attrs, unsigned Idx, Type *Ty,
1407 bool isReturnValue, const Value *V) {
1408 if (!Attrs.hasAttributes(Idx))
1409 return;
1410
1411 verifyAttributeTypes(Attrs, Idx, false, V);
1412
1413 if (isReturnValue)
1414 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1415 !Attrs.hasAttribute(Idx, Attribute::Nest) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1416 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1417 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1418 !Attrs.hasAttribute(Idx, Attribute::Returned) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1419 !Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1420 !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1421 !Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1422 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1423 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1424 "values!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1425 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1426
1427 // Check for mutually incompatible attributes. Only inreg is compatible with
1428 // sret.
1429 unsigned AttrCount = 0;
1430 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1431 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1432 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1433 Attrs.hasAttribute(Idx, Attribute::InReg);
1434 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1435 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1436 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1437 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1438
1439 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1440 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1441 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1442 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1443 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
;
1444
1445 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1446 Attrs.hasAttribute(Idx, Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1447 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1448 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1449 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
;
1450
1451 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1452 Attrs.hasAttribute(Idx, Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1453 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1454 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1455 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1456
1457 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1458 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1459 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1460 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1461 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
;
1462
1463 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1464 Attrs.hasAttribute(Idx, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1465 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1466 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1467 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
;
1468
1469 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1470 Attrs.hasAttribute(Idx, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1471 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1472 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1473 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
;
1474
1475 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1476 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1477 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1478 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1479 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1480
1481 Assert(do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeList::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1482 !AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::typeIncompatible(Ty)),do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeList::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1483 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeList::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1484 AttributeList::get(Context, Idx, AttributeFuncs::typeIncompatible(Ty))do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeList::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1485 .getAsString(Idx),do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeList::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1486 V)do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeList::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
;
1487
1488 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1489 SmallPtrSet<Type*, 4> Visited;
1490 if (!PTy->getElementType()->isSized(&Visited)) {
1491 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1492 !Attrs.hasAttribute(Idx, Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1493 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1494 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1495 }
1496 if (!isa<PointerType>(PTy->getElementType()))
1497 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1498 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1499 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1500 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
;
1501 } else {
1502 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1503 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1504 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1505 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1506 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1507 "with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1508 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
;
1509 }
1510}
1511
1512// Check parameter attributes against a function type.
1513// The value V is printed in error messages.
1514void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1515 const Value *V) {
1516 if (Attrs.isEmpty())
1517 return;
1518
1519 bool SawNest = false;
1520 bool SawReturned = false;
1521 bool SawSRet = false;
1522 bool SawSwiftSelf = false;
1523 bool SawSwiftError = false;
1524
1525 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1526 unsigned Idx = Attrs.getSlotIndex(i);
1527
1528 Type *Ty;
1529 if (Idx == 0)
1530 Ty = FT->getReturnType();
1531 else if (Idx-1 < FT->getNumParams())
1532 Ty = FT->getParamType(Idx-1);
1533 else
1534 break; // VarArgs attributes, verified elsewhere.
1535
1536 verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1537
1538 if (Idx == 0)
1539 continue;
1540
1541 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1542 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1543 SawNest = true;
1544 }
1545
1546 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1547 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1548 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1549 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1550 "Incompatible "do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1551 "argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1552 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1553 SawReturned = true;
1554 }
1555
1556 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1557 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1558 Assert(Idx == 1 || Idx == 2,do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1559 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1560 SawSRet = true;
1561 }
1562
1563 if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
1564 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1565 SawSwiftSelf = true;
1566 }
1567
1568 if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
1569 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1570 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1571 SawSwiftError = true;
1572 }
1573
1574 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1575 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1576 V)do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1577 }
1578 }
1579
1580 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1581 return;
1582
1583 verifyAttributeTypes(Attrs, AttributeList::FunctionIndex, true, V);
1584
1585 Assert(do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1586 !(Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1587 Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1588 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1589
1590 Assert(do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1591 !(Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1592 Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1593 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
;
1594
1595 Assert(do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadOnly) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1596 !(Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadOnly) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1597 Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadOnly) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1598 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadOnly) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
;
1599
1600 Assert(do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOrArgMemOnly)))) {
CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1601 !(Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOrArgMemOnly)))) {
CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1602 Attrs.hasAttribute(AttributeList::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOrArgMemOnly)))) {
CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1603 Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOrArgMemOnly)))) {
CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1604 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOrArgMemOnly)))) {
CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1605 "incompatible!",do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOrArgMemOnly)))) {
CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1606 V)do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOrArgMemOnly)))) {
CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1607
1608 Assert(do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1609 !(Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1610 Attrs.hasAttribute(AttributeList::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1611 Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1612 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::ReadNone) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1613
1614 Assert(do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::NoInline) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1615 !(Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::NoInline) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1616 Attrs.hasAttribute(AttributeList::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::NoInline) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1617 Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::NoInline) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1618 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeList::FunctionIndex,
Attribute::NoInline) && Attrs.hasAttribute(AttributeList
::FunctionIndex, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1619
1620 if (Attrs.hasAttribute(AttributeList::FunctionIndex,
1621 Attribute::OptimizeNone)) {
1622 Assert(do { if (!(Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (false)
1623 Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::NoInline),do { if (!(Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (false)
1624 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (false)
;
1625
1626 Assert(!Attrs.hasAttribute(AttributeList::FunctionIndex,do { if (!(!Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1627 Attribute::OptimizeForSize),do { if (!(!Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1628 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1629
1630 Assert(do { if (!(!Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (false)
1631 !Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize),do { if (!(!Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (false)
1632 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1633 }
1634
1635 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::JumpTable)) {
1636 const GlobalValue *GV = cast<GlobalValue>(V);
1637 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1638 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1639 }
1640
1641 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::AllocSize)) {
1642 std::pair<unsigned, Optional<unsigned>> Args =
1643 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1644
1645 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1646 if (ParamNo >= FT->getNumParams()) {
1647 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1648 return false;
1649 }
1650
1651 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1652 CheckFailed("'allocsize' " + Name +
1653 " argument must refer to an integer parameter",
1654 V);
1655 return false;
1656 }
1657
1658 return true;
1659 };
1660
1661 if (!CheckParam("element size", Args.first))
1662 return;
1663
1664 if (Args.second && !CheckParam("number of elements", *Args.second))
1665 return;
1666 }
1667}
1668
1669void Verifier::verifyFunctionMetadata(
1670 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1671 for (const auto &Pair : MDs) {
1672 if (Pair.first == LLVMContext::MD_prof) {
1673 MDNode *MD = Pair.second;
1674 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
1675 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
1676
1677 // Check first operand.
1678 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1679 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1680 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1681 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1682 MDString *MDS = cast<MDString>(MD->getOperand(0));
1683 StringRef ProfName = MDS->getString();
1684 Assert(ProfName.equals("function_entry_count"),do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
1685 "first operand should be 'function_entry_count'", MD)do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
;
1686
1687 // Check second operand.
1688 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1689 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1690 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1691 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1692 }
1693 }
1694}
1695
1696void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1697 if (!ConstantExprVisited.insert(EntryC).second)
1698 return;
1699
1700 SmallVector<const Constant *, 16> Stack;
1701 Stack.push_back(EntryC);
1702
1703 while (!Stack.empty()) {
1704 const Constant *C = Stack.pop_back_val();
1705
1706 // Check this constant expression.
1707 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1708 visitConstantExpr(CE);
1709
1710 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1711 // Global Values get visited separately, but we do need to make sure
1712 // that the global value is in the correct module
1713 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1714 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1715 continue;
1716 }
1717
1718 // Visit all sub-expressions.
1719 for (const Use &U : C->operands()) {
1720 const auto *OpC = dyn_cast<Constant>(U);
1721 if (!OpC)
1722 continue;
1723 if (!ConstantExprVisited.insert(OpC).second)
1724 continue;
1725 Stack.push_back(OpC);
1726 }
1727 }
1728}
1729
1730void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1731 if (CE->getOpcode() == Instruction::BitCast)
1732 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1733 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1734 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1735
1736 if (CE->getOpcode() == Instruction::IntToPtr ||
1737 CE->getOpcode() == Instruction::PtrToInt) {
1738 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1739 ? CE->getType()
1740 : CE->getOperand(0)->getType();
1741 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1742 ? "inttoptr not supported for non-integral pointers"
1743 : "ptrtoint not supported for non-integral pointers";
1744 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1745 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1746 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1747 }
1748}
1749
1750bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1751 if (Attrs.getNumSlots() == 0)
1752 return true;
1753
1754 unsigned LastSlot = Attrs.getNumSlots() - 1;
1755 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1756 if (LastIndex <= Params ||
1757 (LastIndex == AttributeList::FunctionIndex &&
1758 (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1759 return true;
1760
1761 return false;
1762}
1763
1764/// Verify that statepoint intrinsic is well formed.
1765void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1766 assert(CS.getCalledFunction() &&((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 1768, __PRETTY_FUNCTION__))
1767 CS.getCalledFunction()->getIntrinsicID() ==((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 1768, __PRETTY_FUNCTION__))
1768 Intrinsic::experimental_gc_statepoint)((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 1768, __PRETTY_FUNCTION__))
;
1769
1770 const Instruction &CI = *CS.getInstruction();
1771
1772 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1773 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1774 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1775 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1776 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
;
1777
1778 const Value *IDV = CS.getArgument(0);
1779 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
1780 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
;
1781
1782 const Value *NumPatchBytesV = CS.getArgument(1);
1783 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1784 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1785 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
;
1786 const int64_t NumPatchBytes =
1787 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1788 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 1788, __PRETTY_FUNCTION__))
;
1789 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1790 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1791 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
;
1792
1793 const Value *Target = CS.getArgument(2);
1794 auto *PT = dyn_cast<PointerType>(Target->getType());
1795 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
1796 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
;
1797 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1798
1799 const Value *NumCallArgsV = CS.getArgument(3);
1800 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1801 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1802 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1803 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
;
1804 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1805 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1806 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1807 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1808 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
;
1809 const int NumParams = (int)TargetFuncType->getNumParams();
1810 if (TargetFuncType->isVarArg()) {
1811 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
1812 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
;
1813
1814 // TODO: Remove this limitation
1815 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1816 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1817 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1818 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
;
1819 } else
1820 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
1821 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
;
1822
1823 const Value *FlagsV = CS.getArgument(4);
1824 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
1825 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
;
1826 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1827 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
1828 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
;
1829
1830 // Verify that the types of the call parameter arguments match
1831 // the type of the wrapped callee.
1832 for (int i = 0; i < NumParams; i++) {
1833 Type *ParamType = TargetFuncType->getParamType(i);
1834 Type *ArgType = CS.getArgument(5 + i)->getType();
1835 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1836 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1837 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1838 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
;
1839 }
1840
1841 const int EndCallArgsInx = 4 + NumCallArgs;
1842
1843 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1844 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1845 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1846 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1847 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1848 const int NumTransitionArgs =
1849 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1850 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
1851 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
;
1852 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1853
1854 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1855 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1856 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1857 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1858 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1859 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1860 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1861 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1862 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
;
1863
1864 const int ExpectedNumArgs =
1865 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1866 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
1867 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
;
1868
1869 // Check that the only uses of this gc.statepoint are gc.result or
1870 // gc.relocate calls which are tied to this statepoint and thus part
1871 // of the same statepoint sequence
1872 for (const User *U : CI.users()) {
1873 const CallInst *Call = dyn_cast<const CallInst>(U);
1874 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (false)
;
1875 if (!Call) continue;
1876 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1877 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1878 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1879 &CI, U)do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
;
1880 if (isa<GCResultInst>(Call)) {
1881 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
1882 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
;
1883 } else if (isa<GCRelocateInst>(Call)) {
1884 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
1885 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
;
1886 }
1887 }
1888
1889 // Note: It is legal for a single derived pointer to be listed multiple
1890 // times. It's non-optimal, but it is legal. It can also happen after
1891 // insertion if we strip a bitcast away.
1892 // Note: It is really tempting to check that each base is relocated and
1893 // that a derived pointer is never reused as a base pointer. This turns
1894 // out to be problematic since optimizations run after safepoint insertion
1895 // can recognize equality properties that the insertion logic doesn't know
1896 // about. See example statepoint.ll in the verifier subdirectory
1897}
1898
1899void Verifier::verifyFrameRecoverIndices() {
1900 for (auto &Counts : FrameEscapeInfo) {
1901 Function *F = Counts.first;
1902 unsigned EscapedObjectCount = Counts.second.first;
1903 unsigned MaxRecoveredIndex = Counts.second.second;
1904 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1905 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1906 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1907 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1908 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
;
1909 }
1910}
1911
1912static Instruction *getSuccPad(TerminatorInst *Terminator) {
1913 BasicBlock *UnwindDest;
1914 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1915 UnwindDest = II->getUnwindDest();
1916 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1917 UnwindDest = CSI->getUnwindDest();
1918 else
1919 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1920 return UnwindDest->getFirstNonPHI();
1921}
1922
1923void Verifier::verifySiblingFuncletUnwinds() {
1924 SmallPtrSet<Instruction *, 8> Visited;
1925 SmallPtrSet<Instruction *, 8> Active;
1926 for (const auto &Pair : SiblingFuncletInfo) {
1927 Instruction *PredPad = Pair.first;
1928 if (Visited.count(PredPad))
1929 continue;
1930 Active.insert(PredPad);
1931 TerminatorInst *Terminator = Pair.second;
1932 do {
1933 Instruction *SuccPad = getSuccPad(Terminator);
1934 if (Active.count(SuccPad)) {
1935 // Found a cycle; report error
1936 Instruction *CyclePad = SuccPad;
1937 SmallVector<Instruction *, 8> CycleNodes;
1938 do {
1939 CycleNodes.push_back(CyclePad);
1940 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1941 if (CycleTerminator != CyclePad)
1942 CycleNodes.push_back(CycleTerminator);
1943 CyclePad = getSuccPad(CycleTerminator);
1944 } while (CyclePad != SuccPad);
1945 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
1946 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
1947 }
1948 // Don't re-walk a node we've already checked
1949 if (!Visited.insert(SuccPad).second)
1950 break;
1951 // Walk to this successor if it has a map entry.
1952 PredPad = SuccPad;
1953 auto TermI = SiblingFuncletInfo.find(PredPad);
1954 if (TermI == SiblingFuncletInfo.end())
1955 break;
1956 Terminator = TermI->second;
1957 Active.insert(PredPad);
1958 } while (true);
1959 // Each node only has one successor, so we've walked all the active
1960 // nodes' successors.
1961 Active.clear();
1962 }
1963}
1964
1965// visitFunction - Verify that a function is ok.
1966//
1967void Verifier::visitFunction(const Function &F) {
1968 visitGlobalValue(F);
1969
1970 // Check function arguments.
1971 FunctionType *FT = F.getFunctionType();
1972 unsigned NumArgs = F.arg_size();
1973
1974 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1975 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
1976
1977 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
1978 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1979 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1980 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
1981 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1982 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1983 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
1984
1985 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
1986 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
1987
1988 AttributeList Attrs = F.getAttributes();
1989
1990 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
1991 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
1992
1993 // Check function attributes.
1994 verifyFunctionAttrs(FT, Attrs, &F);
1995
1996 // On function declarations/definitions, we do not support the builtin
1997 // attribute. We do not check this in VerifyFunctionAttrs since that is
1998 // checking for Attributes that can/can not ever be on functions.
1999 Assert(!Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Builtin),do { if (!(!Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (false)
2000 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (false)
;
2001
2002 // Check that this function meets the restrictions on this calling convention.
2003 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2004 // restrictions can be lifted.
2005 switch (F.getCallingConv()) {
1
Control jumps to the 'default' case at line 2006
2006 default:
2007 case CallingConv::C:
2008 break;
2
Execution continues on line 2020
2009 case CallingConv::Fast:
2010 case CallingConv::Cold:
2011 case CallingConv::Intel_OCL_BI:
2012 case CallingConv::PTX_Kernel:
2013 case CallingConv::PTX_Device:
2014 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2015 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2016 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2017 break;
2018 }
2019
2020 bool isLLVMdotName = F.getName().size() >= 5 &&
3
Assuming the condition is false
2021 F.getName().substr(0, 5) == "llvm.";
2022
2023 // Check that the argument values match the function type for this function...
2024 unsigned i = 0;
2025 for (const Argument &Arg : F.args()) {
4
Assuming '__begin' is equal to '__end'
2026 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2027 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2028 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2029 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2030 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2031 if (!isLLVMdotName) {
2032 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2033 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2034 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2035 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2036 }
2037
2038 // Check that swifterror argument is only used by loads and stores.
2039 if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
2040 verifySwiftErrorValue(&Arg);
2041 }
2042 ++i;
2043 }
2044
2045 if (!isLLVMdotName)
5
Taking true branch
2046 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
2047 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2048
2049 // Get the function metadata attachments.
2050 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2051 F.getAllMetadata(MDs);
2052 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 2052, __PRETTY_FUNCTION__))
;
2053 verifyFunctionMetadata(MDs);
2054
2055 // Check validity of the personality function
2056 if (F.hasPersonalityFn()) {
6
Assuming the condition is false
7
Taking false branch
2057 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2058 if (Per)
2059 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2060 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2061 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2062 }
2063
2064 if (F.isMaterializable()) {
8
Assuming the condition is false
9
Taking false branch
2065 // Function has a body somewhere we can't see.
2066 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2067 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2068 } else if (F.isDeclaration()) {
10
Assuming the condition is false
11
Taking false branch
2069 for (const auto &I : MDs) {
2070 AssertDI(I.first != LLVMContext::MD_dbg,do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
2071 "function declaration may not have a !dbg attachment", &F)do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
;
2072 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2073 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2074
2075 // Verify the metadata itself.
2076 visitMDNode(*I.second);
2077 }
2078 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2079 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2080 } else {
2081 // Verify that this function (which has a body) is not named "llvm.*". It
2082 // is not legal to define intrinsics.
2083 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
2084
2085 // Check the entry node
2086 const BasicBlock *Entry = &F.getEntryBlock();
2087 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
2088 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2089
2090 // The address of the entry block cannot be taken, unless it is dead.
2091 if (Entry->hasAddressTaken()) {
12
Assuming the condition is false
13
Taking false branch
2092 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2093 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2094 }
2095
2096 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2097 // Visit metadata attachments.
2098 for (const auto &I : MDs) {
14
Assuming '__begin' is equal to '__end'
2099 // Verify that the attachment is legal.
2100 switch (I.first) {
2101 default:
2102 break;
2103 case LLVMContext::MD_dbg:
2104 ++NumDebugAttachments;
2105 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2106 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2107 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2108 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2109 break;
2110 case LLVMContext::MD_prof:
2111 ++NumProfAttachments;
2112 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2113 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2114 break;
2115 }
2116
2117 // Verify the metadata itself.
2118 visitMDNode(*I.second);
2119 }
2120 }
2121
2122 // If this function is actually an intrinsic, verify that it is only used in
2123 // direct call/invokes, never having its "address taken".
2124 // Only do this if the module is materialized, otherwise we don't have all the
2125 // uses.
2126 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
15
Assuming the condition is false
2127 const User *U;
2128 if (F.hasAddressTaken(&U))
2129 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2130 }
2131
2132 Assert(!F.hasDLLImportStorageClass() ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2133 (F.isDeclaration() && F.hasExternalLinkage()) ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2134 F.hasAvailableExternallyLinkage(),do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2135 "Function is marked as dllimport, but not external.", &F)do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
;
2136
2137 auto *N = F.getSubprogram();
2138 HasDebugInfo = (N != nullptr);
16
Assuming the condition is true
2139 if (!HasDebugInfo)
17
Taking false branch
2140 return;
2141
2142 // Check that all !dbg attachments lead to back to N (or, at least, another
2143 // subprogram that describes the same function).
2144 //
2145 // FIXME: Check this incrementally while visiting !dbg attachments.
2146 // FIXME: Only check when N is the canonical subprogram for F.
2147 SmallPtrSet<const MDNode *, 32> Seen;
2148 for (auto &BB : F)
2149 for (auto &I : BB) {
2150 // Be careful about using DILocation here since we might be dealing with
2151 // broken code (this is the Verifier after all).
2152 DILocation *DL =
2153 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2154 if (!DL)
18
Assuming 'DL' is non-null
19
Taking false branch
2155 continue;
2156 if (!Seen.insert(DL).second)
20
Assuming the condition is false
21
Taking false branch
2157 continue;
2158
2159 DILocalScope *Scope = DL->getInlinedAtScope();
2160 if (Scope && !Seen.insert(Scope).second)
22
Assuming 'Scope' is null
23
Taking false branch
2161 continue;
2162
2163 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
24
'?' condition is false
25
'SP' initialized to a null pointer value
2164
2165 // Scope and SP could be the same MDNode and we don't want to skip
2166 // validation in that case
2167 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
26
Taking false branch
2168 continue;
2169
2170 // FIXME: Once N is canonical, check "SP == &N".
2171 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
27
Within the expansion of the macro 'AssertDI':
a
Called C++ object pointer is null
2172 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2173 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2174 }
2175}
2176
2177// verifyBasicBlock - Verify that a basic block is well formed...
2178//
2179void Verifier::visitBasicBlock(BasicBlock &BB) {
2180 InstsInThisBlock.clear();
2181
2182 // Ensure that basic blocks have terminators!
2183 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2184
2185 // Check constraints that this basic block imposes on all of the PHI nodes in
2186 // it.
2187 if (isa<PHINode>(BB.front())) {
2188 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2189 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2190 std::sort(Preds.begin(), Preds.end());
2191 PHINode *PN;
2192 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2193 // Ensure that PHI nodes have at least one entry!
2194 Assert(PN->getNumIncomingValues() != 0,do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2195 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2196 "the PHI should be removed!",do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2197 PN)do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
;
2198 Assert(PN->getNumIncomingValues() == Preds.size(),do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2199 "PHINode should have one entry for each predecessor of its "do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2200 "parent basic block!",do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2201 PN)do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
;
2202
2203 // Get and sort all incoming values in the PHI node...
2204 Values.clear();
2205 Values.reserve(PN->getNumIncomingValues());
2206 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2207 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2208 PN->getIncomingValue(i)));
2209 std::sort(Values.begin(), Values.end());
2210
2211 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2212 // Check to make sure that if there is more than one entry for a
2213 // particular basic block in this PHI node, that the incoming values are
2214 // all identical.
2215 //
2216 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2217 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2218 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2219 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2220 PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
;
2221
2222 // Check to make sure that the predecessors and PHI node entries are
2223 // matched up.
2224 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2225 "PHI node entries do not match predecessors!", PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2226 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
;
2227 }
2228 }
2229 }
2230
2231 // Check that all instructions have their parent pointers set up correctly.
2232 for (auto &I : BB)
2233 {
2234 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2235 }
2236}
2237
2238void Verifier::visitTerminatorInst(TerminatorInst &I) {
2239 // Ensure that terminators only exist at the end of the basic block.
2240 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2241 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2242 visitInstruction(I);
2243}
2244
2245void Verifier::visitBranchInst(BranchInst &BI) {
2246 if (BI.isConditional()) {
2247 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2248 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2249 }
2250 visitTerminatorInst(BI);
2251}
2252
2253void Verifier::visitReturnInst(ReturnInst &RI) {
2254 Function *F = RI.getParent()->getParent();
2255 unsigned N = RI.getNumOperands();
2256 if (F->getReturnType()->isVoidTy())
2257 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2258 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2259 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2260 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2261 else
2262 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2263 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2264 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2265 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2266
2267 // Check to make sure that the return value has necessary properties for
2268 // terminators...
2269 visitTerminatorInst(RI);
2270}
2271
2272void Verifier::visitSwitchInst(SwitchInst &SI) {
2273 // Check to make sure that all of the constants in the switch instruction
2274 // have the same type as the switched-on value.
2275 Type *SwitchTy = SI.getCondition()->getType();
2276 SmallPtrSet<ConstantInt*, 32> Constants;
2277 for (auto &Case : SI.cases()) {
2278 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2279 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2280 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2281 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2282 }
2283
2284 visitTerminatorInst(SI);
2285}
2286
2287void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2288 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2289 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2290 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2291 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2292 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2293
2294 visitTerminatorInst(BI);
2295}
2296
2297void Verifier::visitSelectInst(SelectInst &SI) {
2298 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2299 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2300 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2301
2302 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2303 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2304 visitInstruction(SI);
2305}
2306
2307/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2308/// a pass, if any exist, it's an error.
2309///
2310void Verifier::visitUserOp1(Instruction &I) {
2311 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2312}
2313
2314void Verifier::visitTruncInst(TruncInst &I) {
2315 // Get the source and destination types
2316 Type *SrcTy = I.getOperand(0)->getType();
2317 Type *DestTy = I.getType();
2318
2319 // Get the size of the types in bits, we'll need this later
2320 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2321 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2322
2323 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2324 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2325 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2326 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2327 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2328
2329 visitInstruction(I);
2330}
2331
2332void Verifier::visitZExtInst(ZExtInst &I) {
2333 // Get the source and destination types
2334 Type *SrcTy = I.getOperand(0)->getType();
2335 Type *DestTy = I.getType();
2336
2337 // Get the size of the types in bits, we'll need this later
2338 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2339 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2340 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2341 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2342 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2343 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2344
2345 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2346
2347 visitInstruction(I);
2348}
2349
2350void Verifier::visitSExtInst(SExtInst &I) {
2351 // Get the source and destination types
2352 Type *SrcTy = I.getOperand(0)->getType();
2353 Type *DestTy = I.getType();
2354
2355 // Get the size of the types in bits, we'll need this later
2356 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2357 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2358
2359 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2360 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2361 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2362 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2363 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2364
2365 visitInstruction(I);
2366}
2367
2368void Verifier::visitFPTruncInst(FPTruncInst &I) {
2369 // Get the source and destination types
2370 Type *SrcTy = I.getOperand(0)->getType();
2371 Type *DestTy = I.getType();
2372 // Get the size of the types in bits, we'll need this later
2373 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2374 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2375
2376 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2377 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2378 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2379 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2380 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2381
2382 visitInstruction(I);
2383}
2384
2385void Verifier::visitFPExtInst(FPExtInst &I) {
2386 // Get the source and destination types
2387 Type *SrcTy = I.getOperand(0)->getType();
2388 Type *DestTy = I.getType();
2389
2390 // Get the size of the types in bits, we'll need this later
2391 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2392 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2393
2394 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2395 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2396 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2397 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2398 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2399
2400 visitInstruction(I);
2401}
2402
2403void Verifier::visitUIToFPInst(UIToFPInst &I) {
2404 // Get the source and destination types
2405 Type *SrcTy = I.getOperand(0)->getType();
2406 Type *DestTy = I.getType();
2407
2408 bool SrcVec = SrcTy->isVectorTy();
2409 bool DstVec = DestTy->isVectorTy();
2410
2411 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2412 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2413 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2414 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2415 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2416 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2417
2418 if (SrcVec && DstVec)
2419 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2420 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2421 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2422
2423 visitInstruction(I);
2424}
2425
2426void Verifier::visitSIToFPInst(SIToFPInst &I) {
2427 // Get the source and destination types
2428 Type *SrcTy = I.getOperand(0)->getType();
2429 Type *DestTy = I.getType();
2430
2431 bool SrcVec = SrcTy->isVectorTy();
2432 bool DstVec = DestTy->isVectorTy();
2433
2434 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2435 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2436 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2437 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2438 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2439 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2440
2441 if (SrcVec && DstVec)
2442 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2443 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2444 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2445
2446 visitInstruction(I);
2447}
2448
2449void Verifier::visitFPToUIInst(FPToUIInst &I) {
2450 // Get the source and destination types
2451 Type *SrcTy = I.getOperand(0)->getType();
2452 Type *DestTy = I.getType();
2453
2454 bool SrcVec = SrcTy->isVectorTy();
2455 bool DstVec = DestTy->isVectorTy();
2456
2457 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2458 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2459 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2460 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2461 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2462 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2463
2464 if (SrcVec && DstVec)
2465 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2466 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2467 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2468
2469 visitInstruction(I);
2470}
2471
2472void Verifier::visitFPToSIInst(FPToSIInst &I) {
2473 // Get the source and destination types
2474 Type *SrcTy = I.getOperand(0)->getType();
2475 Type *DestTy = I.getType();
2476
2477 bool SrcVec = SrcTy->isVectorTy();
2478 bool DstVec = DestTy->isVectorTy();
2479
2480 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2481 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2482 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2483 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2484 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2485 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2486
2487 if (SrcVec && DstVec)
2488 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2489 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2490 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2491
2492 visitInstruction(I);
2493}
2494
2495void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2496 // Get the source and destination types
2497 Type *SrcTy = I.getOperand(0)->getType();
2498 Type *DestTy = I.getType();
2499
2500 Assert(SrcTy->getScalarType()->isPointerTy(),do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
2501 "PtrToInt source must be pointer", &I)do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
;
2502
2503 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2504 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2505 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2506
2507 Assert(DestTy->getScalarType()->isIntegerTy(),do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
2508 "PtrToInt result must be integral", &I)do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
;
2509 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2510 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2511
2512 if (SrcTy->isVectorTy()) {
2513 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2514 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2515 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2516 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2517 }
2518
2519 visitInstruction(I);
2520}
2521
2522void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2523 // Get the source and destination types
2524 Type *SrcTy = I.getOperand(0)->getType();
2525 Type *DestTy = I.getType();
2526
2527 Assert(SrcTy->getScalarType()->isIntegerTy(),do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
2528 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
;
2529 Assert(DestTy->getScalarType()->isPointerTy(),do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
2530 "IntToPtr result must be a pointer", &I)do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
;
2531
2532 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2533 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2534 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2535
2536 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2537 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2538 if (SrcTy->isVectorTy()) {
2539 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2540 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2541 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2542 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2543 }
2544 visitInstruction(I);
2545}
2546
2547void Verifier::visitBitCastInst(BitCastInst &I) {
2548 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2549 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2550 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2551 visitInstruction(I);
2552}
2553
2554void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2555 Type *SrcTy = I.getOperand(0)->getType();
2556 Type *DestTy = I.getType();
2557
2558 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2559 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2560 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2561 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2562 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2563 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2564 if (SrcTy->isVectorTy())
2565 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2566 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2567 visitInstruction(I);
2568}
2569
2570/// visitPHINode - Ensure that a PHI node is well formed.
2571///
2572void Verifier::visitPHINode(PHINode &PN) {
2573 // Ensure that the PHI nodes are all grouped together at the top of the block.
2574 // This can be tested by checking whether the instruction before this is
2575 // either nonexistent (because this is begin()) or is a PHI node. If not,
2576 // then there is some other instruction before a PHI.
2577 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2578 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2579 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2580
2581 // Check that a PHI doesn't yield a Token.
2582 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2583
2584 // Check that all of the values of the PHI node have the same type as the
2585 // result, and that the incoming blocks are really basic blocks.
2586 for (Value *IncValue : PN.incoming_values()) {
2587 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2588 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2589 }
2590
2591 // All other PHI node constraints are checked in the visitBasicBlock method.
2592
2593 visitInstruction(PN);
2594}
2595
2596void Verifier::verifyCallSite(CallSite CS) {
2597 Instruction *I = CS.getInstruction();
2598
2599 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
2600 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
;
2601 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2602
2603 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
2604 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
;
2605
2606 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
2607 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
;
2608
2609 FunctionType *FTy = CS.getFunctionType();
2610
2611 // Verify that the correct number of arguments are being passed
2612 if (FTy->isVarArg())
2613 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
2614 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
;
2615 else
2616 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
2617 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
;
2618
2619 // Verify that all arguments to the call match the function type.
2620 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2621 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2622 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2623 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
;
2624
2625 AttributeList Attrs = CS.getAttributes();
2626
2627 Assert(verifyAttributeCount(Attrs, CS.arg_size()),do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
2628 "Attribute after last parameter!", I)do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
;
2629
2630 // Verify call attributes.
2631 verifyFunctionAttrs(FTy, Attrs, I);
2632
2633 // Conservatively check the inalloca argument.
2634 // We have a bug if we can find that there is an underlying alloca without
2635 // inalloca.
2636 if (CS.hasInAllocaArgument()) {
2637 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2638 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2639 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2640 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2641 }
2642
2643 // For each argument of the callsite, if it has the swifterror argument,
2644 // make sure the underlying alloca/parameter it comes from has a swifterror as
2645 // well.
2646 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2647 if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
2648 Value *SwiftErrorArg = CS.getArgument(i);
2649 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2650 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2651 "swifterror argument for call has mismatched alloca", AI, I)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2652 continue;
2653 }
2654 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2655 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, I); return; } } while (false)
;
2656 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
2657 "swifterror argument for call has mismatched parameter", ArgI, I)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
;
2658 }
2659
2660 if (FTy->isVarArg()) {
2661 // FIXME? is 'nest' even legal here?
2662 bool SawNest = false;
2663 bool SawReturned = false;
2664
2665 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2666 if (Attrs.hasAttribute(Idx, Attribute::Nest))
2667 SawNest = true;
2668 if (Attrs.hasAttribute(Idx, Attribute::Returned))
2669 SawReturned = true;
2670 }
2671
2672 // Check attributes on the varargs part.
2673 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2674 Type *Ty = CS.getArgument(Idx-1)->getType();
2675 verifyParameterAttrs(Attrs, Idx, Ty, false, I);
2676
2677 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2678 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (false)
;
2679 SawNest = true;
2680 }
2681
2682 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2683 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
2684 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
;
2685 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2686 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2687 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2688 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
;
2689 SawReturned = true;
2690 }
2691
2692 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
2693 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
;
2694
2695 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2696 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I)do { if (!(Idx == CS.arg_size())) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
;
2697 }
2698 }
2699
2700 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2701 if (CS.getCalledFunction() == nullptr ||
2702 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2703 for (Type *ParamTy : FTy->params()) {
2704 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
2705 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2706 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
2707 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2708 }
2709 }
2710
2711 // Verify that indirect calls don't return tokens.
2712 if (CS.getCalledFunction() == nullptr)
2713 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
2714 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
2715
2716 if (Function *F = CS.getCalledFunction())
2717 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2718 visitIntrinsicCallSite(ID, CS);
2719
2720 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2721 // at most one "gc-transition" operand bundle.
2722 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2723 FoundGCTransitionBundle = false;
2724 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2725 OperandBundleUse BU = CS.getOperandBundleAt(i);
2726 uint32_t Tag = BU.getTagID();
2727 if (Tag == LLVMContext::OB_deopt) {
2728 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, I); return; } } while (false)
;
2729 FoundDeoptBundle = true;
2730 } else if (Tag == LLVMContext::OB_gc_transition) {
2731 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
2732 I)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
;
2733 FoundGCTransitionBundle = true;
2734 } else if (Tag == LLVMContext::OB_funclet) {
2735 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, I); return; } } while (false)
;
2736 FoundFuncletBundle = true;
2737 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
2738 "Expected exactly one funclet bundle operand", I)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
;
2739 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2740 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2741 I)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
;
2742 }
2743 }
2744
2745 // Verify that each inlinable callsite of a debug-info-bearing function in a
2746 // debug-info-bearing function has a debug location attached to it. Failure to
2747 // do so causes assertion failures when the inliner sets up inline scope info.
2748 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2749 CS.getCalledFunction()->getSubprogram())
2750 AssertDI(I->getDebugLoc(), "inlinable function call in a function with "do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2751 "debug info must have a !dbg location",do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2752 I)do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
;
2753
2754 visitInstruction(*I);
2755}
2756
2757/// Two types are "congruent" if they are identical, or if they are both pointer
2758/// types with different pointee types and the same address space.
2759static bool isTypeCongruent(Type *L, Type *R) {
2760 if (L == R)
2761 return true;
2762 PointerType *PL = dyn_cast<PointerType>(L);
2763 PointerType *PR = dyn_cast<PointerType>(R);
2764 if (!PL || !PR)
2765 return false;
2766 return PL->getAddressSpace() == PR->getAddressSpace();
2767}
2768
2769static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2770 static const Attribute::AttrKind ABIAttrs[] = {
2771 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2772 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2773 Attribute::SwiftError};
2774 AttrBuilder Copy;
2775 for (auto AK : ABIAttrs) {
2776 if (Attrs.hasAttribute(I + 1, AK))
2777 Copy.addAttribute(AK);
2778 }
2779 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2780 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2781 return Copy;
2782}
2783
2784void Verifier::verifyMustTailCall(CallInst &CI) {
2785 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
2786
2787 // - The caller and callee prototypes must match. Pointer types of
2788 // parameters or return types may differ in pointee type, but not
2789 // address space.
2790 Function *F = CI.getParent()->getParent();
2791 FunctionType *CallerTy = F->getFunctionType();
2792 FunctionType *CalleeTy = CI.getFunctionType();
2793 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
2794 "cannot guarantee tail call due to mismatched parameter counts", &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
2795 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
2796 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
2797 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
2798 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
2799 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2800 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2801 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2802 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
2803 }
2804
2805 // - The calling conventions of the caller and callee must match.
2806 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
2807 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
2808
2809 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2810 // returned, and inalloca, must match.
2811 AttributeList CallerAttrs = F->getAttributes();
2812 AttributeList CalleeAttrs = CI.getAttributes();
2813 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2814 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2815 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2816 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2817 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2818 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2819 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
2820 }
2821
2822 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2823 // or a pointer bitcast followed by a ret instruction.
2824 // - The ret instruction must return the (possibly bitcasted) value
2825 // produced by the call or void.
2826 Value *RetVal = &CI;
2827 Instruction *Next = CI.getNextNode();
2828
2829 // Handle the optional bitcast.
2830 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2831 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
2832 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
2833 RetVal = BI;
2834 Next = BI->getNextNode();
2835 }
2836
2837 // Check the return.
2838 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2839 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
2840 &CI)do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
2841 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
2842 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
2843}
2844
2845void Verifier::visitCallInst(CallInst &CI) {
2846 verifyCallSite(&CI);
2847
2848 if (CI.isMustTailCall())
2849 verifyMustTailCall(CI);
2850}
2851
2852void Verifier::visitInvokeInst(InvokeInst &II) {
2853 verifyCallSite(&II);
2854
2855 // Verify that the first non-PHI instruction of the unwind destination is an
2856 // exception handling instruction.
2857 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2858 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2859 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2860 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
2861
2862 visitTerminatorInst(II);
2863}
2864
2865/// visitBinaryOperator - Check that both arguments to the binary operator are
2866/// of the same type!
2867///
2868void Verifier::visitBinaryOperator(BinaryOperator &B) {
2869 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
2870 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
2871
2872 switch (B.getOpcode()) {
2873 // Check that integer arithmetic operators are only used with
2874 // integral operands.
2875 case Instruction::Add:
2876 case Instruction::Sub:
2877 case Instruction::Mul:
2878 case Instruction::SDiv:
2879 case Instruction::UDiv:
2880 case Instruction::SRem:
2881 case Instruction::URem:
2882 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
2883 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
2884 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2885 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2886 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2887 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2888 break;
2889 // Check that floating-point arithmetic operators are only used with
2890 // floating-point operands.
2891 case Instruction::FAdd:
2892 case Instruction::FSub:
2893 case Instruction::FMul:
2894 case Instruction::FDiv:
2895 case Instruction::FRem:
2896 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2897 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2898 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2899 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
2900 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2901 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2902 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2903 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2904 break;
2905 // Check that logical operators are only used with integral operands.
2906 case Instruction::And:
2907 case Instruction::Or:
2908 case Instruction::Xor:
2909 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
2910 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
2911 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2912 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2913 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
2914 break;
2915 case Instruction::Shl:
2916 case Instruction::LShr:
2917 case Instruction::AShr:
2918 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
2919 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
2920 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
2921 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
2922 break;
2923 default:
2924 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 2924)
;
2925 }
2926
2927 visitInstruction(B);
2928}
2929
2930void Verifier::visitICmpInst(ICmpInst &IC) {
2931 // Check that the operands are the same type
2932 Type *Op0Ty = IC.getOperand(0)->getType();
2933 Type *Op1Ty = IC.getOperand(1)->getType();
2934 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
2935 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
2936 // Check that the operands are the right type
2937 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
2938 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
2939 // Check that the predicate is valid.
2940 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2941 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2942 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
;
2943
2944 visitInstruction(IC);
2945}
2946
2947void Verifier::visitFCmpInst(FCmpInst &FC) {
2948 // Check that the operands are the same type
2949 Type *Op0Ty = FC.getOperand(0)->getType();
2950 Type *Op1Ty = FC.getOperand(1)->getType();
2951 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
2952 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
2953 // Check that the operands are the right type
2954 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
2955 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
2956 // Check that the predicate is valid.
2957 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2958 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2959 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
;
2960
2961 visitInstruction(FC);
2962}
2963
2964void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2965 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2966 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2967 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
2968 visitInstruction(EI);
2969}
2970
2971void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2972 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2973 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2974 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
2975 visitInstruction(IE);
2976}
2977
2978void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2979 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2980 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2981 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
2982 visitInstruction(SV);
2983}
2984
2985void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2986 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2987
2988 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
2989 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
2990 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
2991 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2992 Type *ElTy =
2993 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2994 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
2995
2996 Assert(GEP.getType()->getScalarType()->isPointerTy() &&do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
2997 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
2998 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
;
2999
3000 if (GEP.getType()->isVectorTy()) {
3001 // Additional checks for vector GEPs.
3002 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3003 if (GEP.getPointerOperandType()->isVectorTy())
3004 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3005 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3006 for (Value *Idx : Idxs) {
3007 Type *IndexTy = Idx->getType();
3008 if (IndexTy->isVectorTy()) {
3009 unsigned IndexWidth = IndexTy->getVectorNumElements();
3010 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3011 }
3012 Assert(IndexTy->getScalarType()->isIntegerTy(),do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
3013 "All GEP indices should be of integer type")do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
;
3014 }
3015 }
3016 visitInstruction(GEP);
3017}
3018
3019static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3020 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3021}
3022
3023void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3024 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 3025, __PRETTY_FUNCTION__))
3025 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 3025, __PRETTY_FUNCTION__))
;
3026
3027 unsigned NumOperands = Range->getNumOperands();
3028 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3029 unsigned NumRanges = NumOperands / 2;
3030 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3031
3032 ConstantRange LastRange(1); // Dummy initial value
3033 for (unsigned i = 0; i < NumRanges; ++i) {
3034 ConstantInt *Low =
3035 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3036 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3037 ConstantInt *High =
3038 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3039 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3040 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3041 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3042
3043 APInt HighV = High->getValue();
3044 APInt LowV = Low->getValue();
3045 ConstantRange CurRange(LowV, HighV);
3046 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3047 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3048 if (i != 0) {
3049 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3050 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3051 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3052 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3053 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3054 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3055 }
3056 LastRange = ConstantRange(LowV, HighV);
3057 }
3058 if (NumRanges > 2) {
3059 APInt FirstLow =
3060 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3061 APInt FirstHigh =
3062 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3063 ConstantRange FirstRange(FirstLow, FirstHigh);
3064 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3065 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3066 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3067 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3068 }
3069}
3070
3071void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3072 unsigned Size = DL.getTypeSizeInBits(Ty);
3073 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3074 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3075 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3076}
3077
3078void Verifier::visitLoadInst(LoadInst &LI) {
3079 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3080 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3081 Type *ElTy = LI.getType();
3082 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3083 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3084 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3085 if (LI.isAtomic()) {
3086 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3087 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3088 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3089 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3090 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3091 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3092 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3093 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3094 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3095 ElTy, &LI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3096 checkAtomicMemAccessSize(ElTy, &LI);
3097 } else {
3098 Assert(LI.getSynchScope() == CrossThread,do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
3099 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
;
3100 }
3101
3102 visitInstruction(LI);
3103}
3104
3105void Verifier::visitStoreInst(StoreInst &SI) {
3106 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3107 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3108 Type *ElTy = PTy->getElementType();
3109 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3110 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3111 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3112 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3113 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3114 if (SI.isAtomic()) {
3115 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3116 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3117 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3118 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3119 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3120 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3121 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3122 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3123 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3124 ElTy, &SI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3125 checkAtomicMemAccessSize(ElTy, &SI);
3126 } else {
3127 Assert(SI.getSynchScope() == CrossThread,do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3128 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3129 }
3130 visitInstruction(SI);
3131}
3132
3133/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3134void Verifier::verifySwiftErrorCallSite(CallSite CS,
3135 const Value *SwiftErrorVal) {
3136 unsigned Idx = 0;
3137 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3138 I != E; ++I, ++Idx) {
3139 if (*I == SwiftErrorVal) {
3140 Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3141 "swifterror value when used in a callsite should be marked "do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3142 "with swifterror attribute",do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3143 SwiftErrorVal, CS)do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
;
3144 }
3145 }
3146}
3147
3148void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3149 // Check that swifterror value is only used by loads, stores, or as
3150 // a swifterror argument.
3151 for (const User *U : SwiftErrorVal->users()) {
3152 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3153 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3154 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3155 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3156 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3157 // If it is used by a store, check it is the second operand.
3158 if (auto StoreI = dyn_cast<StoreInst>(U))
3159 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3160 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3161 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3162 if (auto CallI = dyn_cast<CallInst>(U))
3163 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3164 if (auto II = dyn_cast<InvokeInst>(U))
3165 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3166 }
3167}
3168
3169void Verifier::visitAllocaInst(AllocaInst &AI) {
3170 SmallPtrSet<Type*, 4> Visited;
3171 PointerType *PTy = AI.getType();
3172 Assert(PTy->getAddressSpace() == 0,do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
3173 "Allocation instruction pointer not in the generic address space!",do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
3174 &AI)do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
;
3175 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3176 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3177 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3178 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3179 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3180 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3181
3182 if (AI.isSwiftError()) {
3183 verifySwiftErrorValue(&AI);
3184 }
3185
3186 visitInstruction(AI);
3187}
3188
3189void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3190
3191 // FIXME: more conditions???
3192 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3193 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3194 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3195 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3196 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3197 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3198 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3199 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3200 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3201 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3202 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3203 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3204 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3205 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3206 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3207
3208 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3209 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3210 Type *ElTy = PTy->getElementType();
3211 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3212 "cmpxchg operand must have integer or pointer type",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3213 ElTy, &CXI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3214 checkAtomicMemAccessSize(ElTy, &CXI);
3215 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3216 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3217 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3218 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3219 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3220 visitInstruction(CXI);
3221}
3222
3223void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3224 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3225 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3226 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3227 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3228 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3229 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3230 Type *ElTy = PTy->getElementType();
3231 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3232 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3233 checkAtomicMemAccessSize(ElTy, &RMWI);
3234 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3235 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3236 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3237 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3238 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3239 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
;
3240 visitInstruction(RMWI);
3241}
3242
3243void Verifier::visitFenceInst(FenceInst &FI) {
3244 const AtomicOrdering Ordering = FI.getOrdering();
3245 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3246 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3247 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3248 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3249 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3250 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3251 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3252 visitInstruction(FI);
3253}
3254
3255void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3256 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3257 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3258 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3259
3260 visitInstruction(EVI);
3261}
3262
3263void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3264 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3265 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3266 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3267 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3268
3269 visitInstruction(IVI);
3270}
3271
3272static Value *getParentPad(Value *EHPad) {
3273 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3274 return FPI->getParentPad();
3275
3276 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3277}
3278
3279void Verifier::visitEHPadPredecessors(Instruction &I) {
3280 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 3280, __PRETTY_FUNCTION__))
;
3281
3282 BasicBlock *BB = I.getParent();
3283 Function *F = BB->getParent();
3284
3285 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3286
3287 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3288 // The landingpad instruction defines its parent as a landing pad block. The
3289 // landing pad block may be branched to only by the unwind edge of an
3290 // invoke.
3291 for (BasicBlock *PredBB : predecessors(BB)) {
3292 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3293 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3294 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3295 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3296 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3297 }
3298 return;
3299 }
3300 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3301 if (!pred_empty(BB))
3302 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3303 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3304 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3305 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3306 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3307 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3308 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3309 return;
3310 }
3311
3312 // Verify that each pred has a legal terminator with a legal to/from EH
3313 // pad relationship.
3314 Instruction *ToPad = &I;
3315 Value *ToPadParent = getParentPad(ToPad);
3316 for (BasicBlock *PredBB : predecessors(BB)) {
3317 TerminatorInst *TI = PredBB->getTerminator();
3318 Value *FromPad;
3319 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3320 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3321 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3322 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3323 FromPad = Bundle->Inputs[0];
3324 else
3325 FromPad = ConstantTokenNone::get(II->getContext());
3326 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3327 FromPad = CRI->getOperand(0);
3328 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3329 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3330 FromPad = CSI;
3331 } else {
3332 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3333 }
3334
3335 // The edge may exit from zero or more nested pads.
3336 SmallSet<Value *, 8> Seen;
3337 for (;; FromPad = getParentPad(FromPad)) {
3338 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3339 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3340 if (FromPad == ToPadParent) {
3341 // This is a legal unwind edge.
3342 break;
3343 }
3344 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3345 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3346 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3347 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3348 }
3349 }
3350}
3351
3352void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3353 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3354 // isn't a cleanup.
3355 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3356 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3357
3358 visitEHPadPredecessors(LPI);
3359
3360 if (!LandingPadResultTy)
3361 LandingPadResultTy = LPI.getType();
3362 else
3363 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3364 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3365 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3366 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3367
3368 Function *F = LPI.getParent()->getParent();
3369 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3370 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3371
3372 // The landingpad instruction must be the first non-PHI instruction in the
3373 // block.
3374 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3375 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3376 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3377
3378 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3379 Constant *Clause = LPI.getClause(i);
3380 if (LPI.isCatch(i)) {
3381 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3382 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3383 } else {
3384 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3385 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3386 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3387 }
3388 }
3389
3390 visitInstruction(LPI);
3391}
3392
3393void Verifier::visitResumeInst(ResumeInst &RI) {
3394 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3395 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3396
3397 if (!LandingPadResultTy)
3398 LandingPadResultTy = RI.getValue()->getType();
3399 else
3400 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3401 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3402 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3403 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3404
3405 visitTerminatorInst(RI);
3406}
3407
3408void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3409 BasicBlock *BB = CPI.getParent();
3410
3411 Function *F = BB->getParent();
3412 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3413 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3414
3415 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3416 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3417 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3418
3419 // The catchpad instruction must be the first non-PHI instruction in the
3420 // block.
3421 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3422 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3423
3424 visitEHPadPredecessors(CPI);
3425 visitFuncletPadInst(CPI);
3426}
3427
3428void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3429 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3430 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3431 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3432
3433 visitTerminatorInst(CatchReturn);
3434}
3435
3436void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3437 BasicBlock *BB = CPI.getParent();
3438
3439 Function *F = BB->getParent();
3440 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3441 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3442
3443 // The cleanuppad instruction must be the first non-PHI instruction in the
3444 // block.
3445 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3446 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3447 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3448
3449 auto *ParentPad = CPI.getParentPad();
3450 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3451 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3452
3453 visitEHPadPredecessors(CPI);
3454 visitFuncletPadInst(CPI);
3455}
3456
3457void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3458 User *FirstUser = nullptr;
3459 Value *FirstUnwindPad = nullptr;
3460 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3461 SmallSet<FuncletPadInst *, 8> Seen;
3462
3463 while (!Worklist.empty()) {
3464 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3465 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3466 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3467 Value *UnresolvedAncestorPad = nullptr;
3468 for (User *U : CurrentPad->users()) {
3469 BasicBlock *UnwindDest;
3470 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3471 UnwindDest = CRI->getUnwindDest();
3472 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3473 // We allow catchswitch unwind to caller to nest
3474 // within an outer pad that unwinds somewhere else,
3475 // because catchswitch doesn't have a nounwind variant.
3476 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3477 if (CSI->unwindsToCaller())
3478 continue;
3479 UnwindDest = CSI->getUnwindDest();
3480 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3481 UnwindDest = II->getUnwindDest();
3482 } else if (isa<CallInst>(U)) {
3483 // Calls which don't unwind may be found inside funclet
3484 // pads that unwind somewhere else. We don't *require*
3485 // such calls to be annotated nounwind.
3486 continue;
3487 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3488 // The unwind dest for a cleanup can only be found by
3489 // recursive search. Add it to the worklist, and we'll
3490 // search for its first use that determines where it unwinds.
3491 Worklist.push_back(CPI);
3492 continue;
3493 } else {
3494 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3495 continue;
3496 }
3497
3498 Value *UnwindPad;
3499 bool ExitsFPI;
3500 if (UnwindDest) {
3501 UnwindPad = UnwindDest->getFirstNonPHI();
3502 if (!cast<Instruction>(UnwindPad)->isEHPad())
3503 continue;
3504 Value *UnwindParent = getParentPad(UnwindPad);
3505 // Ignore unwind edges that don't exit CurrentPad.
3506 if (UnwindParent == CurrentPad)
3507 continue;
3508 // Determine whether the original funclet pad is exited,
3509 // and if we are scanning nested pads determine how many
3510 // of them are exited so we can stop searching their
3511 // children.
3512 Value *ExitedPad = CurrentPad;
3513 ExitsFPI = false;
3514 do {
3515 if (ExitedPad == &FPI) {
3516 ExitsFPI = true;
3517 // Now we can resolve any ancestors of CurrentPad up to
3518 // FPI, but not including FPI since we need to make sure
3519 // to check all direct users of FPI for consistency.
3520 UnresolvedAncestorPad = &FPI;
3521 break;
3522 }
3523 Value *ExitedParent = getParentPad(ExitedPad);
3524 if (ExitedParent == UnwindParent) {
3525 // ExitedPad is the ancestor-most pad which this unwind
3526 // edge exits, so we can resolve up to it, meaning that
3527 // ExitedParent is the first ancestor still unresolved.
3528 UnresolvedAncestorPad = ExitedParent;
3529 break;
3530 }
3531 ExitedPad = ExitedParent;
3532 } while (!isa<ConstantTokenNone>(ExitedPad));
3533 } else {
3534 // Unwinding to caller exits all pads.
3535 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3536 ExitsFPI = true;
3537 UnresolvedAncestorPad = &FPI;
3538 }
3539
3540 if (ExitsFPI) {
3541 // This unwind edge exits FPI. Make sure it agrees with other
3542 // such edges.
3543 if (FirstUser) {
3544 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3545 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3546 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3547 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3548 } else {
3549 FirstUser = U;
3550 FirstUnwindPad = UnwindPad;
3551 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3552 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3553 getParentPad(UnwindPad) == getParentPad(&FPI))
3554 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3555 }
3556 }
3557 // Make sure we visit all uses of FPI, but for nested pads stop as
3558 // soon as we know where they unwind to.
3559 if (CurrentPad != &FPI)
3560 break;
3561 }
3562 if (UnresolvedAncestorPad) {
3563 if (CurrentPad == UnresolvedAncestorPad) {
3564 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3565 // we've found an unwind edge that exits it, because we need to verify
3566 // all direct uses of FPI.
3567 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 3567, __PRETTY_FUNCTION__))
;
3568 continue;
3569 }
3570 // Pop off the worklist any nested pads that we've found an unwind
3571 // destination for. The pads on the worklist are the uncles,
3572 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3573 // for all ancestors of CurrentPad up to but not including
3574 // UnresolvedAncestorPad.
3575 Value *ResolvedPad = CurrentPad;
3576 while (!Worklist.empty()) {
3577 Value *UnclePad = Worklist.back();
3578 Value *AncestorPad = getParentPad(UnclePad);
3579 // Walk ResolvedPad up the ancestor list until we either find the
3580 // uncle's parent or the last resolved ancestor.
3581 while (ResolvedPad != AncestorPad) {
3582 Value *ResolvedParent = getParentPad(ResolvedPad);
3583 if (ResolvedParent == UnresolvedAncestorPad) {
3584 break;
3585 }
3586 ResolvedPad = ResolvedParent;
3587 }
3588 // If the resolved ancestor search didn't find the uncle's parent,
3589 // then the uncle is not yet resolved.
3590 if (ResolvedPad != AncestorPad)
3591 break;
3592 // This uncle is resolved, so pop it from the worklist.
3593 Worklist.pop_back();
3594 }
3595 }
3596 }
3597
3598 if (FirstUnwindPad) {
3599 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3600 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3601 Value *SwitchUnwindPad;
3602 if (SwitchUnwindDest)
3603 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3604 else
3605 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3606 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3607 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3608 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3609 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3610 }
3611 }
3612
3613 visitInstruction(FPI);
3614}
3615
3616void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3617 BasicBlock *BB = CatchSwitch.getParent();
3618
3619 Function *F = BB->getParent();
3620 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3621 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3622 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3623
3624 // The catchswitch instruction must be the first non-PHI instruction in the
3625 // block.
3626 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3627 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3628 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3629
3630 auto *ParentPad = CatchSwitch.getParentPad();
3631 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3632 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3633
3634 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3635 Instruction *I = UnwindDest->getFirstNonPHI();
3636 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3637 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3638 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3639 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3640
3641 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3642 if (getParentPad(I) == ParentPad)
3643 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3644 }
3645
3646 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3647 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3648
3649 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3650 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3651 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3652 }
3653
3654 visitEHPadPredecessors(CatchSwitch);
3655 visitTerminatorInst(CatchSwitch);
3656}
3657
3658void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3659 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3660 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3661 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
3662
3663 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3664 Instruction *I = UnwindDest->getFirstNonPHI();
3665 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3666 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3667 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3668 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
3669 }
3670
3671 visitTerminatorInst(CRI);
3672}
3673
3674void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3675 Instruction *Op = cast<Instruction>(I.getOperand(i));
3676 // If the we have an invalid invoke, don't try to compute the dominance.
3677 // We already reject it in the invoke specific checks and the dominance
3678 // computation doesn't handle multiple edges.
3679 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3680 if (II->getNormalDest() == II->getUnwindDest())
3681 return;
3682 }
3683
3684 // Quick check whether the def has already been encountered in the same block.
3685 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3686 // uses are defined to happen on the incoming edge, not at the instruction.
3687 //
3688 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3689 // wrapping an SSA value, assert that we've already encountered it. See
3690 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3691 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3692 return;
3693
3694 const Use &U = I.getOperandUse(i);
3695 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
3696 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
3697}
3698
3699void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3700 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
3701 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
3702 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3703 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3704 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
;
3705 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
3706 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
3707 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3708 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
3709 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
3710}
3711
3712/// verifyInstruction - Verify that an instruction is well formed.
3713///
3714void Verifier::visitInstruction(Instruction &I) {
3715 BasicBlock *BB = I.getParent();
3716 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
3717
3718 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3719 for (User *U : I.users()) {
3720 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
3721 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
3722 }
3723 }
3724
3725 // Check that void typed values don't have names
3726 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
3727 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
3728
3729 // Check that the return value of the instruction is either void or a legal
3730 // value type.
3731 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
3732 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
3733
3734 // Check that the instruction doesn't produce metadata. Calls are already
3735 // checked against the callee type.
3736 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
3737 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
3738
3739 // Check that all uses of the instruction, if they are instructions
3740 // themselves, actually have parent basic blocks. If the use is not an
3741 // instruction, it is an error!
3742 for (Use &U : I.uses()) {
3743 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3744 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3745 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3746 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3747 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
3748 else {
3749 CheckFailed("Use of instruction is not an instruction!", U);
3750 return;
3751 }
3752 }
3753
3754 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3755 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
3756
3757 // Check to make sure that only first-class-values are operands to
3758 // instructions.
3759 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3760 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
3761 }
3762
3763 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3764 // Check to make sure that the "address of" an intrinsic function is never
3765 // taken.
3766 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3767 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3768 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3769 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
3770 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3771 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3772 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3773 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3774 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3775 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3776 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3777 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3778 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3779 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3780 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
3781 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
3782 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
3783 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3784 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
3785 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
3786 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3787 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
3788 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
3789 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3790 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
3791 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
3792 } else if (isa<Instruction>(I.getOperand(i))) {
3793 verifyDominatesUse(I, i);
3794 } else if (isa<InlineAsm>(I.getOperand(i))) {
3795 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3796 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3797 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
;
3798 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3799 if (CE->getType()->isPtrOrPtrVectorTy() ||
3800 !DL.getNonIntegralAddressSpaces().empty()) {
3801 // If we have a ConstantExpr pointer, we need to see if it came from an
3802 // illegal bitcast. If the datalayout string specifies non-integral
3803 // address spaces then we also need to check for illegal ptrtoint and
3804 // inttoptr expressions.
3805 visitConstantExprsRecursively(CE);
3806 }
3807 }
3808 }
3809
3810 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3811 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
3812 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
3813 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
3814 if (ConstantFP *CFP0 =
3815 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3816 const APFloat &Accuracy = CFP0->getValueAPF();
3817 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
3818 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
3819 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
3820 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
3821 } else {
3822 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
3823 }
3824 }
3825
3826 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3827 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
3828 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
3829 visitRangeMetadata(I, Range, I.getType());
3830 }
3831
3832 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3833 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
3834 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
3835 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3836 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3837 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3838 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
3839 }
3840
3841 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3842 visitDereferenceableMetadata(I, MD);
3843
3844 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3845 visitDereferenceableMetadata(I, MD);
3846
3847 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3848 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3849
3850 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3851 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
3852 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
3853 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
3854 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
3855 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
3856 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3857 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
3858 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
3859 uint64_t Align = CI->getZExtValue();
3860 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
3861 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
3862 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
3863 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
3864 }
3865
3866 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3867 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
3868 visitMDNode(*N);
3869 }
3870
3871 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3872 verifyFragmentExpression(*DII);
3873
3874 InstsInThisBlock.insert(&I);
3875}
3876
3877/// Allow intrinsics to be verified in different ways.
3878void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3879 Function *IF = CS.getCalledFunction();
3880 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
3881 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
3882
3883 // Verify that the intrinsic prototype lines up with what the .td files
3884 // describe.
3885 FunctionType *IFTy = IF->getFunctionType();
3886 bool IsVarArg = IFTy->isVarArg();
3887
3888 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3889 getIntrinsicInfoTableEntries(ID, Table);
3890 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3891
3892 SmallVector<Type *, 4> ArgTys;
3893 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3894 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3895 "Intrinsic has incorrect return type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
;
3896 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3897 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3898 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3899 "Intrinsic has incorrect argument type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
;
3900
3901 // Verify if the intrinsic call matches the vararg property.
3902 if (IsVarArg)
3903 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
3904 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
3905 else
3906 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
3907 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
3908
3909 // All descriptors should be absorbed by now.
3910 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
3911
3912 // Now that we have the intrinsic ID and the actual argument types (and we
3913 // know they are legal for the intrinsic!) get the intrinsic name through the
3914 // usual means. This allows us to verify the mangling of argument types into
3915 // the name.
3916 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3917 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3918 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3919 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3920 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3921 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
3922
3923 // If the intrinsic takes MDNode arguments, verify that they are either global
3924 // or are local to *this* function.
3925 for (Value *V : CS.args())
3926 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3927 visitMetadataAsValue(*MD, CS.getCaller());
3928
3929 switch (ID) {
3930 default:
3931 break;
3932 case Intrinsic::coro_id: {
3933 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3934 if (isa<ConstantPointerNull>(InfoArg))
3935 break;
3936 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3937 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3938 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3939 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
3940 Constant *Init = GV->getInitializer();
3941 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3942 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3943 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
3944 break;
3945 }
3946 case Intrinsic::ctlz: // llvm.ctlz
3947 case Intrinsic::cttz: // llvm.cttz
3948 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3949 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3950 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3951 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
;
3952 break;
3953 case Intrinsic::experimental_constrained_fadd:
3954 case Intrinsic::experimental_constrained_fsub:
3955 case Intrinsic::experimental_constrained_fmul:
3956 case Intrinsic::experimental_constrained_fdiv:
3957 case Intrinsic::experimental_constrained_frem:
3958 visitConstrainedFPIntrinsic(
3959 cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
3960 break;
3961 case Intrinsic::dbg_declare: // llvm.dbg.declare
3962 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
3963 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
;
3964 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3965 break;
3966 case Intrinsic::dbg_value: // llvm.dbg.value
3967 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3968 break;
3969 case Intrinsic::memcpy:
3970 case Intrinsic::memmove:
3971 case Intrinsic::memset: {
3972 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3973 Assert(AlignCI,do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3974 "alignment argument of memory intrinsics must be a constant int",do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3975 CS)do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3976 const APInt &AlignVal = AlignCI->getValue();
3977 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
3978 "alignment argument of memory intrinsics must be a power of 2", CS)do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
;
3979 Assert(isa<ConstantInt>(CS.getArgOperand(4)),do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3980 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3981 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3982 break;
3983 }
3984 case Intrinsic::memcpy_element_atomic: {
3985 ConstantInt *ElementSizeCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3986 Assert(ElementSizeCI, "element size of the element-wise atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3987 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3988 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
3989 const APInt &ElementSizeVal = ElementSizeCI->getValue();
3990 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3991 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3992 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3993 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
3994
3995 auto IsValidAlignment = [&](uint64_t Alignment) {
3996 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
3997 };
3998
3999 uint64_t DstAlignment = CS.getParamAlignment(1),
4000 SrcAlignment = CS.getParamAlignment(2);
4001
4002 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4003 "incorrect alignment of the destination argument",do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4004 CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
4005 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4006 "incorrect alignment of the source argument",do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4007 CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
4008 break;
4009 }
4010 case Intrinsic::gcroot:
4011 case Intrinsic::gcwrite:
4012 case Intrinsic::gcread:
4013 if (ID == Intrinsic::gcroot) {
4014 AllocaInst *AI =
4015 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4016 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (false)
;
4017 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
4018 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
;
4019 if (!AI->getAllocatedType()->isPointerTy()) {
4020 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4021 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4022 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4023 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
;
4024 }
4025 }
4026
4027 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4028 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4029 break;
4030 case Intrinsic::init_trampoline:
4031 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4032 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4033 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
;
4034 break;
4035 case Intrinsic::prefetch:
4036 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4037 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4038 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4039 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4040 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
;
4041 break;
4042 case Intrinsic::stackprotector:
4043 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
4044 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
;
4045 break;
4046 case Intrinsic::lifetime_start:
4047 case Intrinsic::lifetime_end:
4048 case Intrinsic::invariant_start:
4049 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4050 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4051 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
;
4052 break;
4053 case Intrinsic::invariant_end:
4054 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
4055 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
;
4056 break;
4057
4058 case Intrinsic::localescape: {
4059 BasicBlock *BB = CS.getParent();
4060 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
4061 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
;
4062 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
4063 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
;
4064 for (Value *Arg : CS.args()) {
4065 if (isa<ConstantPointerNull>(Arg))
4066 continue; // Null values are allowed as placeholders.
4067 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4068 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
4069 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
;
4070 }
4071 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4072 SawFrameEscape = true;
4073 break;
4074 }
4075 case Intrinsic::localrecover: {
4076 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4077 Function *Fn = dyn_cast<Function>(FnArg);
4078 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4079 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4080 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4081 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
;
4082 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4083 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
4084 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
;
4085 auto &Entry = FrameEscapeInfo[Fn];
4086 Entry.second = unsigned(
4087 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4088 break;
4089 }
4090
4091 case Intrinsic::experimental_gc_statepoint:
4092 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
4093 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
;
4094 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4095 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4096
4097 verifyStatepoint(CS);
4098 break;
4099 case Intrinsic::experimental_gc_result: {
4100 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4101 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4102 // Are we tied to a statepoint properly?
4103 CallSite StatepointCS(CS.getArgOperand(0));
4104 const Function *StatepointFn =
4105 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4106 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4107 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4108 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4109 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4110 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
;
4111
4112 // Assert that result type matches wrapped callee.
4113 const Value *Target = StatepointCS.getArgument(2);
4114 auto *PT = cast<PointerType>(Target->getType());
4115 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4116 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
4117 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
;
4118 break;
4119 }
4120 case Intrinsic::experimental_gc_relocate: {
4121 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (false)
;
4122
4123 Assert(isa<PointerType>(CS.getType()->getScalarType()),do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
4124 "gc.relocate must return a pointer or a vector of pointers", CS)do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
;
4125
4126 // Check that this relocate is correctly tied to the statepoint
4127
4128 // This is case for relocate on the unwinding path of an invoke statepoint
4129 if (LandingPadInst *LandingPad =
4130 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4131
4132 const BasicBlock *InvokeBB =
4133 LandingPad->getParent()->getUniquePredecessor();
4134
4135 // Landingpad relocates should have only one predecessor with invoke
4136 // statepoint terminator
4137 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4138 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4139 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4140 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4141 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4142 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4143 }
4144 else {
4145 // In all other cases relocate should be tied to the statepoint directly.
4146 // This covers relocates on a normal return path of invoke statepoint and
4147 // relocates of a call statepoint.
4148 auto Token = CS.getArgOperand(0);
4149 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
4150 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
;
4151 }
4152
4153 // Verify rest of the relocate arguments.
4154
4155 ImmutableCallSite StatepointCS(
4156 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4157
4158 // Both the base and derived must be piped through the safepoint.
4159 Value* Base = CS.getArgOperand(1);
4160 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
4161 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
;
4162
4163 Value* Derived = CS.getArgOperand(2);
4164 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
4165 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
;
4166
4167 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4168 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4169 // Check the bounds
4170 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
4171 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
;
4172 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
4173 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
;
4174
4175 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4176 // section of the statepoint's argument.
4177 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4178 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4179 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4180 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4181 const unsigned NumCallArgs =
4182 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4183 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
4184 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
;
4185 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4186 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4187 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4188 const int NumTransitionArgs =
4189 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4190 ->getZExtValue();
4191 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4192 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4193 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4194 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4195 const int NumDeoptArgs =
4196 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4197 ->getZExtValue();
4198 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4199 const int GCParamArgsEnd = StatepointCS.arg_size();
4200 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4201 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4202 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4203 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4204 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4205 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4206 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4207 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4208
4209 // Relocated value must be either a pointer type or vector-of-pointer type,
4210 // but gc_relocate does not need to return the same pointer type as the
4211 // relocated pointer. It can be casted to the correct type later if it's
4212 // desired. However, they must have the same address space and 'vectorness'
4213 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4214 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
4215 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
;
4216
4217 auto ResultType = CS.getType();
4218 auto DerivedType = Relocate.getDerivedPtr()->getType();
4219 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4220 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4221 CS)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
;
4222 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4223 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4224 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4225 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4226 CS)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
;
4227 break;
4228 }
4229 case Intrinsic::eh_exceptioncode:
4230 case Intrinsic::eh_exceptionpointer: {
4231 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
4232 "eh.exceptionpointer argument must be a catchpad", CS)do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
;
4233 break;
4234 }
4235 case Intrinsic::masked_load: {
4236 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS)do { if (!(CS.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, CS); return; } } while (false)
;
4237
4238 Value *Ptr = CS.getArgOperand(0);
4239 //Value *Alignment = CS.getArgOperand(1);
4240 Value *Mask = CS.getArgOperand(2);
4241 Value *PassThru = CS.getArgOperand(3);
4242 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
4243 "masked_load: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
;
4244
4245 // DataTy is the overloaded type
4246 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4247 Assert(DataTy == CS.getType(),do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
4248 "masked_load: return must match pointer type", CS)do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
;
4249 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
4250 "masked_load: pass through and data type must match", CS)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
;
4251 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4252 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4253 "masked_load: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
;
4254 break;
4255 }
4256 case Intrinsic::masked_store: {
4257 Value *Val = CS.getArgOperand(0);
4258 Value *Ptr = CS.getArgOperand(1);
4259 //Value *Alignment = CS.getArgOperand(2);
4260 Value *Mask = CS.getArgOperand(3);
4261 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
4262 "masked_store: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
;
4263
4264 // DataTy is the overloaded type
4265 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4266 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
4267 "masked_store: storee must match pointer type", CS)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
;
4268 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4269 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4270 "masked_store: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
;
4271 break;
4272 }
4273
4274 case Intrinsic::experimental_guard: {
4275 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_guard cannot be invoked"
, CS); return; } } while (false)
;
4276 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4277 "experimental_guard must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4278 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4279 break;
4280 }
4281
4282 case Intrinsic::experimental_deoptimize: {
4283 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_deoptimize cannot be invoked"
, CS); return; } } while (false)
;
4284 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4285 "experimental_deoptimize must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4286 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4287 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4288 "experimental_deoptimize return type must match caller return type")do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4289
4290 if (CS.isCall()) {
4291 auto *DeoptCI = CS.getInstruction();
4292 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4293 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4294 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4295
4296 if (!CS.getType()->isVoidTy() && RI)
4297 Assert(RI->getReturnValue() == DeoptCI,do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4298 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4299 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4300 }
4301
4302 break;
4303 }
4304 };
4305}
4306
4307/// \brief Carefully grab the subprogram from a local scope.
4308///
4309/// This carefully grabs the subprogram from a local scope, avoiding the
4310/// built-in assertions that would typically fire.
4311static DISubprogram *getSubprogram(Metadata *LocalScope) {
4312 if (!LocalScope)
4313 return nullptr;
4314
4315 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4316 return SP;
4317
4318 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4319 return getSubprogram(LB->getRawScope());
4320
4321 // Just return null; broken scope chains are checked elsewhere.
4322 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"
) ? static_cast<void> (0) : __assert_fail ("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 4322, __PRETTY_FUNCTION__))
;
4323 return nullptr;
4324}
4325
4326void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4327 Assert(isa<MetadataAsValue>(FPI.getOperand(2)),do { if (!(isa<MetadataAsValue>(FPI.getOperand(2)))) { CheckFailed
("invalid rounding mode argument", &FPI); return; } } while
(false)
4328 "invalid rounding mode argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getOperand(2)))) { CheckFailed
("invalid rounding mode argument", &FPI); return; } } while
(false)
;
4329 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
4330 "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
;
4331 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
4332 "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
;
4333}
4334
4335template <class DbgIntrinsicTy>
4336void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4337 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4338 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4339 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4340 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4341 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4342 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4343 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4344 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4345 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4346 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4347
4348 // Ignore broken !dbg attachments; they're checked elsewhere.
4349 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4350 if (!isa<DILocation>(N))
4351 return;
4352
4353 BasicBlock *BB = DII.getParent();
4354 Function *F = BB ? BB->getParent() : nullptr;
4355
4356 // The scopes for variables and !dbg attachments must agree.
4357 DILocalVariable *Var = DII.getVariable();
4358 DILocation *Loc = DII.getDebugLoc();
4359 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4360 &DII, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4361
4362 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4363 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4364 if (!VarSP || !LocSP)
4365 return; // Broken scope chains are checked elsewhere.
4366
4367 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4368 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4369 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4370 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4371
4372 verifyFnArgs(DII);
4373}
4374
4375static uint64_t getVariableSize(const DILocalVariable &V) {
4376 // Be careful of broken types (checked elsewhere).
4377 const Metadata *RawType = V.getRawType();
4378 while (RawType) {
4379 // Try to get the size directly.
4380 if (auto *T = dyn_cast<DIType>(RawType))
4381 if (uint64_t Size = T->getSizeInBits())
4382 return Size;
4383
4384 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4385 // Look at the base type.
4386 RawType = DT->getRawBaseType();
4387 continue;
4388 }
4389
4390 // Missing type or size.
4391 break;
4392 }
4393
4394 // Fail gracefully.
4395 return 0;
4396}
4397
4398void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4399 DILocalVariable *V;
4400 DIExpression *E;
4401 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4402 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4403 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4404 } else {
4405 auto *DDI = cast<DbgDeclareInst>(&I);
4406 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4407 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4408 }
4409
4410 // We don't know whether this intrinsic verified correctly.
4411 if (!V || !E || !E->isValid())
4412 return;
4413
4414 // Nothing to do if this isn't a bit piece expression.
4415 auto Fragment = E->getFragmentInfo();
4416 if (!Fragment)
4417 return;
4418
4419 // The frontend helps out GDB by emitting the members of local anonymous
4420 // unions as artificial local variables with shared storage. When SROA splits
4421 // the storage for artificial local variables that are smaller than the entire
4422 // union, the overhang piece will be outside of the allotted space for the
4423 // variable and this check fails.
4424 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4425 if (V->isArtificial())
4426 return;
4427
4428 // If there's no size, the type is broken, but that should be checked
4429 // elsewhere.
4430 uint64_t VarSize = getVariableSize(*V);
4431 if (!VarSize)
4432 return;
4433
4434 unsigned FragSize = Fragment->SizeInBits;
4435 unsigned FragOffset = Fragment->OffsetInBits;
4436 AssertDI(FragSize + FragOffset <= VarSize,do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
4437 "fragment is larger than or outside of variable", &I, V, E)do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
;
4438 AssertDI(FragSize != VarSize, "fragment covers entire variable", &I, V, E)do { if (!(FragSize != VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, &I, V, E); return; } } while (false)
;
4439}
4440
4441void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4442 // This function does not take the scope of noninlined function arguments into
4443 // account. Don't run it if current function is nodebug, because it may
4444 // contain inlined debug intrinsics.
4445 if (!HasDebugInfo)
4446 return;
4447
4448 DILocalVariable *Var;
4449 if (auto *DV = dyn_cast<DbgValueInst>(&I)) {
4450 // For performance reasons only check non-inlined ones.
4451 if (DV->getDebugLoc()->getInlinedAt())
4452 return;
4453 Var = DV->getVariable();
4454 } else {
4455 auto *DD = cast<DbgDeclareInst>(&I);
4456 if (DD->getDebugLoc()->getInlinedAt())
4457 return;
4458 Var = DD->getVariable();
4459 }
4460 AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable"
); return; } } while (false)
;
4461
4462 unsigned ArgNo = Var->getArg();
4463 if (!ArgNo)
4464 return;
4465
4466 // Verify there are no duplicate function argument debug info entries.
4467 // These will cause hard-to-debug assertions in the DWARF backend.
4468 if (DebugFnArgs.size() < ArgNo)
4469 DebugFnArgs.resize(ArgNo, nullptr);
4470
4471 auto *Prev = DebugFnArgs[ArgNo - 1];
4472 DebugFnArgs[ArgNo - 1] = Var;
4473 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
4474 Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
;
4475}
4476
4477void Verifier::verifyCompileUnits() {
4478 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4479 SmallPtrSet<const Metadata *, 2> Listed;
4480 if (CUs)
4481 Listed.insert(CUs->op_begin(), CUs->op_end());
4482 for (auto *CU : CUVisited)
4483 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu"
, CU); return; } } while (false)
;
4484 CUVisited.clear();
4485}
4486
4487void Verifier::verifyDeoptimizeCallingConvs() {
4488 if (DeoptimizeDeclarations.empty())
4489 return;
4490
4491 const Function *First = DeoptimizeDeclarations[0];
4492 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4493 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4494 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4495 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4496 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
4497 }
4498}
4499
4500//===----------------------------------------------------------------------===//
4501// Implement the public interfaces to this file...
4502//===----------------------------------------------------------------------===//
4503
4504bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4505 Function &F = const_cast<Function &>(f);
4506
4507 // Don't use a raw_null_ostream. Printing IR is expensive.
4508 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4509
4510 // Note that this function's return value is inverted from what you would
4511 // expect of a function called "verify".
4512 return !V.verify(F);
4513}
4514
4515bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4516 bool *BrokenDebugInfo) {
4517 // Don't use a raw_null_ostream. Printing IR is expensive.
4518 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4519
4520 bool Broken = false;
4521 for (const Function &F : M)
4522 Broken |= !V.verify(F);
4523
4524 Broken |= !V.verify();
4525 if (BrokenDebugInfo)
4526 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4527 // Note that this function's return value is inverted from what you would
4528 // expect of a function called "verify".
4529 return Broken;
4530}
4531
4532namespace {
4533
4534struct VerifierLegacyPass : public FunctionPass {
4535 static char ID;
4536
4537 std::unique_ptr<Verifier> V;
4538 bool FatalErrors = true;
4539
4540 VerifierLegacyPass() : FunctionPass(ID) {
4541 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4542 }
4543 explicit VerifierLegacyPass(bool FatalErrors)
4544 : FunctionPass(ID),
4545 FatalErrors(FatalErrors) {
4546 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4547 }
4548
4549 bool doInitialization(Module &M) override {
4550 V = llvm::make_unique<Verifier>(
4551 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4552 return false;
4553 }
4554
4555 bool runOnFunction(Function &F) override {
4556 if (!V->verify(F) && FatalErrors)
4557 report_fatal_error("Broken function found, compilation aborted!");
4558
4559 return false;
4560 }
4561
4562 bool doFinalization(Module &M) override {
4563 bool HasErrors = false;
4564 for (Function &F : M)
4565 if (F.isDeclaration())
4566 HasErrors |= !V->verify(F);
4567
4568 HasErrors |= !V->verify();
4569 if (FatalErrors) {
4570 if (HasErrors)
4571 report_fatal_error("Broken module found, compilation aborted!");
4572 assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info")((!V->hasBrokenDebugInfo() && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!V->hasBrokenDebugInfo() && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 4572, __PRETTY_FUNCTION__))
;
4573 }
4574
4575 // Strip broken debug info.
4576 if (V->hasBrokenDebugInfo()) {
4577 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4578 M.getContext().diagnose(DiagInvalid);
4579 if (!StripDebugInfo(M))
4580 report_fatal_error("Failed to strip malformed debug info");
4581 }
4582 return false;
4583 }
4584
4585 void getAnalysisUsage(AnalysisUsage &AU) const override {
4586 AU.setPreservesAll();
4587 }
4588};
4589
4590} // end anonymous namespace
4591
4592/// Helper to issue failure from the TBAA verification
4593template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4594 if (Diagnostic)
4595 return Diagnostic->CheckFailed(Args...);
4596}
4597
4598#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
4599 do { \
4600 if (!(C)) { \
4601 CheckFailed(__VA_ARGS__); \
4602 return false; \
4603 } \
4604 } while (false)
4605
4606/// Verify that \p BaseNode can be used as the "base type" in the struct-path
4607/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4608/// struct-type node describing an aggregate data structure (like a struct).
4609TBAAVerifier::TBAABaseNodeSummary
4610TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
4611 if (BaseNode->getNumOperands() < 2) {
4612 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4613 return {true, ~0u};
4614 }
4615
4616 auto Itr = TBAABaseNodes.find(BaseNode);
4617 if (Itr != TBAABaseNodes.end())
4618 return Itr->second;
4619
4620 auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
4621 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4622 (void)InsertResult;
4623 assert(InsertResult.second && "We just checked!")((InsertResult.second && "We just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 4623, __PRETTY_FUNCTION__))
;
4624 return Result;
4625}
4626
4627TBAAVerifier::TBAABaseNodeSummary
4628TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
4629 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4630
4631 if (BaseNode->getNumOperands() == 2) {
4632 // Scalar nodes can only be accessed at offset 0.
4633 return isValidScalarTBAANode(BaseNode)
4634 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4635 : InvalidNode;
4636 }
4637
4638 if (BaseNode->getNumOperands() % 2 != 1) {
4639 CheckFailed("Struct tag nodes must have an odd number of operands!",
4640 BaseNode);
4641 return InvalidNode;
4642 }
4643
4644 if (!isa<MDString>(BaseNode->getOperand(0))) {
4645 CheckFailed("Struct tag nodes have a string as their first operand",
4646 BaseNode);
4647 return InvalidNode;
4648 }
4649
4650 bool Failed = false;
4651
4652 Optional<APInt> PrevOffset;
4653 unsigned BitWidth = ~0u;
4654
4655 // We've already checked that BaseNode is not a degenerate root node with one
4656 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4657 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4658 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4659 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4660 if (!isa<MDNode>(FieldTy)) {
4661 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4662 Failed = true;
4663 continue;
4664 }
4665
4666 auto *OffsetEntryCI =
4667 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4668 if (!OffsetEntryCI) {
4669 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4670 Failed = true;
4671 continue;
4672 }
4673
4674 if (BitWidth == ~0u)
4675 BitWidth = OffsetEntryCI->getBitWidth();
4676
4677 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4678 CheckFailed(
4679 "Bitwidth between the offsets and struct type entries must match", &I,
4680 BaseNode);
4681 Failed = true;
4682 continue;
4683 }
4684
4685 // NB! As far as I can tell, we generate a non-strictly increasing offset
4686 // sequence only from structs that have zero size bit fields. When
4687 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4688 // pick the field lexically the latest in struct type metadata node. This
4689 // mirrors the actual behavior of the alias analysis implementation.
4690 bool IsAscending =
4691 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4692
4693 if (!IsAscending) {
4694 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4695 Failed = true;
4696 }
4697
4698 PrevOffset = OffsetEntryCI->getValue();
4699 }
4700
4701 return Failed ? InvalidNode
4702 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4703}
4704
4705static bool IsRootTBAANode(const MDNode *MD) {
4706 return MD->getNumOperands() < 2;
4707}
4708
4709static bool IsScalarTBAANodeImpl(const MDNode *MD,
4710 SmallPtrSetImpl<const MDNode *> &Visited) {
4711 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4712 return false;
4713
4714 if (!isa<MDString>(MD->getOperand(0)))
4715 return false;
4716
4717 if (MD->getNumOperands() == 3) {
4718 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4719 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4720 return false;
4721 }
4722
4723 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4724 return Parent && Visited.insert(Parent).second &&
4725 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4726}
4727
4728bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4729 auto ResultIt = TBAAScalarNodes.find(MD);
4730 if (ResultIt != TBAAScalarNodes.end())
4731 return ResultIt->second;
4732
4733 SmallPtrSet<const MDNode *, 4> Visited;
4734 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4735 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4736 (void)InsertResult;
4737 assert(InsertResult.second && "Just checked!")((InsertResult.second && "Just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 4737, __PRETTY_FUNCTION__))
;
4738
4739 return Result;
4740}
4741
4742/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4743/// Offset in place to be the offset within the field node returned.
4744///
4745/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4746MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4747 const MDNode *BaseNode,
4748 APInt &Offset) {
4749 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")((BaseNode->getNumOperands() >= 2 && "Invalid base node!"
) ? static_cast<void> (0) : __assert_fail ("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 4749, __PRETTY_FUNCTION__))
;
4750
4751 // Scalar nodes have only one possible "field" -- their parent in the access
4752 // hierarchy. Offset must be zero at this point, but our caller is supposed
4753 // to Assert that.
4754 if (BaseNode->getNumOperands() == 2)
4755 return cast<MDNode>(BaseNode->getOperand(1));
4756
4757 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4758 auto *OffsetEntryCI =
4759 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4760 if (OffsetEntryCI->getValue().ugt(Offset)) {
4761 if (Idx == 1) {
4762 CheckFailed("Could not find TBAA parent in struct type node", &I,
4763 BaseNode, &Offset);
4764 return nullptr;
4765 }
4766
4767 auto *PrevOffsetEntryCI =
4768 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
4769 Offset -= PrevOffsetEntryCI->getValue();
4770 return cast<MDNode>(BaseNode->getOperand(Idx - 2));
4771 }
4772 }
4773
4774 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4775 BaseNode->getOperand(BaseNode->getNumOperands() - 1));
4776
4777 Offset -= LastOffsetEntryCI->getValue();
4778 return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
4779}
4780
4781bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4782 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4783 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4784 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4785 "TBAA is only for loads, stores and calls!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
;
4786
4787 bool IsStructPathTBAA =
4788 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4789
4790 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4791 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4792 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
4793
4794 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
4795 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
4796
4797 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4798 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4799
4800 if (MD->getNumOperands() == 4) {
4801 auto *IsImmutableCI =
4802 mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
4803 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4804 "Immutability tag on struct tag metadata must be a constant", &I,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4805 MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
4806 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4807 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4808 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4809 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
4810 }
4811
4812 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4813 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4814 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4815 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
4816
4817 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4818 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4819 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
4820
4821 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4822 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
4823
4824 APInt Offset = OffsetCI->getValue();
4825 bool SeenAccessTypeInPath = false;
4826
4827 SmallPtrSet<MDNode *, 4> StructPath;
4828
4829 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4830 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
4831 if (!StructPath.insert(BaseNode).second) {
4832 CheckFailed("Cycle detected in struct path", &I, MD);
4833 return false;
4834 }
4835
4836 bool Invalid;
4837 unsigned BaseNodeBitWidth;
4838 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
4839
4840 // If the base node is invalid in itself, then we've already printed all the
4841 // errors we wanted to print.
4842 if (Invalid)
4843 return false;
4844
4845 SeenAccessTypeInPath |= BaseNode == AccessType;
4846
4847 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
4848 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
4849 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
4850
4851 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4852 (BaseNodeBitWidth == 0 && Offset == 0),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4853 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4854 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
4855 }
4856
4857 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
4858 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
4859 return true;
4860}
4861
4862char VerifierLegacyPass::ID = 0;
4863INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
4864
4865FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4866 return new VerifierLegacyPass(FatalErrors);
4867}
4868
4869AnalysisKey VerifierAnalysis::Key;
4870VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4871 ModuleAnalysisManager &) {
4872 Result Res;
4873 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4874 return Res;
4875}
4876
4877VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4878 FunctionAnalysisManager &) {
4879 return { llvm::verifyFunction(F, &dbgs()), false };
4880}
4881
4882PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4883 auto Res = AM.getResult<VerifierAnalysis>(M);
4884 if (FatalErrors) {
4885 if (Res.IRBroken)
4886 report_fatal_error("Broken module found, compilation aborted!");
4887 assert(!Res.DebugInfoBroken && "Module contains invalid debug info")((!Res.DebugInfoBroken && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!Res.DebugInfoBroken && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn299061/lib/IR/Verifier.cpp"
, 4887, __PRETTY_FUNCTION__))
;
4888 }
4889
4890 // Strip broken debug info.
4891 if (Res.DebugInfoBroken) {
4892 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4893 M.getContext().diagnose(DiagInvalid);
4894 if (!StripDebugInfo(M))
4895 report_fatal_error("Failed to strip malformed debug info");
4896 }
4897 return PreservedAnalyses::all();
4898}
4899
4900PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
4901 auto res = AM.getResult<VerifierAnalysis>(F);
4902 if (res.IRBroken && FatalErrors)
4903 report_fatal_error("Broken function found, compilation aborted!");
4904
4905 return PreservedAnalyses::all();
4906}