Bug Summary

File:lib/IR/Verifier.cpp
Warning:line 2150, column 7
Called C++ object pointer is null

Annotated Source Code

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * Landingpad instructions must be in a function with a personality function.
43// * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/APFloat.h"
49#include "llvm/ADT/APInt.h"
50#include "llvm/ADT/ArrayRef.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/ilist.h"
53#include "llvm/ADT/MapVector.h"
54#include "llvm/ADT/Optional.h"
55#include "llvm/ADT/STLExtras.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/SmallSet.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringMap.h"
60#include "llvm/ADT/StringRef.h"
61#include "llvm/ADT/Twine.h"
62#include "llvm/IR/Argument.h"
63#include "llvm/IR/Attributes.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/CFG.h"
66#include "llvm/IR/CallSite.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/DiagnosticInfo.h"
78#include "llvm/IR/Dominators.h"
79#include "llvm/IR/Function.h"
80#include "llvm/IR/GlobalAlias.h"
81#include "llvm/IR/GlobalValue.h"
82#include "llvm/IR/GlobalVariable.h"
83#include "llvm/IR/InlineAsm.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/InstVisitor.h"
88#include "llvm/IR/IntrinsicInst.h"
89#include "llvm/IR/Intrinsics.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/Pass.h"
101#include "llvm/Support/AtomicOrdering.h"
102#include "llvm/Support/Casting.h"
103#include "llvm/Support/CommandLine.h"
104#include "llvm/Support/Debug.h"
105#include "llvm/Support/Dwarf.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
119
120namespace llvm {
121
122struct VerifierSupport {
123 raw_ostream *OS;
124 const Module &M;
125 ModuleSlotTracker MST;
126 const DataLayout &DL;
127 LLVMContext &Context;
128
129 /// Track the brokenness of the module while recursively visiting.
130 bool Broken = false;
131 /// Broken debug info can be "recovered" from by stripping the debug info.
132 bool BrokenDebugInfo = false;
133 /// Whether to treat broken debug info as an error.
134 bool TreatBrokenDebugInfoAsError = true;
135
136 explicit VerifierSupport(raw_ostream *OS, const Module &M)
137 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
138
139private:
140 void Write(const Module *M) {
141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142 }
143
144 void Write(const Value *V) {
145 if (!V)
146 return;
147 if (isa<Instruction>(V)) {
148 V->print(*OS, MST);
149 *OS << '\n';
150 } else {
151 V->printAsOperand(*OS, true, MST);
152 *OS << '\n';
153 }
154 }
155
156 void Write(ImmutableCallSite CS) {
157 Write(CS.getInstruction());
158 }
159
160 void Write(const Metadata *MD) {
161 if (!MD)
162 return;
163 MD->print(*OS, MST, &M);
164 *OS << '\n';
165 }
166
167 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
168 Write(MD.get());
169 }
170
171 void Write(const NamedMDNode *NMD) {
172 if (!NMD)
173 return;
174 NMD->print(*OS, MST);
175 *OS << '\n';
176 }
177
178 void Write(Type *T) {
179 if (!T)
180 return;
181 *OS << ' ' << *T;
182 }
183
184 void Write(const Comdat *C) {
185 if (!C)
186 return;
187 *OS << *C;
188 }
189
190 void Write(const APInt *AI) {
191 if (!AI)
192 return;
193 *OS << *AI << '\n';
194 }
195
196 void Write(const unsigned i) { *OS << i << '\n'; }
197
198 template <typename T> void Write(ArrayRef<T> Vs) {
199 for (const T &V : Vs)
200 Write(V);
201 }
202
203 template <typename T1, typename... Ts>
204 void WriteTs(const T1 &V1, const Ts &... Vs) {
205 Write(V1);
206 WriteTs(Vs...);
207 }
208
209 template <typename... Ts> void WriteTs() {}
210
211public:
212 /// \brief A check failed, so printout out the condition and the message.
213 ///
214 /// This provides a nice place to put a breakpoint if you want to see why
215 /// something is not correct.
216 void CheckFailed(const Twine &Message) {
217 if (OS)
218 *OS << Message << '\n';
219 Broken = true;
220 }
221
222 /// \brief A check failed (with values to print).
223 ///
224 /// This calls the Message-only version so that the above is easier to set a
225 /// breakpoint on.
226 template <typename T1, typename... Ts>
227 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
228 CheckFailed(Message);
229 if (OS)
230 WriteTs(V1, Vs...);
231 }
232
233 /// A debug info check failed.
234 void DebugInfoCheckFailed(const Twine &Message) {
235 if (OS)
236 *OS << Message << '\n';
237 Broken |= TreatBrokenDebugInfoAsError;
238 BrokenDebugInfo = true;
239 }
240
241 /// A debug info check failed (with values to print).
242 template <typename T1, typename... Ts>
243 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
244 const Ts &... Vs) {
245 DebugInfoCheckFailed(Message);
246 if (OS)
247 WriteTs(V1, Vs...);
248 }
249};
250
251} // namespace llvm
252
253namespace {
254
255class Verifier : public InstVisitor<Verifier>, VerifierSupport {
256 friend class InstVisitor<Verifier>;
257
258 DominatorTree DT;
259
260 /// \brief When verifying a basic block, keep track of all of the
261 /// instructions we have seen so far.
262 ///
263 /// This allows us to do efficient dominance checks for the case when an
264 /// instruction has an operand that is an instruction in the same block.
265 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
266
267 /// \brief Keep track of the metadata nodes that have been checked already.
268 SmallPtrSet<const Metadata *, 32> MDNodes;
269
270 /// Track all DICompileUnits visited.
271 SmallPtrSet<const Metadata *, 2> CUVisited;
272
273 /// \brief The result type for a landingpad.
274 Type *LandingPadResultTy;
275
276 /// \brief Whether we've seen a call to @llvm.localescape in this function
277 /// already.
278 bool SawFrameEscape;
279
280 /// Stores the count of how many objects were passed to llvm.localescape for a
281 /// given function and the largest index passed to llvm.localrecover.
282 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
283
284 // Maps catchswitches and cleanuppads that unwind to siblings to the
285 // terminators that indicate the unwind, used to detect cycles therein.
286 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
287
288 /// Cache of constants visited in search of ConstantExprs.
289 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
290
291 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
292 SmallVector<const Function *, 4> DeoptimizeDeclarations;
293
294 // Verify that this GlobalValue is only used in this module.
295 // This map is used to avoid visiting uses twice. We can arrive at a user
296 // twice, if they have multiple operands. In particular for very large
297 // constant expressions, we can arrive at a particular user many times.
298 SmallPtrSet<const Value *, 32> GlobalValueVisited;
299
300 TBAAVerifier TBAAVerifyHelper;
301
302 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
303
304public:
305 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
306 const Module &M)
307 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
308 SawFrameEscape(false), TBAAVerifyHelper(this) {
309 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
310 }
311
312 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
313
314 bool verify(const Function &F) {
315 assert(F.getParent() == &M &&((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 316, __PRETTY_FUNCTION__))
316 "An instance of this class only works with a specific module!")((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 316, __PRETTY_FUNCTION__))
;
317
318 // First ensure the function is well-enough formed to compute dominance
319 // information, and directly compute a dominance tree. We don't rely on the
320 // pass manager to provide this as it isolates us from a potentially
321 // out-of-date dominator tree and makes it significantly more complex to run
322 // this code outside of a pass manager.
323 // FIXME: It's really gross that we have to cast away constness here.
324 if (!F.empty())
325 DT.recalculate(const_cast<Function &>(F));
326
327 for (const BasicBlock &BB : F) {
328 if (!BB.empty() && BB.back().isTerminator())
329 continue;
330
331 if (OS) {
332 *OS << "Basic Block in function '" << F.getName()
333 << "' does not have terminator!\n";
334 BB.printAsOperand(*OS, true, MST);
335 *OS << "\n";
336 }
337 return false;
338 }
339
340 Broken = false;
341 // FIXME: We strip const here because the inst visitor strips const.
342 visit(const_cast<Function &>(F));
343 verifySiblingFuncletUnwinds();
344 InstsInThisBlock.clear();
345 LandingPadResultTy = nullptr;
346 SawFrameEscape = false;
347 SiblingFuncletInfo.clear();
348
349 return !Broken;
350 }
351
352 /// Verify the module that this instance of \c Verifier was initialized with.
353 bool verify() {
354 Broken = false;
355
356 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
357 for (const Function &F : M)
358 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
359 DeoptimizeDeclarations.push_back(&F);
360
361 // Now that we've visited every function, verify that we never asked to
362 // recover a frame index that wasn't escaped.
363 verifyFrameRecoverIndices();
364 for (const GlobalVariable &GV : M.globals())
365 visitGlobalVariable(GV);
366
367 for (const GlobalAlias &GA : M.aliases())
368 visitGlobalAlias(GA);
369
370 for (const NamedMDNode &NMD : M.named_metadata())
371 visitNamedMDNode(NMD);
372
373 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
374 visitComdat(SMEC.getValue());
375
376 visitModuleFlags(M);
377 visitModuleIdents(M);
378
379 verifyCompileUnits();
380
381 verifyDeoptimizeCallingConvs();
382
383 return !Broken;
384 }
385
386private:
387 // Verification methods...
388 void visitGlobalValue(const GlobalValue &GV);
389 void visitGlobalVariable(const GlobalVariable &GV);
390 void visitGlobalAlias(const GlobalAlias &GA);
391 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
392 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
393 const GlobalAlias &A, const Constant &C);
394 void visitNamedMDNode(const NamedMDNode &NMD);
395 void visitMDNode(const MDNode &MD);
396 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
397 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
398 void visitComdat(const Comdat &C);
399 void visitModuleIdents(const Module &M);
400 void visitModuleFlags(const Module &M);
401 void visitModuleFlag(const MDNode *Op,
402 DenseMap<const MDString *, const MDNode *> &SeenIDs,
403 SmallVectorImpl<const MDNode *> &Requirements);
404 void visitFunction(const Function &F);
405 void visitBasicBlock(BasicBlock &BB);
406 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
407 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
408
409 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
410#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
411#include "llvm/IR/Metadata.def"
412 void visitDIScope(const DIScope &N);
413 void visitDIVariable(const DIVariable &N);
414 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
415 void visitDITemplateParameter(const DITemplateParameter &N);
416
417 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
418
419 // InstVisitor overrides...
420 using InstVisitor<Verifier>::visit;
421 void visit(Instruction &I);
422
423 void visitTruncInst(TruncInst &I);
424 void visitZExtInst(ZExtInst &I);
425 void visitSExtInst(SExtInst &I);
426 void visitFPTruncInst(FPTruncInst &I);
427 void visitFPExtInst(FPExtInst &I);
428 void visitFPToUIInst(FPToUIInst &I);
429 void visitFPToSIInst(FPToSIInst &I);
430 void visitUIToFPInst(UIToFPInst &I);
431 void visitSIToFPInst(SIToFPInst &I);
432 void visitIntToPtrInst(IntToPtrInst &I);
433 void visitPtrToIntInst(PtrToIntInst &I);
434 void visitBitCastInst(BitCastInst &I);
435 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
436 void visitPHINode(PHINode &PN);
437 void visitBinaryOperator(BinaryOperator &B);
438 void visitICmpInst(ICmpInst &IC);
439 void visitFCmpInst(FCmpInst &FC);
440 void visitExtractElementInst(ExtractElementInst &EI);
441 void visitInsertElementInst(InsertElementInst &EI);
442 void visitShuffleVectorInst(ShuffleVectorInst &EI);
443 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
444 void visitCallInst(CallInst &CI);
445 void visitInvokeInst(InvokeInst &II);
446 void visitGetElementPtrInst(GetElementPtrInst &GEP);
447 void visitLoadInst(LoadInst &LI);
448 void visitStoreInst(StoreInst &SI);
449 void verifyDominatesUse(Instruction &I, unsigned i);
450 void visitInstruction(Instruction &I);
451 void visitTerminatorInst(TerminatorInst &I);
452 void visitBranchInst(BranchInst &BI);
453 void visitReturnInst(ReturnInst &RI);
454 void visitSwitchInst(SwitchInst &SI);
455 void visitIndirectBrInst(IndirectBrInst &BI);
456 void visitSelectInst(SelectInst &SI);
457 void visitUserOp1(Instruction &I);
458 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
459 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
460 template <class DbgIntrinsicTy>
461 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
462 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
463 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
464 void visitFenceInst(FenceInst &FI);
465 void visitAllocaInst(AllocaInst &AI);
466 void visitExtractValueInst(ExtractValueInst &EVI);
467 void visitInsertValueInst(InsertValueInst &IVI);
468 void visitEHPadPredecessors(Instruction &I);
469 void visitLandingPadInst(LandingPadInst &LPI);
470 void visitResumeInst(ResumeInst &RI);
471 void visitCatchPadInst(CatchPadInst &CPI);
472 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
473 void visitCleanupPadInst(CleanupPadInst &CPI);
474 void visitFuncletPadInst(FuncletPadInst &FPI);
475 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
476 void visitCleanupReturnInst(CleanupReturnInst &CRI);
477
478 void verifyCallSite(CallSite CS);
479 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
480 void verifySwiftErrorValue(const Value *SwiftErrorVal);
481 void verifyMustTailCall(CallInst &CI);
482 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
483 unsigned ArgNo, std::string &Suffix);
484 bool verifyAttributeCount(AttributeSet Attrs, unsigned Params);
485 void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
486 const Value *V);
487 void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
488 bool isReturnValue, const Value *V);
489 void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
490 const Value *V);
491 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
492
493 void visitConstantExprsRecursively(const Constant *EntryC);
494 void visitConstantExpr(const ConstantExpr *CE);
495 void verifyStatepoint(ImmutableCallSite CS);
496 void verifyFrameRecoverIndices();
497 void verifySiblingFuncletUnwinds();
498
499 void verifyFragmentExpression(const DbgInfoIntrinsic &I);
500
501 /// Module-level debug info verification...
502 void verifyCompileUnits();
503
504 /// Module-level verification that all @llvm.experimental.deoptimize
505 /// declarations share the same calling convention.
506 void verifyDeoptimizeCallingConvs();
507};
508
509} // end anonymous namespace
510
511/// We know that cond should be true, if not print an error message.
512#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
513 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
514
515/// We know that a debug info condition should be true, if not print
516/// an error message.
517#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
518 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
519
520void Verifier::visit(Instruction &I) {
521 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
522 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
523 InstVisitor<Verifier>::visit(I);
524}
525
526// Helper to recursively iterate over indirect users. By
527// returning false, the callback can ask to stop recursing
528// further.
529static void forEachUser(const Value *User,
530 SmallPtrSet<const Value *, 32> &Visited,
531 llvm::function_ref<bool(const Value *)> Callback) {
532 if (!Visited.insert(User).second)
533 return;
534 for (const Value *TheNextUser : User->materialized_users())
535 if (Callback(TheNextUser))
536 forEachUser(TheNextUser, Visited, Callback);
537}
538
539void Verifier::visitGlobalValue(const GlobalValue &GV) {
540 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
541 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
542
543 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
544 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
545 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
546 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
547
548 if (GV.hasAppendingLinkage()) {
549 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
550 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
551 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
552 }
553
554 if (GV.isDeclarationForLinker())
555 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
556
557 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
558 if (const Instruction *I = dyn_cast<Instruction>(V)) {
559 if (!I->getParent() || !I->getParent()->getParent())
560 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
561 I);
562 else if (I->getParent()->getParent()->getParent() != &M)
563 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
564 I->getParent()->getParent(),
565 I->getParent()->getParent()->getParent());
566 return false;
567 } else if (const Function *F = dyn_cast<Function>(V)) {
568 if (F->getParent() != &M)
569 CheckFailed("Global is used by function in a different module", &GV, &M,
570 F, F->getParent());
571 return false;
572 }
573 return true;
574 });
575}
576
577void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
578 if (GV.hasInitializer()) {
579 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
580 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
581 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
582 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
583 // If the global has common linkage, it must have a zero initializer and
584 // cannot be constant.
585 if (GV.hasCommonLinkage()) {
586 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
587 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
588 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
589 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
590 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
591 }
592 }
593
594 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
595 GV.getName() == "llvm.global_dtors")) {
596 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
597 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
598 // Don't worry about emitting an error for it not being an array,
599 // visitGlobalValue will complain on appending non-array.
600 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
601 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
602 PointerType *FuncPtrTy =
603 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
604 // FIXME: Reject the 2-field form in LLVM 4.0.
605 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
606 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
607 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
608 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
609 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
610 if (STy->getNumElements() == 3) {
611 Type *ETy = STy->getTypeAtIndex(2);
612 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
613 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
614 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
615 }
616 }
617 }
618
619 if (GV.hasName() && (GV.getName() == "llvm.used" ||
620 GV.getName() == "llvm.compiler.used")) {
621 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
622 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
623 Type *GVType = GV.getValueType();
624 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
625 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
626 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
627 if (GV.hasInitializer()) {
628 const Constant *Init = GV.getInitializer();
629 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
630 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
631 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
632 for (Value *Op : InitArray->operands()) {
633 Value *V = Op->stripPointerCastsNoFollowAliases();
634 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
635 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
636 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
637 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
638 }
639 }
640 }
641 }
642
643 Assert(!GV.hasDLLImportStorageClass() ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
644 (GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
645 GV.hasAvailableExternallyLinkage(),do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
646 "Global is marked as dllimport, but not external", &GV)do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
647
648 // Visit any debug info attachments.
649 SmallVector<MDNode *, 1> MDs;
650 GV.getMetadata(LLVMContext::MD_dbg, MDs);
651 for (auto *MD : MDs) {
652 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
653 visitDIGlobalVariableExpression(*GVE);
654 else
655 AssertDI(false, "!dbg attachment of global variable must be a DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a DIGlobalVariableExpression"
); return; } } while (false)
;
656 }
657
658 if (!GV.hasInitializer()) {
659 visitGlobalValue(GV);
660 return;
661 }
662
663 // Walk any aggregate initializers looking for bitcasts between address spaces
664 visitConstantExprsRecursively(GV.getInitializer());
665
666 visitGlobalValue(GV);
667}
668
669void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
670 SmallPtrSet<const GlobalAlias*, 4> Visited;
671 Visited.insert(&GA);
672 visitAliaseeSubExpr(Visited, GA, C);
673}
674
675void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
676 const GlobalAlias &GA, const Constant &C) {
677 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
678 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
679 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
680
681 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
682 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
683
684 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
685 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
686 } else {
687 // Only continue verifying subexpressions of GlobalAliases.
688 // Do not recurse into global initializers.
689 return;
690 }
691 }
692
693 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
694 visitConstantExprsRecursively(CE);
695
696 for (const Use &U : C.operands()) {
697 Value *V = &*U;
698 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
699 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
700 else if (const auto *C2 = dyn_cast<Constant>(V))
701 visitAliaseeSubExpr(Visited, GA, *C2);
702 }
703}
704
705void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
706 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
707 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
708 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
709 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
710 const Constant *Aliasee = GA.getAliasee();
711 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
712 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
713 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
714
715 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
716 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
717
718 visitAliaseeSubExpr(GA, *Aliasee);
719
720 visitGlobalValue(GA);
721}
722
723void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
724 // There used to be various other llvm.dbg.* nodes, but we don't support
725 // upgrading them and we want to reserve the namespace for future uses.
726 if (NMD.getName().startswith("llvm.dbg."))
727 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
728 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
729 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
730 for (const MDNode *MD : NMD.operands()) {
731 if (NMD.getName() == "llvm.dbg.cu")
732 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
733
734 if (!MD)
735 continue;
736
737 visitMDNode(*MD);
738 }
739}
740
741void Verifier::visitMDNode(const MDNode &MD) {
742 // Only visit each node once. Metadata can be mutually recursive, so this
743 // avoids infinite recursion here, as well as being an optimization.
744 if (!MDNodes.insert(&MD).second)
745 return;
746
747 switch (MD.getMetadataID()) {
748 default:
749 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 749)
;
750 case Metadata::MDTupleKind:
751 break;
752#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
753 case Metadata::CLASS##Kind: \
754 visit##CLASS(cast<CLASS>(MD)); \
755 break;
756#include "llvm/IR/Metadata.def"
757 }
758
759 for (const Metadata *Op : MD.operands()) {
760 if (!Op)
761 continue;
762 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
763 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
764 if (auto *N = dyn_cast<MDNode>(Op)) {
765 visitMDNode(*N);
766 continue;
767 }
768 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
769 visitValueAsMetadata(*V, nullptr);
770 continue;
771 }
772 }
773
774 // Check these last, so we diagnose problems in operands first.
775 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
776 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
777}
778
779void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
780 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
781 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
782 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
783
784 auto *L = dyn_cast<LocalAsMetadata>(&MD);
785 if (!L)
786 return;
787
788 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
789
790 // If this was an instruction, bb, or argument, verify that it is in the
791 // function that we expect.
792 Function *ActualF = nullptr;
793 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
794 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
795 ActualF = I->getParent()->getParent();
796 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
797 ActualF = BB->getParent();
798 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
799 ActualF = A->getParent();
800 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 800, __PRETTY_FUNCTION__))
;
801
802 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
803}
804
805void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
806 Metadata *MD = MDV.getMetadata();
807 if (auto *N = dyn_cast<MDNode>(MD)) {
808 visitMDNode(*N);
809 return;
810 }
811
812 // Only visit each node once. Metadata can be mutually recursive, so this
813 // avoids infinite recursion here, as well as being an optimization.
814 if (!MDNodes.insert(MD).second)
815 return;
816
817 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
818 visitValueAsMetadata(*V, F);
819}
820
821static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
822static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
823static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
824
825template <class Ty>
826static bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
827 for (Metadata *MD : N.operands()) {
828 if (MD) {
829 if (!isa<Ty>(MD))
830 return false;
831 } else {
832 if (!AllowNull)
833 return false;
834 }
835 }
836 return true;
837}
838
839template <class Ty> static bool isValidMetadataArray(const MDTuple &N) {
840 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
841}
842
843template <class Ty> static bool isValidMetadataNullArray(const MDTuple &N) {
844 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
845}
846
847void Verifier::visitDILocation(const DILocation &N) {
848 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
849 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
850 if (auto *IA = N.getRawInlinedAt())
851 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
852}
853
854void Verifier::visitGenericDINode(const GenericDINode &N) {
855 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
856}
857
858void Verifier::visitDIScope(const DIScope &N) {
859 if (auto *F = N.getRawFile())
860 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
861}
862
863void Verifier::visitDISubrange(const DISubrange &N) {
864 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
865 AssertDI(N.getCount() >= -1, "invalid subrange count", &N)do { if (!(N.getCount() >= -1)) { DebugInfoCheckFailed("invalid subrange count"
, &N); return; } } while (false)
;
866}
867
868void Verifier::visitDIEnumerator(const DIEnumerator &N) {
869 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
870}
871
872void Verifier::visitDIBasicType(const DIBasicType &N) {
873 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
874 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
875 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
876}
877
878void Verifier::visitDIDerivedType(const DIDerivedType &N) {
879 // Common scope checks.
880 visitDIScope(N);
881
882 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
883 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
884 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
885 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
886 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
887 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
888 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
889 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
890 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
891 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
892 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
893 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
894 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
895 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
896 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
897 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
898 }
899
900 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
901 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
902 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
903}
904
905static bool hasConflictingReferenceFlags(unsigned Flags) {
906 return (Flags & DINode::FlagLValueReference) &&
907 (Flags & DINode::FlagRValueReference);
908}
909
910void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
911 auto *Params = dyn_cast<MDTuple>(&RawParams);
912 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
913 for (Metadata *Op : Params->operands()) {
914 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
915 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
916 }
917}
918
919void Verifier::visitDICompositeType(const DICompositeType &N) {
920 // Common scope checks.
921 visitDIScope(N);
922
923 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
924 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
925 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
926 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
927 N.getTag() == dwarf::DW_TAG_class_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
928 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
;
929
930 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
931 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
932 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
933
934 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
935 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
936 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
937 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
938 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
939 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
940 if (auto *Params = N.getRawTemplateParams())
941 visitTemplateParams(N, *Params);
942
943 if (N.getTag() == dwarf::DW_TAG_class_type ||
944 N.getTag() == dwarf::DW_TAG_union_type) {
945 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
946 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
947 }
948}
949
950void Verifier::visitDISubroutineType(const DISubroutineType &N) {
951 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
952 if (auto *Types = N.getRawTypeArray()) {
953 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
954 for (Metadata *Ty : N.getTypeArray()->operands()) {
955 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
956 }
957 }
958 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
959 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
960}
961
962void Verifier::visitDIFile(const DIFile &N) {
963 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
964 AssertDI((N.getChecksumKind() != DIFile::CSK_None ||do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
965 N.getChecksum().empty()), "invalid checksum kind", &N)do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
;
966}
967
968void Verifier::visitDICompileUnit(const DICompileUnit &N) {
969 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
970 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
971
972 // Don't bother verifying the compilation directory or producer string
973 // as those could be empty.
974 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
975 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
976 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
977 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
978
979 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
980 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
981
982 if (auto *Array = N.getRawEnumTypes()) {
983 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
984 for (Metadata *Op : N.getEnumTypes()->operands()) {
985 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
986 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
987 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
988 }
989 }
990 if (auto *Array = N.getRawRetainedTypes()) {
991 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
992 for (Metadata *Op : N.getRetainedTypes()->operands()) {
993 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
994 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
995 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
996 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
997 }
998 }
999 if (auto *Array = N.getRawGlobalVariables()) {
1000 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1001 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1002 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1003 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1004 }
1005 }
1006 if (auto *Array = N.getRawImportedEntities()) {
1007 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1008 for (Metadata *Op : N.getImportedEntities()->operands()) {
1009 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1010 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1011 }
1012 }
1013 if (auto *Array = N.getRawMacros()) {
1014 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1015 for (Metadata *Op : N.getMacros()->operands()) {
1016 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1017 }
1018 }
1019 CUVisited.insert(&N);
1020}
1021
1022void Verifier::visitDISubprogram(const DISubprogram &N) {
1023 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1024 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1025 if (auto *F = N.getRawFile())
1026 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1027 if (auto *T = N.getRawType())
1028 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1029 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1030 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1031 if (auto *Params = N.getRawTemplateParams())
1032 visitTemplateParams(N, *Params);
1033 if (auto *S = N.getRawDeclaration())
1034 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1035 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1036 if (auto *RawVars = N.getRawVariables()) {
1037 auto *Vars = dyn_cast<MDTuple>(RawVars);
1038 AssertDI(Vars, "invalid variable list", &N, RawVars)do { if (!(Vars)) { DebugInfoCheckFailed("invalid variable list"
, &N, RawVars); return; } } while (false)
;
1039 for (Metadata *Op : Vars->operands()) {
1040 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
1041 Vars, Op)do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
;
1042 }
1043 }
1044 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1045 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1046
1047 auto *Unit = N.getRawUnit();
1048 if (N.isDefinition()) {
1049 // Subprogram definitions (not part of the type hierarchy).
1050 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1051 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1052 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1053 } else {
1054 // Subprogram declarations (part of the type hierarchy).
1055 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1056 }
1057}
1058
1059void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1060 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1061 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1062 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1063}
1064
1065void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1066 visitDILexicalBlockBase(N);
1067
1068 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1069 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1070}
1071
1072void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1073 visitDILexicalBlockBase(N);
1074}
1075
1076void Verifier::visitDINamespace(const DINamespace &N) {
1077 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1078 if (auto *S = N.getRawScope())
1079 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1080}
1081
1082void Verifier::visitDIMacro(const DIMacro &N) {
1083 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1084 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1085 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1086 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1087 if (!N.getValue().empty()) {
1088 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 1088, __PRETTY_FUNCTION__))
;
1089 }
1090}
1091
1092void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1093 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1094 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1095 if (auto *F = N.getRawFile())
1096 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1097
1098 if (auto *Array = N.getRawElements()) {
1099 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1100 for (Metadata *Op : N.getElements()->operands()) {
1101 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1102 }
1103 }
1104}
1105
1106void Verifier::visitDIModule(const DIModule &N) {
1107 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1108 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1109}
1110
1111void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1112 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1113}
1114
1115void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1116 visitDITemplateParameter(N);
1117
1118 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1119 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1120}
1121
1122void Verifier::visitDITemplateValueParameter(
1123 const DITemplateValueParameter &N) {
1124 visitDITemplateParameter(N);
1125
1126 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1127 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1128 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1129 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1130}
1131
1132void Verifier::visitDIVariable(const DIVariable &N) {
1133 if (auto *S = N.getRawScope())
1134 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1135 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1136 if (auto *F = N.getRawFile())
1137 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1138}
1139
1140void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1141 // Checks common to all variables.
1142 visitDIVariable(N);
1143
1144 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1145 AssertDI(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("missing global variable name"
, &N); return; } } while (false)
;
1146 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1147 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1148 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1149 }
1150}
1151
1152void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1153 // Checks common to all variables.
1154 visitDIVariable(N);
1155
1156 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1157 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1158 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1159}
1160
1161void Verifier::visitDIExpression(const DIExpression &N) {
1162 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1163}
1164
1165void Verifier::visitDIGlobalVariableExpression(
1166 const DIGlobalVariableExpression &GVE) {
1167 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1168 if (auto *Var = GVE.getVariable())
1169 visitDIGlobalVariable(*Var);
1170 if (auto *Expr = GVE.getExpression())
1171 visitDIExpression(*Expr);
1172}
1173
1174void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1175 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1176 if (auto *T = N.getRawType())
1177 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1178 if (auto *F = N.getRawFile())
1179 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1180}
1181
1182void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1183 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1184 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1185 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1186 if (auto *S = N.getRawScope())
1187 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1188 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1189 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1190}
1191
1192void Verifier::visitComdat(const Comdat &C) {
1193 // The Module is invalid if the GlobalValue has private linkage. Entities
1194 // with private linkage don't have entries in the symbol table.
1195 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1196 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1197 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1198}
1199
1200void Verifier::visitModuleIdents(const Module &M) {
1201 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1202 if (!Idents)
1203 return;
1204
1205 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1206 // Scan each llvm.ident entry and make sure that this requirement is met.
1207 for (const MDNode *N : Idents->operands()) {
1208 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1209 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1210 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1211 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1212 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1213 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1214 }
1215}
1216
1217void Verifier::visitModuleFlags(const Module &M) {
1218 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1219 if (!Flags) return;
1220
1221 // Scan each flag, and track the flags and requirements.
1222 DenseMap<const MDString*, const MDNode*> SeenIDs;
1223 SmallVector<const MDNode*, 16> Requirements;
1224 for (const MDNode *MDN : Flags->operands())
1225 visitModuleFlag(MDN, SeenIDs, Requirements);
1226
1227 // Validate that the requirements in the module are valid.
1228 for (const MDNode *Requirement : Requirements) {
1229 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1230 const Metadata *ReqValue = Requirement->getOperand(1);
1231
1232 const MDNode *Op = SeenIDs.lookup(Flag);
1233 if (!Op) {
1234 CheckFailed("invalid requirement on flag, flag is not present in module",
1235 Flag);
1236 continue;
1237 }
1238
1239 if (Op->getOperand(2) != ReqValue) {
1240 CheckFailed(("invalid requirement on flag, "
1241 "flag does not have the required value"),
1242 Flag);
1243 continue;
1244 }
1245 }
1246}
1247
1248void
1249Verifier::visitModuleFlag(const MDNode *Op,
1250 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1251 SmallVectorImpl<const MDNode *> &Requirements) {
1252 // Each module flag should have three arguments, the merge behavior (a
1253 // constant int), the flag ID (an MDString), and the value.
1254 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1255 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1256 Module::ModFlagBehavior MFB;
1257 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1258 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1259 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1260 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1261 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1262 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1263 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1264 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1265 }
1266 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1267 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1268 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1269
1270 // Sanity check the values for behaviors with additional requirements.
1271 switch (MFB) {
1272 case Module::Error:
1273 case Module::Warning:
1274 case Module::Override:
1275 // These behavior types accept any value.
1276 break;
1277
1278 case Module::Require: {
1279 // The value should itself be an MDNode with two operands, a flag ID (an
1280 // MDString), and a value.
1281 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1282 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1283 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1284 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1285 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1286 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1287 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1288 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1289
1290 // Append it to the list of requirements, to check once all module flags are
1291 // scanned.
1292 Requirements.push_back(Value);
1293 break;
1294 }
1295
1296 case Module::Append:
1297 case Module::AppendUnique: {
1298 // These behavior types require the operand be an MDNode.
1299 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1300 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1301 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1302 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1303 break;
1304 }
1305 }
1306
1307 // Unless this is a "requires" flag, check the ID is unique.
1308 if (MFB != Module::Require) {
1309 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1310 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1311 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1312 }
1313}
1314
1315void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1316 bool isFunction, const Value *V) {
1317 unsigned Slot = ~0U;
1318 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1319 if (Attrs.getSlotIndex(I) == Idx) {
1320 Slot = I;
1321 break;
1322 }
1323
1324 assert(Slot != ~0U && "Attribute set inconsistency!")((Slot != ~0U && "Attribute set inconsistency!") ? static_cast
<void> (0) : __assert_fail ("Slot != ~0U && \"Attribute set inconsistency!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 1324, __PRETTY_FUNCTION__))
;
1325
1326 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1327 I != E; ++I) {
1328 if (I->isStringAttribute())
1329 continue;
1330
1331 if (I->getKindAsEnum() == Attribute::NoReturn ||
1332 I->getKindAsEnum() == Attribute::NoUnwind ||
1333 I->getKindAsEnum() == Attribute::NoInline ||
1334 I->getKindAsEnum() == Attribute::AlwaysInline ||
1335 I->getKindAsEnum() == Attribute::OptimizeForSize ||
1336 I->getKindAsEnum() == Attribute::StackProtect ||
1337 I->getKindAsEnum() == Attribute::StackProtectReq ||
1338 I->getKindAsEnum() == Attribute::StackProtectStrong ||
1339 I->getKindAsEnum() == Attribute::SafeStack ||
1340 I->getKindAsEnum() == Attribute::NoRedZone ||
1341 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1342 I->getKindAsEnum() == Attribute::Naked ||
1343 I->getKindAsEnum() == Attribute::InlineHint ||
1344 I->getKindAsEnum() == Attribute::StackAlignment ||
1345 I->getKindAsEnum() == Attribute::UWTable ||
1346 I->getKindAsEnum() == Attribute::NonLazyBind ||
1347 I->getKindAsEnum() == Attribute::ReturnsTwice ||
1348 I->getKindAsEnum() == Attribute::SanitizeAddress ||
1349 I->getKindAsEnum() == Attribute::SanitizeThread ||
1350 I->getKindAsEnum() == Attribute::SanitizeMemory ||
1351 I->getKindAsEnum() == Attribute::MinSize ||
1352 I->getKindAsEnum() == Attribute::NoDuplicate ||
1353 I->getKindAsEnum() == Attribute::Builtin ||
1354 I->getKindAsEnum() == Attribute::NoBuiltin ||
1355 I->getKindAsEnum() == Attribute::Cold ||
1356 I->getKindAsEnum() == Attribute::OptimizeNone ||
1357 I->getKindAsEnum() == Attribute::JumpTable ||
1358 I->getKindAsEnum() == Attribute::Convergent ||
1359 I->getKindAsEnum() == Attribute::ArgMemOnly ||
1360 I->getKindAsEnum() == Attribute::NoRecurse ||
1361 I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1362 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly ||
1363 I->getKindAsEnum() == Attribute::AllocSize) {
1364 if (!isFunction) {
1365 CheckFailed("Attribute '" + I->getAsString() +
1366 "' only applies to functions!", V);
1367 return;
1368 }
1369 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1370 I->getKindAsEnum() == Attribute::WriteOnly ||
1371 I->getKindAsEnum() == Attribute::ReadNone) {
1372 if (Idx == 0) {
1373 CheckFailed("Attribute '" + I->getAsString() +
1374 "' does not apply to function returns");
1375 return;
1376 }
1377 } else if (isFunction) {
1378 CheckFailed("Attribute '" + I->getAsString() +
1379 "' does not apply to functions!", V);
1380 return;
1381 }
1382 }
1383}
1384
1385// VerifyParameterAttrs - Check the given attributes for an argument or return
1386// value of the specified type. The value V is printed in error messages.
1387void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1388 bool isReturnValue, const Value *V) {
1389 if (!Attrs.hasAttributes(Idx))
1390 return;
1391
1392 verifyAttributeTypes(Attrs, Idx, false, V);
1393
1394 if (isReturnValue)
1395 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1396 !Attrs.hasAttribute(Idx, Attribute::Nest) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1397 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1398 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1399 !Attrs.hasAttribute(Idx, Attribute::Returned) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1400 !Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1401 !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1402 !Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1403 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1404 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1405 "values!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1406 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1407
1408 // Check for mutually incompatible attributes. Only inreg is compatible with
1409 // sret.
1410 unsigned AttrCount = 0;
1411 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1412 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1413 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1414 Attrs.hasAttribute(Idx, Attribute::InReg);
1415 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1416 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1417 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1418 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1419
1420 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1421 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1422 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1423 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1424 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
;
1425
1426 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1427 Attrs.hasAttribute(Idx, Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1428 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1429 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1430 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
;
1431
1432 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1433 Attrs.hasAttribute(Idx, Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1434 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1435 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1436 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1437
1438 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1439 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1440 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1441 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1442 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
;
1443
1444 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1445 Attrs.hasAttribute(Idx, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1446 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1447 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1448 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
;
1449
1450 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1451 Attrs.hasAttribute(Idx, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1452 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1453 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1454 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
;
1455
1456 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1457 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1458 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1459 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1460 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1461
1462 Assert(do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1463 !AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::typeIncompatible(Ty)),do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1464 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1465 AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible(Ty))do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1466 .getAsString(Idx),do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1467 V)do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
;
1468
1469 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1470 SmallPtrSet<Type*, 4> Visited;
1471 if (!PTy->getElementType()->isSized(&Visited)) {
1472 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1473 !Attrs.hasAttribute(Idx, Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1474 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1475 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1476 }
1477 if (!isa<PointerType>(PTy->getElementType()))
1478 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1479 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1480 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1481 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
;
1482 } else {
1483 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1484 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1485 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1486 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1487 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1488 "with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1489 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
;
1490 }
1491}
1492
1493// Check parameter attributes against a function type.
1494// The value V is printed in error messages.
1495void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1496 const Value *V) {
1497 if (Attrs.isEmpty())
1498 return;
1499
1500 bool SawNest = false;
1501 bool SawReturned = false;
1502 bool SawSRet = false;
1503 bool SawSwiftSelf = false;
1504 bool SawSwiftError = false;
1505
1506 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1507 unsigned Idx = Attrs.getSlotIndex(i);
1508
1509 Type *Ty;
1510 if (Idx == 0)
1511 Ty = FT->getReturnType();
1512 else if (Idx-1 < FT->getNumParams())
1513 Ty = FT->getParamType(Idx-1);
1514 else
1515 break; // VarArgs attributes, verified elsewhere.
1516
1517 verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1518
1519 if (Idx == 0)
1520 continue;
1521
1522 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1523 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1524 SawNest = true;
1525 }
1526
1527 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1528 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1529 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1530 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1531 "Incompatible "do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1532 "argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1533 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1534 SawReturned = true;
1535 }
1536
1537 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1538 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1539 Assert(Idx == 1 || Idx == 2,do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1540 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1541 SawSRet = true;
1542 }
1543
1544 if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
1545 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1546 SawSwiftSelf = true;
1547 }
1548
1549 if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
1550 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1551 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1552 SawSwiftError = true;
1553 }
1554
1555 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1556 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1557 V)do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1558 }
1559 }
1560
1561 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1562 return;
1563
1564 verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1565
1566 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1567 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1568 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1569 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1570
1571 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1572 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1573 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1574 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
;
1575
1576 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1577 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1578 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1579 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
;
1580
1581 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1582 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1583 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1584 Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1585 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
;
1586
1587 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1588 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1589 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1590 Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1591 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1592
1593 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1594 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1595 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1596 Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1597 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1598
1599 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1600 Attribute::OptimizeNone)) {
1601 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),do { if (!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (false)
1602 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (false)
;
1603
1604 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1605 Attribute::OptimizeForSize),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1606 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1607
1608 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (false)
1609 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1610 }
1611
1612 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1613 Attribute::JumpTable)) {
1614 const GlobalValue *GV = cast<GlobalValue>(V);
1615 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1616 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1617 }
1618
1619 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) {
1620 std::pair<unsigned, Optional<unsigned>> Args =
1621 Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex);
1622
1623 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1624 if (ParamNo >= FT->getNumParams()) {
1625 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1626 return false;
1627 }
1628
1629 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1630 CheckFailed("'allocsize' " + Name +
1631 " argument must refer to an integer parameter",
1632 V);
1633 return false;
1634 }
1635
1636 return true;
1637 };
1638
1639 if (!CheckParam("element size", Args.first))
1640 return;
1641
1642 if (Args.second && !CheckParam("number of elements", *Args.second))
1643 return;
1644 }
1645}
1646
1647void Verifier::verifyFunctionMetadata(
1648 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1649 for (const auto &Pair : MDs) {
1650 if (Pair.first == LLVMContext::MD_prof) {
1651 MDNode *MD = Pair.second;
1652 Assert(MD->getNumOperands() == 2,do { if (!(MD->getNumOperands() == 2)) { CheckFailed("!prof annotations should have exactly 2 operands"
, MD); return; } } while (false)
1653 "!prof annotations should have exactly 2 operands", MD)do { if (!(MD->getNumOperands() == 2)) { CheckFailed("!prof annotations should have exactly 2 operands"
, MD); return; } } while (false)
;
1654
1655 // Check first operand.
1656 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1657 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1658 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1659 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1660 MDString *MDS = cast<MDString>(MD->getOperand(0));
1661 StringRef ProfName = MDS->getString();
1662 Assert(ProfName.equals("function_entry_count"),do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
1663 "first operand should be 'function_entry_count'", MD)do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
;
1664
1665 // Check second operand.
1666 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1667 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1668 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1669 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1670 }
1671 }
1672}
1673
1674void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1675 if (!ConstantExprVisited.insert(EntryC).second)
1676 return;
1677
1678 SmallVector<const Constant *, 16> Stack;
1679 Stack.push_back(EntryC);
1680
1681 while (!Stack.empty()) {
1682 const Constant *C = Stack.pop_back_val();
1683
1684 // Check this constant expression.
1685 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1686 visitConstantExpr(CE);
1687
1688 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1689 // Global Values get visited separately, but we do need to make sure
1690 // that the global value is in the correct module
1691 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1692 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1693 continue;
1694 }
1695
1696 // Visit all sub-expressions.
1697 for (const Use &U : C->operands()) {
1698 const auto *OpC = dyn_cast<Constant>(U);
1699 if (!OpC)
1700 continue;
1701 if (!ConstantExprVisited.insert(OpC).second)
1702 continue;
1703 Stack.push_back(OpC);
1704 }
1705 }
1706}
1707
1708void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1709 if (CE->getOpcode() == Instruction::BitCast)
1710 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1711 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1712 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1713
1714 if (CE->getOpcode() == Instruction::IntToPtr ||
1715 CE->getOpcode() == Instruction::PtrToInt) {
1716 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1717 ? CE->getType()
1718 : CE->getOperand(0)->getType();
1719 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1720 ? "inttoptr not supported for non-integral pointers"
1721 : "ptrtoint not supported for non-integral pointers";
1722 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1723 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1724 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1725 }
1726}
1727
1728bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1729 if (Attrs.getNumSlots() == 0)
1730 return true;
1731
1732 unsigned LastSlot = Attrs.getNumSlots() - 1;
1733 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1734 if (LastIndex <= Params
1735 || (LastIndex == AttributeSet::FunctionIndex
1736 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1737 return true;
1738
1739 return false;
1740}
1741
1742/// Verify that statepoint intrinsic is well formed.
1743void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1744 assert(CS.getCalledFunction() &&((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 1746, __PRETTY_FUNCTION__))
1745 CS.getCalledFunction()->getIntrinsicID() ==((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 1746, __PRETTY_FUNCTION__))
1746 Intrinsic::experimental_gc_statepoint)((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 1746, __PRETTY_FUNCTION__))
;
1747
1748 const Instruction &CI = *CS.getInstruction();
1749
1750 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1751 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1752 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1753 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1754 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
;
1755
1756 const Value *IDV = CS.getArgument(0);
1757 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
1758 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
;
1759
1760 const Value *NumPatchBytesV = CS.getArgument(1);
1761 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1762 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1763 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
;
1764 const int64_t NumPatchBytes =
1765 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1766 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 1766, __PRETTY_FUNCTION__))
;
1767 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1768 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1769 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
;
1770
1771 const Value *Target = CS.getArgument(2);
1772 auto *PT = dyn_cast<PointerType>(Target->getType());
1773 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
1774 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
;
1775 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1776
1777 const Value *NumCallArgsV = CS.getArgument(3);
1778 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1779 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1780 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1781 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
;
1782 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1783 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1784 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1785 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1786 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
;
1787 const int NumParams = (int)TargetFuncType->getNumParams();
1788 if (TargetFuncType->isVarArg()) {
1789 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
1790 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
;
1791
1792 // TODO: Remove this limitation
1793 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1794 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1795 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1796 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
;
1797 } else
1798 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
1799 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
;
1800
1801 const Value *FlagsV = CS.getArgument(4);
1802 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
1803 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
;
1804 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1805 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
1806 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
;
1807
1808 // Verify that the types of the call parameter arguments match
1809 // the type of the wrapped callee.
1810 for (int i = 0; i < NumParams; i++) {
1811 Type *ParamType = TargetFuncType->getParamType(i);
1812 Type *ArgType = CS.getArgument(5 + i)->getType();
1813 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1814 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1815 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1816 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
;
1817 }
1818
1819 const int EndCallArgsInx = 4 + NumCallArgs;
1820
1821 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1822 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1823 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1824 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1825 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1826 const int NumTransitionArgs =
1827 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1828 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
1829 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
;
1830 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1831
1832 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1833 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1834 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1835 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1836 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1837 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1838 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1839 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1840 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
;
1841
1842 const int ExpectedNumArgs =
1843 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1844 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
1845 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
;
1846
1847 // Check that the only uses of this gc.statepoint are gc.result or
1848 // gc.relocate calls which are tied to this statepoint and thus part
1849 // of the same statepoint sequence
1850 for (const User *U : CI.users()) {
1851 const CallInst *Call = dyn_cast<const CallInst>(U);
1852 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (false)
;
1853 if (!Call) continue;
1854 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1855 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1856 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1857 &CI, U)do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
;
1858 if (isa<GCResultInst>(Call)) {
1859 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
1860 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
;
1861 } else if (isa<GCRelocateInst>(Call)) {
1862 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
1863 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
;
1864 }
1865 }
1866
1867 // Note: It is legal for a single derived pointer to be listed multiple
1868 // times. It's non-optimal, but it is legal. It can also happen after
1869 // insertion if we strip a bitcast away.
1870 // Note: It is really tempting to check that each base is relocated and
1871 // that a derived pointer is never reused as a base pointer. This turns
1872 // out to be problematic since optimizations run after safepoint insertion
1873 // can recognize equality properties that the insertion logic doesn't know
1874 // about. See example statepoint.ll in the verifier subdirectory
1875}
1876
1877void Verifier::verifyFrameRecoverIndices() {
1878 for (auto &Counts : FrameEscapeInfo) {
1879 Function *F = Counts.first;
1880 unsigned EscapedObjectCount = Counts.second.first;
1881 unsigned MaxRecoveredIndex = Counts.second.second;
1882 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1883 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1884 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1885 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1886 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
;
1887 }
1888}
1889
1890static Instruction *getSuccPad(TerminatorInst *Terminator) {
1891 BasicBlock *UnwindDest;
1892 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1893 UnwindDest = II->getUnwindDest();
1894 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1895 UnwindDest = CSI->getUnwindDest();
1896 else
1897 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1898 return UnwindDest->getFirstNonPHI();
1899}
1900
1901void Verifier::verifySiblingFuncletUnwinds() {
1902 SmallPtrSet<Instruction *, 8> Visited;
1903 SmallPtrSet<Instruction *, 8> Active;
1904 for (const auto &Pair : SiblingFuncletInfo) {
1905 Instruction *PredPad = Pair.first;
1906 if (Visited.count(PredPad))
1907 continue;
1908 Active.insert(PredPad);
1909 TerminatorInst *Terminator = Pair.second;
1910 do {
1911 Instruction *SuccPad = getSuccPad(Terminator);
1912 if (Active.count(SuccPad)) {
1913 // Found a cycle; report error
1914 Instruction *CyclePad = SuccPad;
1915 SmallVector<Instruction *, 8> CycleNodes;
1916 do {
1917 CycleNodes.push_back(CyclePad);
1918 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1919 if (CycleTerminator != CyclePad)
1920 CycleNodes.push_back(CycleTerminator);
1921 CyclePad = getSuccPad(CycleTerminator);
1922 } while (CyclePad != SuccPad);
1923 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
1924 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
1925 }
1926 // Don't re-walk a node we've already checked
1927 if (!Visited.insert(SuccPad).second)
1928 break;
1929 // Walk to this successor if it has a map entry.
1930 PredPad = SuccPad;
1931 auto TermI = SiblingFuncletInfo.find(PredPad);
1932 if (TermI == SiblingFuncletInfo.end())
1933 break;
1934 Terminator = TermI->second;
1935 Active.insert(PredPad);
1936 } while (true);
1937 // Each node only has one successor, so we've walked all the active
1938 // nodes' successors.
1939 Active.clear();
1940 }
1941}
1942
1943// visitFunction - Verify that a function is ok.
1944//
1945void Verifier::visitFunction(const Function &F) {
1946 visitGlobalValue(F);
1947
1948 // Check function arguments.
1949 FunctionType *FT = F.getFunctionType();
1950 unsigned NumArgs = F.arg_size();
1951
1952 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1953 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
1954
1955 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
1956 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1957 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1958 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
1959 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1960 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1961 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
1962
1963 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
1964 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
1965
1966 AttributeSet Attrs = F.getAttributes();
1967
1968 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
1969 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
1970
1971 // Check function attributes.
1972 verifyFunctionAttrs(FT, Attrs, &F);
1973
1974 // On function declarations/definitions, we do not support the builtin
1975 // attribute. We do not check this in VerifyFunctionAttrs since that is
1976 // checking for Attributes that can/can not ever be on functions.
1977 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (false)
1978 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (false)
;
1979
1980 // Check that this function meets the restrictions on this calling convention.
1981 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1982 // restrictions can be lifted.
1983 switch (F.getCallingConv()) {
1
Control jumps to the 'default' case at line 1984
1984 default:
1985 case CallingConv::C:
1986 break;
2
Execution continues on line 1998
1987 case CallingConv::Fast:
1988 case CallingConv::Cold:
1989 case CallingConv::Intel_OCL_BI:
1990 case CallingConv::PTX_Kernel:
1991 case CallingConv::PTX_Device:
1992 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
1993 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
1994 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
1995 break;
1996 }
1997
1998 bool isLLVMdotName = F.getName().size() >= 5 &&
3
Assuming the condition is false
1999 F.getName().substr(0, 5) == "llvm.";
2000
2001 // Check that the argument values match the function type for this function...
2002 unsigned i = 0;
2003 for (const Argument &Arg : F.args()) {
2004 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2005 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2006 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2007 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2008 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2009 if (!isLLVMdotName) {
2010 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2011 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2012 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2013 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2014 }
2015
2016 // Check that swifterror argument is only used by loads and stores.
2017 if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
2018 verifySwiftErrorValue(&Arg);
2019 }
2020 ++i;
2021 }
2022
2023 if (!isLLVMdotName)
4
Taking true branch
2024 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
2025 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2026
2027 // Get the function metadata attachments.
2028 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2029 F.getAllMetadata(MDs);
2030 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 2030, __PRETTY_FUNCTION__))
;
2031 verifyFunctionMetadata(MDs);
2032
2033 // Check validity of the personality function
2034 if (F.hasPersonalityFn()) {
5
Assuming the condition is false
6
Taking false branch
2035 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2036 if (Per)
2037 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2038 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2039 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2040 }
2041
2042 if (F.isMaterializable()) {
7
Assuming the condition is false
8
Taking false branch
2043 // Function has a body somewhere we can't see.
2044 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2045 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2046 } else if (F.isDeclaration()) {
9
Assuming the condition is false
10
Taking false branch
2047 for (const auto &I : MDs) {
2048 AssertDI(I.first != LLVMContext::MD_dbg,do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
2049 "function declaration may not have a !dbg attachment", &F)do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
;
2050 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2051 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2052
2053 // Verify the metadata itself.
2054 visitMDNode(*I.second);
2055 }
2056 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2057 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2058 } else {
2059 // Verify that this function (which has a body) is not named "llvm.*". It
2060 // is not legal to define intrinsics.
2061 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
2062
2063 // Check the entry node
2064 const BasicBlock *Entry = &F.getEntryBlock();
2065 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
2066 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2067
2068 // The address of the entry block cannot be taken, unless it is dead.
2069 if (Entry->hasAddressTaken()) {
11
Assuming the condition is false
12
Taking false branch
2070 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2071 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2072 }
2073
2074 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2075 // Visit metadata attachments.
2076 for (const auto &I : MDs) {
13
Assuming '__begin' is equal to '__end'
2077 // Verify that the attachment is legal.
2078 switch (I.first) {
2079 default:
2080 break;
2081 case LLVMContext::MD_dbg:
2082 ++NumDebugAttachments;
2083 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2084 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2085 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2086 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2087 break;
2088 case LLVMContext::MD_prof:
2089 ++NumProfAttachments;
2090 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2091 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2092 break;
2093 }
2094
2095 // Verify the metadata itself.
2096 visitMDNode(*I.second);
2097 }
2098 }
2099
2100 // If this function is actually an intrinsic, verify that it is only used in
2101 // direct call/invokes, never having its "address taken".
2102 // Only do this if the module is materialized, otherwise we don't have all the
2103 // uses.
2104 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
14
Assuming the condition is false
2105 const User *U;
2106 if (F.hasAddressTaken(&U))
2107 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2108 }
2109
2110 Assert(!F.hasDLLImportStorageClass() ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2111 (F.isDeclaration() && F.hasExternalLinkage()) ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2112 F.hasAvailableExternallyLinkage(),do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2113 "Function is marked as dllimport, but not external.", &F)do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
;
2114
2115 auto *N = F.getSubprogram();
2116 if (!N)
15
Assuming 'N' is non-null
16
Taking false branch
2117 return;
2118
2119 visitDISubprogram(*N);
2120
2121 // Check that all !dbg attachments lead to back to N (or, at least, another
2122 // subprogram that describes the same function).
2123 //
2124 // FIXME: Check this incrementally while visiting !dbg attachments.
2125 // FIXME: Only check when N is the canonical subprogram for F.
2126 SmallPtrSet<const MDNode *, 32> Seen;
2127 for (auto &BB : F)
2128 for (auto &I : BB) {
2129 // Be careful about using DILocation here since we might be dealing with
2130 // broken code (this is the Verifier after all).
2131 DILocation *DL =
2132 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2133 if (!DL)
17
Assuming 'DL' is non-null
18
Taking false branch
2134 continue;
2135 if (!Seen.insert(DL).second)
19
Assuming the condition is false
20
Taking false branch
2136 continue;
2137
2138 DILocalScope *Scope = DL->getInlinedAtScope();
2139 if (Scope && !Seen.insert(Scope).second)
21
Assuming 'Scope' is null
22
Taking false branch
2140 continue;
2141
2142 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
23
'?' condition is false
24
'SP' initialized to a null pointer value
2143
2144 // Scope and SP could be the same MDNode and we don't want to skip
2145 // validation in that case
2146 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
25
Taking false branch
2147 continue;
2148
2149 // FIXME: Once N is canonical, check "SP == &N".
2150 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
26
Within the expansion of the macro 'AssertDI':
a
Called C++ object pointer is null
2151 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2152 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2153 }
2154}
2155
2156// verifyBasicBlock - Verify that a basic block is well formed...
2157//
2158void Verifier::visitBasicBlock(BasicBlock &BB) {
2159 InstsInThisBlock.clear();
2160
2161 // Ensure that basic blocks have terminators!
2162 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2163
2164 // Check constraints that this basic block imposes on all of the PHI nodes in
2165 // it.
2166 if (isa<PHINode>(BB.front())) {
2167 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2168 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2169 std::sort(Preds.begin(), Preds.end());
2170 PHINode *PN;
2171 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2172 // Ensure that PHI nodes have at least one entry!
2173 Assert(PN->getNumIncomingValues() != 0,do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2174 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2175 "the PHI should be removed!",do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2176 PN)do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
;
2177 Assert(PN->getNumIncomingValues() == Preds.size(),do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2178 "PHINode should have one entry for each predecessor of its "do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2179 "parent basic block!",do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2180 PN)do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
;
2181
2182 // Get and sort all incoming values in the PHI node...
2183 Values.clear();
2184 Values.reserve(PN->getNumIncomingValues());
2185 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2186 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2187 PN->getIncomingValue(i)));
2188 std::sort(Values.begin(), Values.end());
2189
2190 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2191 // Check to make sure that if there is more than one entry for a
2192 // particular basic block in this PHI node, that the incoming values are
2193 // all identical.
2194 //
2195 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2196 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2197 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2198 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2199 PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
;
2200
2201 // Check to make sure that the predecessors and PHI node entries are
2202 // matched up.
2203 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2204 "PHI node entries do not match predecessors!", PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2205 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
;
2206 }
2207 }
2208 }
2209
2210 // Check that all instructions have their parent pointers set up correctly.
2211 for (auto &I : BB)
2212 {
2213 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2214 }
2215}
2216
2217void Verifier::visitTerminatorInst(TerminatorInst &I) {
2218 // Ensure that terminators only exist at the end of the basic block.
2219 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2220 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2221 visitInstruction(I);
2222}
2223
2224void Verifier::visitBranchInst(BranchInst &BI) {
2225 if (BI.isConditional()) {
2226 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2227 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2228 }
2229 visitTerminatorInst(BI);
2230}
2231
2232void Verifier::visitReturnInst(ReturnInst &RI) {
2233 Function *F = RI.getParent()->getParent();
2234 unsigned N = RI.getNumOperands();
2235 if (F->getReturnType()->isVoidTy())
2236 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2237 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2238 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2239 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2240 else
2241 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2242 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2243 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2244 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2245
2246 // Check to make sure that the return value has necessary properties for
2247 // terminators...
2248 visitTerminatorInst(RI);
2249}
2250
2251void Verifier::visitSwitchInst(SwitchInst &SI) {
2252 // Check to make sure that all of the constants in the switch instruction
2253 // have the same type as the switched-on value.
2254 Type *SwitchTy = SI.getCondition()->getType();
2255 SmallPtrSet<ConstantInt*, 32> Constants;
2256 for (auto &Case : SI.cases()) {
2257 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2258 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2259 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2260 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2261 }
2262
2263 visitTerminatorInst(SI);
2264}
2265
2266void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2267 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2268 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2269 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2270 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2271 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2272
2273 visitTerminatorInst(BI);
2274}
2275
2276void Verifier::visitSelectInst(SelectInst &SI) {
2277 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2278 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2279 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2280
2281 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2282 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2283 visitInstruction(SI);
2284}
2285
2286/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2287/// a pass, if any exist, it's an error.
2288///
2289void Verifier::visitUserOp1(Instruction &I) {
2290 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2291}
2292
2293void Verifier::visitTruncInst(TruncInst &I) {
2294 // Get the source and destination types
2295 Type *SrcTy = I.getOperand(0)->getType();
2296 Type *DestTy = I.getType();
2297
2298 // Get the size of the types in bits, we'll need this later
2299 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2300 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2301
2302 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2303 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2304 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2305 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2306 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2307
2308 visitInstruction(I);
2309}
2310
2311void Verifier::visitZExtInst(ZExtInst &I) {
2312 // Get the source and destination types
2313 Type *SrcTy = I.getOperand(0)->getType();
2314 Type *DestTy = I.getType();
2315
2316 // Get the size of the types in bits, we'll need this later
2317 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2318 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2319 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2320 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2321 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2322 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2323
2324 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2325
2326 visitInstruction(I);
2327}
2328
2329void Verifier::visitSExtInst(SExtInst &I) {
2330 // Get the source and destination types
2331 Type *SrcTy = I.getOperand(0)->getType();
2332 Type *DestTy = I.getType();
2333
2334 // Get the size of the types in bits, we'll need this later
2335 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2336 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2337
2338 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2339 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2340 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2341 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2342 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2343
2344 visitInstruction(I);
2345}
2346
2347void Verifier::visitFPTruncInst(FPTruncInst &I) {
2348 // Get the source and destination types
2349 Type *SrcTy = I.getOperand(0)->getType();
2350 Type *DestTy = I.getType();
2351 // Get the size of the types in bits, we'll need this later
2352 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2353 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2354
2355 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2356 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2357 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2358 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2359 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2360
2361 visitInstruction(I);
2362}
2363
2364void Verifier::visitFPExtInst(FPExtInst &I) {
2365 // Get the source and destination types
2366 Type *SrcTy = I.getOperand(0)->getType();
2367 Type *DestTy = I.getType();
2368
2369 // Get the size of the types in bits, we'll need this later
2370 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2371 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2372
2373 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2374 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2375 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2376 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2377 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2378
2379 visitInstruction(I);
2380}
2381
2382void Verifier::visitUIToFPInst(UIToFPInst &I) {
2383 // Get the source and destination types
2384 Type *SrcTy = I.getOperand(0)->getType();
2385 Type *DestTy = I.getType();
2386
2387 bool SrcVec = SrcTy->isVectorTy();
2388 bool DstVec = DestTy->isVectorTy();
2389
2390 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2391 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2392 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2393 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2394 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2395 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2396
2397 if (SrcVec && DstVec)
2398 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2399 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2400 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2401
2402 visitInstruction(I);
2403}
2404
2405void Verifier::visitSIToFPInst(SIToFPInst &I) {
2406 // Get the source and destination types
2407 Type *SrcTy = I.getOperand(0)->getType();
2408 Type *DestTy = I.getType();
2409
2410 bool SrcVec = SrcTy->isVectorTy();
2411 bool DstVec = DestTy->isVectorTy();
2412
2413 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2414 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2415 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2416 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2417 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2418 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2419
2420 if (SrcVec && DstVec)
2421 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2422 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2423 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2424
2425 visitInstruction(I);
2426}
2427
2428void Verifier::visitFPToUIInst(FPToUIInst &I) {
2429 // Get the source and destination types
2430 Type *SrcTy = I.getOperand(0)->getType();
2431 Type *DestTy = I.getType();
2432
2433 bool SrcVec = SrcTy->isVectorTy();
2434 bool DstVec = DestTy->isVectorTy();
2435
2436 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2437 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2438 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2439 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2440 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2441 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2442
2443 if (SrcVec && DstVec)
2444 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2445 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2446 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2447
2448 visitInstruction(I);
2449}
2450
2451void Verifier::visitFPToSIInst(FPToSIInst &I) {
2452 // Get the source and destination types
2453 Type *SrcTy = I.getOperand(0)->getType();
2454 Type *DestTy = I.getType();
2455
2456 bool SrcVec = SrcTy->isVectorTy();
2457 bool DstVec = DestTy->isVectorTy();
2458
2459 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2460 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2461 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2462 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2463 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2464 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2465
2466 if (SrcVec && DstVec)
2467 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2468 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2469 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2470
2471 visitInstruction(I);
2472}
2473
2474void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2475 // Get the source and destination types
2476 Type *SrcTy = I.getOperand(0)->getType();
2477 Type *DestTy = I.getType();
2478
2479 Assert(SrcTy->getScalarType()->isPointerTy(),do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
2480 "PtrToInt source must be pointer", &I)do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
;
2481
2482 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2483 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2484 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2485
2486 Assert(DestTy->getScalarType()->isIntegerTy(),do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
2487 "PtrToInt result must be integral", &I)do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
;
2488 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2489 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2490
2491 if (SrcTy->isVectorTy()) {
2492 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2493 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2494 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2495 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2496 }
2497
2498 visitInstruction(I);
2499}
2500
2501void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2502 // Get the source and destination types
2503 Type *SrcTy = I.getOperand(0)->getType();
2504 Type *DestTy = I.getType();
2505
2506 Assert(SrcTy->getScalarType()->isIntegerTy(),do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
2507 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
;
2508 Assert(DestTy->getScalarType()->isPointerTy(),do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
2509 "IntToPtr result must be a pointer", &I)do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
;
2510
2511 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2512 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2513 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2514
2515 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2516 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2517 if (SrcTy->isVectorTy()) {
2518 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2519 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2520 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2521 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2522 }
2523 visitInstruction(I);
2524}
2525
2526void Verifier::visitBitCastInst(BitCastInst &I) {
2527 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2528 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2529 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2530 visitInstruction(I);
2531}
2532
2533void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2534 Type *SrcTy = I.getOperand(0)->getType();
2535 Type *DestTy = I.getType();
2536
2537 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2538 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2539 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2540 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2541 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2542 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2543 if (SrcTy->isVectorTy())
2544 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2545 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2546 visitInstruction(I);
2547}
2548
2549/// visitPHINode - Ensure that a PHI node is well formed.
2550///
2551void Verifier::visitPHINode(PHINode &PN) {
2552 // Ensure that the PHI nodes are all grouped together at the top of the block.
2553 // This can be tested by checking whether the instruction before this is
2554 // either nonexistent (because this is begin()) or is a PHI node. If not,
2555 // then there is some other instruction before a PHI.
2556 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2557 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2558 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2559
2560 // Check that a PHI doesn't yield a Token.
2561 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2562
2563 // Check that all of the values of the PHI node have the same type as the
2564 // result, and that the incoming blocks are really basic blocks.
2565 for (Value *IncValue : PN.incoming_values()) {
2566 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2567 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2568 }
2569
2570 // All other PHI node constraints are checked in the visitBasicBlock method.
2571
2572 visitInstruction(PN);
2573}
2574
2575void Verifier::verifyCallSite(CallSite CS) {
2576 Instruction *I = CS.getInstruction();
2577
2578 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
2579 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
;
2580 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2581
2582 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
2583 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
;
2584
2585 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
2586 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
;
2587
2588 FunctionType *FTy = CS.getFunctionType();
2589
2590 // Verify that the correct number of arguments are being passed
2591 if (FTy->isVarArg())
2592 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
2593 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
;
2594 else
2595 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
2596 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
;
2597
2598 // Verify that all arguments to the call match the function type.
2599 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2600 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2601 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2602 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
;
2603
2604 AttributeSet Attrs = CS.getAttributes();
2605
2606 Assert(verifyAttributeCount(Attrs, CS.arg_size()),do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
2607 "Attribute after last parameter!", I)do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
;
2608
2609 // Verify call attributes.
2610 verifyFunctionAttrs(FTy, Attrs, I);
2611
2612 // Conservatively check the inalloca argument.
2613 // We have a bug if we can find that there is an underlying alloca without
2614 // inalloca.
2615 if (CS.hasInAllocaArgument()) {
2616 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2617 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2618 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2619 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2620 }
2621
2622 // For each argument of the callsite, if it has the swifterror argument,
2623 // make sure the underlying alloca/parameter it comes from has a swifterror as
2624 // well.
2625 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2626 if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
2627 Value *SwiftErrorArg = CS.getArgument(i);
2628 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2629 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2630 "swifterror argument for call has mismatched alloca", AI, I)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2631 continue;
2632 }
2633 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2634 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, I); return; } } while (false)
;
2635 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
2636 "swifterror argument for call has mismatched parameter", ArgI, I)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
;
2637 }
2638
2639 if (FTy->isVarArg()) {
2640 // FIXME? is 'nest' even legal here?
2641 bool SawNest = false;
2642 bool SawReturned = false;
2643
2644 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2645 if (Attrs.hasAttribute(Idx, Attribute::Nest))
2646 SawNest = true;
2647 if (Attrs.hasAttribute(Idx, Attribute::Returned))
2648 SawReturned = true;
2649 }
2650
2651 // Check attributes on the varargs part.
2652 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2653 Type *Ty = CS.getArgument(Idx-1)->getType();
2654 verifyParameterAttrs(Attrs, Idx, Ty, false, I);
2655
2656 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2657 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (false)
;
2658 SawNest = true;
2659 }
2660
2661 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2662 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
2663 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
;
2664 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2665 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2666 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2667 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
;
2668 SawReturned = true;
2669 }
2670
2671 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
2672 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
;
2673
2674 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2675 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I)do { if (!(Idx == CS.arg_size())) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
;
2676 }
2677 }
2678
2679 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2680 if (CS.getCalledFunction() == nullptr ||
2681 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2682 for (Type *ParamTy : FTy->params()) {
2683 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
2684 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2685 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
2686 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2687 }
2688 }
2689
2690 // Verify that indirect calls don't return tokens.
2691 if (CS.getCalledFunction() == nullptr)
2692 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
2693 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
2694
2695 if (Function *F = CS.getCalledFunction())
2696 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2697 visitIntrinsicCallSite(ID, CS);
2698
2699 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2700 // at most one "gc-transition" operand bundle.
2701 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2702 FoundGCTransitionBundle = false;
2703 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2704 OperandBundleUse BU = CS.getOperandBundleAt(i);
2705 uint32_t Tag = BU.getTagID();
2706 if (Tag == LLVMContext::OB_deopt) {
2707 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, I); return; } } while (false)
;
2708 FoundDeoptBundle = true;
2709 } else if (Tag == LLVMContext::OB_gc_transition) {
2710 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
2711 I)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
;
2712 FoundGCTransitionBundle = true;
2713 } else if (Tag == LLVMContext::OB_funclet) {
2714 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, I); return; } } while (false)
;
2715 FoundFuncletBundle = true;
2716 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
2717 "Expected exactly one funclet bundle operand", I)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
;
2718 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2719 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2720 I)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
;
2721 }
2722 }
2723
2724 // Verify that each inlinable callsite of a debug-info-bearing function in a
2725 // debug-info-bearing function has a debug location attached to it. Failure to
2726 // do so causes assertion failures when the inliner sets up inline scope info.
2727 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2728 CS.getCalledFunction()->getSubprogram())
2729 Assert(I->getDebugLoc(), "inlinable function call in a function with debug "do { if (!(I->getDebugLoc())) { CheckFailed("inlinable function call in a function with debug "
"info must have a !dbg location", I); return; } } while (false
)
2730 "info must have a !dbg location",do { if (!(I->getDebugLoc())) { CheckFailed("inlinable function call in a function with debug "
"info must have a !dbg location", I); return; } } while (false
)
2731 I)do { if (!(I->getDebugLoc())) { CheckFailed("inlinable function call in a function with debug "
"info must have a !dbg location", I); return; } } while (false
)
;
2732
2733 visitInstruction(*I);
2734}
2735
2736/// Two types are "congruent" if they are identical, or if they are both pointer
2737/// types with different pointee types and the same address space.
2738static bool isTypeCongruent(Type *L, Type *R) {
2739 if (L == R)
2740 return true;
2741 PointerType *PL = dyn_cast<PointerType>(L);
2742 PointerType *PR = dyn_cast<PointerType>(R);
2743 if (!PL || !PR)
2744 return false;
2745 return PL->getAddressSpace() == PR->getAddressSpace();
2746}
2747
2748static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2749 static const Attribute::AttrKind ABIAttrs[] = {
2750 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2751 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2752 Attribute::SwiftError};
2753 AttrBuilder Copy;
2754 for (auto AK : ABIAttrs) {
2755 if (Attrs.hasAttribute(I + 1, AK))
2756 Copy.addAttribute(AK);
2757 }
2758 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2759 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2760 return Copy;
2761}
2762
2763void Verifier::verifyMustTailCall(CallInst &CI) {
2764 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
2765
2766 // - The caller and callee prototypes must match. Pointer types of
2767 // parameters or return types may differ in pointee type, but not
2768 // address space.
2769 Function *F = CI.getParent()->getParent();
2770 FunctionType *CallerTy = F->getFunctionType();
2771 FunctionType *CalleeTy = CI.getFunctionType();
2772 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
2773 "cannot guarantee tail call due to mismatched parameter counts", &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
2774 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
2775 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
2776 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
2777 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
2778 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2779 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2780 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2781 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
2782 }
2783
2784 // - The calling conventions of the caller and callee must match.
2785 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
2786 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
2787
2788 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2789 // returned, and inalloca, must match.
2790 AttributeSet CallerAttrs = F->getAttributes();
2791 AttributeSet CalleeAttrs = CI.getAttributes();
2792 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2793 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2794 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2795 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2796 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2797 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2798 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
2799 }
2800
2801 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2802 // or a pointer bitcast followed by a ret instruction.
2803 // - The ret instruction must return the (possibly bitcasted) value
2804 // produced by the call or void.
2805 Value *RetVal = &CI;
2806 Instruction *Next = CI.getNextNode();
2807
2808 // Handle the optional bitcast.
2809 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2810 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
2811 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
2812 RetVal = BI;
2813 Next = BI->getNextNode();
2814 }
2815
2816 // Check the return.
2817 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2818 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
2819 &CI)do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
2820 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
2821 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
2822}
2823
2824void Verifier::visitCallInst(CallInst &CI) {
2825 verifyCallSite(&CI);
2826
2827 if (CI.isMustTailCall())
2828 verifyMustTailCall(CI);
2829}
2830
2831void Verifier::visitInvokeInst(InvokeInst &II) {
2832 verifyCallSite(&II);
2833
2834 // Verify that the first non-PHI instruction of the unwind destination is an
2835 // exception handling instruction.
2836 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2837 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2838 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2839 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
2840
2841 visitTerminatorInst(II);
2842}
2843
2844/// visitBinaryOperator - Check that both arguments to the binary operator are
2845/// of the same type!
2846///
2847void Verifier::visitBinaryOperator(BinaryOperator &B) {
2848 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
2849 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
2850
2851 switch (B.getOpcode()) {
2852 // Check that integer arithmetic operators are only used with
2853 // integral operands.
2854 case Instruction::Add:
2855 case Instruction::Sub:
2856 case Instruction::Mul:
2857 case Instruction::SDiv:
2858 case Instruction::UDiv:
2859 case Instruction::SRem:
2860 case Instruction::URem:
2861 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
2862 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
2863 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2864 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2865 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2866 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2867 break;
2868 // Check that floating-point arithmetic operators are only used with
2869 // floating-point operands.
2870 case Instruction::FAdd:
2871 case Instruction::FSub:
2872 case Instruction::FMul:
2873 case Instruction::FDiv:
2874 case Instruction::FRem:
2875 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2876 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2877 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2878 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
2879 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2880 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2881 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2882 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2883 break;
2884 // Check that logical operators are only used with integral operands.
2885 case Instruction::And:
2886 case Instruction::Or:
2887 case Instruction::Xor:
2888 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
2889 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
2890 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2891 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2892 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
2893 break;
2894 case Instruction::Shl:
2895 case Instruction::LShr:
2896 case Instruction::AShr:
2897 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
2898 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
2899 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
2900 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
2901 break;
2902 default:
2903 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 2903)
;
2904 }
2905
2906 visitInstruction(B);
2907}
2908
2909void Verifier::visitICmpInst(ICmpInst &IC) {
2910 // Check that the operands are the same type
2911 Type *Op0Ty = IC.getOperand(0)->getType();
2912 Type *Op1Ty = IC.getOperand(1)->getType();
2913 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
2914 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
2915 // Check that the operands are the right type
2916 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
2917 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
2918 // Check that the predicate is valid.
2919 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2920 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2921 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
;
2922
2923 visitInstruction(IC);
2924}
2925
2926void Verifier::visitFCmpInst(FCmpInst &FC) {
2927 // Check that the operands are the same type
2928 Type *Op0Ty = FC.getOperand(0)->getType();
2929 Type *Op1Ty = FC.getOperand(1)->getType();
2930 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
2931 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
2932 // Check that the operands are the right type
2933 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
2934 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
2935 // Check that the predicate is valid.
2936 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2937 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2938 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
;
2939
2940 visitInstruction(FC);
2941}
2942
2943void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2944 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2945 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2946 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
2947 visitInstruction(EI);
2948}
2949
2950void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2951 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2952 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2953 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
2954 visitInstruction(IE);
2955}
2956
2957void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2958 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2959 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2960 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
2961 visitInstruction(SV);
2962}
2963
2964void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2965 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2966
2967 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
2968 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
2969 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
2970 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2971 Type *ElTy =
2972 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2973 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
2974
2975 Assert(GEP.getType()->getScalarType()->isPointerTy() &&do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
2976 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
2977 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
;
2978
2979 if (GEP.getType()->isVectorTy()) {
2980 // Additional checks for vector GEPs.
2981 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2982 if (GEP.getPointerOperandType()->isVectorTy())
2983 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
2984 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
2985 for (Value *Idx : Idxs) {
2986 Type *IndexTy = Idx->getType();
2987 if (IndexTy->isVectorTy()) {
2988 unsigned IndexWidth = IndexTy->getVectorNumElements();
2989 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
2990 }
2991 Assert(IndexTy->getScalarType()->isIntegerTy(),do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
2992 "All GEP indices should be of integer type")do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
;
2993 }
2994 }
2995 visitInstruction(GEP);
2996}
2997
2998static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2999 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3000}
3001
3002void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3003 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 3004, __PRETTY_FUNCTION__))
3004 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 3004, __PRETTY_FUNCTION__))
;
3005
3006 unsigned NumOperands = Range->getNumOperands();
3007 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3008 unsigned NumRanges = NumOperands / 2;
3009 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3010
3011 ConstantRange LastRange(1); // Dummy initial value
3012 for (unsigned i = 0; i < NumRanges; ++i) {
3013 ConstantInt *Low =
3014 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3015 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3016 ConstantInt *High =
3017 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3018 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3019 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3020 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3021
3022 APInt HighV = High->getValue();
3023 APInt LowV = Low->getValue();
3024 ConstantRange CurRange(LowV, HighV);
3025 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3026 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3027 if (i != 0) {
3028 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3029 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3030 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3031 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3032 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3033 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3034 }
3035 LastRange = ConstantRange(LowV, HighV);
3036 }
3037 if (NumRanges > 2) {
3038 APInt FirstLow =
3039 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3040 APInt FirstHigh =
3041 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3042 ConstantRange FirstRange(FirstLow, FirstHigh);
3043 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3044 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3045 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3046 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3047 }
3048}
3049
3050void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3051 unsigned Size = DL.getTypeSizeInBits(Ty);
3052 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3053 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3054 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3055}
3056
3057void Verifier::visitLoadInst(LoadInst &LI) {
3058 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3059 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3060 Type *ElTy = LI.getType();
3061 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3062 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3063 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3064 if (LI.isAtomic()) {
3065 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3066 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3067 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3068 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3069 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3070 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3071 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3072 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3073 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3074 ElTy, &LI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3075 checkAtomicMemAccessSize(ElTy, &LI);
3076 } else {
3077 Assert(LI.getSynchScope() == CrossThread,do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
3078 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
;
3079 }
3080
3081 visitInstruction(LI);
3082}
3083
3084void Verifier::visitStoreInst(StoreInst &SI) {
3085 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3086 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3087 Type *ElTy = PTy->getElementType();
3088 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3089 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3090 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3091 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3092 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3093 if (SI.isAtomic()) {
3094 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3095 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3096 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3097 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3098 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3099 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3100 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3101 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3102 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3103 ElTy, &SI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3104 checkAtomicMemAccessSize(ElTy, &SI);
3105 } else {
3106 Assert(SI.getSynchScope() == CrossThread,do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3107 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3108 }
3109 visitInstruction(SI);
3110}
3111
3112/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3113void Verifier::verifySwiftErrorCallSite(CallSite CS,
3114 const Value *SwiftErrorVal) {
3115 unsigned Idx = 0;
3116 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3117 I != E; ++I, ++Idx) {
3118 if (*I == SwiftErrorVal) {
3119 Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3120 "swifterror value when used in a callsite should be marked "do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3121 "with swifterror attribute",do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3122 SwiftErrorVal, CS)do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
;
3123 }
3124 }
3125}
3126
3127void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3128 // Check that swifterror value is only used by loads, stores, or as
3129 // a swifterror argument.
3130 for (const User *U : SwiftErrorVal->users()) {
3131 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3132 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3133 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3134 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3135 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3136 // If it is used by a store, check it is the second operand.
3137 if (auto StoreI = dyn_cast<StoreInst>(U))
3138 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3139 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3140 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3141 if (auto CallI = dyn_cast<CallInst>(U))
3142 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3143 if (auto II = dyn_cast<InvokeInst>(U))
3144 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3145 }
3146}
3147
3148void Verifier::visitAllocaInst(AllocaInst &AI) {
3149 SmallPtrSet<Type*, 4> Visited;
3150 PointerType *PTy = AI.getType();
3151 Assert(PTy->getAddressSpace() == 0,do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
3152 "Allocation instruction pointer not in the generic address space!",do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
3153 &AI)do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
;
3154 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3155 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3156 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3157 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3158 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3159 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3160
3161 if (AI.isSwiftError()) {
3162 verifySwiftErrorValue(&AI);
3163 }
3164
3165 visitInstruction(AI);
3166}
3167
3168void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3169
3170 // FIXME: more conditions???
3171 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3172 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3173 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3174 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3175 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3176 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3177 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3178 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3179 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3180 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3181 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3182 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3183 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3184 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3185 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3186
3187 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3188 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3189 Type *ElTy = PTy->getElementType();
3190 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3191 "cmpxchg operand must have integer or pointer type",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3192 ElTy, &CXI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3193 checkAtomicMemAccessSize(ElTy, &CXI);
3194 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3195 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3196 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3197 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3198 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3199 visitInstruction(CXI);
3200}
3201
3202void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3203 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3204 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3205 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3206 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3207 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3208 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3209 Type *ElTy = PTy->getElementType();
3210 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3211 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3212 checkAtomicMemAccessSize(ElTy, &RMWI);
3213 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3214 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3215 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3216 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3217 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3218 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
;
3219 visitInstruction(RMWI);
3220}
3221
3222void Verifier::visitFenceInst(FenceInst &FI) {
3223 const AtomicOrdering Ordering = FI.getOrdering();
3224 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3225 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3226 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3227 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3228 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3229 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3230 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3231 visitInstruction(FI);
3232}
3233
3234void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3235 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3236 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3237 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3238
3239 visitInstruction(EVI);
3240}
3241
3242void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3243 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3244 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3245 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3246 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3247
3248 visitInstruction(IVI);
3249}
3250
3251static Value *getParentPad(Value *EHPad) {
3252 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3253 return FPI->getParentPad();
3254
3255 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3256}
3257
3258void Verifier::visitEHPadPredecessors(Instruction &I) {
3259 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 3259, __PRETTY_FUNCTION__))
;
3260
3261 BasicBlock *BB = I.getParent();
3262 Function *F = BB->getParent();
3263
3264 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3265
3266 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3267 // The landingpad instruction defines its parent as a landing pad block. The
3268 // landing pad block may be branched to only by the unwind edge of an
3269 // invoke.
3270 for (BasicBlock *PredBB : predecessors(BB)) {
3271 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3272 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3273 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3274 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3275 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3276 }
3277 return;
3278 }
3279 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3280 if (!pred_empty(BB))
3281 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3282 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3283 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3284 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3285 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3286 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3287 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3288 return;
3289 }
3290
3291 // Verify that each pred has a legal terminator with a legal to/from EH
3292 // pad relationship.
3293 Instruction *ToPad = &I;
3294 Value *ToPadParent = getParentPad(ToPad);
3295 for (BasicBlock *PredBB : predecessors(BB)) {
3296 TerminatorInst *TI = PredBB->getTerminator();
3297 Value *FromPad;
3298 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3299 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3300 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3301 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3302 FromPad = Bundle->Inputs[0];
3303 else
3304 FromPad = ConstantTokenNone::get(II->getContext());
3305 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3306 FromPad = CRI->getOperand(0);
3307 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3308 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3309 FromPad = CSI;
3310 } else {
3311 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3312 }
3313
3314 // The edge may exit from zero or more nested pads.
3315 SmallSet<Value *, 8> Seen;
3316 for (;; FromPad = getParentPad(FromPad)) {
3317 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3318 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3319 if (FromPad == ToPadParent) {
3320 // This is a legal unwind edge.
3321 break;
3322 }
3323 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3324 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3325 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3326 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3327 }
3328 }
3329}
3330
3331void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3332 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3333 // isn't a cleanup.
3334 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3335 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3336
3337 visitEHPadPredecessors(LPI);
3338
3339 if (!LandingPadResultTy)
3340 LandingPadResultTy = LPI.getType();
3341 else
3342 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3343 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3344 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3345 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3346
3347 Function *F = LPI.getParent()->getParent();
3348 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3349 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3350
3351 // The landingpad instruction must be the first non-PHI instruction in the
3352 // block.
3353 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3354 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3355 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3356
3357 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3358 Constant *Clause = LPI.getClause(i);
3359 if (LPI.isCatch(i)) {
3360 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3361 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3362 } else {
3363 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3364 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3365 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3366 }
3367 }
3368
3369 visitInstruction(LPI);
3370}
3371
3372void Verifier::visitResumeInst(ResumeInst &RI) {
3373 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3374 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3375
3376 if (!LandingPadResultTy)
3377 LandingPadResultTy = RI.getValue()->getType();
3378 else
3379 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3380 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3381 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3382 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3383
3384 visitTerminatorInst(RI);
3385}
3386
3387void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3388 BasicBlock *BB = CPI.getParent();
3389
3390 Function *F = BB->getParent();
3391 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3392 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3393
3394 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3395 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3396 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3397
3398 // The catchpad instruction must be the first non-PHI instruction in the
3399 // block.
3400 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3401 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3402
3403 visitEHPadPredecessors(CPI);
3404 visitFuncletPadInst(CPI);
3405}
3406
3407void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3408 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3409 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3410 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3411
3412 visitTerminatorInst(CatchReturn);
3413}
3414
3415void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3416 BasicBlock *BB = CPI.getParent();
3417
3418 Function *F = BB->getParent();
3419 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3420 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3421
3422 // The cleanuppad instruction must be the first non-PHI instruction in the
3423 // block.
3424 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3425 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3426 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3427
3428 auto *ParentPad = CPI.getParentPad();
3429 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3430 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3431
3432 visitEHPadPredecessors(CPI);
3433 visitFuncletPadInst(CPI);
3434}
3435
3436void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3437 User *FirstUser = nullptr;
3438 Value *FirstUnwindPad = nullptr;
3439 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3440 SmallSet<FuncletPadInst *, 8> Seen;
3441
3442 while (!Worklist.empty()) {
3443 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3444 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3445 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3446 Value *UnresolvedAncestorPad = nullptr;
3447 for (User *U : CurrentPad->users()) {
3448 BasicBlock *UnwindDest;
3449 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3450 UnwindDest = CRI->getUnwindDest();
3451 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3452 // We allow catchswitch unwind to caller to nest
3453 // within an outer pad that unwinds somewhere else,
3454 // because catchswitch doesn't have a nounwind variant.
3455 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3456 if (CSI->unwindsToCaller())
3457 continue;
3458 UnwindDest = CSI->getUnwindDest();
3459 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3460 UnwindDest = II->getUnwindDest();
3461 } else if (isa<CallInst>(U)) {
3462 // Calls which don't unwind may be found inside funclet
3463 // pads that unwind somewhere else. We don't *require*
3464 // such calls to be annotated nounwind.
3465 continue;
3466 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3467 // The unwind dest for a cleanup can only be found by
3468 // recursive search. Add it to the worklist, and we'll
3469 // search for its first use that determines where it unwinds.
3470 Worklist.push_back(CPI);
3471 continue;
3472 } else {
3473 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3474 continue;
3475 }
3476
3477 Value *UnwindPad;
3478 bool ExitsFPI;
3479 if (UnwindDest) {
3480 UnwindPad = UnwindDest->getFirstNonPHI();
3481 if (!cast<Instruction>(UnwindPad)->isEHPad())
3482 continue;
3483 Value *UnwindParent = getParentPad(UnwindPad);
3484 // Ignore unwind edges that don't exit CurrentPad.
3485 if (UnwindParent == CurrentPad)
3486 continue;
3487 // Determine whether the original funclet pad is exited,
3488 // and if we are scanning nested pads determine how many
3489 // of them are exited so we can stop searching their
3490 // children.
3491 Value *ExitedPad = CurrentPad;
3492 ExitsFPI = false;
3493 do {
3494 if (ExitedPad == &FPI) {
3495 ExitsFPI = true;
3496 // Now we can resolve any ancestors of CurrentPad up to
3497 // FPI, but not including FPI since we need to make sure
3498 // to check all direct users of FPI for consistency.
3499 UnresolvedAncestorPad = &FPI;
3500 break;
3501 }
3502 Value *ExitedParent = getParentPad(ExitedPad);
3503 if (ExitedParent == UnwindParent) {
3504 // ExitedPad is the ancestor-most pad which this unwind
3505 // edge exits, so we can resolve up to it, meaning that
3506 // ExitedParent is the first ancestor still unresolved.
3507 UnresolvedAncestorPad = ExitedParent;
3508 break;
3509 }
3510 ExitedPad = ExitedParent;
3511 } while (!isa<ConstantTokenNone>(ExitedPad));
3512 } else {
3513 // Unwinding to caller exits all pads.
3514 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3515 ExitsFPI = true;
3516 UnresolvedAncestorPad = &FPI;
3517 }
3518
3519 if (ExitsFPI) {
3520 // This unwind edge exits FPI. Make sure it agrees with other
3521 // such edges.
3522 if (FirstUser) {
3523 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3524 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3525 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3526 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3527 } else {
3528 FirstUser = U;
3529 FirstUnwindPad = UnwindPad;
3530 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3531 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3532 getParentPad(UnwindPad) == getParentPad(&FPI))
3533 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3534 }
3535 }
3536 // Make sure we visit all uses of FPI, but for nested pads stop as
3537 // soon as we know where they unwind to.
3538 if (CurrentPad != &FPI)
3539 break;
3540 }
3541 if (UnresolvedAncestorPad) {
3542 if (CurrentPad == UnresolvedAncestorPad) {
3543 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3544 // we've found an unwind edge that exits it, because we need to verify
3545 // all direct uses of FPI.
3546 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 3546, __PRETTY_FUNCTION__))
;
3547 continue;
3548 }
3549 // Pop off the worklist any nested pads that we've found an unwind
3550 // destination for. The pads on the worklist are the uncles,
3551 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3552 // for all ancestors of CurrentPad up to but not including
3553 // UnresolvedAncestorPad.
3554 Value *ResolvedPad = CurrentPad;
3555 while (!Worklist.empty()) {
3556 Value *UnclePad = Worklist.back();
3557 Value *AncestorPad = getParentPad(UnclePad);
3558 // Walk ResolvedPad up the ancestor list until we either find the
3559 // uncle's parent or the last resolved ancestor.
3560 while (ResolvedPad != AncestorPad) {
3561 Value *ResolvedParent = getParentPad(ResolvedPad);
3562 if (ResolvedParent == UnresolvedAncestorPad) {
3563 break;
3564 }
3565 ResolvedPad = ResolvedParent;
3566 }
3567 // If the resolved ancestor search didn't find the uncle's parent,
3568 // then the uncle is not yet resolved.
3569 if (ResolvedPad != AncestorPad)
3570 break;
3571 // This uncle is resolved, so pop it from the worklist.
3572 Worklist.pop_back();
3573 }
3574 }
3575 }
3576
3577 if (FirstUnwindPad) {
3578 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3579 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3580 Value *SwitchUnwindPad;
3581 if (SwitchUnwindDest)
3582 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3583 else
3584 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3585 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3586 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3587 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3588 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3589 }
3590 }
3591
3592 visitInstruction(FPI);
3593}
3594
3595void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3596 BasicBlock *BB = CatchSwitch.getParent();
3597
3598 Function *F = BB->getParent();
3599 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3600 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3601 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3602
3603 // The catchswitch instruction must be the first non-PHI instruction in the
3604 // block.
3605 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3606 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3607 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3608
3609 auto *ParentPad = CatchSwitch.getParentPad();
3610 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3611 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3612
3613 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3614 Instruction *I = UnwindDest->getFirstNonPHI();
3615 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3616 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3617 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3618 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3619
3620 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3621 if (getParentPad(I) == ParentPad)
3622 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3623 }
3624
3625 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3626 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3627
3628 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3629 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3630 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3631 }
3632
3633 visitEHPadPredecessors(CatchSwitch);
3634 visitTerminatorInst(CatchSwitch);
3635}
3636
3637void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3638 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3639 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3640 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
3641
3642 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3643 Instruction *I = UnwindDest->getFirstNonPHI();
3644 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3645 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3646 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3647 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
3648 }
3649
3650 visitTerminatorInst(CRI);
3651}
3652
3653void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3654 Instruction *Op = cast<Instruction>(I.getOperand(i));
3655 // If the we have an invalid invoke, don't try to compute the dominance.
3656 // We already reject it in the invoke specific checks and the dominance
3657 // computation doesn't handle multiple edges.
3658 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3659 if (II->getNormalDest() == II->getUnwindDest())
3660 return;
3661 }
3662
3663 // Quick check whether the def has already been encountered in the same block.
3664 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3665 // uses are defined to happen on the incoming edge, not at the instruction.
3666 //
3667 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3668 // wrapping an SSA value, assert that we've already encountered it. See
3669 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3670 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3671 return;
3672
3673 const Use &U = I.getOperandUse(i);
3674 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
3675 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
3676}
3677
3678void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3679 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
3680 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
3681 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3682 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3683 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
;
3684 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
3685 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
3686 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3687 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
3688 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
3689}
3690
3691/// verifyInstruction - Verify that an instruction is well formed.
3692///
3693void Verifier::visitInstruction(Instruction &I) {
3694 BasicBlock *BB = I.getParent();
3695 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
3696
3697 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3698 for (User *U : I.users()) {
3699 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
3700 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
3701 }
3702 }
3703
3704 // Check that void typed values don't have names
3705 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
3706 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
3707
3708 // Check that the return value of the instruction is either void or a legal
3709 // value type.
3710 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
3711 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
3712
3713 // Check that the instruction doesn't produce metadata. Calls are already
3714 // checked against the callee type.
3715 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
3716 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
3717
3718 // Check that all uses of the instruction, if they are instructions
3719 // themselves, actually have parent basic blocks. If the use is not an
3720 // instruction, it is an error!
3721 for (Use &U : I.uses()) {
3722 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3723 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3724 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3725 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3726 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
3727 else {
3728 CheckFailed("Use of instruction is not an instruction!", U);
3729 return;
3730 }
3731 }
3732
3733 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3734 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
3735
3736 // Check to make sure that only first-class-values are operands to
3737 // instructions.
3738 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3739 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
3740 }
3741
3742 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3743 // Check to make sure that the "address of" an intrinsic function is never
3744 // taken.
3745 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3746 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3747 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3748 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
3749 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3750 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3751 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3752 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3753 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3754 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3755 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3756 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3757 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3758 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3759 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
3760 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
3761 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
3762 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3763 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
3764 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
3765 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3766 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
3767 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
3768 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3769 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
3770 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
3771 } else if (isa<Instruction>(I.getOperand(i))) {
3772 verifyDominatesUse(I, i);
3773 } else if (isa<InlineAsm>(I.getOperand(i))) {
3774 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3775 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3776 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
;
3777 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3778 if (CE->getType()->isPtrOrPtrVectorTy() ||
3779 !DL.getNonIntegralAddressSpaces().empty()) {
3780 // If we have a ConstantExpr pointer, we need to see if it came from an
3781 // illegal bitcast. If the datalayout string specifies non-integral
3782 // address spaces then we also need to check for illegal ptrtoint and
3783 // inttoptr expressions.
3784 visitConstantExprsRecursively(CE);
3785 }
3786 }
3787 }
3788
3789 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3790 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
3791 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
3792 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
3793 if (ConstantFP *CFP0 =
3794 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3795 const APFloat &Accuracy = CFP0->getValueAPF();
3796 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
3797 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
3798 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
3799 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
3800 } else {
3801 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
3802 }
3803 }
3804
3805 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3806 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
3807 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
3808 visitRangeMetadata(I, Range, I.getType());
3809 }
3810
3811 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3812 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
3813 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
3814 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3815 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3816 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3817 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
3818 }
3819
3820 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3821 visitDereferenceableMetadata(I, MD);
3822
3823 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3824 visitDereferenceableMetadata(I, MD);
3825
3826 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3827 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3828
3829 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3830 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
3831 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
3832 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
3833 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
3834 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
3835 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3836 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
3837 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
3838 uint64_t Align = CI->getZExtValue();
3839 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
3840 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
3841 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
3842 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
3843 }
3844
3845 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3846 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
3847 visitMDNode(*N);
3848 }
3849
3850 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3851 verifyFragmentExpression(*DII);
3852
3853 InstsInThisBlock.insert(&I);
3854}
3855
3856/// Allow intrinsics to be verified in different ways.
3857void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3858 Function *IF = CS.getCalledFunction();
3859 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
3860 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
3861
3862 // Verify that the intrinsic prototype lines up with what the .td files
3863 // describe.
3864 FunctionType *IFTy = IF->getFunctionType();
3865 bool IsVarArg = IFTy->isVarArg();
3866
3867 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3868 getIntrinsicInfoTableEntries(ID, Table);
3869 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3870
3871 SmallVector<Type *, 4> ArgTys;
3872 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3873 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3874 "Intrinsic has incorrect return type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
;
3875 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3876 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3877 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3878 "Intrinsic has incorrect argument type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
;
3879
3880 // Verify if the intrinsic call matches the vararg property.
3881 if (IsVarArg)
3882 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
3883 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
3884 else
3885 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
3886 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
3887
3888 // All descriptors should be absorbed by now.
3889 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
3890
3891 // Now that we have the intrinsic ID and the actual argument types (and we
3892 // know they are legal for the intrinsic!) get the intrinsic name through the
3893 // usual means. This allows us to verify the mangling of argument types into
3894 // the name.
3895 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3896 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3897 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3898 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3899 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3900 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
3901
3902 // If the intrinsic takes MDNode arguments, verify that they are either global
3903 // or are local to *this* function.
3904 for (Value *V : CS.args())
3905 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3906 visitMetadataAsValue(*MD, CS.getCaller());
3907
3908 switch (ID) {
3909 default:
3910 break;
3911 case Intrinsic::coro_id: {
3912 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3913 if (isa<ConstantPointerNull>(InfoArg))
3914 break;
3915 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3916 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3917 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3918 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
3919 Constant *Init = GV->getInitializer();
3920 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3921 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3922 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
3923 break;
3924 }
3925 case Intrinsic::ctlz: // llvm.ctlz
3926 case Intrinsic::cttz: // llvm.cttz
3927 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3928 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3929 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3930 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
;
3931 break;
3932 case Intrinsic::dbg_declare: // llvm.dbg.declare
3933 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
3934 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
;
3935 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3936 break;
3937 case Intrinsic::dbg_value: // llvm.dbg.value
3938 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3939 break;
3940 case Intrinsic::memcpy:
3941 case Intrinsic::memmove:
3942 case Intrinsic::memset: {
3943 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3944 Assert(AlignCI,do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3945 "alignment argument of memory intrinsics must be a constant int",do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3946 CS)do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3947 const APInt &AlignVal = AlignCI->getValue();
3948 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
3949 "alignment argument of memory intrinsics must be a power of 2", CS)do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
;
3950 Assert(isa<ConstantInt>(CS.getArgOperand(4)),do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3951 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3952 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3953 break;
3954 }
3955 case Intrinsic::memcpy_element_atomic: {
3956 ConstantInt *ElementSizeCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3957 Assert(ElementSizeCI, "element size of the element-wise atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3958 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3959 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
3960 const APInt &ElementSizeVal = ElementSizeCI->getValue();
3961 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3962 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3963 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3964 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
3965
3966 auto IsValidAlignment = [&](uint64_t Alignment) {
3967 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
3968 };
3969
3970 uint64_t DstAlignment = CS.getParamAlignment(1),
3971 SrcAlignment = CS.getParamAlignment(2);
3972
3973 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
3974 "incorrect alignment of the destination argument",do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
3975 CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
3976 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
3977 "incorrect alignment of the source argument",do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
3978 CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
3979 break;
3980 }
3981 case Intrinsic::gcroot:
3982 case Intrinsic::gcwrite:
3983 case Intrinsic::gcread:
3984 if (ID == Intrinsic::gcroot) {
3985 AllocaInst *AI =
3986 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3987 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (false)
;
3988 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
3989 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
;
3990 if (!AI->getAllocatedType()->isPointerTy()) {
3991 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
3992 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
3993 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
3994 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
;
3995 }
3996 }
3997
3998 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
3999 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4000 break;
4001 case Intrinsic::init_trampoline:
4002 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4003 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4004 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
;
4005 break;
4006 case Intrinsic::prefetch:
4007 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4008 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4009 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4010 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4011 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
;
4012 break;
4013 case Intrinsic::stackprotector:
4014 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
4015 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
;
4016 break;
4017 case Intrinsic::lifetime_start:
4018 case Intrinsic::lifetime_end:
4019 case Intrinsic::invariant_start:
4020 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4021 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4022 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
;
4023 break;
4024 case Intrinsic::invariant_end:
4025 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
4026 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
;
4027 break;
4028
4029 case Intrinsic::localescape: {
4030 BasicBlock *BB = CS.getParent();
4031 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
4032 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
;
4033 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
4034 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
;
4035 for (Value *Arg : CS.args()) {
4036 if (isa<ConstantPointerNull>(Arg))
4037 continue; // Null values are allowed as placeholders.
4038 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4039 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
4040 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
;
4041 }
4042 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4043 SawFrameEscape = true;
4044 break;
4045 }
4046 case Intrinsic::localrecover: {
4047 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4048 Function *Fn = dyn_cast<Function>(FnArg);
4049 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4050 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4051 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4052 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
;
4053 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4054 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
4055 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
;
4056 auto &Entry = FrameEscapeInfo[Fn];
4057 Entry.second = unsigned(
4058 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4059 break;
4060 }
4061
4062 case Intrinsic::experimental_gc_statepoint:
4063 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
4064 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
;
4065 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4066 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4067
4068 verifyStatepoint(CS);
4069 break;
4070 case Intrinsic::experimental_gc_result: {
4071 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4072 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4073 // Are we tied to a statepoint properly?
4074 CallSite StatepointCS(CS.getArgOperand(0));
4075 const Function *StatepointFn =
4076 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4077 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4078 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4079 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4080 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4081 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
;
4082
4083 // Assert that result type matches wrapped callee.
4084 const Value *Target = StatepointCS.getArgument(2);
4085 auto *PT = cast<PointerType>(Target->getType());
4086 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4087 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
4088 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
;
4089 break;
4090 }
4091 case Intrinsic::experimental_gc_relocate: {
4092 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (false)
;
4093
4094 Assert(isa<PointerType>(CS.getType()->getScalarType()),do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
4095 "gc.relocate must return a pointer or a vector of pointers", CS)do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
;
4096
4097 // Check that this relocate is correctly tied to the statepoint
4098
4099 // This is case for relocate on the unwinding path of an invoke statepoint
4100 if (LandingPadInst *LandingPad =
4101 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4102
4103 const BasicBlock *InvokeBB =
4104 LandingPad->getParent()->getUniquePredecessor();
4105
4106 // Landingpad relocates should have only one predecessor with invoke
4107 // statepoint terminator
4108 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4109 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4110 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4111 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4112 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4113 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4114 }
4115 else {
4116 // In all other cases relocate should be tied to the statepoint directly.
4117 // This covers relocates on a normal return path of invoke statepoint and
4118 // relocates of a call statepoint.
4119 auto Token = CS.getArgOperand(0);
4120 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
4121 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
;
4122 }
4123
4124 // Verify rest of the relocate arguments.
4125
4126 ImmutableCallSite StatepointCS(
4127 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4128
4129 // Both the base and derived must be piped through the safepoint.
4130 Value* Base = CS.getArgOperand(1);
4131 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
4132 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
;
4133
4134 Value* Derived = CS.getArgOperand(2);
4135 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
4136 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
;
4137
4138 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4139 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4140 // Check the bounds
4141 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
4142 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
;
4143 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
4144 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
;
4145
4146 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4147 // section of the statepoint's argument.
4148 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4149 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4150 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4151 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4152 const unsigned NumCallArgs =
4153 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4154 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
4155 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
;
4156 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4157 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4158 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4159 const int NumTransitionArgs =
4160 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4161 ->getZExtValue();
4162 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4163 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4164 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4165 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4166 const int NumDeoptArgs =
4167 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4168 ->getZExtValue();
4169 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4170 const int GCParamArgsEnd = StatepointCS.arg_size();
4171 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4172 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4173 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4174 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4175 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4176 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4177 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4178 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4179
4180 // Relocated value must be either a pointer type or vector-of-pointer type,
4181 // but gc_relocate does not need to return the same pointer type as the
4182 // relocated pointer. It can be casted to the correct type later if it's
4183 // desired. However, they must have the same address space and 'vectorness'
4184 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4185 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
4186 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
;
4187
4188 auto ResultType = CS.getType();
4189 auto DerivedType = Relocate.getDerivedPtr()->getType();
4190 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4191 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4192 CS)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
;
4193 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4194 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4195 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4196 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4197 CS)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
;
4198 break;
4199 }
4200 case Intrinsic::eh_exceptioncode:
4201 case Intrinsic::eh_exceptionpointer: {
4202 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
4203 "eh.exceptionpointer argument must be a catchpad", CS)do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
;
4204 break;
4205 }
4206 case Intrinsic::masked_load: {
4207 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS)do { if (!(CS.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, CS); return; } } while (false)
;
4208
4209 Value *Ptr = CS.getArgOperand(0);
4210 //Value *Alignment = CS.getArgOperand(1);
4211 Value *Mask = CS.getArgOperand(2);
4212 Value *PassThru = CS.getArgOperand(3);
4213 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
4214 "masked_load: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
;
4215
4216 // DataTy is the overloaded type
4217 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4218 Assert(DataTy == CS.getType(),do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
4219 "masked_load: return must match pointer type", CS)do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
;
4220 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
4221 "masked_load: pass through and data type must match", CS)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
;
4222 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4223 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4224 "masked_load: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
;
4225 break;
4226 }
4227 case Intrinsic::masked_store: {
4228 Value *Val = CS.getArgOperand(0);
4229 Value *Ptr = CS.getArgOperand(1);
4230 //Value *Alignment = CS.getArgOperand(2);
4231 Value *Mask = CS.getArgOperand(3);
4232 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
4233 "masked_store: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
;
4234
4235 // DataTy is the overloaded type
4236 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4237 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
4238 "masked_store: storee must match pointer type", CS)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
;
4239 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4240 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4241 "masked_store: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
;
4242 break;
4243 }
4244
4245 case Intrinsic::experimental_guard: {
4246 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_guard cannot be invoked"
, CS); return; } } while (false)
;
4247 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4248 "experimental_guard must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4249 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4250 break;
4251 }
4252
4253 case Intrinsic::experimental_deoptimize: {
4254 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_deoptimize cannot be invoked"
, CS); return; } } while (false)
;
4255 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4256 "experimental_deoptimize must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4257 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4258 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4259 "experimental_deoptimize return type must match caller return type")do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4260
4261 if (CS.isCall()) {
4262 auto *DeoptCI = CS.getInstruction();
4263 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4264 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4265 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4266
4267 if (!CS.getType()->isVoidTy() && RI)
4268 Assert(RI->getReturnValue() == DeoptCI,do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4269 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4270 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4271 }
4272
4273 break;
4274 }
4275 };
4276}
4277
4278/// \brief Carefully grab the subprogram from a local scope.
4279///
4280/// This carefully grabs the subprogram from a local scope, avoiding the
4281/// built-in assertions that would typically fire.
4282static DISubprogram *getSubprogram(Metadata *LocalScope) {
4283 if (!LocalScope)
4284 return nullptr;
4285
4286 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4287 return SP;
4288
4289 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4290 return getSubprogram(LB->getRawScope());
4291
4292 // Just return null; broken scope chains are checked elsewhere.
4293 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"
) ? static_cast<void> (0) : __assert_fail ("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 4293, __PRETTY_FUNCTION__))
;
4294 return nullptr;
4295}
4296
4297template <class DbgIntrinsicTy>
4298void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4299 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4300 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4301 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4302 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4303 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4304 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4305 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4306 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4307 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4308 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4309
4310 // Ignore broken !dbg attachments; they're checked elsewhere.
4311 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4312 if (!isa<DILocation>(N))
4313 return;
4314
4315 BasicBlock *BB = DII.getParent();
4316 Function *F = BB ? BB->getParent() : nullptr;
4317
4318 // The scopes for variables and !dbg attachments must agree.
4319 DILocalVariable *Var = DII.getVariable();
4320 DILocation *Loc = DII.getDebugLoc();
4321 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4322 &DII, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4323
4324 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4325 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4326 if (!VarSP || !LocSP)
4327 return; // Broken scope chains are checked elsewhere.
4328
4329 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4330 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4331 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4332 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4333}
4334
4335static uint64_t getVariableSize(const DILocalVariable &V) {
4336 // Be careful of broken types (checked elsewhere).
4337 const Metadata *RawType = V.getRawType();
4338 while (RawType) {
4339 // Try to get the size directly.
4340 if (auto *T = dyn_cast<DIType>(RawType))
4341 if (uint64_t Size = T->getSizeInBits())
4342 return Size;
4343
4344 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4345 // Look at the base type.
4346 RawType = DT->getRawBaseType();
4347 continue;
4348 }
4349
4350 // Missing type or size.
4351 break;
4352 }
4353
4354 // Fail gracefully.
4355 return 0;
4356}
4357
4358void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4359 DILocalVariable *V;
4360 DIExpression *E;
4361 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4362 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4363 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4364 } else {
4365 auto *DDI = cast<DbgDeclareInst>(&I);
4366 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4367 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4368 }
4369
4370 // We don't know whether this intrinsic verified correctly.
4371 if (!V || !E || !E->isValid())
4372 return;
4373
4374 // Nothing to do if this isn't a bit piece expression.
4375 auto Fragment = E->getFragmentInfo();
4376 if (!Fragment)
4377 return;
4378
4379 // The frontend helps out GDB by emitting the members of local anonymous
4380 // unions as artificial local variables with shared storage. When SROA splits
4381 // the storage for artificial local variables that are smaller than the entire
4382 // union, the overhang piece will be outside of the allotted space for the
4383 // variable and this check fails.
4384 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4385 if (V->isArtificial())
4386 return;
4387
4388 // If there's no size, the type is broken, but that should be checked
4389 // elsewhere.
4390 uint64_t VarSize = getVariableSize(*V);
4391 if (!VarSize)
4392 return;
4393
4394 unsigned FragSize = Fragment->SizeInBits;
4395 unsigned FragOffset = Fragment->OffsetInBits;
4396 AssertDI(FragSize + FragOffset <= VarSize,do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
4397 "fragment is larger than or outside of variable", &I, V, E)do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
;
4398 AssertDI(FragSize != VarSize, "fragment covers entire variable", &I, V, E)do { if (!(FragSize != VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, &I, V, E); return; } } while (false)
;
4399}
4400
4401void Verifier::verifyCompileUnits() {
4402 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4403 SmallPtrSet<const Metadata *, 2> Listed;
4404 if (CUs)
4405 Listed.insert(CUs->op_begin(), CUs->op_end());
4406 AssertDI(do { if (!(all_of(CUVisited, [&Listed](const Metadata *CU
) { return Listed.count(CU); }))) { DebugInfoCheckFailed("All DICompileUnits must be listed in llvm.dbg.cu"
); return; } } while (false)
4407 all_of(CUVisited,do { if (!(all_of(CUVisited, [&Listed](const Metadata *CU
) { return Listed.count(CU); }))) { DebugInfoCheckFailed("All DICompileUnits must be listed in llvm.dbg.cu"
); return; } } while (false)
4408 [&Listed](const Metadata *CU) { return Listed.count(CU); }),do { if (!(all_of(CUVisited, [&Listed](const Metadata *CU
) { return Listed.count(CU); }))) { DebugInfoCheckFailed("All DICompileUnits must be listed in llvm.dbg.cu"
); return; } } while (false)
4409 "All DICompileUnits must be listed in llvm.dbg.cu")do { if (!(all_of(CUVisited, [&Listed](const Metadata *CU
) { return Listed.count(CU); }))) { DebugInfoCheckFailed("All DICompileUnits must be listed in llvm.dbg.cu"
); return; } } while (false)
;
4410 CUVisited.clear();
4411}
4412
4413void Verifier::verifyDeoptimizeCallingConvs() {
4414 if (DeoptimizeDeclarations.empty())
4415 return;
4416
4417 const Function *First = DeoptimizeDeclarations[0];
4418 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4419 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4420 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4421 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4422 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
4423 }
4424}
4425
4426//===----------------------------------------------------------------------===//
4427// Implement the public interfaces to this file...
4428//===----------------------------------------------------------------------===//
4429
4430bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4431 Function &F = const_cast<Function &>(f);
4432
4433 // Don't use a raw_null_ostream. Printing IR is expensive.
4434 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4435
4436 // Note that this function's return value is inverted from what you would
4437 // expect of a function called "verify".
4438 return !V.verify(F);
4439}
4440
4441bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4442 bool *BrokenDebugInfo) {
4443 // Don't use a raw_null_ostream. Printing IR is expensive.
4444 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4445
4446 bool Broken = false;
4447 for (const Function &F : M)
4448 Broken |= !V.verify(F);
4449
4450 Broken |= !V.verify();
4451 if (BrokenDebugInfo)
4452 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4453 // Note that this function's return value is inverted from what you would
4454 // expect of a function called "verify".
4455 return Broken;
4456}
4457
4458namespace {
4459
4460struct VerifierLegacyPass : public FunctionPass {
4461 static char ID;
4462
4463 std::unique_ptr<Verifier> V;
4464 bool FatalErrors = true;
4465
4466 VerifierLegacyPass() : FunctionPass(ID) {
4467 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4468 }
4469 explicit VerifierLegacyPass(bool FatalErrors)
4470 : FunctionPass(ID),
4471 FatalErrors(FatalErrors) {
4472 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4473 }
4474
4475 bool doInitialization(Module &M) override {
4476 V = llvm::make_unique<Verifier>(
4477 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4478 return false;
4479 }
4480
4481 bool runOnFunction(Function &F) override {
4482 if (!V->verify(F) && FatalErrors)
4483 report_fatal_error("Broken function found, compilation aborted!");
4484
4485 return false;
4486 }
4487
4488 bool doFinalization(Module &M) override {
4489 bool HasErrors = false;
4490 for (Function &F : M)
4491 if (F.isDeclaration())
4492 HasErrors |= !V->verify(F);
4493
4494 HasErrors |= !V->verify();
4495 if (FatalErrors) {
4496 if (HasErrors)
4497 report_fatal_error("Broken module found, compilation aborted!");
4498 assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info")((!V->hasBrokenDebugInfo() && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!V->hasBrokenDebugInfo() && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 4498, __PRETTY_FUNCTION__))
;
4499 }
4500
4501 // Strip broken debug info.
4502 if (V->hasBrokenDebugInfo()) {
4503 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4504 M.getContext().diagnose(DiagInvalid);
4505 if (!StripDebugInfo(M))
4506 report_fatal_error("Failed to strip malformed debug info");
4507 }
4508 return false;
4509 }
4510
4511 void getAnalysisUsage(AnalysisUsage &AU) const override {
4512 AU.setPreservesAll();
4513 }
4514};
4515
4516} // end anonymous namespace
4517
4518/// Helper to issue failure from the TBAA verification
4519template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4520 if (Diagnostic)
4521 return Diagnostic->CheckFailed(Args...);
4522}
4523
4524#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
4525 do { \
4526 if (!(C)) { \
4527 CheckFailed(__VA_ARGS__); \
4528 return false; \
4529 } \
4530 } while (false)
4531
4532/// Verify that \p BaseNode can be used as the "base type" in the struct-path
4533/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4534/// struct-type node describing an aggregate data structure (like a struct).
4535TBAAVerifier::TBAABaseNodeSummary
4536TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
4537 if (BaseNode->getNumOperands() < 2) {
4538 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4539 return {true, ~0u};
4540 }
4541
4542 auto Itr = TBAABaseNodes.find(BaseNode);
4543 if (Itr != TBAABaseNodes.end())
4544 return Itr->second;
4545
4546 auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
4547 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4548 (void)InsertResult;
4549 assert(InsertResult.second && "We just checked!")((InsertResult.second && "We just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 4549, __PRETTY_FUNCTION__))
;
4550 return Result;
4551}
4552
4553TBAAVerifier::TBAABaseNodeSummary
4554TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
4555 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4556
4557 if (BaseNode->getNumOperands() == 2) {
4558 // Scalar nodes can only be accessed at offset 0.
4559 return isValidScalarTBAANode(BaseNode)
4560 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4561 : InvalidNode;
4562 }
4563
4564 if (BaseNode->getNumOperands() % 2 != 1) {
4565 CheckFailed("Struct tag nodes must have an odd number of operands!",
4566 BaseNode);
4567 return InvalidNode;
4568 }
4569
4570 if (!isa<MDString>(BaseNode->getOperand(0))) {
4571 CheckFailed("Struct tag nodes have a string as their first operand",
4572 BaseNode);
4573 return InvalidNode;
4574 }
4575
4576 bool Failed = false;
4577
4578 Optional<APInt> PrevOffset;
4579 unsigned BitWidth = ~0u;
4580
4581 // We've already checked that BaseNode is not a degenerate root node with one
4582 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4583 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4584 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4585 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4586 if (!isa<MDNode>(FieldTy)) {
4587 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4588 Failed = true;
4589 continue;
4590 }
4591
4592 auto *OffsetEntryCI =
4593 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4594 if (!OffsetEntryCI) {
4595 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4596 Failed = true;
4597 continue;
4598 }
4599
4600 if (BitWidth == ~0u)
4601 BitWidth = OffsetEntryCI->getBitWidth();
4602
4603 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4604 CheckFailed(
4605 "Bitwidth between the offsets and struct type entries must match", &I,
4606 BaseNode);
4607 Failed = true;
4608 continue;
4609 }
4610
4611 // NB! As far as I can tell, we generate a non-strictly increasing offset
4612 // sequence only from structs that have zero size bit fields. When
4613 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4614 // pick the field lexically the latest in struct type metadata node. This
4615 // mirrors the actual behavior of the alias analysis implementation.
4616 bool IsAscending =
4617 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4618
4619 if (!IsAscending) {
4620 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4621 Failed = true;
4622 }
4623
4624 PrevOffset = OffsetEntryCI->getValue();
4625 }
4626
4627 return Failed ? InvalidNode
4628 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4629}
4630
4631static bool IsRootTBAANode(const MDNode *MD) {
4632 return MD->getNumOperands() < 2;
4633}
4634
4635static bool IsScalarTBAANodeImpl(const MDNode *MD,
4636 SmallPtrSetImpl<const MDNode *> &Visited) {
4637 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4638 return false;
4639
4640 if (!isa<MDString>(MD->getOperand(0)))
4641 return false;
4642
4643 if (MD->getNumOperands() == 3) {
4644 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4645 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4646 return false;
4647 }
4648
4649 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4650 return Parent && Visited.insert(Parent).second &&
4651 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4652}
4653
4654bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4655 auto ResultIt = TBAAScalarNodes.find(MD);
4656 if (ResultIt != TBAAScalarNodes.end())
4657 return ResultIt->second;
4658
4659 SmallPtrSet<const MDNode *, 4> Visited;
4660 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4661 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4662 (void)InsertResult;
4663 assert(InsertResult.second && "Just checked!")((InsertResult.second && "Just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 4663, __PRETTY_FUNCTION__))
;
4664
4665 return Result;
4666}
4667
4668/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4669/// Offset in place to be the offset within the field node returned.
4670///
4671/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4672MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4673 const MDNode *BaseNode,
4674 APInt &Offset) {
4675 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")((BaseNode->getNumOperands() >= 2 && "Invalid base node!"
) ? static_cast<void> (0) : __assert_fail ("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 4675, __PRETTY_FUNCTION__))
;
4676
4677 // Scalar nodes have only one possible "field" -- their parent in the access
4678 // hierarchy. Offset must be zero at this point, but our caller is supposed
4679 // to Assert that.
4680 if (BaseNode->getNumOperands() == 2)
4681 return cast<MDNode>(BaseNode->getOperand(1));
4682
4683 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4684 auto *OffsetEntryCI =
4685 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4686 if (OffsetEntryCI->getValue().ugt(Offset)) {
4687 if (Idx == 1) {
4688 CheckFailed("Could not find TBAA parent in struct type node", &I,
4689 BaseNode, &Offset);
4690 return nullptr;
4691 }
4692
4693 auto *PrevOffsetEntryCI =
4694 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
4695 Offset -= PrevOffsetEntryCI->getValue();
4696 return cast<MDNode>(BaseNode->getOperand(Idx - 2));
4697 }
4698 }
4699
4700 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4701 BaseNode->getOperand(BaseNode->getNumOperands() - 1));
4702
4703 Offset -= LastOffsetEntryCI->getValue();
4704 return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
4705}
4706
4707bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4708 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4709 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4710 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4711 "TBAA is only for loads, stores and calls!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
;
4712
4713 bool IsStructPathTBAA =
4714 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4715
4716 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4717 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4718 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
4719
4720 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
4721 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
4722
4723 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4724 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4725
4726 if (MD->getNumOperands() == 4) {
4727 auto *IsImmutableCI =
4728 mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
4729 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4730 "Immutability tag on struct tag metadata must be a constant", &I,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4731 MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
4732 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4733 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4734 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4735 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
4736 }
4737
4738 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4739 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4740 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4741 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
4742
4743 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4744 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4745 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
4746
4747 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4748 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
4749
4750 APInt Offset = OffsetCI->getValue();
4751 bool SeenAccessTypeInPath = false;
4752
4753 SmallPtrSet<MDNode *, 4> StructPath;
4754
4755 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4756 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
4757 if (!StructPath.insert(BaseNode).second) {
4758 CheckFailed("Cycle detected in struct path", &I, MD);
4759 return false;
4760 }
4761
4762 bool Invalid;
4763 unsigned BaseNodeBitWidth;
4764 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
4765
4766 // If the base node is invalid in itself, then we've already printed all the
4767 // errors we wanted to print.
4768 if (Invalid)
4769 return false;
4770
4771 SeenAccessTypeInPath |= BaseNode == AccessType;
4772
4773 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
4774 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
4775 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
4776
4777 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4778 (BaseNodeBitWidth == 0 && Offset == 0),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4779 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4780 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
4781 }
4782
4783 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
4784 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
4785 return true;
4786}
4787
4788char VerifierLegacyPass::ID = 0;
4789INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static once_flag InitializeVerifierLegacyPassPassFlag
; void llvm::initializeVerifierLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
4790
4791FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4792 return new VerifierLegacyPass(FatalErrors);
4793}
4794
4795AnalysisKey VerifierAnalysis::Key;
4796VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4797 ModuleAnalysisManager &) {
4798 Result Res;
4799 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4800 return Res;
4801}
4802
4803VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4804 FunctionAnalysisManager &) {
4805 return { llvm::verifyFunction(F, &dbgs()), false };
4806}
4807
4808PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4809 auto Res = AM.getResult<VerifierAnalysis>(M);
4810 if (FatalErrors) {
4811 if (Res.IRBroken)
4812 report_fatal_error("Broken module found, compilation aborted!");
4813 assert(!Res.DebugInfoBroken && "Module contains invalid debug info")((!Res.DebugInfoBroken && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!Res.DebugInfoBroken && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/lib/IR/Verifier.cpp"
, 4813, __PRETTY_FUNCTION__))
;
4814 }
4815
4816 // Strip broken debug info.
4817 if (Res.DebugInfoBroken) {
4818 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4819 M.getContext().diagnose(DiagInvalid);
4820 if (!StripDebugInfo(M))
4821 report_fatal_error("Failed to strip malformed debug info");
4822 }
4823 return PreservedAnalyses::all();
4824}
4825
4826PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
4827 auto res = AM.getResult<VerifierAnalysis>(F);
4828 if (res.IRBroken && FatalErrors)
4829 report_fatal_error("Broken function found, compilation aborted!");
4830
4831 return PreservedAnalyses::all();
4832}