Bug Summary

File:lib/IR/Verifier.cpp
Warning:line 2158, column 7
Called C++ object pointer is null

Annotated Source Code

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * Landingpad instructions must be in a function with a personality function.
43// * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/APFloat.h"
49#include "llvm/ADT/APInt.h"
50#include "llvm/ADT/ArrayRef.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/ilist.h"
53#include "llvm/ADT/MapVector.h"
54#include "llvm/ADT/Optional.h"
55#include "llvm/ADT/STLExtras.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/SmallSet.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringMap.h"
60#include "llvm/ADT/StringRef.h"
61#include "llvm/ADT/Twine.h"
62#include "llvm/IR/Argument.h"
63#include "llvm/IR/Attributes.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/CFG.h"
66#include "llvm/IR/CallSite.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/DiagnosticInfo.h"
78#include "llvm/IR/Dominators.h"
79#include "llvm/IR/Function.h"
80#include "llvm/IR/GlobalAlias.h"
81#include "llvm/IR/GlobalValue.h"
82#include "llvm/IR/GlobalVariable.h"
83#include "llvm/IR/InlineAsm.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/InstVisitor.h"
88#include "llvm/IR/IntrinsicInst.h"
89#include "llvm/IR/Intrinsics.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/Pass.h"
101#include "llvm/Support/AtomicOrdering.h"
102#include "llvm/Support/Casting.h"
103#include "llvm/Support/CommandLine.h"
104#include "llvm/Support/Debug.h"
105#include "llvm/Support/Dwarf.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
119
120namespace llvm {
121
122struct VerifierSupport {
123 raw_ostream *OS;
124 const Module &M;
125 ModuleSlotTracker MST;
126 const DataLayout &DL;
127 LLVMContext &Context;
128
129 /// Track the brokenness of the module while recursively visiting.
130 bool Broken = false;
131 /// Broken debug info can be "recovered" from by stripping the debug info.
132 bool BrokenDebugInfo = false;
133 /// Whether to treat broken debug info as an error.
134 bool TreatBrokenDebugInfoAsError = true;
135
136 explicit VerifierSupport(raw_ostream *OS, const Module &M)
137 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
138
139private:
140 void Write(const Module *M) {
141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142 }
143
144 void Write(const Value *V) {
145 if (!V)
146 return;
147 if (isa<Instruction>(V)) {
148 V->print(*OS, MST);
149 *OS << '\n';
150 } else {
151 V->printAsOperand(*OS, true, MST);
152 *OS << '\n';
153 }
154 }
155
156 void Write(ImmutableCallSite CS) {
157 Write(CS.getInstruction());
158 }
159
160 void Write(const Metadata *MD) {
161 if (!MD)
162 return;
163 MD->print(*OS, MST, &M);
164 *OS << '\n';
165 }
166
167 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
168 Write(MD.get());
169 }
170
171 void Write(const NamedMDNode *NMD) {
172 if (!NMD)
173 return;
174 NMD->print(*OS, MST);
175 *OS << '\n';
176 }
177
178 void Write(Type *T) {
179 if (!T)
180 return;
181 *OS << ' ' << *T;
182 }
183
184 void Write(const Comdat *C) {
185 if (!C)
186 return;
187 *OS << *C;
188 }
189
190 void Write(const APInt *AI) {
191 if (!AI)
192 return;
193 *OS << *AI << '\n';
194 }
195
196 void Write(const unsigned i) { *OS << i << '\n'; }
197
198 template <typename T> void Write(ArrayRef<T> Vs) {
199 for (const T &V : Vs)
200 Write(V);
201 }
202
203 template <typename T1, typename... Ts>
204 void WriteTs(const T1 &V1, const Ts &... Vs) {
205 Write(V1);
206 WriteTs(Vs...);
207 }
208
209 template <typename... Ts> void WriteTs() {}
210
211public:
212 /// \brief A check failed, so printout out the condition and the message.
213 ///
214 /// This provides a nice place to put a breakpoint if you want to see why
215 /// something is not correct.
216 void CheckFailed(const Twine &Message) {
217 if (OS)
218 *OS << Message << '\n';
219 Broken = true;
220 }
221
222 /// \brief A check failed (with values to print).
223 ///
224 /// This calls the Message-only version so that the above is easier to set a
225 /// breakpoint on.
226 template <typename T1, typename... Ts>
227 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
228 CheckFailed(Message);
229 if (OS)
230 WriteTs(V1, Vs...);
231 }
232
233 /// A debug info check failed.
234 void DebugInfoCheckFailed(const Twine &Message) {
235 if (OS)
236 *OS << Message << '\n';
237 Broken |= TreatBrokenDebugInfoAsError;
238 BrokenDebugInfo = true;
239 }
240
241 /// A debug info check failed (with values to print).
242 template <typename T1, typename... Ts>
243 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
244 const Ts &... Vs) {
245 DebugInfoCheckFailed(Message);
246 if (OS)
247 WriteTs(V1, Vs...);
248 }
249};
250
251} // namespace llvm
252
253namespace {
254
255class Verifier : public InstVisitor<Verifier>, VerifierSupport {
256 friend class InstVisitor<Verifier>;
257
258 DominatorTree DT;
259
260 /// \brief When verifying a basic block, keep track of all of the
261 /// instructions we have seen so far.
262 ///
263 /// This allows us to do efficient dominance checks for the case when an
264 /// instruction has an operand that is an instruction in the same block.
265 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
266
267 /// \brief Keep track of the metadata nodes that have been checked already.
268 SmallPtrSet<const Metadata *, 32> MDNodes;
269
270 /// Track all DICompileUnits visited.
271 SmallPtrSet<const Metadata *, 2> CUVisited;
272
273 /// \brief The result type for a landingpad.
274 Type *LandingPadResultTy;
275
276 /// \brief Whether we've seen a call to @llvm.localescape in this function
277 /// already.
278 bool SawFrameEscape;
279
280 /// Stores the count of how many objects were passed to llvm.localescape for a
281 /// given function and the largest index passed to llvm.localrecover.
282 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
283
284 // Maps catchswitches and cleanuppads that unwind to siblings to the
285 // terminators that indicate the unwind, used to detect cycles therein.
286 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
287
288 /// Cache of constants visited in search of ConstantExprs.
289 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
290
291 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
292 SmallVector<const Function *, 4> DeoptimizeDeclarations;
293
294 // Verify that this GlobalValue is only used in this module.
295 // This map is used to avoid visiting uses twice. We can arrive at a user
296 // twice, if they have multiple operands. In particular for very large
297 // constant expressions, we can arrive at a particular user many times.
298 SmallPtrSet<const Value *, 32> GlobalValueVisited;
299
300 // Keeps track of duplicate function argument debug info.
301 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
302
303 TBAAVerifier TBAAVerifyHelper;
304
305 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
306
307public:
308 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
309 const Module &M)
310 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
311 SawFrameEscape(false), TBAAVerifyHelper(this) {
312 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
313 }
314
315 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
316
317 bool verify(const Function &F) {
318 assert(F.getParent() == &M &&((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 319, __PRETTY_FUNCTION__))
319 "An instance of this class only works with a specific module!")((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 319, __PRETTY_FUNCTION__))
;
320
321 // First ensure the function is well-enough formed to compute dominance
322 // information, and directly compute a dominance tree. We don't rely on the
323 // pass manager to provide this as it isolates us from a potentially
324 // out-of-date dominator tree and makes it significantly more complex to run
325 // this code outside of a pass manager.
326 // FIXME: It's really gross that we have to cast away constness here.
327 if (!F.empty())
328 DT.recalculate(const_cast<Function &>(F));
329
330 for (const BasicBlock &BB : F) {
331 if (!BB.empty() && BB.back().isTerminator())
332 continue;
333
334 if (OS) {
335 *OS << "Basic Block in function '" << F.getName()
336 << "' does not have terminator!\n";
337 BB.printAsOperand(*OS, true, MST);
338 *OS << "\n";
339 }
340 return false;
341 }
342
343 Broken = false;
344 // FIXME: We strip const here because the inst visitor strips const.
345 visit(const_cast<Function &>(F));
346 verifySiblingFuncletUnwinds();
347 InstsInThisBlock.clear();
348 LandingPadResultTy = nullptr;
349 SawFrameEscape = false;
350 SiblingFuncletInfo.clear();
351
352 return !Broken;
353 }
354
355 /// Verify the module that this instance of \c Verifier was initialized with.
356 bool verify() {
357 Broken = false;
358
359 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
360 for (const Function &F : M)
361 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
362 DeoptimizeDeclarations.push_back(&F);
363
364 // Now that we've visited every function, verify that we never asked to
365 // recover a frame index that wasn't escaped.
366 verifyFrameRecoverIndices();
367 for (const GlobalVariable &GV : M.globals())
368 visitGlobalVariable(GV);
369
370 for (const GlobalAlias &GA : M.aliases())
371 visitGlobalAlias(GA);
372
373 for (const NamedMDNode &NMD : M.named_metadata())
374 visitNamedMDNode(NMD);
375
376 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
377 visitComdat(SMEC.getValue());
378
379 visitModuleFlags(M);
380 visitModuleIdents(M);
381
382 verifyCompileUnits();
383
384 verifyDeoptimizeCallingConvs();
385
386 return !Broken;
387 }
388
389private:
390 // Verification methods...
391 void visitGlobalValue(const GlobalValue &GV);
392 void visitGlobalVariable(const GlobalVariable &GV);
393 void visitGlobalAlias(const GlobalAlias &GA);
394 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
395 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
396 const GlobalAlias &A, const Constant &C);
397 void visitNamedMDNode(const NamedMDNode &NMD);
398 void visitMDNode(const MDNode &MD);
399 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
400 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
401 void visitComdat(const Comdat &C);
402 void visitModuleIdents(const Module &M);
403 void visitModuleFlags(const Module &M);
404 void visitModuleFlag(const MDNode *Op,
405 DenseMap<const MDString *, const MDNode *> &SeenIDs,
406 SmallVectorImpl<const MDNode *> &Requirements);
407 void visitFunction(const Function &F);
408 void visitBasicBlock(BasicBlock &BB);
409 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
410 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
411
412 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
413#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
414#include "llvm/IR/Metadata.def"
415 void visitDIScope(const DIScope &N);
416 void visitDIVariable(const DIVariable &N);
417 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
418 void visitDITemplateParameter(const DITemplateParameter &N);
419
420 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
421
422 // InstVisitor overrides...
423 using InstVisitor<Verifier>::visit;
424 void visit(Instruction &I);
425
426 void visitTruncInst(TruncInst &I);
427 void visitZExtInst(ZExtInst &I);
428 void visitSExtInst(SExtInst &I);
429 void visitFPTruncInst(FPTruncInst &I);
430 void visitFPExtInst(FPExtInst &I);
431 void visitFPToUIInst(FPToUIInst &I);
432 void visitFPToSIInst(FPToSIInst &I);
433 void visitUIToFPInst(UIToFPInst &I);
434 void visitSIToFPInst(SIToFPInst &I);
435 void visitIntToPtrInst(IntToPtrInst &I);
436 void visitPtrToIntInst(PtrToIntInst &I);
437 void visitBitCastInst(BitCastInst &I);
438 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
439 void visitPHINode(PHINode &PN);
440 void visitBinaryOperator(BinaryOperator &B);
441 void visitICmpInst(ICmpInst &IC);
442 void visitFCmpInst(FCmpInst &FC);
443 void visitExtractElementInst(ExtractElementInst &EI);
444 void visitInsertElementInst(InsertElementInst &EI);
445 void visitShuffleVectorInst(ShuffleVectorInst &EI);
446 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
447 void visitCallInst(CallInst &CI);
448 void visitInvokeInst(InvokeInst &II);
449 void visitGetElementPtrInst(GetElementPtrInst &GEP);
450 void visitLoadInst(LoadInst &LI);
451 void visitStoreInst(StoreInst &SI);
452 void verifyDominatesUse(Instruction &I, unsigned i);
453 void visitInstruction(Instruction &I);
454 void visitTerminatorInst(TerminatorInst &I);
455 void visitBranchInst(BranchInst &BI);
456 void visitReturnInst(ReturnInst &RI);
457 void visitSwitchInst(SwitchInst &SI);
458 void visitIndirectBrInst(IndirectBrInst &BI);
459 void visitSelectInst(SelectInst &SI);
460 void visitUserOp1(Instruction &I);
461 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
462 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
463 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
464 template <class DbgIntrinsicTy>
465 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
466 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
467 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
468 void visitFenceInst(FenceInst &FI);
469 void visitAllocaInst(AllocaInst &AI);
470 void visitExtractValueInst(ExtractValueInst &EVI);
471 void visitInsertValueInst(InsertValueInst &IVI);
472 void visitEHPadPredecessors(Instruction &I);
473 void visitLandingPadInst(LandingPadInst &LPI);
474 void visitResumeInst(ResumeInst &RI);
475 void visitCatchPadInst(CatchPadInst &CPI);
476 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
477 void visitCleanupPadInst(CleanupPadInst &CPI);
478 void visitFuncletPadInst(FuncletPadInst &FPI);
479 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
480 void visitCleanupReturnInst(CleanupReturnInst &CRI);
481
482 void verifyCallSite(CallSite CS);
483 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
484 void verifySwiftErrorValue(const Value *SwiftErrorVal);
485 void verifyMustTailCall(CallInst &CI);
486 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
487 unsigned ArgNo, std::string &Suffix);
488 bool verifyAttributeCount(AttributeSet Attrs, unsigned Params);
489 void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
490 const Value *V);
491 void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
492 bool isReturnValue, const Value *V);
493 void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
494 const Value *V);
495 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
496
497 void visitConstantExprsRecursively(const Constant *EntryC);
498 void visitConstantExpr(const ConstantExpr *CE);
499 void verifyStatepoint(ImmutableCallSite CS);
500 void verifyFrameRecoverIndices();
501 void verifySiblingFuncletUnwinds();
502
503 void verifyFragmentExpression(const DbgInfoIntrinsic &I);
504 void verifyFnArgs(const DbgInfoIntrinsic &I);
505
506 /// Module-level debug info verification...
507 void verifyCompileUnits();
508
509 /// Module-level verification that all @llvm.experimental.deoptimize
510 /// declarations share the same calling convention.
511 void verifyDeoptimizeCallingConvs();
512};
513
514} // end anonymous namespace
515
516/// We know that cond should be true, if not print an error message.
517#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
518 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
519
520/// We know that a debug info condition should be true, if not print
521/// an error message.
522#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
523 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
524
525void Verifier::visit(Instruction &I) {
526 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
527 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
528 InstVisitor<Verifier>::visit(I);
529}
530
531// Helper to recursively iterate over indirect users. By
532// returning false, the callback can ask to stop recursing
533// further.
534static void forEachUser(const Value *User,
535 SmallPtrSet<const Value *, 32> &Visited,
536 llvm::function_ref<bool(const Value *)> Callback) {
537 if (!Visited.insert(User).second)
538 return;
539 for (const Value *TheNextUser : User->materialized_users())
540 if (Callback(TheNextUser))
541 forEachUser(TheNextUser, Visited, Callback);
542}
543
544void Verifier::visitGlobalValue(const GlobalValue &GV) {
545 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
546 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
547
548 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
549 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
550 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
551 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
552
553 if (GV.hasAppendingLinkage()) {
554 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
555 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
556 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
557 }
558
559 if (GV.isDeclarationForLinker())
560 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
561
562 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
563 if (const Instruction *I = dyn_cast<Instruction>(V)) {
564 if (!I->getParent() || !I->getParent()->getParent())
565 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
566 I);
567 else if (I->getParent()->getParent()->getParent() != &M)
568 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
569 I->getParent()->getParent(),
570 I->getParent()->getParent()->getParent());
571 return false;
572 } else if (const Function *F = dyn_cast<Function>(V)) {
573 if (F->getParent() != &M)
574 CheckFailed("Global is used by function in a different module", &GV, &M,
575 F, F->getParent());
576 return false;
577 }
578 return true;
579 });
580}
581
582void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
583 if (GV.hasInitializer()) {
584 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
585 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
586 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
587 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
588 // If the global has common linkage, it must have a zero initializer and
589 // cannot be constant.
590 if (GV.hasCommonLinkage()) {
591 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
592 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
593 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
594 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
595 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
596 }
597 }
598
599 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
600 GV.getName() == "llvm.global_dtors")) {
601 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
602 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
603 // Don't worry about emitting an error for it not being an array,
604 // visitGlobalValue will complain on appending non-array.
605 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
606 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
607 PointerType *FuncPtrTy =
608 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
609 // FIXME: Reject the 2-field form in LLVM 4.0.
610 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
611 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
612 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
613 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
614 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
615 if (STy->getNumElements() == 3) {
616 Type *ETy = STy->getTypeAtIndex(2);
617 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
618 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
619 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
620 }
621 }
622 }
623
624 if (GV.hasName() && (GV.getName() == "llvm.used" ||
625 GV.getName() == "llvm.compiler.used")) {
626 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
627 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
628 Type *GVType = GV.getValueType();
629 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
630 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
631 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
632 if (GV.hasInitializer()) {
633 const Constant *Init = GV.getInitializer();
634 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
635 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
636 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
637 for (Value *Op : InitArray->operands()) {
638 Value *V = Op->stripPointerCastsNoFollowAliases();
639 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
640 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
641 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
642 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
643 }
644 }
645 }
646 }
647
648 Assert(!GV.hasDLLImportStorageClass() ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
649 (GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
650 GV.hasAvailableExternallyLinkage(),do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
651 "Global is marked as dllimport, but not external", &GV)do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
652
653 // Visit any debug info attachments.
654 SmallVector<MDNode *, 1> MDs;
655 GV.getMetadata(LLVMContext::MD_dbg, MDs);
656 for (auto *MD : MDs) {
657 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
658 visitDIGlobalVariableExpression(*GVE);
659 else
660 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
661 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
662 }
663
664 if (!GV.hasInitializer()) {
665 visitGlobalValue(GV);
666 return;
667 }
668
669 // Walk any aggregate initializers looking for bitcasts between address spaces
670 visitConstantExprsRecursively(GV.getInitializer());
671
672 visitGlobalValue(GV);
673}
674
675void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
676 SmallPtrSet<const GlobalAlias*, 4> Visited;
677 Visited.insert(&GA);
678 visitAliaseeSubExpr(Visited, GA, C);
679}
680
681void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
682 const GlobalAlias &GA, const Constant &C) {
683 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
684 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
685 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
686
687 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
688 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
689
690 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
691 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
692 } else {
693 // Only continue verifying subexpressions of GlobalAliases.
694 // Do not recurse into global initializers.
695 return;
696 }
697 }
698
699 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
700 visitConstantExprsRecursively(CE);
701
702 for (const Use &U : C.operands()) {
703 Value *V = &*U;
704 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
705 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
706 else if (const auto *C2 = dyn_cast<Constant>(V))
707 visitAliaseeSubExpr(Visited, GA, *C2);
708 }
709}
710
711void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
712 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
713 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
714 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
715 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
716 const Constant *Aliasee = GA.getAliasee();
717 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
718 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
719 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
720
721 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
722 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
723
724 visitAliaseeSubExpr(GA, *Aliasee);
725
726 visitGlobalValue(GA);
727}
728
729void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
730 // There used to be various other llvm.dbg.* nodes, but we don't support
731 // upgrading them and we want to reserve the namespace for future uses.
732 if (NMD.getName().startswith("llvm.dbg."))
733 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
734 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
735 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
736 for (const MDNode *MD : NMD.operands()) {
737 if (NMD.getName() == "llvm.dbg.cu")
738 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
739
740 if (!MD)
741 continue;
742
743 visitMDNode(*MD);
744 }
745}
746
747void Verifier::visitMDNode(const MDNode &MD) {
748 // Only visit each node once. Metadata can be mutually recursive, so this
749 // avoids infinite recursion here, as well as being an optimization.
750 if (!MDNodes.insert(&MD).second)
751 return;
752
753 switch (MD.getMetadataID()) {
754 default:
755 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 755)
;
756 case Metadata::MDTupleKind:
757 break;
758#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
759 case Metadata::CLASS##Kind: \
760 visit##CLASS(cast<CLASS>(MD)); \
761 break;
762#include "llvm/IR/Metadata.def"
763 }
764
765 for (const Metadata *Op : MD.operands()) {
766 if (!Op)
767 continue;
768 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
769 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
770 if (auto *N = dyn_cast<MDNode>(Op)) {
771 visitMDNode(*N);
772 continue;
773 }
774 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
775 visitValueAsMetadata(*V, nullptr);
776 continue;
777 }
778 }
779
780 // Check these last, so we diagnose problems in operands first.
781 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
782 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
783}
784
785void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
786 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
787 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
788 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
789
790 auto *L = dyn_cast<LocalAsMetadata>(&MD);
791 if (!L)
792 return;
793
794 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
795
796 // If this was an instruction, bb, or argument, verify that it is in the
797 // function that we expect.
798 Function *ActualF = nullptr;
799 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
800 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
801 ActualF = I->getParent()->getParent();
802 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
803 ActualF = BB->getParent();
804 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
805 ActualF = A->getParent();
806 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 806, __PRETTY_FUNCTION__))
;
807
808 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
809}
810
811void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
812 Metadata *MD = MDV.getMetadata();
813 if (auto *N = dyn_cast<MDNode>(MD)) {
814 visitMDNode(*N);
815 return;
816 }
817
818 // Only visit each node once. Metadata can be mutually recursive, so this
819 // avoids infinite recursion here, as well as being an optimization.
820 if (!MDNodes.insert(MD).second)
821 return;
822
823 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
824 visitValueAsMetadata(*V, F);
825}
826
827static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
828static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
829static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
830
831template <class Ty>
832static bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
833 for (Metadata *MD : N.operands()) {
834 if (MD) {
835 if (!isa<Ty>(MD))
836 return false;
837 } else {
838 if (!AllowNull)
839 return false;
840 }
841 }
842 return true;
843}
844
845template <class Ty> static bool isValidMetadataArray(const MDTuple &N) {
846 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
847}
848
849template <class Ty> static bool isValidMetadataNullArray(const MDTuple &N) {
850 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
851}
852
853void Verifier::visitDILocation(const DILocation &N) {
854 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
855 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
856 if (auto *IA = N.getRawInlinedAt())
857 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
858}
859
860void Verifier::visitGenericDINode(const GenericDINode &N) {
861 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
862}
863
864void Verifier::visitDIScope(const DIScope &N) {
865 if (auto *F = N.getRawFile())
866 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
867}
868
869void Verifier::visitDISubrange(const DISubrange &N) {
870 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
871 AssertDI(N.getCount() >= -1, "invalid subrange count", &N)do { if (!(N.getCount() >= -1)) { DebugInfoCheckFailed("invalid subrange count"
, &N); return; } } while (false)
;
872}
873
874void Verifier::visitDIEnumerator(const DIEnumerator &N) {
875 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
876}
877
878void Verifier::visitDIBasicType(const DIBasicType &N) {
879 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
880 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
881 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
882}
883
884void Verifier::visitDIDerivedType(const DIDerivedType &N) {
885 // Common scope checks.
886 visitDIScope(N);
887
888 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
889 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
890 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
891 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
892 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
893 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
894 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
895 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
896 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
897 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
898 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
899 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
900 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
901 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
902 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
903 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
904 }
905
906 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
907 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
908 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
909}
910
911static bool hasConflictingReferenceFlags(unsigned Flags) {
912 return (Flags & DINode::FlagLValueReference) &&
913 (Flags & DINode::FlagRValueReference);
914}
915
916void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
917 auto *Params = dyn_cast<MDTuple>(&RawParams);
918 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
919 for (Metadata *Op : Params->operands()) {
920 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
921 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
922 }
923}
924
925void Verifier::visitDICompositeType(const DICompositeType &N) {
926 // Common scope checks.
927 visitDIScope(N);
928
929 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
930 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
931 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
932 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
933 N.getTag() == dwarf::DW_TAG_class_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
934 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
;
935
936 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
937 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
938 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
939
940 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
941 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
942 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
943 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
944 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
945 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
946 if (auto *Params = N.getRawTemplateParams())
947 visitTemplateParams(N, *Params);
948
949 if (N.getTag() == dwarf::DW_TAG_class_type ||
950 N.getTag() == dwarf::DW_TAG_union_type) {
951 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
952 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
953 }
954}
955
956void Verifier::visitDISubroutineType(const DISubroutineType &N) {
957 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
958 if (auto *Types = N.getRawTypeArray()) {
959 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
960 for (Metadata *Ty : N.getTypeArray()->operands()) {
961 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
962 }
963 }
964 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
965 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
966}
967
968void Verifier::visitDIFile(const DIFile &N) {
969 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
970 AssertDI((N.getChecksumKind() != DIFile::CSK_None ||do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
971 N.getChecksum().empty()), "invalid checksum kind", &N)do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
;
972}
973
974void Verifier::visitDICompileUnit(const DICompileUnit &N) {
975 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
976 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
977
978 // Don't bother verifying the compilation directory or producer string
979 // as those could be empty.
980 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
981 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
982 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
983 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
984
985 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
986 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
987
988 if (auto *Array = N.getRawEnumTypes()) {
989 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
990 for (Metadata *Op : N.getEnumTypes()->operands()) {
991 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
992 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
993 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
994 }
995 }
996 if (auto *Array = N.getRawRetainedTypes()) {
997 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
998 for (Metadata *Op : N.getRetainedTypes()->operands()) {
999 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1000 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1001 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1002 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1003 }
1004 }
1005 if (auto *Array = N.getRawGlobalVariables()) {
1006 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1007 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1008 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1009 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1010 }
1011 }
1012 if (auto *Array = N.getRawImportedEntities()) {
1013 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1014 for (Metadata *Op : N.getImportedEntities()->operands()) {
1015 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1016 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1017 }
1018 }
1019 if (auto *Array = N.getRawMacros()) {
1020 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1021 for (Metadata *Op : N.getMacros()->operands()) {
1022 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1023 }
1024 }
1025 CUVisited.insert(&N);
1026}
1027
1028void Verifier::visitDISubprogram(const DISubprogram &N) {
1029 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1030 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1031 if (auto *F = N.getRawFile())
1032 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1033 else
1034 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1035 if (auto *T = N.getRawType())
1036 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1037 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1038 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1039 if (auto *Params = N.getRawTemplateParams())
1040 visitTemplateParams(N, *Params);
1041 if (auto *S = N.getRawDeclaration())
1042 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1043 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1044 if (auto *RawVars = N.getRawVariables()) {
1045 auto *Vars = dyn_cast<MDTuple>(RawVars);
1046 AssertDI(Vars, "invalid variable list", &N, RawVars)do { if (!(Vars)) { DebugInfoCheckFailed("invalid variable list"
, &N, RawVars); return; } } while (false)
;
1047 for (Metadata *Op : Vars->operands()) {
1048 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
1049 Vars, Op)do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
;
1050 }
1051 }
1052 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1053 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1054
1055 auto *Unit = N.getRawUnit();
1056 if (N.isDefinition()) {
1057 // Subprogram definitions (not part of the type hierarchy).
1058 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1059 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1060 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1061 } else {
1062 // Subprogram declarations (part of the type hierarchy).
1063 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1064 }
1065}
1066
1067void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1068 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1069 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1070 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1071}
1072
1073void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1074 visitDILexicalBlockBase(N);
1075
1076 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1077 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1078}
1079
1080void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1081 visitDILexicalBlockBase(N);
1082}
1083
1084void Verifier::visitDINamespace(const DINamespace &N) {
1085 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1086 if (auto *S = N.getRawScope())
1087 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1088}
1089
1090void Verifier::visitDIMacro(const DIMacro &N) {
1091 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1092 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1093 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1094 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1095 if (!N.getValue().empty()) {
1096 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 1096, __PRETTY_FUNCTION__))
;
1097 }
1098}
1099
1100void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1101 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1102 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1103 if (auto *F = N.getRawFile())
1104 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1105
1106 if (auto *Array = N.getRawElements()) {
1107 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1108 for (Metadata *Op : N.getElements()->operands()) {
1109 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1110 }
1111 }
1112}
1113
1114void Verifier::visitDIModule(const DIModule &N) {
1115 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1116 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1117}
1118
1119void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1120 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1121}
1122
1123void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1124 visitDITemplateParameter(N);
1125
1126 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1127 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1128}
1129
1130void Verifier::visitDITemplateValueParameter(
1131 const DITemplateValueParameter &N) {
1132 visitDITemplateParameter(N);
1133
1134 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1135 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1136 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1137 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1138}
1139
1140void Verifier::visitDIVariable(const DIVariable &N) {
1141 if (auto *S = N.getRawScope())
1142 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1143 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1144 if (auto *F = N.getRawFile())
1145 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1146}
1147
1148void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1149 // Checks common to all variables.
1150 visitDIVariable(N);
1151
1152 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1153 AssertDI(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("missing global variable name"
, &N); return; } } while (false)
;
1154 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1155 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1156 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1157 }
1158}
1159
1160void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1161 // Checks common to all variables.
1162 visitDIVariable(N);
1163
1164 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1165 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1166 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1167}
1168
1169void Verifier::visitDIExpression(const DIExpression &N) {
1170 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1171}
1172
1173void Verifier::visitDIGlobalVariableExpression(
1174 const DIGlobalVariableExpression &GVE) {
1175 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1176 if (auto *Var = GVE.getVariable())
1177 visitDIGlobalVariable(*Var);
1178 if (auto *Expr = GVE.getExpression())
1179 visitDIExpression(*Expr);
1180}
1181
1182void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1183 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1184 if (auto *T = N.getRawType())
1185 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1186 if (auto *F = N.getRawFile())
1187 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1188}
1189
1190void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1191 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1192 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1193 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1194 if (auto *S = N.getRawScope())
1195 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1196 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1197 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1198}
1199
1200void Verifier::visitComdat(const Comdat &C) {
1201 // The Module is invalid if the GlobalValue has private linkage. Entities
1202 // with private linkage don't have entries in the symbol table.
1203 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1204 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1205 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1206}
1207
1208void Verifier::visitModuleIdents(const Module &M) {
1209 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1210 if (!Idents)
1211 return;
1212
1213 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1214 // Scan each llvm.ident entry and make sure that this requirement is met.
1215 for (const MDNode *N : Idents->operands()) {
1216 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1217 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1218 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1219 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1220 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1221 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1222 }
1223}
1224
1225void Verifier::visitModuleFlags(const Module &M) {
1226 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1227 if (!Flags) return;
1228
1229 // Scan each flag, and track the flags and requirements.
1230 DenseMap<const MDString*, const MDNode*> SeenIDs;
1231 SmallVector<const MDNode*, 16> Requirements;
1232 for (const MDNode *MDN : Flags->operands())
1233 visitModuleFlag(MDN, SeenIDs, Requirements);
1234
1235 // Validate that the requirements in the module are valid.
1236 for (const MDNode *Requirement : Requirements) {
1237 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1238 const Metadata *ReqValue = Requirement->getOperand(1);
1239
1240 const MDNode *Op = SeenIDs.lookup(Flag);
1241 if (!Op) {
1242 CheckFailed("invalid requirement on flag, flag is not present in module",
1243 Flag);
1244 continue;
1245 }
1246
1247 if (Op->getOperand(2) != ReqValue) {
1248 CheckFailed(("invalid requirement on flag, "
1249 "flag does not have the required value"),
1250 Flag);
1251 continue;
1252 }
1253 }
1254}
1255
1256void
1257Verifier::visitModuleFlag(const MDNode *Op,
1258 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1259 SmallVectorImpl<const MDNode *> &Requirements) {
1260 // Each module flag should have three arguments, the merge behavior (a
1261 // constant int), the flag ID (an MDString), and the value.
1262 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1263 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1264 Module::ModFlagBehavior MFB;
1265 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1266 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1267 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1268 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1269 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1270 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1271 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1272 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1273 }
1274 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1275 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1276 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1277
1278 // Sanity check the values for behaviors with additional requirements.
1279 switch (MFB) {
1280 case Module::Error:
1281 case Module::Warning:
1282 case Module::Override:
1283 // These behavior types accept any value.
1284 break;
1285
1286 case Module::Require: {
1287 // The value should itself be an MDNode with two operands, a flag ID (an
1288 // MDString), and a value.
1289 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1290 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1291 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1292 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1293 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1294 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1295 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1296 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1297
1298 // Append it to the list of requirements, to check once all module flags are
1299 // scanned.
1300 Requirements.push_back(Value);
1301 break;
1302 }
1303
1304 case Module::Append:
1305 case Module::AppendUnique: {
1306 // These behavior types require the operand be an MDNode.
1307 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1308 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1309 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1310 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1311 break;
1312 }
1313 }
1314
1315 // Unless this is a "requires" flag, check the ID is unique.
1316 if (MFB != Module::Require) {
1317 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1318 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1319 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1320 }
1321}
1322
1323void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1324 bool isFunction, const Value *V) {
1325 unsigned Slot = ~0U;
1326 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1327 if (Attrs.getSlotIndex(I) == Idx) {
1328 Slot = I;
1329 break;
1330 }
1331
1332 assert(Slot != ~0U && "Attribute set inconsistency!")((Slot != ~0U && "Attribute set inconsistency!") ? static_cast
<void> (0) : __assert_fail ("Slot != ~0U && \"Attribute set inconsistency!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 1332, __PRETTY_FUNCTION__))
;
1333
1334 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1335 I != E; ++I) {
1336 if (I->isStringAttribute())
1337 continue;
1338
1339 if (I->getKindAsEnum() == Attribute::NoReturn ||
1340 I->getKindAsEnum() == Attribute::NoUnwind ||
1341 I->getKindAsEnum() == Attribute::NoInline ||
1342 I->getKindAsEnum() == Attribute::AlwaysInline ||
1343 I->getKindAsEnum() == Attribute::OptimizeForSize ||
1344 I->getKindAsEnum() == Attribute::StackProtect ||
1345 I->getKindAsEnum() == Attribute::StackProtectReq ||
1346 I->getKindAsEnum() == Attribute::StackProtectStrong ||
1347 I->getKindAsEnum() == Attribute::SafeStack ||
1348 I->getKindAsEnum() == Attribute::NoRedZone ||
1349 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1350 I->getKindAsEnum() == Attribute::Naked ||
1351 I->getKindAsEnum() == Attribute::InlineHint ||
1352 I->getKindAsEnum() == Attribute::StackAlignment ||
1353 I->getKindAsEnum() == Attribute::UWTable ||
1354 I->getKindAsEnum() == Attribute::NonLazyBind ||
1355 I->getKindAsEnum() == Attribute::ReturnsTwice ||
1356 I->getKindAsEnum() == Attribute::SanitizeAddress ||
1357 I->getKindAsEnum() == Attribute::SanitizeThread ||
1358 I->getKindAsEnum() == Attribute::SanitizeMemory ||
1359 I->getKindAsEnum() == Attribute::MinSize ||
1360 I->getKindAsEnum() == Attribute::NoDuplicate ||
1361 I->getKindAsEnum() == Attribute::Builtin ||
1362 I->getKindAsEnum() == Attribute::NoBuiltin ||
1363 I->getKindAsEnum() == Attribute::Cold ||
1364 I->getKindAsEnum() == Attribute::OptimizeNone ||
1365 I->getKindAsEnum() == Attribute::JumpTable ||
1366 I->getKindAsEnum() == Attribute::Convergent ||
1367 I->getKindAsEnum() == Attribute::ArgMemOnly ||
1368 I->getKindAsEnum() == Attribute::NoRecurse ||
1369 I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1370 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly ||
1371 I->getKindAsEnum() == Attribute::AllocSize) {
1372 if (!isFunction) {
1373 CheckFailed("Attribute '" + I->getAsString() +
1374 "' only applies to functions!", V);
1375 return;
1376 }
1377 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1378 I->getKindAsEnum() == Attribute::WriteOnly ||
1379 I->getKindAsEnum() == Attribute::ReadNone) {
1380 if (Idx == 0) {
1381 CheckFailed("Attribute '" + I->getAsString() +
1382 "' does not apply to function returns");
1383 return;
1384 }
1385 } else if (isFunction) {
1386 CheckFailed("Attribute '" + I->getAsString() +
1387 "' does not apply to functions!", V);
1388 return;
1389 }
1390 }
1391}
1392
1393// VerifyParameterAttrs - Check the given attributes for an argument or return
1394// value of the specified type. The value V is printed in error messages.
1395void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1396 bool isReturnValue, const Value *V) {
1397 if (!Attrs.hasAttributes(Idx))
1398 return;
1399
1400 verifyAttributeTypes(Attrs, Idx, false, V);
1401
1402 if (isReturnValue)
1403 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1404 !Attrs.hasAttribute(Idx, Attribute::Nest) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1405 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1406 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1407 !Attrs.hasAttribute(Idx, Attribute::Returned) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1408 !Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1409 !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1410 !Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1411 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1412 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1413 "values!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1414 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1415
1416 // Check for mutually incompatible attributes. Only inreg is compatible with
1417 // sret.
1418 unsigned AttrCount = 0;
1419 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1420 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1421 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1422 Attrs.hasAttribute(Idx, Attribute::InReg);
1423 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1424 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1425 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1426 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1427
1428 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1429 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1430 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1431 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1432 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
;
1433
1434 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1435 Attrs.hasAttribute(Idx, Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1436 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1437 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1438 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
;
1439
1440 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1441 Attrs.hasAttribute(Idx, Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1442 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1443 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1444 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1445
1446 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1447 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1448 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1449 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1450 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
;
1451
1452 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1453 Attrs.hasAttribute(Idx, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1454 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1455 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1456 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
;
1457
1458 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1459 Attrs.hasAttribute(Idx, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1460 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1461 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1462 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
;
1463
1464 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1465 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1466 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1467 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1468 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1469
1470 Assert(do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1471 !AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::typeIncompatible(Ty)),do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1472 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1473 AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible(Ty))do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1474 .getAsString(Idx),do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1475 V)do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
;
1476
1477 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1478 SmallPtrSet<Type*, 4> Visited;
1479 if (!PTy->getElementType()->isSized(&Visited)) {
1480 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1481 !Attrs.hasAttribute(Idx, Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1482 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1483 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1484 }
1485 if (!isa<PointerType>(PTy->getElementType()))
1486 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1487 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1488 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1489 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
;
1490 } else {
1491 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1492 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1493 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1494 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1495 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1496 "with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1497 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
;
1498 }
1499}
1500
1501// Check parameter attributes against a function type.
1502// The value V is printed in error messages.
1503void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1504 const Value *V) {
1505 if (Attrs.isEmpty())
1506 return;
1507
1508 bool SawNest = false;
1509 bool SawReturned = false;
1510 bool SawSRet = false;
1511 bool SawSwiftSelf = false;
1512 bool SawSwiftError = false;
1513
1514 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1515 unsigned Idx = Attrs.getSlotIndex(i);
1516
1517 Type *Ty;
1518 if (Idx == 0)
1519 Ty = FT->getReturnType();
1520 else if (Idx-1 < FT->getNumParams())
1521 Ty = FT->getParamType(Idx-1);
1522 else
1523 break; // VarArgs attributes, verified elsewhere.
1524
1525 verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1526
1527 if (Idx == 0)
1528 continue;
1529
1530 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1531 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1532 SawNest = true;
1533 }
1534
1535 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1536 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1537 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1538 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1539 "Incompatible "do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1540 "argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1541 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1542 SawReturned = true;
1543 }
1544
1545 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1546 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1547 Assert(Idx == 1 || Idx == 2,do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1548 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1549 SawSRet = true;
1550 }
1551
1552 if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
1553 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1554 SawSwiftSelf = true;
1555 }
1556
1557 if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
1558 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1559 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1560 SawSwiftError = true;
1561 }
1562
1563 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1564 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1565 V)do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1566 }
1567 }
1568
1569 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1570 return;
1571
1572 verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1573
1574 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1575 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1576 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1577 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1578
1579 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1580 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1581 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1582 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
;
1583
1584 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1585 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1586 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1587 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
;
1588
1589 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1590 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1591 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1592 Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1593 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
;
1594
1595 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1596 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1597 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1598 Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1599 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1600
1601 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1602 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1603 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1604 Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1605 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1606
1607 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1608 Attribute::OptimizeNone)) {
1609 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),do { if (!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (false)
1610 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (false)
;
1611
1612 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1613 Attribute::OptimizeForSize),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1614 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1615
1616 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (false)
1617 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1618 }
1619
1620 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1621 Attribute::JumpTable)) {
1622 const GlobalValue *GV = cast<GlobalValue>(V);
1623 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1624 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1625 }
1626
1627 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) {
1628 std::pair<unsigned, Optional<unsigned>> Args =
1629 Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex);
1630
1631 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1632 if (ParamNo >= FT->getNumParams()) {
1633 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1634 return false;
1635 }
1636
1637 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1638 CheckFailed("'allocsize' " + Name +
1639 " argument must refer to an integer parameter",
1640 V);
1641 return false;
1642 }
1643
1644 return true;
1645 };
1646
1647 if (!CheckParam("element size", Args.first))
1648 return;
1649
1650 if (Args.second && !CheckParam("number of elements", *Args.second))
1651 return;
1652 }
1653}
1654
1655void Verifier::verifyFunctionMetadata(
1656 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1657 for (const auto &Pair : MDs) {
1658 if (Pair.first == LLVMContext::MD_prof) {
1659 MDNode *MD = Pair.second;
1660 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
1661 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
1662
1663 // Check first operand.
1664 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1665 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1666 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1667 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1668 MDString *MDS = cast<MDString>(MD->getOperand(0));
1669 StringRef ProfName = MDS->getString();
1670 Assert(ProfName.equals("function_entry_count"),do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
1671 "first operand should be 'function_entry_count'", MD)do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
;
1672
1673 // Check second operand.
1674 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1675 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1676 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1677 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1678 }
1679 }
1680}
1681
1682void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1683 if (!ConstantExprVisited.insert(EntryC).second)
1684 return;
1685
1686 SmallVector<const Constant *, 16> Stack;
1687 Stack.push_back(EntryC);
1688
1689 while (!Stack.empty()) {
1690 const Constant *C = Stack.pop_back_val();
1691
1692 // Check this constant expression.
1693 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1694 visitConstantExpr(CE);
1695
1696 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1697 // Global Values get visited separately, but we do need to make sure
1698 // that the global value is in the correct module
1699 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1700 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1701 continue;
1702 }
1703
1704 // Visit all sub-expressions.
1705 for (const Use &U : C->operands()) {
1706 const auto *OpC = dyn_cast<Constant>(U);
1707 if (!OpC)
1708 continue;
1709 if (!ConstantExprVisited.insert(OpC).second)
1710 continue;
1711 Stack.push_back(OpC);
1712 }
1713 }
1714}
1715
1716void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1717 if (CE->getOpcode() == Instruction::BitCast)
1718 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1719 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1720 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1721
1722 if (CE->getOpcode() == Instruction::IntToPtr ||
1723 CE->getOpcode() == Instruction::PtrToInt) {
1724 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1725 ? CE->getType()
1726 : CE->getOperand(0)->getType();
1727 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1728 ? "inttoptr not supported for non-integral pointers"
1729 : "ptrtoint not supported for non-integral pointers";
1730 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1731 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1732 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1733 }
1734}
1735
1736bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1737 if (Attrs.getNumSlots() == 0)
1738 return true;
1739
1740 unsigned LastSlot = Attrs.getNumSlots() - 1;
1741 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1742 if (LastIndex <= Params
1743 || (LastIndex == AttributeSet::FunctionIndex
1744 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1745 return true;
1746
1747 return false;
1748}
1749
1750/// Verify that statepoint intrinsic is well formed.
1751void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1752 assert(CS.getCalledFunction() &&((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 1754, __PRETTY_FUNCTION__))
1753 CS.getCalledFunction()->getIntrinsicID() ==((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 1754, __PRETTY_FUNCTION__))
1754 Intrinsic::experimental_gc_statepoint)((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 1754, __PRETTY_FUNCTION__))
;
1755
1756 const Instruction &CI = *CS.getInstruction();
1757
1758 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1759 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1760 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1761 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1762 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
;
1763
1764 const Value *IDV = CS.getArgument(0);
1765 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
1766 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
;
1767
1768 const Value *NumPatchBytesV = CS.getArgument(1);
1769 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1770 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1771 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
;
1772 const int64_t NumPatchBytes =
1773 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1774 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 1774, __PRETTY_FUNCTION__))
;
1775 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1776 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1777 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
;
1778
1779 const Value *Target = CS.getArgument(2);
1780 auto *PT = dyn_cast<PointerType>(Target->getType());
1781 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
1782 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
;
1783 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1784
1785 const Value *NumCallArgsV = CS.getArgument(3);
1786 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1787 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1788 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1789 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
;
1790 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1791 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1792 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1793 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1794 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
;
1795 const int NumParams = (int)TargetFuncType->getNumParams();
1796 if (TargetFuncType->isVarArg()) {
1797 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
1798 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
;
1799
1800 // TODO: Remove this limitation
1801 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1802 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1803 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1804 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
;
1805 } else
1806 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
1807 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
;
1808
1809 const Value *FlagsV = CS.getArgument(4);
1810 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
1811 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
;
1812 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1813 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
1814 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
;
1815
1816 // Verify that the types of the call parameter arguments match
1817 // the type of the wrapped callee.
1818 for (int i = 0; i < NumParams; i++) {
1819 Type *ParamType = TargetFuncType->getParamType(i);
1820 Type *ArgType = CS.getArgument(5 + i)->getType();
1821 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1822 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1823 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1824 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
;
1825 }
1826
1827 const int EndCallArgsInx = 4 + NumCallArgs;
1828
1829 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1830 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1831 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1832 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1833 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1834 const int NumTransitionArgs =
1835 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1836 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
1837 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
;
1838 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1839
1840 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1841 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1842 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1843 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1844 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1845 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1846 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1847 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1848 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
;
1849
1850 const int ExpectedNumArgs =
1851 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1852 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
1853 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
;
1854
1855 // Check that the only uses of this gc.statepoint are gc.result or
1856 // gc.relocate calls which are tied to this statepoint and thus part
1857 // of the same statepoint sequence
1858 for (const User *U : CI.users()) {
1859 const CallInst *Call = dyn_cast<const CallInst>(U);
1860 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (false)
;
1861 if (!Call) continue;
1862 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1863 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1864 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1865 &CI, U)do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
;
1866 if (isa<GCResultInst>(Call)) {
1867 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
1868 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
;
1869 } else if (isa<GCRelocateInst>(Call)) {
1870 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
1871 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
;
1872 }
1873 }
1874
1875 // Note: It is legal for a single derived pointer to be listed multiple
1876 // times. It's non-optimal, but it is legal. It can also happen after
1877 // insertion if we strip a bitcast away.
1878 // Note: It is really tempting to check that each base is relocated and
1879 // that a derived pointer is never reused as a base pointer. This turns
1880 // out to be problematic since optimizations run after safepoint insertion
1881 // can recognize equality properties that the insertion logic doesn't know
1882 // about. See example statepoint.ll in the verifier subdirectory
1883}
1884
1885void Verifier::verifyFrameRecoverIndices() {
1886 for (auto &Counts : FrameEscapeInfo) {
1887 Function *F = Counts.first;
1888 unsigned EscapedObjectCount = Counts.second.first;
1889 unsigned MaxRecoveredIndex = Counts.second.second;
1890 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1891 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1892 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1893 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1894 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
;
1895 }
1896}
1897
1898static Instruction *getSuccPad(TerminatorInst *Terminator) {
1899 BasicBlock *UnwindDest;
1900 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1901 UnwindDest = II->getUnwindDest();
1902 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1903 UnwindDest = CSI->getUnwindDest();
1904 else
1905 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1906 return UnwindDest->getFirstNonPHI();
1907}
1908
1909void Verifier::verifySiblingFuncletUnwinds() {
1910 SmallPtrSet<Instruction *, 8> Visited;
1911 SmallPtrSet<Instruction *, 8> Active;
1912 for (const auto &Pair : SiblingFuncletInfo) {
1913 Instruction *PredPad = Pair.first;
1914 if (Visited.count(PredPad))
1915 continue;
1916 Active.insert(PredPad);
1917 TerminatorInst *Terminator = Pair.second;
1918 do {
1919 Instruction *SuccPad = getSuccPad(Terminator);
1920 if (Active.count(SuccPad)) {
1921 // Found a cycle; report error
1922 Instruction *CyclePad = SuccPad;
1923 SmallVector<Instruction *, 8> CycleNodes;
1924 do {
1925 CycleNodes.push_back(CyclePad);
1926 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1927 if (CycleTerminator != CyclePad)
1928 CycleNodes.push_back(CycleTerminator);
1929 CyclePad = getSuccPad(CycleTerminator);
1930 } while (CyclePad != SuccPad);
1931 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
1932 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
1933 }
1934 // Don't re-walk a node we've already checked
1935 if (!Visited.insert(SuccPad).second)
1936 break;
1937 // Walk to this successor if it has a map entry.
1938 PredPad = SuccPad;
1939 auto TermI = SiblingFuncletInfo.find(PredPad);
1940 if (TermI == SiblingFuncletInfo.end())
1941 break;
1942 Terminator = TermI->second;
1943 Active.insert(PredPad);
1944 } while (true);
1945 // Each node only has one successor, so we've walked all the active
1946 // nodes' successors.
1947 Active.clear();
1948 }
1949}
1950
1951// visitFunction - Verify that a function is ok.
1952//
1953void Verifier::visitFunction(const Function &F) {
1954 DebugFnArgs.clear();
1955
1956 visitGlobalValue(F);
1957
1958 // Check function arguments.
1959 FunctionType *FT = F.getFunctionType();
1960 unsigned NumArgs = F.arg_size();
1961
1962 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1963 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
1964
1965 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
1966 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1967 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1968 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
1969 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1970 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1971 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
1972
1973 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
1974 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
1975
1976 AttributeSet Attrs = F.getAttributes();
1977
1978 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
1979 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
1980
1981 // Check function attributes.
1982 verifyFunctionAttrs(FT, Attrs, &F);
1983
1984 // On function declarations/definitions, we do not support the builtin
1985 // attribute. We do not check this in VerifyFunctionAttrs since that is
1986 // checking for Attributes that can/can not ever be on functions.
1987 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (false)
1988 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (false)
;
1989
1990 // Check that this function meets the restrictions on this calling convention.
1991 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1992 // restrictions can be lifted.
1993 switch (F.getCallingConv()) {
1
Control jumps to the 'default' case at line 1994
1994 default:
1995 case CallingConv::C:
1996 break;
2
Execution continues on line 2008
1997 case CallingConv::Fast:
1998 case CallingConv::Cold:
1999 case CallingConv::Intel_OCL_BI:
2000 case CallingConv::PTX_Kernel:
2001 case CallingConv::PTX_Device:
2002 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2003 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2004 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2005 break;
2006 }
2007
2008 bool isLLVMdotName = F.getName().size() >= 5 &&
3
Assuming the condition is false
2009 F.getName().substr(0, 5) == "llvm.";
2010
2011 // Check that the argument values match the function type for this function...
2012 unsigned i = 0;
2013 for (const Argument &Arg : F.args()) {
2014 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2015 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2016 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2017 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2018 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2019 if (!isLLVMdotName) {
2020 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2021 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2022 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2023 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2024 }
2025
2026 // Check that swifterror argument is only used by loads and stores.
2027 if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
2028 verifySwiftErrorValue(&Arg);
2029 }
2030 ++i;
2031 }
2032
2033 if (!isLLVMdotName)
4
Taking true branch
2034 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
2035 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2036
2037 // Get the function metadata attachments.
2038 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2039 F.getAllMetadata(MDs);
2040 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 2040, __PRETTY_FUNCTION__))
;
2041 verifyFunctionMetadata(MDs);
2042
2043 // Check validity of the personality function
2044 if (F.hasPersonalityFn()) {
5
Assuming the condition is false
6
Taking false branch
2045 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2046 if (Per)
2047 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2048 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2049 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2050 }
2051
2052 if (F.isMaterializable()) {
7
Assuming the condition is false
8
Taking false branch
2053 // Function has a body somewhere we can't see.
2054 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2055 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2056 } else if (F.isDeclaration()) {
9
Assuming the condition is false
10
Taking false branch
2057 for (const auto &I : MDs) {
2058 AssertDI(I.first != LLVMContext::MD_dbg,do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
2059 "function declaration may not have a !dbg attachment", &F)do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
;
2060 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2061 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2062
2063 // Verify the metadata itself.
2064 visitMDNode(*I.second);
2065 }
2066 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2067 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2068 } else {
2069 // Verify that this function (which has a body) is not named "llvm.*". It
2070 // is not legal to define intrinsics.
2071 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
2072
2073 // Check the entry node
2074 const BasicBlock *Entry = &F.getEntryBlock();
2075 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
2076 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2077
2078 // The address of the entry block cannot be taken, unless it is dead.
2079 if (Entry->hasAddressTaken()) {
11
Assuming the condition is false
12
Taking false branch
2080 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2081 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2082 }
2083
2084 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2085 // Visit metadata attachments.
2086 for (const auto &I : MDs) {
13
Assuming '__begin' is equal to '__end'
2087 // Verify that the attachment is legal.
2088 switch (I.first) {
2089 default:
2090 break;
2091 case LLVMContext::MD_dbg:
2092 ++NumDebugAttachments;
2093 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2094 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2095 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2096 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2097 break;
2098 case LLVMContext::MD_prof:
2099 ++NumProfAttachments;
2100 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2101 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2102 break;
2103 }
2104
2105 // Verify the metadata itself.
2106 visitMDNode(*I.second);
2107 }
2108 }
2109
2110 // If this function is actually an intrinsic, verify that it is only used in
2111 // direct call/invokes, never having its "address taken".
2112 // Only do this if the module is materialized, otherwise we don't have all the
2113 // uses.
2114 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
14
Assuming the condition is false
2115 const User *U;
2116 if (F.hasAddressTaken(&U))
2117 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2118 }
2119
2120 Assert(!F.hasDLLImportStorageClass() ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2121 (F.isDeclaration() && F.hasExternalLinkage()) ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2122 F.hasAvailableExternallyLinkage(),do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2123 "Function is marked as dllimport, but not external.", &F)do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
;
2124
2125 auto *N = F.getSubprogram();
2126 if (!N)
15
Assuming 'N' is non-null
16
Taking false branch
2127 return;
2128
2129 // Check that all !dbg attachments lead to back to N (or, at least, another
2130 // subprogram that describes the same function).
2131 //
2132 // FIXME: Check this incrementally while visiting !dbg attachments.
2133 // FIXME: Only check when N is the canonical subprogram for F.
2134 SmallPtrSet<const MDNode *, 32> Seen;
2135 for (auto &BB : F)
2136 for (auto &I : BB) {
2137 // Be careful about using DILocation here since we might be dealing with
2138 // broken code (this is the Verifier after all).
2139 DILocation *DL =
2140 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2141 if (!DL)
17
Assuming 'DL' is non-null
18
Taking false branch
2142 continue;
2143 if (!Seen.insert(DL).second)
19
Assuming the condition is false
20
Taking false branch
2144 continue;
2145
2146 DILocalScope *Scope = DL->getInlinedAtScope();
2147 if (Scope && !Seen.insert(Scope).second)
21
Assuming 'Scope' is null
22
Taking false branch
2148 continue;
2149
2150 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
23
'?' condition is false
24
'SP' initialized to a null pointer value
2151
2152 // Scope and SP could be the same MDNode and we don't want to skip
2153 // validation in that case
2154 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
25
Taking false branch
2155 continue;
2156
2157 // FIXME: Once N is canonical, check "SP == &N".
2158 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
26
Within the expansion of the macro 'AssertDI':
a
Called C++ object pointer is null
2159 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2160 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2161 }
2162}
2163
2164// verifyBasicBlock - Verify that a basic block is well formed...
2165//
2166void Verifier::visitBasicBlock(BasicBlock &BB) {
2167 InstsInThisBlock.clear();
2168
2169 // Ensure that basic blocks have terminators!
2170 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2171
2172 // Check constraints that this basic block imposes on all of the PHI nodes in
2173 // it.
2174 if (isa<PHINode>(BB.front())) {
2175 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2176 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2177 std::sort(Preds.begin(), Preds.end());
2178 PHINode *PN;
2179 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2180 // Ensure that PHI nodes have at least one entry!
2181 Assert(PN->getNumIncomingValues() != 0,do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2182 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2183 "the PHI should be removed!",do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2184 PN)do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
;
2185 Assert(PN->getNumIncomingValues() == Preds.size(),do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2186 "PHINode should have one entry for each predecessor of its "do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2187 "parent basic block!",do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2188 PN)do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
;
2189
2190 // Get and sort all incoming values in the PHI node...
2191 Values.clear();
2192 Values.reserve(PN->getNumIncomingValues());
2193 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2194 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2195 PN->getIncomingValue(i)));
2196 std::sort(Values.begin(), Values.end());
2197
2198 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2199 // Check to make sure that if there is more than one entry for a
2200 // particular basic block in this PHI node, that the incoming values are
2201 // all identical.
2202 //
2203 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2204 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2205 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2206 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2207 PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
;
2208
2209 // Check to make sure that the predecessors and PHI node entries are
2210 // matched up.
2211 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2212 "PHI node entries do not match predecessors!", PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2213 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
;
2214 }
2215 }
2216 }
2217
2218 // Check that all instructions have their parent pointers set up correctly.
2219 for (auto &I : BB)
2220 {
2221 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2222 }
2223}
2224
2225void Verifier::visitTerminatorInst(TerminatorInst &I) {
2226 // Ensure that terminators only exist at the end of the basic block.
2227 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2228 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2229 visitInstruction(I);
2230}
2231
2232void Verifier::visitBranchInst(BranchInst &BI) {
2233 if (BI.isConditional()) {
2234 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2235 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2236 }
2237 visitTerminatorInst(BI);
2238}
2239
2240void Verifier::visitReturnInst(ReturnInst &RI) {
2241 Function *F = RI.getParent()->getParent();
2242 unsigned N = RI.getNumOperands();
2243 if (F->getReturnType()->isVoidTy())
2244 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2245 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2246 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2247 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2248 else
2249 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2250 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2251 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2252 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2253
2254 // Check to make sure that the return value has necessary properties for
2255 // terminators...
2256 visitTerminatorInst(RI);
2257}
2258
2259void Verifier::visitSwitchInst(SwitchInst &SI) {
2260 // Check to make sure that all of the constants in the switch instruction
2261 // have the same type as the switched-on value.
2262 Type *SwitchTy = SI.getCondition()->getType();
2263 SmallPtrSet<ConstantInt*, 32> Constants;
2264 for (auto &Case : SI.cases()) {
2265 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2266 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2267 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2268 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2269 }
2270
2271 visitTerminatorInst(SI);
2272}
2273
2274void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2275 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2276 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2277 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2278 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2279 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2280
2281 visitTerminatorInst(BI);
2282}
2283
2284void Verifier::visitSelectInst(SelectInst &SI) {
2285 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2286 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2287 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2288
2289 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2290 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2291 visitInstruction(SI);
2292}
2293
2294/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2295/// a pass, if any exist, it's an error.
2296///
2297void Verifier::visitUserOp1(Instruction &I) {
2298 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2299}
2300
2301void Verifier::visitTruncInst(TruncInst &I) {
2302 // Get the source and destination types
2303 Type *SrcTy = I.getOperand(0)->getType();
2304 Type *DestTy = I.getType();
2305
2306 // Get the size of the types in bits, we'll need this later
2307 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2308 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2309
2310 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2311 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2312 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2313 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2314 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2315
2316 visitInstruction(I);
2317}
2318
2319void Verifier::visitZExtInst(ZExtInst &I) {
2320 // Get the source and destination types
2321 Type *SrcTy = I.getOperand(0)->getType();
2322 Type *DestTy = I.getType();
2323
2324 // Get the size of the types in bits, we'll need this later
2325 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2326 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2327 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2328 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2329 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2330 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2331
2332 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2333
2334 visitInstruction(I);
2335}
2336
2337void Verifier::visitSExtInst(SExtInst &I) {
2338 // Get the source and destination types
2339 Type *SrcTy = I.getOperand(0)->getType();
2340 Type *DestTy = I.getType();
2341
2342 // Get the size of the types in bits, we'll need this later
2343 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2344 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2345
2346 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2347 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2348 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2349 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2350 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2351
2352 visitInstruction(I);
2353}
2354
2355void Verifier::visitFPTruncInst(FPTruncInst &I) {
2356 // Get the source and destination types
2357 Type *SrcTy = I.getOperand(0)->getType();
2358 Type *DestTy = I.getType();
2359 // Get the size of the types in bits, we'll need this later
2360 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2361 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2362
2363 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2364 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2365 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2366 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2367 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2368
2369 visitInstruction(I);
2370}
2371
2372void Verifier::visitFPExtInst(FPExtInst &I) {
2373 // Get the source and destination types
2374 Type *SrcTy = I.getOperand(0)->getType();
2375 Type *DestTy = I.getType();
2376
2377 // Get the size of the types in bits, we'll need this later
2378 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2379 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2380
2381 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2382 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2383 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2384 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2385 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2386
2387 visitInstruction(I);
2388}
2389
2390void Verifier::visitUIToFPInst(UIToFPInst &I) {
2391 // Get the source and destination types
2392 Type *SrcTy = I.getOperand(0)->getType();
2393 Type *DestTy = I.getType();
2394
2395 bool SrcVec = SrcTy->isVectorTy();
2396 bool DstVec = DestTy->isVectorTy();
2397
2398 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2399 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2400 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2401 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2402 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2403 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2404
2405 if (SrcVec && DstVec)
2406 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2407 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2408 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2409
2410 visitInstruction(I);
2411}
2412
2413void Verifier::visitSIToFPInst(SIToFPInst &I) {
2414 // Get the source and destination types
2415 Type *SrcTy = I.getOperand(0)->getType();
2416 Type *DestTy = I.getType();
2417
2418 bool SrcVec = SrcTy->isVectorTy();
2419 bool DstVec = DestTy->isVectorTy();
2420
2421 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2422 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2423 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2424 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2425 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2426 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2427
2428 if (SrcVec && DstVec)
2429 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2430 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2431 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2432
2433 visitInstruction(I);
2434}
2435
2436void Verifier::visitFPToUIInst(FPToUIInst &I) {
2437 // Get the source and destination types
2438 Type *SrcTy = I.getOperand(0)->getType();
2439 Type *DestTy = I.getType();
2440
2441 bool SrcVec = SrcTy->isVectorTy();
2442 bool DstVec = DestTy->isVectorTy();
2443
2444 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2445 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2446 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2447 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2448 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2449 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2450
2451 if (SrcVec && DstVec)
2452 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2453 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2454 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2455
2456 visitInstruction(I);
2457}
2458
2459void Verifier::visitFPToSIInst(FPToSIInst &I) {
2460 // Get the source and destination types
2461 Type *SrcTy = I.getOperand(0)->getType();
2462 Type *DestTy = I.getType();
2463
2464 bool SrcVec = SrcTy->isVectorTy();
2465 bool DstVec = DestTy->isVectorTy();
2466
2467 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2468 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2469 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2470 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2471 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2472 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2473
2474 if (SrcVec && DstVec)
2475 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2476 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2477 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2478
2479 visitInstruction(I);
2480}
2481
2482void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2483 // Get the source and destination types
2484 Type *SrcTy = I.getOperand(0)->getType();
2485 Type *DestTy = I.getType();
2486
2487 Assert(SrcTy->getScalarType()->isPointerTy(),do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
2488 "PtrToInt source must be pointer", &I)do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
;
2489
2490 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2491 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2492 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2493
2494 Assert(DestTy->getScalarType()->isIntegerTy(),do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
2495 "PtrToInt result must be integral", &I)do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
;
2496 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2497 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2498
2499 if (SrcTy->isVectorTy()) {
2500 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2501 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2502 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2503 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2504 }
2505
2506 visitInstruction(I);
2507}
2508
2509void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2510 // Get the source and destination types
2511 Type *SrcTy = I.getOperand(0)->getType();
2512 Type *DestTy = I.getType();
2513
2514 Assert(SrcTy->getScalarType()->isIntegerTy(),do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
2515 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
;
2516 Assert(DestTy->getScalarType()->isPointerTy(),do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
2517 "IntToPtr result must be a pointer", &I)do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
;
2518
2519 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2520 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2521 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2522
2523 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2524 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2525 if (SrcTy->isVectorTy()) {
2526 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2527 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2528 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2529 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2530 }
2531 visitInstruction(I);
2532}
2533
2534void Verifier::visitBitCastInst(BitCastInst &I) {
2535 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2536 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2537 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2538 visitInstruction(I);
2539}
2540
2541void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2542 Type *SrcTy = I.getOperand(0)->getType();
2543 Type *DestTy = I.getType();
2544
2545 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2546 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2547 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2548 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2549 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2550 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2551 if (SrcTy->isVectorTy())
2552 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2553 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2554 visitInstruction(I);
2555}
2556
2557/// visitPHINode - Ensure that a PHI node is well formed.
2558///
2559void Verifier::visitPHINode(PHINode &PN) {
2560 // Ensure that the PHI nodes are all grouped together at the top of the block.
2561 // This can be tested by checking whether the instruction before this is
2562 // either nonexistent (because this is begin()) or is a PHI node. If not,
2563 // then there is some other instruction before a PHI.
2564 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2565 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2566 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2567
2568 // Check that a PHI doesn't yield a Token.
2569 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2570
2571 // Check that all of the values of the PHI node have the same type as the
2572 // result, and that the incoming blocks are really basic blocks.
2573 for (Value *IncValue : PN.incoming_values()) {
2574 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2575 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2576 }
2577
2578 // All other PHI node constraints are checked in the visitBasicBlock method.
2579
2580 visitInstruction(PN);
2581}
2582
2583void Verifier::verifyCallSite(CallSite CS) {
2584 Instruction *I = CS.getInstruction();
2585
2586 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
2587 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
;
2588 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2589
2590 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
2591 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
;
2592
2593 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
2594 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
;
2595
2596 FunctionType *FTy = CS.getFunctionType();
2597
2598 // Verify that the correct number of arguments are being passed
2599 if (FTy->isVarArg())
2600 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
2601 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
;
2602 else
2603 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
2604 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
;
2605
2606 // Verify that all arguments to the call match the function type.
2607 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2608 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2609 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2610 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
;
2611
2612 AttributeSet Attrs = CS.getAttributes();
2613
2614 Assert(verifyAttributeCount(Attrs, CS.arg_size()),do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
2615 "Attribute after last parameter!", I)do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
;
2616
2617 // Verify call attributes.
2618 verifyFunctionAttrs(FTy, Attrs, I);
2619
2620 // Conservatively check the inalloca argument.
2621 // We have a bug if we can find that there is an underlying alloca without
2622 // inalloca.
2623 if (CS.hasInAllocaArgument()) {
2624 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2625 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2626 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2627 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2628 }
2629
2630 // For each argument of the callsite, if it has the swifterror argument,
2631 // make sure the underlying alloca/parameter it comes from has a swifterror as
2632 // well.
2633 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2634 if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
2635 Value *SwiftErrorArg = CS.getArgument(i);
2636 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2637 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2638 "swifterror argument for call has mismatched alloca", AI, I)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2639 continue;
2640 }
2641 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2642 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, I); return; } } while (false)
;
2643 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
2644 "swifterror argument for call has mismatched parameter", ArgI, I)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
;
2645 }
2646
2647 if (FTy->isVarArg()) {
2648 // FIXME? is 'nest' even legal here?
2649 bool SawNest = false;
2650 bool SawReturned = false;
2651
2652 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2653 if (Attrs.hasAttribute(Idx, Attribute::Nest))
2654 SawNest = true;
2655 if (Attrs.hasAttribute(Idx, Attribute::Returned))
2656 SawReturned = true;
2657 }
2658
2659 // Check attributes on the varargs part.
2660 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2661 Type *Ty = CS.getArgument(Idx-1)->getType();
2662 verifyParameterAttrs(Attrs, Idx, Ty, false, I);
2663
2664 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2665 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (false)
;
2666 SawNest = true;
2667 }
2668
2669 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2670 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
2671 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
;
2672 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2673 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2674 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2675 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
;
2676 SawReturned = true;
2677 }
2678
2679 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
2680 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
;
2681
2682 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2683 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I)do { if (!(Idx == CS.arg_size())) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
;
2684 }
2685 }
2686
2687 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2688 if (CS.getCalledFunction() == nullptr ||
2689 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2690 for (Type *ParamTy : FTy->params()) {
2691 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
2692 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2693 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
2694 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2695 }
2696 }
2697
2698 // Verify that indirect calls don't return tokens.
2699 if (CS.getCalledFunction() == nullptr)
2700 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
2701 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
2702
2703 if (Function *F = CS.getCalledFunction())
2704 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2705 visitIntrinsicCallSite(ID, CS);
2706
2707 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2708 // at most one "gc-transition" operand bundle.
2709 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2710 FoundGCTransitionBundle = false;
2711 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2712 OperandBundleUse BU = CS.getOperandBundleAt(i);
2713 uint32_t Tag = BU.getTagID();
2714 if (Tag == LLVMContext::OB_deopt) {
2715 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, I); return; } } while (false)
;
2716 FoundDeoptBundle = true;
2717 } else if (Tag == LLVMContext::OB_gc_transition) {
2718 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
2719 I)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
;
2720 FoundGCTransitionBundle = true;
2721 } else if (Tag == LLVMContext::OB_funclet) {
2722 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, I); return; } } while (false)
;
2723 FoundFuncletBundle = true;
2724 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
2725 "Expected exactly one funclet bundle operand", I)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
;
2726 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2727 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2728 I)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
;
2729 }
2730 }
2731
2732 // Verify that each inlinable callsite of a debug-info-bearing function in a
2733 // debug-info-bearing function has a debug location attached to it. Failure to
2734 // do so causes assertion failures when the inliner sets up inline scope info.
2735 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2736 CS.getCalledFunction()->getSubprogram())
2737 AssertDI(I->getDebugLoc(), "inlinable function call in a function with "do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2738 "debug info must have a !dbg location",do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2739 I)do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
;
2740
2741 visitInstruction(*I);
2742}
2743
2744/// Two types are "congruent" if they are identical, or if they are both pointer
2745/// types with different pointee types and the same address space.
2746static bool isTypeCongruent(Type *L, Type *R) {
2747 if (L == R)
2748 return true;
2749 PointerType *PL = dyn_cast<PointerType>(L);
2750 PointerType *PR = dyn_cast<PointerType>(R);
2751 if (!PL || !PR)
2752 return false;
2753 return PL->getAddressSpace() == PR->getAddressSpace();
2754}
2755
2756static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2757 static const Attribute::AttrKind ABIAttrs[] = {
2758 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2759 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2760 Attribute::SwiftError};
2761 AttrBuilder Copy;
2762 for (auto AK : ABIAttrs) {
2763 if (Attrs.hasAttribute(I + 1, AK))
2764 Copy.addAttribute(AK);
2765 }
2766 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2767 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2768 return Copy;
2769}
2770
2771void Verifier::verifyMustTailCall(CallInst &CI) {
2772 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
2773
2774 // - The caller and callee prototypes must match. Pointer types of
2775 // parameters or return types may differ in pointee type, but not
2776 // address space.
2777 Function *F = CI.getParent()->getParent();
2778 FunctionType *CallerTy = F->getFunctionType();
2779 FunctionType *CalleeTy = CI.getFunctionType();
2780 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
2781 "cannot guarantee tail call due to mismatched parameter counts", &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
2782 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
2783 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
2784 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
2785 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
2786 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2787 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2788 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2789 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
2790 }
2791
2792 // - The calling conventions of the caller and callee must match.
2793 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
2794 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
2795
2796 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2797 // returned, and inalloca, must match.
2798 AttributeSet CallerAttrs = F->getAttributes();
2799 AttributeSet CalleeAttrs = CI.getAttributes();
2800 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2801 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2802 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2803 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2804 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2805 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2806 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
2807 }
2808
2809 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2810 // or a pointer bitcast followed by a ret instruction.
2811 // - The ret instruction must return the (possibly bitcasted) value
2812 // produced by the call or void.
2813 Value *RetVal = &CI;
2814 Instruction *Next = CI.getNextNode();
2815
2816 // Handle the optional bitcast.
2817 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2818 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
2819 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
2820 RetVal = BI;
2821 Next = BI->getNextNode();
2822 }
2823
2824 // Check the return.
2825 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2826 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
2827 &CI)do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
2828 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
2829 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
2830}
2831
2832void Verifier::visitCallInst(CallInst &CI) {
2833 verifyCallSite(&CI);
2834
2835 if (CI.isMustTailCall())
2836 verifyMustTailCall(CI);
2837}
2838
2839void Verifier::visitInvokeInst(InvokeInst &II) {
2840 verifyCallSite(&II);
2841
2842 // Verify that the first non-PHI instruction of the unwind destination is an
2843 // exception handling instruction.
2844 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2845 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2846 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2847 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
2848
2849 visitTerminatorInst(II);
2850}
2851
2852/// visitBinaryOperator - Check that both arguments to the binary operator are
2853/// of the same type!
2854///
2855void Verifier::visitBinaryOperator(BinaryOperator &B) {
2856 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
2857 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
2858
2859 switch (B.getOpcode()) {
2860 // Check that integer arithmetic operators are only used with
2861 // integral operands.
2862 case Instruction::Add:
2863 case Instruction::Sub:
2864 case Instruction::Mul:
2865 case Instruction::SDiv:
2866 case Instruction::UDiv:
2867 case Instruction::SRem:
2868 case Instruction::URem:
2869 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
2870 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
2871 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2872 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2873 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2874 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2875 break;
2876 // Check that floating-point arithmetic operators are only used with
2877 // floating-point operands.
2878 case Instruction::FAdd:
2879 case Instruction::FSub:
2880 case Instruction::FMul:
2881 case Instruction::FDiv:
2882 case Instruction::FRem:
2883 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2884 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2885 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2886 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
2887 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2888 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2889 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2890 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2891 break;
2892 // Check that logical operators are only used with integral operands.
2893 case Instruction::And:
2894 case Instruction::Or:
2895 case Instruction::Xor:
2896 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
2897 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
2898 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2899 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2900 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
2901 break;
2902 case Instruction::Shl:
2903 case Instruction::LShr:
2904 case Instruction::AShr:
2905 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
2906 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
2907 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
2908 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
2909 break;
2910 default:
2911 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 2911)
;
2912 }
2913
2914 visitInstruction(B);
2915}
2916
2917void Verifier::visitICmpInst(ICmpInst &IC) {
2918 // Check that the operands are the same type
2919 Type *Op0Ty = IC.getOperand(0)->getType();
2920 Type *Op1Ty = IC.getOperand(1)->getType();
2921 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
2922 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
2923 // Check that the operands are the right type
2924 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
2925 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
2926 // Check that the predicate is valid.
2927 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2928 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2929 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
;
2930
2931 visitInstruction(IC);
2932}
2933
2934void Verifier::visitFCmpInst(FCmpInst &FC) {
2935 // Check that the operands are the same type
2936 Type *Op0Ty = FC.getOperand(0)->getType();
2937 Type *Op1Ty = FC.getOperand(1)->getType();
2938 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
2939 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
2940 // Check that the operands are the right type
2941 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
2942 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
2943 // Check that the predicate is valid.
2944 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2945 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2946 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
;
2947
2948 visitInstruction(FC);
2949}
2950
2951void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2952 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2953 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2954 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
2955 visitInstruction(EI);
2956}
2957
2958void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2959 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2960 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2961 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
2962 visitInstruction(IE);
2963}
2964
2965void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2966 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2967 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2968 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
2969 visitInstruction(SV);
2970}
2971
2972void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2973 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2974
2975 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
2976 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
2977 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
2978 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2979 Type *ElTy =
2980 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2981 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
2982
2983 Assert(GEP.getType()->getScalarType()->isPointerTy() &&do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
2984 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
2985 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
;
2986
2987 if (GEP.getType()->isVectorTy()) {
2988 // Additional checks for vector GEPs.
2989 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2990 if (GEP.getPointerOperandType()->isVectorTy())
2991 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
2992 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
2993 for (Value *Idx : Idxs) {
2994 Type *IndexTy = Idx->getType();
2995 if (IndexTy->isVectorTy()) {
2996 unsigned IndexWidth = IndexTy->getVectorNumElements();
2997 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
2998 }
2999 Assert(IndexTy->getScalarType()->isIntegerTy(),do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
3000 "All GEP indices should be of integer type")do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
;
3001 }
3002 }
3003 visitInstruction(GEP);
3004}
3005
3006static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3007 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3008}
3009
3010void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3011 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 3012, __PRETTY_FUNCTION__))
3012 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 3012, __PRETTY_FUNCTION__))
;
3013
3014 unsigned NumOperands = Range->getNumOperands();
3015 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3016 unsigned NumRanges = NumOperands / 2;
3017 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3018
3019 ConstantRange LastRange(1); // Dummy initial value
3020 for (unsigned i = 0; i < NumRanges; ++i) {
3021 ConstantInt *Low =
3022 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3023 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3024 ConstantInt *High =
3025 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3026 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3027 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3028 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3029
3030 APInt HighV = High->getValue();
3031 APInt LowV = Low->getValue();
3032 ConstantRange CurRange(LowV, HighV);
3033 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3034 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3035 if (i != 0) {
3036 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3037 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3038 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3039 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3040 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3041 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3042 }
3043 LastRange = ConstantRange(LowV, HighV);
3044 }
3045 if (NumRanges > 2) {
3046 APInt FirstLow =
3047 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3048 APInt FirstHigh =
3049 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3050 ConstantRange FirstRange(FirstLow, FirstHigh);
3051 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3052 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3053 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3054 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3055 }
3056}
3057
3058void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3059 unsigned Size = DL.getTypeSizeInBits(Ty);
3060 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3061 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3062 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3063}
3064
3065void Verifier::visitLoadInst(LoadInst &LI) {
3066 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3067 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3068 Type *ElTy = LI.getType();
3069 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3070 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3071 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3072 if (LI.isAtomic()) {
3073 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3074 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3075 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3076 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3077 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3078 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3079 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3080 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3081 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3082 ElTy, &LI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3083 checkAtomicMemAccessSize(ElTy, &LI);
3084 } else {
3085 Assert(LI.getSynchScope() == CrossThread,do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
3086 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
;
3087 }
3088
3089 visitInstruction(LI);
3090}
3091
3092void Verifier::visitStoreInst(StoreInst &SI) {
3093 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3094 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3095 Type *ElTy = PTy->getElementType();
3096 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3097 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3098 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3099 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3100 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3101 if (SI.isAtomic()) {
3102 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3103 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3104 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3105 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3106 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3107 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3108 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3109 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3110 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3111 ElTy, &SI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3112 checkAtomicMemAccessSize(ElTy, &SI);
3113 } else {
3114 Assert(SI.getSynchScope() == CrossThread,do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3115 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3116 }
3117 visitInstruction(SI);
3118}
3119
3120/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3121void Verifier::verifySwiftErrorCallSite(CallSite CS,
3122 const Value *SwiftErrorVal) {
3123 unsigned Idx = 0;
3124 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3125 I != E; ++I, ++Idx) {
3126 if (*I == SwiftErrorVal) {
3127 Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3128 "swifterror value when used in a callsite should be marked "do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3129 "with swifterror attribute",do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3130 SwiftErrorVal, CS)do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
;
3131 }
3132 }
3133}
3134
3135void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3136 // Check that swifterror value is only used by loads, stores, or as
3137 // a swifterror argument.
3138 for (const User *U : SwiftErrorVal->users()) {
3139 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3140 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3141 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3142 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3143 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3144 // If it is used by a store, check it is the second operand.
3145 if (auto StoreI = dyn_cast<StoreInst>(U))
3146 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3147 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3148 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3149 if (auto CallI = dyn_cast<CallInst>(U))
3150 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3151 if (auto II = dyn_cast<InvokeInst>(U))
3152 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3153 }
3154}
3155
3156void Verifier::visitAllocaInst(AllocaInst &AI) {
3157 SmallPtrSet<Type*, 4> Visited;
3158 PointerType *PTy = AI.getType();
3159 Assert(PTy->getAddressSpace() == 0,do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
3160 "Allocation instruction pointer not in the generic address space!",do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
3161 &AI)do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
;
3162 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3163 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3164 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3165 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3166 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3167 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3168
3169 if (AI.isSwiftError()) {
3170 verifySwiftErrorValue(&AI);
3171 }
3172
3173 visitInstruction(AI);
3174}
3175
3176void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3177
3178 // FIXME: more conditions???
3179 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3180 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3181 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3182 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3183 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3184 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3185 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3186 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3187 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3188 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3189 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3190 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3191 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3192 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3193 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3194
3195 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3196 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3197 Type *ElTy = PTy->getElementType();
3198 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3199 "cmpxchg operand must have integer or pointer type",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3200 ElTy, &CXI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3201 checkAtomicMemAccessSize(ElTy, &CXI);
3202 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3203 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3204 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3205 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3206 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3207 visitInstruction(CXI);
3208}
3209
3210void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3211 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3212 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3213 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3214 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3215 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3216 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3217 Type *ElTy = PTy->getElementType();
3218 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3219 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3220 checkAtomicMemAccessSize(ElTy, &RMWI);
3221 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3222 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3223 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3224 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3225 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3226 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
;
3227 visitInstruction(RMWI);
3228}
3229
3230void Verifier::visitFenceInst(FenceInst &FI) {
3231 const AtomicOrdering Ordering = FI.getOrdering();
3232 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3233 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3234 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3235 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3236 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3237 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3238 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3239 visitInstruction(FI);
3240}
3241
3242void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3243 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3244 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3245 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3246
3247 visitInstruction(EVI);
3248}
3249
3250void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3251 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3252 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3253 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3254 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3255
3256 visitInstruction(IVI);
3257}
3258
3259static Value *getParentPad(Value *EHPad) {
3260 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3261 return FPI->getParentPad();
3262
3263 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3264}
3265
3266void Verifier::visitEHPadPredecessors(Instruction &I) {
3267 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 3267, __PRETTY_FUNCTION__))
;
3268
3269 BasicBlock *BB = I.getParent();
3270 Function *F = BB->getParent();
3271
3272 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3273
3274 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3275 // The landingpad instruction defines its parent as a landing pad block. The
3276 // landing pad block may be branched to only by the unwind edge of an
3277 // invoke.
3278 for (BasicBlock *PredBB : predecessors(BB)) {
3279 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3280 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3281 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3282 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3283 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3284 }
3285 return;
3286 }
3287 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3288 if (!pred_empty(BB))
3289 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3290 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3291 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3292 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3293 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3294 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3295 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3296 return;
3297 }
3298
3299 // Verify that each pred has a legal terminator with a legal to/from EH
3300 // pad relationship.
3301 Instruction *ToPad = &I;
3302 Value *ToPadParent = getParentPad(ToPad);
3303 for (BasicBlock *PredBB : predecessors(BB)) {
3304 TerminatorInst *TI = PredBB->getTerminator();
3305 Value *FromPad;
3306 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3307 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3308 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3309 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3310 FromPad = Bundle->Inputs[0];
3311 else
3312 FromPad = ConstantTokenNone::get(II->getContext());
3313 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3314 FromPad = CRI->getOperand(0);
3315 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3316 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3317 FromPad = CSI;
3318 } else {
3319 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3320 }
3321
3322 // The edge may exit from zero or more nested pads.
3323 SmallSet<Value *, 8> Seen;
3324 for (;; FromPad = getParentPad(FromPad)) {
3325 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3326 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3327 if (FromPad == ToPadParent) {
3328 // This is a legal unwind edge.
3329 break;
3330 }
3331 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3332 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3333 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3334 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3335 }
3336 }
3337}
3338
3339void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3340 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3341 // isn't a cleanup.
3342 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3343 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3344
3345 visitEHPadPredecessors(LPI);
3346
3347 if (!LandingPadResultTy)
3348 LandingPadResultTy = LPI.getType();
3349 else
3350 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3351 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3352 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3353 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3354
3355 Function *F = LPI.getParent()->getParent();
3356 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3357 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3358
3359 // The landingpad instruction must be the first non-PHI instruction in the
3360 // block.
3361 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3362 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3363 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3364
3365 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3366 Constant *Clause = LPI.getClause(i);
3367 if (LPI.isCatch(i)) {
3368 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3369 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3370 } else {
3371 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3372 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3373 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3374 }
3375 }
3376
3377 visitInstruction(LPI);
3378}
3379
3380void Verifier::visitResumeInst(ResumeInst &RI) {
3381 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3382 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3383
3384 if (!LandingPadResultTy)
3385 LandingPadResultTy = RI.getValue()->getType();
3386 else
3387 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3388 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3389 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3390 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3391
3392 visitTerminatorInst(RI);
3393}
3394
3395void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3396 BasicBlock *BB = CPI.getParent();
3397
3398 Function *F = BB->getParent();
3399 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3400 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3401
3402 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3403 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3404 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3405
3406 // The catchpad instruction must be the first non-PHI instruction in the
3407 // block.
3408 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3409 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3410
3411 visitEHPadPredecessors(CPI);
3412 visitFuncletPadInst(CPI);
3413}
3414
3415void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3416 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3417 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3418 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3419
3420 visitTerminatorInst(CatchReturn);
3421}
3422
3423void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3424 BasicBlock *BB = CPI.getParent();
3425
3426 Function *F = BB->getParent();
3427 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3428 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3429
3430 // The cleanuppad instruction must be the first non-PHI instruction in the
3431 // block.
3432 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3433 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3434 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3435
3436 auto *ParentPad = CPI.getParentPad();
3437 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3438 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3439
3440 visitEHPadPredecessors(CPI);
3441 visitFuncletPadInst(CPI);
3442}
3443
3444void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3445 User *FirstUser = nullptr;
3446 Value *FirstUnwindPad = nullptr;
3447 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3448 SmallSet<FuncletPadInst *, 8> Seen;
3449
3450 while (!Worklist.empty()) {
3451 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3452 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3453 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3454 Value *UnresolvedAncestorPad = nullptr;
3455 for (User *U : CurrentPad->users()) {
3456 BasicBlock *UnwindDest;
3457 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3458 UnwindDest = CRI->getUnwindDest();
3459 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3460 // We allow catchswitch unwind to caller to nest
3461 // within an outer pad that unwinds somewhere else,
3462 // because catchswitch doesn't have a nounwind variant.
3463 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3464 if (CSI->unwindsToCaller())
3465 continue;
3466 UnwindDest = CSI->getUnwindDest();
3467 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3468 UnwindDest = II->getUnwindDest();
3469 } else if (isa<CallInst>(U)) {
3470 // Calls which don't unwind may be found inside funclet
3471 // pads that unwind somewhere else. We don't *require*
3472 // such calls to be annotated nounwind.
3473 continue;
3474 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3475 // The unwind dest for a cleanup can only be found by
3476 // recursive search. Add it to the worklist, and we'll
3477 // search for its first use that determines where it unwinds.
3478 Worklist.push_back(CPI);
3479 continue;
3480 } else {
3481 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3482 continue;
3483 }
3484
3485 Value *UnwindPad;
3486 bool ExitsFPI;
3487 if (UnwindDest) {
3488 UnwindPad = UnwindDest->getFirstNonPHI();
3489 if (!cast<Instruction>(UnwindPad)->isEHPad())
3490 continue;
3491 Value *UnwindParent = getParentPad(UnwindPad);
3492 // Ignore unwind edges that don't exit CurrentPad.
3493 if (UnwindParent == CurrentPad)
3494 continue;
3495 // Determine whether the original funclet pad is exited,
3496 // and if we are scanning nested pads determine how many
3497 // of them are exited so we can stop searching their
3498 // children.
3499 Value *ExitedPad = CurrentPad;
3500 ExitsFPI = false;
3501 do {
3502 if (ExitedPad == &FPI) {
3503 ExitsFPI = true;
3504 // Now we can resolve any ancestors of CurrentPad up to
3505 // FPI, but not including FPI since we need to make sure
3506 // to check all direct users of FPI for consistency.
3507 UnresolvedAncestorPad = &FPI;
3508 break;
3509 }
3510 Value *ExitedParent = getParentPad(ExitedPad);
3511 if (ExitedParent == UnwindParent) {
3512 // ExitedPad is the ancestor-most pad which this unwind
3513 // edge exits, so we can resolve up to it, meaning that
3514 // ExitedParent is the first ancestor still unresolved.
3515 UnresolvedAncestorPad = ExitedParent;
3516 break;
3517 }
3518 ExitedPad = ExitedParent;
3519 } while (!isa<ConstantTokenNone>(ExitedPad));
3520 } else {
3521 // Unwinding to caller exits all pads.
3522 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3523 ExitsFPI = true;
3524 UnresolvedAncestorPad = &FPI;
3525 }
3526
3527 if (ExitsFPI) {
3528 // This unwind edge exits FPI. Make sure it agrees with other
3529 // such edges.
3530 if (FirstUser) {
3531 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3532 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3533 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3534 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3535 } else {
3536 FirstUser = U;
3537 FirstUnwindPad = UnwindPad;
3538 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3539 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3540 getParentPad(UnwindPad) == getParentPad(&FPI))
3541 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3542 }
3543 }
3544 // Make sure we visit all uses of FPI, but for nested pads stop as
3545 // soon as we know where they unwind to.
3546 if (CurrentPad != &FPI)
3547 break;
3548 }
3549 if (UnresolvedAncestorPad) {
3550 if (CurrentPad == UnresolvedAncestorPad) {
3551 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3552 // we've found an unwind edge that exits it, because we need to verify
3553 // all direct uses of FPI.
3554 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 3554, __PRETTY_FUNCTION__))
;
3555 continue;
3556 }
3557 // Pop off the worklist any nested pads that we've found an unwind
3558 // destination for. The pads on the worklist are the uncles,
3559 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3560 // for all ancestors of CurrentPad up to but not including
3561 // UnresolvedAncestorPad.
3562 Value *ResolvedPad = CurrentPad;
3563 while (!Worklist.empty()) {
3564 Value *UnclePad = Worklist.back();
3565 Value *AncestorPad = getParentPad(UnclePad);
3566 // Walk ResolvedPad up the ancestor list until we either find the
3567 // uncle's parent or the last resolved ancestor.
3568 while (ResolvedPad != AncestorPad) {
3569 Value *ResolvedParent = getParentPad(ResolvedPad);
3570 if (ResolvedParent == UnresolvedAncestorPad) {
3571 break;
3572 }
3573 ResolvedPad = ResolvedParent;
3574 }
3575 // If the resolved ancestor search didn't find the uncle's parent,
3576 // then the uncle is not yet resolved.
3577 if (ResolvedPad != AncestorPad)
3578 break;
3579 // This uncle is resolved, so pop it from the worklist.
3580 Worklist.pop_back();
3581 }
3582 }
3583 }
3584
3585 if (FirstUnwindPad) {
3586 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3587 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3588 Value *SwitchUnwindPad;
3589 if (SwitchUnwindDest)
3590 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3591 else
3592 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3593 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3594 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3595 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3596 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3597 }
3598 }
3599
3600 visitInstruction(FPI);
3601}
3602
3603void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3604 BasicBlock *BB = CatchSwitch.getParent();
3605
3606 Function *F = BB->getParent();
3607 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3608 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3609 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3610
3611 // The catchswitch instruction must be the first non-PHI instruction in the
3612 // block.
3613 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3614 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3615 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3616
3617 auto *ParentPad = CatchSwitch.getParentPad();
3618 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3619 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3620
3621 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3622 Instruction *I = UnwindDest->getFirstNonPHI();
3623 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3624 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3625 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3626 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3627
3628 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3629 if (getParentPad(I) == ParentPad)
3630 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3631 }
3632
3633 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3634 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3635
3636 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3637 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3638 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3639 }
3640
3641 visitEHPadPredecessors(CatchSwitch);
3642 visitTerminatorInst(CatchSwitch);
3643}
3644
3645void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3646 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3647 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3648 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
3649
3650 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3651 Instruction *I = UnwindDest->getFirstNonPHI();
3652 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3653 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3654 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3655 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
3656 }
3657
3658 visitTerminatorInst(CRI);
3659}
3660
3661void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3662 Instruction *Op = cast<Instruction>(I.getOperand(i));
3663 // If the we have an invalid invoke, don't try to compute the dominance.
3664 // We already reject it in the invoke specific checks and the dominance
3665 // computation doesn't handle multiple edges.
3666 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3667 if (II->getNormalDest() == II->getUnwindDest())
3668 return;
3669 }
3670
3671 // Quick check whether the def has already been encountered in the same block.
3672 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3673 // uses are defined to happen on the incoming edge, not at the instruction.
3674 //
3675 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3676 // wrapping an SSA value, assert that we've already encountered it. See
3677 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3678 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3679 return;
3680
3681 const Use &U = I.getOperandUse(i);
3682 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
3683 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
3684}
3685
3686void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3687 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
3688 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
3689 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3690 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3691 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
;
3692 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
3693 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
3694 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3695 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
3696 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
3697}
3698
3699/// verifyInstruction - Verify that an instruction is well formed.
3700///
3701void Verifier::visitInstruction(Instruction &I) {
3702 BasicBlock *BB = I.getParent();
3703 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
3704
3705 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3706 for (User *U : I.users()) {
3707 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
3708 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
3709 }
3710 }
3711
3712 // Check that void typed values don't have names
3713 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
3714 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
3715
3716 // Check that the return value of the instruction is either void or a legal
3717 // value type.
3718 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
3719 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
3720
3721 // Check that the instruction doesn't produce metadata. Calls are already
3722 // checked against the callee type.
3723 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
3724 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
3725
3726 // Check that all uses of the instruction, if they are instructions
3727 // themselves, actually have parent basic blocks. If the use is not an
3728 // instruction, it is an error!
3729 for (Use &U : I.uses()) {
3730 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3731 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3732 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3733 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3734 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
3735 else {
3736 CheckFailed("Use of instruction is not an instruction!", U);
3737 return;
3738 }
3739 }
3740
3741 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3742 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
3743
3744 // Check to make sure that only first-class-values are operands to
3745 // instructions.
3746 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3747 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
3748 }
3749
3750 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3751 // Check to make sure that the "address of" an intrinsic function is never
3752 // taken.
3753 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3754 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3755 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3756 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
3757 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3758 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3759 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3760 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3761 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3762 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3763 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3764 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3765 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3766 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3767 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
3768 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
3769 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
3770 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3771 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
3772 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
3773 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3774 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
3775 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
3776 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3777 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
3778 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
3779 } else if (isa<Instruction>(I.getOperand(i))) {
3780 verifyDominatesUse(I, i);
3781 } else if (isa<InlineAsm>(I.getOperand(i))) {
3782 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3783 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3784 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
;
3785 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3786 if (CE->getType()->isPtrOrPtrVectorTy() ||
3787 !DL.getNonIntegralAddressSpaces().empty()) {
3788 // If we have a ConstantExpr pointer, we need to see if it came from an
3789 // illegal bitcast. If the datalayout string specifies non-integral
3790 // address spaces then we also need to check for illegal ptrtoint and
3791 // inttoptr expressions.
3792 visitConstantExprsRecursively(CE);
3793 }
3794 }
3795 }
3796
3797 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3798 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
3799 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
3800 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
3801 if (ConstantFP *CFP0 =
3802 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3803 const APFloat &Accuracy = CFP0->getValueAPF();
3804 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
3805 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
3806 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
3807 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
3808 } else {
3809 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
3810 }
3811 }
3812
3813 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3814 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
3815 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
3816 visitRangeMetadata(I, Range, I.getType());
3817 }
3818
3819 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3820 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
3821 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
3822 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3823 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3824 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3825 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
3826 }
3827
3828 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3829 visitDereferenceableMetadata(I, MD);
3830
3831 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3832 visitDereferenceableMetadata(I, MD);
3833
3834 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3835 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3836
3837 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3838 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
3839 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
3840 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
3841 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
3842 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
3843 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3844 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
3845 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
3846 uint64_t Align = CI->getZExtValue();
3847 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
3848 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
3849 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
3850 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
3851 }
3852
3853 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3854 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
3855 visitMDNode(*N);
3856 }
3857
3858 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3859 verifyFragmentExpression(*DII);
3860
3861 InstsInThisBlock.insert(&I);
3862}
3863
3864/// Allow intrinsics to be verified in different ways.
3865void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3866 Function *IF = CS.getCalledFunction();
3867 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
3868 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
3869
3870 // Verify that the intrinsic prototype lines up with what the .td files
3871 // describe.
3872 FunctionType *IFTy = IF->getFunctionType();
3873 bool IsVarArg = IFTy->isVarArg();
3874
3875 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3876 getIntrinsicInfoTableEntries(ID, Table);
3877 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3878
3879 SmallVector<Type *, 4> ArgTys;
3880 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3881 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3882 "Intrinsic has incorrect return type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
;
3883 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3884 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3885 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3886 "Intrinsic has incorrect argument type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
;
3887
3888 // Verify if the intrinsic call matches the vararg property.
3889 if (IsVarArg)
3890 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
3891 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
3892 else
3893 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
3894 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
3895
3896 // All descriptors should be absorbed by now.
3897 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
3898
3899 // Now that we have the intrinsic ID and the actual argument types (and we
3900 // know they are legal for the intrinsic!) get the intrinsic name through the
3901 // usual means. This allows us to verify the mangling of argument types into
3902 // the name.
3903 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3904 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3905 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3906 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3907 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3908 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
3909
3910 // If the intrinsic takes MDNode arguments, verify that they are either global
3911 // or are local to *this* function.
3912 for (Value *V : CS.args())
3913 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3914 visitMetadataAsValue(*MD, CS.getCaller());
3915
3916 switch (ID) {
3917 default:
3918 break;
3919 case Intrinsic::coro_id: {
3920 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3921 if (isa<ConstantPointerNull>(InfoArg))
3922 break;
3923 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3924 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3925 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3926 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
3927 Constant *Init = GV->getInitializer();
3928 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3929 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3930 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
3931 break;
3932 }
3933 case Intrinsic::ctlz: // llvm.ctlz
3934 case Intrinsic::cttz: // llvm.cttz
3935 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3936 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3937 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3938 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
;
3939 break;
3940 case Intrinsic::experimental_constrained_fadd:
3941 case Intrinsic::experimental_constrained_fsub:
3942 case Intrinsic::experimental_constrained_fmul:
3943 case Intrinsic::experimental_constrained_fdiv:
3944 case Intrinsic::experimental_constrained_frem:
3945 visitConstrainedFPIntrinsic(
3946 cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
3947 break;
3948 case Intrinsic::dbg_declare: // llvm.dbg.declare
3949 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
3950 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
;
3951 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3952 break;
3953 case Intrinsic::dbg_value: // llvm.dbg.value
3954 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3955 break;
3956 case Intrinsic::memcpy:
3957 case Intrinsic::memmove:
3958 case Intrinsic::memset: {
3959 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3960 Assert(AlignCI,do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3961 "alignment argument of memory intrinsics must be a constant int",do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3962 CS)do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3963 const APInt &AlignVal = AlignCI->getValue();
3964 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
3965 "alignment argument of memory intrinsics must be a power of 2", CS)do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
;
3966 Assert(isa<ConstantInt>(CS.getArgOperand(4)),do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3967 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3968 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3969 break;
3970 }
3971 case Intrinsic::memcpy_element_atomic: {
3972 ConstantInt *ElementSizeCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3973 Assert(ElementSizeCI, "element size of the element-wise atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3974 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3975 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
3976 const APInt &ElementSizeVal = ElementSizeCI->getValue();
3977 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3978 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3979 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3980 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
3981
3982 auto IsValidAlignment = [&](uint64_t Alignment) {
3983 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
3984 };
3985
3986 uint64_t DstAlignment = CS.getParamAlignment(1),
3987 SrcAlignment = CS.getParamAlignment(2);
3988
3989 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
3990 "incorrect alignment of the destination argument",do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
3991 CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
3992 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
3993 "incorrect alignment of the source argument",do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
3994 CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
3995 break;
3996 }
3997 case Intrinsic::gcroot:
3998 case Intrinsic::gcwrite:
3999 case Intrinsic::gcread:
4000 if (ID == Intrinsic::gcroot) {
4001 AllocaInst *AI =
4002 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4003 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (false)
;
4004 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
4005 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
;
4006 if (!AI->getAllocatedType()->isPointerTy()) {
4007 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4008 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4009 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4010 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
;
4011 }
4012 }
4013
4014 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4015 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4016 break;
4017 case Intrinsic::init_trampoline:
4018 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4019 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4020 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
;
4021 break;
4022 case Intrinsic::prefetch:
4023 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4024 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4025 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4026 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4027 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
;
4028 break;
4029 case Intrinsic::stackprotector:
4030 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
4031 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
;
4032 break;
4033 case Intrinsic::lifetime_start:
4034 case Intrinsic::lifetime_end:
4035 case Intrinsic::invariant_start:
4036 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4037 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4038 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
;
4039 break;
4040 case Intrinsic::invariant_end:
4041 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
4042 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
;
4043 break;
4044
4045 case Intrinsic::localescape: {
4046 BasicBlock *BB = CS.getParent();
4047 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
4048 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
;
4049 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
4050 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
;
4051 for (Value *Arg : CS.args()) {
4052 if (isa<ConstantPointerNull>(Arg))
4053 continue; // Null values are allowed as placeholders.
4054 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4055 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
4056 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
;
4057 }
4058 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4059 SawFrameEscape = true;
4060 break;
4061 }
4062 case Intrinsic::localrecover: {
4063 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4064 Function *Fn = dyn_cast<Function>(FnArg);
4065 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4066 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4067 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4068 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
;
4069 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4070 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
4071 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
;
4072 auto &Entry = FrameEscapeInfo[Fn];
4073 Entry.second = unsigned(
4074 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4075 break;
4076 }
4077
4078 case Intrinsic::experimental_gc_statepoint:
4079 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
4080 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
;
4081 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4082 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4083
4084 verifyStatepoint(CS);
4085 break;
4086 case Intrinsic::experimental_gc_result: {
4087 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4088 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4089 // Are we tied to a statepoint properly?
4090 CallSite StatepointCS(CS.getArgOperand(0));
4091 const Function *StatepointFn =
4092 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4093 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4094 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4095 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4096 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4097 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
;
4098
4099 // Assert that result type matches wrapped callee.
4100 const Value *Target = StatepointCS.getArgument(2);
4101 auto *PT = cast<PointerType>(Target->getType());
4102 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4103 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
4104 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
;
4105 break;
4106 }
4107 case Intrinsic::experimental_gc_relocate: {
4108 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (false)
;
4109
4110 Assert(isa<PointerType>(CS.getType()->getScalarType()),do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
4111 "gc.relocate must return a pointer or a vector of pointers", CS)do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
;
4112
4113 // Check that this relocate is correctly tied to the statepoint
4114
4115 // This is case for relocate on the unwinding path of an invoke statepoint
4116 if (LandingPadInst *LandingPad =
4117 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4118
4119 const BasicBlock *InvokeBB =
4120 LandingPad->getParent()->getUniquePredecessor();
4121
4122 // Landingpad relocates should have only one predecessor with invoke
4123 // statepoint terminator
4124 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4125 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4126 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4127 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4128 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4129 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4130 }
4131 else {
4132 // In all other cases relocate should be tied to the statepoint directly.
4133 // This covers relocates on a normal return path of invoke statepoint and
4134 // relocates of a call statepoint.
4135 auto Token = CS.getArgOperand(0);
4136 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
4137 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
;
4138 }
4139
4140 // Verify rest of the relocate arguments.
4141
4142 ImmutableCallSite StatepointCS(
4143 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4144
4145 // Both the base and derived must be piped through the safepoint.
4146 Value* Base = CS.getArgOperand(1);
4147 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
4148 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
;
4149
4150 Value* Derived = CS.getArgOperand(2);
4151 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
4152 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
;
4153
4154 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4155 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4156 // Check the bounds
4157 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
4158 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
;
4159 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
4160 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
;
4161
4162 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4163 // section of the statepoint's argument.
4164 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4165 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4166 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4167 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4168 const unsigned NumCallArgs =
4169 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4170 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
4171 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
;
4172 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4173 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4174 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4175 const int NumTransitionArgs =
4176 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4177 ->getZExtValue();
4178 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4179 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4180 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4181 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4182 const int NumDeoptArgs =
4183 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4184 ->getZExtValue();
4185 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4186 const int GCParamArgsEnd = StatepointCS.arg_size();
4187 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4188 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4189 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4190 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4191 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4192 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4193 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4194 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4195
4196 // Relocated value must be either a pointer type or vector-of-pointer type,
4197 // but gc_relocate does not need to return the same pointer type as the
4198 // relocated pointer. It can be casted to the correct type later if it's
4199 // desired. However, they must have the same address space and 'vectorness'
4200 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4201 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
4202 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
;
4203
4204 auto ResultType = CS.getType();
4205 auto DerivedType = Relocate.getDerivedPtr()->getType();
4206 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4207 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4208 CS)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
;
4209 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4210 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4211 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4212 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4213 CS)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
;
4214 break;
4215 }
4216 case Intrinsic::eh_exceptioncode:
4217 case Intrinsic::eh_exceptionpointer: {
4218 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
4219 "eh.exceptionpointer argument must be a catchpad", CS)do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
;
4220 break;
4221 }
4222 case Intrinsic::masked_load: {
4223 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS)do { if (!(CS.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, CS); return; } } while (false)
;
4224
4225 Value *Ptr = CS.getArgOperand(0);
4226 //Value *Alignment = CS.getArgOperand(1);
4227 Value *Mask = CS.getArgOperand(2);
4228 Value *PassThru = CS.getArgOperand(3);
4229 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
4230 "masked_load: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
;
4231
4232 // DataTy is the overloaded type
4233 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4234 Assert(DataTy == CS.getType(),do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
4235 "masked_load: return must match pointer type", CS)do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
;
4236 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
4237 "masked_load: pass through and data type must match", CS)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
;
4238 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4239 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4240 "masked_load: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
;
4241 break;
4242 }
4243 case Intrinsic::masked_store: {
4244 Value *Val = CS.getArgOperand(0);
4245 Value *Ptr = CS.getArgOperand(1);
4246 //Value *Alignment = CS.getArgOperand(2);
4247 Value *Mask = CS.getArgOperand(3);
4248 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
4249 "masked_store: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
;
4250
4251 // DataTy is the overloaded type
4252 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4253 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
4254 "masked_store: storee must match pointer type", CS)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
;
4255 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4256 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4257 "masked_store: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
;
4258 break;
4259 }
4260
4261 case Intrinsic::experimental_guard: {
4262 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_guard cannot be invoked"
, CS); return; } } while (false)
;
4263 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4264 "experimental_guard must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4265 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4266 break;
4267 }
4268
4269 case Intrinsic::experimental_deoptimize: {
4270 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_deoptimize cannot be invoked"
, CS); return; } } while (false)
;
4271 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4272 "experimental_deoptimize must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4273 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4274 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4275 "experimental_deoptimize return type must match caller return type")do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4276
4277 if (CS.isCall()) {
4278 auto *DeoptCI = CS.getInstruction();
4279 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4280 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4281 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4282
4283 if (!CS.getType()->isVoidTy() && RI)
4284 Assert(RI->getReturnValue() == DeoptCI,do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4285 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4286 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4287 }
4288
4289 break;
4290 }
4291 };
4292}
4293
4294/// \brief Carefully grab the subprogram from a local scope.
4295///
4296/// This carefully grabs the subprogram from a local scope, avoiding the
4297/// built-in assertions that would typically fire.
4298static DISubprogram *getSubprogram(Metadata *LocalScope) {
4299 if (!LocalScope)
4300 return nullptr;
4301
4302 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4303 return SP;
4304
4305 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4306 return getSubprogram(LB->getRawScope());
4307
4308 // Just return null; broken scope chains are checked elsewhere.
4309 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"
) ? static_cast<void> (0) : __assert_fail ("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 4309, __PRETTY_FUNCTION__))
;
4310 return nullptr;
4311}
4312
4313void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4314 Assert(isa<MetadataAsValue>(FPI.getOperand(2)),do { if (!(isa<MetadataAsValue>(FPI.getOperand(2)))) { CheckFailed
("invalid rounding mode argument", &FPI); return; } } while
(false)
4315 "invalid rounding mode argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getOperand(2)))) { CheckFailed
("invalid rounding mode argument", &FPI); return; } } while
(false)
;
4316 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
4317 "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
;
4318 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
4319 "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
;
4320}
4321
4322template <class DbgIntrinsicTy>
4323void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4324 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4325 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4326 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4327 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4328 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4329 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4330 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4331 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4332 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4333 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4334
4335 // Ignore broken !dbg attachments; they're checked elsewhere.
4336 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4337 if (!isa<DILocation>(N))
4338 return;
4339
4340 BasicBlock *BB = DII.getParent();
4341 Function *F = BB ? BB->getParent() : nullptr;
4342
4343 // The scopes for variables and !dbg attachments must agree.
4344 DILocalVariable *Var = DII.getVariable();
4345 DILocation *Loc = DII.getDebugLoc();
4346 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4347 &DII, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4348
4349 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4350 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4351 if (!VarSP || !LocSP)
4352 return; // Broken scope chains are checked elsewhere.
4353
4354 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4355 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4356 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4357 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4358
4359 verifyFnArgs(DII);
4360}
4361
4362static uint64_t getVariableSize(const DILocalVariable &V) {
4363 // Be careful of broken types (checked elsewhere).
4364 const Metadata *RawType = V.getRawType();
4365 while (RawType) {
4366 // Try to get the size directly.
4367 if (auto *T = dyn_cast<DIType>(RawType))
4368 if (uint64_t Size = T->getSizeInBits())
4369 return Size;
4370
4371 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4372 // Look at the base type.
4373 RawType = DT->getRawBaseType();
4374 continue;
4375 }
4376
4377 // Missing type or size.
4378 break;
4379 }
4380
4381 // Fail gracefully.
4382 return 0;
4383}
4384
4385void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4386 DILocalVariable *V;
4387 DIExpression *E;
4388 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4389 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4390 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4391 } else {
4392 auto *DDI = cast<DbgDeclareInst>(&I);
4393 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4394 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4395 }
4396
4397 // We don't know whether this intrinsic verified correctly.
4398 if (!V || !E || !E->isValid())
4399 return;
4400
4401 // Nothing to do if this isn't a bit piece expression.
4402 auto Fragment = E->getFragmentInfo();
4403 if (!Fragment)
4404 return;
4405
4406 // The frontend helps out GDB by emitting the members of local anonymous
4407 // unions as artificial local variables with shared storage. When SROA splits
4408 // the storage for artificial local variables that are smaller than the entire
4409 // union, the overhang piece will be outside of the allotted space for the
4410 // variable and this check fails.
4411 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4412 if (V->isArtificial())
4413 return;
4414
4415 // If there's no size, the type is broken, but that should be checked
4416 // elsewhere.
4417 uint64_t VarSize = getVariableSize(*V);
4418 if (!VarSize)
4419 return;
4420
4421 unsigned FragSize = Fragment->SizeInBits;
4422 unsigned FragOffset = Fragment->OffsetInBits;
4423 AssertDI(FragSize + FragOffset <= VarSize,do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
4424 "fragment is larger than or outside of variable", &I, V, E)do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
;
4425 AssertDI(FragSize != VarSize, "fragment covers entire variable", &I, V, E)do { if (!(FragSize != VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, &I, V, E); return; } } while (false)
;
4426}
4427
4428void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4429 DILocalVariable *Var;
4430 if (auto *DV = dyn_cast<DbgValueInst>(&I)) {
4431 // For performance reasons only check non-inlined ones.
4432 if (DV->getDebugLoc()->getInlinedAt())
4433 return;
4434 Var = DV->getVariable();
4435 } else {
4436 auto *DD = cast<DbgDeclareInst>(&I);
4437 if (DD->getDebugLoc()->getInlinedAt())
4438 return;
4439 Var = DD->getVariable();
4440 }
4441 AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable"
); return; } } while (false)
;
4442
4443 unsigned ArgNo = Var->getArg();
4444 if (!ArgNo)
4445 return;
4446
4447 // Verify there are no duplicate function argument debug info entries.
4448 // These will cause hard-to-debug assertions in the DWARF backend.
4449 if (DebugFnArgs.size() < ArgNo)
4450 DebugFnArgs.resize(ArgNo, nullptr);
4451
4452 auto *Prev = DebugFnArgs[ArgNo - 1];
4453 DebugFnArgs[ArgNo - 1] = Var;
4454 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
4455 Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
;
4456}
4457
4458void Verifier::verifyCompileUnits() {
4459 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4460 SmallPtrSet<const Metadata *, 2> Listed;
4461 if (CUs)
4462 Listed.insert(CUs->op_begin(), CUs->op_end());
4463 for (auto *CU : CUVisited)
4464 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu"
, CU); return; } } while (false)
;
4465 CUVisited.clear();
4466}
4467
4468void Verifier::verifyDeoptimizeCallingConvs() {
4469 if (DeoptimizeDeclarations.empty())
4470 return;
4471
4472 const Function *First = DeoptimizeDeclarations[0];
4473 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4474 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4475 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4476 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4477 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
4478 }
4479}
4480
4481//===----------------------------------------------------------------------===//
4482// Implement the public interfaces to this file...
4483//===----------------------------------------------------------------------===//
4484
4485bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4486 Function &F = const_cast<Function &>(f);
4487
4488 // Don't use a raw_null_ostream. Printing IR is expensive.
4489 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4490
4491 // Note that this function's return value is inverted from what you would
4492 // expect of a function called "verify".
4493 return !V.verify(F);
4494}
4495
4496bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4497 bool *BrokenDebugInfo) {
4498 // Don't use a raw_null_ostream. Printing IR is expensive.
4499 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4500
4501 bool Broken = false;
4502 for (const Function &F : M)
4503 Broken |= !V.verify(F);
4504
4505 Broken |= !V.verify();
4506 if (BrokenDebugInfo)
4507 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4508 // Note that this function's return value is inverted from what you would
4509 // expect of a function called "verify".
4510 return Broken;
4511}
4512
4513namespace {
4514
4515struct VerifierLegacyPass : public FunctionPass {
4516 static char ID;
4517
4518 std::unique_ptr<Verifier> V;
4519 bool FatalErrors = true;
4520
4521 VerifierLegacyPass() : FunctionPass(ID) {
4522 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4523 }
4524 explicit VerifierLegacyPass(bool FatalErrors)
4525 : FunctionPass(ID),
4526 FatalErrors(FatalErrors) {
4527 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4528 }
4529
4530 bool doInitialization(Module &M) override {
4531 V = llvm::make_unique<Verifier>(
4532 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4533 return false;
4534 }
4535
4536 bool runOnFunction(Function &F) override {
4537 if (!V->verify(F) && FatalErrors)
4538 report_fatal_error("Broken function found, compilation aborted!");
4539
4540 return false;
4541 }
4542
4543 bool doFinalization(Module &M) override {
4544 bool HasErrors = false;
4545 for (Function &F : M)
4546 if (F.isDeclaration())
4547 HasErrors |= !V->verify(F);
4548
4549 HasErrors |= !V->verify();
4550 if (FatalErrors) {
4551 if (HasErrors)
4552 report_fatal_error("Broken module found, compilation aborted!");
4553 assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info")((!V->hasBrokenDebugInfo() && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!V->hasBrokenDebugInfo() && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 4553, __PRETTY_FUNCTION__))
;
4554 }
4555
4556 // Strip broken debug info.
4557 if (V->hasBrokenDebugInfo()) {
4558 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4559 M.getContext().diagnose(DiagInvalid);
4560 if (!StripDebugInfo(M))
4561 report_fatal_error("Failed to strip malformed debug info");
4562 }
4563 return false;
4564 }
4565
4566 void getAnalysisUsage(AnalysisUsage &AU) const override {
4567 AU.setPreservesAll();
4568 }
4569};
4570
4571} // end anonymous namespace
4572
4573/// Helper to issue failure from the TBAA verification
4574template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4575 if (Diagnostic)
4576 return Diagnostic->CheckFailed(Args...);
4577}
4578
4579#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
4580 do { \
4581 if (!(C)) { \
4582 CheckFailed(__VA_ARGS__); \
4583 return false; \
4584 } \
4585 } while (false)
4586
4587/// Verify that \p BaseNode can be used as the "base type" in the struct-path
4588/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4589/// struct-type node describing an aggregate data structure (like a struct).
4590TBAAVerifier::TBAABaseNodeSummary
4591TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
4592 if (BaseNode->getNumOperands() < 2) {
4593 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4594 return {true, ~0u};
4595 }
4596
4597 auto Itr = TBAABaseNodes.find(BaseNode);
4598 if (Itr != TBAABaseNodes.end())
4599 return Itr->second;
4600
4601 auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
4602 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4603 (void)InsertResult;
4604 assert(InsertResult.second && "We just checked!")((InsertResult.second && "We just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 4604, __PRETTY_FUNCTION__))
;
4605 return Result;
4606}
4607
4608TBAAVerifier::TBAABaseNodeSummary
4609TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
4610 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4611
4612 if (BaseNode->getNumOperands() == 2) {
4613 // Scalar nodes can only be accessed at offset 0.
4614 return isValidScalarTBAANode(BaseNode)
4615 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4616 : InvalidNode;
4617 }
4618
4619 if (BaseNode->getNumOperands() % 2 != 1) {
4620 CheckFailed("Struct tag nodes must have an odd number of operands!",
4621 BaseNode);
4622 return InvalidNode;
4623 }
4624
4625 if (!isa<MDString>(BaseNode->getOperand(0))) {
4626 CheckFailed("Struct tag nodes have a string as their first operand",
4627 BaseNode);
4628 return InvalidNode;
4629 }
4630
4631 bool Failed = false;
4632
4633 Optional<APInt> PrevOffset;
4634 unsigned BitWidth = ~0u;
4635
4636 // We've already checked that BaseNode is not a degenerate root node with one
4637 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4638 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4639 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4640 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4641 if (!isa<MDNode>(FieldTy)) {
4642 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4643 Failed = true;
4644 continue;
4645 }
4646
4647 auto *OffsetEntryCI =
4648 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4649 if (!OffsetEntryCI) {
4650 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4651 Failed = true;
4652 continue;
4653 }
4654
4655 if (BitWidth == ~0u)
4656 BitWidth = OffsetEntryCI->getBitWidth();
4657
4658 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4659 CheckFailed(
4660 "Bitwidth between the offsets and struct type entries must match", &I,
4661 BaseNode);
4662 Failed = true;
4663 continue;
4664 }
4665
4666 // NB! As far as I can tell, we generate a non-strictly increasing offset
4667 // sequence only from structs that have zero size bit fields. When
4668 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4669 // pick the field lexically the latest in struct type metadata node. This
4670 // mirrors the actual behavior of the alias analysis implementation.
4671 bool IsAscending =
4672 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4673
4674 if (!IsAscending) {
4675 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4676 Failed = true;
4677 }
4678
4679 PrevOffset = OffsetEntryCI->getValue();
4680 }
4681
4682 return Failed ? InvalidNode
4683 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4684}
4685
4686static bool IsRootTBAANode(const MDNode *MD) {
4687 return MD->getNumOperands() < 2;
4688}
4689
4690static bool IsScalarTBAANodeImpl(const MDNode *MD,
4691 SmallPtrSetImpl<const MDNode *> &Visited) {
4692 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4693 return false;
4694
4695 if (!isa<MDString>(MD->getOperand(0)))
4696 return false;
4697
4698 if (MD->getNumOperands() == 3) {
4699 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4700 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4701 return false;
4702 }
4703
4704 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4705 return Parent && Visited.insert(Parent).second &&
4706 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4707}
4708
4709bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4710 auto ResultIt = TBAAScalarNodes.find(MD);
4711 if (ResultIt != TBAAScalarNodes.end())
4712 return ResultIt->second;
4713
4714 SmallPtrSet<const MDNode *, 4> Visited;
4715 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4716 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4717 (void)InsertResult;
4718 assert(InsertResult.second && "Just checked!")((InsertResult.second && "Just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 4718, __PRETTY_FUNCTION__))
;
4719
4720 return Result;
4721}
4722
4723/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4724/// Offset in place to be the offset within the field node returned.
4725///
4726/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4727MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4728 const MDNode *BaseNode,
4729 APInt &Offset) {
4730 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")((BaseNode->getNumOperands() >= 2 && "Invalid base node!"
) ? static_cast<void> (0) : __assert_fail ("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 4730, __PRETTY_FUNCTION__))
;
4731
4732 // Scalar nodes have only one possible "field" -- their parent in the access
4733 // hierarchy. Offset must be zero at this point, but our caller is supposed
4734 // to Assert that.
4735 if (BaseNode->getNumOperands() == 2)
4736 return cast<MDNode>(BaseNode->getOperand(1));
4737
4738 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4739 auto *OffsetEntryCI =
4740 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4741 if (OffsetEntryCI->getValue().ugt(Offset)) {
4742 if (Idx == 1) {
4743 CheckFailed("Could not find TBAA parent in struct type node", &I,
4744 BaseNode, &Offset);
4745 return nullptr;
4746 }
4747
4748 auto *PrevOffsetEntryCI =
4749 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
4750 Offset -= PrevOffsetEntryCI->getValue();
4751 return cast<MDNode>(BaseNode->getOperand(Idx - 2));
4752 }
4753 }
4754
4755 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4756 BaseNode->getOperand(BaseNode->getNumOperands() - 1));
4757
4758 Offset -= LastOffsetEntryCI->getValue();
4759 return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
4760}
4761
4762bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4763 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4764 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4765 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4766 "TBAA is only for loads, stores and calls!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
;
4767
4768 bool IsStructPathTBAA =
4769 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4770
4771 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4772 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4773 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
4774
4775 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
4776 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
4777
4778 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4779 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4780
4781 if (MD->getNumOperands() == 4) {
4782 auto *IsImmutableCI =
4783 mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
4784 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4785 "Immutability tag on struct tag metadata must be a constant", &I,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4786 MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
4787 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4788 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4789 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4790 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
4791 }
4792
4793 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4794 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4795 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4796 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
4797
4798 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4799 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4800 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
4801
4802 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4803 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
4804
4805 APInt Offset = OffsetCI->getValue();
4806 bool SeenAccessTypeInPath = false;
4807
4808 SmallPtrSet<MDNode *, 4> StructPath;
4809
4810 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4811 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
4812 if (!StructPath.insert(BaseNode).second) {
4813 CheckFailed("Cycle detected in struct path", &I, MD);
4814 return false;
4815 }
4816
4817 bool Invalid;
4818 unsigned BaseNodeBitWidth;
4819 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
4820
4821 // If the base node is invalid in itself, then we've already printed all the
4822 // errors we wanted to print.
4823 if (Invalid)
4824 return false;
4825
4826 SeenAccessTypeInPath |= BaseNode == AccessType;
4827
4828 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
4829 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
4830 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
4831
4832 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4833 (BaseNodeBitWidth == 0 && Offset == 0),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4834 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4835 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
4836 }
4837
4838 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
4839 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
4840 return true;
4841}
4842
4843char VerifierLegacyPass::ID = 0;
4844INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
4845
4846FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4847 return new VerifierLegacyPass(FatalErrors);
4848}
4849
4850AnalysisKey VerifierAnalysis::Key;
4851VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4852 ModuleAnalysisManager &) {
4853 Result Res;
4854 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4855 return Res;
4856}
4857
4858VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4859 FunctionAnalysisManager &) {
4860 return { llvm::verifyFunction(F, &dbgs()), false };
4861}
4862
4863PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4864 auto Res = AM.getResult<VerifierAnalysis>(M);
4865 if (FatalErrors) {
4866 if (Res.IRBroken)
4867 report_fatal_error("Broken module found, compilation aborted!");
4868 assert(!Res.DebugInfoBroken && "Module contains invalid debug info")((!Res.DebugInfoBroken && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!Res.DebugInfoBroken && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn297137/lib/IR/Verifier.cpp"
, 4868, __PRETTY_FUNCTION__))
;
4869 }
4870
4871 // Strip broken debug info.
4872 if (Res.DebugInfoBroken) {
4873 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4874 M.getContext().diagnose(DiagInvalid);
4875 if (!StripDebugInfo(M))
4876 report_fatal_error("Failed to strip malformed debug info");
4877 }
4878 return PreservedAnalyses::all();
4879}
4880
4881PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
4882 auto res = AM.getResult<VerifierAnalysis>(F);
4883 if (res.IRBroken && FatalErrors)
4884 report_fatal_error("Broken function found, compilation aborted!");
4885
4886 return PreservedAnalyses::all();
4887}