Bug Summary

File:lib/IR/Verifier.cpp
Warning:line 2157, column 7
Called C++ object pointer is null

Annotated Source Code

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * Landingpad instructions must be in a function with a personality function.
43// * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/APFloat.h"
49#include "llvm/ADT/APInt.h"
50#include "llvm/ADT/ArrayRef.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/ilist.h"
53#include "llvm/ADT/MapVector.h"
54#include "llvm/ADT/Optional.h"
55#include "llvm/ADT/STLExtras.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/SmallSet.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringMap.h"
60#include "llvm/ADT/StringRef.h"
61#include "llvm/ADT/Twine.h"
62#include "llvm/IR/Argument.h"
63#include "llvm/IR/Attributes.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/CFG.h"
66#include "llvm/IR/CallSite.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/DiagnosticInfo.h"
78#include "llvm/IR/Dominators.h"
79#include "llvm/IR/Function.h"
80#include "llvm/IR/GlobalAlias.h"
81#include "llvm/IR/GlobalValue.h"
82#include "llvm/IR/GlobalVariable.h"
83#include "llvm/IR/InlineAsm.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/InstVisitor.h"
88#include "llvm/IR/IntrinsicInst.h"
89#include "llvm/IR/Intrinsics.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/Pass.h"
101#include "llvm/Support/AtomicOrdering.h"
102#include "llvm/Support/Casting.h"
103#include "llvm/Support/CommandLine.h"
104#include "llvm/Support/Debug.h"
105#include "llvm/Support/Dwarf.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
119
120namespace llvm {
121
122struct VerifierSupport {
123 raw_ostream *OS;
124 const Module &M;
125 ModuleSlotTracker MST;
126 const DataLayout &DL;
127 LLVMContext &Context;
128
129 /// Track the brokenness of the module while recursively visiting.
130 bool Broken = false;
131 /// Broken debug info can be "recovered" from by stripping the debug info.
132 bool BrokenDebugInfo = false;
133 /// Whether to treat broken debug info as an error.
134 bool TreatBrokenDebugInfoAsError = true;
135
136 explicit VerifierSupport(raw_ostream *OS, const Module &M)
137 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
138
139private:
140 void Write(const Module *M) {
141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142 }
143
144 void Write(const Value *V) {
145 if (!V)
146 return;
147 if (isa<Instruction>(V)) {
148 V->print(*OS, MST);
149 *OS << '\n';
150 } else {
151 V->printAsOperand(*OS, true, MST);
152 *OS << '\n';
153 }
154 }
155
156 void Write(ImmutableCallSite CS) {
157 Write(CS.getInstruction());
158 }
159
160 void Write(const Metadata *MD) {
161 if (!MD)
162 return;
163 MD->print(*OS, MST, &M);
164 *OS << '\n';
165 }
166
167 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
168 Write(MD.get());
169 }
170
171 void Write(const NamedMDNode *NMD) {
172 if (!NMD)
173 return;
174 NMD->print(*OS, MST);
175 *OS << '\n';
176 }
177
178 void Write(Type *T) {
179 if (!T)
180 return;
181 *OS << ' ' << *T;
182 }
183
184 void Write(const Comdat *C) {
185 if (!C)
186 return;
187 *OS << *C;
188 }
189
190 void Write(const APInt *AI) {
191 if (!AI)
192 return;
193 *OS << *AI << '\n';
194 }
195
196 void Write(const unsigned i) { *OS << i << '\n'; }
197
198 template <typename T> void Write(ArrayRef<T> Vs) {
199 for (const T &V : Vs)
200 Write(V);
201 }
202
203 template <typename T1, typename... Ts>
204 void WriteTs(const T1 &V1, const Ts &... Vs) {
205 Write(V1);
206 WriteTs(Vs...);
207 }
208
209 template <typename... Ts> void WriteTs() {}
210
211public:
212 /// \brief A check failed, so printout out the condition and the message.
213 ///
214 /// This provides a nice place to put a breakpoint if you want to see why
215 /// something is not correct.
216 void CheckFailed(const Twine &Message) {
217 if (OS)
218 *OS << Message << '\n';
219 Broken = true;
220 }
221
222 /// \brief A check failed (with values to print).
223 ///
224 /// This calls the Message-only version so that the above is easier to set a
225 /// breakpoint on.
226 template <typename T1, typename... Ts>
227 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
228 CheckFailed(Message);
229 if (OS)
230 WriteTs(V1, Vs...);
231 }
232
233 /// A debug info check failed.
234 void DebugInfoCheckFailed(const Twine &Message) {
235 if (OS)
236 *OS << Message << '\n';
237 Broken |= TreatBrokenDebugInfoAsError;
238 BrokenDebugInfo = true;
239 }
240
241 /// A debug info check failed (with values to print).
242 template <typename T1, typename... Ts>
243 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
244 const Ts &... Vs) {
245 DebugInfoCheckFailed(Message);
246 if (OS)
247 WriteTs(V1, Vs...);
248 }
249};
250
251} // namespace llvm
252
253namespace {
254
255class Verifier : public InstVisitor<Verifier>, VerifierSupport {
256 friend class InstVisitor<Verifier>;
257
258 DominatorTree DT;
259
260 /// \brief When verifying a basic block, keep track of all of the
261 /// instructions we have seen so far.
262 ///
263 /// This allows us to do efficient dominance checks for the case when an
264 /// instruction has an operand that is an instruction in the same block.
265 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
266
267 /// \brief Keep track of the metadata nodes that have been checked already.
268 SmallPtrSet<const Metadata *, 32> MDNodes;
269
270 /// Track all DICompileUnits visited.
271 SmallPtrSet<const Metadata *, 2> CUVisited;
272
273 /// \brief The result type for a landingpad.
274 Type *LandingPadResultTy;
275
276 /// \brief Whether we've seen a call to @llvm.localescape in this function
277 /// already.
278 bool SawFrameEscape;
279
280 /// Stores the count of how many objects were passed to llvm.localescape for a
281 /// given function and the largest index passed to llvm.localrecover.
282 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
283
284 // Maps catchswitches and cleanuppads that unwind to siblings to the
285 // terminators that indicate the unwind, used to detect cycles therein.
286 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
287
288 /// Cache of constants visited in search of ConstantExprs.
289 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
290
291 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
292 SmallVector<const Function *, 4> DeoptimizeDeclarations;
293
294 // Verify that this GlobalValue is only used in this module.
295 // This map is used to avoid visiting uses twice. We can arrive at a user
296 // twice, if they have multiple operands. In particular for very large
297 // constant expressions, we can arrive at a particular user many times.
298 SmallPtrSet<const Value *, 32> GlobalValueVisited;
299
300 // Keeps track of duplicate function argument debug info.
301 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
302
303 TBAAVerifier TBAAVerifyHelper;
304
305 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
306
307public:
308 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
309 const Module &M)
310 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
311 SawFrameEscape(false), TBAAVerifyHelper(this) {
312 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
313 }
314
315 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
316
317 bool verify(const Function &F) {
318 assert(F.getParent() == &M &&((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 319, __PRETTY_FUNCTION__))
319 "An instance of this class only works with a specific module!")((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 319, __PRETTY_FUNCTION__))
;
320
321 // First ensure the function is well-enough formed to compute dominance
322 // information, and directly compute a dominance tree. We don't rely on the
323 // pass manager to provide this as it isolates us from a potentially
324 // out-of-date dominator tree and makes it significantly more complex to run
325 // this code outside of a pass manager.
326 // FIXME: It's really gross that we have to cast away constness here.
327 if (!F.empty())
328 DT.recalculate(const_cast<Function &>(F));
329
330 for (const BasicBlock &BB : F) {
331 if (!BB.empty() && BB.back().isTerminator())
332 continue;
333
334 if (OS) {
335 *OS << "Basic Block in function '" << F.getName()
336 << "' does not have terminator!\n";
337 BB.printAsOperand(*OS, true, MST);
338 *OS << "\n";
339 }
340 return false;
341 }
342
343 Broken = false;
344 // FIXME: We strip const here because the inst visitor strips const.
345 visit(const_cast<Function &>(F));
346 verifySiblingFuncletUnwinds();
347 InstsInThisBlock.clear();
348 LandingPadResultTy = nullptr;
349 SawFrameEscape = false;
350 SiblingFuncletInfo.clear();
351
352 return !Broken;
353 }
354
355 /// Verify the module that this instance of \c Verifier was initialized with.
356 bool verify() {
357 Broken = false;
358
359 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
360 for (const Function &F : M)
361 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
362 DeoptimizeDeclarations.push_back(&F);
363
364 // Now that we've visited every function, verify that we never asked to
365 // recover a frame index that wasn't escaped.
366 verifyFrameRecoverIndices();
367 for (const GlobalVariable &GV : M.globals())
368 visitGlobalVariable(GV);
369
370 for (const GlobalAlias &GA : M.aliases())
371 visitGlobalAlias(GA);
372
373 for (const NamedMDNode &NMD : M.named_metadata())
374 visitNamedMDNode(NMD);
375
376 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
377 visitComdat(SMEC.getValue());
378
379 visitModuleFlags(M);
380 visitModuleIdents(M);
381
382 verifyCompileUnits();
383
384 verifyDeoptimizeCallingConvs();
385
386 return !Broken;
387 }
388
389private:
390 // Verification methods...
391 void visitGlobalValue(const GlobalValue &GV);
392 void visitGlobalVariable(const GlobalVariable &GV);
393 void visitGlobalAlias(const GlobalAlias &GA);
394 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
395 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
396 const GlobalAlias &A, const Constant &C);
397 void visitNamedMDNode(const NamedMDNode &NMD);
398 void visitMDNode(const MDNode &MD);
399 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
400 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
401 void visitComdat(const Comdat &C);
402 void visitModuleIdents(const Module &M);
403 void visitModuleFlags(const Module &M);
404 void visitModuleFlag(const MDNode *Op,
405 DenseMap<const MDString *, const MDNode *> &SeenIDs,
406 SmallVectorImpl<const MDNode *> &Requirements);
407 void visitFunction(const Function &F);
408 void visitBasicBlock(BasicBlock &BB);
409 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
410 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
411
412 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
413#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
414#include "llvm/IR/Metadata.def"
415 void visitDIScope(const DIScope &N);
416 void visitDIVariable(const DIVariable &N);
417 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
418 void visitDITemplateParameter(const DITemplateParameter &N);
419
420 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
421
422 // InstVisitor overrides...
423 using InstVisitor<Verifier>::visit;
424 void visit(Instruction &I);
425
426 void visitTruncInst(TruncInst &I);
427 void visitZExtInst(ZExtInst &I);
428 void visitSExtInst(SExtInst &I);
429 void visitFPTruncInst(FPTruncInst &I);
430 void visitFPExtInst(FPExtInst &I);
431 void visitFPToUIInst(FPToUIInst &I);
432 void visitFPToSIInst(FPToSIInst &I);
433 void visitUIToFPInst(UIToFPInst &I);
434 void visitSIToFPInst(SIToFPInst &I);
435 void visitIntToPtrInst(IntToPtrInst &I);
436 void visitPtrToIntInst(PtrToIntInst &I);
437 void visitBitCastInst(BitCastInst &I);
438 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
439 void visitPHINode(PHINode &PN);
440 void visitBinaryOperator(BinaryOperator &B);
441 void visitICmpInst(ICmpInst &IC);
442 void visitFCmpInst(FCmpInst &FC);
443 void visitExtractElementInst(ExtractElementInst &EI);
444 void visitInsertElementInst(InsertElementInst &EI);
445 void visitShuffleVectorInst(ShuffleVectorInst &EI);
446 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
447 void visitCallInst(CallInst &CI);
448 void visitInvokeInst(InvokeInst &II);
449 void visitGetElementPtrInst(GetElementPtrInst &GEP);
450 void visitLoadInst(LoadInst &LI);
451 void visitStoreInst(StoreInst &SI);
452 void verifyDominatesUse(Instruction &I, unsigned i);
453 void visitInstruction(Instruction &I);
454 void visitTerminatorInst(TerminatorInst &I);
455 void visitBranchInst(BranchInst &BI);
456 void visitReturnInst(ReturnInst &RI);
457 void visitSwitchInst(SwitchInst &SI);
458 void visitIndirectBrInst(IndirectBrInst &BI);
459 void visitSelectInst(SelectInst &SI);
460 void visitUserOp1(Instruction &I);
461 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
462 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
463 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
464 template <class DbgIntrinsicTy>
465 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
466 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
467 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
468 void visitFenceInst(FenceInst &FI);
469 void visitAllocaInst(AllocaInst &AI);
470 void visitExtractValueInst(ExtractValueInst &EVI);
471 void visitInsertValueInst(InsertValueInst &IVI);
472 void visitEHPadPredecessors(Instruction &I);
473 void visitLandingPadInst(LandingPadInst &LPI);
474 void visitResumeInst(ResumeInst &RI);
475 void visitCatchPadInst(CatchPadInst &CPI);
476 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
477 void visitCleanupPadInst(CleanupPadInst &CPI);
478 void visitFuncletPadInst(FuncletPadInst &FPI);
479 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
480 void visitCleanupReturnInst(CleanupReturnInst &CRI);
481
482 void verifyCallSite(CallSite CS);
483 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
484 void verifySwiftErrorValue(const Value *SwiftErrorVal);
485 void verifyMustTailCall(CallInst &CI);
486 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
487 unsigned ArgNo, std::string &Suffix);
488 bool verifyAttributeCount(AttributeSet Attrs, unsigned Params);
489 void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
490 const Value *V);
491 void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
492 bool isReturnValue, const Value *V);
493 void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
494 const Value *V);
495 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
496
497 void visitConstantExprsRecursively(const Constant *EntryC);
498 void visitConstantExpr(const ConstantExpr *CE);
499 void verifyStatepoint(ImmutableCallSite CS);
500 void verifyFrameRecoverIndices();
501 void verifySiblingFuncletUnwinds();
502
503 void verifyFragmentExpression(const DbgInfoIntrinsic &I);
504 void verifyFnArgs(const DbgInfoIntrinsic &I);
505
506 /// Module-level debug info verification...
507 void verifyCompileUnits();
508
509 /// Module-level verification that all @llvm.experimental.deoptimize
510 /// declarations share the same calling convention.
511 void verifyDeoptimizeCallingConvs();
512};
513
514} // end anonymous namespace
515
516/// We know that cond should be true, if not print an error message.
517#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
518 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
519
520/// We know that a debug info condition should be true, if not print
521/// an error message.
522#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
523 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
524
525void Verifier::visit(Instruction &I) {
526 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
527 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
528 InstVisitor<Verifier>::visit(I);
529}
530
531// Helper to recursively iterate over indirect users. By
532// returning false, the callback can ask to stop recursing
533// further.
534static void forEachUser(const Value *User,
535 SmallPtrSet<const Value *, 32> &Visited,
536 llvm::function_ref<bool(const Value *)> Callback) {
537 if (!Visited.insert(User).second)
538 return;
539 for (const Value *TheNextUser : User->materialized_users())
540 if (Callback(TheNextUser))
541 forEachUser(TheNextUser, Visited, Callback);
542}
543
544void Verifier::visitGlobalValue(const GlobalValue &GV) {
545 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
546 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
547
548 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
549 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
550 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
551 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
552
553 if (GV.hasAppendingLinkage()) {
554 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
555 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
556 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
557 }
558
559 if (GV.isDeclarationForLinker())
560 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
561
562 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
563 if (const Instruction *I = dyn_cast<Instruction>(V)) {
564 if (!I->getParent() || !I->getParent()->getParent())
565 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
566 I);
567 else if (I->getParent()->getParent()->getParent() != &M)
568 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
569 I->getParent()->getParent(),
570 I->getParent()->getParent()->getParent());
571 return false;
572 } else if (const Function *F = dyn_cast<Function>(V)) {
573 if (F->getParent() != &M)
574 CheckFailed("Global is used by function in a different module", &GV, &M,
575 F, F->getParent());
576 return false;
577 }
578 return true;
579 });
580}
581
582void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
583 if (GV.hasInitializer()) {
584 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
585 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
586 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
587 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
588 // If the global has common linkage, it must have a zero initializer and
589 // cannot be constant.
590 if (GV.hasCommonLinkage()) {
591 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
592 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
593 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
594 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
595 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
596 }
597 }
598
599 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
600 GV.getName() == "llvm.global_dtors")) {
601 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
602 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
603 // Don't worry about emitting an error for it not being an array,
604 // visitGlobalValue will complain on appending non-array.
605 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
606 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
607 PointerType *FuncPtrTy =
608 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
609 // FIXME: Reject the 2-field form in LLVM 4.0.
610 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
611 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
612 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
613 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
614 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
615 if (STy->getNumElements() == 3) {
616 Type *ETy = STy->getTypeAtIndex(2);
617 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
618 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
619 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
620 }
621 }
622 }
623
624 if (GV.hasName() && (GV.getName() == "llvm.used" ||
625 GV.getName() == "llvm.compiler.used")) {
626 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
627 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
628 Type *GVType = GV.getValueType();
629 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
630 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
631 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
632 if (GV.hasInitializer()) {
633 const Constant *Init = GV.getInitializer();
634 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
635 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
636 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
637 for (Value *Op : InitArray->operands()) {
638 Value *V = Op->stripPointerCastsNoFollowAliases();
639 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
640 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
641 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
642 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
643 }
644 }
645 }
646 }
647
648 Assert(!GV.hasDLLImportStorageClass() ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
649 (GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
650 GV.hasAvailableExternallyLinkage(),do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
651 "Global is marked as dllimport, but not external", &GV)do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
652
653 // Visit any debug info attachments.
654 SmallVector<MDNode *, 1> MDs;
655 GV.getMetadata(LLVMContext::MD_dbg, MDs);
656 for (auto *MD : MDs) {
657 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
658 visitDIGlobalVariableExpression(*GVE);
659 else
660 AssertDI(false, "!dbg attachment of global variable must be a DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a DIGlobalVariableExpression"
); return; } } while (false)
;
661 }
662
663 if (!GV.hasInitializer()) {
664 visitGlobalValue(GV);
665 return;
666 }
667
668 // Walk any aggregate initializers looking for bitcasts between address spaces
669 visitConstantExprsRecursively(GV.getInitializer());
670
671 visitGlobalValue(GV);
672}
673
674void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
675 SmallPtrSet<const GlobalAlias*, 4> Visited;
676 Visited.insert(&GA);
677 visitAliaseeSubExpr(Visited, GA, C);
678}
679
680void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
681 const GlobalAlias &GA, const Constant &C) {
682 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
683 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
684 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
685
686 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
687 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
688
689 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
690 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
691 } else {
692 // Only continue verifying subexpressions of GlobalAliases.
693 // Do not recurse into global initializers.
694 return;
695 }
696 }
697
698 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
699 visitConstantExprsRecursively(CE);
700
701 for (const Use &U : C.operands()) {
702 Value *V = &*U;
703 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
704 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
705 else if (const auto *C2 = dyn_cast<Constant>(V))
706 visitAliaseeSubExpr(Visited, GA, *C2);
707 }
708}
709
710void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
711 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
712 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
713 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
714 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
715 const Constant *Aliasee = GA.getAliasee();
716 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
717 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
718 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
719
720 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
721 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
722
723 visitAliaseeSubExpr(GA, *Aliasee);
724
725 visitGlobalValue(GA);
726}
727
728void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
729 // There used to be various other llvm.dbg.* nodes, but we don't support
730 // upgrading them and we want to reserve the namespace for future uses.
731 if (NMD.getName().startswith("llvm.dbg."))
732 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
733 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
734 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
735 for (const MDNode *MD : NMD.operands()) {
736 if (NMD.getName() == "llvm.dbg.cu")
737 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
738
739 if (!MD)
740 continue;
741
742 visitMDNode(*MD);
743 }
744}
745
746void Verifier::visitMDNode(const MDNode &MD) {
747 // Only visit each node once. Metadata can be mutually recursive, so this
748 // avoids infinite recursion here, as well as being an optimization.
749 if (!MDNodes.insert(&MD).second)
750 return;
751
752 switch (MD.getMetadataID()) {
753 default:
754 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 754)
;
755 case Metadata::MDTupleKind:
756 break;
757#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
758 case Metadata::CLASS##Kind: \
759 visit##CLASS(cast<CLASS>(MD)); \
760 break;
761#include "llvm/IR/Metadata.def"
762 }
763
764 for (const Metadata *Op : MD.operands()) {
765 if (!Op)
766 continue;
767 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
768 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
769 if (auto *N = dyn_cast<MDNode>(Op)) {
770 visitMDNode(*N);
771 continue;
772 }
773 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
774 visitValueAsMetadata(*V, nullptr);
775 continue;
776 }
777 }
778
779 // Check these last, so we diagnose problems in operands first.
780 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
781 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
782}
783
784void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
785 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
786 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
787 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
788
789 auto *L = dyn_cast<LocalAsMetadata>(&MD);
790 if (!L)
791 return;
792
793 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
794
795 // If this was an instruction, bb, or argument, verify that it is in the
796 // function that we expect.
797 Function *ActualF = nullptr;
798 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
799 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
800 ActualF = I->getParent()->getParent();
801 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
802 ActualF = BB->getParent();
803 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
804 ActualF = A->getParent();
805 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 805, __PRETTY_FUNCTION__))
;
806
807 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
808}
809
810void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
811 Metadata *MD = MDV.getMetadata();
812 if (auto *N = dyn_cast<MDNode>(MD)) {
813 visitMDNode(*N);
814 return;
815 }
816
817 // Only visit each node once. Metadata can be mutually recursive, so this
818 // avoids infinite recursion here, as well as being an optimization.
819 if (!MDNodes.insert(MD).second)
820 return;
821
822 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
823 visitValueAsMetadata(*V, F);
824}
825
826static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
827static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
828static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
829
830template <class Ty>
831static bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
832 for (Metadata *MD : N.operands()) {
833 if (MD) {
834 if (!isa<Ty>(MD))
835 return false;
836 } else {
837 if (!AllowNull)
838 return false;
839 }
840 }
841 return true;
842}
843
844template <class Ty> static bool isValidMetadataArray(const MDTuple &N) {
845 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
846}
847
848template <class Ty> static bool isValidMetadataNullArray(const MDTuple &N) {
849 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
850}
851
852void Verifier::visitDILocation(const DILocation &N) {
853 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
854 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
855 if (auto *IA = N.getRawInlinedAt())
856 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
857}
858
859void Verifier::visitGenericDINode(const GenericDINode &N) {
860 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
861}
862
863void Verifier::visitDIScope(const DIScope &N) {
864 if (auto *F = N.getRawFile())
865 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
866}
867
868void Verifier::visitDISubrange(const DISubrange &N) {
869 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
870 AssertDI(N.getCount() >= -1, "invalid subrange count", &N)do { if (!(N.getCount() >= -1)) { DebugInfoCheckFailed("invalid subrange count"
, &N); return; } } while (false)
;
871}
872
873void Verifier::visitDIEnumerator(const DIEnumerator &N) {
874 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
875}
876
877void Verifier::visitDIBasicType(const DIBasicType &N) {
878 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
879 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
880 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
881}
882
883void Verifier::visitDIDerivedType(const DIDerivedType &N) {
884 // Common scope checks.
885 visitDIScope(N);
886
887 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
888 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
889 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
890 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
891 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
892 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
893 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
894 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
895 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
896 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
897 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
898 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
899 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
900 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
901 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
902 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
903 }
904
905 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
906 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
907 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
908}
909
910static bool hasConflictingReferenceFlags(unsigned Flags) {
911 return (Flags & DINode::FlagLValueReference) &&
912 (Flags & DINode::FlagRValueReference);
913}
914
915void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
916 auto *Params = dyn_cast<MDTuple>(&RawParams);
917 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
918 for (Metadata *Op : Params->operands()) {
919 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
920 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
921 }
922}
923
924void Verifier::visitDICompositeType(const DICompositeType &N) {
925 // Common scope checks.
926 visitDIScope(N);
927
928 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
929 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
930 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
931 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
932 N.getTag() == dwarf::DW_TAG_class_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
933 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
;
934
935 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
936 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
937 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
938
939 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
940 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
941 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
942 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
943 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
944 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
945 if (auto *Params = N.getRawTemplateParams())
946 visitTemplateParams(N, *Params);
947
948 if (N.getTag() == dwarf::DW_TAG_class_type ||
949 N.getTag() == dwarf::DW_TAG_union_type) {
950 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
951 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
952 }
953}
954
955void Verifier::visitDISubroutineType(const DISubroutineType &N) {
956 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
957 if (auto *Types = N.getRawTypeArray()) {
958 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
959 for (Metadata *Ty : N.getTypeArray()->operands()) {
960 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
961 }
962 }
963 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
964 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
965}
966
967void Verifier::visitDIFile(const DIFile &N) {
968 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
969 AssertDI((N.getChecksumKind() != DIFile::CSK_None ||do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
970 N.getChecksum().empty()), "invalid checksum kind", &N)do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
;
971}
972
973void Verifier::visitDICompileUnit(const DICompileUnit &N) {
974 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
975 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
976
977 // Don't bother verifying the compilation directory or producer string
978 // as those could be empty.
979 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
980 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
981 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
982 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
983
984 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
985 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
986
987 if (auto *Array = N.getRawEnumTypes()) {
988 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
989 for (Metadata *Op : N.getEnumTypes()->operands()) {
990 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
991 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
992 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
993 }
994 }
995 if (auto *Array = N.getRawRetainedTypes()) {
996 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
997 for (Metadata *Op : N.getRetainedTypes()->operands()) {
998 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
999 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1000 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
1001 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
1002 }
1003 }
1004 if (auto *Array = N.getRawGlobalVariables()) {
1005 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
1006 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1007 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
1008 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
1009 }
1010 }
1011 if (auto *Array = N.getRawImportedEntities()) {
1012 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1013 for (Metadata *Op : N.getImportedEntities()->operands()) {
1014 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1015 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1016 }
1017 }
1018 if (auto *Array = N.getRawMacros()) {
1019 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1020 for (Metadata *Op : N.getMacros()->operands()) {
1021 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1022 }
1023 }
1024 CUVisited.insert(&N);
1025}
1026
1027void Verifier::visitDISubprogram(const DISubprogram &N) {
1028 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1029 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1030 if (auto *F = N.getRawFile())
1031 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1032 else
1033 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1034 if (auto *T = N.getRawType())
1035 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1036 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1037 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1038 if (auto *Params = N.getRawTemplateParams())
1039 visitTemplateParams(N, *Params);
1040 if (auto *S = N.getRawDeclaration())
1041 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1042 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1043 if (auto *RawVars = N.getRawVariables()) {
1044 auto *Vars = dyn_cast<MDTuple>(RawVars);
1045 AssertDI(Vars, "invalid variable list", &N, RawVars)do { if (!(Vars)) { DebugInfoCheckFailed("invalid variable list"
, &N, RawVars); return; } } while (false)
;
1046 for (Metadata *Op : Vars->operands()) {
1047 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
1048 Vars, Op)do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
;
1049 }
1050 }
1051 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1052 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1053
1054 auto *Unit = N.getRawUnit();
1055 if (N.isDefinition()) {
1056 // Subprogram definitions (not part of the type hierarchy).
1057 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1058 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1059 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1060 } else {
1061 // Subprogram declarations (part of the type hierarchy).
1062 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1063 }
1064}
1065
1066void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1067 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1068 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1069 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1070}
1071
1072void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1073 visitDILexicalBlockBase(N);
1074
1075 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1076 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1077}
1078
1079void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1080 visitDILexicalBlockBase(N);
1081}
1082
1083void Verifier::visitDINamespace(const DINamespace &N) {
1084 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1085 if (auto *S = N.getRawScope())
1086 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1087}
1088
1089void Verifier::visitDIMacro(const DIMacro &N) {
1090 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1091 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1092 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1093 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1094 if (!N.getValue().empty()) {
1095 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 1095, __PRETTY_FUNCTION__))
;
1096 }
1097}
1098
1099void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1100 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1101 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1102 if (auto *F = N.getRawFile())
1103 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1104
1105 if (auto *Array = N.getRawElements()) {
1106 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1107 for (Metadata *Op : N.getElements()->operands()) {
1108 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1109 }
1110 }
1111}
1112
1113void Verifier::visitDIModule(const DIModule &N) {
1114 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1115 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1116}
1117
1118void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1119 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1120}
1121
1122void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1123 visitDITemplateParameter(N);
1124
1125 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1126 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1127}
1128
1129void Verifier::visitDITemplateValueParameter(
1130 const DITemplateValueParameter &N) {
1131 visitDITemplateParameter(N);
1132
1133 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1134 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1135 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1136 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1137}
1138
1139void Verifier::visitDIVariable(const DIVariable &N) {
1140 if (auto *S = N.getRawScope())
1141 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1142 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1143 if (auto *F = N.getRawFile())
1144 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1145}
1146
1147void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1148 // Checks common to all variables.
1149 visitDIVariable(N);
1150
1151 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1152 AssertDI(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("missing global variable name"
, &N); return; } } while (false)
;
1153 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1154 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1155 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1156 }
1157}
1158
1159void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1160 // Checks common to all variables.
1161 visitDIVariable(N);
1162
1163 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1164 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1165 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1166}
1167
1168void Verifier::visitDIExpression(const DIExpression &N) {
1169 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1170}
1171
1172void Verifier::visitDIGlobalVariableExpression(
1173 const DIGlobalVariableExpression &GVE) {
1174 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1175 if (auto *Var = GVE.getVariable())
1176 visitDIGlobalVariable(*Var);
1177 if (auto *Expr = GVE.getExpression())
1178 visitDIExpression(*Expr);
1179}
1180
1181void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1182 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1183 if (auto *T = N.getRawType())
1184 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1185 if (auto *F = N.getRawFile())
1186 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1187}
1188
1189void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1190 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1191 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1192 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1193 if (auto *S = N.getRawScope())
1194 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1195 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1196 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1197}
1198
1199void Verifier::visitComdat(const Comdat &C) {
1200 // The Module is invalid if the GlobalValue has private linkage. Entities
1201 // with private linkage don't have entries in the symbol table.
1202 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1203 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1204 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1205}
1206
1207void Verifier::visitModuleIdents(const Module &M) {
1208 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1209 if (!Idents)
1210 return;
1211
1212 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1213 // Scan each llvm.ident entry and make sure that this requirement is met.
1214 for (const MDNode *N : Idents->operands()) {
1215 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1216 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1217 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1218 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1219 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1220 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1221 }
1222}
1223
1224void Verifier::visitModuleFlags(const Module &M) {
1225 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1226 if (!Flags) return;
1227
1228 // Scan each flag, and track the flags and requirements.
1229 DenseMap<const MDString*, const MDNode*> SeenIDs;
1230 SmallVector<const MDNode*, 16> Requirements;
1231 for (const MDNode *MDN : Flags->operands())
1232 visitModuleFlag(MDN, SeenIDs, Requirements);
1233
1234 // Validate that the requirements in the module are valid.
1235 for (const MDNode *Requirement : Requirements) {
1236 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1237 const Metadata *ReqValue = Requirement->getOperand(1);
1238
1239 const MDNode *Op = SeenIDs.lookup(Flag);
1240 if (!Op) {
1241 CheckFailed("invalid requirement on flag, flag is not present in module",
1242 Flag);
1243 continue;
1244 }
1245
1246 if (Op->getOperand(2) != ReqValue) {
1247 CheckFailed(("invalid requirement on flag, "
1248 "flag does not have the required value"),
1249 Flag);
1250 continue;
1251 }
1252 }
1253}
1254
1255void
1256Verifier::visitModuleFlag(const MDNode *Op,
1257 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1258 SmallVectorImpl<const MDNode *> &Requirements) {
1259 // Each module flag should have three arguments, the merge behavior (a
1260 // constant int), the flag ID (an MDString), and the value.
1261 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1262 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1263 Module::ModFlagBehavior MFB;
1264 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1265 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1266 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1267 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1268 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1269 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1270 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1271 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1272 }
1273 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1274 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1275 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1276
1277 // Sanity check the values for behaviors with additional requirements.
1278 switch (MFB) {
1279 case Module::Error:
1280 case Module::Warning:
1281 case Module::Override:
1282 // These behavior types accept any value.
1283 break;
1284
1285 case Module::Require: {
1286 // The value should itself be an MDNode with two operands, a flag ID (an
1287 // MDString), and a value.
1288 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1289 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1290 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1291 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1292 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1293 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1294 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1295 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1296
1297 // Append it to the list of requirements, to check once all module flags are
1298 // scanned.
1299 Requirements.push_back(Value);
1300 break;
1301 }
1302
1303 case Module::Append:
1304 case Module::AppendUnique: {
1305 // These behavior types require the operand be an MDNode.
1306 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1307 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1308 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1309 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1310 break;
1311 }
1312 }
1313
1314 // Unless this is a "requires" flag, check the ID is unique.
1315 if (MFB != Module::Require) {
1316 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1317 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1318 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1319 }
1320}
1321
1322void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1323 bool isFunction, const Value *V) {
1324 unsigned Slot = ~0U;
1325 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1326 if (Attrs.getSlotIndex(I) == Idx) {
1327 Slot = I;
1328 break;
1329 }
1330
1331 assert(Slot != ~0U && "Attribute set inconsistency!")((Slot != ~0U && "Attribute set inconsistency!") ? static_cast
<void> (0) : __assert_fail ("Slot != ~0U && \"Attribute set inconsistency!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 1331, __PRETTY_FUNCTION__))
;
1332
1333 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1334 I != E; ++I) {
1335 if (I->isStringAttribute())
1336 continue;
1337
1338 if (I->getKindAsEnum() == Attribute::NoReturn ||
1339 I->getKindAsEnum() == Attribute::NoUnwind ||
1340 I->getKindAsEnum() == Attribute::NoInline ||
1341 I->getKindAsEnum() == Attribute::AlwaysInline ||
1342 I->getKindAsEnum() == Attribute::OptimizeForSize ||
1343 I->getKindAsEnum() == Attribute::StackProtect ||
1344 I->getKindAsEnum() == Attribute::StackProtectReq ||
1345 I->getKindAsEnum() == Attribute::StackProtectStrong ||
1346 I->getKindAsEnum() == Attribute::SafeStack ||
1347 I->getKindAsEnum() == Attribute::NoRedZone ||
1348 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1349 I->getKindAsEnum() == Attribute::Naked ||
1350 I->getKindAsEnum() == Attribute::InlineHint ||
1351 I->getKindAsEnum() == Attribute::StackAlignment ||
1352 I->getKindAsEnum() == Attribute::UWTable ||
1353 I->getKindAsEnum() == Attribute::NonLazyBind ||
1354 I->getKindAsEnum() == Attribute::ReturnsTwice ||
1355 I->getKindAsEnum() == Attribute::SanitizeAddress ||
1356 I->getKindAsEnum() == Attribute::SanitizeThread ||
1357 I->getKindAsEnum() == Attribute::SanitizeMemory ||
1358 I->getKindAsEnum() == Attribute::MinSize ||
1359 I->getKindAsEnum() == Attribute::NoDuplicate ||
1360 I->getKindAsEnum() == Attribute::Builtin ||
1361 I->getKindAsEnum() == Attribute::NoBuiltin ||
1362 I->getKindAsEnum() == Attribute::Cold ||
1363 I->getKindAsEnum() == Attribute::OptimizeNone ||
1364 I->getKindAsEnum() == Attribute::JumpTable ||
1365 I->getKindAsEnum() == Attribute::Convergent ||
1366 I->getKindAsEnum() == Attribute::ArgMemOnly ||
1367 I->getKindAsEnum() == Attribute::NoRecurse ||
1368 I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1369 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly ||
1370 I->getKindAsEnum() == Attribute::AllocSize) {
1371 if (!isFunction) {
1372 CheckFailed("Attribute '" + I->getAsString() +
1373 "' only applies to functions!", V);
1374 return;
1375 }
1376 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1377 I->getKindAsEnum() == Attribute::WriteOnly ||
1378 I->getKindAsEnum() == Attribute::ReadNone) {
1379 if (Idx == 0) {
1380 CheckFailed("Attribute '" + I->getAsString() +
1381 "' does not apply to function returns");
1382 return;
1383 }
1384 } else if (isFunction) {
1385 CheckFailed("Attribute '" + I->getAsString() +
1386 "' does not apply to functions!", V);
1387 return;
1388 }
1389 }
1390}
1391
1392// VerifyParameterAttrs - Check the given attributes for an argument or return
1393// value of the specified type. The value V is printed in error messages.
1394void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1395 bool isReturnValue, const Value *V) {
1396 if (!Attrs.hasAttributes(Idx))
1397 return;
1398
1399 verifyAttributeTypes(Attrs, Idx, false, V);
1400
1401 if (isReturnValue)
1402 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1403 !Attrs.hasAttribute(Idx, Attribute::Nest) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1404 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1405 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1406 !Attrs.hasAttribute(Idx, Attribute::Returned) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1407 !Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1408 !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1409 !Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1410 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1411 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1412 "values!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1413 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::Nest) && !Attrs.
hasAttribute(Idx, Attribute::StructRet) && !Attrs.hasAttribute
(Idx, Attribute::NoCapture) && !Attrs.hasAttribute(Idx
, Attribute::Returned) && !Attrs.hasAttribute(Idx, Attribute
::InAlloca) && !Attrs.hasAttribute(Idx, Attribute::SwiftSelf
) && !Attrs.hasAttribute(Idx, Attribute::SwiftError))
) { CheckFailed("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1414
1415 // Check for mutually incompatible attributes. Only inreg is compatible with
1416 // sret.
1417 unsigned AttrCount = 0;
1418 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1419 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1420 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1421 Attrs.hasAttribute(Idx, Attribute::InReg);
1422 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1423 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1424 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1425 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1426
1427 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1428 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1429 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1430 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
1431 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'inalloca and readonly' are incompatible!", V
); return; } } while (false)
;
1432
1433 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1434 Attrs.hasAttribute(Idx, Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1435 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1436 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
1437 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
Attrs.hasAttribute(Idx, Attribute::Returned)))) { CheckFailed
("Attributes " "'sret and returned' are incompatible!", V); return
; } } while (false)
;
1438
1439 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1440 Attrs.hasAttribute(Idx, Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1441 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1442 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1443 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
Attrs.hasAttribute(Idx, Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1444
1445 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1446 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1447 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1448 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
1449 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::ReadOnly)))) { CheckFailed
("Attributes " "'readnone and readonly' are incompatible!", V
); return; } } while (false)
;
1450
1451 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1452 Attrs.hasAttribute(Idx, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1453 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1454 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
1455 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readnone and writeonly' are incompatible!", V
); return; } } while (false)
;
1456
1457 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1458 Attrs.hasAttribute(Idx, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1459 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1460 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
1461 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
Attrs.hasAttribute(Idx, Attribute::WriteOnly)))) { CheckFailed
("Attributes " "'readonly and writeonly' are incompatible!", V
); return; } } while (false)
;
1462
1463 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1464 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1465 "Attributes "do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1466 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1467 V)do { if (!(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
Attrs.hasAttribute(Idx, Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1468
1469 Assert(do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1470 !AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::typeIncompatible(Ty)),do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1471 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1472 AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible(Ty))do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1473 .getAsString(Idx),do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
1474 V)do { if (!(!AttrBuilder(Attrs, Idx).overlaps(AttributeFuncs::
typeIncompatible(Ty)))) { CheckFailed("Wrong types for attribute: "
+ AttributeSet::get(Context, Idx, AttributeFuncs::typeIncompatible
(Ty)) .getAsString(Idx), V); return; } } while (false)
;
1475
1476 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1477 SmallPtrSet<Type*, 4> Visited;
1478 if (!PTy->getElementType()->isSized(&Visited)) {
1479 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1480 !Attrs.hasAttribute(Idx, Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1481 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1482 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
!Attrs.hasAttribute(Idx, Attribute::InAlloca))) { CheckFailed
("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1483 }
1484 if (!isa<PointerType>(PTy->getElementType()))
1485 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1486 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1487 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
1488 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer to pointer type!", V); return; } } while (false
)
;
1489 } else {
1490 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1491 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1492 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1493 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1494 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1495 "with pointer type!",do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
1496 V)do { if (!(!Attrs.hasAttribute(Idx, Attribute::SwiftError))) {
CheckFailed("Attribute 'swifterror' only applies to parameters "
"with pointer type!", V); return; } } while (false)
;
1497 }
1498}
1499
1500// Check parameter attributes against a function type.
1501// The value V is printed in error messages.
1502void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1503 const Value *V) {
1504 if (Attrs.isEmpty())
1505 return;
1506
1507 bool SawNest = false;
1508 bool SawReturned = false;
1509 bool SawSRet = false;
1510 bool SawSwiftSelf = false;
1511 bool SawSwiftError = false;
1512
1513 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1514 unsigned Idx = Attrs.getSlotIndex(i);
1515
1516 Type *Ty;
1517 if (Idx == 0)
1518 Ty = FT->getReturnType();
1519 else if (Idx-1 < FT->getNumParams())
1520 Ty = FT->getParamType(Idx-1);
1521 else
1522 break; // VarArgs attributes, verified elsewhere.
1523
1524 verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1525
1526 if (Idx == 0)
1527 continue;
1528
1529 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1530 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1531 SawNest = true;
1532 }
1533
1534 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1535 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1536 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1537 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1538 "Incompatible "do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1539 "argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
1540 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible " "argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1541 SawReturned = true;
1542 }
1543
1544 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1545 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1546 Assert(Idx == 1 || Idx == 2,do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1547 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(Idx == 1 || Idx == 2)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1548 SawSRet = true;
1549 }
1550
1551 if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
1552 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1553 SawSwiftSelf = true;
1554 }
1555
1556 if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
1557 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1558 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1559 SawSwiftError = true;
1560 }
1561
1562 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1563 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1564 V)do { if (!(Idx == FT->getNumParams())) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1565 }
1566 }
1567
1568 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1569 return;
1570
1571 verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1572
1573 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1574 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1575 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1576 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1577
1578 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1579 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1580 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
1581 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readnone and writeonly' are incompatible!"
, V); return; } } while (false)
;
1582
1583 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1584 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1585 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
1586 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadOnly) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::WriteOnly)))) { CheckFailed("Attributes 'readonly and writeonly' are incompatible!"
, V); return; } } while (false)
;
1587
1588 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1589 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1590 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1591 Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
1592 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOrArgMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!"
, V); return; } } while (false)
;
1593
1594 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1595 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1596 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1597 Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1598 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::ReadNone) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::InaccessibleMemOnly)))) { CheckFailed("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1599
1600 Assert(do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1601 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1602 Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1603 Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1604 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline) && Attrs.hasAttribute(AttributeSet::FunctionIndex
, Attribute::AlwaysInline)))) { CheckFailed("Attributes 'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1605
1606 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1607 Attribute::OptimizeNone)) {
1608 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),do { if (!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (false)
1609 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::NoInline))) { CheckFailed("Attribute 'optnone' requires 'noinline'!"
, V); return; } } while (false)
;
1610
1611 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1612 Attribute::OptimizeForSize),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1613 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::OptimizeForSize))) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1614
1615 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (false)
1616 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::MinSize))) { CheckFailed("Attributes 'minsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1617 }
1618
1619 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1620 Attribute::JumpTable)) {
1621 const GlobalValue *GV = cast<GlobalValue>(V);
1622 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1623 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1624 }
1625
1626 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) {
1627 std::pair<unsigned, Optional<unsigned>> Args =
1628 Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex);
1629
1630 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1631 if (ParamNo >= FT->getNumParams()) {
1632 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1633 return false;
1634 }
1635
1636 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1637 CheckFailed("'allocsize' " + Name +
1638 " argument must refer to an integer parameter",
1639 V);
1640 return false;
1641 }
1642
1643 return true;
1644 };
1645
1646 if (!CheckParam("element size", Args.first))
1647 return;
1648
1649 if (Args.second && !CheckParam("number of elements", *Args.second))
1650 return;
1651 }
1652}
1653
1654void Verifier::verifyFunctionMetadata(
1655 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1656 for (const auto &Pair : MDs) {
1657 if (Pair.first == LLVMContext::MD_prof) {
1658 MDNode *MD = Pair.second;
1659 Assert(MD->getNumOperands() == 2,do { if (!(MD->getNumOperands() == 2)) { CheckFailed("!prof annotations should have exactly 2 operands"
, MD); return; } } while (false)
1660 "!prof annotations should have exactly 2 operands", MD)do { if (!(MD->getNumOperands() == 2)) { CheckFailed("!prof annotations should have exactly 2 operands"
, MD); return; } } while (false)
;
1661
1662 // Check first operand.
1663 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1664 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1665 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1666 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1667 MDString *MDS = cast<MDString>(MD->getOperand(0));
1668 StringRef ProfName = MDS->getString();
1669 Assert(ProfName.equals("function_entry_count"),do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
1670 "first operand should be 'function_entry_count'", MD)do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
;
1671
1672 // Check second operand.
1673 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1674 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1675 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1676 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1677 }
1678 }
1679}
1680
1681void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1682 if (!ConstantExprVisited.insert(EntryC).second)
1683 return;
1684
1685 SmallVector<const Constant *, 16> Stack;
1686 Stack.push_back(EntryC);
1687
1688 while (!Stack.empty()) {
1689 const Constant *C = Stack.pop_back_val();
1690
1691 // Check this constant expression.
1692 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1693 visitConstantExpr(CE);
1694
1695 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1696 // Global Values get visited separately, but we do need to make sure
1697 // that the global value is in the correct module
1698 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1699 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1700 continue;
1701 }
1702
1703 // Visit all sub-expressions.
1704 for (const Use &U : C->operands()) {
1705 const auto *OpC = dyn_cast<Constant>(U);
1706 if (!OpC)
1707 continue;
1708 if (!ConstantExprVisited.insert(OpC).second)
1709 continue;
1710 Stack.push_back(OpC);
1711 }
1712 }
1713}
1714
1715void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1716 if (CE->getOpcode() == Instruction::BitCast)
1717 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1718 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1719 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1720
1721 if (CE->getOpcode() == Instruction::IntToPtr ||
1722 CE->getOpcode() == Instruction::PtrToInt) {
1723 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1724 ? CE->getType()
1725 : CE->getOperand(0)->getType();
1726 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1727 ? "inttoptr not supported for non-integral pointers"
1728 : "ptrtoint not supported for non-integral pointers";
1729 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1730 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1731 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1732 }
1733}
1734
1735bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1736 if (Attrs.getNumSlots() == 0)
1737 return true;
1738
1739 unsigned LastSlot = Attrs.getNumSlots() - 1;
1740 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1741 if (LastIndex <= Params
1742 || (LastIndex == AttributeSet::FunctionIndex
1743 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1744 return true;
1745
1746 return false;
1747}
1748
1749/// Verify that statepoint intrinsic is well formed.
1750void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1751 assert(CS.getCalledFunction() &&((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 1753, __PRETTY_FUNCTION__))
1752 CS.getCalledFunction()->getIntrinsicID() ==((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 1753, __PRETTY_FUNCTION__))
1753 Intrinsic::experimental_gc_statepoint)((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 1753, __PRETTY_FUNCTION__))
;
1754
1755 const Instruction &CI = *CS.getInstruction();
1756
1757 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1758 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1759 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1760 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1761 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
;
1762
1763 const Value *IDV = CS.getArgument(0);
1764 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
1765 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
;
1766
1767 const Value *NumPatchBytesV = CS.getArgument(1);
1768 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1769 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1770 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
;
1771 const int64_t NumPatchBytes =
1772 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1773 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 1773, __PRETTY_FUNCTION__))
;
1774 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1775 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1776 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
;
1777
1778 const Value *Target = CS.getArgument(2);
1779 auto *PT = dyn_cast<PointerType>(Target->getType());
1780 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
1781 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
;
1782 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1783
1784 const Value *NumCallArgsV = CS.getArgument(3);
1785 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1786 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1787 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1788 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
;
1789 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1790 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1791 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1792 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1793 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
;
1794 const int NumParams = (int)TargetFuncType->getNumParams();
1795 if (TargetFuncType->isVarArg()) {
1796 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
1797 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
;
1798
1799 // TODO: Remove this limitation
1800 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1801 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1802 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1803 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
;
1804 } else
1805 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
1806 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
;
1807
1808 const Value *FlagsV = CS.getArgument(4);
1809 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
1810 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
;
1811 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1812 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
1813 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
;
1814
1815 // Verify that the types of the call parameter arguments match
1816 // the type of the wrapped callee.
1817 for (int i = 0; i < NumParams; i++) {
1818 Type *ParamType = TargetFuncType->getParamType(i);
1819 Type *ArgType = CS.getArgument(5 + i)->getType();
1820 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1821 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1822 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1823 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
;
1824 }
1825
1826 const int EndCallArgsInx = 4 + NumCallArgs;
1827
1828 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1829 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1830 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1831 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1832 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1833 const int NumTransitionArgs =
1834 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1835 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
1836 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
;
1837 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1838
1839 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1840 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1841 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1842 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1843 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1844 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1845 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1846 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1847 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
;
1848
1849 const int ExpectedNumArgs =
1850 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1851 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
1852 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
;
1853
1854 // Check that the only uses of this gc.statepoint are gc.result or
1855 // gc.relocate calls which are tied to this statepoint and thus part
1856 // of the same statepoint sequence
1857 for (const User *U : CI.users()) {
1858 const CallInst *Call = dyn_cast<const CallInst>(U);
1859 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (false)
;
1860 if (!Call) continue;
1861 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1862 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1863 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1864 &CI, U)do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
;
1865 if (isa<GCResultInst>(Call)) {
1866 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
1867 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
;
1868 } else if (isa<GCRelocateInst>(Call)) {
1869 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
1870 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
;
1871 }
1872 }
1873
1874 // Note: It is legal for a single derived pointer to be listed multiple
1875 // times. It's non-optimal, but it is legal. It can also happen after
1876 // insertion if we strip a bitcast away.
1877 // Note: It is really tempting to check that each base is relocated and
1878 // that a derived pointer is never reused as a base pointer. This turns
1879 // out to be problematic since optimizations run after safepoint insertion
1880 // can recognize equality properties that the insertion logic doesn't know
1881 // about. See example statepoint.ll in the verifier subdirectory
1882}
1883
1884void Verifier::verifyFrameRecoverIndices() {
1885 for (auto &Counts : FrameEscapeInfo) {
1886 Function *F = Counts.first;
1887 unsigned EscapedObjectCount = Counts.second.first;
1888 unsigned MaxRecoveredIndex = Counts.second.second;
1889 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1890 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1891 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1892 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1893 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
;
1894 }
1895}
1896
1897static Instruction *getSuccPad(TerminatorInst *Terminator) {
1898 BasicBlock *UnwindDest;
1899 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1900 UnwindDest = II->getUnwindDest();
1901 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1902 UnwindDest = CSI->getUnwindDest();
1903 else
1904 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1905 return UnwindDest->getFirstNonPHI();
1906}
1907
1908void Verifier::verifySiblingFuncletUnwinds() {
1909 SmallPtrSet<Instruction *, 8> Visited;
1910 SmallPtrSet<Instruction *, 8> Active;
1911 for (const auto &Pair : SiblingFuncletInfo) {
1912 Instruction *PredPad = Pair.first;
1913 if (Visited.count(PredPad))
1914 continue;
1915 Active.insert(PredPad);
1916 TerminatorInst *Terminator = Pair.second;
1917 do {
1918 Instruction *SuccPad = getSuccPad(Terminator);
1919 if (Active.count(SuccPad)) {
1920 // Found a cycle; report error
1921 Instruction *CyclePad = SuccPad;
1922 SmallVector<Instruction *, 8> CycleNodes;
1923 do {
1924 CycleNodes.push_back(CyclePad);
1925 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1926 if (CycleTerminator != CyclePad)
1927 CycleNodes.push_back(CycleTerminator);
1928 CyclePad = getSuccPad(CycleTerminator);
1929 } while (CyclePad != SuccPad);
1930 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
1931 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
1932 }
1933 // Don't re-walk a node we've already checked
1934 if (!Visited.insert(SuccPad).second)
1935 break;
1936 // Walk to this successor if it has a map entry.
1937 PredPad = SuccPad;
1938 auto TermI = SiblingFuncletInfo.find(PredPad);
1939 if (TermI == SiblingFuncletInfo.end())
1940 break;
1941 Terminator = TermI->second;
1942 Active.insert(PredPad);
1943 } while (true);
1944 // Each node only has one successor, so we've walked all the active
1945 // nodes' successors.
1946 Active.clear();
1947 }
1948}
1949
1950// visitFunction - Verify that a function is ok.
1951//
1952void Verifier::visitFunction(const Function &F) {
1953 DebugFnArgs.clear();
1954
1955 visitGlobalValue(F);
1956
1957 // Check function arguments.
1958 FunctionType *FT = F.getFunctionType();
1959 unsigned NumArgs = F.arg_size();
1960
1961 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1962 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
1963
1964 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
1965 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1966 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1967 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
1968 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1969 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1970 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
1971
1972 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
1973 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
1974
1975 AttributeSet Attrs = F.getAttributes();
1976
1977 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
1978 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
1979
1980 // Check function attributes.
1981 verifyFunctionAttrs(FT, Attrs, &F);
1982
1983 // On function declarations/definitions, we do not support the builtin
1984 // attribute. We do not check this in VerifyFunctionAttrs since that is
1985 // checking for Attributes that can/can not ever be on functions.
1986 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (false)
1987 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute
::Builtin))) { CheckFailed("Attribute 'builtin' can only be applied to a callsite."
, &F); return; } } while (false)
;
1988
1989 // Check that this function meets the restrictions on this calling convention.
1990 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1991 // restrictions can be lifted.
1992 switch (F.getCallingConv()) {
1
Control jumps to the 'default' case at line 1993
1993 default:
1994 case CallingConv::C:
1995 break;
2
Execution continues on line 2007
1996 case CallingConv::Fast:
1997 case CallingConv::Cold:
1998 case CallingConv::Intel_OCL_BI:
1999 case CallingConv::PTX_Kernel:
2000 case CallingConv::PTX_Device:
2001 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2002 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2003 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2004 break;
2005 }
2006
2007 bool isLLVMdotName = F.getName().size() >= 5 &&
3
Assuming the condition is false
2008 F.getName().substr(0, 5) == "llvm.";
2009
2010 // Check that the argument values match the function type for this function...
2011 unsigned i = 0;
2012 for (const Argument &Arg : F.args()) {
2013 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2014 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2015 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2016 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2017 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2018 if (!isLLVMdotName) {
2019 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2020 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2021 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2022 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2023 }
2024
2025 // Check that swifterror argument is only used by loads and stores.
2026 if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
2027 verifySwiftErrorValue(&Arg);
2028 }
2029 ++i;
2030 }
2031
2032 if (!isLLVMdotName)
4
Taking true branch
2033 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
2034 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2035
2036 // Get the function metadata attachments.
2037 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2038 F.getAllMetadata(MDs);
2039 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 2039, __PRETTY_FUNCTION__))
;
2040 verifyFunctionMetadata(MDs);
2041
2042 // Check validity of the personality function
2043 if (F.hasPersonalityFn()) {
5
Assuming the condition is false
6
Taking false branch
2044 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2045 if (Per)
2046 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2047 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2048 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2049 }
2050
2051 if (F.isMaterializable()) {
7
Assuming the condition is false
8
Taking false branch
2052 // Function has a body somewhere we can't see.
2053 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2054 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2055 } else if (F.isDeclaration()) {
9
Assuming the condition is false
10
Taking false branch
2056 for (const auto &I : MDs) {
2057 AssertDI(I.first != LLVMContext::MD_dbg,do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
2058 "function declaration may not have a !dbg attachment", &F)do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
;
2059 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2060 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2061
2062 // Verify the metadata itself.
2063 visitMDNode(*I.second);
2064 }
2065 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2066 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2067 } else {
2068 // Verify that this function (which has a body) is not named "llvm.*". It
2069 // is not legal to define intrinsics.
2070 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
2071
2072 // Check the entry node
2073 const BasicBlock *Entry = &F.getEntryBlock();
2074 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
2075 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2076
2077 // The address of the entry block cannot be taken, unless it is dead.
2078 if (Entry->hasAddressTaken()) {
11
Assuming the condition is false
12
Taking false branch
2079 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2080 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2081 }
2082
2083 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2084 // Visit metadata attachments.
2085 for (const auto &I : MDs) {
13
Assuming '__begin' is equal to '__end'
2086 // Verify that the attachment is legal.
2087 switch (I.first) {
2088 default:
2089 break;
2090 case LLVMContext::MD_dbg:
2091 ++NumDebugAttachments;
2092 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2093 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2094 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2095 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2096 break;
2097 case LLVMContext::MD_prof:
2098 ++NumProfAttachments;
2099 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2100 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2101 break;
2102 }
2103
2104 // Verify the metadata itself.
2105 visitMDNode(*I.second);
2106 }
2107 }
2108
2109 // If this function is actually an intrinsic, verify that it is only used in
2110 // direct call/invokes, never having its "address taken".
2111 // Only do this if the module is materialized, otherwise we don't have all the
2112 // uses.
2113 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
14
Assuming the condition is false
2114 const User *U;
2115 if (F.hasAddressTaken(&U))
2116 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2117 }
2118
2119 Assert(!F.hasDLLImportStorageClass() ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2120 (F.isDeclaration() && F.hasExternalLinkage()) ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2121 F.hasAvailableExternallyLinkage(),do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2122 "Function is marked as dllimport, but not external.", &F)do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
;
2123
2124 auto *N = F.getSubprogram();
2125 if (!N)
15
Assuming 'N' is non-null
16
Taking false branch
2126 return;
2127
2128 // Check that all !dbg attachments lead to back to N (or, at least, another
2129 // subprogram that describes the same function).
2130 //
2131 // FIXME: Check this incrementally while visiting !dbg attachments.
2132 // FIXME: Only check when N is the canonical subprogram for F.
2133 SmallPtrSet<const MDNode *, 32> Seen;
2134 for (auto &BB : F)
2135 for (auto &I : BB) {
2136 // Be careful about using DILocation here since we might be dealing with
2137 // broken code (this is the Verifier after all).
2138 DILocation *DL =
2139 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2140 if (!DL)
17
Assuming 'DL' is non-null
18
Taking false branch
2141 continue;
2142 if (!Seen.insert(DL).second)
19
Assuming the condition is false
20
Taking false branch
2143 continue;
2144
2145 DILocalScope *Scope = DL->getInlinedAtScope();
2146 if (Scope && !Seen.insert(Scope).second)
21
Assuming 'Scope' is null
22
Taking false branch
2147 continue;
2148
2149 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
23
'?' condition is false
24
'SP' initialized to a null pointer value
2150
2151 // Scope and SP could be the same MDNode and we don't want to skip
2152 // validation in that case
2153 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
25
Taking false branch
2154 continue;
2155
2156 // FIXME: Once N is canonical, check "SP == &N".
2157 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
26
Within the expansion of the macro 'AssertDI':
a
Called C++ object pointer is null
2158 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2159 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2160 }
2161}
2162
2163// verifyBasicBlock - Verify that a basic block is well formed...
2164//
2165void Verifier::visitBasicBlock(BasicBlock &BB) {
2166 InstsInThisBlock.clear();
2167
2168 // Ensure that basic blocks have terminators!
2169 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2170
2171 // Check constraints that this basic block imposes on all of the PHI nodes in
2172 // it.
2173 if (isa<PHINode>(BB.front())) {
2174 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2175 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2176 std::sort(Preds.begin(), Preds.end());
2177 PHINode *PN;
2178 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2179 // Ensure that PHI nodes have at least one entry!
2180 Assert(PN->getNumIncomingValues() != 0,do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2181 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2182 "the PHI should be removed!",do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2183 PN)do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
;
2184 Assert(PN->getNumIncomingValues() == Preds.size(),do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2185 "PHINode should have one entry for each predecessor of its "do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2186 "parent basic block!",do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2187 PN)do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
;
2188
2189 // Get and sort all incoming values in the PHI node...
2190 Values.clear();
2191 Values.reserve(PN->getNumIncomingValues());
2192 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2193 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2194 PN->getIncomingValue(i)));
2195 std::sort(Values.begin(), Values.end());
2196
2197 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2198 // Check to make sure that if there is more than one entry for a
2199 // particular basic block in this PHI node, that the incoming values are
2200 // all identical.
2201 //
2202 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2203 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2204 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2205 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2206 PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
;
2207
2208 // Check to make sure that the predecessors and PHI node entries are
2209 // matched up.
2210 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2211 "PHI node entries do not match predecessors!", PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2212 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
;
2213 }
2214 }
2215 }
2216
2217 // Check that all instructions have their parent pointers set up correctly.
2218 for (auto &I : BB)
2219 {
2220 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2221 }
2222}
2223
2224void Verifier::visitTerminatorInst(TerminatorInst &I) {
2225 // Ensure that terminators only exist at the end of the basic block.
2226 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2227 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2228 visitInstruction(I);
2229}
2230
2231void Verifier::visitBranchInst(BranchInst &BI) {
2232 if (BI.isConditional()) {
2233 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2234 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2235 }
2236 visitTerminatorInst(BI);
2237}
2238
2239void Verifier::visitReturnInst(ReturnInst &RI) {
2240 Function *F = RI.getParent()->getParent();
2241 unsigned N = RI.getNumOperands();
2242 if (F->getReturnType()->isVoidTy())
2243 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2244 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2245 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2246 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2247 else
2248 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2249 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2250 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2251 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2252
2253 // Check to make sure that the return value has necessary properties for
2254 // terminators...
2255 visitTerminatorInst(RI);
2256}
2257
2258void Verifier::visitSwitchInst(SwitchInst &SI) {
2259 // Check to make sure that all of the constants in the switch instruction
2260 // have the same type as the switched-on value.
2261 Type *SwitchTy = SI.getCondition()->getType();
2262 SmallPtrSet<ConstantInt*, 32> Constants;
2263 for (auto &Case : SI.cases()) {
2264 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2265 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2266 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2267 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2268 }
2269
2270 visitTerminatorInst(SI);
2271}
2272
2273void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2274 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2275 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2276 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2277 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2278 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2279
2280 visitTerminatorInst(BI);
2281}
2282
2283void Verifier::visitSelectInst(SelectInst &SI) {
2284 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2285 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2286 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2287
2288 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2289 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2290 visitInstruction(SI);
2291}
2292
2293/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2294/// a pass, if any exist, it's an error.
2295///
2296void Verifier::visitUserOp1(Instruction &I) {
2297 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2298}
2299
2300void Verifier::visitTruncInst(TruncInst &I) {
2301 // Get the source and destination types
2302 Type *SrcTy = I.getOperand(0)->getType();
2303 Type *DestTy = I.getType();
2304
2305 // Get the size of the types in bits, we'll need this later
2306 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2307 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2308
2309 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2310 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2311 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2312 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2313 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2314
2315 visitInstruction(I);
2316}
2317
2318void Verifier::visitZExtInst(ZExtInst &I) {
2319 // Get the source and destination types
2320 Type *SrcTy = I.getOperand(0)->getType();
2321 Type *DestTy = I.getType();
2322
2323 // Get the size of the types in bits, we'll need this later
2324 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2325 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2326 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2327 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2328 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2329 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2330
2331 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2332
2333 visitInstruction(I);
2334}
2335
2336void Verifier::visitSExtInst(SExtInst &I) {
2337 // Get the source and destination types
2338 Type *SrcTy = I.getOperand(0)->getType();
2339 Type *DestTy = I.getType();
2340
2341 // Get the size of the types in bits, we'll need this later
2342 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2343 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2344
2345 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2346 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2347 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2348 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2349 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2350
2351 visitInstruction(I);
2352}
2353
2354void Verifier::visitFPTruncInst(FPTruncInst &I) {
2355 // Get the source and destination types
2356 Type *SrcTy = I.getOperand(0)->getType();
2357 Type *DestTy = I.getType();
2358 // Get the size of the types in bits, we'll need this later
2359 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2360 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2361
2362 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2363 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2364 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2365 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2366 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2367
2368 visitInstruction(I);
2369}
2370
2371void Verifier::visitFPExtInst(FPExtInst &I) {
2372 // Get the source and destination types
2373 Type *SrcTy = I.getOperand(0)->getType();
2374 Type *DestTy = I.getType();
2375
2376 // Get the size of the types in bits, we'll need this later
2377 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2378 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2379
2380 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2381 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2382 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2383 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2384 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2385
2386 visitInstruction(I);
2387}
2388
2389void Verifier::visitUIToFPInst(UIToFPInst &I) {
2390 // Get the source and destination types
2391 Type *SrcTy = I.getOperand(0)->getType();
2392 Type *DestTy = I.getType();
2393
2394 bool SrcVec = SrcTy->isVectorTy();
2395 bool DstVec = DestTy->isVectorTy();
2396
2397 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2398 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2399 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2400 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2401 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2402 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2403
2404 if (SrcVec && DstVec)
2405 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2406 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2407 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2408
2409 visitInstruction(I);
2410}
2411
2412void Verifier::visitSIToFPInst(SIToFPInst &I) {
2413 // Get the source and destination types
2414 Type *SrcTy = I.getOperand(0)->getType();
2415 Type *DestTy = I.getType();
2416
2417 bool SrcVec = SrcTy->isVectorTy();
2418 bool DstVec = DestTy->isVectorTy();
2419
2420 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2421 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2422 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2423 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2424 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2425 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2426
2427 if (SrcVec && DstVec)
2428 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2429 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2430 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2431
2432 visitInstruction(I);
2433}
2434
2435void Verifier::visitFPToUIInst(FPToUIInst &I) {
2436 // Get the source and destination types
2437 Type *SrcTy = I.getOperand(0)->getType();
2438 Type *DestTy = I.getType();
2439
2440 bool SrcVec = SrcTy->isVectorTy();
2441 bool DstVec = DestTy->isVectorTy();
2442
2443 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2444 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2445 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2446 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2447 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2448 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2449
2450 if (SrcVec && DstVec)
2451 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2452 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2453 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2454
2455 visitInstruction(I);
2456}
2457
2458void Verifier::visitFPToSIInst(FPToSIInst &I) {
2459 // Get the source and destination types
2460 Type *SrcTy = I.getOperand(0)->getType();
2461 Type *DestTy = I.getType();
2462
2463 bool SrcVec = SrcTy->isVectorTy();
2464 bool DstVec = DestTy->isVectorTy();
2465
2466 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2467 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2468 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2469 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2470 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2471 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2472
2473 if (SrcVec && DstVec)
2474 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2475 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2476 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2477
2478 visitInstruction(I);
2479}
2480
2481void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2482 // Get the source and destination types
2483 Type *SrcTy = I.getOperand(0)->getType();
2484 Type *DestTy = I.getType();
2485
2486 Assert(SrcTy->getScalarType()->isPointerTy(),do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
2487 "PtrToInt source must be pointer", &I)do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
;
2488
2489 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2490 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2491 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2492
2493 Assert(DestTy->getScalarType()->isIntegerTy(),do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
2494 "PtrToInt result must be integral", &I)do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
;
2495 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2496 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2497
2498 if (SrcTy->isVectorTy()) {
2499 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2500 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2501 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2502 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2503 }
2504
2505 visitInstruction(I);
2506}
2507
2508void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2509 // Get the source and destination types
2510 Type *SrcTy = I.getOperand(0)->getType();
2511 Type *DestTy = I.getType();
2512
2513 Assert(SrcTy->getScalarType()->isIntegerTy(),do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
2514 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
;
2515 Assert(DestTy->getScalarType()->isPointerTy(),do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
2516 "IntToPtr result must be a pointer", &I)do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
;
2517
2518 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2519 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2520 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2521
2522 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2523 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2524 if (SrcTy->isVectorTy()) {
2525 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2526 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2527 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2528 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2529 }
2530 visitInstruction(I);
2531}
2532
2533void Verifier::visitBitCastInst(BitCastInst &I) {
2534 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2535 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2536 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2537 visitInstruction(I);
2538}
2539
2540void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2541 Type *SrcTy = I.getOperand(0)->getType();
2542 Type *DestTy = I.getType();
2543
2544 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2545 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2546 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2547 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2548 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2549 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2550 if (SrcTy->isVectorTy())
2551 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2552 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2553 visitInstruction(I);
2554}
2555
2556/// visitPHINode - Ensure that a PHI node is well formed.
2557///
2558void Verifier::visitPHINode(PHINode &PN) {
2559 // Ensure that the PHI nodes are all grouped together at the top of the block.
2560 // This can be tested by checking whether the instruction before this is
2561 // either nonexistent (because this is begin()) or is a PHI node. If not,
2562 // then there is some other instruction before a PHI.
2563 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2564 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2565 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2566
2567 // Check that a PHI doesn't yield a Token.
2568 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2569
2570 // Check that all of the values of the PHI node have the same type as the
2571 // result, and that the incoming blocks are really basic blocks.
2572 for (Value *IncValue : PN.incoming_values()) {
2573 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2574 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2575 }
2576
2577 // All other PHI node constraints are checked in the visitBasicBlock method.
2578
2579 visitInstruction(PN);
2580}
2581
2582void Verifier::verifyCallSite(CallSite CS) {
2583 Instruction *I = CS.getInstruction();
2584
2585 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
2586 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
;
2587 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2588
2589 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
2590 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
;
2591
2592 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
2593 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
;
2594
2595 FunctionType *FTy = CS.getFunctionType();
2596
2597 // Verify that the correct number of arguments are being passed
2598 if (FTy->isVarArg())
2599 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
2600 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
;
2601 else
2602 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
2603 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
;
2604
2605 // Verify that all arguments to the call match the function type.
2606 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2607 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2608 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2609 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
;
2610
2611 AttributeSet Attrs = CS.getAttributes();
2612
2613 Assert(verifyAttributeCount(Attrs, CS.arg_size()),do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
2614 "Attribute after last parameter!", I)do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
;
2615
2616 // Verify call attributes.
2617 verifyFunctionAttrs(FTy, Attrs, I);
2618
2619 // Conservatively check the inalloca argument.
2620 // We have a bug if we can find that there is an underlying alloca without
2621 // inalloca.
2622 if (CS.hasInAllocaArgument()) {
2623 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2624 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2625 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2626 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2627 }
2628
2629 // For each argument of the callsite, if it has the swifterror argument,
2630 // make sure the underlying alloca/parameter it comes from has a swifterror as
2631 // well.
2632 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2633 if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
2634 Value *SwiftErrorArg = CS.getArgument(i);
2635 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2636 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2637 "swifterror argument for call has mismatched alloca", AI, I)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2638 continue;
2639 }
2640 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2641 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, I); return; } } while (false)
;
2642 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
2643 "swifterror argument for call has mismatched parameter", ArgI, I)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
;
2644 }
2645
2646 if (FTy->isVarArg()) {
2647 // FIXME? is 'nest' even legal here?
2648 bool SawNest = false;
2649 bool SawReturned = false;
2650
2651 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2652 if (Attrs.hasAttribute(Idx, Attribute::Nest))
2653 SawNest = true;
2654 if (Attrs.hasAttribute(Idx, Attribute::Returned))
2655 SawReturned = true;
2656 }
2657
2658 // Check attributes on the varargs part.
2659 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2660 Type *Ty = CS.getArgument(Idx-1)->getType();
2661 verifyParameterAttrs(Attrs, Idx, Ty, false, I);
2662
2663 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2664 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (false)
;
2665 SawNest = true;
2666 }
2667
2668 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2669 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
2670 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
;
2671 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2672 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2673 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2674 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
;
2675 SawReturned = true;
2676 }
2677
2678 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
2679 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!Attrs.hasAttribute(Idx, Attribute::StructRet))) {
CheckFailed("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
;
2680
2681 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2682 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I)do { if (!(Idx == CS.arg_size())) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
;
2683 }
2684 }
2685
2686 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2687 if (CS.getCalledFunction() == nullptr ||
2688 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2689 for (Type *ParamTy : FTy->params()) {
2690 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
2691 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2692 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
2693 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2694 }
2695 }
2696
2697 // Verify that indirect calls don't return tokens.
2698 if (CS.getCalledFunction() == nullptr)
2699 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
2700 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
2701
2702 if (Function *F = CS.getCalledFunction())
2703 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2704 visitIntrinsicCallSite(ID, CS);
2705
2706 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2707 // at most one "gc-transition" operand bundle.
2708 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2709 FoundGCTransitionBundle = false;
2710 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2711 OperandBundleUse BU = CS.getOperandBundleAt(i);
2712 uint32_t Tag = BU.getTagID();
2713 if (Tag == LLVMContext::OB_deopt) {
2714 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, I); return; } } while (false)
;
2715 FoundDeoptBundle = true;
2716 } else if (Tag == LLVMContext::OB_gc_transition) {
2717 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
2718 I)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
;
2719 FoundGCTransitionBundle = true;
2720 } else if (Tag == LLVMContext::OB_funclet) {
2721 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, I); return; } } while (false)
;
2722 FoundFuncletBundle = true;
2723 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
2724 "Expected exactly one funclet bundle operand", I)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
;
2725 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2726 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2727 I)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
;
2728 }
2729 }
2730
2731 // Verify that each inlinable callsite of a debug-info-bearing function in a
2732 // debug-info-bearing function has a debug location attached to it. Failure to
2733 // do so causes assertion failures when the inliner sets up inline scope info.
2734 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2735 CS.getCalledFunction()->getSubprogram())
2736 Assert(I->getDebugLoc(), "inlinable function call in a function with debug "do { if (!(I->getDebugLoc())) { CheckFailed("inlinable function call in a function with debug "
"info must have a !dbg location", I); return; } } while (false
)
2737 "info must have a !dbg location",do { if (!(I->getDebugLoc())) { CheckFailed("inlinable function call in a function with debug "
"info must have a !dbg location", I); return; } } while (false
)
2738 I)do { if (!(I->getDebugLoc())) { CheckFailed("inlinable function call in a function with debug "
"info must have a !dbg location", I); return; } } while (false
)
;
2739
2740 visitInstruction(*I);
2741}
2742
2743/// Two types are "congruent" if they are identical, or if they are both pointer
2744/// types with different pointee types and the same address space.
2745static bool isTypeCongruent(Type *L, Type *R) {
2746 if (L == R)
2747 return true;
2748 PointerType *PL = dyn_cast<PointerType>(L);
2749 PointerType *PR = dyn_cast<PointerType>(R);
2750 if (!PL || !PR)
2751 return false;
2752 return PL->getAddressSpace() == PR->getAddressSpace();
2753}
2754
2755static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2756 static const Attribute::AttrKind ABIAttrs[] = {
2757 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2758 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2759 Attribute::SwiftError};
2760 AttrBuilder Copy;
2761 for (auto AK : ABIAttrs) {
2762 if (Attrs.hasAttribute(I + 1, AK))
2763 Copy.addAttribute(AK);
2764 }
2765 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2766 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2767 return Copy;
2768}
2769
2770void Verifier::verifyMustTailCall(CallInst &CI) {
2771 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
2772
2773 // - The caller and callee prototypes must match. Pointer types of
2774 // parameters or return types may differ in pointee type, but not
2775 // address space.
2776 Function *F = CI.getParent()->getParent();
2777 FunctionType *CallerTy = F->getFunctionType();
2778 FunctionType *CalleeTy = CI.getFunctionType();
2779 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
2780 "cannot guarantee tail call due to mismatched parameter counts", &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
2781 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
2782 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
2783 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
2784 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
2785 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2786 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2787 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2788 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
2789 }
2790
2791 // - The calling conventions of the caller and callee must match.
2792 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
2793 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
2794
2795 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2796 // returned, and inalloca, must match.
2797 AttributeSet CallerAttrs = F->getAttributes();
2798 AttributeSet CalleeAttrs = CI.getAttributes();
2799 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2800 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2801 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2802 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2803 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2804 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2805 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
2806 }
2807
2808 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2809 // or a pointer bitcast followed by a ret instruction.
2810 // - The ret instruction must return the (possibly bitcasted) value
2811 // produced by the call or void.
2812 Value *RetVal = &CI;
2813 Instruction *Next = CI.getNextNode();
2814
2815 // Handle the optional bitcast.
2816 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2817 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
2818 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
2819 RetVal = BI;
2820 Next = BI->getNextNode();
2821 }
2822
2823 // Check the return.
2824 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2825 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
2826 &CI)do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
2827 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
2828 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
2829}
2830
2831void Verifier::visitCallInst(CallInst &CI) {
2832 verifyCallSite(&CI);
2833
2834 if (CI.isMustTailCall())
2835 verifyMustTailCall(CI);
2836}
2837
2838void Verifier::visitInvokeInst(InvokeInst &II) {
2839 verifyCallSite(&II);
2840
2841 // Verify that the first non-PHI instruction of the unwind destination is an
2842 // exception handling instruction.
2843 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2844 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2845 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2846 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
2847
2848 visitTerminatorInst(II);
2849}
2850
2851/// visitBinaryOperator - Check that both arguments to the binary operator are
2852/// of the same type!
2853///
2854void Verifier::visitBinaryOperator(BinaryOperator &B) {
2855 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
2856 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
2857
2858 switch (B.getOpcode()) {
2859 // Check that integer arithmetic operators are only used with
2860 // integral operands.
2861 case Instruction::Add:
2862 case Instruction::Sub:
2863 case Instruction::Mul:
2864 case Instruction::SDiv:
2865 case Instruction::UDiv:
2866 case Instruction::SRem:
2867 case Instruction::URem:
2868 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
2869 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
2870 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2871 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2872 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2873 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2874 break;
2875 // Check that floating-point arithmetic operators are only used with
2876 // floating-point operands.
2877 case Instruction::FAdd:
2878 case Instruction::FSub:
2879 case Instruction::FMul:
2880 case Instruction::FDiv:
2881 case Instruction::FRem:
2882 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2883 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2884 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2885 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
2886 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2887 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2888 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2889 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2890 break;
2891 // Check that logical operators are only used with integral operands.
2892 case Instruction::And:
2893 case Instruction::Or:
2894 case Instruction::Xor:
2895 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
2896 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
2897 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2898 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2899 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
2900 break;
2901 case Instruction::Shl:
2902 case Instruction::LShr:
2903 case Instruction::AShr:
2904 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
2905 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
2906 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
2907 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
2908 break;
2909 default:
2910 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 2910)
;
2911 }
2912
2913 visitInstruction(B);
2914}
2915
2916void Verifier::visitICmpInst(ICmpInst &IC) {
2917 // Check that the operands are the same type
2918 Type *Op0Ty = IC.getOperand(0)->getType();
2919 Type *Op1Ty = IC.getOperand(1)->getType();
2920 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
2921 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
2922 // Check that the operands are the right type
2923 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
2924 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
2925 // Check that the predicate is valid.
2926 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2927 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2928 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
;
2929
2930 visitInstruction(IC);
2931}
2932
2933void Verifier::visitFCmpInst(FCmpInst &FC) {
2934 // Check that the operands are the same type
2935 Type *Op0Ty = FC.getOperand(0)->getType();
2936 Type *Op1Ty = FC.getOperand(1)->getType();
2937 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
2938 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
2939 // Check that the operands are the right type
2940 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
2941 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
2942 // Check that the predicate is valid.
2943 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2944 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2945 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
;
2946
2947 visitInstruction(FC);
2948}
2949
2950void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2951 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2952 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2953 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
2954 visitInstruction(EI);
2955}
2956
2957void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2958 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2959 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2960 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
2961 visitInstruction(IE);
2962}
2963
2964void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2965 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2966 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2967 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
2968 visitInstruction(SV);
2969}
2970
2971void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2972 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2973
2974 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
2975 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
2976 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
2977 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2978 Type *ElTy =
2979 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2980 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
2981
2982 Assert(GEP.getType()->getScalarType()->isPointerTy() &&do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
2983 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
2984 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
;
2985
2986 if (GEP.getType()->isVectorTy()) {
2987 // Additional checks for vector GEPs.
2988 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2989 if (GEP.getPointerOperandType()->isVectorTy())
2990 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
2991 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
2992 for (Value *Idx : Idxs) {
2993 Type *IndexTy = Idx->getType();
2994 if (IndexTy->isVectorTy()) {
2995 unsigned IndexWidth = IndexTy->getVectorNumElements();
2996 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
2997 }
2998 Assert(IndexTy->getScalarType()->isIntegerTy(),do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
2999 "All GEP indices should be of integer type")do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
;
3000 }
3001 }
3002 visitInstruction(GEP);
3003}
3004
3005static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3006 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3007}
3008
3009void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3010 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 3011, __PRETTY_FUNCTION__))
3011 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 3011, __PRETTY_FUNCTION__))
;
3012
3013 unsigned NumOperands = Range->getNumOperands();
3014 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3015 unsigned NumRanges = NumOperands / 2;
3016 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3017
3018 ConstantRange LastRange(1); // Dummy initial value
3019 for (unsigned i = 0; i < NumRanges; ++i) {
3020 ConstantInt *Low =
3021 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3022 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3023 ConstantInt *High =
3024 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3025 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3026 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3027 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3028
3029 APInt HighV = High->getValue();
3030 APInt LowV = Low->getValue();
3031 ConstantRange CurRange(LowV, HighV);
3032 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3033 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3034 if (i != 0) {
3035 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3036 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3037 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3038 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3039 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3040 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3041 }
3042 LastRange = ConstantRange(LowV, HighV);
3043 }
3044 if (NumRanges > 2) {
3045 APInt FirstLow =
3046 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3047 APInt FirstHigh =
3048 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3049 ConstantRange FirstRange(FirstLow, FirstHigh);
3050 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3051 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3052 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3053 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3054 }
3055}
3056
3057void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3058 unsigned Size = DL.getTypeSizeInBits(Ty);
3059 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3060 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3061 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3062}
3063
3064void Verifier::visitLoadInst(LoadInst &LI) {
3065 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3066 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3067 Type *ElTy = LI.getType();
3068 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3069 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3070 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3071 if (LI.isAtomic()) {
3072 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3073 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3074 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3075 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3076 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3077 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3078 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3079 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3080 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3081 ElTy, &LI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3082 checkAtomicMemAccessSize(ElTy, &LI);
3083 } else {
3084 Assert(LI.getSynchScope() == CrossThread,do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
3085 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
;
3086 }
3087
3088 visitInstruction(LI);
3089}
3090
3091void Verifier::visitStoreInst(StoreInst &SI) {
3092 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3093 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3094 Type *ElTy = PTy->getElementType();
3095 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3096 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3097 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3098 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3099 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3100 if (SI.isAtomic()) {
3101 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3102 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3103 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3104 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3105 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3106 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3107 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3108 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3109 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3110 ElTy, &SI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3111 checkAtomicMemAccessSize(ElTy, &SI);
3112 } else {
3113 Assert(SI.getSynchScope() == CrossThread,do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3114 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3115 }
3116 visitInstruction(SI);
3117}
3118
3119/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3120void Verifier::verifySwiftErrorCallSite(CallSite CS,
3121 const Value *SwiftErrorVal) {
3122 unsigned Idx = 0;
3123 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3124 I != E; ++I, ++Idx) {
3125 if (*I == SwiftErrorVal) {
3126 Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3127 "swifterror value when used in a callsite should be marked "do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3128 "with swifterror attribute",do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3129 SwiftErrorVal, CS)do { if (!(CS.paramHasAttr(Idx+1, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
;
3130 }
3131 }
3132}
3133
3134void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3135 // Check that swifterror value is only used by loads, stores, or as
3136 // a swifterror argument.
3137 for (const User *U : SwiftErrorVal->users()) {
3138 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3139 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3140 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3141 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3142 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3143 // If it is used by a store, check it is the second operand.
3144 if (auto StoreI = dyn_cast<StoreInst>(U))
3145 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3146 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3147 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3148 if (auto CallI = dyn_cast<CallInst>(U))
3149 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3150 if (auto II = dyn_cast<InvokeInst>(U))
3151 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3152 }
3153}
3154
3155void Verifier::visitAllocaInst(AllocaInst &AI) {
3156 SmallPtrSet<Type*, 4> Visited;
3157 PointerType *PTy = AI.getType();
3158 Assert(PTy->getAddressSpace() == 0,do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
3159 "Allocation instruction pointer not in the generic address space!",do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
3160 &AI)do { if (!(PTy->getAddressSpace() == 0)) { CheckFailed("Allocation instruction pointer not in the generic address space!"
, &AI); return; } } while (false)
;
3161 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3162 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3163 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3164 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3165 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3166 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3167
3168 if (AI.isSwiftError()) {
3169 verifySwiftErrorValue(&AI);
3170 }
3171
3172 visitInstruction(AI);
3173}
3174
3175void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3176
3177 // FIXME: more conditions???
3178 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3179 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3180 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3181 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3182 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3183 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3184 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3185 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3186 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3187 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3188 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3189 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3190 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3191 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3192 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3193
3194 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3195 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3196 Type *ElTy = PTy->getElementType();
3197 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3198 "cmpxchg operand must have integer or pointer type",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3199 ElTy, &CXI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3200 checkAtomicMemAccessSize(ElTy, &CXI);
3201 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3202 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3203 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3204 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3205 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3206 visitInstruction(CXI);
3207}
3208
3209void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3210 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3211 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3212 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3213 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3214 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3215 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3216 Type *ElTy = PTy->getElementType();
3217 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3218 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3219 checkAtomicMemAccessSize(ElTy, &RMWI);
3220 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3221 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3222 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3223 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3224 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3225 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
;
3226 visitInstruction(RMWI);
3227}
3228
3229void Verifier::visitFenceInst(FenceInst &FI) {
3230 const AtomicOrdering Ordering = FI.getOrdering();
3231 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3232 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3233 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3234 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3235 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3236 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3237 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3238 visitInstruction(FI);
3239}
3240
3241void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3242 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3243 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3244 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3245
3246 visitInstruction(EVI);
3247}
3248
3249void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3250 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3251 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3252 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3253 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3254
3255 visitInstruction(IVI);
3256}
3257
3258static Value *getParentPad(Value *EHPad) {
3259 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3260 return FPI->getParentPad();
3261
3262 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3263}
3264
3265void Verifier::visitEHPadPredecessors(Instruction &I) {
3266 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 3266, __PRETTY_FUNCTION__))
;
3267
3268 BasicBlock *BB = I.getParent();
3269 Function *F = BB->getParent();
3270
3271 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3272
3273 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3274 // The landingpad instruction defines its parent as a landing pad block. The
3275 // landing pad block may be branched to only by the unwind edge of an
3276 // invoke.
3277 for (BasicBlock *PredBB : predecessors(BB)) {
3278 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3279 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3280 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3281 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3282 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3283 }
3284 return;
3285 }
3286 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3287 if (!pred_empty(BB))
3288 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3289 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3290 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3291 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3292 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3293 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3294 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3295 return;
3296 }
3297
3298 // Verify that each pred has a legal terminator with a legal to/from EH
3299 // pad relationship.
3300 Instruction *ToPad = &I;
3301 Value *ToPadParent = getParentPad(ToPad);
3302 for (BasicBlock *PredBB : predecessors(BB)) {
3303 TerminatorInst *TI = PredBB->getTerminator();
3304 Value *FromPad;
3305 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3306 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3307 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3308 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3309 FromPad = Bundle->Inputs[0];
3310 else
3311 FromPad = ConstantTokenNone::get(II->getContext());
3312 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3313 FromPad = CRI->getOperand(0);
3314 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3315 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3316 FromPad = CSI;
3317 } else {
3318 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3319 }
3320
3321 // The edge may exit from zero or more nested pads.
3322 SmallSet<Value *, 8> Seen;
3323 for (;; FromPad = getParentPad(FromPad)) {
3324 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3325 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3326 if (FromPad == ToPadParent) {
3327 // This is a legal unwind edge.
3328 break;
3329 }
3330 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3331 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3332 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3333 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3334 }
3335 }
3336}
3337
3338void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3339 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3340 // isn't a cleanup.
3341 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3342 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3343
3344 visitEHPadPredecessors(LPI);
3345
3346 if (!LandingPadResultTy)
3347 LandingPadResultTy = LPI.getType();
3348 else
3349 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3350 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3351 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3352 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3353
3354 Function *F = LPI.getParent()->getParent();
3355 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3356 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3357
3358 // The landingpad instruction must be the first non-PHI instruction in the
3359 // block.
3360 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3361 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3362 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3363
3364 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3365 Constant *Clause = LPI.getClause(i);
3366 if (LPI.isCatch(i)) {
3367 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3368 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3369 } else {
3370 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3371 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3372 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3373 }
3374 }
3375
3376 visitInstruction(LPI);
3377}
3378
3379void Verifier::visitResumeInst(ResumeInst &RI) {
3380 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3381 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3382
3383 if (!LandingPadResultTy)
3384 LandingPadResultTy = RI.getValue()->getType();
3385 else
3386 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3387 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3388 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3389 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3390
3391 visitTerminatorInst(RI);
3392}
3393
3394void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3395 BasicBlock *BB = CPI.getParent();
3396
3397 Function *F = BB->getParent();
3398 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3399 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3400
3401 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3402 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3403 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3404
3405 // The catchpad instruction must be the first non-PHI instruction in the
3406 // block.
3407 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3408 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3409
3410 visitEHPadPredecessors(CPI);
3411 visitFuncletPadInst(CPI);
3412}
3413
3414void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3415 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3416 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3417 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3418
3419 visitTerminatorInst(CatchReturn);
3420}
3421
3422void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3423 BasicBlock *BB = CPI.getParent();
3424
3425 Function *F = BB->getParent();
3426 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3427 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3428
3429 // The cleanuppad instruction must be the first non-PHI instruction in the
3430 // block.
3431 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3432 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3433 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3434
3435 auto *ParentPad = CPI.getParentPad();
3436 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3437 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3438
3439 visitEHPadPredecessors(CPI);
3440 visitFuncletPadInst(CPI);
3441}
3442
3443void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3444 User *FirstUser = nullptr;
3445 Value *FirstUnwindPad = nullptr;
3446 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3447 SmallSet<FuncletPadInst *, 8> Seen;
3448
3449 while (!Worklist.empty()) {
3450 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3451 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3452 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3453 Value *UnresolvedAncestorPad = nullptr;
3454 for (User *U : CurrentPad->users()) {
3455 BasicBlock *UnwindDest;
3456 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3457 UnwindDest = CRI->getUnwindDest();
3458 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3459 // We allow catchswitch unwind to caller to nest
3460 // within an outer pad that unwinds somewhere else,
3461 // because catchswitch doesn't have a nounwind variant.
3462 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3463 if (CSI->unwindsToCaller())
3464 continue;
3465 UnwindDest = CSI->getUnwindDest();
3466 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3467 UnwindDest = II->getUnwindDest();
3468 } else if (isa<CallInst>(U)) {
3469 // Calls which don't unwind may be found inside funclet
3470 // pads that unwind somewhere else. We don't *require*
3471 // such calls to be annotated nounwind.
3472 continue;
3473 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3474 // The unwind dest for a cleanup can only be found by
3475 // recursive search. Add it to the worklist, and we'll
3476 // search for its first use that determines where it unwinds.
3477 Worklist.push_back(CPI);
3478 continue;
3479 } else {
3480 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3481 continue;
3482 }
3483
3484 Value *UnwindPad;
3485 bool ExitsFPI;
3486 if (UnwindDest) {
3487 UnwindPad = UnwindDest->getFirstNonPHI();
3488 if (!cast<Instruction>(UnwindPad)->isEHPad())
3489 continue;
3490 Value *UnwindParent = getParentPad(UnwindPad);
3491 // Ignore unwind edges that don't exit CurrentPad.
3492 if (UnwindParent == CurrentPad)
3493 continue;
3494 // Determine whether the original funclet pad is exited,
3495 // and if we are scanning nested pads determine how many
3496 // of them are exited so we can stop searching their
3497 // children.
3498 Value *ExitedPad = CurrentPad;
3499 ExitsFPI = false;
3500 do {
3501 if (ExitedPad == &FPI) {
3502 ExitsFPI = true;
3503 // Now we can resolve any ancestors of CurrentPad up to
3504 // FPI, but not including FPI since we need to make sure
3505 // to check all direct users of FPI for consistency.
3506 UnresolvedAncestorPad = &FPI;
3507 break;
3508 }
3509 Value *ExitedParent = getParentPad(ExitedPad);
3510 if (ExitedParent == UnwindParent) {
3511 // ExitedPad is the ancestor-most pad which this unwind
3512 // edge exits, so we can resolve up to it, meaning that
3513 // ExitedParent is the first ancestor still unresolved.
3514 UnresolvedAncestorPad = ExitedParent;
3515 break;
3516 }
3517 ExitedPad = ExitedParent;
3518 } while (!isa<ConstantTokenNone>(ExitedPad));
3519 } else {
3520 // Unwinding to caller exits all pads.
3521 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3522 ExitsFPI = true;
3523 UnresolvedAncestorPad = &FPI;
3524 }
3525
3526 if (ExitsFPI) {
3527 // This unwind edge exits FPI. Make sure it agrees with other
3528 // such edges.
3529 if (FirstUser) {
3530 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3531 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3532 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3533 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3534 } else {
3535 FirstUser = U;
3536 FirstUnwindPad = UnwindPad;
3537 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3538 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3539 getParentPad(UnwindPad) == getParentPad(&FPI))
3540 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3541 }
3542 }
3543 // Make sure we visit all uses of FPI, but for nested pads stop as
3544 // soon as we know where they unwind to.
3545 if (CurrentPad != &FPI)
3546 break;
3547 }
3548 if (UnresolvedAncestorPad) {
3549 if (CurrentPad == UnresolvedAncestorPad) {
3550 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3551 // we've found an unwind edge that exits it, because we need to verify
3552 // all direct uses of FPI.
3553 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 3553, __PRETTY_FUNCTION__))
;
3554 continue;
3555 }
3556 // Pop off the worklist any nested pads that we've found an unwind
3557 // destination for. The pads on the worklist are the uncles,
3558 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3559 // for all ancestors of CurrentPad up to but not including
3560 // UnresolvedAncestorPad.
3561 Value *ResolvedPad = CurrentPad;
3562 while (!Worklist.empty()) {
3563 Value *UnclePad = Worklist.back();
3564 Value *AncestorPad = getParentPad(UnclePad);
3565 // Walk ResolvedPad up the ancestor list until we either find the
3566 // uncle's parent or the last resolved ancestor.
3567 while (ResolvedPad != AncestorPad) {
3568 Value *ResolvedParent = getParentPad(ResolvedPad);
3569 if (ResolvedParent == UnresolvedAncestorPad) {
3570 break;
3571 }
3572 ResolvedPad = ResolvedParent;
3573 }
3574 // If the resolved ancestor search didn't find the uncle's parent,
3575 // then the uncle is not yet resolved.
3576 if (ResolvedPad != AncestorPad)
3577 break;
3578 // This uncle is resolved, so pop it from the worklist.
3579 Worklist.pop_back();
3580 }
3581 }
3582 }
3583
3584 if (FirstUnwindPad) {
3585 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3586 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3587 Value *SwitchUnwindPad;
3588 if (SwitchUnwindDest)
3589 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3590 else
3591 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3592 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3593 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3594 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3595 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3596 }
3597 }
3598
3599 visitInstruction(FPI);
3600}
3601
3602void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3603 BasicBlock *BB = CatchSwitch.getParent();
3604
3605 Function *F = BB->getParent();
3606 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3607 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3608 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3609
3610 // The catchswitch instruction must be the first non-PHI instruction in the
3611 // block.
3612 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3613 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3614 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3615
3616 auto *ParentPad = CatchSwitch.getParentPad();
3617 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3618 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3619
3620 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3621 Instruction *I = UnwindDest->getFirstNonPHI();
3622 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3623 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3624 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3625 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3626
3627 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3628 if (getParentPad(I) == ParentPad)
3629 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3630 }
3631
3632 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3633 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3634
3635 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3636 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3637 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3638 }
3639
3640 visitEHPadPredecessors(CatchSwitch);
3641 visitTerminatorInst(CatchSwitch);
3642}
3643
3644void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3645 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3646 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3647 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
3648
3649 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3650 Instruction *I = UnwindDest->getFirstNonPHI();
3651 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3652 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3653 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3654 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
3655 }
3656
3657 visitTerminatorInst(CRI);
3658}
3659
3660void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3661 Instruction *Op = cast<Instruction>(I.getOperand(i));
3662 // If the we have an invalid invoke, don't try to compute the dominance.
3663 // We already reject it in the invoke specific checks and the dominance
3664 // computation doesn't handle multiple edges.
3665 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3666 if (II->getNormalDest() == II->getUnwindDest())
3667 return;
3668 }
3669
3670 // Quick check whether the def has already been encountered in the same block.
3671 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3672 // uses are defined to happen on the incoming edge, not at the instruction.
3673 //
3674 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3675 // wrapping an SSA value, assert that we've already encountered it. See
3676 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3677 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3678 return;
3679
3680 const Use &U = I.getOperandUse(i);
3681 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
3682 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
3683}
3684
3685void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3686 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
3687 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
3688 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3689 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3690 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
;
3691 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
3692 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
3693 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3694 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
3695 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
3696}
3697
3698/// verifyInstruction - Verify that an instruction is well formed.
3699///
3700void Verifier::visitInstruction(Instruction &I) {
3701 BasicBlock *BB = I.getParent();
3702 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
3703
3704 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3705 for (User *U : I.users()) {
3706 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
3707 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
3708 }
3709 }
3710
3711 // Check that void typed values don't have names
3712 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
3713 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
3714
3715 // Check that the return value of the instruction is either void or a legal
3716 // value type.
3717 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
3718 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
3719
3720 // Check that the instruction doesn't produce metadata. Calls are already
3721 // checked against the callee type.
3722 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
3723 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
3724
3725 // Check that all uses of the instruction, if they are instructions
3726 // themselves, actually have parent basic blocks. If the use is not an
3727 // instruction, it is an error!
3728 for (Use &U : I.uses()) {
3729 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3730 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3731 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3732 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3733 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
3734 else {
3735 CheckFailed("Use of instruction is not an instruction!", U);
3736 return;
3737 }
3738 }
3739
3740 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3741 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
3742
3743 // Check to make sure that only first-class-values are operands to
3744 // instructions.
3745 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3746 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
3747 }
3748
3749 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3750 // Check to make sure that the "address of" an intrinsic function is never
3751 // taken.
3752 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3753 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3754 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3755 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
3756 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3757 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3758 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3759 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3760 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3761 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3762 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3763 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3764 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3765 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3766 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
3767 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
3768 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
3769 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3770 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
3771 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
3772 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3773 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
3774 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
3775 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3776 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
3777 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
3778 } else if (isa<Instruction>(I.getOperand(i))) {
3779 verifyDominatesUse(I, i);
3780 } else if (isa<InlineAsm>(I.getOperand(i))) {
3781 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3782 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3783 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
;
3784 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3785 if (CE->getType()->isPtrOrPtrVectorTy() ||
3786 !DL.getNonIntegralAddressSpaces().empty()) {
3787 // If we have a ConstantExpr pointer, we need to see if it came from an
3788 // illegal bitcast. If the datalayout string specifies non-integral
3789 // address spaces then we also need to check for illegal ptrtoint and
3790 // inttoptr expressions.
3791 visitConstantExprsRecursively(CE);
3792 }
3793 }
3794 }
3795
3796 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3797 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
3798 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
3799 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
3800 if (ConstantFP *CFP0 =
3801 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3802 const APFloat &Accuracy = CFP0->getValueAPF();
3803 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
3804 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
3805 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
3806 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
3807 } else {
3808 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
3809 }
3810 }
3811
3812 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3813 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
3814 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
3815 visitRangeMetadata(I, Range, I.getType());
3816 }
3817
3818 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3819 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
3820 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
3821 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3822 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3823 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3824 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
3825 }
3826
3827 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3828 visitDereferenceableMetadata(I, MD);
3829
3830 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3831 visitDereferenceableMetadata(I, MD);
3832
3833 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3834 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3835
3836 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3837 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
3838 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
3839 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
3840 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
3841 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
3842 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3843 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
3844 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
3845 uint64_t Align = CI->getZExtValue();
3846 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
3847 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
3848 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
3849 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
3850 }
3851
3852 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3853 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
3854 visitMDNode(*N);
3855 }
3856
3857 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3858 verifyFragmentExpression(*DII);
3859
3860 InstsInThisBlock.insert(&I);
3861}
3862
3863/// Allow intrinsics to be verified in different ways.
3864void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3865 Function *IF = CS.getCalledFunction();
3866 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
3867 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
3868
3869 // Verify that the intrinsic prototype lines up with what the .td files
3870 // describe.
3871 FunctionType *IFTy = IF->getFunctionType();
3872 bool IsVarArg = IFTy->isVarArg();
3873
3874 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3875 getIntrinsicInfoTableEntries(ID, Table);
3876 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3877
3878 SmallVector<Type *, 4> ArgTys;
3879 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3880 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3881 "Intrinsic has incorrect return type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
;
3882 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3883 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3884 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3885 "Intrinsic has incorrect argument type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
;
3886
3887 // Verify if the intrinsic call matches the vararg property.
3888 if (IsVarArg)
3889 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
3890 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
3891 else
3892 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
3893 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
3894
3895 // All descriptors should be absorbed by now.
3896 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
3897
3898 // Now that we have the intrinsic ID and the actual argument types (and we
3899 // know they are legal for the intrinsic!) get the intrinsic name through the
3900 // usual means. This allows us to verify the mangling of argument types into
3901 // the name.
3902 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3903 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3904 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3905 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3906 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3907 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
3908
3909 // If the intrinsic takes MDNode arguments, verify that they are either global
3910 // or are local to *this* function.
3911 for (Value *V : CS.args())
3912 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3913 visitMetadataAsValue(*MD, CS.getCaller());
3914
3915 switch (ID) {
3916 default:
3917 break;
3918 case Intrinsic::coro_id: {
3919 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3920 if (isa<ConstantPointerNull>(InfoArg))
3921 break;
3922 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3923 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3924 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3925 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
3926 Constant *Init = GV->getInitializer();
3927 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3928 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3929 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
3930 break;
3931 }
3932 case Intrinsic::ctlz: // llvm.ctlz
3933 case Intrinsic::cttz: // llvm.cttz
3934 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3935 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3936 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3937 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
;
3938 break;
3939 case Intrinsic::experimental_constrained_fadd:
3940 case Intrinsic::experimental_constrained_fsub:
3941 case Intrinsic::experimental_constrained_fmul:
3942 case Intrinsic::experimental_constrained_fdiv:
3943 case Intrinsic::experimental_constrained_frem:
3944 visitConstrainedFPIntrinsic(
3945 cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
3946 break;
3947 case Intrinsic::dbg_declare: // llvm.dbg.declare
3948 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
3949 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
;
3950 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3951 break;
3952 case Intrinsic::dbg_value: // llvm.dbg.value
3953 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3954 break;
3955 case Intrinsic::memcpy:
3956 case Intrinsic::memmove:
3957 case Intrinsic::memset: {
3958 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3959 Assert(AlignCI,do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3960 "alignment argument of memory intrinsics must be a constant int",do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3961 CS)do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3962 const APInt &AlignVal = AlignCI->getValue();
3963 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
3964 "alignment argument of memory intrinsics must be a power of 2", CS)do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
;
3965 Assert(isa<ConstantInt>(CS.getArgOperand(4)),do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3966 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3967 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3968 break;
3969 }
3970 case Intrinsic::memcpy_element_atomic: {
3971 ConstantInt *ElementSizeCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3972 Assert(ElementSizeCI, "element size of the element-wise atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3973 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3974 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
3975 const APInt &ElementSizeVal = ElementSizeCI->getValue();
3976 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3977 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3978 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3979 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
3980
3981 auto IsValidAlignment = [&](uint64_t Alignment) {
3982 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
3983 };
3984
3985 uint64_t DstAlignment = CS.getParamAlignment(1),
3986 SrcAlignment = CS.getParamAlignment(2);
3987
3988 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
3989 "incorrect alignment of the destination argument",do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
3990 CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
3991 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
3992 "incorrect alignment of the source argument",do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
3993 CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
3994 break;
3995 }
3996 case Intrinsic::gcroot:
3997 case Intrinsic::gcwrite:
3998 case Intrinsic::gcread:
3999 if (ID == Intrinsic::gcroot) {
4000 AllocaInst *AI =
4001 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4002 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (false)
;
4003 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
4004 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
;
4005 if (!AI->getAllocatedType()->isPointerTy()) {
4006 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4007 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4008 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4009 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
;
4010 }
4011 }
4012
4013 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4014 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4015 break;
4016 case Intrinsic::init_trampoline:
4017 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4018 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4019 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
;
4020 break;
4021 case Intrinsic::prefetch:
4022 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4023 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4024 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4025 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4026 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
;
4027 break;
4028 case Intrinsic::stackprotector:
4029 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
4030 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
;
4031 break;
4032 case Intrinsic::lifetime_start:
4033 case Intrinsic::lifetime_end:
4034 case Intrinsic::invariant_start:
4035 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4036 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4037 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
;
4038 break;
4039 case Intrinsic::invariant_end:
4040 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
4041 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
;
4042 break;
4043
4044 case Intrinsic::localescape: {
4045 BasicBlock *BB = CS.getParent();
4046 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
4047 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
;
4048 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
4049 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
;
4050 for (Value *Arg : CS.args()) {
4051 if (isa<ConstantPointerNull>(Arg))
4052 continue; // Null values are allowed as placeholders.
4053 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4054 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
4055 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
;
4056 }
4057 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4058 SawFrameEscape = true;
4059 break;
4060 }
4061 case Intrinsic::localrecover: {
4062 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4063 Function *Fn = dyn_cast<Function>(FnArg);
4064 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4065 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4066 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4067 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
;
4068 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4069 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
4070 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
;
4071 auto &Entry = FrameEscapeInfo[Fn];
4072 Entry.second = unsigned(
4073 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4074 break;
4075 }
4076
4077 case Intrinsic::experimental_gc_statepoint:
4078 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
4079 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
;
4080 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4081 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4082
4083 verifyStatepoint(CS);
4084 break;
4085 case Intrinsic::experimental_gc_result: {
4086 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4087 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4088 // Are we tied to a statepoint properly?
4089 CallSite StatepointCS(CS.getArgOperand(0));
4090 const Function *StatepointFn =
4091 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4092 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4093 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4094 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4095 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4096 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
;
4097
4098 // Assert that result type matches wrapped callee.
4099 const Value *Target = StatepointCS.getArgument(2);
4100 auto *PT = cast<PointerType>(Target->getType());
4101 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4102 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
4103 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
;
4104 break;
4105 }
4106 case Intrinsic::experimental_gc_relocate: {
4107 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (false)
;
4108
4109 Assert(isa<PointerType>(CS.getType()->getScalarType()),do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
4110 "gc.relocate must return a pointer or a vector of pointers", CS)do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
;
4111
4112 // Check that this relocate is correctly tied to the statepoint
4113
4114 // This is case for relocate on the unwinding path of an invoke statepoint
4115 if (LandingPadInst *LandingPad =
4116 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4117
4118 const BasicBlock *InvokeBB =
4119 LandingPad->getParent()->getUniquePredecessor();
4120
4121 // Landingpad relocates should have only one predecessor with invoke
4122 // statepoint terminator
4123 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4124 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4125 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4126 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4127 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4128 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4129 }
4130 else {
4131 // In all other cases relocate should be tied to the statepoint directly.
4132 // This covers relocates on a normal return path of invoke statepoint and
4133 // relocates of a call statepoint.
4134 auto Token = CS.getArgOperand(0);
4135 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
4136 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
;
4137 }
4138
4139 // Verify rest of the relocate arguments.
4140
4141 ImmutableCallSite StatepointCS(
4142 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4143
4144 // Both the base and derived must be piped through the safepoint.
4145 Value* Base = CS.getArgOperand(1);
4146 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
4147 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
;
4148
4149 Value* Derived = CS.getArgOperand(2);
4150 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
4151 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
;
4152
4153 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4154 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4155 // Check the bounds
4156 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
4157 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
;
4158 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
4159 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
;
4160
4161 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4162 // section of the statepoint's argument.
4163 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4164 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4165 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4166 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4167 const unsigned NumCallArgs =
4168 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4169 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
4170 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
;
4171 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4172 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4173 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4174 const int NumTransitionArgs =
4175 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4176 ->getZExtValue();
4177 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4178 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4179 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4180 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4181 const int NumDeoptArgs =
4182 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4183 ->getZExtValue();
4184 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4185 const int GCParamArgsEnd = StatepointCS.arg_size();
4186 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4187 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4188 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4189 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4190 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4191 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4192 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4193 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4194
4195 // Relocated value must be either a pointer type or vector-of-pointer type,
4196 // but gc_relocate does not need to return the same pointer type as the
4197 // relocated pointer. It can be casted to the correct type later if it's
4198 // desired. However, they must have the same address space and 'vectorness'
4199 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4200 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
4201 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
;
4202
4203 auto ResultType = CS.getType();
4204 auto DerivedType = Relocate.getDerivedPtr()->getType();
4205 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4206 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4207 CS)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
;
4208 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4209 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4210 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4211 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4212 CS)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
;
4213 break;
4214 }
4215 case Intrinsic::eh_exceptioncode:
4216 case Intrinsic::eh_exceptionpointer: {
4217 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
4218 "eh.exceptionpointer argument must be a catchpad", CS)do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
;
4219 break;
4220 }
4221 case Intrinsic::masked_load: {
4222 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS)do { if (!(CS.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, CS); return; } } while (false)
;
4223
4224 Value *Ptr = CS.getArgOperand(0);
4225 //Value *Alignment = CS.getArgOperand(1);
4226 Value *Mask = CS.getArgOperand(2);
4227 Value *PassThru = CS.getArgOperand(3);
4228 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
4229 "masked_load: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
;
4230
4231 // DataTy is the overloaded type
4232 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4233 Assert(DataTy == CS.getType(),do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
4234 "masked_load: return must match pointer type", CS)do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
;
4235 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
4236 "masked_load: pass through and data type must match", CS)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
;
4237 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4238 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4239 "masked_load: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
;
4240 break;
4241 }
4242 case Intrinsic::masked_store: {
4243 Value *Val = CS.getArgOperand(0);
4244 Value *Ptr = CS.getArgOperand(1);
4245 //Value *Alignment = CS.getArgOperand(2);
4246 Value *Mask = CS.getArgOperand(3);
4247 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
4248 "masked_store: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
;
4249
4250 // DataTy is the overloaded type
4251 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4252 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
4253 "masked_store: storee must match pointer type", CS)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
;
4254 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4255 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4256 "masked_store: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
;
4257 break;
4258 }
4259
4260 case Intrinsic::experimental_guard: {
4261 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_guard cannot be invoked"
, CS); return; } } while (false)
;
4262 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4263 "experimental_guard must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4264 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4265 break;
4266 }
4267
4268 case Intrinsic::experimental_deoptimize: {
4269 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_deoptimize cannot be invoked"
, CS); return; } } while (false)
;
4270 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4271 "experimental_deoptimize must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4272 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4273 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4274 "experimental_deoptimize return type must match caller return type")do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4275
4276 if (CS.isCall()) {
4277 auto *DeoptCI = CS.getInstruction();
4278 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4279 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4280 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4281
4282 if (!CS.getType()->isVoidTy() && RI)
4283 Assert(RI->getReturnValue() == DeoptCI,do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4284 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4285 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4286 }
4287
4288 break;
4289 }
4290 };
4291}
4292
4293/// \brief Carefully grab the subprogram from a local scope.
4294///
4295/// This carefully grabs the subprogram from a local scope, avoiding the
4296/// built-in assertions that would typically fire.
4297static DISubprogram *getSubprogram(Metadata *LocalScope) {
4298 if (!LocalScope)
4299 return nullptr;
4300
4301 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4302 return SP;
4303
4304 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4305 return getSubprogram(LB->getRawScope());
4306
4307 // Just return null; broken scope chains are checked elsewhere.
4308 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"
) ? static_cast<void> (0) : __assert_fail ("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 4308, __PRETTY_FUNCTION__))
;
4309 return nullptr;
4310}
4311
4312void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4313 Assert(isa<MetadataAsValue>(FPI.getOperand(2)),do { if (!(isa<MetadataAsValue>(FPI.getOperand(2)))) { CheckFailed
("invalid rounding mode argument", &FPI); return; } } while
(false)
4314 "invalid rounding mode argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getOperand(2)))) { CheckFailed
("invalid rounding mode argument", &FPI); return; } } while
(false)
;
4315 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
4316 "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
;
4317 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
4318 "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
;
4319}
4320
4321template <class DbgIntrinsicTy>
4322void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4323 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4324 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4325 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4326 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4327 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4328 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4329 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4330 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4331 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4332 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4333
4334 // Ignore broken !dbg attachments; they're checked elsewhere.
4335 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4336 if (!isa<DILocation>(N))
4337 return;
4338
4339 BasicBlock *BB = DII.getParent();
4340 Function *F = BB ? BB->getParent() : nullptr;
4341
4342 // The scopes for variables and !dbg attachments must agree.
4343 DILocalVariable *Var = DII.getVariable();
4344 DILocation *Loc = DII.getDebugLoc();
4345 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4346 &DII, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4347
4348 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4349 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4350 if (!VarSP || !LocSP)
4351 return; // Broken scope chains are checked elsewhere.
4352
4353 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4354 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4355 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4356 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4357
4358 verifyFnArgs(DII);
4359}
4360
4361static uint64_t getVariableSize(const DILocalVariable &V) {
4362 // Be careful of broken types (checked elsewhere).
4363 const Metadata *RawType = V.getRawType();
4364 while (RawType) {
4365 // Try to get the size directly.
4366 if (auto *T = dyn_cast<DIType>(RawType))
4367 if (uint64_t Size = T->getSizeInBits())
4368 return Size;
4369
4370 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4371 // Look at the base type.
4372 RawType = DT->getRawBaseType();
4373 continue;
4374 }
4375
4376 // Missing type or size.
4377 break;
4378 }
4379
4380 // Fail gracefully.
4381 return 0;
4382}
4383
4384void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4385 DILocalVariable *V;
4386 DIExpression *E;
4387 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4388 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4389 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4390 } else {
4391 auto *DDI = cast<DbgDeclareInst>(&I);
4392 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4393 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4394 }
4395
4396 // We don't know whether this intrinsic verified correctly.
4397 if (!V || !E || !E->isValid())
4398 return;
4399
4400 // Nothing to do if this isn't a bit piece expression.
4401 auto Fragment = E->getFragmentInfo();
4402 if (!Fragment)
4403 return;
4404
4405 // The frontend helps out GDB by emitting the members of local anonymous
4406 // unions as artificial local variables with shared storage. When SROA splits
4407 // the storage for artificial local variables that are smaller than the entire
4408 // union, the overhang piece will be outside of the allotted space for the
4409 // variable and this check fails.
4410 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4411 if (V->isArtificial())
4412 return;
4413
4414 // If there's no size, the type is broken, but that should be checked
4415 // elsewhere.
4416 uint64_t VarSize = getVariableSize(*V);
4417 if (!VarSize)
4418 return;
4419
4420 unsigned FragSize = Fragment->SizeInBits;
4421 unsigned FragOffset = Fragment->OffsetInBits;
4422 AssertDI(FragSize + FragOffset <= VarSize,do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
4423 "fragment is larger than or outside of variable", &I, V, E)do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
;
4424 AssertDI(FragSize != VarSize, "fragment covers entire variable", &I, V, E)do { if (!(FragSize != VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, &I, V, E); return; } } while (false)
;
4425}
4426
4427void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4428 DILocalVariable *Var;
4429 if (auto *DV = dyn_cast<DbgValueInst>(&I)) {
4430 // For performance reasons only check non-inlined ones.
4431 if (DV->getDebugLoc()->getInlinedAt())
4432 return;
4433 Var = DV->getVariable();
4434 } else {
4435 auto *DD = cast<DbgDeclareInst>(&I);
4436 if (DD->getDebugLoc()->getInlinedAt())
4437 return;
4438 Var = DD->getVariable();
4439 }
4440 AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable"
); return; } } while (false)
;
4441
4442 unsigned ArgNo = Var->getArg();
4443 if (!ArgNo)
4444 return;
4445
4446 // Verify there are no duplicate function argument debug info entries.
4447 // These will cause hard-to-debug assertions in the DWARF backend.
4448 if (DebugFnArgs.size() < ArgNo)
4449 DebugFnArgs.resize(ArgNo, nullptr);
4450
4451 auto *Prev = DebugFnArgs[ArgNo - 1];
4452 DebugFnArgs[ArgNo - 1] = Var;
4453 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
4454 Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
;
4455}
4456
4457void Verifier::verifyCompileUnits() {
4458 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4459 SmallPtrSet<const Metadata *, 2> Listed;
4460 if (CUs)
4461 Listed.insert(CUs->op_begin(), CUs->op_end());
4462 for (auto *CU : CUVisited)
4463 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu"
, CU); return; } } while (false)
;
4464 CUVisited.clear();
4465}
4466
4467void Verifier::verifyDeoptimizeCallingConvs() {
4468 if (DeoptimizeDeclarations.empty())
4469 return;
4470
4471 const Function *First = DeoptimizeDeclarations[0];
4472 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4473 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4474 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4475 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4476 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
4477 }
4478}
4479
4480//===----------------------------------------------------------------------===//
4481// Implement the public interfaces to this file...
4482//===----------------------------------------------------------------------===//
4483
4484bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4485 Function &F = const_cast<Function &>(f);
4486
4487 // Don't use a raw_null_ostream. Printing IR is expensive.
4488 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4489
4490 // Note that this function's return value is inverted from what you would
4491 // expect of a function called "verify".
4492 return !V.verify(F);
4493}
4494
4495bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4496 bool *BrokenDebugInfo) {
4497 // Don't use a raw_null_ostream. Printing IR is expensive.
4498 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4499
4500 bool Broken = false;
4501 for (const Function &F : M)
4502 Broken |= !V.verify(F);
4503
4504 Broken |= !V.verify();
4505 if (BrokenDebugInfo)
4506 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4507 // Note that this function's return value is inverted from what you would
4508 // expect of a function called "verify".
4509 return Broken;
4510}
4511
4512namespace {
4513
4514struct VerifierLegacyPass : public FunctionPass {
4515 static char ID;
4516
4517 std::unique_ptr<Verifier> V;
4518 bool FatalErrors = true;
4519
4520 VerifierLegacyPass() : FunctionPass(ID) {
4521 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4522 }
4523 explicit VerifierLegacyPass(bool FatalErrors)
4524 : FunctionPass(ID),
4525 FatalErrors(FatalErrors) {
4526 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4527 }
4528
4529 bool doInitialization(Module &M) override {
4530 V = llvm::make_unique<Verifier>(
4531 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4532 return false;
4533 }
4534
4535 bool runOnFunction(Function &F) override {
4536 if (!V->verify(F) && FatalErrors)
4537 report_fatal_error("Broken function found, compilation aborted!");
4538
4539 return false;
4540 }
4541
4542 bool doFinalization(Module &M) override {
4543 bool HasErrors = false;
4544 for (Function &F : M)
4545 if (F.isDeclaration())
4546 HasErrors |= !V->verify(F);
4547
4548 HasErrors |= !V->verify();
4549 if (FatalErrors) {
4550 if (HasErrors)
4551 report_fatal_error("Broken module found, compilation aborted!");
4552 assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info")((!V->hasBrokenDebugInfo() && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!V->hasBrokenDebugInfo() && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 4552, __PRETTY_FUNCTION__))
;
4553 }
4554
4555 // Strip broken debug info.
4556 if (V->hasBrokenDebugInfo()) {
4557 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4558 M.getContext().diagnose(DiagInvalid);
4559 if (!StripDebugInfo(M))
4560 report_fatal_error("Failed to strip malformed debug info");
4561 }
4562 return false;
4563 }
4564
4565 void getAnalysisUsage(AnalysisUsage &AU) const override {
4566 AU.setPreservesAll();
4567 }
4568};
4569
4570} // end anonymous namespace
4571
4572/// Helper to issue failure from the TBAA verification
4573template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4574 if (Diagnostic)
4575 return Diagnostic->CheckFailed(Args...);
4576}
4577
4578#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
4579 do { \
4580 if (!(C)) { \
4581 CheckFailed(__VA_ARGS__); \
4582 return false; \
4583 } \
4584 } while (false)
4585
4586/// Verify that \p BaseNode can be used as the "base type" in the struct-path
4587/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4588/// struct-type node describing an aggregate data structure (like a struct).
4589TBAAVerifier::TBAABaseNodeSummary
4590TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
4591 if (BaseNode->getNumOperands() < 2) {
4592 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4593 return {true, ~0u};
4594 }
4595
4596 auto Itr = TBAABaseNodes.find(BaseNode);
4597 if (Itr != TBAABaseNodes.end())
4598 return Itr->second;
4599
4600 auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
4601 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4602 (void)InsertResult;
4603 assert(InsertResult.second && "We just checked!")((InsertResult.second && "We just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 4603, __PRETTY_FUNCTION__))
;
4604 return Result;
4605}
4606
4607TBAAVerifier::TBAABaseNodeSummary
4608TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
4609 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4610
4611 if (BaseNode->getNumOperands() == 2) {
4612 // Scalar nodes can only be accessed at offset 0.
4613 return isValidScalarTBAANode(BaseNode)
4614 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4615 : InvalidNode;
4616 }
4617
4618 if (BaseNode->getNumOperands() % 2 != 1) {
4619 CheckFailed("Struct tag nodes must have an odd number of operands!",
4620 BaseNode);
4621 return InvalidNode;
4622 }
4623
4624 if (!isa<MDString>(BaseNode->getOperand(0))) {
4625 CheckFailed("Struct tag nodes have a string as their first operand",
4626 BaseNode);
4627 return InvalidNode;
4628 }
4629
4630 bool Failed = false;
4631
4632 Optional<APInt> PrevOffset;
4633 unsigned BitWidth = ~0u;
4634
4635 // We've already checked that BaseNode is not a degenerate root node with one
4636 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4637 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4638 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4639 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4640 if (!isa<MDNode>(FieldTy)) {
4641 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4642 Failed = true;
4643 continue;
4644 }
4645
4646 auto *OffsetEntryCI =
4647 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4648 if (!OffsetEntryCI) {
4649 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4650 Failed = true;
4651 continue;
4652 }
4653
4654 if (BitWidth == ~0u)
4655 BitWidth = OffsetEntryCI->getBitWidth();
4656
4657 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4658 CheckFailed(
4659 "Bitwidth between the offsets and struct type entries must match", &I,
4660 BaseNode);
4661 Failed = true;
4662 continue;
4663 }
4664
4665 // NB! As far as I can tell, we generate a non-strictly increasing offset
4666 // sequence only from structs that have zero size bit fields. When
4667 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4668 // pick the field lexically the latest in struct type metadata node. This
4669 // mirrors the actual behavior of the alias analysis implementation.
4670 bool IsAscending =
4671 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4672
4673 if (!IsAscending) {
4674 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4675 Failed = true;
4676 }
4677
4678 PrevOffset = OffsetEntryCI->getValue();
4679 }
4680
4681 return Failed ? InvalidNode
4682 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4683}
4684
4685static bool IsRootTBAANode(const MDNode *MD) {
4686 return MD->getNumOperands() < 2;
4687}
4688
4689static bool IsScalarTBAANodeImpl(const MDNode *MD,
4690 SmallPtrSetImpl<const MDNode *> &Visited) {
4691 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4692 return false;
4693
4694 if (!isa<MDString>(MD->getOperand(0)))
4695 return false;
4696
4697 if (MD->getNumOperands() == 3) {
4698 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4699 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4700 return false;
4701 }
4702
4703 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4704 return Parent && Visited.insert(Parent).second &&
4705 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4706}
4707
4708bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4709 auto ResultIt = TBAAScalarNodes.find(MD);
4710 if (ResultIt != TBAAScalarNodes.end())
4711 return ResultIt->second;
4712
4713 SmallPtrSet<const MDNode *, 4> Visited;
4714 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4715 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4716 (void)InsertResult;
4717 assert(InsertResult.second && "Just checked!")((InsertResult.second && "Just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 4717, __PRETTY_FUNCTION__))
;
4718
4719 return Result;
4720}
4721
4722/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4723/// Offset in place to be the offset within the field node returned.
4724///
4725/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4726MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4727 const MDNode *BaseNode,
4728 APInt &Offset) {
4729 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")((BaseNode->getNumOperands() >= 2 && "Invalid base node!"
) ? static_cast<void> (0) : __assert_fail ("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 4729, __PRETTY_FUNCTION__))
;
4730
4731 // Scalar nodes have only one possible "field" -- their parent in the access
4732 // hierarchy. Offset must be zero at this point, but our caller is supposed
4733 // to Assert that.
4734 if (BaseNode->getNumOperands() == 2)
4735 return cast<MDNode>(BaseNode->getOperand(1));
4736
4737 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4738 auto *OffsetEntryCI =
4739 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4740 if (OffsetEntryCI->getValue().ugt(Offset)) {
4741 if (Idx == 1) {
4742 CheckFailed("Could not find TBAA parent in struct type node", &I,
4743 BaseNode, &Offset);
4744 return nullptr;
4745 }
4746
4747 auto *PrevOffsetEntryCI =
4748 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
4749 Offset -= PrevOffsetEntryCI->getValue();
4750 return cast<MDNode>(BaseNode->getOperand(Idx - 2));
4751 }
4752 }
4753
4754 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4755 BaseNode->getOperand(BaseNode->getNumOperands() - 1));
4756
4757 Offset -= LastOffsetEntryCI->getValue();
4758 return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
4759}
4760
4761bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4762 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4763 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4764 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4765 "TBAA is only for loads, stores and calls!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
;
4766
4767 bool IsStructPathTBAA =
4768 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4769
4770 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4771 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4772 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
4773
4774 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
4775 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
4776
4777 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4778 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4779
4780 if (MD->getNumOperands() == 4) {
4781 auto *IsImmutableCI =
4782 mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
4783 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4784 "Immutability tag on struct tag metadata must be a constant", &I,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4785 MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
4786 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4787 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4788 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4789 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
4790 }
4791
4792 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4793 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4794 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4795 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
4796
4797 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4798 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4799 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
4800
4801 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4802 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
4803
4804 APInt Offset = OffsetCI->getValue();
4805 bool SeenAccessTypeInPath = false;
4806
4807 SmallPtrSet<MDNode *, 4> StructPath;
4808
4809 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4810 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
4811 if (!StructPath.insert(BaseNode).second) {
4812 CheckFailed("Cycle detected in struct path", &I, MD);
4813 return false;
4814 }
4815
4816 bool Invalid;
4817 unsigned BaseNodeBitWidth;
4818 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
4819
4820 // If the base node is invalid in itself, then we've already printed all the
4821 // errors we wanted to print.
4822 if (Invalid)
4823 return false;
4824
4825 SeenAccessTypeInPath |= BaseNode == AccessType;
4826
4827 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
4828 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
4829 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
4830
4831 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4832 (BaseNodeBitWidth == 0 && Offset == 0),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4833 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4834 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
4835 }
4836
4837 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
4838 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
4839 return true;
4840}
4841
4842char VerifierLegacyPass::ID = 0;
4843INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
4844
4845FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4846 return new VerifierLegacyPass(FatalErrors);
4847}
4848
4849AnalysisKey VerifierAnalysis::Key;
4850VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4851 ModuleAnalysisManager &) {
4852 Result Res;
4853 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4854 return Res;
4855}
4856
4857VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4858 FunctionAnalysisManager &) {
4859 return { llvm::verifyFunction(F, &dbgs()), false };
4860}
4861
4862PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4863 auto Res = AM.getResult<VerifierAnalysis>(M);
4864 if (FatalErrors) {
4865 if (Res.IRBroken)
4866 report_fatal_error("Broken module found, compilation aborted!");
4867 assert(!Res.DebugInfoBroken && "Module contains invalid debug info")((!Res.DebugInfoBroken && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!Res.DebugInfoBroken && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/lib/IR/Verifier.cpp"
, 4867, __PRETTY_FUNCTION__))
;
4868 }
4869
4870 // Strip broken debug info.
4871 if (Res.DebugInfoBroken) {
4872 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4873 M.getContext().diagnose(DiagInvalid);
4874 if (!StripDebugInfo(M))
4875 report_fatal_error("Failed to strip malformed debug info");
4876 }
4877 return PreservedAnalyses::all();
4878}
4879
4880PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
4881 auto res = AM.getResult<VerifierAnalysis>(F);
4882 if (res.IRBroken && FatalErrors)
4883 report_fatal_error("Broken function found, compilation aborted!");
4884
4885 return PreservedAnalyses::all();
4886}