Bug Summary

File:lib/IR/Verifier.cpp
Warning:line 2155, column 7
Called C++ object pointer is null

Annotated Source Code

1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the function verifier interface, that can be used for some
11// sanity checking of input to the system.
12//
13// Note that this does not provide full `Java style' security and verifications,
14// instead it just tries to ensure that code is well-formed.
15//
16// * Both of a binary operator's parameters are of the same type
17// * Verify that the indices of mem access instructions match other operands
18// * Verify that arithmetic and other things are only performed on first-class
19// types. Verify that shifts & logicals only happen on integrals f.e.
20// * All of the constants in a switch statement are of the correct type
21// * The code is in valid SSA form
22// * It should be illegal to put a label into any other type (like a structure)
23// or to return one. [except constant arrays!]
24// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25// * PHI nodes must have an entry for each predecessor, with no extras.
26// * PHI nodes must be the first thing in a basic block, all grouped together
27// * PHI nodes must have at least one entry
28// * All basic blocks should only end with terminator insts, not contain them
29// * The entry node to a function must not have predecessors
30// * All Instructions must be embedded into a basic block
31// * Functions cannot take a void-typed parameter
32// * Verify that a function's argument list agrees with it's declared type.
33// * It is illegal to specify a name for a void value.
34// * It is illegal to have a internal global value with no initializer
35// * It is illegal to have a ret instruction that returns a value that does not
36// agree with the function return value type.
37// * Function call argument types match the function prototype
38// * A landing pad is defined by a landingpad instruction, and can be jumped to
39// only by the unwind edge of an invoke instruction.
40// * A landingpad instruction must be the first non-PHI instruction in the
41// block.
42// * Landingpad instructions must be in a function with a personality function.
43// * All other things that are tested by asserts spread about the code...
44//
45//===----------------------------------------------------------------------===//
46
47#include "llvm/IR/Verifier.h"
48#include "llvm/ADT/APFloat.h"
49#include "llvm/ADT/APInt.h"
50#include "llvm/ADT/ArrayRef.h"
51#include "llvm/ADT/DenseMap.h"
52#include "llvm/ADT/ilist.h"
53#include "llvm/ADT/MapVector.h"
54#include "llvm/ADT/Optional.h"
55#include "llvm/ADT/STLExtras.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/SmallSet.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringMap.h"
60#include "llvm/ADT/StringRef.h"
61#include "llvm/ADT/Twine.h"
62#include "llvm/IR/Argument.h"
63#include "llvm/IR/Attributes.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/CFG.h"
66#include "llvm/IR/CallSite.h"
67#include "llvm/IR/CallingConv.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/ConstantRange.h"
71#include "llvm/IR/Constants.h"
72#include "llvm/IR/DataLayout.h"
73#include "llvm/IR/DebugInfo.h"
74#include "llvm/IR/DebugInfoMetadata.h"
75#include "llvm/IR/DebugLoc.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/DiagnosticInfo.h"
78#include "llvm/IR/Dominators.h"
79#include "llvm/IR/Function.h"
80#include "llvm/IR/GlobalAlias.h"
81#include "llvm/IR/GlobalValue.h"
82#include "llvm/IR/GlobalVariable.h"
83#include "llvm/IR/InlineAsm.h"
84#include "llvm/IR/InstrTypes.h"
85#include "llvm/IR/Instruction.h"
86#include "llvm/IR/Instructions.h"
87#include "llvm/IR/InstVisitor.h"
88#include "llvm/IR/IntrinsicInst.h"
89#include "llvm/IR/Intrinsics.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/Metadata.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/ModuleSlotTracker.h"
94#include "llvm/IR/PassManager.h"
95#include "llvm/IR/Statepoint.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/Pass.h"
101#include "llvm/Support/AtomicOrdering.h"
102#include "llvm/Support/Casting.h"
103#include "llvm/Support/CommandLine.h"
104#include "llvm/Support/Debug.h"
105#include "llvm/Support/Dwarf.h"
106#include "llvm/Support/ErrorHandling.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <cstdint>
112#include <memory>
113#include <string>
114#include <utility>
115
116using namespace llvm;
117
118static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
119
120namespace llvm {
121
122struct VerifierSupport {
123 raw_ostream *OS;
124 const Module &M;
125 ModuleSlotTracker MST;
126 const DataLayout &DL;
127 LLVMContext &Context;
128
129 /// Track the brokenness of the module while recursively visiting.
130 bool Broken = false;
131 /// Broken debug info can be "recovered" from by stripping the debug info.
132 bool BrokenDebugInfo = false;
133 /// Whether to treat broken debug info as an error.
134 bool TreatBrokenDebugInfoAsError = true;
135
136 explicit VerifierSupport(raw_ostream *OS, const Module &M)
137 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
138
139private:
140 void Write(const Module *M) {
141 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
142 }
143
144 void Write(const Value *V) {
145 if (!V)
146 return;
147 if (isa<Instruction>(V)) {
148 V->print(*OS, MST);
149 *OS << '\n';
150 } else {
151 V->printAsOperand(*OS, true, MST);
152 *OS << '\n';
153 }
154 }
155
156 void Write(ImmutableCallSite CS) {
157 Write(CS.getInstruction());
158 }
159
160 void Write(const Metadata *MD) {
161 if (!MD)
162 return;
163 MD->print(*OS, MST, &M);
164 *OS << '\n';
165 }
166
167 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
168 Write(MD.get());
169 }
170
171 void Write(const NamedMDNode *NMD) {
172 if (!NMD)
173 return;
174 NMD->print(*OS, MST);
175 *OS << '\n';
176 }
177
178 void Write(Type *T) {
179 if (!T)
180 return;
181 *OS << ' ' << *T;
182 }
183
184 void Write(const Comdat *C) {
185 if (!C)
186 return;
187 *OS << *C;
188 }
189
190 void Write(const APInt *AI) {
191 if (!AI)
192 return;
193 *OS << *AI << '\n';
194 }
195
196 void Write(const unsigned i) { *OS << i << '\n'; }
197
198 template <typename T> void Write(ArrayRef<T> Vs) {
199 for (const T &V : Vs)
200 Write(V);
201 }
202
203 template <typename T1, typename... Ts>
204 void WriteTs(const T1 &V1, const Ts &... Vs) {
205 Write(V1);
206 WriteTs(Vs...);
207 }
208
209 template <typename... Ts> void WriteTs() {}
210
211public:
212 /// \brief A check failed, so printout out the condition and the message.
213 ///
214 /// This provides a nice place to put a breakpoint if you want to see why
215 /// something is not correct.
216 void CheckFailed(const Twine &Message) {
217 if (OS)
218 *OS << Message << '\n';
219 Broken = true;
220 }
221
222 /// \brief A check failed (with values to print).
223 ///
224 /// This calls the Message-only version so that the above is easier to set a
225 /// breakpoint on.
226 template <typename T1, typename... Ts>
227 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
228 CheckFailed(Message);
229 if (OS)
230 WriteTs(V1, Vs...);
231 }
232
233 /// A debug info check failed.
234 void DebugInfoCheckFailed(const Twine &Message) {
235 if (OS)
236 *OS << Message << '\n';
237 Broken |= TreatBrokenDebugInfoAsError;
238 BrokenDebugInfo = true;
239 }
240
241 /// A debug info check failed (with values to print).
242 template <typename T1, typename... Ts>
243 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
244 const Ts &... Vs) {
245 DebugInfoCheckFailed(Message);
246 if (OS)
247 WriteTs(V1, Vs...);
248 }
249};
250
251} // namespace llvm
252
253namespace {
254
255class Verifier : public InstVisitor<Verifier>, VerifierSupport {
256 friend class InstVisitor<Verifier>;
257
258 DominatorTree DT;
259
260 /// \brief When verifying a basic block, keep track of all of the
261 /// instructions we have seen so far.
262 ///
263 /// This allows us to do efficient dominance checks for the case when an
264 /// instruction has an operand that is an instruction in the same block.
265 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
266
267 /// \brief Keep track of the metadata nodes that have been checked already.
268 SmallPtrSet<const Metadata *, 32> MDNodes;
269
270 /// Track all DICompileUnits visited.
271 SmallPtrSet<const Metadata *, 2> CUVisited;
272
273 /// \brief The result type for a landingpad.
274 Type *LandingPadResultTy;
275
276 /// \brief Whether we've seen a call to @llvm.localescape in this function
277 /// already.
278 bool SawFrameEscape;
279
280 /// Whether the current function has a DISubprogram attached to it.
281 bool HasDebugInfo = false;
282
283 /// Stores the count of how many objects were passed to llvm.localescape for a
284 /// given function and the largest index passed to llvm.localrecover.
285 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
286
287 // Maps catchswitches and cleanuppads that unwind to siblings to the
288 // terminators that indicate the unwind, used to detect cycles therein.
289 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
290
291 /// Cache of constants visited in search of ConstantExprs.
292 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
293
294 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
295 SmallVector<const Function *, 4> DeoptimizeDeclarations;
296
297 // Verify that this GlobalValue is only used in this module.
298 // This map is used to avoid visiting uses twice. We can arrive at a user
299 // twice, if they have multiple operands. In particular for very large
300 // constant expressions, we can arrive at a particular user many times.
301 SmallPtrSet<const Value *, 32> GlobalValueVisited;
302
303 // Keeps track of duplicate function argument debug info.
304 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
305
306 TBAAVerifier TBAAVerifyHelper;
307
308 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
309
310public:
311 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
312 const Module &M)
313 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
314 SawFrameEscape(false), TBAAVerifyHelper(this) {
315 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
316 }
317
318 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
319
320 bool verify(const Function &F) {
321 assert(F.getParent() == &M &&((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 322, __PRETTY_FUNCTION__))
322 "An instance of this class only works with a specific module!")((F.getParent() == &M && "An instance of this class only works with a specific module!"
) ? static_cast<void> (0) : __assert_fail ("F.getParent() == &M && \"An instance of this class only works with a specific module!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 322, __PRETTY_FUNCTION__))
;
323
324 // First ensure the function is well-enough formed to compute dominance
325 // information, and directly compute a dominance tree. We don't rely on the
326 // pass manager to provide this as it isolates us from a potentially
327 // out-of-date dominator tree and makes it significantly more complex to run
328 // this code outside of a pass manager.
329 // FIXME: It's really gross that we have to cast away constness here.
330 if (!F.empty())
331 DT.recalculate(const_cast<Function &>(F));
332
333 for (const BasicBlock &BB : F) {
334 if (!BB.empty() && BB.back().isTerminator())
335 continue;
336
337 if (OS) {
338 *OS << "Basic Block in function '" << F.getName()
339 << "' does not have terminator!\n";
340 BB.printAsOperand(*OS, true, MST);
341 *OS << "\n";
342 }
343 return false;
344 }
345
346 Broken = false;
347 // FIXME: We strip const here because the inst visitor strips const.
348 visit(const_cast<Function &>(F));
349 verifySiblingFuncletUnwinds();
350 InstsInThisBlock.clear();
351 DebugFnArgs.clear();
352 LandingPadResultTy = nullptr;
353 SawFrameEscape = false;
354 SiblingFuncletInfo.clear();
355
356 return !Broken;
357 }
358
359 /// Verify the module that this instance of \c Verifier was initialized with.
360 bool verify() {
361 Broken = false;
362
363 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
364 for (const Function &F : M)
365 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
366 DeoptimizeDeclarations.push_back(&F);
367
368 // Now that we've visited every function, verify that we never asked to
369 // recover a frame index that wasn't escaped.
370 verifyFrameRecoverIndices();
371 for (const GlobalVariable &GV : M.globals())
372 visitGlobalVariable(GV);
373
374 for (const GlobalAlias &GA : M.aliases())
375 visitGlobalAlias(GA);
376
377 for (const NamedMDNode &NMD : M.named_metadata())
378 visitNamedMDNode(NMD);
379
380 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
381 visitComdat(SMEC.getValue());
382
383 visitModuleFlags(M);
384 visitModuleIdents(M);
385
386 verifyCompileUnits();
387
388 verifyDeoptimizeCallingConvs();
389
390 return !Broken;
391 }
392
393private:
394 // Verification methods...
395 void visitGlobalValue(const GlobalValue &GV);
396 void visitGlobalVariable(const GlobalVariable &GV);
397 void visitGlobalAlias(const GlobalAlias &GA);
398 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
399 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
400 const GlobalAlias &A, const Constant &C);
401 void visitNamedMDNode(const NamedMDNode &NMD);
402 void visitMDNode(const MDNode &MD);
403 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
404 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
405 void visitComdat(const Comdat &C);
406 void visitModuleIdents(const Module &M);
407 void visitModuleFlags(const Module &M);
408 void visitModuleFlag(const MDNode *Op,
409 DenseMap<const MDString *, const MDNode *> &SeenIDs,
410 SmallVectorImpl<const MDNode *> &Requirements);
411 void visitFunction(const Function &F);
412 void visitBasicBlock(BasicBlock &BB);
413 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
414 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
415
416 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
417#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
418#include "llvm/IR/Metadata.def"
419 void visitDIScope(const DIScope &N);
420 void visitDIVariable(const DIVariable &N);
421 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
422 void visitDITemplateParameter(const DITemplateParameter &N);
423
424 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
425
426 // InstVisitor overrides...
427 using InstVisitor<Verifier>::visit;
428 void visit(Instruction &I);
429
430 void visitTruncInst(TruncInst &I);
431 void visitZExtInst(ZExtInst &I);
432 void visitSExtInst(SExtInst &I);
433 void visitFPTruncInst(FPTruncInst &I);
434 void visitFPExtInst(FPExtInst &I);
435 void visitFPToUIInst(FPToUIInst &I);
436 void visitFPToSIInst(FPToSIInst &I);
437 void visitUIToFPInst(UIToFPInst &I);
438 void visitSIToFPInst(SIToFPInst &I);
439 void visitIntToPtrInst(IntToPtrInst &I);
440 void visitPtrToIntInst(PtrToIntInst &I);
441 void visitBitCastInst(BitCastInst &I);
442 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
443 void visitPHINode(PHINode &PN);
444 void visitBinaryOperator(BinaryOperator &B);
445 void visitICmpInst(ICmpInst &IC);
446 void visitFCmpInst(FCmpInst &FC);
447 void visitExtractElementInst(ExtractElementInst &EI);
448 void visitInsertElementInst(InsertElementInst &EI);
449 void visitShuffleVectorInst(ShuffleVectorInst &EI);
450 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
451 void visitCallInst(CallInst &CI);
452 void visitInvokeInst(InvokeInst &II);
453 void visitGetElementPtrInst(GetElementPtrInst &GEP);
454 void visitLoadInst(LoadInst &LI);
455 void visitStoreInst(StoreInst &SI);
456 void verifyDominatesUse(Instruction &I, unsigned i);
457 void visitInstruction(Instruction &I);
458 void visitTerminatorInst(TerminatorInst &I);
459 void visitBranchInst(BranchInst &BI);
460 void visitReturnInst(ReturnInst &RI);
461 void visitSwitchInst(SwitchInst &SI);
462 void visitIndirectBrInst(IndirectBrInst &BI);
463 void visitSelectInst(SelectInst &SI);
464 void visitUserOp1(Instruction &I);
465 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
466 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
467 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
468 template <class DbgIntrinsicTy>
469 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
470 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
471 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
472 void visitFenceInst(FenceInst &FI);
473 void visitAllocaInst(AllocaInst &AI);
474 void visitExtractValueInst(ExtractValueInst &EVI);
475 void visitInsertValueInst(InsertValueInst &IVI);
476 void visitEHPadPredecessors(Instruction &I);
477 void visitLandingPadInst(LandingPadInst &LPI);
478 void visitResumeInst(ResumeInst &RI);
479 void visitCatchPadInst(CatchPadInst &CPI);
480 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
481 void visitCleanupPadInst(CleanupPadInst &CPI);
482 void visitFuncletPadInst(FuncletPadInst &FPI);
483 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
484 void visitCleanupReturnInst(CleanupReturnInst &CRI);
485
486 void verifyCallSite(CallSite CS);
487 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
488 void verifySwiftErrorValue(const Value *SwiftErrorVal);
489 void verifyMustTailCall(CallInst &CI);
490 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
491 unsigned ArgNo, std::string &Suffix);
492 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
493 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
494 const Value *V);
495 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
496 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
497 const Value *V);
498 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
499
500 void visitConstantExprsRecursively(const Constant *EntryC);
501 void visitConstantExpr(const ConstantExpr *CE);
502 void verifyStatepoint(ImmutableCallSite CS);
503 void verifyFrameRecoverIndices();
504 void verifySiblingFuncletUnwinds();
505
506 void verifyFragmentExpression(const DbgInfoIntrinsic &I);
507 void verifyFnArgs(const DbgInfoIntrinsic &I);
508
509 /// Module-level debug info verification...
510 void verifyCompileUnits();
511
512 /// Module-level verification that all @llvm.experimental.deoptimize
513 /// declarations share the same calling convention.
514 void verifyDeoptimizeCallingConvs();
515};
516
517} // end anonymous namespace
518
519/// We know that cond should be true, if not print an error message.
520#define Assert(C, ...)do { if (!(C)) { CheckFailed(...); return; } } while (false) \
521 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
522
523/// We know that a debug info condition should be true, if not print
524/// an error message.
525#define AssertDI(C, ...)do { if (!(C)) { DebugInfoCheckFailed(...); return; } } while
(false)
\
526 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
527
528void Verifier::visit(Instruction &I) {
529 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
530 Assert(I.getOperand(i) != nullptr, "Operand is null", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Operand is null"
, &I); return; } } while (false)
;
531 InstVisitor<Verifier>::visit(I);
532}
533
534// Helper to recursively iterate over indirect users. By
535// returning false, the callback can ask to stop recursing
536// further.
537static void forEachUser(const Value *User,
538 SmallPtrSet<const Value *, 32> &Visited,
539 llvm::function_ref<bool(const Value *)> Callback) {
540 if (!Visited.insert(User).second)
541 return;
542 for (const Value *TheNextUser : User->materialized_users())
543 if (Callback(TheNextUser))
544 forEachUser(TheNextUser, Visited, Callback);
545}
546
547void Verifier::visitGlobalValue(const GlobalValue &GV) {
548 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
549 "Global is external, but doesn't have external or weak linkage!", &GV)do { if (!(!GV.isDeclaration() || GV.hasValidDeclarationLinkage
())) { CheckFailed("Global is external, but doesn't have external or weak linkage!"
, &GV); return; } } while (false)
;
550
551 Assert(GV.getAlignment() <= Value::MaximumAlignment,do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
552 "huge alignment values are unsupported", &GV)do { if (!(GV.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &GV
); return; } } while (false)
;
553 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
554 "Only global variables can have appending linkage!", &GV)do { if (!(!GV.hasAppendingLinkage() || isa<GlobalVariable
>(GV))) { CheckFailed("Only global variables can have appending linkage!"
, &GV); return; } } while (false)
;
555
556 if (GV.hasAppendingLinkage()) {
557 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
558 Assert(GVar && GVar->getValueType()->isArrayTy(),do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
559 "Only global arrays can have appending linkage!", GVar)do { if (!(GVar && GVar->getValueType()->isArrayTy
())) { CheckFailed("Only global arrays can have appending linkage!"
, GVar); return; } } while (false)
;
560 }
561
562 if (GV.isDeclarationForLinker())
563 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("Declaration may not be in a Comdat!"
, &GV); return; } } while (false)
;
564
565 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
566 if (const Instruction *I = dyn_cast<Instruction>(V)) {
567 if (!I->getParent() || !I->getParent()->getParent())
568 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
569 I);
570 else if (I->getParent()->getParent()->getParent() != &M)
571 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
572 I->getParent()->getParent(),
573 I->getParent()->getParent()->getParent());
574 return false;
575 } else if (const Function *F = dyn_cast<Function>(V)) {
576 if (F->getParent() != &M)
577 CheckFailed("Global is used by function in a different module", &GV, &M,
578 F, F->getParent());
579 return false;
580 }
581 return true;
582 });
583}
584
585void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
586 if (GV.hasInitializer()) {
587 Assert(GV.getInitializer()->getType() == GV.getValueType(),do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
588 "Global variable initializer type does not match global "do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
589 "variable type!",do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
590 &GV)do { if (!(GV.getInitializer()->getType() == GV.getValueType
())) { CheckFailed("Global variable initializer type does not match global "
"variable type!", &GV); return; } } while (false)
;
591 // If the global has common linkage, it must have a zero initializer and
592 // cannot be constant.
593 if (GV.hasCommonLinkage()) {
594 Assert(GV.getInitializer()->isNullValue(),do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
595 "'common' global must have a zero initializer!", &GV)do { if (!(GV.getInitializer()->isNullValue())) { CheckFailed
("'common' global must have a zero initializer!", &GV); return
; } } while (false)
;
596 Assert(!GV.isConstant(), "'common' global may not be marked constant!",do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
597 &GV)do { if (!(!GV.isConstant())) { CheckFailed("'common' global may not be marked constant!"
, &GV); return; } } while (false)
;
598 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV)do { if (!(!GV.hasComdat())) { CheckFailed("'common' global may not be in a Comdat!"
, &GV); return; } } while (false)
;
599 }
600 }
601
602 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
603 GV.getName() == "llvm.global_dtors")) {
604 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
605 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
606 // Don't worry about emitting an error for it not being an array,
607 // visitGlobalValue will complain on appending non-array.
608 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
609 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
610 PointerType *FuncPtrTy =
611 FunctionType::get(Type::getVoidTy(Context), false)->getPointerTo();
612 // FIXME: Reject the 2-field form in LLVM 4.0.
613 Assert(STy &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
614 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
615 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
616 STy->getTypeAtIndex(1) == FuncPtrTy,do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
617 "wrong type for intrinsic global variable", &GV)do { if (!(STy && (STy->getNumElements() == 2 || STy
->getNumElements() == 3) && STy->getTypeAtIndex
(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1)
== FuncPtrTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
618 if (STy->getNumElements() == 3) {
619 Type *ETy = STy->getTypeAtIndex(2);
620 Assert(ETy->isPointerTy() &&do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
621 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
622 "wrong type for intrinsic global variable", &GV)do { if (!(ETy->isPointerTy() && cast<PointerType
>(ETy)->getElementType()->isIntegerTy(8))) { CheckFailed
("wrong type for intrinsic global variable", &GV); return
; } } while (false)
;
623 }
624 }
625 }
626
627 if (GV.hasName() && (GV.getName() == "llvm.used" ||
628 GV.getName() == "llvm.compiler.used")) {
629 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
630 "invalid linkage for intrinsic global variable", &GV)do { if (!(!GV.hasInitializer() || GV.hasAppendingLinkage()))
{ CheckFailed("invalid linkage for intrinsic global variable"
, &GV); return; } } while (false)
;
631 Type *GVType = GV.getValueType();
632 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
633 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
634 Assert(PTy, "wrong type for intrinsic global variable", &GV)do { if (!(PTy)) { CheckFailed("wrong type for intrinsic global variable"
, &GV); return; } } while (false)
;
635 if (GV.hasInitializer()) {
636 const Constant *Init = GV.getInitializer();
637 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
638 Assert(InitArray, "wrong initalizer for intrinsic global variable",do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
639 Init)do { if (!(InitArray)) { CheckFailed("wrong initalizer for intrinsic global variable"
, Init); return; } } while (false)
;
640 for (Value *Op : InitArray->operands()) {
641 Value *V = Op->stripPointerCastsNoFollowAliases();
642 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
643 isa<GlobalAlias>(V),do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
644 "invalid llvm.used member", V)do { if (!(isa<GlobalVariable>(V) || isa<Function>
(V) || isa<GlobalAlias>(V))) { CheckFailed("invalid llvm.used member"
, V); return; } } while (false)
;
645 Assert(V->hasName(), "members of llvm.used must be named", V)do { if (!(V->hasName())) { CheckFailed("members of llvm.used must be named"
, V); return; } } while (false)
;
646 }
647 }
648 }
649 }
650
651 Assert(!GV.hasDLLImportStorageClass() ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
652 (GV.isDeclaration() && GV.hasExternalLinkage()) ||do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
653 GV.hasAvailableExternallyLinkage(),do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
654 "Global is marked as dllimport, but not external", &GV)do { if (!(!GV.hasDLLImportStorageClass() || (GV.isDeclaration
() && GV.hasExternalLinkage()) || GV.hasAvailableExternallyLinkage
())) { CheckFailed("Global is marked as dllimport, but not external"
, &GV); return; } } while (false)
;
655
656 // Visit any debug info attachments.
657 SmallVector<MDNode *, 1> MDs;
658 GV.getMetadata(LLVMContext::MD_dbg, MDs);
659 for (auto *MD : MDs) {
660 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
661 visitDIGlobalVariableExpression(*GVE);
662 else
663 AssertDI(false, "!dbg attachment of global variable must be a "do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
664 "DIGlobalVariableExpression")do { if (!(false)) { DebugInfoCheckFailed("!dbg attachment of global variable must be a "
"DIGlobalVariableExpression"); return; } } while (false)
;
665 }
666
667 if (!GV.hasInitializer()) {
668 visitGlobalValue(GV);
669 return;
670 }
671
672 // Walk any aggregate initializers looking for bitcasts between address spaces
673 visitConstantExprsRecursively(GV.getInitializer());
674
675 visitGlobalValue(GV);
676}
677
678void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
679 SmallPtrSet<const GlobalAlias*, 4> Visited;
680 Visited.insert(&GA);
681 visitAliaseeSubExpr(Visited, GA, C);
682}
683
684void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
685 const GlobalAlias &GA, const Constant &C) {
686 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
687 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
688 &GA)do { if (!(!GV->isDeclarationForLinker())) { CheckFailed("Alias must point to a definition"
, &GA); return; } } while (false)
;
689
690 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
691 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA)do { if (!(Visited.insert(GA2).second)) { CheckFailed("Aliases cannot form a cycle"
, &GA); return; } } while (false)
;
692
693 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
694 &GA)do { if (!(!GA2->isInterposable())) { CheckFailed("Alias cannot point to an interposable alias"
, &GA); return; } } while (false)
;
695 } else {
696 // Only continue verifying subexpressions of GlobalAliases.
697 // Do not recurse into global initializers.
698 return;
699 }
700 }
701
702 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
703 visitConstantExprsRecursively(CE);
704
705 for (const Use &U : C.operands()) {
706 Value *V = &*U;
707 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
708 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
709 else if (const auto *C2 = dyn_cast<Constant>(V))
710 visitAliaseeSubExpr(Visited, GA, *C2);
711 }
712}
713
714void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
715 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
716 "Alias should have private, internal, linkonce, weak, linkonce_odr, "do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
717 "weak_odr, or external linkage!",do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
718 &GA)do { if (!(GlobalAlias::isValidLinkage(GA.getLinkage()))) { CheckFailed
("Alias should have private, internal, linkonce, weak, linkonce_odr, "
"weak_odr, or external linkage!", &GA); return; } } while
(false)
;
719 const Constant *Aliasee = GA.getAliasee();
720 Assert(Aliasee, "Aliasee cannot be NULL!", &GA)do { if (!(Aliasee)) { CheckFailed("Aliasee cannot be NULL!",
&GA); return; } } while (false)
;
721 Assert(GA.getType() == Aliasee->getType(),do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
722 "Alias and aliasee types should match!", &GA)do { if (!(GA.getType() == Aliasee->getType())) { CheckFailed
("Alias and aliasee types should match!", &GA); return; }
} while (false)
;
723
724 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
725 "Aliasee should be either GlobalValue or ConstantExpr", &GA)do { if (!(isa<GlobalValue>(Aliasee) || isa<ConstantExpr
>(Aliasee))) { CheckFailed("Aliasee should be either GlobalValue or ConstantExpr"
, &GA); return; } } while (false)
;
726
727 visitAliaseeSubExpr(GA, *Aliasee);
728
729 visitGlobalValue(GA);
730}
731
732void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
733 // There used to be various other llvm.dbg.* nodes, but we don't support
734 // upgrading them and we want to reserve the namespace for future uses.
735 if (NMD.getName().startswith("llvm.dbg."))
736 AssertDI(NMD.getName() == "llvm.dbg.cu",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
737 "unrecognized named metadata node in the llvm.dbg namespace",do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
738 &NMD)do { if (!(NMD.getName() == "llvm.dbg.cu")) { DebugInfoCheckFailed
("unrecognized named metadata node in the llvm.dbg namespace"
, &NMD); return; } } while (false)
;
739 for (const MDNode *MD : NMD.operands()) {
740 if (NMD.getName() == "llvm.dbg.cu")
741 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD)do { if (!(MD && isa<DICompileUnit>(MD))) { DebugInfoCheckFailed
("invalid compile unit", &NMD, MD); return; } } while (false
)
;
742
743 if (!MD)
744 continue;
745
746 visitMDNode(*MD);
747 }
748}
749
750void Verifier::visitMDNode(const MDNode &MD) {
751 // Only visit each node once. Metadata can be mutually recursive, so this
752 // avoids infinite recursion here, as well as being an optimization.
753 if (!MDNodes.insert(&MD).second)
754 return;
755
756 switch (MD.getMetadataID()) {
757 default:
758 llvm_unreachable("Invalid MDNode subclass")::llvm::llvm_unreachable_internal("Invalid MDNode subclass", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 758)
;
759 case Metadata::MDTupleKind:
760 break;
761#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
762 case Metadata::CLASS##Kind: \
763 visit##CLASS(cast<CLASS>(MD)); \
764 break;
765#include "llvm/IR/Metadata.def"
766 }
767
768 for (const Metadata *Op : MD.operands()) {
769 if (!Op)
770 continue;
771 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
772 &MD, Op)do { if (!(!isa<LocalAsMetadata>(Op))) { CheckFailed("Invalid operand for global metadata!"
, &MD, Op); return; } } while (false)
;
773 if (auto *N = dyn_cast<MDNode>(Op)) {
774 visitMDNode(*N);
775 continue;
776 }
777 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
778 visitValueAsMetadata(*V, nullptr);
779 continue;
780 }
781 }
782
783 // Check these last, so we diagnose problems in operands first.
784 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD)do { if (!(!MD.isTemporary())) { CheckFailed("Expected no forward declarations!"
, &MD); return; } } while (false)
;
785 Assert(MD.isResolved(), "All nodes should be resolved!", &MD)do { if (!(MD.isResolved())) { CheckFailed("All nodes should be resolved!"
, &MD); return; } } while (false)
;
786}
787
788void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
789 Assert(MD.getValue(), "Expected valid value", &MD)do { if (!(MD.getValue())) { CheckFailed("Expected valid value"
, &MD); return; } } while (false)
;
790 Assert(!MD.getValue()->getType()->isMetadataTy(),do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
791 "Unexpected metadata round-trip through values", &MD, MD.getValue())do { if (!(!MD.getValue()->getType()->isMetadataTy())) {
CheckFailed("Unexpected metadata round-trip through values",
&MD, MD.getValue()); return; } } while (false)
;
792
793 auto *L = dyn_cast<LocalAsMetadata>(&MD);
794 if (!L)
795 return;
796
797 Assert(F, "function-local metadata used outside a function", L)do { if (!(F)) { CheckFailed("function-local metadata used outside a function"
, L); return; } } while (false)
;
798
799 // If this was an instruction, bb, or argument, verify that it is in the
800 // function that we expect.
801 Function *ActualF = nullptr;
802 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
803 Assert(I->getParent(), "function-local metadata not in basic block", L, I)do { if (!(I->getParent())) { CheckFailed("function-local metadata not in basic block"
, L, I); return; } } while (false)
;
804 ActualF = I->getParent()->getParent();
805 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
806 ActualF = BB->getParent();
807 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
808 ActualF = A->getParent();
809 assert(ActualF && "Unimplemented function local metadata case!")((ActualF && "Unimplemented function local metadata case!"
) ? static_cast<void> (0) : __assert_fail ("ActualF && \"Unimplemented function local metadata case!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 809, __PRETTY_FUNCTION__))
;
810
811 Assert(ActualF == F, "function-local metadata used in wrong function", L)do { if (!(ActualF == F)) { CheckFailed("function-local metadata used in wrong function"
, L); return; } } while (false)
;
812}
813
814void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
815 Metadata *MD = MDV.getMetadata();
816 if (auto *N = dyn_cast<MDNode>(MD)) {
817 visitMDNode(*N);
818 return;
819 }
820
821 // Only visit each node once. Metadata can be mutually recursive, so this
822 // avoids infinite recursion here, as well as being an optimization.
823 if (!MDNodes.insert(MD).second)
824 return;
825
826 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
827 visitValueAsMetadata(*V, F);
828}
829
830static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
831static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
832static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
833
834void Verifier::visitDILocation(const DILocation &N) {
835 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
836 "location requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("location requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
837 if (auto *IA = N.getRawInlinedAt())
838 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA)do { if (!(isa<DILocation>(IA))) { DebugInfoCheckFailed
("inlined-at should be a location", &N, IA); return; } } while
(false)
;
839}
840
841void Verifier::visitGenericDINode(const GenericDINode &N) {
842 AssertDI(N.getTag(), "invalid tag", &N)do { if (!(N.getTag())) { DebugInfoCheckFailed("invalid tag",
&N); return; } } while (false)
;
843}
844
845void Verifier::visitDIScope(const DIScope &N) {
846 if (auto *F = N.getRawFile())
847 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
848}
849
850void Verifier::visitDISubrange(const DISubrange &N) {
851 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subrange_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
852 AssertDI(N.getCount() >= -1, "invalid subrange count", &N)do { if (!(N.getCount() >= -1)) { DebugInfoCheckFailed("invalid subrange count"
, &N); return; } } while (false)
;
853}
854
855void Verifier::visitDIEnumerator(const DIEnumerator &N) {
856 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_enumerator)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
857}
858
859void Verifier::visitDIBasicType(const DIBasicType &N) {
860 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
861 N.getTag() == dwarf::DW_TAG_unspecified_type,do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
862 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_base_type || N.getTag(
) == dwarf::DW_TAG_unspecified_type)) { DebugInfoCheckFailed(
"invalid tag", &N); return; } } while (false)
;
863}
864
865void Verifier::visitDIDerivedType(const DIDerivedType &N) {
866 // Common scope checks.
867 visitDIScope(N);
868
869 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
870 N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
871 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
872 N.getTag() == dwarf::DW_TAG_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
873 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
874 N.getTag() == dwarf::DW_TAG_const_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
875 N.getTag() == dwarf::DW_TAG_volatile_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
876 N.getTag() == dwarf::DW_TAG_restrict_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
877 N.getTag() == dwarf::DW_TAG_atomic_type ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
878 N.getTag() == dwarf::DW_TAG_member ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
879 N.getTag() == dwarf::DW_TAG_inheritance ||do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
880 N.getTag() == dwarf::DW_TAG_friend,do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
881 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_typedef || N.getTag() ==
dwarf::DW_TAG_pointer_type || N.getTag() == dwarf::DW_TAG_ptr_to_member_type
|| N.getTag() == dwarf::DW_TAG_reference_type || N.getTag() ==
dwarf::DW_TAG_rvalue_reference_type || N.getTag() == dwarf::
DW_TAG_const_type || N.getTag() == dwarf::DW_TAG_volatile_type
|| N.getTag() == dwarf::DW_TAG_restrict_type || N.getTag() ==
dwarf::DW_TAG_atomic_type || N.getTag() == dwarf::DW_TAG_member
|| N.getTag() == dwarf::DW_TAG_inheritance || N.getTag() == dwarf
::DW_TAG_friend)) { DebugInfoCheckFailed("invalid tag", &
N); return; } } while (false)
;
882 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
883 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
884 N.getRawExtraData())do { if (!(isType(N.getRawExtraData()))) { DebugInfoCheckFailed
("invalid pointer to member type", &N, N.getRawExtraData(
)); return; } } while (false)
;
885 }
886
887 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
888 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
889 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
890
891 if (N.getDWARFAddressSpace()) {
892 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
893 N.getTag() == dwarf::DW_TAG_reference_type,do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
894 "DWARF address space only applies to pointer or reference types",do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
895 &N)do { if (!(N.getTag() == dwarf::DW_TAG_pointer_type || N.getTag
() == dwarf::DW_TAG_reference_type)) { DebugInfoCheckFailed("DWARF address space only applies to pointer or reference types"
, &N); return; } } while (false)
;
896 }
897}
898
899static bool hasConflictingReferenceFlags(unsigned Flags) {
900 return (Flags & DINode::FlagLValueReference) &&
901 (Flags & DINode::FlagRValueReference);
902}
903
904void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
905 auto *Params = dyn_cast<MDTuple>(&RawParams);
906 AssertDI(Params, "invalid template params", &N, &RawParams)do { if (!(Params)) { DebugInfoCheckFailed("invalid template params"
, &N, &RawParams); return; } } while (false)
;
907 for (Metadata *Op : Params->operands()) {
908 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
909 &N, Params, Op)do { if (!(Op && isa<DITemplateParameter>(Op)))
{ DebugInfoCheckFailed("invalid template parameter", &N,
Params, Op); return; } } while (false)
;
910 }
911}
912
913void Verifier::visitDICompositeType(const DICompositeType &N) {
914 // Common scope checks.
915 visitDIScope(N);
916
917 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
918 N.getTag() == dwarf::DW_TAG_structure_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
919 N.getTag() == dwarf::DW_TAG_union_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
920 N.getTag() == dwarf::DW_TAG_enumeration_type ||do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
921 N.getTag() == dwarf::DW_TAG_class_type,do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
922 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_array_type || N.getTag
() == dwarf::DW_TAG_structure_type || N.getTag() == dwarf::DW_TAG_union_type
|| N.getTag() == dwarf::DW_TAG_enumeration_type || N.getTag(
) == dwarf::DW_TAG_class_type)) { DebugInfoCheckFailed("invalid tag"
, &N); return; } } while (false)
;
923
924 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
925 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
926 N.getRawBaseType())do { if (!(isType(N.getRawBaseType()))) { DebugInfoCheckFailed
("invalid base type", &N, N.getRawBaseType()); return; } }
while (false)
;
927
928 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
929 "invalid composite elements", &N, N.getRawElements())do { if (!(!N.getRawElements() || isa<MDTuple>(N.getRawElements
()))) { DebugInfoCheckFailed("invalid composite elements", &
N, N.getRawElements()); return; } } while (false)
;
930 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
931 N.getRawVTableHolder())do { if (!(isType(N.getRawVTableHolder()))) { DebugInfoCheckFailed
("invalid vtable holder", &N, N.getRawVTableHolder()); return
; } } while (false)
;
932 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
933 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
934 if (auto *Params = N.getRawTemplateParams())
935 visitTemplateParams(N, *Params);
936
937 if (N.getTag() == dwarf::DW_TAG_class_type ||
938 N.getTag() == dwarf::DW_TAG_union_type) {
939 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
940 "class/union requires a filename", &N, N.getFile())do { if (!(N.getFile() && !N.getFile()->getFilename
().empty())) { DebugInfoCheckFailed("class/union requires a filename"
, &N, N.getFile()); return; } } while (false)
;
941 }
942}
943
944void Verifier::visitDISubroutineType(const DISubroutineType &N) {
945 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subroutine_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
946 if (auto *Types = N.getRawTypeArray()) {
947 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types)do { if (!(isa<MDTuple>(Types))) { DebugInfoCheckFailed
("invalid composite elements", &N, Types); return; } } while
(false)
;
948 for (Metadata *Ty : N.getTypeArray()->operands()) {
949 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty)do { if (!(isType(Ty))) { DebugInfoCheckFailed("invalid subroutine type ref"
, &N, Types, Ty); return; } } while (false)
;
950 }
951 }
952 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
953 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
954}
955
956void Verifier::visitDIFile(const DIFile &N) {
957 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_file_type)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
958 AssertDI((N.getChecksumKind() != DIFile::CSK_None ||do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
959 N.getChecksum().empty()), "invalid checksum kind", &N)do { if (!((N.getChecksumKind() != DIFile::CSK_None || N.getChecksum
().empty()))) { DebugInfoCheckFailed("invalid checksum kind",
&N); return; } } while (false)
;
960}
961
962void Verifier::visitDICompileUnit(const DICompileUnit &N) {
963 AssertDI(N.isDistinct(), "compile units must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("compile units must be distinct"
, &N); return; } } while (false)
;
964 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_compile_unit)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
965
966 // Don't bother verifying the compilation directory or producer string
967 // as those could be empty.
968 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
969 N.getRawFile())do { if (!(N.getRawFile() && isa<DIFile>(N.getRawFile
()))) { DebugInfoCheckFailed("invalid file", &N, N.getRawFile
()); return; } } while (false)
;
970 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
971 N.getFile())do { if (!(!N.getFile()->getFilename().empty())) { DebugInfoCheckFailed
("invalid filename", &N, N.getFile()); return; } } while (
false)
;
972
973 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
974 "invalid emission kind", &N)do { if (!((N.getEmissionKind() <= DICompileUnit::LastEmissionKind
))) { DebugInfoCheckFailed("invalid emission kind", &N); return
; } } while (false)
;
975
976 if (auto *Array = N.getRawEnumTypes()) {
977 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid enum list", &N, Array); return; } } while (false
)
;
978 for (Metadata *Op : N.getEnumTypes()->operands()) {
979 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
980 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
981 "invalid enum type", &N, N.getEnumTypes(), Op)do { if (!(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type
)) { DebugInfoCheckFailed("invalid enum type", &N, N.getEnumTypes
(), Op); return; } } while (false)
;
982 }
983 }
984 if (auto *Array = N.getRawRetainedTypes()) {
985 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid retained type list", &N, Array); return; } } while
(false)
;
986 for (Metadata *Op : N.getRetainedTypes()->operands()) {
987 AssertDI(Op && (isa<DIType>(Op) ||do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
988 (isa<DISubprogram>(Op) &&do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
989 !cast<DISubprogram>(Op)->isDefinition())),do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
990 "invalid retained type", &N, Op)do { if (!(Op && (isa<DIType>(Op) || (isa<DISubprogram
>(Op) && !cast<DISubprogram>(Op)->isDefinition
())))) { DebugInfoCheckFailed("invalid retained type", &N
, Op); return; } } while (false)
;
991 }
992 }
993 if (auto *Array = N.getRawGlobalVariables()) {
994 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid global variable list", &N, Array); return; } } while
(false)
;
995 for (Metadata *Op : N.getGlobalVariables()->operands()) {
996 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
997 "invalid global variable ref", &N, Op)do { if (!(Op && (isa<DIGlobalVariableExpression>
(Op)))) { DebugInfoCheckFailed("invalid global variable ref",
&N, Op); return; } } while (false)
;
998 }
999 }
1000 if (auto *Array = N.getRawImportedEntities()) {
1001 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid imported entity list", &N, Array); return; } } while
(false)
;
1002 for (Metadata *Op : N.getImportedEntities()->operands()) {
1003 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
1004 &N, Op)do { if (!(Op && isa<DIImportedEntity>(Op))) { DebugInfoCheckFailed
("invalid imported entity ref", &N, Op); return; } } while
(false)
;
1005 }
1006 }
1007 if (auto *Array = N.getRawMacros()) {
1008 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1009 for (Metadata *Op : N.getMacros()->operands()) {
1010 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1011 }
1012 }
1013 CUVisited.insert(&N);
1014}
1015
1016void Verifier::visitDISubprogram(const DISubprogram &N) {
1017 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_subprogram)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1018 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope())do { if (!(isScope(N.getRawScope()))) { DebugInfoCheckFailed(
"invalid scope", &N, N.getRawScope()); return; } } while (
false)
;
1019 if (auto *F = N.getRawFile())
1020 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1021 else
1022 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine())do { if (!(N.getLine() == 0)) { DebugInfoCheckFailed("line specified with no file"
, &N, N.getLine()); return; } } while (false)
;
1023 if (auto *T = N.getRawType())
1024 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T)do { if (!(isa<DISubroutineType>(T))) { DebugInfoCheckFailed
("invalid subroutine type", &N, T); return; } } while (false
)
;
1025 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
1026 N.getRawContainingType())do { if (!(isType(N.getRawContainingType()))) { DebugInfoCheckFailed
("invalid containing type", &N, N.getRawContainingType())
; return; } } while (false)
;
1027 if (auto *Params = N.getRawTemplateParams())
1028 visitTemplateParams(N, *Params);
1029 if (auto *S = N.getRawDeclaration())
1030 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
1031 "invalid subprogram declaration", &N, S)do { if (!(isa<DISubprogram>(S) && !cast<DISubprogram
>(S)->isDefinition())) { DebugInfoCheckFailed("invalid subprogram declaration"
, &N, S); return; } } while (false)
;
1032 if (auto *RawVars = N.getRawVariables()) {
1033 auto *Vars = dyn_cast<MDTuple>(RawVars);
1034 AssertDI(Vars, "invalid variable list", &N, RawVars)do { if (!(Vars)) { DebugInfoCheckFailed("invalid variable list"
, &N, RawVars); return; } } while (false)
;
1035 for (Metadata *Op : Vars->operands()) {
1036 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
1037 Vars, Op)do { if (!(Op && isa<DILocalVariable>(Op))) { DebugInfoCheckFailed
("invalid local variable", &N, Vars, Op); return; } } while
(false)
;
1038 }
1039 }
1040 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
1041 "invalid reference flags", &N)do { if (!(!hasConflictingReferenceFlags(N.getFlags()))) { DebugInfoCheckFailed
("invalid reference flags", &N); return; } } while (false
)
;
1042
1043 auto *Unit = N.getRawUnit();
1044 if (N.isDefinition()) {
1045 // Subprogram definitions (not part of the type hierarchy).
1046 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N)do { if (!(N.isDistinct())) { DebugInfoCheckFailed("subprogram definitions must be distinct"
, &N); return; } } while (false)
;
1047 AssertDI(Unit, "subprogram definitions must have a compile unit", &N)do { if (!(Unit)) { DebugInfoCheckFailed("subprogram definitions must have a compile unit"
, &N); return; } } while (false)
;
1048 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit)do { if (!(isa<DICompileUnit>(Unit))) { DebugInfoCheckFailed
("invalid unit type", &N, Unit); return; } } while (false
)
;
1049 } else {
1050 // Subprogram declarations (part of the type hierarchy).
1051 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N)do { if (!(!Unit)) { DebugInfoCheckFailed("subprogram declarations must not have a compile unit"
, &N); return; } } while (false)
;
1052 }
1053
1054 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1055 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1056 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes)do { if (!(ThrownTypes)) { DebugInfoCheckFailed("invalid thrown types list"
, &N, RawThrownTypes); return; } } while (false)
;
1057 for (Metadata *Op : ThrownTypes->operands())
1058 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
1059 Op)do { if (!(Op && isa<DIType>(Op))) { DebugInfoCheckFailed
("invalid thrown type", &N, ThrownTypes, Op); return; } }
while (false)
;
1060 }
1061}
1062
1063void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1064 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_lexical_block)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1065 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
1066 "invalid local scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("invalid local scope"
, &N, N.getRawScope()); return; } } while (false)
;
1067}
1068
1069void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1070 visitDILexicalBlockBase(N);
1071
1072 AssertDI(N.getLine() || !N.getColumn(),do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
1073 "cannot have column info without line info", &N)do { if (!(N.getLine() || !N.getColumn())) { DebugInfoCheckFailed
("cannot have column info without line info", &N); return
; } } while (false)
;
1074}
1075
1076void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1077 visitDILexicalBlockBase(N);
1078}
1079
1080void Verifier::visitDINamespace(const DINamespace &N) {
1081 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_namespace)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1082 if (auto *S = N.getRawScope())
1083 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope ref"
, &N, S); return; } } while (false)
;
1084}
1085
1086void Verifier::visitDIMacro(const DIMacro &N) {
1087 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1088 N.getMacinfoType() == dwarf::DW_MACINFO_undef,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
1089 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_define || N
.getMacinfoType() == dwarf::DW_MACINFO_undef)) { DebugInfoCheckFailed
("invalid macinfo type", &N); return; } } while (false)
;
1090 AssertDI(!N.getName().empty(), "anonymous macro", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous macro"
, &N); return; } } while (false)
;
1091 if (!N.getValue().empty()) {
1092 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix")((N.getValue().data()[0] != ' ' && "Macro value has a space prefix"
) ? static_cast<void> (0) : __assert_fail ("N.getValue().data()[0] != ' ' && \"Macro value has a space prefix\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 1092, __PRETTY_FUNCTION__))
;
1093 }
1094}
1095
1096void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1097 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
1098 "invalid macinfo type", &N)do { if (!(N.getMacinfoType() == dwarf::DW_MACINFO_start_file
)) { DebugInfoCheckFailed("invalid macinfo type", &N); return
; } } while (false)
;
1099 if (auto *F = N.getRawFile())
1100 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1101
1102 if (auto *Array = N.getRawElements()) {
1103 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array)do { if (!(isa<MDTuple>(Array))) { DebugInfoCheckFailed
("invalid macro list", &N, Array); return; } } while (false
)
;
1104 for (Metadata *Op : N.getElements()->operands()) {
1105 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op)do { if (!(Op && isa<DIMacroNode>(Op))) { DebugInfoCheckFailed
("invalid macro ref", &N, Op); return; } } while (false)
;
1106 }
1107 }
1108}
1109
1110void Verifier::visitDIModule(const DIModule &N) {
1111 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_module)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1112 AssertDI(!N.getName().empty(), "anonymous module", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("anonymous module"
, &N); return; } } while (false)
;
1113}
1114
1115void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1116 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1117}
1118
1119void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1120 visitDITemplateParameter(N);
1121
1122 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
1123 &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_type_parameter
)) { DebugInfoCheckFailed("invalid tag", &N); return; } }
while (false)
;
1124}
1125
1126void Verifier::visitDITemplateValueParameter(
1127 const DITemplateValueParameter &N) {
1128 visitDITemplateParameter(N);
1129
1130 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1131 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1132 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1133 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_template_value_parameter
|| N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1134}
1135
1136void Verifier::visitDIVariable(const DIVariable &N) {
1137 if (auto *S = N.getRawScope())
1138 AssertDI(isa<DIScope>(S), "invalid scope", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope"
, &N, S); return; } } while (false)
;
1139 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType())do { if (!(isType(N.getRawType()))) { DebugInfoCheckFailed("invalid type ref"
, &N, N.getRawType()); return; } } while (false)
;
1140 if (auto *F = N.getRawFile())
1141 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1142}
1143
1144void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1145 // Checks common to all variables.
1146 visitDIVariable(N);
1147
1148 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1149 AssertDI(!N.getName().empty(), "missing global variable name", &N)do { if (!(!N.getName().empty())) { DebugInfoCheckFailed("missing global variable name"
, &N); return; } } while (false)
;
1150 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1151 AssertDI(isa<DIDerivedType>(Member),do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
1152 "invalid static data member declaration", &N, Member)do { if (!(isa<DIDerivedType>(Member))) { DebugInfoCheckFailed
("invalid static data member declaration", &N, Member); return
; } } while (false)
;
1153 }
1154}
1155
1156void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1157 // Checks common to all variables.
1158 visitDIVariable(N);
1159
1160 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_variable)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1161 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
1162 "local variable requires a valid scope", &N, N.getRawScope())do { if (!(N.getRawScope() && isa<DILocalScope>
(N.getRawScope()))) { DebugInfoCheckFailed("local variable requires a valid scope"
, &N, N.getRawScope()); return; } } while (false)
;
1163}
1164
1165void Verifier::visitDIExpression(const DIExpression &N) {
1166 AssertDI(N.isValid(), "invalid expression", &N)do { if (!(N.isValid())) { DebugInfoCheckFailed("invalid expression"
, &N); return; } } while (false)
;
1167}
1168
1169void Verifier::visitDIGlobalVariableExpression(
1170 const DIGlobalVariableExpression &GVE) {
1171 AssertDI(GVE.getVariable(), "missing variable")do { if (!(GVE.getVariable())) { DebugInfoCheckFailed("missing variable"
); return; } } while (false)
;
1172 if (auto *Var = GVE.getVariable())
1173 visitDIGlobalVariable(*Var);
1174 if (auto *Expr = GVE.getExpression())
1175 visitDIExpression(*Expr);
1176}
1177
1178void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1179 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_APPLE_property)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1180 if (auto *T = N.getRawType())
1181 AssertDI(isType(T), "invalid type ref", &N, T)do { if (!(isType(T))) { DebugInfoCheckFailed("invalid type ref"
, &N, T); return; } } while (false)
;
1182 if (auto *F = N.getRawFile())
1183 AssertDI(isa<DIFile>(F), "invalid file", &N, F)do { if (!(isa<DIFile>(F))) { DebugInfoCheckFailed("invalid file"
, &N, F); return; } } while (false)
;
1184}
1185
1186void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1187 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1188 N.getTag() == dwarf::DW_TAG_imported_declaration,do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
1189 "invalid tag", &N)do { if (!(N.getTag() == dwarf::DW_TAG_imported_module || N.getTag
() == dwarf::DW_TAG_imported_declaration)) { DebugInfoCheckFailed
("invalid tag", &N); return; } } while (false)
;
1190 if (auto *S = N.getRawScope())
1191 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S)do { if (!(isa<DIScope>(S))) { DebugInfoCheckFailed("invalid scope for imported entity"
, &N, S); return; } } while (false)
;
1192 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
1193 N.getRawEntity())do { if (!(isDINode(N.getRawEntity()))) { DebugInfoCheckFailed
("invalid imported entity", &N, N.getRawEntity()); return
; } } while (false)
;
1194}
1195
1196void Verifier::visitComdat(const Comdat &C) {
1197 // The Module is invalid if the GlobalValue has private linkage. Entities
1198 // with private linkage don't have entries in the symbol table.
1199 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1200 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
1201 GV)do { if (!(!GV->hasPrivateLinkage())) { CheckFailed("comdat global value has private linkage"
, GV); return; } } while (false)
;
1202}
1203
1204void Verifier::visitModuleIdents(const Module &M) {
1205 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1206 if (!Idents)
1207 return;
1208
1209 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1210 // Scan each llvm.ident entry and make sure that this requirement is met.
1211 for (const MDNode *N : Idents->operands()) {
1212 Assert(N->getNumOperands() == 1,do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
1213 "incorrect number of operands in llvm.ident metadata", N)do { if (!(N->getNumOperands() == 1)) { CheckFailed("incorrect number of operands in llvm.ident metadata"
, N); return; } } while (false)
;
1214 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1215 ("invalid value for llvm.ident metadata entry operand"do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1216 "(the operand should be a string)"),do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
1217 N->getOperand(0))do { if (!(dyn_cast_or_null<MDString>(N->getOperand(
0)))) { CheckFailed(("invalid value for llvm.ident metadata entry operand"
"(the operand should be a string)"), N->getOperand(0)); return
; } } while (false)
;
1218 }
1219}
1220
1221void Verifier::visitModuleFlags(const Module &M) {
1222 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1223 if (!Flags) return;
1224
1225 // Scan each flag, and track the flags and requirements.
1226 DenseMap<const MDString*, const MDNode*> SeenIDs;
1227 SmallVector<const MDNode*, 16> Requirements;
1228 for (const MDNode *MDN : Flags->operands())
1229 visitModuleFlag(MDN, SeenIDs, Requirements);
1230
1231 // Validate that the requirements in the module are valid.
1232 for (const MDNode *Requirement : Requirements) {
1233 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1234 const Metadata *ReqValue = Requirement->getOperand(1);
1235
1236 const MDNode *Op = SeenIDs.lookup(Flag);
1237 if (!Op) {
1238 CheckFailed("invalid requirement on flag, flag is not present in module",
1239 Flag);
1240 continue;
1241 }
1242
1243 if (Op->getOperand(2) != ReqValue) {
1244 CheckFailed(("invalid requirement on flag, "
1245 "flag does not have the required value"),
1246 Flag);
1247 continue;
1248 }
1249 }
1250}
1251
1252void
1253Verifier::visitModuleFlag(const MDNode *Op,
1254 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1255 SmallVectorImpl<const MDNode *> &Requirements) {
1256 // Each module flag should have three arguments, the merge behavior (a
1257 // constant int), the flag ID (an MDString), and the value.
1258 Assert(Op->getNumOperands() == 3,do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
1259 "incorrect number of operands in module flag", Op)do { if (!(Op->getNumOperands() == 3)) { CheckFailed("incorrect number of operands in module flag"
, Op); return; } } while (false)
;
1260 Module::ModFlagBehavior MFB;
1261 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1262 Assert(do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1263 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1264 "invalid behavior operand in module flag (expected constant integer)",do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
1265 Op->getOperand(0))do { if (!(mdconst::dyn_extract_or_null<ConstantInt>(Op
->getOperand(0)))) { CheckFailed("invalid behavior operand in module flag (expected constant integer)"
, Op->getOperand(0)); return; } } while (false)
;
1266 Assert(false,do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1267 "invalid behavior operand in module flag (unexpected constant)",do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
1268 Op->getOperand(0))do { if (!(false)) { CheckFailed("invalid behavior operand in module flag (unexpected constant)"
, Op->getOperand(0)); return; } } while (false)
;
1269 }
1270 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1271 Assert(ID, "invalid ID operand in module flag (expected metadata string)",do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
1272 Op->getOperand(1))do { if (!(ID)) { CheckFailed("invalid ID operand in module flag (expected metadata string)"
, Op->getOperand(1)); return; } } while (false)
;
1273
1274 // Sanity check the values for behaviors with additional requirements.
1275 switch (MFB) {
1276 case Module::Error:
1277 case Module::Warning:
1278 case Module::Override:
1279 // These behavior types accept any value.
1280 break;
1281
1282 case Module::Require: {
1283 // The value should itself be an MDNode with two operands, a flag ID (an
1284 // MDString), and a value.
1285 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1286 Assert(Value && Value->getNumOperands() == 2,do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1287 "invalid value for 'require' module flag (expected metadata pair)",do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
1288 Op->getOperand(2))do { if (!(Value && Value->getNumOperands() == 2))
{ CheckFailed("invalid value for 'require' module flag (expected metadata pair)"
, Op->getOperand(2)); return; } } while (false)
;
1289 Assert(isa<MDString>(Value->getOperand(0)),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1290 ("invalid value for 'require' module flag "do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1291 "(first value operand should be a string)"),do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
1292 Value->getOperand(0))do { if (!(isa<MDString>(Value->getOperand(0)))) { CheckFailed
(("invalid value for 'require' module flag " "(first value operand should be a string)"
), Value->getOperand(0)); return; } } while (false)
;
1293
1294 // Append it to the list of requirements, to check once all module flags are
1295 // scanned.
1296 Requirements.push_back(Value);
1297 break;
1298 }
1299
1300 case Module::Append:
1301 case Module::AppendUnique: {
1302 // These behavior types require the operand be an MDNode.
1303 Assert(isa<MDNode>(Op->getOperand(2)),do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1304 "invalid value for 'append'-type module flag "do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1305 "(expected a metadata node)",do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
1306 Op->getOperand(2))do { if (!(isa<MDNode>(Op->getOperand(2)))) { CheckFailed
("invalid value for 'append'-type module flag " "(expected a metadata node)"
, Op->getOperand(2)); return; } } while (false)
;
1307 break;
1308 }
1309 }
1310
1311 // Unless this is a "requires" flag, check the ID is unique.
1312 if (MFB != Module::Require) {
1313 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1314 Assert(Inserted,do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
1315 "module flag identifiers must be unique (or of 'require' type)", ID)do { if (!(Inserted)) { CheckFailed("module flag identifiers must be unique (or of 'require' type)"
, ID); return; } } while (false)
;
1316 }
1317}
1318
1319/// Return true if this attribute kind only applies to functions.
1320static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1321 switch (Kind) {
1322 case Attribute::NoReturn:
1323 case Attribute::NoUnwind:
1324 case Attribute::NoInline:
1325 case Attribute::AlwaysInline:
1326 case Attribute::OptimizeForSize:
1327 case Attribute::StackProtect:
1328 case Attribute::StackProtectReq:
1329 case Attribute::StackProtectStrong:
1330 case Attribute::SafeStack:
1331 case Attribute::NoRedZone:
1332 case Attribute::NoImplicitFloat:
1333 case Attribute::Naked:
1334 case Attribute::InlineHint:
1335 case Attribute::StackAlignment:
1336 case Attribute::UWTable:
1337 case Attribute::NonLazyBind:
1338 case Attribute::ReturnsTwice:
1339 case Attribute::SanitizeAddress:
1340 case Attribute::SanitizeThread:
1341 case Attribute::SanitizeMemory:
1342 case Attribute::MinSize:
1343 case Attribute::NoDuplicate:
1344 case Attribute::Builtin:
1345 case Attribute::NoBuiltin:
1346 case Attribute::Cold:
1347 case Attribute::OptimizeNone:
1348 case Attribute::JumpTable:
1349 case Attribute::Convergent:
1350 case Attribute::ArgMemOnly:
1351 case Attribute::NoRecurse:
1352 case Attribute::InaccessibleMemOnly:
1353 case Attribute::InaccessibleMemOrArgMemOnly:
1354 case Attribute::AllocSize:
1355 case Attribute::Speculatable:
1356 return true;
1357 default:
1358 break;
1359 }
1360 return false;
1361}
1362
1363/// Return true if this is a function attribute that can also appear on
1364/// arguments.
1365static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1366 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1367 Kind == Attribute::ReadNone;
1368}
1369
1370void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1371 const Value *V) {
1372 for (Attribute A : Attrs) {
1373 if (A.isStringAttribute())
1374 continue;
1375
1376 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1377 if (!IsFunction) {
1378 CheckFailed("Attribute '" + A.getAsString() +
1379 "' only applies to functions!",
1380 V);
1381 return;
1382 }
1383 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1384 CheckFailed("Attribute '" + A.getAsString() +
1385 "' does not apply to functions!",
1386 V);
1387 return;
1388 }
1389 }
1390}
1391
1392// VerifyParameterAttrs - Check the given attributes for an argument or return
1393// value of the specified type. The value V is printed in error messages.
1394void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1395 const Value *V) {
1396 if (!Attrs.hasAttributes())
1397 return;
1398
1399 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1400
1401 // Check for mutually incompatible attributes. Only inreg is compatible with
1402 // sret.
1403 unsigned AttrCount = 0;
1404 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1405 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1406 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1407 Attrs.hasAttribute(Attribute::InReg);
1408 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1409 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1410 "and 'sret' are incompatible!",do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
1411 V)do { if (!(AttrCount <= 1)) { CheckFailed("Attributes 'byval', 'inalloca', 'inreg', 'nest', "
"and 'sret' are incompatible!", V); return; } } while (false
)
;
1412
1413 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1414 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1415 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1416 "'inalloca and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
1417 V)do { if (!(!(Attrs.hasAttribute(Attribute::InAlloca) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'inalloca and readonly' are incompatible!", V); return; } }
while (false)
;
1418
1419 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1420 Attrs.hasAttribute(Attribute::Returned)),do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1421 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1422 "'sret and returned' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
1423 V)do { if (!(!(Attrs.hasAttribute(Attribute::StructRet) &&
Attrs.hasAttribute(Attribute::Returned)))) { CheckFailed("Attributes "
"'sret and returned' are incompatible!", V); return; } } while
(false)
;
1424
1425 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1426 Attrs.hasAttribute(Attribute::SExt)),do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1427 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1428 "'zeroext and signext' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
1429 V)do { if (!(!(Attrs.hasAttribute(Attribute::ZExt) && Attrs
.hasAttribute(Attribute::SExt)))) { CheckFailed("Attributes "
"'zeroext and signext' are incompatible!", V); return; } } while
(false)
;
1430
1431 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1432 Attrs.hasAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1433 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1434 "'readnone and readonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
1435 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes "
"'readnone and readonly' are incompatible!", V); return; } }
while (false)
;
1436
1437 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1438 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1439 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1440 "'readnone and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
1441 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadNone) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readnone and writeonly' are incompatible!", V); return; } }
while (false)
;
1442
1443 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1444 Attrs.hasAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1445 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1446 "'readonly and writeonly' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
1447 V)do { if (!(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
Attrs.hasAttribute(Attribute::WriteOnly)))) { CheckFailed("Attributes "
"'readonly and writeonly' are incompatible!", V); return; } }
while (false)
;
1448
1449 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1450 Attrs.hasAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1451 "Attributes "do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1452 "'noinline and alwaysinline' are incompatible!",do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
1453 V)do { if (!(!(Attrs.hasAttribute(Attribute::NoInline) &&
Attrs.hasAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes " "'noinline and alwaysinline' are incompatible!"
, V); return; } } while (false)
;
1454
1455 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1456 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1457 "Wrong types for attribute: " +do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1458 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
1459 V)do { if (!(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs))) {
CheckFailed("Wrong types for attribute: " + AttributeSet::get
(Context, IncompatibleAttrs).getAsString(), V); return; } } while
(false)
;
1460
1461 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1462 SmallPtrSet<Type*, 4> Visited;
1463 if (!PTy->getElementType()->isSized(&Visited)) {
1464 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1465 !Attrs.hasAttribute(Attribute::InAlloca),do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1466 "Attributes 'byval' and 'inalloca' do not support unsized types!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
1467 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal) && !
Attrs.hasAttribute(Attribute::InAlloca))) { CheckFailed("Attributes 'byval' and 'inalloca' do not support unsized types!"
, V); return; } } while (false)
;
1468 }
1469 if (!isa<PointerType>(PTy->getElementType()))
1470 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1471 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1472 "with pointer to pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
1473 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer to pointer type!"
, V); return; } } while (false)
;
1474 } else {
1475 Assert(!Attrs.hasAttribute(Attribute::ByVal),do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1476 "Attribute 'byval' only applies to parameters with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
1477 V)do { if (!(!Attrs.hasAttribute(Attribute::ByVal))) { CheckFailed
("Attribute 'byval' only applies to parameters with pointer type!"
, V); return; } } while (false)
;
1478 Assert(!Attrs.hasAttribute(Attribute::SwiftError),do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1479 "Attribute 'swifterror' only applies to parameters "do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1480 "with pointer type!",do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
1481 V)do { if (!(!Attrs.hasAttribute(Attribute::SwiftError))) { CheckFailed
("Attribute 'swifterror' only applies to parameters " "with pointer type!"
, V); return; } } while (false)
;
1482 }
1483}
1484
1485// Check parameter attributes against a function type.
1486// The value V is printed in error messages.
1487void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1488 const Value *V) {
1489 if (Attrs.isEmpty())
1490 return;
1491
1492 bool SawNest = false;
1493 bool SawReturned = false;
1494 bool SawSRet = false;
1495 bool SawSwiftSelf = false;
1496 bool SawSwiftError = false;
1497
1498 // Verify return value attributes.
1499 AttributeSet RetAttrs = Attrs.getRetAttributes();
1500 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1501 !RetAttrs.hasAttribute(Attribute::Nest) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1502 !RetAttrs.hasAttribute(Attribute::StructRet) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1503 !RetAttrs.hasAttribute(Attribute::NoCapture) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1504 !RetAttrs.hasAttribute(Attribute::Returned) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1505 !RetAttrs.hasAttribute(Attribute::InAlloca) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1506 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1507 !RetAttrs.hasAttribute(Attribute::SwiftError)),do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1508 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1509 "'returned', 'swiftself', and 'swifterror' do not apply to return "do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1510 "values!",do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
1511 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ByVal) &&
!RetAttrs.hasAttribute(Attribute::Nest) && !RetAttrs
.hasAttribute(Attribute::StructRet) && !RetAttrs.hasAttribute
(Attribute::NoCapture) && !RetAttrs.hasAttribute(Attribute
::Returned) && !RetAttrs.hasAttribute(Attribute::InAlloca
) && !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
!RetAttrs.hasAttribute(Attribute::SwiftError)))) { CheckFailed
("Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
"'returned', 'swiftself', and 'swifterror' do not apply to return "
"values!", V); return; } } while (false)
;
1512 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1513 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1514 !RetAttrs.hasAttribute(Attribute::ReadNone)),do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1515 "Attribute '" + RetAttrs.getAsString() +do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1516 "' does not apply to function returns",do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
1517 V)do { if (!((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
!RetAttrs.hasAttribute(Attribute::WriteOnly) && !RetAttrs
.hasAttribute(Attribute::ReadNone)))) { CheckFailed("Attribute '"
+ RetAttrs.getAsString() + "' does not apply to function returns"
, V); return; } } while (false)
;
1518 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1519
1520 // Verify parameter attributes.
1521 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1522 Type *Ty = FT->getParamType(i);
1523 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1524
1525 verifyParameterAttrs(ArgAttrs, Ty, V);
1526
1527 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1528 Assert(!SawNest, "More than one parameter has attribute nest!", V)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, V); return; } } while (false)
;
1529 SawNest = true;
1530 }
1531
1532 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1533 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
1534 V)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, V); return; } } while (false)
;
1535 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1536 "Incompatible argument and return types for 'returned' attribute",do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
1537 V)do { if (!(Ty->canLosslesslyBitCastTo(FT->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' attribute"
, V); return; } } while (false)
;
1538 SawReturned = true;
1539 }
1540
1541 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1542 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V)do { if (!(!SawSRet)) { CheckFailed("Cannot have multiple 'sret' parameters!"
, V); return; } } while (false)
;
1543 Assert(i == 0 || i == 1,do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
1544 "Attribute 'sret' is not on first or second parameter!", V)do { if (!(i == 0 || i == 1)) { CheckFailed("Attribute 'sret' is not on first or second parameter!"
, V); return; } } while (false)
;
1545 SawSRet = true;
1546 }
1547
1548 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1549 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V)do { if (!(!SawSwiftSelf)) { CheckFailed("Cannot have multiple 'swiftself' parameters!"
, V); return; } } while (false)
;
1550 SawSwiftSelf = true;
1551 }
1552
1553 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1554 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
1555 V)do { if (!(!SawSwiftError)) { CheckFailed("Cannot have multiple 'swifterror' parameters!"
, V); return; } } while (false)
;
1556 SawSwiftError = true;
1557 }
1558
1559 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1560 Assert(i == FT->getNumParams() - 1,do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
1561 "inalloca isn't on the last parameter!", V)do { if (!(i == FT->getNumParams() - 1)) { CheckFailed("inalloca isn't on the last parameter!"
, V); return; } } while (false)
;
1562 }
1563 }
1564
1565 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1566 return;
1567
1568 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1569
1570 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1571 Attrs.hasFnAttribute(Attribute::ReadOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
1572 "Attributes 'readnone and readonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::ReadOnly)))) { CheckFailed("Attributes 'readnone and readonly' are incompatible!"
, V); return; } } while (false)
;
1573
1574 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1575 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
1576 "Attributes 'readnone and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readnone and writeonly' are incompatible!", V); return
; } } while (false)
;
1577
1578 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1579 Attrs.hasFnAttribute(Attribute::WriteOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
1580 "Attributes 'readonly and writeonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
Attrs.hasFnAttribute(Attribute::WriteOnly)))) { CheckFailed(
"Attributes 'readonly and writeonly' are incompatible!", V); return
; } } while (false)
;
1581
1582 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1583 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1584 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1585 "incompatible!",do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
1586 V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)
))) { CheckFailed("Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
"incompatible!", V); return; } } while (false)
;
1587
1588 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1589 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
1590 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)))) { CheckFailed
("Attributes 'readnone and inaccessiblememonly' are incompatible!"
, V); return; } } while (false)
;
1591
1592 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1593 Attrs.hasFnAttribute(Attribute::AlwaysInline)),do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
1594 "Attributes 'noinline and alwaysinline' are incompatible!", V)do { if (!(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
Attrs.hasFnAttribute(Attribute::AlwaysInline)))) { CheckFailed
("Attributes 'noinline and alwaysinline' are incompatible!", V
); return; } } while (false)
;
1595
1596 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1597 Assert(Attrs.hasFnAttribute(Attribute::NoInline),do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
1598 "Attribute 'optnone' requires 'noinline'!", V)do { if (!(Attrs.hasFnAttribute(Attribute::NoInline))) { CheckFailed
("Attribute 'optnone' requires 'noinline'!", V); return; } } while
(false)
;
1599
1600 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
1601 "Attributes 'optsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::OptimizeForSize))
) { CheckFailed("Attributes 'optsize and optnone' are incompatible!"
, V); return; } } while (false)
;
1602
1603 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
1604 "Attributes 'minsize and optnone' are incompatible!", V)do { if (!(!Attrs.hasFnAttribute(Attribute::MinSize))) { CheckFailed
("Attributes 'minsize and optnone' are incompatible!", V); return
; } } while (false)
;
1605 }
1606
1607 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1608 const GlobalValue *GV = cast<GlobalValue>(V);
1609 Assert(GV->hasGlobalUnnamedAddr(),do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
1610 "Attribute 'jumptable' requires 'unnamed_addr'", V)do { if (!(GV->hasGlobalUnnamedAddr())) { CheckFailed("Attribute 'jumptable' requires 'unnamed_addr'"
, V); return; } } while (false)
;
1611 }
1612
1613 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1614 std::pair<unsigned, Optional<unsigned>> Args =
1615 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1616
1617 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1618 if (ParamNo >= FT->getNumParams()) {
1619 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1620 return false;
1621 }
1622
1623 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1624 CheckFailed("'allocsize' " + Name +
1625 " argument must refer to an integer parameter",
1626 V);
1627 return false;
1628 }
1629
1630 return true;
1631 };
1632
1633 if (!CheckParam("element size", Args.first))
1634 return;
1635
1636 if (Args.second && !CheckParam("number of elements", *Args.second))
1637 return;
1638 }
1639}
1640
1641void Verifier::verifyFunctionMetadata(
1642 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1643 for (const auto &Pair : MDs) {
1644 if (Pair.first == LLVMContext::MD_prof) {
1645 MDNode *MD = Pair.second;
1646 Assert(MD->getNumOperands() >= 2,do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
1647 "!prof annotations should have no less than 2 operands", MD)do { if (!(MD->getNumOperands() >= 2)) { CheckFailed("!prof annotations should have no less than 2 operands"
, MD); return; } } while (false)
;
1648
1649 // Check first operand.
1650 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
1651 MD)do { if (!(MD->getOperand(0) != nullptr)) { CheckFailed("first operand should not be null"
, MD); return; } } while (false)
;
1652 Assert(isa<MDString>(MD->getOperand(0)),do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
1653 "expected string with name of the !prof annotation", MD)do { if (!(isa<MDString>(MD->getOperand(0)))) { CheckFailed
("expected string with name of the !prof annotation", MD); return
; } } while (false)
;
1654 MDString *MDS = cast<MDString>(MD->getOperand(0));
1655 StringRef ProfName = MDS->getString();
1656 Assert(ProfName.equals("function_entry_count"),do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
1657 "first operand should be 'function_entry_count'", MD)do { if (!(ProfName.equals("function_entry_count"))) { CheckFailed
("first operand should be 'function_entry_count'", MD); return
; } } while (false)
;
1658
1659 // Check second operand.
1660 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
1661 MD)do { if (!(MD->getOperand(1) != nullptr)) { CheckFailed("second operand should not be null"
, MD); return; } } while (false)
;
1662 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
1663 "expected integer argument to function_entry_count", MD)do { if (!(isa<ConstantAsMetadata>(MD->getOperand(1)
))) { CheckFailed("expected integer argument to function_entry_count"
, MD); return; } } while (false)
;
1664 }
1665 }
1666}
1667
1668void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1669 if (!ConstantExprVisited.insert(EntryC).second)
1670 return;
1671
1672 SmallVector<const Constant *, 16> Stack;
1673 Stack.push_back(EntryC);
1674
1675 while (!Stack.empty()) {
1676 const Constant *C = Stack.pop_back_val();
1677
1678 // Check this constant expression.
1679 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1680 visitConstantExpr(CE);
1681
1682 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1683 // Global Values get visited separately, but we do need to make sure
1684 // that the global value is in the correct module
1685 Assert(GV->getParent() == &M, "Referencing global in another module!",do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
1686 EntryC, &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, EntryC, &M, GV, GV->getParent()); return; } } while (
false)
;
1687 continue;
1688 }
1689
1690 // Visit all sub-expressions.
1691 for (const Use &U : C->operands()) {
1692 const auto *OpC = dyn_cast<Constant>(U);
1693 if (!OpC)
1694 continue;
1695 if (!ConstantExprVisited.insert(OpC).second)
1696 continue;
1697 Stack.push_back(OpC);
1698 }
1699 }
1700}
1701
1702void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1703 if (CE->getOpcode() == Instruction::BitCast)
1704 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1705 CE->getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
1706 "Invalid bitcast", CE)do { if (!(CastInst::castIsValid(Instruction::BitCast, CE->
getOperand(0), CE->getType()))) { CheckFailed("Invalid bitcast"
, CE); return; } } while (false)
;
1707
1708 if (CE->getOpcode() == Instruction::IntToPtr ||
1709 CE->getOpcode() == Instruction::PtrToInt) {
1710 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1711 ? CE->getType()
1712 : CE->getOperand(0)->getType();
1713 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1714 ? "inttoptr not supported for non-integral pointers"
1715 : "ptrtoint not supported for non-integral pointers";
1716 Assert(do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1717 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
1718 Msg)do { if (!(!DL.isNonIntegralPointerType(cast<PointerType>
(PtrTy->getScalarType())))) { CheckFailed(Msg); return; } }
while (false)
;
1719 }
1720}
1721
1722bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1723 if (Attrs.getNumSlots() == 0)
1724 return true;
1725
1726 unsigned LastSlot = Attrs.getNumSlots() - 1;
1727 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1728 if (LastIndex <= Params ||
1729 (LastIndex == AttributeList::FunctionIndex &&
1730 (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1731 return true;
1732
1733 return false;
1734}
1735
1736/// Verify that statepoint intrinsic is well formed.
1737void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1738 assert(CS.getCalledFunction() &&((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 1740, __PRETTY_FUNCTION__))
1739 CS.getCalledFunction()->getIntrinsicID() ==((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 1740, __PRETTY_FUNCTION__))
1740 Intrinsic::experimental_gc_statepoint)((CS.getCalledFunction() && CS.getCalledFunction()->
getIntrinsicID() == Intrinsic::experimental_gc_statepoint) ? static_cast
<void> (0) : __assert_fail ("CS.getCalledFunction() && CS.getCalledFunction()->getIntrinsicID() == Intrinsic::experimental_gc_statepoint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 1740, __PRETTY_FUNCTION__))
;
1741
1742 const Instruction &CI = *CS.getInstruction();
1743
1744 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1745 !CS.onlyAccessesArgMemory(),do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1746 "gc.statepoint must read and write all memory to preserve "do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1747 "reordering restrictions required by safepoint semantics",do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
1748 &CI)do { if (!(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory
() && !CS.onlyAccessesArgMemory())) { CheckFailed("gc.statepoint must read and write all memory to preserve "
"reordering restrictions required by safepoint semantics", &
CI); return; } } while (false)
;
1749
1750 const Value *IDV = CS.getArgument(0);
1751 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
1752 &CI)do { if (!(isa<ConstantInt>(IDV))) { CheckFailed("gc.statepoint ID must be a constant integer"
, &CI); return; } } while (false)
;
1753
1754 const Value *NumPatchBytesV = CS.getArgument(1);
1755 Assert(isa<ConstantInt>(NumPatchBytesV),do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1756 "gc.statepoint number of patchable bytes must be a constant integer",do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
1757 &CI)do { if (!(isa<ConstantInt>(NumPatchBytesV))) { CheckFailed
("gc.statepoint number of patchable bytes must be a constant integer"
, &CI); return; } } while (false)
;
1758 const int64_t NumPatchBytes =
1759 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1760 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!")((isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"
) ? static_cast<void> (0) : __assert_fail ("isInt<32>(NumPatchBytes) && \"NumPatchBytesV is an i32!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 1760, __PRETTY_FUNCTION__))
;
1761 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1762 "positive",do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
1763 &CI)do { if (!(NumPatchBytes >= 0)) { CheckFailed("gc.statepoint number of patchable bytes must be "
"positive", &CI); return; } } while (false)
;
1764
1765 const Value *Target = CS.getArgument(2);
1766 auto *PT = dyn_cast<PointerType>(Target->getType());
1767 Assert(PT && PT->getElementType()->isFunctionTy(),do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
1768 "gc.statepoint callee must be of function pointer type", &CI, Target)do { if (!(PT && PT->getElementType()->isFunctionTy
())) { CheckFailed("gc.statepoint callee must be of function pointer type"
, &CI, Target); return; } } while (false)
;
1769 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1770
1771 const Value *NumCallArgsV = CS.getArgument(3);
1772 Assert(isa<ConstantInt>(NumCallArgsV),do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1773 "gc.statepoint number of arguments to underlying call "do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1774 "must be constant integer",do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
1775 &CI)do { if (!(isa<ConstantInt>(NumCallArgsV))) { CheckFailed
("gc.statepoint number of arguments to underlying call " "must be constant integer"
, &CI); return; } } while (false)
;
1776 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1777 Assert(NumCallArgs >= 0,do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1778 "gc.statepoint number of arguments to underlying call "do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1779 "must be positive",do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
1780 &CI)do { if (!(NumCallArgs >= 0)) { CheckFailed("gc.statepoint number of arguments to underlying call "
"must be positive", &CI); return; } } while (false)
;
1781 const int NumParams = (int)TargetFuncType->getNumParams();
1782 if (TargetFuncType->isVarArg()) {
1783 Assert(NumCallArgs >= NumParams,do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
1784 "gc.statepoint mismatch in number of vararg call args", &CI)do { if (!(NumCallArgs >= NumParams)) { CheckFailed("gc.statepoint mismatch in number of vararg call args"
, &CI); return; } } while (false)
;
1785
1786 // TODO: Remove this limitation
1787 Assert(TargetFuncType->getReturnType()->isVoidTy(),do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1788 "gc.statepoint doesn't support wrapping non-void "do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1789 "vararg functions yet",do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
1790 &CI)do { if (!(TargetFuncType->getReturnType()->isVoidTy())
) { CheckFailed("gc.statepoint doesn't support wrapping non-void "
"vararg functions yet", &CI); return; } } while (false)
;
1791 } else
1792 Assert(NumCallArgs == NumParams,do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
1793 "gc.statepoint mismatch in number of call args", &CI)do { if (!(NumCallArgs == NumParams)) { CheckFailed("gc.statepoint mismatch in number of call args"
, &CI); return; } } while (false)
;
1794
1795 const Value *FlagsV = CS.getArgument(4);
1796 Assert(isa<ConstantInt>(FlagsV),do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
1797 "gc.statepoint flags must be constant integer", &CI)do { if (!(isa<ConstantInt>(FlagsV))) { CheckFailed("gc.statepoint flags must be constant integer"
, &CI); return; } } while (false)
;
1798 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1799 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
1800 "unknown flag used in gc.statepoint flags argument", &CI)do { if (!((Flags & ~(uint64_t)StatepointFlags::MaskAll) ==
0)) { CheckFailed("unknown flag used in gc.statepoint flags argument"
, &CI); return; } } while (false)
;
1801
1802 // Verify that the types of the call parameter arguments match
1803 // the type of the wrapped callee.
1804 for (int i = 0; i < NumParams; i++) {
1805 Type *ParamType = TargetFuncType->getParamType(i);
1806 Type *ArgType = CS.getArgument(5 + i)->getType();
1807 Assert(ArgType == ParamType,do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1808 "gc.statepoint call argument does not match wrapped "do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1809 "function type",do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
1810 &CI)do { if (!(ArgType == ParamType)) { CheckFailed("gc.statepoint call argument does not match wrapped "
"function type", &CI); return; } } while (false)
;
1811 }
1812
1813 const int EndCallArgsInx = 4 + NumCallArgs;
1814
1815 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1816 Assert(isa<ConstantInt>(NumTransitionArgsV),do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1817 "gc.statepoint number of transition arguments "do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1818 "must be constant integer",do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
1819 &CI)do { if (!(isa<ConstantInt>(NumTransitionArgsV))) { CheckFailed
("gc.statepoint number of transition arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1820 const int NumTransitionArgs =
1821 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1822 Assert(NumTransitionArgs >= 0,do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
1823 "gc.statepoint number of transition arguments must be positive", &CI)do { if (!(NumTransitionArgs >= 0)) { CheckFailed("gc.statepoint number of transition arguments must be positive"
, &CI); return; } } while (false)
;
1824 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1825
1826 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1827 Assert(isa<ConstantInt>(NumDeoptArgsV),do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1828 "gc.statepoint number of deoptimization arguments "do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1829 "must be constant integer",do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
1830 &CI)do { if (!(isa<ConstantInt>(NumDeoptArgsV))) { CheckFailed
("gc.statepoint number of deoptimization arguments " "must be constant integer"
, &CI); return; } } while (false)
;
1831 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1832 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1833 "must be positive",do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
1834 &CI)do { if (!(NumDeoptArgs >= 0)) { CheckFailed("gc.statepoint number of deoptimization arguments "
"must be positive", &CI); return; } } while (false)
;
1835
1836 const int ExpectedNumArgs =
1837 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1838 Assert(ExpectedNumArgs <= (int)CS.arg_size(),do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
1839 "gc.statepoint too few arguments according to length fields", &CI)do { if (!(ExpectedNumArgs <= (int)CS.arg_size())) { CheckFailed
("gc.statepoint too few arguments according to length fields"
, &CI); return; } } while (false)
;
1840
1841 // Check that the only uses of this gc.statepoint are gc.result or
1842 // gc.relocate calls which are tied to this statepoint and thus part
1843 // of the same statepoint sequence
1844 for (const User *U : CI.users()) {
1845 const CallInst *Call = dyn_cast<const CallInst>(U);
1846 Assert(Call, "illegal use of statepoint token", &CI, U)do { if (!(Call)) { CheckFailed("illegal use of statepoint token"
, &CI, U); return; } } while (false)
;
1847 if (!Call) continue;
1848 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1849 "gc.result or gc.relocate are the only value uses "do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1850 "of a gc.statepoint",do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
1851 &CI, U)do { if (!(isa<GCRelocateInst>(Call) || isa<GCResultInst
>(Call))) { CheckFailed("gc.result or gc.relocate are the only value uses "
"of a gc.statepoint", &CI, U); return; } } while (false)
;
1852 if (isa<GCResultInst>(Call)) {
1853 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
1854 "gc.result connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.result connected to wrong gc.statepoint", &CI, Call)
; return; } } while (false)
;
1855 } else if (isa<GCRelocateInst>(Call)) {
1856 Assert(Call->getArgOperand(0) == &CI,do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
1857 "gc.relocate connected to wrong gc.statepoint", &CI, Call)do { if (!(Call->getArgOperand(0) == &CI)) { CheckFailed
("gc.relocate connected to wrong gc.statepoint", &CI, Call
); return; } } while (false)
;
1858 }
1859 }
1860
1861 // Note: It is legal for a single derived pointer to be listed multiple
1862 // times. It's non-optimal, but it is legal. It can also happen after
1863 // insertion if we strip a bitcast away.
1864 // Note: It is really tempting to check that each base is relocated and
1865 // that a derived pointer is never reused as a base pointer. This turns
1866 // out to be problematic since optimizations run after safepoint insertion
1867 // can recognize equality properties that the insertion logic doesn't know
1868 // about. See example statepoint.ll in the verifier subdirectory
1869}
1870
1871void Verifier::verifyFrameRecoverIndices() {
1872 for (auto &Counts : FrameEscapeInfo) {
1873 Function *F = Counts.first;
1874 unsigned EscapedObjectCount = Counts.second.first;
1875 unsigned MaxRecoveredIndex = Counts.second.second;
1876 Assert(MaxRecoveredIndex <= EscapedObjectCount,do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1877 "all indices passed to llvm.localrecover must be less than the "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1878 "number of arguments passed ot llvm.localescape in the parent "do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1879 "function",do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
1880 F)do { if (!(MaxRecoveredIndex <= EscapedObjectCount)) { CheckFailed
("all indices passed to llvm.localrecover must be less than the "
"number of arguments passed ot llvm.localescape in the parent "
"function", F); return; } } while (false)
;
1881 }
1882}
1883
1884static Instruction *getSuccPad(TerminatorInst *Terminator) {
1885 BasicBlock *UnwindDest;
1886 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1887 UnwindDest = II->getUnwindDest();
1888 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1889 UnwindDest = CSI->getUnwindDest();
1890 else
1891 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1892 return UnwindDest->getFirstNonPHI();
1893}
1894
1895void Verifier::verifySiblingFuncletUnwinds() {
1896 SmallPtrSet<Instruction *, 8> Visited;
1897 SmallPtrSet<Instruction *, 8> Active;
1898 for (const auto &Pair : SiblingFuncletInfo) {
1899 Instruction *PredPad = Pair.first;
1900 if (Visited.count(PredPad))
1901 continue;
1902 Active.insert(PredPad);
1903 TerminatorInst *Terminator = Pair.second;
1904 do {
1905 Instruction *SuccPad = getSuccPad(Terminator);
1906 if (Active.count(SuccPad)) {
1907 // Found a cycle; report error
1908 Instruction *CyclePad = SuccPad;
1909 SmallVector<Instruction *, 8> CycleNodes;
1910 do {
1911 CycleNodes.push_back(CyclePad);
1912 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1913 if (CycleTerminator != CyclePad)
1914 CycleNodes.push_back(CycleTerminator);
1915 CyclePad = getSuccPad(CycleTerminator);
1916 } while (CyclePad != SuccPad);
1917 Assert(false, "EH pads can't handle each other's exceptions",do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
1918 ArrayRef<Instruction *>(CycleNodes))do { if (!(false)) { CheckFailed("EH pads can't handle each other's exceptions"
, ArrayRef<Instruction *>(CycleNodes)); return; } } while
(false)
;
1919 }
1920 // Don't re-walk a node we've already checked
1921 if (!Visited.insert(SuccPad).second)
1922 break;
1923 // Walk to this successor if it has a map entry.
1924 PredPad = SuccPad;
1925 auto TermI = SiblingFuncletInfo.find(PredPad);
1926 if (TermI == SiblingFuncletInfo.end())
1927 break;
1928 Terminator = TermI->second;
1929 Active.insert(PredPad);
1930 } while (true);
1931 // Each node only has one successor, so we've walked all the active
1932 // nodes' successors.
1933 Active.clear();
1934 }
1935}
1936
1937// visitFunction - Verify that a function is ok.
1938//
1939void Verifier::visitFunction(const Function &F) {
1940 visitGlobalValue(F);
1941
1942 // Check function arguments.
1943 FunctionType *FT = F.getFunctionType();
1944 unsigned NumArgs = F.arg_size();
1945
1946 Assert(&Context == &F.getContext(),do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
1947 "Function context does not match Module context!", &F)do { if (!(&Context == &F.getContext())) { CheckFailed
("Function context does not match Module context!", &F); return
; } } while (false)
;
1948
1949 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F)do { if (!(!F.hasCommonLinkage())) { CheckFailed("Functions may not have common linkage"
, &F); return; } } while (false)
;
1950 Assert(FT->getNumParams() == NumArgs,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1951 "# formal arguments must match # of arguments for function type!", &F,do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
1952 FT)do { if (!(FT->getNumParams() == NumArgs)) { CheckFailed("# formal arguments must match # of arguments for function type!"
, &F, FT); return; } } while (false)
;
1953 Assert(F.getReturnType()->isFirstClassType() ||do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1954 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
1955 "Functions cannot return aggregate values!", &F)do { if (!(F.getReturnType()->isFirstClassType() || F.getReturnType
()->isVoidTy() || F.getReturnType()->isStructTy())) { CheckFailed
("Functions cannot return aggregate values!", &F); return
; } } while (false)
;
1956
1957 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
1958 "Invalid struct return type!", &F)do { if (!(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy
())) { CheckFailed("Invalid struct return type!", &F); return
; } } while (false)
;
1959
1960 AttributeList Attrs = F.getAttributes();
1961
1962 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
1963 "Attribute after last parameter!", &F)do { if (!(verifyAttributeCount(Attrs, FT->getNumParams())
)) { CheckFailed("Attribute after last parameter!", &F); return
; } } while (false)
;
1964
1965 // Check function attributes.
1966 verifyFunctionAttrs(FT, Attrs, &F);
1967
1968 // On function declarations/definitions, we do not support the builtin
1969 // attribute. We do not check this in VerifyFunctionAttrs since that is
1970 // checking for Attributes that can/can not ever be on functions.
1971 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
1972 "Attribute 'builtin' can only be applied to a callsite.", &F)do { if (!(!Attrs.hasFnAttribute(Attribute::Builtin))) { CheckFailed
("Attribute 'builtin' can only be applied to a callsite.", &
F); return; } } while (false)
;
1973
1974 // Check that this function meets the restrictions on this calling convention.
1975 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1976 // restrictions can be lifted.
1977 switch (F.getCallingConv()) {
1
Control jumps to the 'default' case at line 1978
1978 default:
1979 case CallingConv::C:
1980 break;
2
Execution continues on line 2004
1981 case CallingConv::AMDGPU_KERNEL:
1982 case CallingConv::SPIR_KERNEL:
1983 Assert(F.getReturnType()->isVoidTy(),do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
1984 "Calling convention requires void return type", &F)do { if (!(F.getReturnType()->isVoidTy())) { CheckFailed("Calling convention requires void return type"
, &F); return; } } while (false)
;
1985 LLVM_FALLTHROUGH[[clang::fallthrough]];
1986 case CallingConv::AMDGPU_VS:
1987 case CallingConv::AMDGPU_GS:
1988 case CallingConv::AMDGPU_PS:
1989 case CallingConv::AMDGPU_CS:
1990 Assert(!F.hasStructRetAttr(),do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
1991 "Calling convention does not allow sret", &F)do { if (!(!F.hasStructRetAttr())) { CheckFailed("Calling convention does not allow sret"
, &F); return; } } while (false)
;
1992 LLVM_FALLTHROUGH[[clang::fallthrough]];
1993 case CallingConv::Fast:
1994 case CallingConv::Cold:
1995 case CallingConv::Intel_OCL_BI:
1996 case CallingConv::PTX_Kernel:
1997 case CallingConv::PTX_Device:
1998 Assert(!F.isVarArg(), "Calling convention does not support varargs or "do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
1999 "perfect forwarding!",do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
2000 &F)do { if (!(!F.isVarArg())) { CheckFailed("Calling convention does not support varargs or "
"perfect forwarding!", &F); return; } } while (false)
;
2001 break;
2002 }
2003
2004 bool isLLVMdotName = F.getName().size() >= 5 &&
3
Assuming the condition is false
2005 F.getName().substr(0, 5) == "llvm.";
2006
2007 // Check that the argument values match the function type for this function...
2008 unsigned i = 0;
2009 for (const Argument &Arg : F.args()) {
4
Assuming '__begin' is equal to '__end'
2010 Assert(Arg.getType() == FT->getParamType(i),do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2011 "Argument value does not match function argument type!", &Arg,do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
2012 FT->getParamType(i))do { if (!(Arg.getType() == FT->getParamType(i))) { CheckFailed
("Argument value does not match function argument type!", &
Arg, FT->getParamType(i)); return; } } while (false)
;
2013 Assert(Arg.getType()->isFirstClassType(),do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
2014 "Function arguments must have first-class types!", &Arg)do { if (!(Arg.getType()->isFirstClassType())) { CheckFailed
("Function arguments must have first-class types!", &Arg)
; return; } } while (false)
;
2015 if (!isLLVMdotName) {
2016 Assert(!Arg.getType()->isMetadataTy(),do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
2017 "Function takes metadata but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isMetadataTy())) { CheckFailed(
"Function takes metadata but isn't an intrinsic", &Arg, &
F); return; } } while (false)
;
2018 Assert(!Arg.getType()->isTokenTy(),do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
2019 "Function takes token but isn't an intrinsic", &Arg, &F)do { if (!(!Arg.getType()->isTokenTy())) { CheckFailed("Function takes token but isn't an intrinsic"
, &Arg, &F); return; } } while (false)
;
2020 }
2021
2022 // Check that swifterror argument is only used by loads and stores.
2023 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2024 verifySwiftErrorValue(&Arg);
2025 }
2026 ++i;
2027 }
2028
2029 if (!isLLVMdotName)
5
Taking true branch
2030 Assert(!F.getReturnType()->isTokenTy(),do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
2031 "Functions returns a token but isn't an intrinsic", &F)do { if (!(!F.getReturnType()->isTokenTy())) { CheckFailed
("Functions returns a token but isn't an intrinsic", &F);
return; } } while (false)
;
2032
2033 // Get the function metadata attachments.
2034 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2035 F.getAllMetadata(MDs);
2036 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync")((F.hasMetadata() != MDs.empty() && "Bit out-of-sync"
) ? static_cast<void> (0) : __assert_fail ("F.hasMetadata() != MDs.empty() && \"Bit out-of-sync\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 2036, __PRETTY_FUNCTION__))
;
2037 verifyFunctionMetadata(MDs);
2038
2039 // Check validity of the personality function
2040 if (F.hasPersonalityFn()) {
6
Assuming the condition is false
7
Taking false branch
2041 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2042 if (Per)
2043 Assert(Per->getParent() == F.getParent(),do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2044 "Referencing personality function in another module!",do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
2045 &F, F.getParent(), Per, Per->getParent())do { if (!(Per->getParent() == F.getParent())) { CheckFailed
("Referencing personality function in another module!", &
F, F.getParent(), Per, Per->getParent()); return; } } while
(false)
;
2046 }
2047
2048 if (F.isMaterializable()) {
8
Assuming the condition is false
9
Taking false branch
2049 // Function has a body somewhere we can't see.
2050 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
2051 MDs.empty() ? nullptr : MDs.front().second)do { if (!(MDs.empty())) { CheckFailed("unmaterialized function cannot have metadata"
, &F, MDs.empty() ? nullptr : MDs.front().second); return
; } } while (false)
;
2052 } else if (F.isDeclaration()) {
10
Assuming the condition is false
11
Taking false branch
2053 for (const auto &I : MDs) {
2054 AssertDI(I.first != LLVMContext::MD_dbg,do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
2055 "function declaration may not have a !dbg attachment", &F)do { if (!(I.first != LLVMContext::MD_dbg)) { DebugInfoCheckFailed
("function declaration may not have a !dbg attachment", &
F); return; } } while (false)
;
2056 Assert(I.first != LLVMContext::MD_prof,do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
2057 "function declaration may not have a !prof attachment", &F)do { if (!(I.first != LLVMContext::MD_prof)) { CheckFailed("function declaration may not have a !prof attachment"
, &F); return; } } while (false)
;
2058
2059 // Verify the metadata itself.
2060 visitMDNode(*I.second);
2061 }
2062 Assert(!F.hasPersonalityFn(),do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
2063 "Function declaration shouldn't have a personality routine", &F)do { if (!(!F.hasPersonalityFn())) { CheckFailed("Function declaration shouldn't have a personality routine"
, &F); return; } } while (false)
;
2064 } else {
2065 // Verify that this function (which has a body) is not named "llvm.*". It
2066 // is not legal to define intrinsics.
2067 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F)do { if (!(!isLLVMdotName)) { CheckFailed("llvm intrinsics cannot be defined!"
, &F); return; } } while (false)
;
2068
2069 // Check the entry node
2070 const BasicBlock *Entry = &F.getEntryBlock();
2071 Assert(pred_empty(Entry),do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
2072 "Entry block to function must not have predecessors!", Entry)do { if (!(pred_empty(Entry))) { CheckFailed("Entry block to function must not have predecessors!"
, Entry); return; } } while (false)
;
2073
2074 // The address of the entry block cannot be taken, unless it is dead.
2075 if (Entry->hasAddressTaken()) {
12
Assuming the condition is false
13
Taking false branch
2076 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
2077 "blockaddress may not be used with the entry block!", Entry)do { if (!(!BlockAddress::lookup(Entry)->isConstantUsed())
) { CheckFailed("blockaddress may not be used with the entry block!"
, Entry); return; } } while (false)
;
2078 }
2079
2080 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2081 // Visit metadata attachments.
2082 for (const auto &I : MDs) {
14
Assuming '__begin' is equal to '__end'
2083 // Verify that the attachment is legal.
2084 switch (I.first) {
2085 default:
2086 break;
2087 case LLVMContext::MD_dbg:
2088 ++NumDebugAttachments;
2089 AssertDI(NumDebugAttachments == 1,do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
2090 "function must have a single !dbg attachment", &F, I.second)do { if (!(NumDebugAttachments == 1)) { DebugInfoCheckFailed(
"function must have a single !dbg attachment", &F, I.second
); return; } } while (false)
;
2091 AssertDI(isa<DISubprogram>(I.second),do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
2092 "function !dbg attachment must be a subprogram", &F, I.second)do { if (!(isa<DISubprogram>(I.second))) { DebugInfoCheckFailed
("function !dbg attachment must be a subprogram", &F, I.second
); return; } } while (false)
;
2093 break;
2094 case LLVMContext::MD_prof:
2095 ++NumProfAttachments;
2096 Assert(NumProfAttachments == 1,do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
2097 "function must have a single !prof attachment", &F, I.second)do { if (!(NumProfAttachments == 1)) { CheckFailed("function must have a single !prof attachment"
, &F, I.second); return; } } while (false)
;
2098 break;
2099 }
2100
2101 // Verify the metadata itself.
2102 visitMDNode(*I.second);
2103 }
2104 }
2105
2106 // If this function is actually an intrinsic, verify that it is only used in
2107 // direct call/invokes, never having its "address taken".
2108 // Only do this if the module is materialized, otherwise we don't have all the
2109 // uses.
2110 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
15
Assuming the condition is false
2111 const User *U;
2112 if (F.hasAddressTaken(&U))
2113 Assert(false, "Invalid user of intrinsic instruction!", U)do { if (!(false)) { CheckFailed("Invalid user of intrinsic instruction!"
, U); return; } } while (false)
;
2114 }
2115
2116 Assert(!F.hasDLLImportStorageClass() ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2117 (F.isDeclaration() && F.hasExternalLinkage()) ||do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2118 F.hasAvailableExternallyLinkage(),do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
2119 "Function is marked as dllimport, but not external.", &F)do { if (!(!F.hasDLLImportStorageClass() || (F.isDeclaration(
) && F.hasExternalLinkage()) || F.hasAvailableExternallyLinkage
())) { CheckFailed("Function is marked as dllimport, but not external."
, &F); return; } } while (false)
;
2120
2121 auto *N = F.getSubprogram();
2122 HasDebugInfo = (N != nullptr);
16
Assuming the condition is true
2123 if (!HasDebugInfo)
17
Taking false branch
2124 return;
2125
2126 // Check that all !dbg attachments lead to back to N (or, at least, another
2127 // subprogram that describes the same function).
2128 //
2129 // FIXME: Check this incrementally while visiting !dbg attachments.
2130 // FIXME: Only check when N is the canonical subprogram for F.
2131 SmallPtrSet<const MDNode *, 32> Seen;
2132 for (auto &BB : F)
2133 for (auto &I : BB) {
2134 // Be careful about using DILocation here since we might be dealing with
2135 // broken code (this is the Verifier after all).
2136 DILocation *DL =
2137 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2138 if (!DL)
18
Assuming 'DL' is non-null
19
Taking false branch
2139 continue;
2140 if (!Seen.insert(DL).second)
20
Assuming the condition is false
21
Taking false branch
2141 continue;
2142
2143 DILocalScope *Scope = DL->getInlinedAtScope();
2144 if (Scope && !Seen.insert(Scope).second)
22
Assuming 'Scope' is null
23
Taking false branch
2145 continue;
2146
2147 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
24
'?' condition is false
25
'SP' initialized to a null pointer value
2148
2149 // Scope and SP could be the same MDNode and we don't want to skip
2150 // validation in that case
2151 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
26
Taking false branch
2152 continue;
2153
2154 // FIXME: Once N is canonical, check "SP == &N".
2155 AssertDI(SP->describes(&F),do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
27
Within the expansion of the macro 'AssertDI':
a
Called C++ object pointer is null
2156 "!dbg attachment points at wrong subprogram for function", N, &F,do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
2157 &I, DL, Scope, SP)do { if (!(SP->describes(&F))) { DebugInfoCheckFailed(
"!dbg attachment points at wrong subprogram for function", N,
&F, &I, DL, Scope, SP); return; } } while (false)
;
2158 }
2159}
2160
2161// verifyBasicBlock - Verify that a basic block is well formed...
2162//
2163void Verifier::visitBasicBlock(BasicBlock &BB) {
2164 InstsInThisBlock.clear();
2165
2166 // Ensure that basic blocks have terminators!
2167 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB)do { if (!(BB.getTerminator())) { CheckFailed("Basic Block does not have terminator!"
, &BB); return; } } while (false)
;
2168
2169 // Check constraints that this basic block imposes on all of the PHI nodes in
2170 // it.
2171 if (isa<PHINode>(BB.front())) {
2172 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2173 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2174 std::sort(Preds.begin(), Preds.end());
2175 PHINode *PN;
2176 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2177 // Ensure that PHI nodes have at least one entry!
2178 Assert(PN->getNumIncomingValues() != 0,do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2179 "PHI nodes must have at least one entry. If the block is dead, "do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2180 "the PHI should be removed!",do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
2181 PN)do { if (!(PN->getNumIncomingValues() != 0)) { CheckFailed
("PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN); return; } } while (false)
;
2182 Assert(PN->getNumIncomingValues() == Preds.size(),do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2183 "PHINode should have one entry for each predecessor of its "do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2184 "parent basic block!",do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
2185 PN)do { if (!(PN->getNumIncomingValues() == Preds.size())) { CheckFailed
("PHINode should have one entry for each predecessor of its "
"parent basic block!", PN); return; } } while (false)
;
2186
2187 // Get and sort all incoming values in the PHI node...
2188 Values.clear();
2189 Values.reserve(PN->getNumIncomingValues());
2190 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2191 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2192 PN->getIncomingValue(i)));
2193 std::sort(Values.begin(), Values.end());
2194
2195 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2196 // Check to make sure that if there is more than one entry for a
2197 // particular basic block in this PHI node, that the incoming values are
2198 // all identical.
2199 //
2200 Assert(i == 0 || Values[i].first != Values[i - 1].first ||do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2201 Values[i].second == Values[i - 1].second,do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2202 "PHI node has multiple entries for the same basic block with "do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2203 "different incoming values!",do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
2204 PN, Values[i].first, Values[i].second, Values[i - 1].second)do { if (!(i == 0 || Values[i].first != Values[i - 1].first ||
Values[i].second == Values[i - 1].second)) { CheckFailed("PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first, Values[i]
.second, Values[i - 1].second); return; } } while (false)
;
2205
2206 // Check to make sure that the predecessors and PHI node entries are
2207 // matched up.
2208 Assert(Values[i].first == Preds[i],do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2209 "PHI node entries do not match predecessors!", PN,do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
2210 Values[i].first, Preds[i])do { if (!(Values[i].first == Preds[i])) { CheckFailed("PHI node entries do not match predecessors!"
, PN, Values[i].first, Preds[i]); return; } } while (false)
;
2211 }
2212 }
2213 }
2214
2215 // Check that all instructions have their parent pointers set up correctly.
2216 for (auto &I : BB)
2217 {
2218 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!")do { if (!(I.getParent() == &BB)) { CheckFailed("Instruction has bogus parent pointer!"
); return; } } while (false)
;
2219 }
2220}
2221
2222void Verifier::visitTerminatorInst(TerminatorInst &I) {
2223 // Ensure that terminators only exist at the end of the basic block.
2224 Assert(&I == I.getParent()->getTerminator(),do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
2225 "Terminator found in the middle of a basic block!", I.getParent())do { if (!(&I == I.getParent()->getTerminator())) { CheckFailed
("Terminator found in the middle of a basic block!", I.getParent
()); return; } } while (false)
;
2226 visitInstruction(I);
2227}
2228
2229void Verifier::visitBranchInst(BranchInst &BI) {
2230 if (BI.isConditional()) {
2231 Assert(BI.getCondition()->getType()->isIntegerTy(1),do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
2232 "Branch condition is not 'i1' type!", &BI, BI.getCondition())do { if (!(BI.getCondition()->getType()->isIntegerTy(1)
)) { CheckFailed("Branch condition is not 'i1' type!", &BI
, BI.getCondition()); return; } } while (false)
;
2233 }
2234 visitTerminatorInst(BI);
2235}
2236
2237void Verifier::visitReturnInst(ReturnInst &RI) {
2238 Function *F = RI.getParent()->getParent();
2239 unsigned N = RI.getNumOperands();
2240 if (F->getReturnType()->isVoidTy())
2241 Assert(N == 0,do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2242 "Found return instr that returns non-void in Function of void "do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2243 "return type!",do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
2244 &RI, F->getReturnType())do { if (!(N == 0)) { CheckFailed("Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType()); return; } }
while (false)
;
2245 else
2246 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2247 "Function return type does not match operand "do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2248 "type of return inst!",do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
2249 &RI, F->getReturnType())do { if (!(N == 1 && F->getReturnType() == RI.getOperand
(0)->getType())) { CheckFailed("Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType()); return
; } } while (false)
;
2250
2251 // Check to make sure that the return value has necessary properties for
2252 // terminators...
2253 visitTerminatorInst(RI);
2254}
2255
2256void Verifier::visitSwitchInst(SwitchInst &SI) {
2257 // Check to make sure that all of the constants in the switch instruction
2258 // have the same type as the switched-on value.
2259 Type *SwitchTy = SI.getCondition()->getType();
2260 SmallPtrSet<ConstantInt*, 32> Constants;
2261 for (auto &Case : SI.cases()) {
2262 Assert(Case.getCaseValue()->getType() == SwitchTy,do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
2263 "Switch constants must all be same type as switch value!", &SI)do { if (!(Case.getCaseValue()->getType() == SwitchTy)) { CheckFailed
("Switch constants must all be same type as switch value!", &
SI); return; } } while (false)
;
2264 Assert(Constants.insert(Case.getCaseValue()).second,do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
2265 "Duplicate integer as switch case", &SI, Case.getCaseValue())do { if (!(Constants.insert(Case.getCaseValue()).second)) { CheckFailed
("Duplicate integer as switch case", &SI, Case.getCaseValue
()); return; } } while (false)
;
2266 }
2267
2268 visitTerminatorInst(SI);
2269}
2270
2271void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2272 Assert(BI.getAddress()->getType()->isPointerTy(),do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
2273 "Indirectbr operand must have pointer type!", &BI)do { if (!(BI.getAddress()->getType()->isPointerTy())) {
CheckFailed("Indirectbr operand must have pointer type!", &
BI); return; } } while (false)
;
2274 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2275 Assert(BI.getDestination(i)->getType()->isLabelTy(),do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
2276 "Indirectbr destinations must all have pointer type!", &BI)do { if (!(BI.getDestination(i)->getType()->isLabelTy()
)) { CheckFailed("Indirectbr destinations must all have pointer type!"
, &BI); return; } } while (false)
;
2277
2278 visitTerminatorInst(BI);
2279}
2280
2281void Verifier::visitSelectInst(SelectInst &SI) {
2282 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2283 SI.getOperand(2)),do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
2284 "Invalid operands for select instruction!", &SI)do { if (!(!SelectInst::areInvalidOperands(SI.getOperand(0), SI
.getOperand(1), SI.getOperand(2)))) { CheckFailed("Invalid operands for select instruction!"
, &SI); return; } } while (false)
;
2285
2286 Assert(SI.getTrueValue()->getType() == SI.getType(),do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
2287 "Select values must have same type as select instruction!", &SI)do { if (!(SI.getTrueValue()->getType() == SI.getType())) {
CheckFailed("Select values must have same type as select instruction!"
, &SI); return; } } while (false)
;
2288 visitInstruction(SI);
2289}
2290
2291/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2292/// a pass, if any exist, it's an error.
2293///
2294void Verifier::visitUserOp1(Instruction &I) {
2295 Assert(false, "User-defined operators should not live outside of a pass!", &I)do { if (!(false)) { CheckFailed("User-defined operators should not live outside of a pass!"
, &I); return; } } while (false)
;
2296}
2297
2298void Verifier::visitTruncInst(TruncInst &I) {
2299 // Get the source and destination types
2300 Type *SrcTy = I.getOperand(0)->getType();
2301 Type *DestTy = I.getType();
2302
2303 // Get the size of the types in bits, we'll need this later
2304 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2305 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2306
2307 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only operates on integer"
, &I); return; } } while (false)
;
2308 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("Trunc only produces integer"
, &I); return; } } while (false)
;
2309 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2310 "trunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("trunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2311 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for Trunc"
, &I); return; } } while (false)
;
2312
2313 visitInstruction(I);
2314}
2315
2316void Verifier::visitZExtInst(ZExtInst &I) {
2317 // Get the source and destination types
2318 Type *SrcTy = I.getOperand(0)->getType();
2319 Type *DestTy = I.getType();
2320
2321 // Get the size of the types in bits, we'll need this later
2322 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only operates on integer"
, &I); return; } } while (false)
;
2323 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("ZExt only produces an integer"
, &I); return; } } while (false)
;
2324 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2325 "zext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("zext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2326 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2327 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2328
2329 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for ZExt"
, &I); return; } } while (false)
;
2330
2331 visitInstruction(I);
2332}
2333
2334void Verifier::visitSExtInst(SExtInst &I) {
2335 // Get the source and destination types
2336 Type *SrcTy = I.getOperand(0)->getType();
2337 Type *DestTy = I.getType();
2338
2339 // Get the size of the types in bits, we'll need this later
2340 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2341 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2342
2343 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SExt only operates on integer"
, &I); return; } } while (false)
;
2344 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("SExt only produces an integer"
, &I); return; } } while (false)
;
2345 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2346 "sext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("sext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2347 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("Type too small for SExt"
, &I); return; } } while (false)
;
2348
2349 visitInstruction(I);
2350}
2351
2352void Verifier::visitFPTruncInst(FPTruncInst &I) {
2353 // Get the source and destination types
2354 Type *SrcTy = I.getOperand(0)->getType();
2355 Type *DestTy = I.getType();
2356 // Get the size of the types in bits, we'll need this later
2357 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2358 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2359
2360 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only operates on FP"
, &I); return; } } while (false)
;
2361 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPTrunc only produces an FP"
, &I); return; } } while (false)
;
2362 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
2363 "fptrunc source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fptrunc source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2364 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I)do { if (!(SrcBitSize > DestBitSize)) { CheckFailed("DestTy too big for FPTrunc"
, &I); return; } } while (false)
;
2365
2366 visitInstruction(I);
2367}
2368
2369void Verifier::visitFPExtInst(FPExtInst &I) {
2370 // Get the source and destination types
2371 Type *SrcTy = I.getOperand(0)->getType();
2372 Type *DestTy = I.getType();
2373
2374 // Get the size of the types in bits, we'll need this later
2375 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2376 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2377
2378 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only operates on FP"
, &I); return; } } while (false)
;
2379 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("FPExt only produces an FP"
, &I); return; } } while (false)
;
2380 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
2381 "fpext source and destination must both be a vector or neither", &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("fpext source and destination must both be a vector or neither"
, &I); return; } } while (false)
;
2382 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I)do { if (!(SrcBitSize < DestBitSize)) { CheckFailed("DestTy too small for FPExt"
, &I); return; } } while (false)
;
2383
2384 visitInstruction(I);
2385}
2386
2387void Verifier::visitUIToFPInst(UIToFPInst &I) {
2388 // Get the source and destination types
2389 Type *SrcTy = I.getOperand(0)->getType();
2390 Type *DestTy = I.getType();
2391
2392 bool SrcVec = SrcTy->isVectorTy();
2393 bool DstVec = DestTy->isVectorTy();
2394
2395 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2396 "UIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("UIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2397 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2398 "UIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("UIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2399 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2400 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("UIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2401
2402 if (SrcVec && DstVec)
2403 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2404 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2405 "UIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("UIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2406
2407 visitInstruction(I);
2408}
2409
2410void Verifier::visitSIToFPInst(SIToFPInst &I) {
2411 // Get the source and destination types
2412 Type *SrcTy = I.getOperand(0)->getType();
2413 Type *DestTy = I.getType();
2414
2415 bool SrcVec = SrcTy->isVectorTy();
2416 bool DstVec = DestTy->isVectorTy();
2417
2418 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
2419 "SIToFP source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("SIToFP source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2420 Assert(SrcTy->isIntOrIntVectorTy(),do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
2421 "SIToFP source must be integer or integer vector", &I)do { if (!(SrcTy->isIntOrIntVectorTy())) { CheckFailed("SIToFP source must be integer or integer vector"
, &I); return; } } while (false)
;
2422 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
2423 &I)do { if (!(DestTy->isFPOrFPVectorTy())) { CheckFailed("SIToFP result must be FP or FP vector"
, &I); return; } } while (false)
;
2424
2425 if (SrcVec && DstVec)
2426 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2427 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
2428 "SIToFP source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("SIToFP source and dest vector length mismatch", &I); return
; } } while (false)
;
2429
2430 visitInstruction(I);
2431}
2432
2433void Verifier::visitFPToUIInst(FPToUIInst &I) {
2434 // Get the source and destination types
2435 Type *SrcTy = I.getOperand(0)->getType();
2436 Type *DestTy = I.getType();
2437
2438 bool SrcVec = SrcTy->isVectorTy();
2439 bool DstVec = DestTy->isVectorTy();
2440
2441 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2442 "FPToUI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToUI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2443 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
2444 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToUI source must be FP or FP vector"
, &I); return; } } while (false)
;
2445 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
2446 "FPToUI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToUI result must be integer or integer vector"
, &I); return; } } while (false)
;
2447
2448 if (SrcVec && DstVec)
2449 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2450 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
2451 "FPToUI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToUI source and dest vector length mismatch", &I); return
; } } while (false)
;
2452
2453 visitInstruction(I);
2454}
2455
2456void Verifier::visitFPToSIInst(FPToSIInst &I) {
2457 // Get the source and destination types
2458 Type *SrcTy = I.getOperand(0)->getType();
2459 Type *DestTy = I.getType();
2460
2461 bool SrcVec = SrcTy->isVectorTy();
2462 bool DstVec = DestTy->isVectorTy();
2463
2464 Assert(SrcVec == DstVec,do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
2465 "FPToSI source and dest must both be vector or scalar", &I)do { if (!(SrcVec == DstVec)) { CheckFailed("FPToSI source and dest must both be vector or scalar"
, &I); return; } } while (false)
;
2466 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
2467 &I)do { if (!(SrcTy->isFPOrFPVectorTy())) { CheckFailed("FPToSI source must be FP or FP vector"
, &I); return; } } while (false)
;
2468 Assert(DestTy->isIntOrIntVectorTy(),do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
2469 "FPToSI result must be integer or integer vector", &I)do { if (!(DestTy->isIntOrIntVectorTy())) { CheckFailed("FPToSI result must be integer or integer vector"
, &I); return; } } while (false)
;
2470
2471 if (SrcVec && DstVec)
2472 Assert(cast<VectorType>(SrcTy)->getNumElements() ==do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2473 cast<VectorType>(DestTy)->getNumElements(),do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
2474 "FPToSI source and dest vector length mismatch", &I)do { if (!(cast<VectorType>(SrcTy)->getNumElements()
== cast<VectorType>(DestTy)->getNumElements())) { CheckFailed
("FPToSI source and dest vector length mismatch", &I); return
; } } while (false)
;
2475
2476 visitInstruction(I);
2477}
2478
2479void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2480 // Get the source and destination types
2481 Type *SrcTy = I.getOperand(0)->getType();
2482 Type *DestTy = I.getType();
2483
2484 Assert(SrcTy->getScalarType()->isPointerTy(),do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
2485 "PtrToInt source must be pointer", &I)do { if (!(SrcTy->getScalarType()->isPointerTy())) { CheckFailed
("PtrToInt source must be pointer", &I); return; } } while
(false)
;
2486
2487 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2488 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
2489 "ptrtoint not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"ptrtoint not supported for non-integral pointers"); return; }
} while (false)
;
2490
2491 Assert(DestTy->getScalarType()->isIntegerTy(),do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
2492 "PtrToInt result must be integral", &I)do { if (!(DestTy->getScalarType()->isIntegerTy())) { CheckFailed
("PtrToInt result must be integral", &I); return; } } while
(false)
;
2493 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
2494 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("PtrToInt type mismatch", &I); return; } }
while (false)
;
2495
2496 if (SrcTy->isVectorTy()) {
2497 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2498 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2499 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
2500 "PtrToInt Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("PtrToInt Vector width mismatch", &I);
return; } } while (false)
;
2501 }
2502
2503 visitInstruction(I);
2504}
2505
2506void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2507 // Get the source and destination types
2508 Type *SrcTy = I.getOperand(0)->getType();
2509 Type *DestTy = I.getType();
2510
2511 Assert(SrcTy->getScalarType()->isIntegerTy(),do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
2512 "IntToPtr source must be an integral", &I)do { if (!(SrcTy->getScalarType()->isIntegerTy())) { CheckFailed
("IntToPtr source must be an integral", &I); return; } } while
(false)
;
2513 Assert(DestTy->getScalarType()->isPointerTy(),do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
2514 "IntToPtr result must be a pointer", &I)do { if (!(DestTy->getScalarType()->isPointerTy())) { CheckFailed
("IntToPtr result must be a pointer", &I); return; } } while
(false)
;
2515
2516 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2517 Assert(!DL.isNonIntegralPointerType(PTy),do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
2518 "inttoptr not supported for non-integral pointers")do { if (!(!DL.isNonIntegralPointerType(PTy))) { CheckFailed(
"inttoptr not supported for non-integral pointers"); return; }
} while (false)
;
2519
2520 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
2521 &I)do { if (!(SrcTy->isVectorTy() == DestTy->isVectorTy())
) { CheckFailed("IntToPtr type mismatch", &I); return; } }
while (false)
;
2522 if (SrcTy->isVectorTy()) {
2523 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2524 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2525 Assert(VSrc->getNumElements() == VDest->getNumElements(),do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
2526 "IntToPtr Vector width mismatch", &I)do { if (!(VSrc->getNumElements() == VDest->getNumElements
())) { CheckFailed("IntToPtr Vector width mismatch", &I);
return; } } while (false)
;
2527 }
2528 visitInstruction(I);
2529}
2530
2531void Verifier::visitBitCastInst(BitCastInst &I) {
2532 Assert(do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2533 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
2534 "Invalid bitcast", &I)do { if (!(CastInst::castIsValid(Instruction::BitCast, I.getOperand
(0), I.getType()))) { CheckFailed("Invalid bitcast", &I);
return; } } while (false)
;
2535 visitInstruction(I);
2536}
2537
2538void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2539 Type *SrcTy = I.getOperand(0)->getType();
2540 Type *DestTy = I.getType();
2541
2542 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
2543 &I)do { if (!(SrcTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast source must be a pointer"
, &I); return; } } while (false)
;
2544 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
2545 &I)do { if (!(DestTy->isPtrOrPtrVectorTy())) { CheckFailed("AddrSpaceCast result must be a pointer"
, &I); return; } } while (false)
;
2546 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
2547 "AddrSpaceCast must be between different address spaces", &I)do { if (!(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace
())) { CheckFailed("AddrSpaceCast must be between different address spaces"
, &I); return; } } while (false)
;
2548 if (SrcTy->isVectorTy())
2549 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
2550 "AddrSpaceCast vector pointer number of elements mismatch", &I)do { if (!(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements
())) { CheckFailed("AddrSpaceCast vector pointer number of elements mismatch"
, &I); return; } } while (false)
;
2551 visitInstruction(I);
2552}
2553
2554/// visitPHINode - Ensure that a PHI node is well formed.
2555///
2556void Verifier::visitPHINode(PHINode &PN) {
2557 // Ensure that the PHI nodes are all grouped together at the top of the block.
2558 // This can be tested by checking whether the instruction before this is
2559 // either nonexistent (because this is begin()) or is a PHI node. If not,
2560 // then there is some other instruction before a PHI.
2561 Assert(&PN == &PN.getParent()->front() ||do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2562 isa<PHINode>(--BasicBlock::iterator(&PN)),do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
2563 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent())do { if (!(&PN == &PN.getParent()->front() || isa<
PHINode>(--BasicBlock::iterator(&PN)))) { CheckFailed(
"PHI nodes not grouped at top of basic block!", &PN, PN.getParent
()); return; } } while (false)
;
2564
2565 // Check that a PHI doesn't yield a Token.
2566 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!")do { if (!(!PN.getType()->isTokenTy())) { CheckFailed("PHI nodes cannot have token type!"
); return; } } while (false)
;
2567
2568 // Check that all of the values of the PHI node have the same type as the
2569 // result, and that the incoming blocks are really basic blocks.
2570 for (Value *IncValue : PN.incoming_values()) {
2571 Assert(PN.getType() == IncValue->getType(),do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
2572 "PHI node operands are not the same type as the result!", &PN)do { if (!(PN.getType() == IncValue->getType())) { CheckFailed
("PHI node operands are not the same type as the result!", &
PN); return; } } while (false)
;
2573 }
2574
2575 // All other PHI node constraints are checked in the visitBasicBlock method.
2576
2577 visitInstruction(PN);
2578}
2579
2580void Verifier::verifyCallSite(CallSite CS) {
2581 Instruction *I = CS.getInstruction();
2582
2583 Assert(CS.getCalledValue()->getType()->isPointerTy(),do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
2584 "Called function must be a pointer!", I)do { if (!(CS.getCalledValue()->getType()->isPointerTy(
))) { CheckFailed("Called function must be a pointer!", I); return
; } } while (false)
;
2585 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2586
2587 Assert(FPTy->getElementType()->isFunctionTy(),do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
2588 "Called function is not pointer to function type!", I)do { if (!(FPTy->getElementType()->isFunctionTy())) { CheckFailed
("Called function is not pointer to function type!", I); return
; } } while (false)
;
2589
2590 Assert(FPTy->getElementType() == CS.getFunctionType(),do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
2591 "Called function is not the same type as the call!", I)do { if (!(FPTy->getElementType() == CS.getFunctionType())
) { CheckFailed("Called function is not the same type as the call!"
, I); return; } } while (false)
;
2592
2593 FunctionType *FTy = CS.getFunctionType();
2594
2595 // Verify that the correct number of arguments are being passed
2596 if (FTy->isVarArg())
2597 Assert(CS.arg_size() >= FTy->getNumParams(),do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
2598 "Called function requires more parameters than were provided!", I)do { if (!(CS.arg_size() >= FTy->getNumParams())) { CheckFailed
("Called function requires more parameters than were provided!"
, I); return; } } while (false)
;
2599 else
2600 Assert(CS.arg_size() == FTy->getNumParams(),do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
2601 "Incorrect number of arguments passed to called function!", I)do { if (!(CS.arg_size() == FTy->getNumParams())) { CheckFailed
("Incorrect number of arguments passed to called function!", I
); return; } } while (false)
;
2602
2603 // Verify that all arguments to the call match the function type.
2604 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2605 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2606 "Call parameter type does not match function signature!",do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
2607 CS.getArgument(i), FTy->getParamType(i), I)do { if (!(CS.getArgument(i)->getType() == FTy->getParamType
(i))) { CheckFailed("Call parameter type does not match function signature!"
, CS.getArgument(i), FTy->getParamType(i), I); return; } }
while (false)
;
2608
2609 AttributeList Attrs = CS.getAttributes();
2610
2611 Assert(verifyAttributeCount(Attrs, CS.arg_size()),do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
2612 "Attribute after last parameter!", I)do { if (!(verifyAttributeCount(Attrs, CS.arg_size()))) { CheckFailed
("Attribute after last parameter!", I); return; } } while (false
)
;
2613
2614 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2615 // Don't allow speculatable on call sites, unless the underlying function
2616 // declaration is also speculatable.
2617 Function *Callee
2618 = dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2619 Assert(Callee && Callee->isSpeculatable(),do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", I); return
; } } while (false)
2620 "speculatable attribute may not apply to call sites", I)do { if (!(Callee && Callee->isSpeculatable())) { CheckFailed
("speculatable attribute may not apply to call sites", I); return
; } } while (false)
;
2621 }
2622
2623 // Verify call attributes.
2624 verifyFunctionAttrs(FTy, Attrs, I);
2625
2626 // Conservatively check the inalloca argument.
2627 // We have a bug if we can find that there is an underlying alloca without
2628 // inalloca.
2629 if (CS.hasInAllocaArgument()) {
2630 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2631 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2632 Assert(AI->isUsedWithInAlloca(),do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2633 "inalloca argument for call has mismatched alloca", AI, I)do { if (!(AI->isUsedWithInAlloca())) { CheckFailed("inalloca argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2634 }
2635
2636 // For each argument of the callsite, if it has the swifterror argument,
2637 // make sure the underlying alloca/parameter it comes from has a swifterror as
2638 // well.
2639 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2640 if (CS.paramHasAttr(i, Attribute::SwiftError)) {
2641 Value *SwiftErrorArg = CS.getArgument(i);
2642 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2643 Assert(AI->isSwiftError(),do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
2644 "swifterror argument for call has mismatched alloca", AI, I)do { if (!(AI->isSwiftError())) { CheckFailed("swifterror argument for call has mismatched alloca"
, AI, I); return; } } while (false)
;
2645 continue;
2646 }
2647 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2648 Assert(ArgI, "swifterror argument should come from an alloca or parameter", SwiftErrorArg, I)do { if (!(ArgI)) { CheckFailed("swifterror argument should come from an alloca or parameter"
, SwiftErrorArg, I); return; } } while (false)
;
2649 Assert(ArgI->hasSwiftErrorAttr(),do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
2650 "swifterror argument for call has mismatched parameter", ArgI, I)do { if (!(ArgI->hasSwiftErrorAttr())) { CheckFailed("swifterror argument for call has mismatched parameter"
, ArgI, I); return; } } while (false)
;
2651 }
2652
2653 if (FTy->isVarArg()) {
2654 // FIXME? is 'nest' even legal here?
2655 bool SawNest = false;
2656 bool SawReturned = false;
2657
2658 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2659 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2660 SawNest = true;
2661 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2662 SawReturned = true;
2663 }
2664
2665 // Check attributes on the varargs part.
2666 for (unsigned Idx = FTy->getNumParams(); Idx < CS.arg_size(); ++Idx) {
2667 Type *Ty = CS.getArgument(Idx)->getType();
2668 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2669 verifyParameterAttrs(ArgAttrs, Ty, I);
2670
2671 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2672 Assert(!SawNest, "More than one parameter has attribute nest!", I)do { if (!(!SawNest)) { CheckFailed("More than one parameter has attribute nest!"
, I); return; } } while (false)
;
2673 SawNest = true;
2674 }
2675
2676 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2677 Assert(!SawReturned, "More than one parameter has attribute returned!",do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
2678 I)do { if (!(!SawReturned)) { CheckFailed("More than one parameter has attribute returned!"
, I); return; } } while (false)
;
2679 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2680 "Incompatible argument and return types for 'returned' "do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2681 "attribute",do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
2682 I)do { if (!(Ty->canLosslesslyBitCastTo(FTy->getReturnType
()))) { CheckFailed("Incompatible argument and return types for 'returned' "
"attribute", I); return; } } while (false)
;
2683 SawReturned = true;
2684 }
2685
2686 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
2687 "Attribute 'sret' cannot be used for vararg call arguments!", I)do { if (!(!ArgAttrs.hasAttribute(Attribute::StructRet))) { CheckFailed
("Attribute 'sret' cannot be used for vararg call arguments!"
, I); return; } } while (false)
;
2688
2689 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2690 Assert(Idx == CS.arg_size() - 1, "inalloca isn't on the last argument!",do { if (!(Idx == CS.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
2691 I)do { if (!(Idx == CS.arg_size() - 1)) { CheckFailed("inalloca isn't on the last argument!"
, I); return; } } while (false)
;
2692 }
2693 }
2694
2695 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2696 if (CS.getCalledFunction() == nullptr ||
2697 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2698 for (Type *ParamTy : FTy->params()) {
2699 Assert(!ParamTy->isMetadataTy(),do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
2700 "Function has metadata parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isMetadataTy())) { CheckFailed("Function has metadata parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2701 Assert(!ParamTy->isTokenTy(),do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
2702 "Function has token parameter but isn't an intrinsic", I)do { if (!(!ParamTy->isTokenTy())) { CheckFailed("Function has token parameter but isn't an intrinsic"
, I); return; } } while (false)
;
2703 }
2704 }
2705
2706 // Verify that indirect calls don't return tokens.
2707 if (CS.getCalledFunction() == nullptr)
2708 Assert(!FTy->getReturnType()->isTokenTy(),do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
2709 "Return type cannot be token for indirect call!")do { if (!(!FTy->getReturnType()->isTokenTy())) { CheckFailed
("Return type cannot be token for indirect call!"); return; }
} while (false)
;
2710
2711 if (Function *F = CS.getCalledFunction())
2712 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2713 visitIntrinsicCallSite(ID, CS);
2714
2715 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2716 // at most one "gc-transition" operand bundle.
2717 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2718 FoundGCTransitionBundle = false;
2719 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2720 OperandBundleUse BU = CS.getOperandBundleAt(i);
2721 uint32_t Tag = BU.getTagID();
2722 if (Tag == LLVMContext::OB_deopt) {
2723 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I)do { if (!(!FoundDeoptBundle)) { CheckFailed("Multiple deopt operand bundles"
, I); return; } } while (false)
;
2724 FoundDeoptBundle = true;
2725 } else if (Tag == LLVMContext::OB_gc_transition) {
2726 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
2727 I)do { if (!(!FoundGCTransitionBundle)) { CheckFailed("Multiple gc-transition operand bundles"
, I); return; } } while (false)
;
2728 FoundGCTransitionBundle = true;
2729 } else if (Tag == LLVMContext::OB_funclet) {
2730 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I)do { if (!(!FoundFuncletBundle)) { CheckFailed("Multiple funclet operand bundles"
, I); return; } } while (false)
;
2731 FoundFuncletBundle = true;
2732 Assert(BU.Inputs.size() == 1,do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
2733 "Expected exactly one funclet bundle operand", I)do { if (!(BU.Inputs.size() == 1)) { CheckFailed("Expected exactly one funclet bundle operand"
, I); return; } } while (false)
;
2734 Assert(isa<FuncletPadInst>(BU.Inputs.front()),do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2735 "Funclet bundle operands should correspond to a FuncletPadInst",do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
2736 I)do { if (!(isa<FuncletPadInst>(BU.Inputs.front()))) { CheckFailed
("Funclet bundle operands should correspond to a FuncletPadInst"
, I); return; } } while (false)
;
2737 }
2738 }
2739
2740 // Verify that each inlinable callsite of a debug-info-bearing function in a
2741 // debug-info-bearing function has a debug location attached to it. Failure to
2742 // do so causes assertion failures when the inliner sets up inline scope info.
2743 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2744 CS.getCalledFunction()->getSubprogram())
2745 AssertDI(I->getDebugLoc(), "inlinable function call in a function with "do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2746 "debug info must have a !dbg location",do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
2747 I)do { if (!(I->getDebugLoc())) { DebugInfoCheckFailed("inlinable function call in a function with "
"debug info must have a !dbg location", I); return; } } while
(false)
;
2748
2749 visitInstruction(*I);
2750}
2751
2752/// Two types are "congruent" if they are identical, or if they are both pointer
2753/// types with different pointee types and the same address space.
2754static bool isTypeCongruent(Type *L, Type *R) {
2755 if (L == R)
2756 return true;
2757 PointerType *PL = dyn_cast<PointerType>(L);
2758 PointerType *PR = dyn_cast<PointerType>(R);
2759 if (!PL || !PR)
2760 return false;
2761 return PL->getAddressSpace() == PR->getAddressSpace();
2762}
2763
2764static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
2765 static const Attribute::AttrKind ABIAttrs[] = {
2766 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2767 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2768 Attribute::SwiftError};
2769 AttrBuilder Copy;
2770 for (auto AK : ABIAttrs) {
2771 if (Attrs.hasParamAttribute(I, AK))
2772 Copy.addAttribute(AK);
2773 }
2774 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2775 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2776 return Copy;
2777}
2778
2779void Verifier::verifyMustTailCall(CallInst &CI) {
2780 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI)do { if (!(!CI.isInlineAsm())) { CheckFailed("cannot use musttail call with inline asm"
, &CI); return; } } while (false)
;
2781
2782 // - The caller and callee prototypes must match. Pointer types of
2783 // parameters or return types may differ in pointee type, but not
2784 // address space.
2785 Function *F = CI.getParent()->getParent();
2786 FunctionType *CallerTy = F->getFunctionType();
2787 FunctionType *CalleeTy = CI.getFunctionType();
2788 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
2789 "cannot guarantee tail call due to mismatched parameter counts", &CI)do { if (!(CallerTy->getNumParams() == CalleeTy->getNumParams
())) { CheckFailed("cannot guarantee tail call due to mismatched parameter counts"
, &CI); return; } } while (false)
;
2790 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
2791 "cannot guarantee tail call due to mismatched varargs", &CI)do { if (!(CallerTy->isVarArg() == CalleeTy->isVarArg()
)) { CheckFailed("cannot guarantee tail call due to mismatched varargs"
, &CI); return; } } while (false)
;
2792 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
2793 "cannot guarantee tail call due to mismatched return types", &CI)do { if (!(isTypeCongruent(CallerTy->getReturnType(), CalleeTy
->getReturnType()))) { CheckFailed("cannot guarantee tail call due to mismatched return types"
, &CI); return; } } while (false)
;
2794 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2795 Assert(do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2796 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
2797 "cannot guarantee tail call due to mismatched parameter types", &CI)do { if (!(isTypeCongruent(CallerTy->getParamType(I), CalleeTy
->getParamType(I)))) { CheckFailed("cannot guarantee tail call due to mismatched parameter types"
, &CI); return; } } while (false)
;
2798 }
2799
2800 // - The calling conventions of the caller and callee must match.
2801 Assert(F->getCallingConv() == CI.getCallingConv(),do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
2802 "cannot guarantee tail call due to mismatched calling conv", &CI)do { if (!(F->getCallingConv() == CI.getCallingConv())) { CheckFailed
("cannot guarantee tail call due to mismatched calling conv",
&CI); return; } } while (false)
;
2803
2804 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2805 // returned, and inalloca, must match.
2806 AttributeList CallerAttrs = F->getAttributes();
2807 AttributeList CalleeAttrs = CI.getAttributes();
2808 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2809 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2810 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2811 Assert(CallerABIAttrs == CalleeABIAttrs,do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2812 "cannot guarantee tail call due to mismatched ABI impacting "do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2813 "function attributes",do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
2814 &CI, CI.getOperand(I))do { if (!(CallerABIAttrs == CalleeABIAttrs)) { CheckFailed("cannot guarantee tail call due to mismatched ABI impacting "
"function attributes", &CI, CI.getOperand(I)); return; }
} while (false)
;
2815 }
2816
2817 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2818 // or a pointer bitcast followed by a ret instruction.
2819 // - The ret instruction must return the (possibly bitcasted) value
2820 // produced by the call or void.
2821 Value *RetVal = &CI;
2822 Instruction *Next = CI.getNextNode();
2823
2824 // Handle the optional bitcast.
2825 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2826 Assert(BI->getOperand(0) == RetVal,do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
2827 "bitcast following musttail call must use the call", BI)do { if (!(BI->getOperand(0) == RetVal)) { CheckFailed("bitcast following musttail call must use the call"
, BI); return; } } while (false)
;
2828 RetVal = BI;
2829 Next = BI->getNextNode();
2830 }
2831
2832 // Check the return.
2833 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2834 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
2835 &CI)do { if (!(Ret)) { CheckFailed("musttail call must be precede a ret with an optional bitcast"
, &CI); return; } } while (false)
;
2836 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
2837 "musttail call result must be returned", Ret)do { if (!(!Ret->getReturnValue() || Ret->getReturnValue
() == RetVal)) { CheckFailed("musttail call result must be returned"
, Ret); return; } } while (false)
;
2838}
2839
2840void Verifier::visitCallInst(CallInst &CI) {
2841 verifyCallSite(&CI);
2842
2843 if (CI.isMustTailCall())
2844 verifyMustTailCall(CI);
2845}
2846
2847void Verifier::visitInvokeInst(InvokeInst &II) {
2848 verifyCallSite(&II);
2849
2850 // Verify that the first non-PHI instruction of the unwind destination is an
2851 // exception handling instruction.
2852 Assert(do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2853 II.getUnwindDest()->isEHPad(),do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2854 "The unwind destination does not have an exception handling instruction!",do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
2855 &II)do { if (!(II.getUnwindDest()->isEHPad())) { CheckFailed("The unwind destination does not have an exception handling instruction!"
, &II); return; } } while (false)
;
2856
2857 visitTerminatorInst(II);
2858}
2859
2860/// visitBinaryOperator - Check that both arguments to the binary operator are
2861/// of the same type!
2862///
2863void Verifier::visitBinaryOperator(BinaryOperator &B) {
2864 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
2865 "Both operands to a binary operator are not of the same type!", &B)do { if (!(B.getOperand(0)->getType() == B.getOperand(1)->
getType())) { CheckFailed("Both operands to a binary operator are not of the same type!"
, &B); return; } } while (false)
;
2866
2867 switch (B.getOpcode()) {
2868 // Check that integer arithmetic operators are only used with
2869 // integral operands.
2870 case Instruction::Add:
2871 case Instruction::Sub:
2872 case Instruction::Mul:
2873 case Instruction::SDiv:
2874 case Instruction::UDiv:
2875 case Instruction::SRem:
2876 case Instruction::URem:
2877 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
2878 "Integer arithmetic operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Integer arithmetic operators only work with integral types!"
, &B); return; } } while (false)
;
2879 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2880 "Integer arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2881 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2882 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Integer arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2883 break;
2884 // Check that floating-point arithmetic operators are only used with
2885 // floating-point operands.
2886 case Instruction::FAdd:
2887 case Instruction::FSub:
2888 case Instruction::FMul:
2889 case Instruction::FDiv:
2890 case Instruction::FRem:
2891 Assert(B.getType()->isFPOrFPVectorTy(),do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2892 "Floating-point arithmetic operators only work with "do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2893 "floating-point types!",do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
2894 &B)do { if (!(B.getType()->isFPOrFPVectorTy())) { CheckFailed
("Floating-point arithmetic operators only work with " "floating-point types!"
, &B); return; } } while (false)
;
2895 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2896 "Floating-point arithmetic operators must have same type "do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2897 "for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
2898 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Floating-point arithmetic operators must have same type " "for operands and result!"
, &B); return; } } while (false)
;
2899 break;
2900 // Check that logical operators are only used with integral operands.
2901 case Instruction::And:
2902 case Instruction::Or:
2903 case Instruction::Xor:
2904 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
2905 "Logical operators only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Logical operators only work with integral types!", &B);
return; } } while (false)
;
2906 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2907 "Logical operators must have same type for operands and result!",do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
2908 &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Logical operators must have same type for operands and result!"
, &B); return; } } while (false)
;
2909 break;
2910 case Instruction::Shl:
2911 case Instruction::LShr:
2912 case Instruction::AShr:
2913 Assert(B.getType()->isIntOrIntVectorTy(),do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
2914 "Shifts only work with integral types!", &B)do { if (!(B.getType()->isIntOrIntVectorTy())) { CheckFailed
("Shifts only work with integral types!", &B); return; } }
while (false)
;
2915 Assert(B.getType() == B.getOperand(0)->getType(),do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
2916 "Shift return type must be same as operands!", &B)do { if (!(B.getType() == B.getOperand(0)->getType())) { CheckFailed
("Shift return type must be same as operands!", &B); return
; } } while (false)
;
2917 break;
2918 default:
2919 llvm_unreachable("Unknown BinaryOperator opcode!")::llvm::llvm_unreachable_internal("Unknown BinaryOperator opcode!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 2919)
;
2920 }
2921
2922 visitInstruction(B);
2923}
2924
2925void Verifier::visitICmpInst(ICmpInst &IC) {
2926 // Check that the operands are the same type
2927 Type *Op0Ty = IC.getOperand(0)->getType();
2928 Type *Op1Ty = IC.getOperand(1)->getType();
2929 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
2930 "Both operands to ICmp instruction are not of the same type!", &IC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to ICmp instruction are not of the same type!"
, &IC); return; } } while (false)
;
2931 // Check that the operands are the right type
2932 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
2933 "Invalid operand types for ICmp instruction", &IC)do { if (!(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType
()->isPointerTy())) { CheckFailed("Invalid operand types for ICmp instruction"
, &IC); return; } } while (false)
;
2934 // Check that the predicate is valid.
2935 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2936 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
2937 "Invalid predicate in ICmp instruction!", &IC)do { if (!(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&& IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
)) { CheckFailed("Invalid predicate in ICmp instruction!", &
IC); return; } } while (false)
;
2938
2939 visitInstruction(IC);
2940}
2941
2942void Verifier::visitFCmpInst(FCmpInst &FC) {
2943 // Check that the operands are the same type
2944 Type *Op0Ty = FC.getOperand(0)->getType();
2945 Type *Op1Ty = FC.getOperand(1)->getType();
2946 Assert(Op0Ty == Op1Ty,do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
2947 "Both operands to FCmp instruction are not of the same type!", &FC)do { if (!(Op0Ty == Op1Ty)) { CheckFailed("Both operands to FCmp instruction are not of the same type!"
, &FC); return; } } while (false)
;
2948 // Check that the operands are the right type
2949 Assert(Op0Ty->isFPOrFPVectorTy(),do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
2950 "Invalid operand types for FCmp instruction", &FC)do { if (!(Op0Ty->isFPOrFPVectorTy())) { CheckFailed("Invalid operand types for FCmp instruction"
, &FC); return; } } while (false)
;
2951 // Check that the predicate is valid.
2952 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2953 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
2954 "Invalid predicate in FCmp instruction!", &FC)do { if (!(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&& FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
)) { CheckFailed("Invalid predicate in FCmp instruction!", &
FC); return; } } while (false)
;
2955
2956 visitInstruction(FC);
2957}
2958
2959void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2960 Assert(do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2961 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
2962 "Invalid extractelement operands!", &EI)do { if (!(ExtractElementInst::isValidOperands(EI.getOperand(
0), EI.getOperand(1)))) { CheckFailed("Invalid extractelement operands!"
, &EI); return; } } while (false)
;
2963 visitInstruction(EI);
2964}
2965
2966void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2967 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2968 IE.getOperand(2)),do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
2969 "Invalid insertelement operands!", &IE)do { if (!(InsertElementInst::isValidOperands(IE.getOperand(0
), IE.getOperand(1), IE.getOperand(2)))) { CheckFailed("Invalid insertelement operands!"
, &IE); return; } } while (false)
;
2970 visitInstruction(IE);
2971}
2972
2973void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2974 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2975 SV.getOperand(2)),do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
2976 "Invalid shufflevector operands!", &SV)do { if (!(ShuffleVectorInst::isValidOperands(SV.getOperand(0
), SV.getOperand(1), SV.getOperand(2)))) { CheckFailed("Invalid shufflevector operands!"
, &SV); return; } } while (false)
;
2977 visitInstruction(SV);
2978}
2979
2980void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2981 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2982
2983 Assert(isa<PointerType>(TargetTy),do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
2984 "GEP base pointer is not a vector or a vector of pointers", &GEP)do { if (!(isa<PointerType>(TargetTy))) { CheckFailed("GEP base pointer is not a vector or a vector of pointers"
, &GEP); return; } } while (false)
;
2985 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP)do { if (!(GEP.getSourceElementType()->isSized())) { CheckFailed
("GEP into unsized type!", &GEP); return; } } while (false
)
;
2986 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2987 Type *ElTy =
2988 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2989 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP)do { if (!(ElTy)) { CheckFailed("Invalid indices for GEP pointer type!"
, &GEP); return; } } while (false)
;
2990
2991 Assert(GEP.getType()->getScalarType()->isPointerTy() &&do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
2992 GEP.getResultElementType() == ElTy,do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
2993 "GEP is not of right type for indices!", &GEP, ElTy)do { if (!(GEP.getType()->getScalarType()->isPointerTy(
) && GEP.getResultElementType() == ElTy)) { CheckFailed
("GEP is not of right type for indices!", &GEP, ElTy); return
; } } while (false)
;
2994
2995 if (GEP.getType()->isVectorTy()) {
2996 // Additional checks for vector GEPs.
2997 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2998 if (GEP.getPointerOperandType()->isVectorTy())
2999 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
3000 "Vector GEP result width doesn't match operand's", &GEP)do { if (!(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements
())) { CheckFailed("Vector GEP result width doesn't match operand's"
, &GEP); return; } } while (false)
;
3001 for (Value *Idx : Idxs) {
3002 Type *IndexTy = Idx->getType();
3003 if (IndexTy->isVectorTy()) {
3004 unsigned IndexWidth = IndexTy->getVectorNumElements();
3005 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP)do { if (!(IndexWidth == GEPWidth)) { CheckFailed("Invalid GEP index vector width"
, &GEP); return; } } while (false)
;
3006 }
3007 Assert(IndexTy->getScalarType()->isIntegerTy(),do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
3008 "All GEP indices should be of integer type")do { if (!(IndexTy->getScalarType()->isIntegerTy())) { CheckFailed
("All GEP indices should be of integer type"); return; } } while
(false)
;
3009 }
3010 }
3011 visitInstruction(GEP);
3012}
3013
3014static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3015 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3016}
3017
3018void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3019 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 3020, __PRETTY_FUNCTION__))
3020 "precondition violation")((Range && Range == I.getMetadata(LLVMContext::MD_range
) && "precondition violation") ? static_cast<void>
(0) : __assert_fail ("Range && Range == I.getMetadata(LLVMContext::MD_range) && \"precondition violation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 3020, __PRETTY_FUNCTION__))
;
3021
3022 unsigned NumOperands = Range->getNumOperands();
3023 Assert(NumOperands % 2 == 0, "Unfinished range!", Range)do { if (!(NumOperands % 2 == 0)) { CheckFailed("Unfinished range!"
, Range); return; } } while (false)
;
3024 unsigned NumRanges = NumOperands / 2;
3025 Assert(NumRanges >= 1, "It should have at least one range!", Range)do { if (!(NumRanges >= 1)) { CheckFailed("It should have at least one range!"
, Range); return; } } while (false)
;
3026
3027 ConstantRange LastRange(1); // Dummy initial value
3028 for (unsigned i = 0; i < NumRanges; ++i) {
3029 ConstantInt *Low =
3030 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3031 Assert(Low, "The lower limit must be an integer!", Low)do { if (!(Low)) { CheckFailed("The lower limit must be an integer!"
, Low); return; } } while (false)
;
3032 ConstantInt *High =
3033 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3034 Assert(High, "The upper limit must be an integer!", High)do { if (!(High)) { CheckFailed("The upper limit must be an integer!"
, High); return; } } while (false)
;
3035 Assert(High->getType() == Low->getType() && High->getType() == Ty,do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
3036 "Range types must match instruction type!", &I)do { if (!(High->getType() == Low->getType() &&
High->getType() == Ty)) { CheckFailed("Range types must match instruction type!"
, &I); return; } } while (false)
;
3037
3038 APInt HighV = High->getValue();
3039 APInt LowV = Low->getValue();
3040 ConstantRange CurRange(LowV, HighV);
3041 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
3042 "Range must not be empty!", Range)do { if (!(!CurRange.isEmptySet() && !CurRange.isFullSet
())) { CheckFailed("Range must not be empty!", Range); return
; } } while (false)
;
3043 if (i != 0) {
3044 Assert(CurRange.intersectWith(LastRange).isEmptySet(),do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
3045 "Intervals are overlapping", Range)do { if (!(CurRange.intersectWith(LastRange).isEmptySet())) {
CheckFailed("Intervals are overlapping", Range); return; } }
while (false)
;
3046 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
3047 Range)do { if (!(LowV.sgt(LastRange.getLower()))) { CheckFailed("Intervals are not in order"
, Range); return; } } while (false)
;
3048 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3049 Range)do { if (!(!isContiguous(CurRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3050 }
3051 LastRange = ConstantRange(LowV, HighV);
3052 }
3053 if (NumRanges > 2) {
3054 APInt FirstLow =
3055 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3056 APInt FirstHigh =
3057 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3058 ConstantRange FirstRange(FirstLow, FirstHigh);
3059 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
3060 "Intervals are overlapping", Range)do { if (!(FirstRange.intersectWith(LastRange).isEmptySet()))
{ CheckFailed("Intervals are overlapping", Range); return; }
} while (false)
;
3061 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
3062 Range)do { if (!(!isContiguous(FirstRange, LastRange))) { CheckFailed
("Intervals are contiguous", Range); return; } } while (false
)
;
3063 }
3064}
3065
3066void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3067 unsigned Size = DL.getTypeSizeInBits(Ty);
3068 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I)do { if (!(Size >= 8)) { CheckFailed("atomic memory access' size must be byte-sized"
, Ty, I); return; } } while (false)
;
3069 Assert(!(Size & (Size - 1)),do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
3070 "atomic memory access' operand must have a power-of-two size", Ty, I)do { if (!(!(Size & (Size - 1)))) { CheckFailed("atomic memory access' operand must have a power-of-two size"
, Ty, I); return; } } while (false)
;
3071}
3072
3073void Verifier::visitLoadInst(LoadInst &LI) {
3074 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3075 Assert(PTy, "Load operand must be a pointer.", &LI)do { if (!(PTy)) { CheckFailed("Load operand must be a pointer."
, &LI); return; } } while (false)
;
3076 Type *ElTy = LI.getType();
3077 Assert(LI.getAlignment() <= Value::MaximumAlignment,do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
3078 "huge alignment values are unsupported", &LI)do { if (!(LI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &LI
); return; } } while (false)
;
3079 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI)do { if (!(ElTy->isSized())) { CheckFailed("loading unsized types is not allowed"
, &LI); return; } } while (false)
;
3080 if (LI.isAtomic()) {
3081 Assert(LI.getOrdering() != AtomicOrdering::Release &&do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3082 LI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
3083 "Load cannot have Release ordering", &LI)do { if (!(LI.getOrdering() != AtomicOrdering::Release &&
LI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Load cannot have Release ordering", &LI); return; } } while
(false)
;
3084 Assert(LI.getAlignment() != 0,do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
3085 "Atomic load must specify explicit alignment", &LI)do { if (!(LI.getAlignment() != 0)) { CheckFailed("Atomic load must specify explicit alignment"
, &LI); return; } } while (false)
;
3086 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3087 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3088 "atomic load operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3089 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
3090 ElTy, &LI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic load operand must have integer, pointer, or floating point "
"type!", ElTy, &LI); return; } } while (false)
;
3091 checkAtomicMemAccessSize(ElTy, &LI);
3092 } else {
3093 Assert(LI.getSynchScope() == CrossThread,do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
3094 "Non-atomic load cannot have SynchronizationScope specified", &LI)do { if (!(LI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic load cannot have SynchronizationScope specified",
&LI); return; } } while (false)
;
3095 }
3096
3097 visitInstruction(LI);
3098}
3099
3100void Verifier::visitStoreInst(StoreInst &SI) {
3101 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3102 Assert(PTy, "Store operand must be a pointer.", &SI)do { if (!(PTy)) { CheckFailed("Store operand must be a pointer."
, &SI); return; } } while (false)
;
3103 Type *ElTy = PTy->getElementType();
3104 Assert(ElTy == SI.getOperand(0)->getType(),do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
3105 "Stored value type does not match pointer operand type!", &SI, ElTy)do { if (!(ElTy == SI.getOperand(0)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
SI, ElTy); return; } } while (false)
;
3106 Assert(SI.getAlignment() <= Value::MaximumAlignment,do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
3107 "huge alignment values are unsupported", &SI)do { if (!(SI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &SI
); return; } } while (false)
;
3108 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI)do { if (!(ElTy->isSized())) { CheckFailed("storing unsized types is not allowed"
, &SI); return; } } while (false)
;
3109 if (SI.isAtomic()) {
3110 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3111 SI.getOrdering() != AtomicOrdering::AcquireRelease,do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
3112 "Store cannot have Acquire ordering", &SI)do { if (!(SI.getOrdering() != AtomicOrdering::Acquire &&
SI.getOrdering() != AtomicOrdering::AcquireRelease)) { CheckFailed
("Store cannot have Acquire ordering", &SI); return; } } while
(false)
;
3113 Assert(SI.getAlignment() != 0,do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
3114 "Atomic store must specify explicit alignment", &SI)do { if (!(SI.getAlignment() != 0)) { CheckFailed("Atomic store must specify explicit alignment"
, &SI); return; } } while (false)
;
3115 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3116 ElTy->isFloatingPointTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3117 "atomic store operand must have integer, pointer, or floating point "do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3118 "type!",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
3119 ElTy, &SI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
ElTy->isFloatingPointTy())) { CheckFailed("atomic store operand must have integer, pointer, or floating point "
"type!", ElTy, &SI); return; } } while (false)
;
3120 checkAtomicMemAccessSize(ElTy, &SI);
3121 } else {
3122 Assert(SI.getSynchScope() == CrossThread,do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
3123 "Non-atomic store cannot have SynchronizationScope specified", &SI)do { if (!(SI.getSynchScope() == CrossThread)) { CheckFailed(
"Non-atomic store cannot have SynchronizationScope specified"
, &SI); return; } } while (false)
;
3124 }
3125 visitInstruction(SI);
3126}
3127
3128/// Check that SwiftErrorVal is used as a swifterror argument in CS.
3129void Verifier::verifySwiftErrorCallSite(CallSite CS,
3130 const Value *SwiftErrorVal) {
3131 unsigned Idx = 0;
3132 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3133 I != E; ++I, ++Idx) {
3134 if (*I == SwiftErrorVal) {
3135 Assert(CS.paramHasAttr(Idx, Attribute::SwiftError),do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3136 "swifterror value when used in a callsite should be marked "do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3137 "with swifterror attribute",do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
3138 SwiftErrorVal, CS)do { if (!(CS.paramHasAttr(Idx, Attribute::SwiftError))) { CheckFailed
("swifterror value when used in a callsite should be marked "
"with swifterror attribute", SwiftErrorVal, CS); return; } }
while (false)
;
3139 }
3140 }
3141}
3142
3143void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3144 // Check that swifterror value is only used by loads, stores, or as
3145 // a swifterror argument.
3146 for (const User *U : SwiftErrorVal->users()) {
3147 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3148 isa<InvokeInst>(U),do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3149 "swifterror value can only be loaded and stored from, or "do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3150 "as a swifterror argument!",do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
3151 SwiftErrorVal, U)do { if (!(isa<LoadInst>(U) || isa<StoreInst>(U) ||
isa<CallInst>(U) || isa<InvokeInst>(U))) { CheckFailed
("swifterror value can only be loaded and stored from, or " "as a swifterror argument!"
, SwiftErrorVal, U); return; } } while (false)
;
3152 // If it is used by a store, check it is the second operand.
3153 if (auto StoreI = dyn_cast<StoreInst>(U))
3154 Assert(StoreI->getOperand(1) == SwiftErrorVal,do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3155 "swifterror value should be the second operand when used "do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
3156 "by stores", SwiftErrorVal, U)do { if (!(StoreI->getOperand(1) == SwiftErrorVal)) { CheckFailed
("swifterror value should be the second operand when used " "by stores"
, SwiftErrorVal, U); return; } } while (false)
;
3157 if (auto CallI = dyn_cast<CallInst>(U))
3158 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3159 if (auto II = dyn_cast<InvokeInst>(U))
3160 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3161 }
3162}
3163
3164void Verifier::visitAllocaInst(AllocaInst &AI) {
3165 SmallPtrSet<Type*, 4> Visited;
3166 PointerType *PTy = AI.getType();
3167 // TODO: Relax this restriction?
3168 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3169 "Allocation instruction pointer not in the stack address space!",do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
3170 &AI)do { if (!(PTy->getAddressSpace() == DL.getAllocaAddrSpace
())) { CheckFailed("Allocation instruction pointer not in the stack address space!"
, &AI); return; } } while (false)
;
3171 Assert(AI.getAllocatedType()->isSized(&Visited),do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
3172 "Cannot allocate unsized type", &AI)do { if (!(AI.getAllocatedType()->isSized(&Visited))) {
CheckFailed("Cannot allocate unsized type", &AI); return
; } } while (false)
;
3173 Assert(AI.getArraySize()->getType()->isIntegerTy(),do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
3174 "Alloca array size must have integer type", &AI)do { if (!(AI.getArraySize()->getType()->isIntegerTy())
) { CheckFailed("Alloca array size must have integer type", &
AI); return; } } while (false)
;
3175 Assert(AI.getAlignment() <= Value::MaximumAlignment,do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
3176 "huge alignment values are unsupported", &AI)do { if (!(AI.getAlignment() <= Value::MaximumAlignment)) {
CheckFailed("huge alignment values are unsupported", &AI
); return; } } while (false)
;
3177
3178 if (AI.isSwiftError()) {
3179 verifySwiftErrorValue(&AI);
3180 }
3181
3182 visitInstruction(AI);
3183}
3184
3185void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3186
3187 // FIXME: more conditions???
3188 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3189 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3190 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
3191 "cmpxchg instructions must be atomic.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic
)) { CheckFailed("cmpxchg instructions must be atomic.", &
CXI); return; } } while (false)
;
3192 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3193 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getSuccessOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3194 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
3195 "cmpxchg instructions cannot be unordered.", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Unordered
)) { CheckFailed("cmpxchg instructions cannot be unordered.",
&CXI); return; } } while (false)
;
3196 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3197 "cmpxchg instructions failure argument shall be no stronger than the "do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3198 "success argument",do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
3199 &CXI)do { if (!(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering
()))) { CheckFailed("cmpxchg instructions failure argument shall be no stronger than the "
"success argument", &CXI); return; } } while (false)
;
3200 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3201 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
3202 "cmpxchg failure ordering cannot include release semantics", &CXI)do { if (!(CXI.getFailureOrdering() != AtomicOrdering::Release
&& CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease
)) { CheckFailed("cmpxchg failure ordering cannot include release semantics"
, &CXI); return; } } while (false)
;
3203
3204 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3205 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI)do { if (!(PTy)) { CheckFailed("First cmpxchg operand must be a pointer."
, &CXI); return; } } while (false)
;
3206 Type *ElTy = PTy->getElementType();
3207 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3208 "cmpxchg operand must have integer or pointer type",do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
3209 ElTy, &CXI)do { if (!(ElTy->isIntegerTy() || ElTy->isPointerTy()))
{ CheckFailed("cmpxchg operand must have integer or pointer type"
, ElTy, &CXI); return; } } while (false)
;
3210 checkAtomicMemAccessSize(ElTy, &CXI);
3211 Assert(ElTy == CXI.getOperand(1)->getType(),do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3212 "Expected value type does not match pointer operand type!", &CXI,do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3213 ElTy)do { if (!(ElTy == CXI.getOperand(1)->getType())) { CheckFailed
("Expected value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3214 Assert(ElTy == CXI.getOperand(2)->getType(),do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
3215 "Stored value type does not match pointer operand type!", &CXI, ElTy)do { if (!(ElTy == CXI.getOperand(2)->getType())) { CheckFailed
("Stored value type does not match pointer operand type!", &
CXI, ElTy); return; } } while (false)
;
3216 visitInstruction(CXI);
3217}
3218
3219void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3220 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
3221 "atomicrmw instructions must be atomic.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::NotAtomic)) {
CheckFailed("atomicrmw instructions must be atomic.", &RMWI
); return; } } while (false)
;
3222 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
3223 "atomicrmw instructions cannot be unordered.", &RMWI)do { if (!(RMWI.getOrdering() != AtomicOrdering::Unordered)) {
CheckFailed("atomicrmw instructions cannot be unordered.", &
RMWI); return; } } while (false)
;
3224 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3225 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI)do { if (!(PTy)) { CheckFailed("First atomicrmw operand must be a pointer."
, &RMWI); return; } } while (false)
;
3226 Type *ElTy = PTy->getElementType();
3227 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
3228 &RMWI, ElTy)do { if (!(ElTy->isIntegerTy())) { CheckFailed("atomicrmw operand must have integer type!"
, &RMWI, ElTy); return; } } while (false)
;
3229 checkAtomicMemAccessSize(ElTy, &RMWI);
3230 Assert(ElTy == RMWI.getOperand(1)->getType(),do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3231 "Argument value type does not match pointer operand type!", &RMWI,do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
3232 ElTy)do { if (!(ElTy == RMWI.getOperand(1)->getType())) { CheckFailed
("Argument value type does not match pointer operand type!", &
RMWI, ElTy); return; } } while (false)
;
3233 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3234 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
3235 "Invalid binary operation!", &RMWI)do { if (!(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation
() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP
)) { CheckFailed("Invalid binary operation!", &RMWI); return
; } } while (false)
;
3236 visitInstruction(RMWI);
3237}
3238
3239void Verifier::visitFenceInst(FenceInst &FI) {
3240 const AtomicOrdering Ordering = FI.getOrdering();
3241 Assert(Ordering == AtomicOrdering::Acquire ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3242 Ordering == AtomicOrdering::Release ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3243 Ordering == AtomicOrdering::AcquireRelease ||do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3244 Ordering == AtomicOrdering::SequentiallyConsistent,do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3245 "fence instructions may only have acquire, release, acq_rel, or "do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3246 "seq_cst ordering.",do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
3247 &FI)do { if (!(Ordering == AtomicOrdering::Acquire || Ordering ==
AtomicOrdering::Release || Ordering == AtomicOrdering::AcquireRelease
|| Ordering == AtomicOrdering::SequentiallyConsistent)) { CheckFailed
("fence instructions may only have acquire, release, acq_rel, or "
"seq_cst ordering.", &FI); return; } } while (false)
;
3248 visitInstruction(FI);
3249}
3250
3251void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3252 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3253 EVI.getIndices()) == EVI.getType(),do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
3254 "Invalid ExtractValueInst operands!", &EVI)do { if (!(ExtractValueInst::getIndexedType(EVI.getAggregateOperand
()->getType(), EVI.getIndices()) == EVI.getType())) { CheckFailed
("Invalid ExtractValueInst operands!", &EVI); return; } }
while (false)
;
3255
3256 visitInstruction(EVI);
3257}
3258
3259void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3260 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3261 IVI.getIndices()) ==do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3262 IVI.getOperand(1)->getType(),do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
3263 "Invalid InsertValueInst operands!", &IVI)do { if (!(ExtractValueInst::getIndexedType(IVI.getAggregateOperand
()->getType(), IVI.getIndices()) == IVI.getOperand(1)->
getType())) { CheckFailed("Invalid InsertValueInst operands!"
, &IVI); return; } } while (false)
;
3264
3265 visitInstruction(IVI);
3266}
3267
3268static Value *getParentPad(Value *EHPad) {
3269 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3270 return FPI->getParentPad();
3271
3272 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3273}
3274
3275void Verifier::visitEHPadPredecessors(Instruction &I) {
3276 assert(I.isEHPad())((I.isEHPad()) ? static_cast<void> (0) : __assert_fail (
"I.isEHPad()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 3276, __PRETTY_FUNCTION__))
;
3277
3278 BasicBlock *BB = I.getParent();
3279 Function *F = BB->getParent();
3280
3281 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I)do { if (!(BB != &F->getEntryBlock())) { CheckFailed("EH pad cannot be in entry block."
, &I); return; } } while (false)
;
3282
3283 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3284 // The landingpad instruction defines its parent as a landing pad block. The
3285 // landing pad block may be branched to only by the unwind edge of an
3286 // invoke.
3287 for (BasicBlock *PredBB : predecessors(BB)) {
3288 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3289 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3290 "Block containing LandingPadInst must be jumped to "do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3291 "only by the unwind edge of an invoke.",do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
3292 LPI)do { if (!(II && II->getUnwindDest() == BB &&
II->getNormalDest() != BB)) { CheckFailed("Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", LPI); return; } } while
(false)
;
3293 }
3294 return;
3295 }
3296 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3297 if (!pred_empty(BB))
3298 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3299 "Block containg CatchPadInst must be jumped to "do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3300 "only by its catchswitch.",do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
3301 CPI)do { if (!(BB->getUniquePredecessor() == CPI->getCatchSwitch
()->getParent())) { CheckFailed("Block containg CatchPadInst must be jumped to "
"only by its catchswitch.", CPI); return; } } while (false)
;
3302 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3303 "Catchswitch cannot unwind to one of its catchpads",do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
3304 CPI->getCatchSwitch(), CPI)do { if (!(BB != CPI->getCatchSwitch()->getUnwindDest()
)) { CheckFailed("Catchswitch cannot unwind to one of its catchpads"
, CPI->getCatchSwitch(), CPI); return; } } while (false)
;
3305 return;
3306 }
3307
3308 // Verify that each pred has a legal terminator with a legal to/from EH
3309 // pad relationship.
3310 Instruction *ToPad = &I;
3311 Value *ToPadParent = getParentPad(ToPad);
3312 for (BasicBlock *PredBB : predecessors(BB)) {
3313 TerminatorInst *TI = PredBB->getTerminator();
3314 Value *FromPad;
3315 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3316 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
3317 "EH pad must be jumped to via an unwind edge", ToPad, II)do { if (!(II->getUnwindDest() == BB && II->getNormalDest
() != BB)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, II); return; } } while (false)
;
3318 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3319 FromPad = Bundle->Inputs[0];
3320 else
3321 FromPad = ConstantTokenNone::get(II->getContext());
3322 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3323 FromPad = CRI->getOperand(0);
3324 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI)do { if (!(FromPad != ToPadParent)) { CheckFailed("A cleanupret must exit its cleanup"
, CRI); return; } } while (false)
;
3325 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3326 FromPad = CSI;
3327 } else {
3328 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI)do { if (!(false)) { CheckFailed("EH pad must be jumped to via an unwind edge"
, ToPad, TI); return; } } while (false)
;
3329 }
3330
3331 // The edge may exit from zero or more nested pads.
3332 SmallSet<Value *, 8> Seen;
3333 for (;; FromPad = getParentPad(FromPad)) {
3334 Assert(FromPad != ToPad,do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
3335 "EH pad cannot handle exceptions raised within it", FromPad, TI)do { if (!(FromPad != ToPad)) { CheckFailed("EH pad cannot handle exceptions raised within it"
, FromPad, TI); return; } } while (false)
;
3336 if (FromPad == ToPadParent) {
3337 // This is a legal unwind edge.
3338 break;
3339 }
3340 Assert(!isa<ConstantTokenNone>(FromPad),do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
3341 "A single unwind edge may only enter one EH pad", TI)do { if (!(!isa<ConstantTokenNone>(FromPad))) { CheckFailed
("A single unwind edge may only enter one EH pad", TI); return
; } } while (false)
;
3342 Assert(Seen.insert(FromPad).second,do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
3343 "EH pad jumps through a cycle of pads", FromPad)do { if (!(Seen.insert(FromPad).second)) { CheckFailed("EH pad jumps through a cycle of pads"
, FromPad); return; } } while (false)
;
3344 }
3345 }
3346}
3347
3348void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3349 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3350 // isn't a cleanup.
3351 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
3352 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI)do { if (!(LPI.getNumClauses() > 0 || LPI.isCleanup())) { CheckFailed
("LandingPadInst needs at least one clause or to be a cleanup."
, &LPI); return; } } while (false)
;
3353
3354 visitEHPadPredecessors(LPI);
3355
3356 if (!LandingPadResultTy)
3357 LandingPadResultTy = LPI.getType();
3358 else
3359 Assert(LandingPadResultTy == LPI.getType(),do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3360 "The landingpad instruction should have a consistent result type "do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3361 "inside a function.",do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
3362 &LPI)do { if (!(LandingPadResultTy == LPI.getType())) { CheckFailed
("The landingpad instruction should have a consistent result type "
"inside a function.", &LPI); return; } } while (false)
;
3363
3364 Function *F = LPI.getParent()->getParent();
3365 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
3366 "LandingPadInst needs to be in a function with a personality.", &LPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("LandingPadInst needs to be in a function with a personality."
, &LPI); return; } } while (false)
;
3367
3368 // The landingpad instruction must be the first non-PHI instruction in the
3369 // block.
3370 Assert(LPI.getParent()->getLandingPadInst() == &LPI,do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3371 "LandingPadInst not the first non-PHI instruction in the block.",do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
3372 &LPI)do { if (!(LPI.getParent()->getLandingPadInst() == &LPI
)) { CheckFailed("LandingPadInst not the first non-PHI instruction in the block."
, &LPI); return; } } while (false)
;
3373
3374 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3375 Constant *Clause = LPI.getClause(i);
3376 if (LPI.isCatch(i)) {
3377 Assert(isa<PointerType>(Clause->getType()),do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
3378 "Catch operand does not have pointer type!", &LPI)do { if (!(isa<PointerType>(Clause->getType()))) { CheckFailed
("Catch operand does not have pointer type!", &LPI); return
; } } while (false)
;
3379 } else {
3380 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI)do { if (!(LPI.isFilter(i))) { CheckFailed("Clause is neither catch nor filter!"
, &LPI); return; } } while (false)
;
3381 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
3382 "Filter operand is not an array of constants!", &LPI)do { if (!(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero
>(Clause))) { CheckFailed("Filter operand is not an array of constants!"
, &LPI); return; } } while (false)
;
3383 }
3384 }
3385
3386 visitInstruction(LPI);
3387}
3388
3389void Verifier::visitResumeInst(ResumeInst &RI) {
3390 Assert(RI.getFunction()->hasPersonalityFn(),do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
3391 "ResumeInst needs to be in a function with a personality.", &RI)do { if (!(RI.getFunction()->hasPersonalityFn())) { CheckFailed
("ResumeInst needs to be in a function with a personality.", &
RI); return; } } while (false)
;
3392
3393 if (!LandingPadResultTy)
3394 LandingPadResultTy = RI.getValue()->getType();
3395 else
3396 Assert(LandingPadResultTy == RI.getValue()->getType(),do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3397 "The resume instruction should have a consistent result type "do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3398 "inside a function.",do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
3399 &RI)do { if (!(LandingPadResultTy == RI.getValue()->getType())
) { CheckFailed("The resume instruction should have a consistent result type "
"inside a function.", &RI); return; } } while (false)
;
3400
3401 visitTerminatorInst(RI);
3402}
3403
3404void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3405 BasicBlock *BB = CPI.getParent();
3406
3407 Function *F = BB->getParent();
3408 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3409 "CatchPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3410
3411 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3412 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
3413 CPI.getParentPad())do { if (!(isa<CatchSwitchInst>(CPI.getParentPad()))) {
CheckFailed("CatchPadInst needs to be directly nested in a CatchSwitchInst."
, CPI.getParentPad()); return; } } while (false)
;
3414
3415 // The catchpad instruction must be the first non-PHI instruction in the
3416 // block.
3417 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3418 "CatchPadInst not the first non-PHI instruction in the block.", &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CatchPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3419
3420 visitEHPadPredecessors(CPI);
3421 visitFuncletPadInst(CPI);
3422}
3423
3424void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3425 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3426 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
3427 CatchReturn.getOperand(0))do { if (!(isa<CatchPadInst>(CatchReturn.getOperand(0))
)) { CheckFailed("CatchReturnInst needs to be provided a CatchPad"
, &CatchReturn, CatchReturn.getOperand(0)); return; } } while
(false)
;
3428
3429 visitTerminatorInst(CatchReturn);
3430}
3431
3432void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3433 BasicBlock *BB = CPI.getParent();
3434
3435 Function *F = BB->getParent();
3436 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
3437 "CleanupPadInst needs to be in a function with a personality.", &CPI)do { if (!(F->hasPersonalityFn())) { CheckFailed("CleanupPadInst needs to be in a function with a personality."
, &CPI); return; } } while (false)
;
3438
3439 // The cleanuppad instruction must be the first non-PHI instruction in the
3440 // block.
3441 Assert(BB->getFirstNonPHI() == &CPI,do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3442 "CleanupPadInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
3443 &CPI)do { if (!(BB->getFirstNonPHI() == &CPI)) { CheckFailed
("CleanupPadInst not the first non-PHI instruction in the block."
, &CPI); return; } } while (false)
;
3444
3445 auto *ParentPad = CPI.getParentPad();
3446 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
3447 "CleanupPadInst has an invalid parent.", &CPI)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CleanupPadInst has an invalid parent."
, &CPI); return; } } while (false)
;
3448
3449 visitEHPadPredecessors(CPI);
3450 visitFuncletPadInst(CPI);
3451}
3452
3453void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3454 User *FirstUser = nullptr;
3455 Value *FirstUnwindPad = nullptr;
3456 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3457 SmallSet<FuncletPadInst *, 8> Seen;
3458
3459 while (!Worklist.empty()) {
3460 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3461 Assert(Seen.insert(CurrentPad).second,do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
3462 "FuncletPadInst must not be nested within itself", CurrentPad)do { if (!(Seen.insert(CurrentPad).second)) { CheckFailed("FuncletPadInst must not be nested within itself"
, CurrentPad); return; } } while (false)
;
3463 Value *UnresolvedAncestorPad = nullptr;
3464 for (User *U : CurrentPad->users()) {
3465 BasicBlock *UnwindDest;
3466 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3467 UnwindDest = CRI->getUnwindDest();
3468 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3469 // We allow catchswitch unwind to caller to nest
3470 // within an outer pad that unwinds somewhere else,
3471 // because catchswitch doesn't have a nounwind variant.
3472 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3473 if (CSI->unwindsToCaller())
3474 continue;
3475 UnwindDest = CSI->getUnwindDest();
3476 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3477 UnwindDest = II->getUnwindDest();
3478 } else if (isa<CallInst>(U)) {
3479 // Calls which don't unwind may be found inside funclet
3480 // pads that unwind somewhere else. We don't *require*
3481 // such calls to be annotated nounwind.
3482 continue;
3483 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3484 // The unwind dest for a cleanup can only be found by
3485 // recursive search. Add it to the worklist, and we'll
3486 // search for its first use that determines where it unwinds.
3487 Worklist.push_back(CPI);
3488 continue;
3489 } else {
3490 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U)do { if (!(isa<CatchReturnInst>(U))) { CheckFailed("Bogus funclet pad use"
, U); return; } } while (false)
;
3491 continue;
3492 }
3493
3494 Value *UnwindPad;
3495 bool ExitsFPI;
3496 if (UnwindDest) {
3497 UnwindPad = UnwindDest->getFirstNonPHI();
3498 if (!cast<Instruction>(UnwindPad)->isEHPad())
3499 continue;
3500 Value *UnwindParent = getParentPad(UnwindPad);
3501 // Ignore unwind edges that don't exit CurrentPad.
3502 if (UnwindParent == CurrentPad)
3503 continue;
3504 // Determine whether the original funclet pad is exited,
3505 // and if we are scanning nested pads determine how many
3506 // of them are exited so we can stop searching their
3507 // children.
3508 Value *ExitedPad = CurrentPad;
3509 ExitsFPI = false;
3510 do {
3511 if (ExitedPad == &FPI) {
3512 ExitsFPI = true;
3513 // Now we can resolve any ancestors of CurrentPad up to
3514 // FPI, but not including FPI since we need to make sure
3515 // to check all direct users of FPI for consistency.
3516 UnresolvedAncestorPad = &FPI;
3517 break;
3518 }
3519 Value *ExitedParent = getParentPad(ExitedPad);
3520 if (ExitedParent == UnwindParent) {
3521 // ExitedPad is the ancestor-most pad which this unwind
3522 // edge exits, so we can resolve up to it, meaning that
3523 // ExitedParent is the first ancestor still unresolved.
3524 UnresolvedAncestorPad = ExitedParent;
3525 break;
3526 }
3527 ExitedPad = ExitedParent;
3528 } while (!isa<ConstantTokenNone>(ExitedPad));
3529 } else {
3530 // Unwinding to caller exits all pads.
3531 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3532 ExitsFPI = true;
3533 UnresolvedAncestorPad = &FPI;
3534 }
3535
3536 if (ExitsFPI) {
3537 // This unwind edge exits FPI. Make sure it agrees with other
3538 // such edges.
3539 if (FirstUser) {
3540 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3541 "pad must have the same unwind "do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3542 "dest",do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
3543 &FPI, U, FirstUser)do { if (!(UnwindPad == FirstUnwindPad)) { CheckFailed("Unwind edges out of a funclet "
"pad must have the same unwind " "dest", &FPI, U, FirstUser
); return; } } while (false)
;
3544 } else {
3545 FirstUser = U;
3546 FirstUnwindPad = UnwindPad;
3547 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3548 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3549 getParentPad(UnwindPad) == getParentPad(&FPI))
3550 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3551 }
3552 }
3553 // Make sure we visit all uses of FPI, but for nested pads stop as
3554 // soon as we know where they unwind to.
3555 if (CurrentPad != &FPI)
3556 break;
3557 }
3558 if (UnresolvedAncestorPad) {
3559 if (CurrentPad == UnresolvedAncestorPad) {
3560 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3561 // we've found an unwind edge that exits it, because we need to verify
3562 // all direct uses of FPI.
3563 assert(CurrentPad == &FPI)((CurrentPad == &FPI) ? static_cast<void> (0) : __assert_fail
("CurrentPad == &FPI", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 3563, __PRETTY_FUNCTION__))
;
3564 continue;
3565 }
3566 // Pop off the worklist any nested pads that we've found an unwind
3567 // destination for. The pads on the worklist are the uncles,
3568 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3569 // for all ancestors of CurrentPad up to but not including
3570 // UnresolvedAncestorPad.
3571 Value *ResolvedPad = CurrentPad;
3572 while (!Worklist.empty()) {
3573 Value *UnclePad = Worklist.back();
3574 Value *AncestorPad = getParentPad(UnclePad);
3575 // Walk ResolvedPad up the ancestor list until we either find the
3576 // uncle's parent or the last resolved ancestor.
3577 while (ResolvedPad != AncestorPad) {
3578 Value *ResolvedParent = getParentPad(ResolvedPad);
3579 if (ResolvedParent == UnresolvedAncestorPad) {
3580 break;
3581 }
3582 ResolvedPad = ResolvedParent;
3583 }
3584 // If the resolved ancestor search didn't find the uncle's parent,
3585 // then the uncle is not yet resolved.
3586 if (ResolvedPad != AncestorPad)
3587 break;
3588 // This uncle is resolved, so pop it from the worklist.
3589 Worklist.pop_back();
3590 }
3591 }
3592 }
3593
3594 if (FirstUnwindPad) {
3595 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3596 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3597 Value *SwitchUnwindPad;
3598 if (SwitchUnwindDest)
3599 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3600 else
3601 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3602 Assert(SwitchUnwindPad == FirstUnwindPad,do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3603 "Unwind edges out of a catch must have the same unwind dest as "do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3604 "the parent catchswitch",do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
3605 &FPI, FirstUser, CatchSwitch)do { if (!(SwitchUnwindPad == FirstUnwindPad)) { CheckFailed(
"Unwind edges out of a catch must have the same unwind dest as "
"the parent catchswitch", &FPI, FirstUser, CatchSwitch);
return; } } while (false)
;
3606 }
3607 }
3608
3609 visitInstruction(FPI);
3610}
3611
3612void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3613 BasicBlock *BB = CatchSwitch.getParent();
3614
3615 Function *F = BB->getParent();
3616 Assert(F->hasPersonalityFn(),do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3617 "CatchSwitchInst needs to be in a function with a personality.",do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
3618 &CatchSwitch)do { if (!(F->hasPersonalityFn())) { CheckFailed("CatchSwitchInst needs to be in a function with a personality."
, &CatchSwitch); return; } } while (false)
;
3619
3620 // The catchswitch instruction must be the first non-PHI instruction in the
3621 // block.
3622 Assert(BB->getFirstNonPHI() == &CatchSwitch,do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3623 "CatchSwitchInst not the first non-PHI instruction in the block.",do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
3624 &CatchSwitch)do { if (!(BB->getFirstNonPHI() == &CatchSwitch)) { CheckFailed
("CatchSwitchInst not the first non-PHI instruction in the block."
, &CatchSwitch); return; } } while (false)
;
3625
3626 auto *ParentPad = CatchSwitch.getParentPad();
3627 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
3628 "CatchSwitchInst has an invalid parent.", ParentPad)do { if (!(isa<ConstantTokenNone>(ParentPad) || isa<
FuncletPadInst>(ParentPad))) { CheckFailed("CatchSwitchInst has an invalid parent."
, ParentPad); return; } } while (false)
;
3629
3630 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3631 Instruction *I = UnwindDest->getFirstNonPHI();
3632 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3633 "CatchSwitchInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3634 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
3635 &CatchSwitch)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CatchSwitchInst must unwind to an EH block which is not a "
"landingpad.", &CatchSwitch); return; } } while (false)
;
3636
3637 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3638 if (getParentPad(I) == ParentPad)
3639 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3640 }
3641
3642 Assert(CatchSwitch.getNumHandlers() != 0,do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
3643 "CatchSwitchInst cannot have empty handler list", &CatchSwitch)do { if (!(CatchSwitch.getNumHandlers() != 0)) { CheckFailed(
"CatchSwitchInst cannot have empty handler list", &CatchSwitch
); return; } } while (false)
;
3644
3645 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3646 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
3647 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler)do { if (!(isa<CatchPadInst>(Handler->getFirstNonPHI
()))) { CheckFailed("CatchSwitchInst handlers must be catchpads"
, &CatchSwitch, Handler); return; } } while (false)
;
3648 }
3649
3650 visitEHPadPredecessors(CatchSwitch);
3651 visitTerminatorInst(CatchSwitch);
3652}
3653
3654void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3655 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3656 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
3657 CRI.getOperand(0))do { if (!(isa<CleanupPadInst>(CRI.getOperand(0)))) { CheckFailed
("CleanupReturnInst needs to be provided a CleanupPad", &
CRI, CRI.getOperand(0)); return; } } while (false)
;
3658
3659 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3660 Instruction *I = UnwindDest->getFirstNonPHI();
3661 Assert(I->isEHPad() && !isa<LandingPadInst>(I),do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3662 "CleanupReturnInst must unwind to an EH block which is not a "do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3663 "landingpad.",do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
3664 &CRI)do { if (!(I->isEHPad() && !isa<LandingPadInst>
(I))) { CheckFailed("CleanupReturnInst must unwind to an EH block which is not a "
"landingpad.", &CRI); return; } } while (false)
;
3665 }
3666
3667 visitTerminatorInst(CRI);
3668}
3669
3670void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3671 Instruction *Op = cast<Instruction>(I.getOperand(i));
3672 // If the we have an invalid invoke, don't try to compute the dominance.
3673 // We already reject it in the invoke specific checks and the dominance
3674 // computation doesn't handle multiple edges.
3675 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3676 if (II->getNormalDest() == II->getUnwindDest())
3677 return;
3678 }
3679
3680 // Quick check whether the def has already been encountered in the same block.
3681 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3682 // uses are defined to happen on the incoming edge, not at the instruction.
3683 //
3684 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3685 // wrapping an SSA value, assert that we've already encountered it. See
3686 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3687 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3688 return;
3689
3690 const Use &U = I.getOperandUse(i);
3691 Assert(DT.dominates(Op, U),do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
3692 "Instruction does not dominate all uses!", Op, &I)do { if (!(DT.dominates(Op, U))) { CheckFailed("Instruction does not dominate all uses!"
, Op, &I); return; } } while (false)
;
3693}
3694
3695void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3696 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
3697 "apply only to pointer types", &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("dereferenceable, dereferenceable_or_null "
"apply only to pointer types", &I); return; } } while (false
)
;
3698 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3699 "dereferenceable, dereferenceable_or_null apply only to load"do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
3700 " instructions, use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("dereferenceable, dereferenceable_or_null apply only to load"
" instructions, use attributes for calls or invokes", &I
); return; } } while (false)
;
3701 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
3702 "take one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("dereferenceable, dereferenceable_or_null "
"take one operand!", &I); return; } } while (false)
;
3703 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3704 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
3705 "dereferenceable_or_null metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("dereferenceable, " "dereferenceable_or_null metadata value must be an i64!"
, &I); return; } } while (false)
;
3706}
3707
3708/// verifyInstruction - Verify that an instruction is well formed.
3709///
3710void Verifier::visitInstruction(Instruction &I) {
3711 BasicBlock *BB = I.getParent();
3712 Assert(BB, "Instruction not embedded in basic block!", &I)do { if (!(BB)) { CheckFailed("Instruction not embedded in basic block!"
, &I); return; } } while (false)
;
3713
3714 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3715 for (User *U : I.users()) {
3716 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
3717 "Only PHI nodes may reference their own value!", &I)do { if (!(U != (User *)&I || !DT.isReachableFromEntry(BB
))) { CheckFailed("Only PHI nodes may reference their own value!"
, &I); return; } } while (false)
;
3718 }
3719 }
3720
3721 // Check that void typed values don't have names
3722 Assert(!I.getType()->isVoidTy() || !I.hasName(),do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
3723 "Instruction has a name, but provides a void value!", &I)do { if (!(!I.getType()->isVoidTy() || !I.hasName())) { CheckFailed
("Instruction has a name, but provides a void value!", &I
); return; } } while (false)
;
3724
3725 // Check that the return value of the instruction is either void or a legal
3726 // value type.
3727 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
3728 "Instruction returns a non-scalar type!", &I)do { if (!(I.getType()->isVoidTy() || I.getType()->isFirstClassType
())) { CheckFailed("Instruction returns a non-scalar type!", &
I); return; } } while (false)
;
3729
3730 // Check that the instruction doesn't produce metadata. Calls are already
3731 // checked against the callee type.
3732 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
3733 "Invalid use of metadata!", &I)do { if (!(!I.getType()->isMetadataTy() || isa<CallInst
>(I) || isa<InvokeInst>(I))) { CheckFailed("Invalid use of metadata!"
, &I); return; } } while (false)
;
3734
3735 // Check that all uses of the instruction, if they are instructions
3736 // themselves, actually have parent basic blocks. If the use is not an
3737 // instruction, it is an error!
3738 for (Use &U : I.uses()) {
3739 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3740 Assert(Used->getParent() != nullptr,do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3741 "Instruction referencing"do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3742 " instruction not embedded in a basic block!",do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
3743 &I, Used)do { if (!(Used->getParent() != nullptr)) { CheckFailed("Instruction referencing"
" instruction not embedded in a basic block!", &I, Used)
; return; } } while (false)
;
3744 else {
3745 CheckFailed("Use of instruction is not an instruction!", U);
3746 return;
3747 }
3748 }
3749
3750 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3751 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I)do { if (!(I.getOperand(i) != nullptr)) { CheckFailed("Instruction has null operand!"
, &I); return; } } while (false)
;
3752
3753 // Check to make sure that only first-class-values are operands to
3754 // instructions.
3755 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3756 Assert(false, "Instruction operands must be first-class values!", &I)do { if (!(false)) { CheckFailed("Instruction operands must be first-class values!"
, &I); return; } } while (false)
;
3757 }
3758
3759 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3760 // Check to make sure that the "address of" an intrinsic function is never
3761 // taken.
3762 Assert(do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3763 !F->isIntrinsic() ||do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3764 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
3765 "Cannot take the address of an intrinsic!", &I)do { if (!(!F->isIntrinsic() || i == (isa<CallInst>(
I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0))) { CheckFailed
("Cannot take the address of an intrinsic!", &I); return;
} } while (false)
;
3766 Assert(do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3767 !F->isIntrinsic() || isa<CallInst>(I) ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3768 F->getIntrinsicID() == Intrinsic::donothing ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3769 F->getIntrinsicID() == Intrinsic::coro_resume ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3770 F->getIntrinsicID() == Intrinsic::coro_destroy ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3771 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3772 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3773 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3774 "Cannot invoke an intrinsic other than donothing, patchpoint, "do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3775 "statepoint, coro_resume or coro_destroy",do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
3776 &I)do { if (!(!F->isIntrinsic() || isa<CallInst>(I) || F
->getIntrinsicID() == Intrinsic::donothing || F->getIntrinsicID
() == Intrinsic::coro_resume || F->getIntrinsicID() == Intrinsic
::coro_destroy || F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
|| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
|| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
)) { CheckFailed("Cannot invoke an intrinsic other than donothing, patchpoint, "
"statepoint, coro_resume or coro_destroy", &I); return; }
} while (false)
;
3777 Assert(F->getParent() == &M, "Referencing function in another module!",do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
3778 &I, &M, F, F->getParent())do { if (!(F->getParent() == &M)) { CheckFailed("Referencing function in another module!"
, &I, &M, F, F->getParent()); return; } } while (false
)
;
3779 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3780 Assert(OpBB->getParent() == BB->getParent(),do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
3781 "Referring to a basic block in another function!", &I)do { if (!(OpBB->getParent() == BB->getParent())) { CheckFailed
("Referring to a basic block in another function!", &I); return
; } } while (false)
;
3782 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3783 Assert(OpArg->getParent() == BB->getParent(),do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
3784 "Referring to an argument in another function!", &I)do { if (!(OpArg->getParent() == BB->getParent())) { CheckFailed
("Referring to an argument in another function!", &I); return
; } } while (false)
;
3785 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3786 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
3787 &M, GV, GV->getParent())do { if (!(GV->getParent() == &M)) { CheckFailed("Referencing global in another module!"
, &I, &M, GV, GV->getParent()); return; } } while (
false)
;
3788 } else if (isa<Instruction>(I.getOperand(i))) {
3789 verifyDominatesUse(I, i);
3790 } else if (isa<InlineAsm>(I.getOperand(i))) {
3791 Assert((i + 1 == e && isa<CallInst>(I)) ||do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3792 (i + 3 == e && isa<InvokeInst>(I)),do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
3793 "Cannot take the address of an inline asm!", &I)do { if (!((i + 1 == e && isa<CallInst>(I)) || (
i + 3 == e && isa<InvokeInst>(I)))) { CheckFailed
("Cannot take the address of an inline asm!", &I); return
; } } while (false)
;
3794 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3795 if (CE->getType()->isPtrOrPtrVectorTy() ||
3796 !DL.getNonIntegralAddressSpaces().empty()) {
3797 // If we have a ConstantExpr pointer, we need to see if it came from an
3798 // illegal bitcast. If the datalayout string specifies non-integral
3799 // address spaces then we also need to check for illegal ptrtoint and
3800 // inttoptr expressions.
3801 visitConstantExprsRecursively(CE);
3802 }
3803 }
3804 }
3805
3806 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3807 Assert(I.getType()->isFPOrFPVectorTy(),do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
3808 "fpmath requires a floating point result!", &I)do { if (!(I.getType()->isFPOrFPVectorTy())) { CheckFailed
("fpmath requires a floating point result!", &I); return;
} } while (false)
;
3809 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I)do { if (!(MD->getNumOperands() == 1)) { CheckFailed("fpmath takes one operand!"
, &I); return; } } while (false)
;
3810 if (ConstantFP *CFP0 =
3811 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3812 const APFloat &Accuracy = CFP0->getValueAPF();
3813 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
3814 "fpmath accuracy must have float type", &I)do { if (!(&Accuracy.getSemantics() == &APFloat::IEEEsingle
())) { CheckFailed("fpmath accuracy must have float type", &
I); return; } } while (false)
;
3815 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
3816 "fpmath accuracy not a positive number!", &I)do { if (!(Accuracy.isFiniteNonZero() && !Accuracy.isNegative
())) { CheckFailed("fpmath accuracy not a positive number!", &
I); return; } } while (false)
;
3817 } else {
3818 Assert(false, "invalid fpmath accuracy!", &I)do { if (!(false)) { CheckFailed("invalid fpmath accuracy!", &
I); return; } } while (false)
;
3819 }
3820 }
3821
3822 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3823 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
3824 "Ranges are only for loads, calls and invokes!", &I)do { if (!(isa<LoadInst>(I) || isa<CallInst>(I) ||
isa<InvokeInst>(I))) { CheckFailed("Ranges are only for loads, calls and invokes!"
, &I); return; } } while (false)
;
3825 visitRangeMetadata(I, Range, I.getType());
3826 }
3827
3828 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3829 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
3830 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("nonnull applies only to pointer types"
, &I); return; } } while (false)
;
3831 Assert(isa<LoadInst>(I),do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3832 "nonnull applies only to load instructions, use attributes"do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3833 " for calls or invokes",do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
3834 &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("nonnull applies only to load instructions, use attributes"
" for calls or invokes", &I); return; } } while (false)
;
3835 }
3836
3837 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3838 visitDereferenceableMetadata(I, MD);
3839
3840 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3841 visitDereferenceableMetadata(I, MD);
3842
3843 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
3844 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
3845
3846 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3847 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
3848 &I)do { if (!(I.getType()->isPointerTy())) { CheckFailed("align applies only to pointer types"
, &I); return; } } while (false)
;
3849 Assert(isa<LoadInst>(I), "align applies only to load instructions, "do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
3850 "use attributes for calls or invokes", &I)do { if (!(isa<LoadInst>(I))) { CheckFailed("align applies only to load instructions, "
"use attributes for calls or invokes", &I); return; } } while
(false)
;
3851 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I)do { if (!(AlignMD->getNumOperands() == 1)) { CheckFailed(
"align takes one operand!", &I); return; } } while (false
)
;
3852 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3853 Assert(CI && CI->getType()->isIntegerTy(64),do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
3854 "align metadata value must be an i64!", &I)do { if (!(CI && CI->getType()->isIntegerTy(64)
)) { CheckFailed("align metadata value must be an i64!", &
I); return; } } while (false)
;
3855 uint64_t Align = CI->getZExtValue();
3856 Assert(isPowerOf2_64(Align),do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
3857 "align metadata value must be a power of 2!", &I)do { if (!(isPowerOf2_64(Align))) { CheckFailed("align metadata value must be a power of 2!"
, &I); return; } } while (false)
;
3858 Assert(Align <= Value::MaximumAlignment,do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
3859 "alignment is larger that implementation defined limit", &I)do { if (!(Align <= Value::MaximumAlignment)) { CheckFailed
("alignment is larger that implementation defined limit", &
I); return; } } while (false)
;
3860 }
3861
3862 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3863 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N)do { if (!(isa<DILocation>(N))) { DebugInfoCheckFailed(
"invalid !dbg metadata attachment", &I, N); return; } } while
(false)
;
3864 visitMDNode(*N);
3865 }
3866
3867 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3868 verifyFragmentExpression(*DII);
3869
3870 InstsInThisBlock.insert(&I);
3871}
3872
3873/// Allow intrinsics to be verified in different ways.
3874void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3875 Function *IF = CS.getCalledFunction();
3876 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
3877 IF)do { if (!(IF->isDeclaration())) { CheckFailed("Intrinsic functions should never be defined!"
, IF); return; } } while (false)
;
3878
3879 // Verify that the intrinsic prototype lines up with what the .td files
3880 // describe.
3881 FunctionType *IFTy = IF->getFunctionType();
3882 bool IsVarArg = IFTy->isVarArg();
3883
3884 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3885 getIntrinsicInfoTableEntries(ID, Table);
3886 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3887
3888 SmallVector<Type *, 4> ArgTys;
3889 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3890 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
3891 "Intrinsic has incorrect return type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getReturnType
(), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect return type!"
, IF); return; } } while (false)
;
3892 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3893 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3894 TableRef, ArgTys),do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
3895 "Intrinsic has incorrect argument type!", IF)do { if (!(!Intrinsic::matchIntrinsicType(IFTy->getParamType
(i), TableRef, ArgTys))) { CheckFailed("Intrinsic has incorrect argument type!"
, IF); return; } } while (false)
;
3896
3897 // Verify if the intrinsic call matches the vararg property.
3898 if (IsVarArg)
3899 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
3900 "Intrinsic was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Intrinsic was not defined with variable arguments!"
, IF); return; } } while (false)
;
3901 else
3902 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
3903 "Callsite was not defined with variable arguments!", IF)do { if (!(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef
))) { CheckFailed("Callsite was not defined with variable arguments!"
, IF); return; } } while (false)
;
3904
3905 // All descriptors should be absorbed by now.
3906 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF)do { if (!(TableRef.empty())) { CheckFailed("Intrinsic has too few arguments!"
, IF); return; } } while (false)
;
3907
3908 // Now that we have the intrinsic ID and the actual argument types (and we
3909 // know they are legal for the intrinsic!) get the intrinsic name through the
3910 // usual means. This allows us to verify the mangling of argument types into
3911 // the name.
3912 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3913 Assert(ExpectedName == IF->getName(),do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3914 "Intrinsic name not mangled correctly for type arguments! "do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3915 "Should be: " +do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3916 ExpectedName,do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
3917 IF)do { if (!(ExpectedName == IF->getName())) { CheckFailed("Intrinsic name not mangled correctly for type arguments! "
"Should be: " + ExpectedName, IF); return; } } while (false)
;
3918
3919 // If the intrinsic takes MDNode arguments, verify that they are either global
3920 // or are local to *this* function.
3921 for (Value *V : CS.args())
3922 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3923 visitMetadataAsValue(*MD, CS.getCaller());
3924
3925 switch (ID) {
3926 default:
3927 break;
3928 case Intrinsic::coro_id: {
3929 auto *InfoArg = CS.getArgOperand(3)->stripPointerCasts();
3930 if (isa<ConstantPointerNull>(InfoArg))
3931 break;
3932 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
3933 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3934 "info argument of llvm.coro.begin must refer to an initialized "do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
3935 "constant")do { if (!(GV && GV->isConstant() && GV->
hasDefinitiveInitializer())) { CheckFailed("info argument of llvm.coro.begin must refer to an initialized "
"constant"); return; } } while (false)
;
3936 Constant *Init = GV->getInitializer();
3937 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3938 "info argument of llvm.coro.begin must refer to either a struct or "do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
3939 "an array")do { if (!(isa<ConstantStruct>(Init) || isa<ConstantArray
>(Init))) { CheckFailed("info argument of llvm.coro.begin must refer to either a struct or "
"an array"); return; } } while (false)
;
3940 break;
3941 }
3942 case Intrinsic::ctlz: // llvm.ctlz
3943 case Intrinsic::cttz: // llvm.cttz
3944 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3945 "is_zero_undef argument of bit counting intrinsics must be a "do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3946 "constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
3947 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("is_zero_undef argument of bit counting intrinsics must be a "
"constant int", CS); return; } } while (false)
;
3948 break;
3949 case Intrinsic::experimental_constrained_fadd:
3950 case Intrinsic::experimental_constrained_fsub:
3951 case Intrinsic::experimental_constrained_fmul:
3952 case Intrinsic::experimental_constrained_fdiv:
3953 case Intrinsic::experimental_constrained_frem:
3954 visitConstrainedFPIntrinsic(
3955 cast<ConstrainedFPIntrinsic>(*CS.getInstruction()));
3956 break;
3957 case Intrinsic::dbg_declare: // llvm.dbg.declare
3958 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
3959 "invalid llvm.dbg.declare intrinsic call 1", CS)do { if (!(isa<MetadataAsValue>(CS.getArgOperand(0)))) {
CheckFailed("invalid llvm.dbg.declare intrinsic call 1", CS)
; return; } } while (false)
;
3960 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3961 break;
3962 case Intrinsic::dbg_value: // llvm.dbg.value
3963 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3964 break;
3965 case Intrinsic::memcpy:
3966 case Intrinsic::memmove:
3967 case Intrinsic::memset: {
3968 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3969 Assert(AlignCI,do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3970 "alignment argument of memory intrinsics must be a constant int",do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3971 CS)do { if (!(AlignCI)) { CheckFailed("alignment argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3972 const APInt &AlignVal = AlignCI->getValue();
3973 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
3974 "alignment argument of memory intrinsics must be a power of 2", CS)do { if (!(AlignCI->isZero() || AlignVal.isPowerOf2())) { CheckFailed
("alignment argument of memory intrinsics must be a power of 2"
, CS); return; } } while (false)
;
3975 Assert(isa<ConstantInt>(CS.getArgOperand(4)),do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3976 "isvolatile argument of memory intrinsics must be a constant int",do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
3977 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(4)))) { CheckFailed
("isvolatile argument of memory intrinsics must be a constant int"
, CS); return; } } while (false)
;
3978 break;
3979 }
3980 case Intrinsic::memcpy_element_atomic: {
3981 ConstantInt *ElementSizeCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3982 Assert(ElementSizeCI, "element size of the element-wise atomic memory "do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3983 "intrinsic must be a constant int",do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
3984 CS)do { if (!(ElementSizeCI)) { CheckFailed("element size of the element-wise atomic memory "
"intrinsic must be a constant int", CS); return; } } while (
false)
;
3985 const APInt &ElementSizeVal = ElementSizeCI->getValue();
3986 Assert(ElementSizeVal.isPowerOf2(),do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3987 "element size of the element-wise atomic memory intrinsic "do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3988 "must be a power of 2",do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
3989 CS)do { if (!(ElementSizeVal.isPowerOf2())) { CheckFailed("element size of the element-wise atomic memory intrinsic "
"must be a power of 2", CS); return; } } while (false)
;
3990
3991 auto IsValidAlignment = [&](uint64_t Alignment) {
3992 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
3993 };
3994
3995 uint64_t DstAlignment = CS.getParamAlignment(0),
3996 SrcAlignment = CS.getParamAlignment(1);
3997
3998 Assert(IsValidAlignment(DstAlignment),do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
3999 "incorrect alignment of the destination argument",do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
4000 CS)do { if (!(IsValidAlignment(DstAlignment))) { CheckFailed("incorrect alignment of the destination argument"
, CS); return; } } while (false)
;
4001 Assert(IsValidAlignment(SrcAlignment),do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4002 "incorrect alignment of the source argument",do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
4003 CS)do { if (!(IsValidAlignment(SrcAlignment))) { CheckFailed("incorrect alignment of the source argument"
, CS); return; } } while (false)
;
4004 break;
4005 }
4006 case Intrinsic::gcroot:
4007 case Intrinsic::gcwrite:
4008 case Intrinsic::gcread:
4009 if (ID == Intrinsic::gcroot) {
4010 AllocaInst *AI =
4011 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
4012 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS)do { if (!(AI)) { CheckFailed("llvm.gcroot parameter #1 must be an alloca."
, CS); return; } } while (false)
;
4013 Assert(isa<Constant>(CS.getArgOperand(1)),do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
4014 "llvm.gcroot parameter #2 must be a constant.", CS)do { if (!(isa<Constant>(CS.getArgOperand(1)))) { CheckFailed
("llvm.gcroot parameter #2 must be a constant.", CS); return;
} } while (false)
;
4015 if (!AI->getAllocatedType()->isPointerTy()) {
4016 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4017 "llvm.gcroot parameter #1 must either be a pointer alloca, "do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4018 "or argument #2 must be a non-null constant.",do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
4019 CS)do { if (!(!isa<ConstantPointerNull>(CS.getArgOperand(1
)))) { CheckFailed("llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", CS); return; }
} while (false)
;
4020 }
4021 }
4022
4023 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4024 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4025 break;
4026 case Intrinsic::init_trampoline:
4027 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4028 "llvm.init_trampoline parameter #2 must resolve to a function.",do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
4029 CS)do { if (!(isa<Function>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.init_trampoline parameter #2 must resolve to a function."
, CS); return; } } while (false)
;
4030 break;
4031 case Intrinsic::prefetch:
4032 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4033 isa<ConstantInt>(CS.getArgOperand(2)) &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4034 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4035 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
4036 "invalid arguments to llvm.prefetch", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)) &&
isa<ConstantInt>(CS.getArgOperand(2)) && cast<
ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2
&& cast<ConstantInt>(CS.getArgOperand(2))->
getZExtValue() < 4)) { CheckFailed("invalid arguments to llvm.prefetch"
, CS); return; } } while (false)
;
4037 break;
4038 case Intrinsic::stackprotector:
4039 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
4040 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS)do { if (!(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts
()))) { CheckFailed("llvm.stackprotector parameter #2 must resolve to an alloca."
, CS); return; } } while (false)
;
4041 break;
4042 case Intrinsic::lifetime_start:
4043 case Intrinsic::lifetime_end:
4044 case Intrinsic::invariant_start:
4045 Assert(isa<ConstantInt>(CS.getArgOperand(0)),do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4046 "size argument of memory use markers must be a constant integer",do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
4047 CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(0)))) { CheckFailed
("size argument of memory use markers must be a constant integer"
, CS); return; } } while (false)
;
4048 break;
4049 case Intrinsic::invariant_end:
4050 Assert(isa<ConstantInt>(CS.getArgOperand(1)),do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
4051 "llvm.invariant.end parameter #2 must be a constant integer", CS)do { if (!(isa<ConstantInt>(CS.getArgOperand(1)))) { CheckFailed
("llvm.invariant.end parameter #2 must be a constant integer"
, CS); return; } } while (false)
;
4052 break;
4053
4054 case Intrinsic::localescape: {
4055 BasicBlock *BB = CS.getParent();
4056 Assert(BB == &BB->getParent()->front(),do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
4057 "llvm.localescape used outside of entry block", CS)do { if (!(BB == &BB->getParent()->front())) { CheckFailed
("llvm.localescape used outside of entry block", CS); return;
} } while (false)
;
4058 Assert(!SawFrameEscape,do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
4059 "multiple calls to llvm.localescape in one function", CS)do { if (!(!SawFrameEscape)) { CheckFailed("multiple calls to llvm.localescape in one function"
, CS); return; } } while (false)
;
4060 for (Value *Arg : CS.args()) {
4061 if (isa<ConstantPointerNull>(Arg))
4062 continue; // Null values are allowed as placeholders.
4063 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4064 Assert(AI && AI->isStaticAlloca(),do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
4065 "llvm.localescape only accepts static allocas", CS)do { if (!(AI && AI->isStaticAlloca())) { CheckFailed
("llvm.localescape only accepts static allocas", CS); return;
} } while (false)
;
4066 }
4067 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
4068 SawFrameEscape = true;
4069 break;
4070 }
4071 case Intrinsic::localrecover: {
4072 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
4073 Function *Fn = dyn_cast<Function>(FnArg);
4074 Assert(Fn && !Fn->isDeclaration(),do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4075 "llvm.localrecover first "do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4076 "argument must be function defined in this module",do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
4077 CS)do { if (!(Fn && !Fn->isDeclaration())) { CheckFailed
("llvm.localrecover first " "argument must be function defined in this module"
, CS); return; } } while (false)
;
4078 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
4079 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
4080 CS)do { if (!(IdxArg)) { CheckFailed("idx argument of llvm.localrecover must be a constant int"
, CS); return; } } while (false)
;
4081 auto &Entry = FrameEscapeInfo[Fn];
4082 Entry.second = unsigned(
4083 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4084 break;
4085 }
4086
4087 case Intrinsic::experimental_gc_statepoint:
4088 Assert(!CS.isInlineAsm(),do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
4089 "gc.statepoint support for inline assembly unimplemented", CS)do { if (!(!CS.isInlineAsm())) { CheckFailed("gc.statepoint support for inline assembly unimplemented"
, CS); return; } } while (false)
;
4090 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4091 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4092
4093 verifyStatepoint(CS);
4094 break;
4095 case Intrinsic::experimental_gc_result: {
4096 Assert(CS.getParent()->getParent()->hasGC(),do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
4097 "Enclosing function does not use GC.", CS)do { if (!(CS.getParent()->getParent()->hasGC())) { CheckFailed
("Enclosing function does not use GC.", CS); return; } } while
(false)
;
4098 // Are we tied to a statepoint properly?
4099 CallSite StatepointCS(CS.getArgOperand(0));
4100 const Function *StatepointFn =
4101 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
4102 Assert(StatepointFn && StatepointFn->isDeclaration() &&do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4103 StatepointFn->getIntrinsicID() ==do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4104 Intrinsic::experimental_gc_statepoint,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4105 "gc.result operand #1 must be from a statepoint", CS,do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
4106 CS.getArgOperand(0))do { if (!(StatepointFn && StatepointFn->isDeclaration
() && StatepointFn->getIntrinsicID() == Intrinsic::
experimental_gc_statepoint)) { CheckFailed("gc.result operand #1 must be from a statepoint"
, CS, CS.getArgOperand(0)); return; } } while (false)
;
4107
4108 // Assert that result type matches wrapped callee.
4109 const Value *Target = StatepointCS.getArgument(2);
4110 auto *PT = cast<PointerType>(Target->getType());
4111 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4112 Assert(CS.getType() == TargetFuncType->getReturnType(),do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
4113 "gc.result result type does not match wrapped callee", CS)do { if (!(CS.getType() == TargetFuncType->getReturnType()
)) { CheckFailed("gc.result result type does not match wrapped callee"
, CS); return; } } while (false)
;
4114 break;
4115 }
4116 case Intrinsic::experimental_gc_relocate: {
4117 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS)do { if (!(CS.getNumArgOperands() == 3)) { CheckFailed("wrong number of arguments"
, CS); return; } } while (false)
;
4118
4119 Assert(isa<PointerType>(CS.getType()->getScalarType()),do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
4120 "gc.relocate must return a pointer or a vector of pointers", CS)do { if (!(isa<PointerType>(CS.getType()->getScalarType
()))) { CheckFailed("gc.relocate must return a pointer or a vector of pointers"
, CS); return; } } while (false)
;
4121
4122 // Check that this relocate is correctly tied to the statepoint
4123
4124 // This is case for relocate on the unwinding path of an invoke statepoint
4125 if (LandingPadInst *LandingPad =
4126 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
4127
4128 const BasicBlock *InvokeBB =
4129 LandingPad->getParent()->getUniquePredecessor();
4130
4131 // Landingpad relocates should have only one predecessor with invoke
4132 // statepoint terminator
4133 Assert(InvokeBB, "safepoints should have unique landingpads",do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
4134 LandingPad->getParent())do { if (!(InvokeBB)) { CheckFailed("safepoints should have unique landingpads"
, LandingPad->getParent()); return; } } while (false)
;
4135 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
4136 InvokeBB)do { if (!(InvokeBB->getTerminator())) { CheckFailed("safepoint block should be well formed"
, InvokeBB); return; } } while (false)
;
4137 Assert(isStatepoint(InvokeBB->getTerminator()),do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
4138 "gc relocate should be linked to a statepoint", InvokeBB)do { if (!(isStatepoint(InvokeBB->getTerminator()))) { CheckFailed
("gc relocate should be linked to a statepoint", InvokeBB); return
; } } while (false)
;
4139 }
4140 else {
4141 // In all other cases relocate should be tied to the statepoint directly.
4142 // This covers relocates on a normal return path of invoke statepoint and
4143 // relocates of a call statepoint.
4144 auto Token = CS.getArgOperand(0);
4145 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
4146 "gc relocate is incorrectly tied to the statepoint", CS, Token)do { if (!(isa<Instruction>(Token) && isStatepoint
(cast<Instruction>(Token)))) { CheckFailed("gc relocate is incorrectly tied to the statepoint"
, CS, Token); return; } } while (false)
;
4147 }
4148
4149 // Verify rest of the relocate arguments.
4150
4151 ImmutableCallSite StatepointCS(
4152 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
4153
4154 // Both the base and derived must be piped through the safepoint.
4155 Value* Base = CS.getArgOperand(1);
4156 Assert(isa<ConstantInt>(Base),do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
4157 "gc.relocate operand #2 must be integer offset", CS)do { if (!(isa<ConstantInt>(Base))) { CheckFailed("gc.relocate operand #2 must be integer offset"
, CS); return; } } while (false)
;
4158
4159 Value* Derived = CS.getArgOperand(2);
4160 Assert(isa<ConstantInt>(Derived),do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
4161 "gc.relocate operand #3 must be integer offset", CS)do { if (!(isa<ConstantInt>(Derived))) { CheckFailed("gc.relocate operand #3 must be integer offset"
, CS); return; } } while (false)
;
4162
4163 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4164 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4165 // Check the bounds
4166 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
4167 "gc.relocate: statepoint base index out of bounds", CS)do { if (!(0 <= BaseIndex && BaseIndex < (int)StatepointCS
.arg_size())) { CheckFailed("gc.relocate: statepoint base index out of bounds"
, CS); return; } } while (false)
;
4168 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
4169 "gc.relocate: statepoint derived index out of bounds", CS)do { if (!(0 <= DerivedIndex && DerivedIndex < (
int)StatepointCS.arg_size())) { CheckFailed("gc.relocate: statepoint derived index out of bounds"
, CS); return; } } while (false)
;
4170
4171 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4172 // section of the statepoint's argument.
4173 Assert(StatepointCS.arg_size() > 0,do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
4174 "gc.statepoint: insufficient arguments")do { if (!(StatepointCS.arg_size() > 0)) { CheckFailed("gc.statepoint: insufficient arguments"
); return; } } while (false)
;
4175 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
4176 "gc.statement: number of call arguments must be constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(3)
))) { CheckFailed("gc.statement: number of call arguments must be constant integer"
); return; } } while (false)
;
4177 const unsigned NumCallArgs =
4178 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4179 Assert(StatepointCS.arg_size() > NumCallArgs + 5,do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
4180 "gc.statepoint: mismatch in number of call arguments")do { if (!(StatepointCS.arg_size() > NumCallArgs + 5)) { CheckFailed
("gc.statepoint: mismatch in number of call arguments"); return
; } } while (false)
;
4181 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4182 "gc.statepoint: number of transition arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
4183 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs
+ 5)))) { CheckFailed("gc.statepoint: number of transition arguments must be "
"a constant integer"); return; } } while (false)
;
4184 const int NumTransitionArgs =
4185 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4186 ->getZExtValue();
4187 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4188 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4189 "gc.statepoint: number of deoptimization arguments must be "do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
4190 "a constant integer")do { if (!(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart
)))) { CheckFailed("gc.statepoint: number of deoptimization arguments must be "
"a constant integer"); return; } } while (false)
;
4191 const int NumDeoptArgs =
4192 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4193 ->getZExtValue();
4194 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4195 const int GCParamArgsEnd = StatepointCS.arg_size();
4196 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4197 "gc.relocate: statepoint base index doesn't fall within the "do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4198 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4199 CS)do { if (!(GCParamArgsStart <= BaseIndex && BaseIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint base index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4200 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4201 "gc.relocate: statepoint derived index doesn't fall within the "do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4202 "'gc parameters' section of the statepoint call",do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
4203 CS)do { if (!(GCParamArgsStart <= DerivedIndex && DerivedIndex
< GCParamArgsEnd)) { CheckFailed("gc.relocate: statepoint derived index doesn't fall within the "
"'gc parameters' section of the statepoint call", CS); return
; } } while (false)
;
4204
4205 // Relocated value must be either a pointer type or vector-of-pointer type,
4206 // but gc_relocate does not need to return the same pointer type as the
4207 // relocated pointer. It can be casted to the correct type later if it's
4208 // desired. However, they must have the same address space and 'vectorness'
4209 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4210 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
4211 "gc.relocate: relocated value must be a gc pointer", CS)do { if (!(Relocate.getDerivedPtr()->getType()->getScalarType
()->isPointerTy())) { CheckFailed("gc.relocate: relocated value must be a gc pointer"
, CS); return; } } while (false)
;
4212
4213 auto ResultType = CS.getType();
4214 auto DerivedType = Relocate.getDerivedPtr()->getType();
4215 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4216 "gc.relocate: vector relocates to vector and pointer to pointer",do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
4217 CS)do { if (!(ResultType->isVectorTy() == DerivedType->isVectorTy
())) { CheckFailed("gc.relocate: vector relocates to vector and pointer to pointer"
, CS); return; } } while (false)
;
4218 Assert(do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4219 ResultType->getPointerAddressSpace() ==do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4220 DerivedType->getPointerAddressSpace(),do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4221 "gc.relocate: relocating a pointer shouldn't change its address space",do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
4222 CS)do { if (!(ResultType->getPointerAddressSpace() == DerivedType
->getPointerAddressSpace())) { CheckFailed("gc.relocate: relocating a pointer shouldn't change its address space"
, CS); return; } } while (false)
;
4223 break;
4224 }
4225 case Intrinsic::eh_exceptioncode:
4226 case Intrinsic::eh_exceptionpointer: {
4227 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
4228 "eh.exceptionpointer argument must be a catchpad", CS)do { if (!(isa<CatchPadInst>(CS.getArgOperand(0)))) { CheckFailed
("eh.exceptionpointer argument must be a catchpad", CS); return
; } } while (false)
;
4229 break;
4230 }
4231 case Intrinsic::masked_load: {
4232 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS)do { if (!(CS.getType()->isVectorTy())) { CheckFailed("masked_load: must return a vector"
, CS); return; } } while (false)
;
4233
4234 Value *Ptr = CS.getArgOperand(0);
4235 //Value *Alignment = CS.getArgOperand(1);
4236 Value *Mask = CS.getArgOperand(2);
4237 Value *PassThru = CS.getArgOperand(3);
4238 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
4239 "masked_load: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_load: mask must be vector", CS); return; } } while (
false)
;
4240
4241 // DataTy is the overloaded type
4242 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4243 Assert(DataTy == CS.getType(),do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
4244 "masked_load: return must match pointer type", CS)do { if (!(DataTy == CS.getType())) { CheckFailed("masked_load: return must match pointer type"
, CS); return; } } while (false)
;
4245 Assert(PassThru->getType() == DataTy,do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
4246 "masked_load: pass through and data type must match", CS)do { if (!(PassThru->getType() == DataTy)) { CheckFailed("masked_load: pass through and data type must match"
, CS); return; } } while (false)
;
4247 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4248 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
4249 "masked_load: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_load: vector mask must be same length as data"
, CS); return; } } while (false)
;
4250 break;
4251 }
4252 case Intrinsic::masked_store: {
4253 Value *Val = CS.getArgOperand(0);
4254 Value *Ptr = CS.getArgOperand(1);
4255 //Value *Alignment = CS.getArgOperand(2);
4256 Value *Mask = CS.getArgOperand(3);
4257 Assert(Mask->getType()->isVectorTy(),do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
4258 "masked_store: mask must be vector", CS)do { if (!(Mask->getType()->isVectorTy())) { CheckFailed
("masked_store: mask must be vector", CS); return; } } while (
false)
;
4259
4260 // DataTy is the overloaded type
4261 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4262 Assert(DataTy == Val->getType(),do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
4263 "masked_store: storee must match pointer type", CS)do { if (!(DataTy == Val->getType())) { CheckFailed("masked_store: storee must match pointer type"
, CS); return; } } while (false)
;
4264 Assert(Mask->getType()->getVectorNumElements() ==do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4265 DataTy->getVectorNumElements(),do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
4266 "masked_store: vector mask must be same length as data", CS)do { if (!(Mask->getType()->getVectorNumElements() == DataTy
->getVectorNumElements())) { CheckFailed("masked_store: vector mask must be same length as data"
, CS); return; } } while (false)
;
4267 break;
4268 }
4269
4270 case Intrinsic::experimental_guard: {
4271 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_guard cannot be invoked"
, CS); return; } } while (false)
;
4272 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4273 "experimental_guard must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4274 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_guard must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4275 break;
4276 }
4277
4278 case Intrinsic::experimental_deoptimize: {
4279 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS)do { if (!(CS.isCall())) { CheckFailed("experimental_deoptimize cannot be invoked"
, CS); return; } } while (false)
;
4280 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4281 "experimental_deoptimize must have exactly one "do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
4282 "\"deopt\" operand bundle")do { if (!(CS.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1)) { CheckFailed("experimental_deoptimize must have exactly one "
"\"deopt\" operand bundle"); return; } } while (false)
;
4283 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
4284 "experimental_deoptimize return type must match caller return type")do { if (!(CS.getType() == CS.getInstruction()->getFunction
()->getReturnType())) { CheckFailed("experimental_deoptimize return type must match caller return type"
); return; } } while (false)
;
4285
4286 if (CS.isCall()) {
4287 auto *DeoptCI = CS.getInstruction();
4288 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4289 Assert(RI,do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
4290 "calls to experimental_deoptimize must be followed by a return")do { if (!(RI)) { CheckFailed("calls to experimental_deoptimize must be followed by a return"
); return; } } while (false)
;
4291
4292 if (!CS.getType()->isVoidTy() && RI)
4293 Assert(RI->getReturnValue() == DeoptCI,do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4294 "calls to experimental_deoptimize must be followed by a return "do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
4295 "of the value computed by experimental_deoptimize")do { if (!(RI->getReturnValue() == DeoptCI)) { CheckFailed
("calls to experimental_deoptimize must be followed by a return "
"of the value computed by experimental_deoptimize"); return;
} } while (false)
;
4296 }
4297
4298 break;
4299 }
4300 };
4301}
4302
4303/// \brief Carefully grab the subprogram from a local scope.
4304///
4305/// This carefully grabs the subprogram from a local scope, avoiding the
4306/// built-in assertions that would typically fire.
4307static DISubprogram *getSubprogram(Metadata *LocalScope) {
4308 if (!LocalScope)
4309 return nullptr;
4310
4311 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4312 return SP;
4313
4314 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4315 return getSubprogram(LB->getRawScope());
4316
4317 // Just return null; broken scope chains are checked elsewhere.
4318 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope")((!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"
) ? static_cast<void> (0) : __assert_fail ("!isa<DILocalScope>(LocalScope) && \"Unknown type of local scope\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 4318, __PRETTY_FUNCTION__))
;
4319 return nullptr;
4320}
4321
4322void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4323 Assert(isa<MetadataAsValue>(FPI.getOperand(2)),do { if (!(isa<MetadataAsValue>(FPI.getOperand(2)))) { CheckFailed
("invalid rounding mode argument", &FPI); return; } } while
(false)
4324 "invalid rounding mode argument", &FPI)do { if (!(isa<MetadataAsValue>(FPI.getOperand(2)))) { CheckFailed
("invalid rounding mode argument", &FPI); return; } } while
(false)
;
4325 Assert(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid,do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
4326 "invalid rounding mode argument", &FPI)do { if (!(FPI.getRoundingMode() != ConstrainedFPIntrinsic::rmInvalid
)) { CheckFailed("invalid rounding mode argument", &FPI);
return; } } while (false)
;
4327 Assert(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic::ebInvalid,do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
4328 "invalid exception behavior argument", &FPI)do { if (!(FPI.getExceptionBehavior() != ConstrainedFPIntrinsic
::ebInvalid)) { CheckFailed("invalid exception behavior argument"
, &FPI); return; } } while (false)
;
4329}
4330
4331template <class DbgIntrinsicTy>
4332void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4333 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4334 AssertDI(isa<ValueAsMetadata>(MD) ||do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4335 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
4336 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD)do { if (!(isa<ValueAsMetadata>(MD) || (isa<MDNode>
(MD) && !cast<MDNode>(MD)->getNumOperands())
)) { DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic address/value"
, &DII, MD); return; } } while (false)
;
4337 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4338 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
4339 DII.getRawVariable())do { if (!(isa<DILocalVariable>(DII.getRawVariable())))
{ DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic variable"
, &DII, DII.getRawVariable()); return; } } while (false)
;
4340 AssertDI(isa<DIExpression>(DII.getRawExpression()),do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4341 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
4342 DII.getRawExpression())do { if (!(isa<DIExpression>(DII.getRawExpression()))) {
DebugInfoCheckFailed("invalid llvm.dbg." + Kind + " intrinsic expression"
, &DII, DII.getRawExpression()); return; } } while (false
)
;
4343
4344 // Ignore broken !dbg attachments; they're checked elsewhere.
4345 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4346 if (!isa<DILocation>(N))
4347 return;
4348
4349 BasicBlock *BB = DII.getParent();
4350 Function *F = BB ? BB->getParent() : nullptr;
4351
4352 // The scopes for variables and !dbg attachments must agree.
4353 DILocalVariable *Var = DII.getVariable();
4354 DILocation *Loc = DII.getDebugLoc();
4355 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
4356 &DII, BB, F)do { if (!(Loc)) { CheckFailed("llvm.dbg." + Kind + " intrinsic requires a !dbg attachment"
, &DII, BB, F); return; } } while (false)
;
4357
4358 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4359 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4360 if (!VarSP || !LocSP)
4361 return; // Broken scope chains are checked elsewhere.
4362
4363 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4364 " variable and !dbg attachment",do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4365 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
4366 Loc->getScope()->getSubprogram())do { if (!(VarSP == LocSP)) { DebugInfoCheckFailed("mismatched subprogram between llvm.dbg."
+ Kind + " variable and !dbg attachment", &DII, BB, F, Var
, Var->getScope()->getSubprogram(), Loc, Loc->getScope
()->getSubprogram()); return; } } while (false)
;
4367
4368 verifyFnArgs(DII);
4369}
4370
4371static uint64_t getVariableSize(const DILocalVariable &V) {
4372 // Be careful of broken types (checked elsewhere).
4373 const Metadata *RawType = V.getRawType();
4374 while (RawType) {
4375 // Try to get the size directly.
4376 if (auto *T = dyn_cast<DIType>(RawType))
4377 if (uint64_t Size = T->getSizeInBits())
4378 return Size;
4379
4380 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4381 // Look at the base type.
4382 RawType = DT->getRawBaseType();
4383 continue;
4384 }
4385
4386 // Missing type or size.
4387 break;
4388 }
4389
4390 // Fail gracefully.
4391 return 0;
4392}
4393
4394void Verifier::verifyFragmentExpression(const DbgInfoIntrinsic &I) {
4395 DILocalVariable *V;
4396 DIExpression *E;
4397 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4398 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4399 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4400 } else {
4401 auto *DDI = cast<DbgDeclareInst>(&I);
4402 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4403 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4404 }
4405
4406 // We don't know whether this intrinsic verified correctly.
4407 if (!V || !E || !E->isValid())
4408 return;
4409
4410 // Nothing to do if this isn't a bit piece expression.
4411 auto Fragment = E->getFragmentInfo();
4412 if (!Fragment)
4413 return;
4414
4415 // The frontend helps out GDB by emitting the members of local anonymous
4416 // unions as artificial local variables with shared storage. When SROA splits
4417 // the storage for artificial local variables that are smaller than the entire
4418 // union, the overhang piece will be outside of the allotted space for the
4419 // variable and this check fails.
4420 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4421 if (V->isArtificial())
4422 return;
4423
4424 // If there's no size, the type is broken, but that should be checked
4425 // elsewhere.
4426 uint64_t VarSize = getVariableSize(*V);
4427 if (!VarSize)
4428 return;
4429
4430 unsigned FragSize = Fragment->SizeInBits;
4431 unsigned FragOffset = Fragment->OffsetInBits;
4432 AssertDI(FragSize + FragOffset <= VarSize,do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
4433 "fragment is larger than or outside of variable", &I, V, E)do { if (!(FragSize + FragOffset <= VarSize)) { DebugInfoCheckFailed
("fragment is larger than or outside of variable", &I, V,
E); return; } } while (false)
;
4434 AssertDI(FragSize != VarSize, "fragment covers entire variable", &I, V, E)do { if (!(FragSize != VarSize)) { DebugInfoCheckFailed("fragment covers entire variable"
, &I, V, E); return; } } while (false)
;
4435}
4436
4437void Verifier::verifyFnArgs(const DbgInfoIntrinsic &I) {
4438 // This function does not take the scope of noninlined function arguments into
4439 // account. Don't run it if current function is nodebug, because it may
4440 // contain inlined debug intrinsics.
4441 if (!HasDebugInfo)
4442 return;
4443
4444 DILocalVariable *Var;
4445 if (auto *DV = dyn_cast<DbgValueInst>(&I)) {
4446 // For performance reasons only check non-inlined ones.
4447 if (DV->getDebugLoc()->getInlinedAt())
4448 return;
4449 Var = DV->getVariable();
4450 } else {
4451 auto *DD = cast<DbgDeclareInst>(&I);
4452 if (DD->getDebugLoc()->getInlinedAt())
4453 return;
4454 Var = DD->getVariable();
4455 }
4456 AssertDI(Var, "dbg intrinsic without variable")do { if (!(Var)) { DebugInfoCheckFailed("dbg intrinsic without variable"
); return; } } while (false)
;
4457
4458 unsigned ArgNo = Var->getArg();
4459 if (!ArgNo)
4460 return;
4461
4462 // Verify there are no duplicate function argument debug info entries.
4463 // These will cause hard-to-debug assertions in the DWARF backend.
4464 if (DebugFnArgs.size() < ArgNo)
4465 DebugFnArgs.resize(ArgNo, nullptr);
4466
4467 auto *Prev = DebugFnArgs[ArgNo - 1];
4468 DebugFnArgs[ArgNo - 1] = Var;
4469 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
4470 Prev, Var)do { if (!(!Prev || (Prev == Var))) { DebugInfoCheckFailed("conflicting debug info for argument"
, &I, Prev, Var); return; } } while (false)
;
4471}
4472
4473void Verifier::verifyCompileUnits() {
4474 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4475 SmallPtrSet<const Metadata *, 2> Listed;
4476 if (CUs)
4477 Listed.insert(CUs->op_begin(), CUs->op_end());
4478 for (auto *CU : CUVisited)
4479 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU)do { if (!(Listed.count(CU))) { DebugInfoCheckFailed("DICompileUnit not listed in llvm.dbg.cu"
, CU); return; } } while (false)
;
4480 CUVisited.clear();
4481}
4482
4483void Verifier::verifyDeoptimizeCallingConvs() {
4484 if (DeoptimizeDeclarations.empty())
4485 return;
4486
4487 const Function *First = DeoptimizeDeclarations[0];
4488 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4489 Assert(First->getCallingConv() == F->getCallingConv(),do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4490 "All llvm.experimental.deoptimize declarations must have the same "do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4491 "calling convention",do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
4492 First, F)do { if (!(First->getCallingConv() == F->getCallingConv
())) { CheckFailed("All llvm.experimental.deoptimize declarations must have the same "
"calling convention", First, F); return; } } while (false)
;
4493 }
4494}
4495
4496//===----------------------------------------------------------------------===//
4497// Implement the public interfaces to this file...
4498//===----------------------------------------------------------------------===//
4499
4500bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4501 Function &F = const_cast<Function &>(f);
4502
4503 // Don't use a raw_null_ostream. Printing IR is expensive.
4504 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4505
4506 // Note that this function's return value is inverted from what you would
4507 // expect of a function called "verify".
4508 return !V.verify(F);
4509}
4510
4511bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4512 bool *BrokenDebugInfo) {
4513 // Don't use a raw_null_ostream. Printing IR is expensive.
4514 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4515
4516 bool Broken = false;
4517 for (const Function &F : M)
4518 Broken |= !V.verify(F);
4519
4520 Broken |= !V.verify();
4521 if (BrokenDebugInfo)
4522 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4523 // Note that this function's return value is inverted from what you would
4524 // expect of a function called "verify".
4525 return Broken;
4526}
4527
4528namespace {
4529
4530struct VerifierLegacyPass : public FunctionPass {
4531 static char ID;
4532
4533 std::unique_ptr<Verifier> V;
4534 bool FatalErrors = true;
4535
4536 VerifierLegacyPass() : FunctionPass(ID) {
4537 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4538 }
4539 explicit VerifierLegacyPass(bool FatalErrors)
4540 : FunctionPass(ID),
4541 FatalErrors(FatalErrors) {
4542 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4543 }
4544
4545 bool doInitialization(Module &M) override {
4546 V = llvm::make_unique<Verifier>(
4547 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4548 return false;
4549 }
4550
4551 bool runOnFunction(Function &F) override {
4552 if (!V->verify(F) && FatalErrors)
4553 report_fatal_error("Broken function found, compilation aborted!");
4554
4555 return false;
4556 }
4557
4558 bool doFinalization(Module &M) override {
4559 bool HasErrors = false;
4560 for (Function &F : M)
4561 if (F.isDeclaration())
4562 HasErrors |= !V->verify(F);
4563
4564 HasErrors |= !V->verify();
4565 if (FatalErrors) {
4566 if (HasErrors)
4567 report_fatal_error("Broken module found, compilation aborted!");
4568 assert(!V->hasBrokenDebugInfo() && "Module contains invalid debug info")((!V->hasBrokenDebugInfo() && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!V->hasBrokenDebugInfo() && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 4568, __PRETTY_FUNCTION__))
;
4569 }
4570
4571 // Strip broken debug info.
4572 if (V->hasBrokenDebugInfo()) {
4573 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4574 M.getContext().diagnose(DiagInvalid);
4575 if (!StripDebugInfo(M))
4576 report_fatal_error("Failed to strip malformed debug info");
4577 }
4578 return false;
4579 }
4580
4581 void getAnalysisUsage(AnalysisUsage &AU) const override {
4582 AU.setPreservesAll();
4583 }
4584};
4585
4586} // end anonymous namespace
4587
4588/// Helper to issue failure from the TBAA verification
4589template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
4590 if (Diagnostic)
4591 return Diagnostic->CheckFailed(Args...);
4592}
4593
4594#define AssertTBAA(C, ...)do { if (!(C)) { CheckFailed(...); return false; } } while (false
)
\
4595 do { \
4596 if (!(C)) { \
4597 CheckFailed(__VA_ARGS__); \
4598 return false; \
4599 } \
4600 } while (false)
4601
4602/// Verify that \p BaseNode can be used as the "base type" in the struct-path
4603/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
4604/// struct-type node describing an aggregate data structure (like a struct).
4605TBAAVerifier::TBAABaseNodeSummary
4606TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode) {
4607 if (BaseNode->getNumOperands() < 2) {
4608 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
4609 return {true, ~0u};
4610 }
4611
4612 auto Itr = TBAABaseNodes.find(BaseNode);
4613 if (Itr != TBAABaseNodes.end())
4614 return Itr->second;
4615
4616 auto Result = verifyTBAABaseNodeImpl(I, BaseNode);
4617 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
4618 (void)InsertResult;
4619 assert(InsertResult.second && "We just checked!")((InsertResult.second && "We just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"We just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 4619, __PRETTY_FUNCTION__))
;
4620 return Result;
4621}
4622
4623TBAAVerifier::TBAABaseNodeSummary
4624TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode) {
4625 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
4626
4627 if (BaseNode->getNumOperands() == 2) {
4628 // Scalar nodes can only be accessed at offset 0.
4629 return isValidScalarTBAANode(BaseNode)
4630 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
4631 : InvalidNode;
4632 }
4633
4634 if (BaseNode->getNumOperands() % 2 != 1) {
4635 CheckFailed("Struct tag nodes must have an odd number of operands!",
4636 BaseNode);
4637 return InvalidNode;
4638 }
4639
4640 if (!isa<MDString>(BaseNode->getOperand(0))) {
4641 CheckFailed("Struct tag nodes have a string as their first operand",
4642 BaseNode);
4643 return InvalidNode;
4644 }
4645
4646 bool Failed = false;
4647
4648 Optional<APInt> PrevOffset;
4649 unsigned BitWidth = ~0u;
4650
4651 // We've already checked that BaseNode is not a degenerate root node with one
4652 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
4653 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4654 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
4655 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
4656 if (!isa<MDNode>(FieldTy)) {
4657 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
4658 Failed = true;
4659 continue;
4660 }
4661
4662 auto *OffsetEntryCI =
4663 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
4664 if (!OffsetEntryCI) {
4665 CheckFailed("Offset entries must be constants!", &I, BaseNode);
4666 Failed = true;
4667 continue;
4668 }
4669
4670 if (BitWidth == ~0u)
4671 BitWidth = OffsetEntryCI->getBitWidth();
4672
4673 if (OffsetEntryCI->getBitWidth() != BitWidth) {
4674 CheckFailed(
4675 "Bitwidth between the offsets and struct type entries must match", &I,
4676 BaseNode);
4677 Failed = true;
4678 continue;
4679 }
4680
4681 // NB! As far as I can tell, we generate a non-strictly increasing offset
4682 // sequence only from structs that have zero size bit fields. When
4683 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
4684 // pick the field lexically the latest in struct type metadata node. This
4685 // mirrors the actual behavior of the alias analysis implementation.
4686 bool IsAscending =
4687 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
4688
4689 if (!IsAscending) {
4690 CheckFailed("Offsets must be increasing!", &I, BaseNode);
4691 Failed = true;
4692 }
4693
4694 PrevOffset = OffsetEntryCI->getValue();
4695 }
4696
4697 return Failed ? InvalidNode
4698 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
4699}
4700
4701static bool IsRootTBAANode(const MDNode *MD) {
4702 return MD->getNumOperands() < 2;
4703}
4704
4705static bool IsScalarTBAANodeImpl(const MDNode *MD,
4706 SmallPtrSetImpl<const MDNode *> &Visited) {
4707 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
4708 return false;
4709
4710 if (!isa<MDString>(MD->getOperand(0)))
4711 return false;
4712
4713 if (MD->getNumOperands() == 3) {
4714 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
4715 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
4716 return false;
4717 }
4718
4719 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4720 return Parent && Visited.insert(Parent).second &&
4721 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
4722}
4723
4724bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
4725 auto ResultIt = TBAAScalarNodes.find(MD);
4726 if (ResultIt != TBAAScalarNodes.end())
4727 return ResultIt->second;
4728
4729 SmallPtrSet<const MDNode *, 4> Visited;
4730 bool Result = IsScalarTBAANodeImpl(MD, Visited);
4731 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
4732 (void)InsertResult;
4733 assert(InsertResult.second && "Just checked!")((InsertResult.second && "Just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertResult.second && \"Just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 4733, __PRETTY_FUNCTION__))
;
4734
4735 return Result;
4736}
4737
4738/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
4739/// Offset in place to be the offset within the field node returned.
4740///
4741/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
4742MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
4743 const MDNode *BaseNode,
4744 APInt &Offset) {
4745 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!")((BaseNode->getNumOperands() >= 2 && "Invalid base node!"
) ? static_cast<void> (0) : __assert_fail ("BaseNode->getNumOperands() >= 2 && \"Invalid base node!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 4745, __PRETTY_FUNCTION__))
;
4746
4747 // Scalar nodes have only one possible "field" -- their parent in the access
4748 // hierarchy. Offset must be zero at this point, but our caller is supposed
4749 // to Assert that.
4750 if (BaseNode->getNumOperands() == 2)
4751 return cast<MDNode>(BaseNode->getOperand(1));
4752
4753 for (unsigned Idx = 1; Idx < BaseNode->getNumOperands(); Idx += 2) {
4754 auto *OffsetEntryCI =
4755 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
4756 if (OffsetEntryCI->getValue().ugt(Offset)) {
4757 if (Idx == 1) {
4758 CheckFailed("Could not find TBAA parent in struct type node", &I,
4759 BaseNode, &Offset);
4760 return nullptr;
4761 }
4762
4763 auto *PrevOffsetEntryCI =
4764 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx - 1));
4765 Offset -= PrevOffsetEntryCI->getValue();
4766 return cast<MDNode>(BaseNode->getOperand(Idx - 2));
4767 }
4768 }
4769
4770 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
4771 BaseNode->getOperand(BaseNode->getNumOperands() - 1));
4772
4773 Offset -= LastOffsetEntryCI->getValue();
4774 return cast<MDNode>(BaseNode->getOperand(BaseNode->getNumOperands() - 2));
4775}
4776
4777bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
4778 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4779 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4780 isa<AtomicCmpXchgInst>(I),do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
4781 "TBAA is only for loads, stores and calls!", &I)do { if (!(isa<LoadInst>(I) || isa<StoreInst>(I) ||
isa<CallInst>(I) || isa<VAArgInst>(I) || isa<
AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))) { CheckFailed
("TBAA is only for loads, stores and calls!", &I); return
false; } } while (false)
;
4782
4783 bool IsStructPathTBAA =
4784 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
4785
4786 AssertTBAA(do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4787 IsStructPathTBAA,do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
4788 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I)do { if (!(IsStructPathTBAA)) { CheckFailed("Old-style TBAA is no longer allowed, use struct-path TBAA instead"
, &I); return false; } } while (false)
;
4789
4790 AssertTBAA(MD->getNumOperands() < 5,do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
4791 "Struct tag metadata must have either 3 or 4 operands", &I, MD)do { if (!(MD->getNumOperands() < 5)) { CheckFailed("Struct tag metadata must have either 3 or 4 operands"
, &I, MD); return false; } } while (false)
;
4792
4793 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
4794 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
4795
4796 if (MD->getNumOperands() == 4) {
4797 auto *IsImmutableCI =
4798 mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(3));
4799 AssertTBAA(IsImmutableCI,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4800 "Immutability tag on struct tag metadata must be a constant", &I,do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
4801 MD)do { if (!(IsImmutableCI)) { CheckFailed("Immutability tag on struct tag metadata must be a constant"
, &I, MD); return false; } } while (false)
;
4802 AssertTBAA(do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4803 IsImmutableCI->isZero() || IsImmutableCI->isOne(),do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4804 "Immutability part of the struct tag metadata must be either 0 or 1",do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
4805 &I, MD)do { if (!(IsImmutableCI->isZero() || IsImmutableCI->isOne
())) { CheckFailed("Immutability part of the struct tag metadata must be either 0 or 1"
, &I, MD); return false; } } while (false)
;
4806 }
4807
4808 AssertTBAA(BaseNode && AccessType,do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4809 "Malformed struct tag metadata: base and access-type "do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4810 "should be non-null and point to Metadata nodes",do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
4811 &I, MD, BaseNode, AccessType)do { if (!(BaseNode && AccessType)) { CheckFailed("Malformed struct tag metadata: base and access-type "
"should be non-null and point to Metadata nodes", &I, MD
, BaseNode, AccessType); return false; } } while (false)
;
4812
4813 AssertTBAA(isValidScalarTBAANode(AccessType),do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4814 "Access type node must be a valid scalar type", &I, MD,do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
4815 AccessType)do { if (!(isValidScalarTBAANode(AccessType))) { CheckFailed(
"Access type node must be a valid scalar type", &I, MD, AccessType
); return false; } } while (false)
;
4816
4817 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
4818 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD)do { if (!(OffsetCI)) { CheckFailed("Offset must be constant integer"
, &I, MD); return false; } } while (false)
;
4819
4820 APInt Offset = OffsetCI->getValue();
4821 bool SeenAccessTypeInPath = false;
4822
4823 SmallPtrSet<MDNode *, 4> StructPath;
4824
4825 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
4826 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset)) {
4827 if (!StructPath.insert(BaseNode).second) {
4828 CheckFailed("Cycle detected in struct path", &I, MD);
4829 return false;
4830 }
4831
4832 bool Invalid;
4833 unsigned BaseNodeBitWidth;
4834 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode);
4835
4836 // If the base node is invalid in itself, then we've already printed all the
4837 // errors we wanted to print.
4838 if (Invalid)
4839 return false;
4840
4841 SeenAccessTypeInPath |= BaseNode == AccessType;
4842
4843 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
4844 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
4845 &I, MD, &Offset)do { if (!(Offset == 0)) { CheckFailed("Offset not zero at the point of scalar access"
, &I, MD, &Offset); return false; } } while (false)
;
4846
4847 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4848 (BaseNodeBitWidth == 0 && Offset == 0),do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4849 "Access bit-width not the same as description bit-width", &I, MD,do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
4850 BaseNodeBitWidth, Offset.getBitWidth())do { if (!(BaseNodeBitWidth == Offset.getBitWidth() || (BaseNodeBitWidth
== 0 && Offset == 0))) { CheckFailed("Access bit-width not the same as description bit-width"
, &I, MD, BaseNodeBitWidth, Offset.getBitWidth()); return
false; } } while (false)
;
4851 }
4852
4853 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
4854 &I, MD)do { if (!(SeenAccessTypeInPath)) { CheckFailed("Did not see access type in access path!"
, &I, MD); return false; } } while (false)
;
4855 return true;
4856}
4857
4858char VerifierLegacyPass::ID = 0;
4859INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)static void *initializeVerifierLegacyPassPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Module Verifier"
, "verify", &VerifierLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<VerifierLegacyPass>), false, false); Registry
.registerPass(*PI, true); return PI; } static llvm::once_flag
InitializeVerifierLegacyPassPassFlag; void llvm::initializeVerifierLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeVerifierLegacyPassPassFlag
, initializeVerifierLegacyPassPassOnce, std::ref(Registry)); }
4860
4861FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4862 return new VerifierLegacyPass(FatalErrors);
4863}
4864
4865AnalysisKey VerifierAnalysis::Key;
4866VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4867 ModuleAnalysisManager &) {
4868 Result Res;
4869 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4870 return Res;
4871}
4872
4873VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4874 FunctionAnalysisManager &) {
4875 return { llvm::verifyFunction(F, &dbgs()), false };
4876}
4877
4878PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4879 auto Res = AM.getResult<VerifierAnalysis>(M);
4880 if (FatalErrors) {
4881 if (Res.IRBroken)
4882 report_fatal_error("Broken module found, compilation aborted!");
4883 assert(!Res.DebugInfoBroken && "Module contains invalid debug info")((!Res.DebugInfoBroken && "Module contains invalid debug info"
) ? static_cast<void> (0) : __assert_fail ("!Res.DebugInfoBroken && \"Module contains invalid debug info\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn301902/lib/IR/Verifier.cpp"
, 4883, __PRETTY_FUNCTION__))
;
4884 }
4885
4886 // Strip broken debug info.
4887 if (Res.DebugInfoBroken) {
4888 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4889 M.getContext().diagnose(DiagInvalid);
4890 if (!StripDebugInfo(M))
4891 report_fatal_error("Failed to strip malformed debug info");
4892 }
4893 return PreservedAnalyses::all();
4894}
4895
4896PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
4897 auto res = AM.getResult<VerifierAnalysis>(F);
4898 if (res.IRBroken && FatalErrors)
4899 report_fatal_error("Broken function found, compilation aborted!");
4900
4901 return PreservedAnalyses::all();
4902}